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Abstract

In this paper we explore the inception and development of multiple necks in incompressible
nonlinear elastic bars subjected to dynamic stretching. The goal is to elucidate the role played by
a spatial-localized defect of the strain rate field in the necking pattern that emerges in the bars at
large strains. For that task, we have used two different approaches: (1) finite element simulations
and (2) linear stability analyses. The finite element simulations have revealed that, while the defect
of the strain rate field speeds up the development of the necking pattern in the late stages of the
localization process, the characteristic (average) neck spacing is largely independent of the defect
within a wide range of defect amplitudes. The numerical results have been rationalized with the
linear stability analyses, which enabled to explain the average spacing characterizing the necking
pattern at high strain rates. Moreover, the numerical calculations have also shown that, due
to inertia effects, the core of the localization process occurs during the post-uniform deformation
regime of the bar, at strains larger than the one based on the Considére criterion. This phenomenon

of neck retardation is shown to have a meaningful influence on the necking pattern.
Keywords:

Dynamic necking, Nonlinear elasticity, Linear stability analysis, Numerical calculations, Inertia

1. Introduction

The problems of flow localization and fragmentation in ductile solids subjected to high loading
rates have been intensively investigated over the last 70 years. This research field, which has been

traditionally pushed forward by the aerospace and defence industries, is now especially active and
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challenging due to the increasing requirements to improve the protection of vehicles, aircraft and
critical infrastructures from attacks and man-made or natural disasters. A review on the recent sci-
entific literature enlightens the significant number of papers that have been published in this specific
topic over the last decade (Zhang and Ravi-Chandar, 2006; Zhou et al., 2006; Rusinek and Zaera,
2007; Lindgreen et al., 2008; Zhang and Ravi-Chandar, 2010; Mercier et al., 2010; Janiszewski,
2012; Rodriguez-Martinez et al., 2013a; Dequiedt, 2015; Ravi-Chandar and Triantafyllidis, 2015).
Most of the cited works were focused on the dynamic radial expansion of rings (Niordson, 1965).
The principal advantage of the rapidly expanding ring test is that, due to the symmetry of the
problem, the effects of wave propagation are nearly eliminated before flow localization occurs in the
form of multiple necks which ultimately lead to the fragmentation of the sample (Hu and Daehn,
1996). All the published works (either analytical, numerical or experimental) agree that, for duc-
tile materials, the number of necks nucleated in the sample and the number of fragments increase
with the applied loading rate. Furthermore, it has been shown that the proportion of necks that
develop into fracture sites also increases as the loading rate increases (Rodriguez-Martinez et al.,
2013a). Nevertheless, the aetiology of such phenomena is still today a source of debate in the Solid
Mechanics community. It clearly exists a lack of agreement on the mechanisms which control the
necking and fragmentation patterns.

Multiple necking and fragmentation have been classically modelled with statistical approaches
which establish a direct connection between (material, geometrical ...) defects, nucleated necks
and fracture sites. The pioneering work of Mott (1947) set the basis for the statistical theory
which has been further developed, for instance, by Grady and co-workers (Grady, 1981; Kipp and
Grady, 1985; Grady and Olsen, 2003) and Dequiedt (2015). The formation of necks and fragments
is governed by the competition between the activation of some potential necking and failure points
(defects) and the inhibition of some others. Namely, the propagation of release waves from defect
points which are activated first leads to the development of obscured zones in which localization
and failure is impeded. It is assumed that multiple necking and fragmentation proceed through the
random spatial and temporal occurrence of localizations and fractures which result in a distribution
of neck spacings and fragment lengths.

An alternative to the statistical theory stemmed from the seminal works of Fressengeas and

Molinari (1985, 1994) who approached the problems of multiple necking and fragmentation using



dynamic stability analyses. The technique consists of adding a small perturbation to the fundamen-
tal solution of the problem to determine whether a neck-like deformation field can exist (Guduru
and Freund, 2002). It has been shown that the perturbation grows for a finite number of modes
which define the range of neck spacings that can be found in the localization pattern. The ex-
istence of growing modes is the result of the combined effects of inertia, stress multiaxiality and
constitutive behaviour of the material. The mode that grows the fastest, at each time, is referred
to as the critical mode. Rodriguez-Martinez et al. (2013b) demonstrated that, for perfectly plastic
materials, the critical mode is associated to the minimum energy required to nucleate a neck. At
high strain rates, when inertia plays a dominant role in the loading process, the modes close to the
critical one show a clear prevalence over other growing modes, which calls for the development of
regular fragmentation patterns (Rodriguez-Martinez et al., 2013a).

The research presented in this paper seeks to provide, using finite element simulations, new
insights on the multiple necking process at high strain rates. For that purpose, we investigate
through finite element calculations conducted with ABAQUS /Explicit the problem originally posed
by Ravi-Chandar and Triantafyllidis (2015) which consists of an incompressible nonlinear elastic
bar subjected to dynamic stretching. A localized defect of the strain rate field is included in the
model in order to assess whether the defect influences the necking pattern that emerges in the bar
at large strains. On the one hand, we have observed that the defect plays a role in the rate of
growth of the localization process which develops during the post-uniform deformation regime of
the bar. On the other hand, we have shown that the number of nucleated necks and their spacing
remain quite insensitive to the defect amplitude, for the range of amplitudes considered in the
present work. The latter observation has been rationalized using dynamic stability approaches,
and suggests the existence of dominant modes which control (to some extent) the neck spacing in

multiple localization patterns developed at high strain rates.

2. Outline of the problem

We address the problem of a cylindrical bar with initial length L° and radius R? subjected to
dynamic stretching. A schematic representation of the problem is shown in Fig. 1, where (R, 0, Z)
denotes the Lagrangian (cylindrical) coordinate system. The initial and boundary conditions for
the longitudinal V; and radial Vg velocities are:
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where 20 is the initial strain rate applied to the bar. Moreover, we assume that the bar is

initially stress and strain free.
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Figure 1: Schematic representation of a cylindrical bar subjected to dynamic stretching.

Following Ravi-Chandar and Triantafyllidis (2015), the material has an incompressible nonlinear
elastic behaviour defined by the following power-law relation:

0. = K=o (1)

where o, and =, are the effective (Mises) stress and strain, K’ = 2 GPa is a material constant
(which defines the stress level for a strain of 1) and n = 0.22 is the strain hardening exponent. The
material density is p = 7740 kg;"ma. Following Ravi-Chandar and Triantafyllidis (2015) thermal
and viscous effects are not considered in the constitutive behaviour of the material so that the
effects of inertia, stress multiaxiality and strain hardening control the instabilities development.

Note that during unloading the material follows the nonlinear path defined by Eq. (1).

3. Linear stability models

A two-pronged linear stability approach is used in this work. On the one hand we consider the

3D model developed by Mercier and Molinari (2003) and, on the other, the 1D model enhanced
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with the Bridgman correction factor developed by Zhou et al. (2006). The goal of this two-pronged
strategy is to show that the linear stability approach, irrespective of the degree of complexity of the
specific model considered, provides results which are consistent with those obtained from nonlinear
numerical calculations (see sections 5 and 6). The initial and loading conditions were presented in
section 2.

The linear stability approach, which relies on the seminal works of Fressengeas and Molinari
(1985, 1994), is based on the addition of a small perturbation, at a given time, to the fundamental
solution of the (homogeneous) problem. Satisfying field equations for the perturbed quantities, the
rate of growth of the perturbation n+ is evaluated. The perturbation growth represents the first
stages of the necking pattern. The stabilizing effect of inertia and stress multiaxiality on small
and large wavenumbers (respectively) promotes a finite number of intermediate modes. For each
strain level, the mode that grows the fastest is characterized by a wavenumber that is referred
to as the critical wavenumber £.. The critical wavenumber evolves with strain during the post-
uniform regime. As further shown in sections 5 and 6, finite element simulations can be used
to determine the duration of the post-uniform regime and identify the strain level for which the
rapid localization process is triggered. Performing the linear stability analysis at the localization
strain obtained from the finite element calculations it can be shown that the critical wavenumber
provides a good estimate of the average localization spacing at high strain rates (Mercier et al.,
2010; Rodriguez-Martinez et al., 2013a; Zaera et al., 2015). It will also be shown that accounting
for the history of the perturbation growth during the post-uniform deformation process the neck
spacing predictions obtained from the linear stability analyses find good agreement with the finite
element calculations. For the 1D model, a closed-form expression for n* as a function of £, can be
derived. For the 3D model, 5t is the solution of a nonlinear equation that needs to be addressed

numerically since no analytical expression can be obtained.

The formulations of the 3D and 1D linear stability models are not presented here for the
sake of brevity. The reader is referred to previous publications to obtain further insights into the
mathematical derivation of the models (Mercier and Molinari, 2003; Zhou et al., 2006; Rodriguez-

Martinez et al., 2013a; El Mai et al., 2014).



4. Finite element model

An axisymmetric finite element model has been developed in ABAQUS/Explicit to simulate
multiple necking in cylindrical bars subjected to dynamic stretching. The nonlinear elastic material
defined by Eq. (1) is adopted. While the use of strict isochoric materials is not allowed by the
numerical code, we have taken a value of the Poisson’s ratio which induces for the material, a quite
incompressible behavior v = 0.4995. The initial and loading conditions were presented in section
2. Following the work of Ravi-Chandar and Triantafyllidis (2015), a spatial-localized defect in the
axdal velocity field is added to the background solution at a given time ¢*. Unless otherwise noted

the defect is inserted in the center of the bar Z = 0 (see Fig. 1):

8V, (Z) = atanh (8Z + ¢) — tanh (BZ — ¢)] (2)

where o, 7 and { are parameters which control the amplitude, shape and width of the defect.

From Eq. (2), the corresponding defect of the strain rate field is obtained:

8 (dvz (Z)

527 (2) = 202D _ o [sech (87 + ¢)? — sech (87 — )] 3)

The velocity and strain rate defects are depicted in Fig. 2 as a function of the axial coordinate

The positions of the extremum of ¢z, with respect to the center of the defect, are located at

Zmat

Z™a* — tarcsech 2 g1 (4)

\/2+cosh(2(,']+ 1744cosh(4¢)

The corresponding amplitude of the strain rate defect d2zz (Z£™"") can be evaluated analytically
as a function of the parameters @,  and (, see Fig. 2. While the value of the parameter a is

systematically varied in the calculations reported in section 6, the two other parameters are kept
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Figure 2: Velocity and strain rate defects, §Vz and d£zz, as a function of the axial coordinate 2. The parameters
o = 0.625 m/s, = 1000 m~! and ¢ = 0.1 are used.

constant for all the simulations presented in this work: 8 = 1000 m~! and ¢ = 0.1. The defect
is added at time #* = 0.01 ps, which corresponds, for the range of strain rates considered in this
paper, to strains much smaller than the one predicted by the Considére criterion.

In this paper we will systematically work with strain rate defects. The defect is characterized
by its normalized amplitude w(%) = @gﬂ % 100 where dézz (£™"F) is derived from Egs. (3)
and (4) and, as previously mentioned, £° is the initial strain rate. The use of the normalized strain
rate amplitude @ provides a physical perspective of the problem since there is a direct connection
between strain rate and inertia, which facilitates the interpretation of the numerical results (see
section 6). Once the defect is inserted in the finite element model, it splits into two parts, each
travelling in opposite direction from the other, leading to disturbances in the field variables.

The goal is to provide further insights into the recent work of Ravi-Chandar and Triantafyllidis
(2015) and elucidate whether this defect controls/determines the localization pattern which emerges
in the bar (see section 6). A key point is that the finite element modelling allows to study the post-
uniform behaviour of the rod and thus to analyse the full development of the necking instability. As
such, our finite element simulations aim to complement the numerical calculations of Ravi-Chandar
and Triantafyllidis (2015) which, being based on the method of characteristics, are restricted to

strains below the one obtained from the Considére criterion.



The finite element model is meshed using four node axisymmetric elements, with reduced in-
tegration and hourglass control (CAX4R). The elements have an initial aspect ratio 1 : 1 with
dimensions 50 % 50 pm?2. A mesh convergence study has been performed, in which the time evolution
of different critical output variables, namely stress, strain and necking inception, were compared
against different mesh sizes. While we have found some mesh sensitivity in the numerical results,
we have checked that it does not affect significantly our results, neither quantitatively nor quali-
tatively. The number of necks, their spacing and their growth rate are largely independent of the

discretization for the cases considered in this paper.

5. Salient features

In this section we present a comparison between numerical and analytical results, and show
that flow localization in nonlinear elastic bars stretched at high strain rates is largely influenced by
inertia effects.

Fig. 3 shows numerical results for a bar with initial length L® = 40 mm and radius R = 1 mm
subjected to initial strain rate 0 = 10000 s—!. This set of values for LY, R? and £° is taken as
reference in this paper. No strain rate defect is added in the calculations. The necking pattern is
triggered by the disturbances of the field variables caused by the discretization of the bar and the
explicit integration scheme used by the finite element code (Rusinek and Zaera, 2007; Vadillo et al.,
2012; Rodriguez-Martinez et al., 2017). The ratio between the current and the background axial
logarithmic strain =z gl,r'E% 7 versus the normalized coordinate Z = L% is shown for four different
times: ¢t = 46 pus and £ = 52 ps in Fig. 3(a), f = 72 ps and £ = 74 ps in Fig. 3(b). Note that the
background strain Ebzz = In(14-2%) corresponds to the homogeneous solution, where t is the loading
time. These four specific loading times are taken to illustrate the inception and development of
multiple necks in the specimen.

For t = 46 pus the background strain, which has a value of 0.38, is significantly greater than the
Considére strain 0.22 (see Eq. (1)). We observe some slight fluctuations in the strain profile which
indicate the onset of the localization pattern. The excursions of strain represent the nucleation
of necks. All the bar is perturbed following a neck-like profile. The maximum value of the ratio

Egg;’E%z is == 1.0003. For t = 52 ps the background strain is 0.419. The localization pattern has



evolved and the maximum value of the ratio sz z ;’E% 7 is = 1.0007. Moreover, in comparison with the
strain field observed for ¢t = 46 us, two additional excursions are observed (see the indications in Fig.
3(a)). There is a total of 13 necking points. It is apparent that the necking pattern is progressively
built up during the post-uniform deformation regime. This is because inertia has a stabilizing
effect and delays the formation and development of necks (Xue et al., 2008). It is also observed
that the necks located in the centre of the specimen develop slightly faster than those which are
closer to the sample ends. This suggests an influence of the boundary conditions in the localization
process (we will further develop this issue in section 6.3). For t = 72 ps the background strain is
0.542. The necking pattern is very much developed and the strain excursions are well defined. The
maximum value of the ratio £zz /2%, is =~ 1.2. The number of strain excursions and their location
coincide with those observed for t = 52 us. The necking pattern does not undergo any additional
modification with the straining of the bar. The average normalized Lagrangian neck spacing is
Lreck (@0 = 1.54, where L™ is the mean distance between two consecutive necks measured in
the reference configuration and & = 2R? is the initial diameter. We observe in the histogram
presented in Fig. 4 that the normalized distances between two consecutive necks L™°* /@0 present
some fluctuations but are centred around (and close to) the average normalized spacing L™e°* /&0,
Moreover, the Weibull probability density function given in Eq. (5) has been fitted to the numerical

results (blue solid line). The parameters of the distribution are y = 2.98, kK = 7.12 and A = 1.51.

w(%) 4 Ge) 5] )

While the number of necks in the bar is not large, it has to be noted that, consistently with the
results of Zhang and Ravi-Chandar (2006), the Weibull distribution fits the measured neck spacings
rather well. For t = 74 pus the necking pattern is fully developed. The ratio between the maximum
and the background axial logarithmic strain is == 1.6. Inside the necked sections the strain grows
quickly and outside the localized regions the strain drops due to elastic unloading. Note that none
of the necks is arrested. In absence of any dissipative source, all the energy released in the unloaded
zones serves to boost the growth of the necks.

Note that, during loading, nonlinear elastic and elasto-plastic materials defined by Eq. (1)

show identical response. However, if unloading occurs, their behavior is significantly different.
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In other words, the results reported in this paper are specific for nonlinear elastic bars and, in
principle, could not be extrapolated to elasto-plastic specimens. The interaction between the necks
of the pattern could be affected by the unloading process. Moreover, for elasto-plastic materials, the
dissipative character of plasticity will probably influence the growth rate of the necks. In addition, a
different fragmentation behavior is expected between nonlinear elastic and elasto-plastic materials.
The comparison between the necking and fragmentation responses of nonlinear elastic and elasto-
plastic structures is an ongoing work.

Fig. 5 shows the axial force Fz measured at one end of the specimen versus the loading time ¢
and the axial nominal strain ez = £t for the calculation presented in Fig. 3. We have checked
that the forces recorded at both ends of the sample are nearly identical. Note that the post-
uniform deformation regime is very large and lasts longer than the uniform deformation process.
This is a clear manifestation of the stabilizing effect of inertia in the loading process, as further
demonstrated in section 6.1. Recall that the material behaviour is rate insensitive. For the case
considered here, the uniform deformation process ends at the Considére strain 0.22, while the
post-uniform deformation regime has an extent in strain of = 0.5. The force shows a meaningful
deviation from the fundamental solution, represented by the green solid line, only for t = TOus.
The numbers 1, 2, 3 and 4 indicate the four loading times considered in Fig. 3. It is apparent
that, at high strain rates, the core of the localization process occurs at strains much larger that the
Considére strain. In other words, the existence of a meaningful post-uniform deformation process
cannot be disregarded in the analysis of multiple necking at high strain rates.

The numerical results presented above are further rationalized using the linear stability analyses.
Fig. 6 shows analytical results obtained from the 1D and 3D linear stability models introduced
in section 4. As in the numerical results presented in Figs. 3, 4 and 5, the cross-section radius
of the bar is R = 1 mm and the nominal loading rate is €% = 10000 s—!. We plot the average
normalized Lagrangian neck spacing L™* /®° versus the axial logarithmic strain £z . The average
Lagrangian neck spacing is derived from the critical wavenumber £, as L™ = 2w /€. (see section
3). We observe that 3D and 1D models provide similar values, which shows the suitability of the
Bridgman correction used in the 1D model to describe the multiaxial stress state in the necked
section. The only difference is that the 3D model provides slightly larger values of E“ﬂ‘*f@u in the
range of strains considered. Irrespective of the selected analytical model, the average normalized
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Lagrangian neck spacing decreases with £zz, i.e. the average neck spacing is smaller as czz
increases. The decrease of L™ f@u is significantly milder as the strain at perturbation increases.

Note that linear stability analyses are only wvalid to describe the first stages of the necking
pattern development (see section 3), in other words, when the neck-like deformation field shows
only a small deviation from the background strain (see Fig. 3). In that case the force exerted in
the bar is close to the fundamental solution (see Fig. 5). Based on the finite element analysis,
the loading time which defines the upper limit for the application of the linear stability analysis in
the specific case of Fig. 6 is t == 70 pus. This loading time, which corresponds to a drastic drop in
the force, yields a background logarithmic strain of =zz = 0.53 (note that Fig. 5 shows nominal
strains ezz and that gz = In(1 4 ezz)). On the other hand, the definition of the lower limit for
the application of the linear stability analysis shows more arbitrariness. In this work, we assume
that the minimum deviation from the fundamental solution required to obtain meaningful pattern
predictions using the stability analysis occurs when the deformation field of the bar reaches (in
some point of the bar) a ratio between the current and the background axial logarithmic strain of
1.0003. It has been observed in the numerical simulations that this is the minimum ratio required
for the formation of a well defined neck-like profile. In the specific case of Fig. 6, previous condition
is attained for a loading time of t = 46 ps and thus a background logarithmic strain of ezz = 0.38.
Following previous criteria, the predictions of the stability models in Fig. 6 are evaluated within
the range of axial logarithmic strains 0.38 < szz < 0.53. For the 1D and 3D models these
values of strain correspond to average neck spacings within the ranges 1 < L™ /®? < 1.37 and
1 < L™ /" < 1.48, respectively. These results, especially in the case of the 3D model, find
satisfactory correlation with finite element calculations for which L% /@? = 1.54.

In the next section of the paper we develop a systematic comparison of numerical simulations
in which a spatial-localized defect of different amplitudes is included. A wide spectrum of loading

rates and sample sizes is investigated.

6. Analysis and results

The analysis carried out in this section is mostly based on numerical calculations. Additionally,

the linear stability analyses are used to rationalize our conclusions.
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6.1. The role of the loading rate

We investigate the role played by the loading rate on flow localization. Fig. 7 shows the average
normalized Lagrangian neck spacing E“ﬂ‘*f@u versus the initial loading rate . These results are
obtained from numerical calculations in which a strain rate defect is inserted in the center of
the specimen. Various normalized defect amplitudes within the range 0.12% < @ < 7.65% are
investigated. Note that the latter is a very significant defect of the strain rate field. A special
attention is also drawn for the case without any defect w = 0% (as in section 5). For some loading
rates, due to similar results, some symbols overlap each other and are not visible. Note that,
irrespective of w, the average neck spacing decreases with the strain rate. As demonstrated by
Rodriguez-Martinez et al. (2013a), this behaviour is mostly caused by the increasing role played
by inertia on flow localization as the loading rate increases. Similar results have been obtained
experimentally, numerically and analytically by several authors for various ductile materials (Grady
and Benson, 1983; Hu and Daehn, 1996; Grady and Olsen, 2003; Mercier and Molinari, 2004; Zhang
and Ravi-Chandar, 2006; Rusinek and Zaera, 2007).

Fig. 8 shows the ratio between the current and the background axial logarithmic strain czz ;’E% 7
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Figure 7: Average normalized Lagrangian neck spacing L™ /®" versus initial loading rate £°. Results are
obtained using finite element calculations for seven normalized defect amplitudes: = = 0.12%, = = 0.24%,
w = 0.48%, w = 0.96%, = = 1.91%, @ = 3.82% and = = 7.65%. The defect is included at the center of the
specimen. Results in which no defect is included in the model (o = 0%) are shown also. The initial length
and radius of the bar are L” = 40 mm and R” = 1 mm. Note that, for some loading rates, due to similar
results, some symbols overlap each other and are not visible.
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as a function of the normalized coordinate Z for three different loading rates: 0 = 200 s—1,
20 — 2000 s~ and 2° = 20000 s—!. The amplitude of the strain rate defect is @ = 0.96%. Recall
that the defect is inserted in the simulation at t* = 0.01 us. The data shown in Fig. 8 for the three
loading rates correspond to ¢ = 1456 ps, + = 208 ps and t = 50 ps, respectively. These specific
loading times are selected in order to obtain the same maximum value of the ratio czz /<, (around
1.6). Thus, we ensure that the localization pattern is fully developed. On the one hand, we have
checked that the values of strain corresponding to the peaks of Fig. 8 are more homogeneous as
the strain rate increases. On the other hand, none of the examples presented in Fig. 8 shows any
evidence of the (potential) effect of the strain rate defect in the localization pattern.

In this regard, we should note that the normalized amplitude of the strain czz /c%, (current
strain divided by background axial logarithmic strain) decreases in the pre-Considére regime and
increases once the Considére strain is exceeded. Fig. 9 presents the normalized strain profiles
within the bar for six different loading times t = 1 to t = 35 microseconds. Note that the three
first times correspond to background strains in the pre-Considére regime, Fig. 9(a), while for the
last three times, the background strains are in the post-Considére phase, Fig. 9(b). In Fig. 9(a),
it is clear that the defect propagates along the bar. The relative strain amplitude is decreasing.
When the Considére strain is reached the defects are arrested at given positions of the bar. For
strains above the Considére strain the amplitude of the defect increases with the stretching of the
structure. In addition to the strain rate defect, other instability modes are gradually activated
within the bar. All these modes develop until the necking pattern shown in Fig. 8 is formed.

Moreover, we have compared the results of Fig. 8 with calculations in which w was set to zero.
The comparison for the case of 2% = 2000 s~! is shown in Fig. 10. It seems that for @ = 0.96%
and £ = 2000 s—! the defect plays a secondary role in the necking pattern. The influence of the
defect amplitude in the necking pattern will be further discussed in section 6.2.

Fig. 11 displays the axial force Fz measured at one end of the sample versus the axial nominal
strain ezz = £°t for the numerical simulations of Fig. 8. We ohserve that the post-uniform
deformation regime is significantly enlarged with the strain rate. Numbers 1, 2 and 3 indicate the
specific loading times selected in Fig. 8 for £ = 200 s~ 1, 20 = 2000 s—! and 20 = 20000 s—1,
respectively. These loading times coincide with the beginning of the localization stage where the

force in the bar deviates from the fundamental solution. For £? = 200 s—! the post-uniform regime
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Figure 8 Ratio between the current and the background axial logarithmic strain £zz /2%, versus the nor-
malized coordinate Z = I‘_-zg Results are obtained using finite element calculations with three different initial
loading rates: £° = 200 s, £ = 2000 s~! and £° = 20000 s~'. A strain rate defect with normalized
amplitude @ = 0.96% has been introduced in the center of the specimen. The data shown for the three
initial loading rates correspond to # = 1456 ps, + = 208 ps and ¢ = 50 us, respectively. These times are
selected in order to nearly obtain the same maximum value of the ratio £zz /%, (around 1.6) for the three
calculations. The initial length and radius of the bar are L® = 40 mm and R" = 1 mm.
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Figure 9: Ratio between the current and the background axial logarithmic strain Ezzfsfr}z versus the normalized
coordinate Z = Ez.;,- Results are obtained using a finite element calculation for £% = 20000 s~!. A strain rate defect
with normalized amplitude = = 0.96% has been introduced in the center of the specimen. Data are shown for six
different loading times: (a) £ = 1 ps, ¢ = 5 ps and £ = 10 ps which correspond to backgrounds strains below the
Considére criterion: £3z = 0.020, £z = 0.095 and e5z = 0.182. (b) £ = 25 ps, £ = 30 us and ¢ = 35 ps which
correspond to backgrounds strains above the Considére criterion: %, = 0.405, £%; = 0.470 and % = 0.530. The
initial length and radius of the bar are L = 40 mm and R = 1 mm.
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Figure 10: Ratio between the current and the background axial logarithmic strain £zz/c%, versus the
normalized coordinate Z — f . Results are obtained using finite element caleulations with two different
normalized strain rate defect amplitudes: @ = 0% (no defect) and = = 0.96% (reference defect). The
defect is included at the center of the specimen. The initial strain rate is 20 = 2000 s~!. The data shown

correspond to + = 208 ps. The initial length and radius of the bar are L? = 40 mm and R® = 1 mm.
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has a limited strain extension. The necking pattern is incepted and developed shortly after the
force reached a maximum. On the contrary, for £ = 20000 s~! the localization is delayed until very
large strains are attained in the bar. We also observe that the drop of the force corresponding to the
late stages of the localization process is significantly slowed down as £° increases. As anticipated
in section 5, the stabilizing role of inertia at high strain rates favours the development of a large
post-uniform deformation regime which needs to be considered in the analysis of multiple necking
problems. Since no failure criterion is used in the calculations, the strain in the sample increases

freely until the excessive distortion of the elements in the necked sections stops the simulation.
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Figure 11: Axial force Fy versus axial nominal strain ezz = £t for the three finite element calculations
presented in Fig. 8. The numbers 1, 2 and 3 point out the loading times selected in Fig. 8 for 20 = 200 s,
£ — 2000 s~! and 2% = 20000 5!, respectively. The solid green line represents the fundamental solution.

Fig. 12 shows the average normalized Lagrangian spacing L™ /@ versus the normalized initial
location of the defect Z = L% Nine different initial locations of the defects are explored: Z = 0.5,
Z = 10.375, Z = +£0.25, Z = £0.125 and Z = 0. The amplitude of the strain rate defect included
in the numerical calculations is @ = 0.96%. Note that this is the only graph in the paper with
results obtained from numerical simulations in which the defect was not located in the center of
the specimen. As in previous plots, the initial length and radius of the bar are L? = 40 mm and

R® = 1 mm, respectively. The initial strain rate is £ = 10000 s~!. We observe that the average
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necks spacing is largely independent of the position of the bar where the defect is included: this

further shows that the defect seems to play a secondary role in the necks spacing.
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Figure 12: Average normalized Lagrangian neck spacing L™** /&" versus normalized location of the defect
Z = fzc-' Results are obtained using finite element calculations in which nine different locations of the defect
are explored: Z = 0.5, Z = +0.375, Z = +0.25, Z = £0.125 and Z = 0. The amplitude of the strain
rate defect included in the numerical calculations is @ = 0.96%. The initial length and radius of the bar are
L" = 40 mm and R® = 1 mm. The initial strain rate is £* = 10000 s~ 1.

In Fig. 13 we compare, for various loading rates, the average normalized Lagrangian neck
spacing L™F / ®" obtained from the numerical simulations for the case of w = 0.96% with the
predictions of the stability analyses. The perturbation is inserted at the time when the force
deviates from the fundamental solution in the corresponding numerical calculation. It is observed
that both 1D and 3D stability models predict values of the spacing which are quite similar. In
addition, the evolution of the neck spacing with the strain rate predicted by the stability analyses
follows the trend obtained from the finite element calculations. As the strain rate increases, the
average neck spacing decreases and the strain at localization increases, see Table 1. Nevertheless,
there is some discrepancy between analytical and numerical predictions, see Fig. 13.

In this regard, since the critical wavenumber in the stability analyses varies with time (i.e.

deformation), it is worth tracking the history of the growth rate of all the growing modes during

the deformation process. Thus, as originally proposed by Fressengeas and Molinari (1994) and
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Strain rate [s=!] | Strain - FE _time [us] - FE | Strain - 1D LSA _ time [us] - 1D LSA | Strain - 3D LA time [us] - 3D LSA
200 0.256 1456 0.256 1456 0.256 1456
1000 0.298 8 0.303 57 0.202 357
2000 0.347 208 0.340 202 0.344 205
5000 0.412 102 0.416 103 0.427 106
10000 0.512 67 0.507 fi6 0.525 69

Tahble 1: Predictions of the localization strain and time using 1D and 3D linear stability analyses (referred to as LSA)
together with the cumulative instability index I'. The predictions of the stability analyses are in good agreement with
the finite element simulations (referred to as FE). The instability index is set to I, = 10.16 for the 1D model and
I. = 10.04 for the 3D model to obtain the analvtical predictions. These values have been calibrated using the lowest

strain rate case 200 s 1.

later adopted by Petit et al. (2005) and El Mai et al. (2014), an alternative critical wavenumber
is identified relying on the evolution of a cumulative instability index defined as I = f;ﬂmidm ntdt
where t.onsidere corresponds to the time of maximum force. El Mai et al. (2014) have shown that
the neck spacing predicted using the critical wavenumber associated to the cumulative instability
index I is greater than the neck spacing derived from the critical wavenumber associated to the in-
stantaneous instability index 5. Within this context, the following methodology has been adopted
to calibrate the critical value of the cumulative instability index I. First, the case of initial strain
rate 200 s—! is considered. The finite element simulations predict that the localization occurs at
t = 1456 ps. The linear stability analyses are performed from f. .5 4ece t0 t = 1456 ps and the
cumulative index [ is calculated. The wavenumber which presents the largest cumulative growth
rate (the critical wavenumber) is £, = 787 m~! for the 1D model and £, = 785 m~! for the 3D
model. The corresponding values of the index I are I, = 10.16 and I. = 10.04, respectively. Next,
we consider cases with larger nominal strain rate varying from 1000 s—! to 10000 s—!. For each
nominal strain rate, the critical wavenumber, the time and the strain at which the condition I = I,
is met, are determined. Fig. 13 shows that the neck spacings predicted with the cumulative insta-
hility index, using 1D and 3D models, are in close agreement with the results obtained from the
finite element calculations within the whole range of strain rates considered here. Note also that
the corresponding strains and times when I = I, are in good agreement with the values provided
by the finite element calculations, see Table 1. The values of I. are valid for a given material,
geometry, amplitude and shape of defect.

In the next section of the paper, we further investigate the interplay between the strain rate

defect and the necking pattern.
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Figure 13: Comparison between finite element calculations and linear stability analyses. Average normalized
Lagrangian neck spacing L™ /®" versus initial loading rate £°. The amplitude of the strain rate defect
included in the numerical calculations is = = 0.96%. The initial length and radius of the bar are L” = 40 mm
and R” = 1 mm.
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6.2. The role of defect amplitude

Fig. 14 shows the average normalized Lagrangian neck spacing L™<*/®" versus the dimen-
sionless defect amplitude w(%) for various loading rates ranging between £ = 200 s—! and
£0 = 20000 s~'. Note that, irrespective of the value of £, the average neck spacing is largely
insensitive to the defect amplitude (see also Fig. 7). We observe only for the highest values of
w a slight increase of E“Ed‘}" ®". These numerical simulations suggest the existence of a dominant
wavelength which characterizes (at least to some extent) the average neck spacing, in agreement
with the theoretical predictions based on modal analysis arguments, e.g. Fressengeas and Molinari
(1985, 1994): Mercier and Molinari (2003, 2004); Rodriguez-Martinez et al. (2013a, 2015).

Numerical simulations

L°=40 mm
R°=1 mm

£’=1000s™

0 2 4 6 8 10 12
Normalized defect amplitude, ©(%)

Average normalized Lagrangian neck spacing, L™ “/®°

Figure 14: Average normalized Lagrangian neck spacing f."‘“*,n"@“ versus normalized defect amplitude w(%). Results

are obtained using finite cloment simulations with seven initial loading rates: £ = 200 5_1, £ = 1000 s_', £ =

2000 =1, &% = 5000 s, &% = 10000 =71, 2% = 15000 5! and £ = 20000 s~!. The defect is included at the center
of the specimen. The initial length and radius of the bar are LY = 40 mm and B® = 1 mm.

Fig. 15 shows the axial force Fz measured at one end of the specimen versus loading time
t and axial nominal strain ezz = £t for simulations with three defect amplitudes: @ = 0.48%,
w = 0.96% (reference case) and @ = 3.82%. The initial loading rate is £ = 10000 s—!. Despite the

strain rate defect included in the simulations, the deformation field of the bar remains close to the

fundamental solution beyond the Considére strain. The stabilizing effect of inertia overcomes the



destabilizing role of the defect and delays the localization of the deformation. Differences in the
force predicted by the numerical calculations only appear in the late stages of the loading process,
once the deformation is fully localized in the necked sections. The deviation of the force from the

fundamental solution occurs slightly earlier as @ increases.
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Figure 15: Axial force Fz versus loading time ¢ and axial nominal strain ezz = £°t for the three finite element
calculations presented in Fig. 16. The solid green line represents the fundamental solution.

Fig. 16 shows the ratio between the current and the background axial logarithmic strain
EEEKE%Z versus the normalized coordinate Z for the calculations presented in Fig. 15. Three
different loading times are selected: ¢ = 66 pus in Fig. 16(a), t = 70 ps in Fig. 16(b) and t = T2 us
in Fig. 16(c). These loading times, indicated previously in Fig. 15, correspond to the onset of full
localization for the three simulations investigated: w = 3.82%, w = 0.96% (reference case) and
w = 0.48%. We observe that as the amplitude of the defect increases, the heterogeneity in the
growth rate of the necks during the localization process increases. This suggests that the ampli-
tude of the defect may play a role in the fragmentation process. The necks with greater growth
rate will develop into fracture sites, triggering the emergence of unloading waves that could arrest
the necks with lower growth rates. Nevertheless, the specific influence of the strain rate defect

in the fragmentation process still needs further investigation. However, as anticipated in previous
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paragraphs, the neck spacing remains independent of . At ¢ = 66 us the necking pattern in the
case of @ = 3.82% is fully developed (the maximum value of the ratio czz /%, is = 2). The necks
nucleated close to the ends of the bar have grown faster than those located in the middle of the
sample. An important reason for this behaviour is that the defect was near the ends of the specimen
(it travelled from the centre of the sample) at the time in which the necking pattern was formed,
which led to a greater disturbance of the field variables in those zones of the bar and speeded up
the localization process. The necking patterns corresponding to @ = 0.48Y% and @ = 0.96% are
less developed. At t = 70 ps only results for @w = 0.48% and w = 0.96% are shown. Due to the
excessive elements distortion inside the necked sectioms, the calculation for @ = 3.82% stopped
hefore reaching this loading time. The necking pattern in the case of @ = 0.96Y% is fully developed
(the maximum value of the ratio =z fs% 7 is == 2). As previously explained, the growth rate of the
necks depends on their location in the bar. Nevertheless, note that the heterogeneity in the rates
of growth of the necks is for @ = 0.48Y; significantly lower than for w = 0.96%. For t = 72 us
only results for @ = 0.48Y% are presented. This is consistent with Fig. 15 where it was shown that
the drop of the force corresponding to the full development of the necking pattern occurs slightly
earlier as the amplitude of the defect increases. The heterogeneity in the rates of growth of the
necks is smaller than in the cases of w = 0.96% and w = 3.82%. Furthermore, the histogram
presented in Fig. 17 shows that the spacing between necks is centred around the average value
L™=k /®" = 1.54 reported in Fig. 14. The Weibull probability density function given in Eq. (5)
has been fitted to the numerical results. The parameters of the distribution, ¥ = 3.176, x = 5.895
and A = 1.515, are also similar to those obtained in Fig. 4. Despite the limited number of necks,
the Weibull distribution fits the measured neck spacings rather well.

The numerical results presented in this section suggest that, beyond the role played by the
defect in the rate of development of the necking pattern, there is a characteristic average neck
spacing which, at high strain rates, is controlled to a significant extent by inertia effects. In the

next section of the paper we show numerical calculations of samples with various lengths.

6.5. The role of specimen size

We explore the influence of the specimen size on flow localization. Fig. 18 shows the average
normalized Lagrangian neck spacing L™* I,r'i'u as a function of the initial length of the bar. The

values of L? investigated range from 5 mm to 300 mm. In any case the initial radius of the
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Figure 16: Ratio between the current and the background axial logarithmic strain szz I.-’E?-;z versus the normalized
coordinate Z = Ez:r The initial loading rate is £° = 10000 s~'. Results are obtained using finite element calculations
for three different strain rate defect amplitudes: w = 0.48%, w = 0.96% (reference) and w = 3.82%. The defect is
included at the center of the specimen. Three different loading times are considered: (a) ¢ = 66 ps, (b) t = 70 ps
and (c) t = 72 ps. The initial length and radius of the bar are L” = 40 mm and R" = 1 mm. Due to the excessive
elements distortion inside the necked sections, the caleulations for @ = 3.82% and @ = 0.96% stopped before reaching
t =70 ps and = 72 ps, respectively, and they could not be shown in subfigures (b) and (c).
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Figure 17: Histogram which presents the number of necks as a function of the normalized Lagrangian neck
spacing L™ /7. The results correspond to the finite element calculation presented in Fig. 16(c). A Weibull
probability density function (blue solid line) has been fitted to the numerical results. The parameters of the
Weibull distribution are y = 3.176, x = 5.895 and A = 1.515.
bar is 1 mm. Three different initial strain rates are considered: £ = 200 s~1, 2% = 2000 s!
and £° = 10000 s—!. Numerical calculations with two different strain rate defect amplitudes are
presented: w = 0% (no defect) and w = 0.96% (reference defect). Irrespective of the sample length
we observe in Fig. 18 that: (1) the influence of the defect in the neck spacing is almost negligible
and (2) the neck spacing decreases with the increase of the initial strain rate. These results are
consistent with the numerical calculations previously presented in sections 6.1 and 6.2. Moreover,
the influence of the sample length in the neck spacing is restricted to short values of L9, when the
number of necks incepted in the bar is lower than 4 or 5. In such a case the average wavelength
of the necks seems to be too close to the sample length and the size of the necks becomes affected
by the finite dimensions of the rod. Hence, the influence of the length of the bar on f,““kfﬂ)u is
gradually alleviated as £? increases since inertia effects reduce the average wavelength of the necks.
In fact, for £° = 10000 s~ !, the relation between L™* f@n and L° is practically an horizontal line
(while some disturbances are shown for £0 = 2000 s‘l}. Moreover, note also that, irrespective of
the strain rate, the length of the bar used in the calculations presented in sections 5, 6.1 and 6.2
provides neck spacing values virtually independent of L. Indeed values larger than 40 mm do not
lead to meaningful variations in L™=k /@0,

Fig 19 shows the axial force Fz measured at one end of the sample versus the axial nominal
strain ezz = £t for three different initial bar lengths: L = 40 mm (reference case), L° = 120 mm

and L? = 260 mm. The initial radius of the bar and the initial loading rate are R? = 1 mm and
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Figure 18: Average normalized Lagrangian neck spacing L™** /%" versus initial length of the bar L”. Results are
obtained using finite element calculations with two different normalized strain rate defect amplitudes: @ = 0 (no
defect) and o = 0.96 (reference defect). The defect is included at the center of the specimen. Three initial loading
rates are considered: (a) £2 = 200 =1, (b) £" = 2000 s~ and (c) ° = 10000 #~!. The initial radius of the bar is
R" =1 mm.
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£ = 2000 s~1, respectively. The force versus longitudinal strain curves for the three bar lengths
tested are nearly identical. This reinforces the idea that, for bars longer than 40 mm, the value of
LY does not affect the mechanical response of the sample. In addition, as mentioned in section 5,

we have checked that the force recorded at both ends of the sample is nearly identical.
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Figure 19: Axial force Fz versus axial nominal strain ezz = £t for finite element calculations with three
different initial lengths of the bar: L” = 40 mm (reference case), L = 120 mm and L” = 260 mm. The
initial radius of the bar and the initial loading rate are R® = 1 mm and £° = 2000 s—!, respectively. The
defect 1= included at the center of the specimen. The solid green line represents the fundamental solution.
The histograms presented in Fig. 20 show the number of necks as a function of the normalized
Lagrangian neck spacing for the three finite element calculations previously considered in Fig. 19.
We observe that, irrespective of the length of the bar, the distance between consecutive necks is
centred around the average value E“ﬂ‘*f@u == 2.5 reported in Fig. 18. The standard deviation of
the distribution of neck spacings, which decreases with the bar length, is 0.672 for L? = 40 mm
(reference case), 0.515 for L% = 120 mm and 0.467 for L° = 260 mm. Thus, as expected, the
regularity of the neck spacing increases with the length of the bar. The Weibull probability density
function given in Eq. (5) has been fitted to the numerical results. The parameters of the distribu-
tions are: ¥ = 1.664, k = 8.574 and A = 2.451 for Fig. 20(a), ¥y = 5.845, k = 8.965 and A = 2.249
for Fig. 20(b) and x = 12.58, k = 6.539 and A = 2.342 for Fig. 20(c). We observe that the fitting

is better as the length of the bar, and thus the number of necks, increases.
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Figure 20: Histograms which present the number of necks as a function of the normalized Lagrangian neck spacing
Lm==k (3" for finite element calculations with three different initial lengths of the bar: L? = 40 mm (reference case),
LY = 120 mumn and L° = 260 mm. These are the numerical simulations presented in Fig. 19. A Weibull probability
density function (blue solid line) has been fitted to the numerical results. The parameters of the Weibull distributions
are: x = 1.664, k = 8.574 and A = 2.451 for Fig. 20(a), ¥ = 5.845, k = 8.965 and A = 2.249 for Fig. 20(b) and
x = 12,58, k = 6.530 and A = 2.342 for Fig. 20(c).
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The calculations presented in this section reveal that the average spacing between necks which
characterizes the multiple localization pattern is barely affected by the finite dimensions of the bar.
The greater the strain rate, the smaller the average spacing and the smaller the influence of the

sample size in the numerical results.

7. Summary and conclusions

In this paper we have demonstrated that the formation of multiple necking patterns in nonlinear
incompressible elastic bars subjected to dynamic stretching is largely influenced by inertia effects.
For that task we have carried out numerical calculations in ABAQUS /Explicit considering bars of
various lengths and subjected to a wide range of strain rates. Moreover, following Ravi-Chandar
and Triantafyllidis (2015), we have included in the simulations a strain rate defect. The numerical

analysis yielded the following key results:

# The core of the multiple necking process occurs during the post-uniform deformation regime of
the bar, at strains larger than the one based on the Considére criterion. It becomes apparent
that the existence of a meaningful post-uniform deformation process cannot be disregarded in
the analysis of multiple necking at high strain rates. The post-uniform deformation process

is greater as the strain rate increases.

# The strain rate defect plays a meaningful role in the rate of growth of the necking pattern
during the late stages of the localization process, however it barely affects the average neck
spacing. On the one hand, while it is true that this specific issue still requires further analysis,
our results suggest that the amplitude of the strain rate defect could play a role in the
fragmentation process. On the other hand, the numerical calculations have shown that the
number of necks is mostly controlled by the strain rate. Irrespective of the defect amplitude,

the number of necks increases with the strain rate.

The results of this paper have been rationalized using 1D and 3D dynamic stability analyses.
The agreement between numerical calculations and linear stability analyses is an additional proof
of the existence of dominant modes which define, at least up to some extent, the average neck
spacing in multiple localization patterns. The specific dominant modes being determined by the

emergence of inertia effects at high strain rates. Nevertheless, we acknowledge that this situation



33

may change when considering geometrical or material defects of large(r) amplitude. In such a case,
the localization pattern may be dictated by the pre-existing defects up to a certain level of strain

rate below which inertia effects are not dominant enough to influence the necking pattern.
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