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Abstract

Many problems in the geophysical sciences demand the ability to calibrate the parameters and

predict the time evolution of complex dynamical models using sequentially-collected data. Here we

introduce a general methodology for the joint estimation of the static parameters and the forecasting

of the state variables of nonlinear, and possibly chaotic, dynamical models. The proposed scheme is

essentially probabilistic. It aims at recursively computing the sequence of joint posterior probability

distributions of the unknown model parameters and its (time varying) state variables conditional

on the available observations. The latter are possibly partial and contaminated by noise. The new

framework combines a Monte Carlo scheme to approximate the posterior distribution of the fixed

parameters with filtering (or data assimilation) techniques to track and predict the distribution

of the state variables. For this reason, we refer to the proposed methodology as nested filtering.

In this paper we specifically explore the use of Gaussian filtering methods, but other approaches

fit naturally within the new framework. As an illustrative example, we apply three different

implementations of the methodology to the tracking of the state, and the estimation of the fixed

parameters, of a stochastic two-scale Lorenz 96 system. This model is commonly used to assess

data assimilation procedures in meteorology. For this example, we compare different nested filters

and show estimation and forecasting results for a 4,000-dimensional system.
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A common feature to many problems in some of the most active fields of

science is the need to calibrate (i.e., to estimate the parameters) and then forecast

the time evolution of complex (often high-dimensional) dynamical systems using

sequentially-collected observations. One can find obvious examples in meteorology,

where current models for global weather forecasting involve the tracking of

millions of time-varying state variables, as well as in oceanography or in climate

modelling. Traditionally, model calibration and state tracking and forecasting have

been addressed separately. The problem of state tracking is often termed data

assimilation in Geophysics, while it is referred as stochastic or Bayesian filtering

by researchers in applied probability. Carrying out the two tasks jointly, parameter

estimation and state forecasting, is a hard problem posing several practical and

theoretical difficulties. Only in the last few years there have been advances

leading to well-principled methods that solve this joint problem numerically

with theoretical guarantees of performance. However, existing procedures are

computationally too expensive to be applied in real-world applications involving

more than a few tens of unknown variables and/or parameters.

In this paper we introduce a general scheme for joint parameter estimation and

state tracking and forecasting in partially observed dynamical systems. The

methodology is probabilistic and it involves two layers of estimators, one for

the static parameters and another one for the time-varying state variables. It

can be interpreted that the state estimators are nested within a main algorithm

that tackles the estimation of the parameters. For this reason we refer to the

overall scheme as a nested filter. The methodology is devised for systems where

the number of static parameters to be estimated is moderate, while the number

of state variables can be much larger. Different instances of nested filters can

be constructed by choosing different estimators for the state variables, while

we propose to implement parameter estimation via a sequential Monte Carlo

procedure. We have obtained theoretical results for this general class of nested

filters based on a generic assumption on the outputs of the state trackers. As

an example, we have implemented three versions of the method to estimate the

parameters and forecast the evolution of a partially-observed stochastic Lorenz 96

system with up to 4,000 state variables.
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I. INTRODUCTION

A common feature to many problems in some of the most active fields of science is

the need to calibrate (i.e., estimate the parameters) and then forecast the time evolution

of complex (often very high-dimensional) dynamical systems using sequentially-collected

observations. One can find obvious examples in meteorology, where current models for

global weather forecasting involve the tracking of millions of time-varying state variables [1],

as well as in oceanography [2] or in climate modelling [3]. This problem is not constrained

to Geophysics, though. In Biochemistry and Ecology it is often necessary to forecast the

evolution of populations of interacting species (typically animal and/or vegetal species in

Ecology and different types of reacting molecules in Biochemistry), which usually involves

the estimation of the parameters that govern the interaction as well [4].

Traditionally, model calibration, i.e., the estimation or adjustment of the model static

parameters, and the tracking and forecasting of the time-varying state variables have been

addressed separately. The problem of state tracking is often termed data assimilation

in Geophysics, while it is referred as stochastic or Bayesian filtering by researchers in

computational statistics and applied probability. Carrying out both tasks jointly, parameter

estimation and state forecasting, is a hard problem posing several practical and theoretical

difficulties. A number of heuristic procedures have been suggested (see, e.g., [5, 6]) however

they are subject to problems related to observability (i.e., ambiguities) and there are no

performance guarantees. Only in the last few years there have been advances leading to well-

principled probabilistic methods that solve the joint problem numerically and supported by

rigorous performance analyses [7, 8].

Such procedures belong to the class of Bayesian methodologies. They aim at calculating

the posterior probability distribution of all the unknown variables and parameters of the

model. Every unknown in the system, either a static parameter or time-evolving state

variable, is modelled as random and, therefore, it is possible in principle to compute (or at

least approximate) its conditional probability distribution given the available data. These

conditional, or posterior, distributions contain all the information relevant for the estimation

task. From them, one can compute point estimates of the parameters and states but also

quantify the estimation error. However, state-of-the-art methods for Bayesian parameter

estimation and stochastic filtering are batch techniques, i.e., they process the whole set of
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available observations repeatedly in order to produce numerical solutions. For this reason,

they are not well suited to problems where observations are collected sequentially and have to

be processed as they arrive (or, simply, when the sequence of observations is too long). The

popular particle Markov chain Monte Carlo (pMCMC) [7] and the sequential Monte Carlo

square (SMC2) [8] schemes are examples of such batch methods. A common characteristic

of these techniques is that they rely on Monte Carlo approximations in order to approximate

the posterior probability distribution of the parameters and the states. Although there are

some recursive schemes that enable the sequential processing of the observed data as they

are collected [9], they do not yield full posterior distributions of the unknowns, but only

point estimates. Therefore, it is not possible to quantify the uncertainty of the estimation

or the forecast. Moreover, they are subject to various convergence (and complexity) issues,

e.g., when the posterior probability distribution is multimodal, when it contains singularities

or when the parameter likelihoods cannot be computed exactly.

In this paper we introduce a general probabilistic scheme to perform the joint task of

parameter estimation and state tracking and forecasting. The methodology is Bayesian,

i.e., it aims at the computation of the posterior probability distribution of the unknowns

given the available data. It involves two layers of estimators, one for the static parameters

and another one for the time-varying state variables. It can be interpreted that the state

estimators and predictors are nested or inserted within a main algorithm that tackles the

estimation of the parameters. For this reason we refer to the overall scheme as a nested

filter. The estimation of the static parameters and the dynamic variables is carried out

in a purely sequential and recursive manner. This property makes the proposed algorithm

better suited for problems where long time series of data have to be handled. It can be

shown that a particular case of the proposed scheme is the nested particle filter (NPF), a

recursive version of the SMC2 algorithm in [8], which has only recently been introduced in

[10] and relies on a bank of particle filters [11, 12] to infer the posterior distribution of the

variables and the parameters. However, in the general scheme that we propose here it is

possible to replace the computationally heavy particle filters by simpler algorithms, easier

to apply in practical problems. In particular, we propose a new class of nested hybrid filters,

which use Gaussian filters such as the extended Kalman filter [13] or ensemble Kalman filter

[14] for the forecasting of the state variables. An important reduction of running times in

comparison with the NPF is achieved without a significant loss of accuracy.
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The proposed methodology is devised for systems where the number of static parameters to

be estimated is moderate, while the number of state variables can be much larger. Different

instances of nested filters can be constructed by choosing different numerical techniques

for state tracking and forecasting, while we propose to implement Bayesian parameter

estimation via a sequential Monte Carlo procedure. We have obtained theoretical results

for this general class of nested filters based on a generic assumption on the outputs of the

method used to track the state variables.

To illustrate the performance of the novel method, we present the results of computer

simulations with a stochastic two-scale Lorenz 96 model [15] with underlying chaotic

dynamics. In meteorology, the two-scale Lorenz 96 model is commonly used as a benchmark

system for data assimilation [16] and parameter estimation techniques [15] because it displays

the basic physical features of atmospheric dynamics [17] (e.g., connection and sensitivity to

perturbations). We have implemented three versions of the nested filtering method in order

to estimate the parameters and forecast the evolution of up to 4,000 state variables.

The rest of the paper is organized as follows. In Section II the continuous-time and discrete-

time state-space models are presented and we state the Bayesian inference problem to be

solved. The nested filtering methods are introduced and explained in Section III, including

the proposed nested hybrid filtering scheme. An asymptotic convergence theorem is stated

and proved in Section IV. In Section V, the stochastic Lorenz 96 model which is used in

the simulations is described and then, some illustrative numerical results are presented in

Section VI. Finally, Section VII is devoted to the conclusions.

II. DYNAMICAL MODEL AND PROBLEM STATEMENT

A. From continuous-time to discrete-time dynamical systems

Let us consider a nonlinear and possibly chaotic dynamical system described by the

multidimensional ordinary differential equation

ẋ(t) = f(x(t),θ) (1)

where t denotes continuous time, x(t) ∈ Rdx is the dx-dimensional system state, f

is a nonlinear function parametrized by a fixed dθ × 1 vector of unknown parameters,

6



θ = [θ1, . . . , θdθ ]⊺ ∈ Rdθ , and ẋ(t) denotes the vector of time derivatives ẋ(t) =
[ẋ1(t), . . . , ẋdx(t)]⊺, with ẋi(t) = dxi

dt
.

The computational representation of the system in Eq. (1) requires a time-discretization

scheme. We assume a grid {tk}k=0,1,... where tk = kh, h > 0 is a time-discretization step

and k = 0,1, . . . is an integer index. If we let x̃k denote the approximate value of x(t) at
t = tk then most explicit numerical integration methods (such as the Euler or Runge-Kutta

schemes) yield a dx-dimensional difference equation of the form

x̃k = x̃k−1 + hf̄(x̃k−1,θ) (2)

where f̄(x̃k−1,θ) is an estimate of the vector of time derivatives ẋ(tk) =
[ẋ1(tk), . . . , ẋdx(tk)]⊺. Different discretization schemes adopt different estimates of ẋ(tk),
e.g., f̄ = f for the Euler method, while Runge-Kutta yield more elaborate estimates.

Finally, we consider a stochastic version of Eq. (2) obtained by adding a statistically

independent perturbation vk = [v1,k, . . . , vdx,k]⊺ ∈ Rdx at each time step. This yields the

random sequence

x̃k = x̃k−1 + hf̄(x̃k−1,θ) + σvk, (3)

where σ ≥ 0 is a parameter that controls the power of the perturbations. For σ = 0 we

recover Eq. (2). In general, we set σ > 0, though. The value of this parameter should be

small enough to preserve the underlying dynamics of the system. The noise terms introduce

additional degrees of freedom in the discrete-time model and enable a probabilistic analysis

of the system and the characterization of the uncertainty of any resulting numerical estimates

of the state x(t) or the unknown θ.

B. Observations

In this paper we address the problem of estimating the sequence of states, x̃k, and the

vector of unknown parameters, θ, from a sequence of observation vectors, that we model as

ỹkT = g(x̃kT ,θ) + σoũkT , k = 1,2, . . . , T ≥ 1, (4)

where g ∶ Rdx → Rdy is a transformation that maps the state into a real vector of dimension

dy (with dy ≤ dx), T is the discrete observation period[18] and ũk is a sequence of zero-mean

independent vectors representing observational noise, whose power is scaled by a known
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factor σo > 0. Note that the observation function of Eq. (4) is indexed by the same vector

of unknown parameters, θ, as the dynamic Eq. (3), although not every parameter θi,

i ∈ {1, . . . , dθ}, necessarily appears in both equations.

C. Discrete-time state-space model

The sequences x̃k and ỹkT run on different time scales, with one observation vector ỹkT

collected for every subsequence x̃(k−1)T+1, . . . , x̃kT of T consecutive state vectors. Since any

estimator of x̃k and θ actually depends on the available data, it is convenient to rewrite the

dynamic model in the time scale of the observations. In particular, we hereafter work with

the pair of random sequences xn ∶= x̃nT and yn ∶= ỹnT . The observation equation on the

new discrete-time scale follows trivially from Eq. (4), namely

yn = g(xn,θ) + σoun, n = 1,2, . . . (5)

where un ∶= ũnT .

In order to obtain a dynamic equation for the sequence xn, however, we need to iterate

Eq. (3) T times. To be specific, xn ∶= x̃nT is generated from xn−1 ∶= x̃(n−1)T in T steps as

x̃(n−1)T = xn−1

x̃(n+1)T+1 = x̃(n−1)T + f̄(x̃(n−1)T ,θ) + σṽ(n−1)T+1
⋮

x̃nT−1 = x̃nT−2 + f̄(x̃nT−2,θ) + σṽnT−1

xn = x̃nT−1 + f̄(x̃nT−1,θ) + σṽnT

(6)

and we concisely represent the transformation in Eq. (6) as

xn = F̄ T,σ(xn−1,θ,vn), (7)

where F̄ ∶ Rdx × Rdθ ×RTdx → Rdx and vn = [ṽ(n−1)T+1, . . . , ṽnT ]⊺ ∈ RTdx is the sequence of

random perturbations in the original dynamical model of Eq. (3).

Eqs. (6) and (7), together with a probability distribution of the initial condition x0

(note that the first observation is collected at time n = 1, hence at t = T ) yield a Markov

state-space model in discrete time.

In this paper we aim at devising recursive methods to
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• estimate the parameter vector, θ,

• estimate the state xn = x̃nT , and

• predict the sequence x̃nT+1, . . . , x̃(n+1)T ,

at each n = 1,2, ... given the observation record y1∶n = {y1, . . . ,yn}. Such prediction and

estimation methods are better described using a probabilistic notation. Given a random

vector z, let p(z) denote the probability density function (pdf) of z. This is an argument-

wise notation: if we have two random variables z1 and z2, then p(z1) and p(z2) denote the
pdf’s of z1 and z2 respectively, even if the two functions are different. Similarly, p(z1,z2)
denotes the joint pdf and p(z1∣z2) is the conditional pdf of z1 given z2. The expected value

of a random vector x conditional on another random vector y is denoted E[x∣y]. This kind
of notation is conventional in Bayesian analysis.

The state-space model comprising the dynamics of xn and the observation yn can be

represented by the triplet

x0 ∼ p(x0) (8)

xn ∼ p(xn∣xn−1,θ) (9)

yn ∼ p(yn∣xn,θ) (10)

where p(x0) is the a priori pdf of the state (i.e. a probabilistic characterization of the system

initial condition), p(xn∣xn−1,θ) is the conditional pdf of xn given the state xn−1 and the

parameters in θ, and p(yn∣xn,θ) is the conditional pdf of the observation given the state

and the parameters. Let us remark that:

• The a priori pdf p(x0) can be replaced by a delta distribution if the initial condition

of x0 is known.

• The pdf p(xn∣xn−1,θ) may not have, in general, a closed-form expression. However,

it is relatively straightforward to generate a Monte Carlo sample xn given xn−1, and

θ using the multi-step transformation of Eq. (6) (and assuming that it is possible to

draw samples from the noise pdf p(ṽk) ).
• The observations are conditionally independent given the states and the parameter
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vector θ. In particular, the joint pdf p(y
1∶n∣x1∶n,θ) is factorized as

p(y1∶n∣x1∶n,θ) = n∏
j=1

p(yj ∣xj ,θ) (11)

As we adopt a Bayesian approach to tackle the estimation of xn and θ, we need to model

the parameter vector θ as random as well. Hence, we augment the state-space model (8)-(10)

with a prior pdf for θ, denoted p(θ).

D. Problem statement

The main goal of this paper is to introduce new and efficient recursive Monte Carlo

methods for the approximation of the sequence of probability distributions, described by

the pdf’s

p(xn,θ∣y1∶n), n = 1,2, . . . (12)

Given the approximate distributions, point-estimates of θ and xn can be computed at

each discrete-time step n. We will also see that, as a by-product of the approximation of

p(xn,θ∣y1∶n), the proposed methods also produce predictions of

x̃nT+1 ≈ x(h(nT + 1)), . . . , x̃(n+1)T−1 ≈ x(h(n + 1)T − h) (13)

at time t = nTh.

III. NESTED FILTERS FOR PARAMETER AND STATE ESTIMATION

In this section we introduce a general recursive scheme for the approximation of the

sequence of probability measures

πn(dθ, dxn) ∶= p(θ,xn∣y1∶n)dθdxn n = 1,2, . . . (14)

The key ingredient of the methodology is a sequentially-computed Monte Carlo

approximation of the posterior probability measure of the unknown parameters,

µn(dθ) ∶= p(θ∣y1∶n)dθ. (15)

At each step n, the approximate measure with N Monte Carlo samples has the form

µN
n (dθ) = 1

N ∑N
i=1 δθi

n
(dθ), where θi

n is the i-th sample (1 ≤ i ≤ N) and δθi
n
denotes the

unit Dirac delta measure located at θi
n.

10



We term the scheme “nested” because, for each Monte Carlo sample θi
n, we need to

apply a Bayesian (probabilistic) filter to approximate the posterior probability measure of

the state,

φn,θi
n
(dxn) ∶= p(xn∣θi

n,y1∶n)dxn, n = 1,2, . . . (16)

conditional on the parameter vector θi
n. The combination of these two probability measures

yields the joint distribution of the parameters and the dynamic states of the system, namely

πn(dθ × dxn) = φn,θ(dxn)µn(dθ)
= p(xn∣θ,y1∶n)p(θ∣y1∶n)dxndθ (17)

= p(θ,xn∣y1∶n)dxndθ

where the second equality follows from Eqs. (14) and (15) and the third identity is a

consequence of the definition of conditional probability.

In Section IIIA we introduce a general scheme for the recursive Monte Carlo

approximation of µn(dθ), which yields the basic proposed methodology, and discuss the

underlying recursive computations and approximations in Section IIIB. Then, in Section

IIIC we propose two practical methods that rely on different Gaussian (Kalman-like)

approximations of the conditional filter φn,θ(dxn).

A. Nested filtering

In order to build up the proposed methodology, let us focus on the computation of the

posterior measure of the parameters µn(dθ) = p(θ∣y1∶n)dθ. From a Bayesian perspective,

µn(dθ) contains all the statistical information for the estimation of θ at time n, however, it

cannot be computed in closed-form in general.

We seek a Monte Carlo approximation of µn(dθ) and one simple way of attaining

this is to apply the importance sampling (IS) method [19] sequentially. Let qn(θ) be a

proposal, or importance, pdf. The following (naive) algorithm yields a weighted Monte

Carlo approximation of µn(dθ) at each time n:

1. Draw N i.i.d. samples θi
n, i = 1,2, . . . ,N , from qn(θ).

2. Compute importance weights,

w̃i
n =

p(yn∣θi
n,y1∶n)p(θi

n∣y1n−1)
qn(θi

n) , i = 1, . . . ,N, (18)
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and normalise them

wi
n = w̃i

n

∑N
j=1 w̃

j
n

, i = 1, . . . ,N. (19)

To be specific, after step 2 above we obtain the IS estimate µN
n (dθ) = ∑N

i=1w
i
nδθi

n
(dθ).

Furthermore, if we choose qn(θ) = p(θ∣y1∶n−1), then the naive sequential IS method becomes

extremely simple:

1. Draw θi
n ∼ p(θ∣y1∶n−1) i.i.d., for i = 1, . . . ,N .

2. Compute wi
n ∝ un(θi

n), i = 1, . . . ,N .

The weight normalization is left implicit in step 2, where we have additionally introduced

the notation

un(θ) ∶= p(yn∣θ,y1∶n−1) (20)

for the marginal likelihood function of θ at time n. The sequence of functions un(θ),
n = 1,2, ..., plays a key role in the rest of this paper.

Unfortunately, this method is not practical because

• it is not possible to draw from p(θ∣y
1∶n), at least exactly, and

• the likelihood un(θi
n) cannot be evaluated exactly either.

Specifically note that, given the state-space model (8)-(10), the function un(θ) can be written

as the integral

un(θ) = ∫ p(yn∣xn,θ)p(xn∣θ,y1∶n−1)dxn (21)

which has no closed-form expression when the transformation f(x,θ) in Eq. (1) is nonlinear.

Eq. (21), however, shows that we can obtain an estimate of un(θ) if we can first obtain a

tractable approximation of the predictive measure

ξn,θ(dxn) ∶= p(xn∣θ,y1∶n−1)dxn, (22)

i.e., an approximation for which the integral in Eq. (21) can be computed numerically.

The difficulty of drawing samples from µn(dθ) = p(θ∣y1∶n−1)dθ can be circumvented if

we content ourselves with an approximate, or perturbed, sampling step. In particular, if

we have computed a Monte Carlo approximation µN
n−1(dθ) = 1

N ∑N
i=1 δθi

n−1
(dθ) at time n − 1
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(assume all samples are equally weighted, wi
n−1 = 1

N
, for the sake of the argument) then we

can draw θi
n, i = 1, . . . ,N , i.i.d. from the mixture distribution

µ̄N
n−1(dθ) = 1

N

N

∑
i=1

κN(dθ∣θi
n−1), (23)

where κN(dθ∣θ′) is a Markov kernel, i.e., a probability distribution for θ conditioned on θ′.

There are many possibilities for the choice of κN(dθ∣θ′). A particularly simple one is the

Gaussian kernel

κN(dθ∣θ′) = N(θ∣θ′, σ2

NΣ)dθ, (24)

where N(θ∣θ′,Σ) denotes the Gaussian pdf with mean θ′ and covariance matrix Σ, and we

choose σ2

N such that lim
N→∞

σ2

N = 0. Most kernels κN(dθ∣θ′) such that lim
N→∞

κN(dθ∣θ′) = δθ′(dθ)
will work in practice (intuitively, these are kernels that narrow down around the mean θ′ as

N increases).

Finally, the proposed nested filtering (NF) scheme that combines the approximations

described above (for the computation of un(θ) and the sampling step) is outlined in

Algorithm 1. The terminology NF is derived from the Bayesian jargon, where posterior

probability measures like µn(dθ) = p(θ∣y
1∶n)dθ are often termed “filters”. The filters are

“nested” because for each sample θi
n in the approximation µn(dθ) = 1

N ∑N
i=1 δθi

n
dθ we need

to approximate the predictive measure ξn,θi
n
(dxn), and the conditional filter φn,θi

n
(dxn) in

the state space.

Algorithm 1 General nested filter.

1. Initialization

Draw θ
(i)
0
, i = 1, . . . ,N , i.i.d. samples from µ0(dθ) = p(θ)dθ.

2. Recursive step

(a) For i = 1, . . . ,N :

i. Draw θ̄
(i)
n from κN(dθ∣θi

n−1).
ii. Approximate ξ̂

n,θ̄
i
n
(dxn) ≈ p(xn∣θ̄i

n,y1∶n−1)dxn.

iii. Use ξ̂
n,θ̄

i
n
(dxn) to compute the estimate

ûn(θ̄i

n) = ∫ p(yn∣θ̄i

n,xn)ξ̂n,θ̄i
n
(dxn) ≈ un(θ̄i

n). (25)

and let wi
n ∝ ûn(θ̄i

n) be the normalized weight of θ̄
i

n.
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(b) Resample the discrete distribution

µ̄N
n (dθ) = N

∑
i=1

wi
nδθ̄i

n
(dθ) (26)

N times with replacement in order to obtain the set {θN
i=1} and the approximation

µN
n (dθ) = 1

N ∑N
i=1 δθi

n
(dθ).

The random probability measure µN
n (dθ) can be easily used to compute estimates of the

unknown parameters and to quantify estimation errors. For example, the posterior-mean

estimator of θ can be approximated as

θ̂n = ∫ θµn(dθ)
≈ ∫ θµN

n (dθ) = 1

N

N

∑
i=1

θi
n = θ̂N

n (27)

i.e., the integral with respect to (w.r.t.) the true posterior measure µn(dθ) in Eq. (27)

is approximated by the average of the samples {θi
n}Nn=1. These samples are often termed

particles in the computational statistics literature. One can also estimate, e.g., the mean

square error (MSE) of θ̂n. Specifically,

MSEn = ∫ ∥ θ − θ̂n ∥2 µn(dθ)
≈ ∫ ∥ θ − θ̂N

n ∥2 µN
n (dθ) = 1

N

N

∑
i=1
∥ θi

n − θ̂N

n ∥2 . (28)

B. Estimation of the likelihood un(θ)

In Section IIIA we have laid out a general methodology for the Monte Carlo

approximation of the posterior distribution of the unknown parameters, µn(dθ) =
p(θ∣y1∶n)dθ. The practical applicability of the method, however, depends on the ability to

compute estimates of the predictive measure ξn,θ(dθ) = p(xn∣θ,y1∶n−1)dθ and the likelihood

un(θ) = ∫ p(yn∣xn,θ)ξn,θ(dθ).
A conceptually simple way to tackle this problem is to compute Monte Carlo

approximations for ξn,θ and un(θ) as well. To be specific, it is possible to use a standard

particle filter [11, 12] with M particles to produce estimates ξM
n,θ
(dθ) and uM

n (θ) of ξn,θ(dθ)
and un(θ), respectively, that converge in a proper probabilistic sense when M →∞ [7, 10].

Depending on the way the particle filter is implemented, the resulting nested filter can reduce
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to a version of the SMC2 algorithm in [8], which is a batch method (i.e., non recursive) whose

computational complexity increases with n2, or yield the nested particle filter (NPF) in [10].

The latter is purely recursive, hence its computational cost increases linearly with n.

In practice, however, both the SMC2 and the NPF are too costly to be applied to

systems where the state dimension dx is large. As an alternative, ξn,θ(dθ) and un(dθ)
can be estimated using a variety of approximate Gaussian filters, including the extended

Kalman filter (EKF) [13], the unscented Kalman filter (UKF) [20], the ensemble Kalman

filter (EnKF) [14] or the 3DVAR filter [21].

In the sequel we assume that a Gaussian filtering algorithm is used for the approximation

of ξn,θ(dθ) and un(dθ). Specific schemes that employ the EKF and the EnKF are presented

in Section IIIC (including some numerical approximations to avoid the computation and

inversion of large matrices).

Figure 1 provides a schematic representation of the recursive computations needed for

the implementation of a nested filter. The procedure can be outlined as follows:

• At time n − 1:
Assume that we have the approximation

ξ̂
n−1,θ̄i

n−1
(dxn) = N(xn−1∣x̂(i)n−1, P̂ (i)n−1)dxn, (29)

where x̂
(i)
n−1 ≈ E[xn−1∣y1∶n−2, θ̄

i

n−1] is the approximate predictive mean of xn−1 and

P̂
(i)
n−1 ≈ E[(xn−x̂(i)n−1)(xn−x̂(i)n−1)⊺∣y1∶n−2, θ̄

i

n−1] is the approximate predictive covariance

matrix, both conditional on θ̄
i

n−1.

Given the observation yn−1, we perform an update step to compute the conditional

filter

φ̂
n−1,θ̄i

n−1
(dxn−1)∝ p(yn−1∣θ̄i

n−1,xn−1)ξ̂n−1,θ̄i
n
(dxn−1)

∝ p(xn−1∣θ̄i

n−1,y1∶n−1)dxn−1 (30)

(where the second proportionality is approximate) and, after resampling, we obtain

the new set of particles {θi
n−1}Ni=1 and

φ̂n−1,θi
n−1
(dxn−1) ≈ p(xn∣θi

n−1,y1∶n−1)dxn−1 (31)

Recall that all approximate measures are Gaussian. In particular,

φ̂n−1,θi
n
(dxn−1) = N(xn−1∣x̄i

n−1, P̄
i

n−1)dxn−1, (32)
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Time n − 1: ξ̂
n−1,θ̄i

n−1
(dxn−1) ≈ p(xn−1∣θ̄

i
n−1,y1∶n−2)dxn−1 Ð→ ûn−1(θ̄

i
n−1)

↓ yn−1

φ̂
n−1,θ̄i

n−1
(dxn) ≈ p(xn∣θ̄

i
n−1,y1∶n−1)dxn−1

↓ Resampling

φ̂n−1,θi
n−1
(dxn) ≈ p(xn∣θ

i
n−1,y1∶n−1)dxn−1

↓

Time n: sampling θ̄
i
n ∝ κN(dθ∣θ

i
n−1)

↓ Prediction: φ̂
n−1,θ̄i

n
(dxn) ≈ φ̂n−1,θi

n−1
(dxn)

ξ̂
n,θ̄

i
n
(dxn) ≈ p(xn∣θ̄

i
n,y1∶n−1)dxn Ð→ ûn(θ̄

i
n)

FIG. 1: Schematic representation of the recursive approximation of the posterior measures,

ξn,θ and φn,θ, and the likelihood function un(θ).
where

x̄i
n−1 ≈ E[xn−1∣θi

n−1,y1∶n−1] and P̄
(i)
n−1 ≈ E[(xn−x̄(i)n−1)(xn−x̄(i)n−1)⊺∣y1∶n−1,θ

i
n−1]. (33)

• At time n:

A new parameter vector θ̄
i

n ∼ κN(dθ∣θi
n−1) is generated. Assuming that the measure

φ̂n−1,θ is continuous in the parameter θ (see [10] and [22] for a discussion), and θ̄
i

n is

a (small enough) perturbation of θi
n−1 , it is reasonable to approximate

φ̂
n−1,θ̄i

n
(dxn) ≈ φ̂n−1,θi

n−1
(dxn). (34)

Then, we can obtain the (Gaussian) predictive measure

ξ̂
n,θ̄

i
n
(dxn) = ∫ p(xn∣xn−1)φ̂n−1,θ̄i

n
(dxn−1)

≈ p(xn∣θ̄i

n,y1∶n−1) (35)

and, finally, we calculate the approximate likelihood

û(θ̄i

n) = ∫ p(yn∣xn, θ̄
i

n)ξ̂n,θ̄i
n
(dxn) ≈ un(θ̄i

n). (36)
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The normalized weight of θ̄
i

n is, therefore,

wi
n = ûn(θ̄i

n)
∑N

j=1 ûn(θ̄j

n) . (37)

Note that, given the Gaussian approximate filters φ̂n,θi
n
(dxn) and the weights wi

n ∝
ûn(θ̄i

n) it is possible to approximate the joint posterior distribution of θ and xn, namely,

πn(dθ × dxn) ≈ πN
n (dθ × dxn) = N

∑
i=1

wi
nδθ̄i

n
(dθ)φ̂

n,θ̄
i
n
(dxn). (38)

C. Nested Hybrid Filters

The recursive approximation scheme of Figure 1 can be implemented via different

Gaussian filtering techniques. The resulting methods are termed nested hybrid filters (NHFs)

because they combine the Monte Carlo approximation µN
n (dθ) for the posterior distribution

of the parameters with Gaussian approximations for the conditional filters φ̂n,θi
n
. We describe

two specific techniques in detail, the extended Kalman filter (EKF) [13] and the ensemble

Kalman filter (EnKF) [14]. The EKF can be applied when the nonlinearities f̄(x̃k,θ),
in the state equation, and the observation function g(x̃k,θ) are differentiable. However,

it can be inefficient in high-dimensional state-spaces, which require storing and processing

dx × dx covariance matrices with dx ≫ 1. To avoid this limitation the EnKF summarises

the information of both the state-mean and the covariance matrix into a set of Monte Carlo

samples. To be specific, the approximate filter φ̂n,θi
n
(dxn) in the EnKF is represented by

an ensemble of M Monte Carlo particles {xi,j
n }Mj=1. Both approaches are described next. A

numerical comparison is presented in Section VI.

1. Extended Kalman filter

Let us assume that the prior pdf of the state is Gaussian with known mean and covariance

matrix, namely

p(x0) = N(x0∣x̄0, P̄ 0) (39)

The noise terms in the dynamic equation (3) and the observation equation (5) are also

assumed Gaussian, with zero mean and known covariance matrices,

vk ∼ N(vk∣0,Q) and uk ∼ N(uk∣0,R). (40)
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The EKF algorithm can be used when the functions f̄ in Eq. (3) and g in Eq. (5)

are either linear or differentiable. In general, we assume both functions are nonlinear and

differentiable, with J f̄ ,x,θ and Jg,x,θ denoting their respective Jacobian matrices evaluated

at the point x in the state-space and θ in the parameter space. Note that J f̄ ,x,θ is dx × dx
and Jg,x,θ is dy × dy.

The NHF constructed around a bank of EKFs is outlined in Algorithm 2 below.

Algorithm 2 NHF via EKF.

1. Initialization: draw N i.i.d. particles θi
0 ∼ µ0(dθ), i = 1, . . . ,N . Let x̄i

0
= x̄0 and

P̄
i

0 = P 0 for every i.

2. Recursive step: at time n, we have available µN
n−1(dθ) = 1

N ∑N
i=1 δθ̄i

n−1
(dθ) and, for each

i = 1, . . . ,N , φ̂n−1,θi
n
(dθ) = N(xn−1∣x̄i

n−1, P̄
i

n−1)dxn.

(a) Prediction:

i. Draw θ̄
i

n ∼ κN(dθ∣θi
n−1), i = 1, . . . ,N .

ii. Let x̆i
0 = x̄i

n−1 and P̆
i

0 = P̄ i

n−1. Then, for each i = 1, . . . ,N and k = 1, . . . , T
compute

x̆i
k = f̄(x̆i

k−1, θ̄
i

n) (41)

P̆
i

k = J f̄ ,x̆i
k−1,θ̄

i
n
P̆

i

k−1J
⊺
f̄ ,x̆i

k−1,θ̄
i
n

+ σ2Q (42)

iii. Set ξ̂
n,θ̄

i
n
(dxn) = N(xn∣x̂i

n, P̂
i

n)dxn where x̂
i
n = x̆i

T and P̂
i

n = P̂ i

T .

(b) Update:

i. For i = 1, . . . ,N , compute

Si
n = Jg,x̂i

n,θ̄
i
n
P̂

i

nJ
⊺
g,x̂i

n,θ̄
i
n

+ σ2

oR (43)

K i
n = P̂ i

nJ
⊺
g,x̂i

n,θ̄
i
n

(Si
n)−1 (44)

x̌i
n = x̂i

n +K i
n(yn − g(x̂i

n, θ̄
i

n)) (45)

P̌
i

n = (Idx −K i
nJg,x̂i

n,θ̄
i
n
)P̂ i

n (46)

ii. Compute û(θ̄i

n) = N(yn∣g(x̂i
n, θ̄

i

n),Si
n) and obtain the normalized weights,

wi = û(θ̄i

n)
∑N

j=1 ûn(θ̄j

n) , i = 1, . . . ,N. (47)
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iii. Set the filter approximation

φ̂
n,θ̄

i
n
(dxn) = N(xn∣x̌i

n, P̌
i

n)dxn. (48)

(c) Resampling: draw indices j1, . . . , jN from the multinomial distribution with

probabilities w1
n, . . . ,w

N
n , then set

θi
n = θ̄ji

n , x̄i
n = x̌ji

n and P̄
i

n = P̌ ji

n (49)

for i = 1, . . . ,N . Hence,

φ̂n,θi
n
(dxn) = N(xn∣x̄i

n, P̄
i

n)dxn and µN
n (dθ) = 1

N

N

∑
i=1

δθi
n
(dθ).

The computationally most expensive steps in Algorithm 2 are the inversion of the

observation covariance matrix Si
n in step 2(b)i and the computation of the predictive

state covariance matrices P̆
i

k in step 2(a)ii. The latter involves O(d3x) operations while

the computation of (Si
n)−1 is O(d3y). Therefore, these steps quickly become intractable

when dx and/or dy increase beyond moderate values.

To mitigate this limitation we have implemented both the inversion of Si
n and the

computation of P̆
i

k in an approximate manner. The approximation schemes are both based

on block decompositions of the target matrices in such a way that the computational effort

can be controlled a priori. Complete details are provided in Appendices A and B. The block-

approximate calculation of P̆
i

k depends on the form of the Jacobian matrix J f̄ ,x,θ and the

procedure in Appendix B is described for the Jacobian resulting from the Lorenz 96 model

presented in Section V. However the method can be readily extended to different examples.

2. Ensemble Kalman filter

The EKF method requires to store and process dx × dx covariance matrices. As an

alternative, the EnKF algorithm summarises the information that is carried by the x̄i
n’s

and the P̄
i

n’s into samples, i.e., we represent the filters as ensembles of M realizations

{xi,j
n }Mj=1 each.
Each ensemble can be stored in a dx×M matrix X i

n = [xi,1
n ,x

i,2
n , . . . ,x

i,M
n ]. The i-th mean
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and the i-th covariance matrix can be computed as

x̄i
n = 1

M
X i

n1 (50)

P̄
i

n = 1

M
X̃

i

n(X̃ i

n)⊺ (51)

respectively, where 1 = [1, . . . ,1]⊺ is an M-dimensional column vector and X̃
i

n =X i
n − x̄i

n1
⊺

is an ensemble of deviations from x̄i
n. We hence write N(xn∣X i

n) as a shorthand for the pdf

N(xn∣x̄i
n, P̄

i

n).
The NHF constructed around a bank of EnKFs is outlined in Algorithm 3 below.

Algorithm 3 NHF via EnKF.

1. Initialization: draw N i.i.d. particles θi
0 ∼ µ0(dθ) and {x̄i,j

0
} ∼ p(x0), i = 1, . . . ,N ,

j = 1, . . . ,M . Let X i
0 = [xi,1

0
, . . . ,x

i,M
0
], i = 1, . . . ,N .

2. Recursive step: at time n − 1, we have obtained µN
n−1(dθ) = 1

N ∑N
i=1 δθ̄i

n−1
(dθ) and, for

each i = 1, . . . ,N , φ̂n−1,θi
n
(dθ) = N(xn−1∣X̄ i

n−1)dxn.

(a) Prediction:

i. Draw θ̄
i

n ∼ κN(dθ∣θi
n−1), i = 1, . . . ,N .

ii. Let X̆
i

0 = X̄ i

n−1. Then, for each i = 1, . . . ,N and k = 1, . . . , T compute

X̆
i

k = f̄(X̆ i

k−1, θ̄
i

n) +V i
k (52)

where V i
k = [vi,1

k , . . . ,v
i,M

k ], i = 1, . . . ,N , is a dx ×M matrix of Gaussian

perturbations.

iii. Set ξ̂
n,θ̄

i
n
(dxn) = N(xn∣X̂ i

n)dxn where X̂
i

n = X̆ i

T .

(b) Update:

i. For i = 1, . . . ,N , compute

M̄
i

n = 1

M
X̃

i

n(Z̃i

n)⊺ (53)

S̄
i

n = 1

M
Z̃

i

n(Z̃ i

n)⊺ +R (54)

K̄
i

n = M̄ i

n(S̄i

n)−1 (55)

X̌
i

n = X̂ i

n + K̄ i

n(yn1
⊺ − Ȳ i

n) (56)
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where R = σ2
oIdy is the measurement noise covariance, ȳn = 1

M
Ȳ

i

n1 and

x̄i
n = 1

M
X̂

i

n1, with Ȳ
i

n = g(X̂ i

n,θ) +U i
n and U i

n = [u1
n, . . . ,u

M
n ] a matrix of

Gaussian perturbations. X̃
i

n and Z̃
i

n are calculated as

X̃
i

n = X̂ i

n − x̄i
n1
⊺ (57)

Z̃
i

n = 1

M
g(X̂ i

n,θ) − ȳi
n1
⊺ (58)

ii. Compute û(θ̄i

n) = N(yn∣g(x̄i
n, θ̄

i

n), S̄i

n) and obtain the normalized weights,

wi = û(θ̄i

n)
∑N

j=1 ûn(θ̄j

n) , i = 1, . . . ,N. (59)

iii. Set the filter approximation

φ̂
n,θ̄

i
n
(dxn) = N(xn∣X̌i

n)dxn. (60)

(c) Resampling: draw indices j1, . . . , jN from the multinomial distribution with

probabilities w1
n, . . . ,w

N
n , then set

θi
n = θ̄ji

n , and X̄
i

n = X̌ji

n (61)

for i = 1, . . . ,N . Hence

φ̂n,θi
n
(dxn) = N(xn∣X̄ i

n)dxn and µN
n (dθ) = 1

N

N

∑
i=1

δθi
n
(dθ).

As in Algorithm 2, a computationally expensive step is the inversion of the observation

covariance matrix S̄
i

n in step 2(b)i and we use the approximation described in Appendix A

to alleviate the cost. However, in Algorithm 3 we avoid the computation of the predictive

state covariance matrices.

IV. CONVERGENCE ANALYSIS

A. Preliminaries and notation

The nested filtering scheme of Section IIIA admits many implementations depending on

how we choose to approximate the conditional measures ξn,θ(dθ) and φn,θ(dθ) which, in
turn, are needed to estimate the likelihood function un(θ) and, therefore, the importance

weights

wi
n ∝ û(θ̄i

n) ≈ u(θ̄i

n), i = 1, . . . ,N. (62)
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For each choice of approximation method the estimate ûn(θ) may behave differently and

yield different convergence properties. Here we assume that ûn(θ) is a random variable with

finite mean ūn(θ) = E[ûn(θ)] < ∞ and finite moments up to some prescribed order p ≥ 1.
Specifically, we make following assumption.

A. 1 The estimator ûn(θ) is random and can be written as

ûn(θ) = ūn(θ) +mn(θ), (63)

where mn(θ) is a zero-mean random vector satisfying E[mn(θ)p] ≤ σp < ∞ for some

prescribed p ≥ 1. Furthermore, the mean ūn(θ) = E [ûn(θ)] has the form

ūn(θ) = un(θ) + bn(θ), (64)

where bn(θ) is a deterministic and bounded bias function.

In the sequel we use D ⊆ Rdθ to denote the support set of the parameter vector θ and the

notation ∥a∥∞ ∶= supθ∈D ∣a(θ)∣ to indicate the absolute supremum of a real function a ∶ D →
R. The set of such functions is denoted B(D), i.e., B(D) ∶= {(a ∶ D → R) ∶ ∥a∥∞ < ∞}. For

our analysis we assume that un ∈ B(D) and, since we have also assumed the bias function

bn to be bounded, we have ūn ∈ B(D), i.e., ∥ūn∥∞ < ∞.

We shall prove that, because of the bias bn(θ), the approximation µN
n converges to the

perturbed probability measure µ̄n induced by the mean function ūn, instead of the true

posterior probability measure µn induced by model (8)-(10) (and, therefore, by the true

likelihood function un).

To be specific, the sequence of posterior measures µn, n ≥ 1, can be constructed

recursively, starting from a prior µ0(dθ), by means of the projective product operation

[23]

µn = un ⋆ µn−1.

When u(θ) is a positive and bounded function and α is a probability measure, the new

measure u ⋆ α is defined in terms of its integrals. in particular, if a ∈ B(D) then
∫ a(θ)(u ⋆ α)dθ ∶= ∫ a(θ)u(θ)α(dθ)∫ u(θ)α(dθ) .

For conciseness, hereafter we use the shorthand

(a,α) ∶= ∫ a(θ)α(dθ)
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for the integral of a function a(θ) w.r.t. a measure α. With this notation, we can write

(a,µn) = (a,un ⋆ µn−1) = (aun, µn−1)(un, µn−1) . (65)

If, instead of the true likelihood un, we use the biased function ūn = un + bn to update the

posterior probability measure associated to the parameter vector θ at each time n then we

obtain the new sequence of measures

µ̄0 = µ0, µ̄n = ūn ⋆ µ̄n−1, n = 1,2, ...,

where, according to the definition of the projective product,

(a, µ̄n) = (aūn, µn−1)(ūn, µ̄n−1)
for any integrable function a(θ). Note that the two sequence, µn and µ̄n, start from the

same prior µ0. Obviously, we recover the original sequence, i.e, µ̄n → µn, when the bias

vanishes, bn → 0.

In this section we prove that the approximation µN
n generated by a generic nested filter

that satisfies assumption A.1 converges to µ̄n in Lp, for each n = 1,2, ..., under regularity

conditions. We split the analysis of the nested filter in three steps: jittering, weight

computation and resampling. The approximation µN
n−1 of µ̄n−1 is available at the beginning

of the n-th time step. After the jittering we obtain a new approximation,

µ̌N
n−1 = 1

N

N

∑
i=1

δ
θ̄
i
n
, (66)

that can be proved to converge to µn−1 using an auxiliary result from [10]. After the

computation of the weights, the measure

µ̃N
n =

N

∑
i=1

wi
nδθ̄i

n
(67)

is obtained and its convergence towards µ̄n must be established. Finally, after the resampling

step, a standard piece of analysis proves the convergence of

µN
n = 1

N

N

∑
i=1

δθi
n

(68)

to µ̄n.
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B. Jittering

In the jittering step, a new cloud of particles {θ̄i

n}Ni=1 is generated by propagating the

existing samples across the kernels κN(dθ∣θi
n−1), i = 1, . . . ,N . This step has been analyzed

in [10] in the context of the NPF. Several types of kernels can be used. In general, there

is a trade-off between the number of particles that are changed using this kernel and the

“amount of perturbation” that can be applied to each particle. For this reason, we let the

jittering kernel κN depend explicitly on N . For our analysis, we make the assumption A.2

below.

A. 2 The kernel κN used in the jittering step satisfies the inequality

sup
θ′∈D
∫ ∣h(θ) − h(θ′)∣κN(dθ∣θ′) ≤ cκ∥h∥∞√

N
(69)

for any h ∈ B(D) and some constant cκ < ∞ independent of N .

A simple kernel that satisfies A.2 is [10]

κN(dθ∣θ′) = (1 − ǫN)δθ′(dθ) + ǫNκ(dθ∣θ′),
where 0 < ǫN ≤ 1√

N
and κ(dθ∣θ′) is an arbitrary Markov kernel with mean θ′ and finite

variance, for example κ(dθ∣θ′) = N(θ∣θ′, σ̃2I), where σ̃2 < ∞ and I is the identity matrix.

Intuitively, this kind of kernel changes each particle with probability ǫN and leaves it

unmodified with probability 1 − ǫN .
The convergence results to be given in this section are presented in terms of upper

bounds for the Lp norms of the approximation errors. For a random vector z, its Lp

norm is ∥z∥p = E [∣z∣p] 1p . The approximate measures generated by the nested filter, e.g.,

µN
n , are measured-valued random variables. Therefore, integrals of the form (h,µN

n ), for
some h ∈ B(D), are real random variables and it makes sense to evaluate the Lp norm of

the random error (h,µN
n ) − (h, µ̄n). We start with the approximation µ̌N

n−1 produced after

the jittering step at time n.

Lemma 1 Let the sequence of observations y1∶n be arbitrary but fixed. If h ∈ B(D), A.2
holds and

∥(h,µN
n−1) − (h, µ̄n−1)∥p ≤ cn−1∥h∥∞√

N
(70)
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for some p ≥ 1 and a constant cn−1 < ∞ independent of N , then

∥(h, µ̌N
n−1) − (h, µ̄n−1)∥p ≤ c1,n∥h∥∞√

N
, (71)

where the constant c1,n < ∞ is also independent of N .

Proof: The proof of this Lemma is identical to the proof of [10, Lemma 3]. ◻

C. Computation of the weights

In order to analyze the errors at the weight computation step we need to incorporate

some regularity assumptions on the likelihoods ūn(θ), n ≥ 1.

A. 3 Given a fixed sequence of observations y1∶n, the family of functions {ūn(θ),θ ∈ D}
satisfies the following inequalities for each n = 1,2, ...:

1. ∥ūn∥ < ∞, and

2. ūn(θ) > 0 for any θ ∈D.

Let us note that if we assume ∥un∥∞ < ∞ then A.3.1 follows from assumption A.1.

Similarly, if we choose D such that un(θ) > 0 for all θ ∈ D then A.3.2 is a rather natural

assumption, since û(θ) is an estimator of a positive magnitude.

An upper bound for the error in the weight computation step is established next.

Lemma 2 Let the sequence of observations y1∶n be arbitrary but fixed, choose any h ∈ B(D)
and some p ≥ 1. If assumptions A.1 and A.3 hold, and

∥(h, µ̌N
n−1) − (h, µ̄n−1)∥p ≤ c1,n∥h∥∞√

N
(72)

for some constant c1,n < ∞ independent of N , then

∥(h, µ̃N
n ) − (h, µ̄n)∥p ≤ c2,n∥h∥∞√

N
, (73)

where the constant c2,n < ∞ is independent of N .
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Proof: We address the characterization of the weights and, therefore, of the approximate

measure µ̃N
n = ∑N

i=1w
i
nδθ̄in . From the definition of the projective product in (65), the integrals

of h w.r.t. µ̄n and µ̃N
n can be written as

(h, µ̄n) = (ūnh, µ̄n−1)(ūn, µ̄n−1) , and (h, µ̃N
n ) = (ûnh, µ̌

N
n−1)(ûn, µ̌
N
n−1) , (74)

respectively. From (74) one can write the difference (h, µ̃N
n ) − (h, µ̄n) as

(h, µ̃N
n ) − (h, µ̄n) = (hûn, µ̌

N
n−1) − (hūn, µ̄n−1)(ūn, µ̄n−1) + (h, µ̃N

n )(ūn, µ̄n−1) − (ûn, µ̌
N
n−1)(ūn, µ̄n−1) ,

which readily yields the inequality

∣(h, µ̃N
n ) − (h, µ̄n−1)∣ ≤ ∣(hûn, µ̌

N
n−1) − (hūn, µ̄n−1)∣(ūn, µ̄n−1) + ∥h∥∞∣(ûn, µ̌

N
n−1) − (ūn, µ̄n−1)∣(ūn, µ̄n−1) (75)

by simply noting that ∣(h, µ̃N
n )∣ ≤ ∥h∥∞, since µ̃N

n is a probability measure. From (75) and

Minkowski’s inequality we easily obtain the bound

∥(h, µ̃N
n ) − (h, µ̄n−1)∥p ≤ 1

(ūn, µ̄n−1) [∥h∥∞∥(ûn, µ̌
N
n−1) − (ūn, µ̄n−1)∥p

+∥(hûn, µ̌
N
n−1) − (hūn, µ̄n−1)∥p, ] (76)

where (ūn, µ̄n−1) > 0 from assumption A.3.2.

We need to find upper bounds for the two terms on the right hand side of (76). Consider

first the term ∥(hûn, µ̌
N
n−1) − (hūn, µ̄n−1)∥p. A simple triangle inequality yields

∥(hûn, µ̌
N
n−1)−(hūn, µ̄n−1)∥p ≤ ∥(hûn, µ̌

N
n−1)−(hūn, µ̌

N
n−1)∥p+∥(hūn, µ̌

N
n−1)−(hūt, µ̄n−1)∥p. (77)

On one hand, since supθ∈D ∣h(θ)ūn(θ)∣ ≤ ∥h∥∞∥ūn∥∞ < ∞ (see A.3.1), it follows from the

assumption in Eq. (72) that

∥(hūn, µ̌
N
n−1) − (hūn, µ̄n−1)∥p ≤ c1,n∥h∥∞∥ūn∥∞√

N
, (78)

where c1,n < ∞ is a constant independent of N .

On the other hand, we may note that

∣(hûn, µ̌
N
n−1) − (hūn, µ̌

N
n−1)∣p = ∣ 1N

N

∑
i=1
(h(θ̄i

n)ûn(θ̄i

n) − h(θ̄i

n)ūn(θ̄i

n))∣
p

. (79)

Let Gn be the σ-algebra generated by the random particles {θ̄i

1∶n−1,θ
i
0∶n−1}1≤i≤N and assume

that p is even. Then we can apply conditional expectations on both sides of (79) to obtain

E [∣(hûn, µ̌
N
n−1) − (hūn, µ̌

N
n−1)∣p ∣Gn] = E [( 1N

N

∑
i=1

h(θ̄i

n)mn(θ̄i

n))
p

∣Gn]
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where the expression on the right hand side has been simplified by using the assumption

ûn(θ) = ūn(θ) +mn(θ) in A.1. Also from assumption A.1, the random variables mn(θ̄i

n)
are conditionally independent (given Gn), have zero mean and finite moments of order p,

E[mn(θ̄i

n)p] ≤ σp < ∞. If we realise that

E[h(θ̄i

n)mn(θ̄i

n)∣Gn] = h(θ̄i

n)E[mn(θ̄i

n)∣Gn] = 0
and bear in mind the conditional independence of the mn(θ̄i

n)’s, then it is an exercise in

combinatorics to show that the number of non-zero terms in

E [( 1
N

N

∑
i=1

h(θ̄i

n)mn(θ̄i

n))
p

∣Gn] =∑
i1

. . .∑
ip

E [h(θ̄i1
n )mn(θ̄i1

n ) . . . h(θ̄ip
n )mn(θ̄ip

n )∣Gn]
is at most c̃pN

p

2 , for some constant c̃p < ∞ independent of N and h. Since each of the non-

zero terms is upper bounded by E [(h(θ̄i

n)mn(θ̄i

n))p∣Gn] ≤ ∥h∥p∞σp < ∞ (using A.1 again),

then it follows that

E [∣(hûn, µ̌
N
n−1) − (hūn, µ̌

N
n−1)∣p] = E [( 1N

N

∑
i=1

h(θ̄i

n)mn(θ̄i

n))
p

∣Gn] ≤ c̃pσp∥h∥p∞
N

p

2

(80)

for even p. Given (80), it is straightforward to show that the same result holds for every

p ≥ 1 using Jensen’s inequality. Finally, since the bound on the right hand side of (80) is

independent of Gn, we can take expectations on both sides of the inequality and obtain that

∥(hûn, µ̌
N
n−1) − (hūn, µ̌

N
n−1)∥p ≤ c̃σ∥h∥∞√

N
. (81)

Substituting (81) and (78) into (77) yields

∥(hûn, µ̌
N
n−1) − (hūn, µ̄n−1)∥p ≤ c′n∥h∥

p
∞∥ūn∥∞√
N

, (82)

where c′n = c1,n + c̃σ is a constant independent of N .

The same argument leading to the bound in (82) can be repeated, step by step, on the

norm ∥(ûn, µ̌
N
n−1) − (ūn, µ̄n−1)∥p (simply taking h(θ) = 1), to arrive at

∥(ûn, µ̌
N
n−1) − (ūn, µ̄n−1)∥p ≤ c′n∥ūn∥∞√

N
. (83)

To complete the proof, we substitute (82) and (83) back into (76) and so obtain

∥(h, µ̃N
n ) − (h, µ̄n−1)∥p ≤ c2,n∥h∥∞√

N
,

where the constant c2,n = ∥ūn∥∞ (2c′n) /(ūt, µ̄t−1) < ∞ is independent of N . ◻
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D. Resampling

The quantification of the error in the resampling step of the nested filter is a standard

piece of analysis, well known from the particle filtering literature (see, e.g., [23]). We can

state the following result.

Lemma 3 Let the sequence of observations y1∶n be arbitrary but fixed. If h ∈ B(D) and
∥(h, µ̃N

n ) − (h, µ̄n)∥p ≤ c2,n∥h∥∞√
N

(84)

for a constant c2,n < ∞ independent of N , then

∥(h,µN
n ) − (h, µ̄n)∥p ≤ c3,n∥h∥∞√

N
,

where the constant c3,n < ∞ is independent of N as well.

Proof: See, e.g., the proof of [24, Lemma 1]. ◻

E. Convergence theorem

Finally, we can put Lemmas 1, 2 and 3 together in order to prove the following statement

on the convergence of a generic nested filter.

Theorem 1 Let the sequence of observations y1∶no
be arbitrary but fixed, with no < ∞, and

choose an arbitrary function h ∈ B(D). If the assumptions A.1-A.3 hold, then

∥(h,µN
n ) − (h, µ̄n)∥p ≤ cn∥h∥∞√

N
, for n = 0,1, . . . , no, (85)

where {cn}0≤n≤no
is a sequence of constants independent of N .

Proof: We prove that (85) holds by induction in n. At time n = 0, we draw θi
0,

i = 1, . . . ,N , independently from the prior µ0 ant it is straightforward to show that

∥(h,µN
0
) − (h, µ̄0)∥p ≤ c0∥h∥∞√

N
, where c0 does not depend on N (recall that µ0 = µ̄0).

Assume that, at time n − 1,
∥(h,µN

n−1) − (h, µ̄n−1)∥p ≤ cn−1∥h∥∞√
N

where cn−1 < ∞ is independent of N . Then, we simply apply Lemmas 1, 2 and 3 in sequence

to obtain

∥(h,µN
n ) − (h, µ̄n)∥p ≤ cn∥h∥∞√

N

for a constant cn = c3,n < ∞ independent of N . ◻
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V. A STOCHASTIC LORENZ 96 MODEL

In order to assess the proposed methods numerically, we have applied them to a stochastic,

discrete-time version of the two-scale Lorenz 96 model [17]. The latter is a deterministic

system of nonlinear differential equations that displays some key features of atmosphere

dynamics (including chaotic behavior) in a relatively simple model of arbitrary dimension

(the number dx of dynamic variables can be scaled as needed). The model consists of two

sets of dynamic variables, x(t) and z(t). The system of differential equations takes the form

ẋ(t) = f 1(x(t),z(t),α)
ż(t) = f 2(z(t),α)

(86)

where x(t) and z(t) represent the slow and fast variables, respectively, and α is a 4 × 1
parameter vector. Let us assume there are dx slow variables, xj , j = 0, . . . , dx − 1, and L

fast variables per slow variable, i.e., zl, l = 0, ..., dxL − 1, overall. The maps, f
1
and f

2
are

Rdx ×RL×Rn → Rdx and RL×Rn → RL functions, respectively, that can be written (skipping

the time index t) as

f 1 = [f1,0, . . . , f1,dx−1]⊺ and f1,j(x,z,α) = −xj−1(xj−2 − xj+1) − xj +F − HC

B

Lj−1
∑

l=(j−1)L
zl,

f 2 = [f2,0, . . . , f2,dxL−1]⊺ and f2,l(z,α) = −CBzl+1(zl+2 − zl−1) −Czl + CF

B
+ HC

B
z⌊ l−1

L
⌋,

where j = 0, ..., dx − 1, l = 0, ..., dxL − 1, and α contains the parameters F ,C,H and B. F is

a forcing parameter that controls the turbulence of the chaotic flow, C determines the time

scale of the fast variables {zl}l≥0, H controls the strength of the coupling between the fast

and slow variables and B determines the amplitude of the fast variables [17]. The dynamic

variables are assumed to be arranged on a circular structure, hence the operations on the j

indices are modulo dx and operations on the l indices are modulo L. This means that for

any integer k, j + k ≡ (j + k) mod dx and l + k ≡ (l + k) mod L. Notation ⌊a⌋ indicates the

truncation of a positive real number a to the closest integer smaller than a.

We apply the 4th order Runge-Kutta (RK4) method to obtain a discrete-time version of

the two-scale Lorenz 96 model. To be specific, we numerically integrate Eq. (86) by means

of the difference equations

x̄k = x̄k−1 + hf̄ 1(x̄k−1, z̄k−1,α) + σvk, (87)

z̄k = z̄k−1 + hf̄ 2(z̄k−1,α) + σ̄v̄k (88)
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where h > 0 is the integration step-size, vk and v̄ are sequences of independent and identically

distributed (i.i.d.) standard Gaussian random vectors, and σ, σ̄ > 0 are scale parameters.

The vectors of slopes f̄ 1 and f̄2 in Eqs. (87) and (88) are calculated as

k1 = f1
(x̄n−1, z̄n−1,α) and m1 = f2

(z̄n−1,α),
k2 = f 1(x̄n−1 + 1

2
hk1, z̄n−1 + 1

2
hm1,α) and m2 = f2(z̄n−1 + 1

2
hm1,α),

k3 = f 1
(x̄n−1 + 1

2
hk2, z̄n−1 + 1

2
hm2,α) and m3 = f2

(z̄n−1 + 1

2
hm2,α),

k4 = f1
(x̄n−1 + hk3, z̄n−1 + hm3,α) and m4 = f2

(z̄n−1 + hm3,α),
f̄ 1(x̄n−1, z̄n−1,α) = 1

6
(k1 + 2k2 + 2k3 + k4), (89)

f̄
2
(z̄n−1,α) = 1

6
(m1 + 2m2 + 2m3 +m4) (90)

where j = 0, ..., dx − 1 and l = 0, ..., dxL − 1.
We assume that the observations are linear but can only be collected from this system

once every T discrete time steps. Moreover, only 1 out of K slow variables can be observed.

Therefore, the observation process has the form

yn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xK,nT

x2K,nT

⋮
xdyK,nT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+un, (91)

where n = 1,2, ... and un is a sequence of i.i.d. random variables with common pdf

N(un∣0, σ2
yIdy).

In our computer experiments, system (87) is often employed to generate both ground-

truth values for the slow variables {xn}n≥0 and synthetic observations, {yn}n≥1. As a forecast
model for the slow variables it is common [15] to use the differential equation

ẋj = fj(x,θ) = −xj−1(xj−2 − xj+1) − xj + F − ℓ(xj , a), j = 0, ..., dx − 1, (92)

where a = [a1, a2]⊺ is a (constant) parameter vector, θ = [F, a⊺]⊺ contains all the parameters

and function ℓ(xj,n−1, a) ∈ R is a polynomial ansatz for the coupling term HC
B ∑Lj−1

l=(j−1)L x̄l in

(87). Then, Eqs. (87) and (88) can be replaced by

xk = xk−1 + hf̄(xk−1,θ) + σvk (93)

where f̄ is the RK4 approximation of the function f = [f0, . . . , fdx−1]⊺ in Eq. (92).
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In this paper we assume that ℓ(xj , a) is a polynomial in xj of degree 2, characterized

by the roots a1 and a2. Assuming yn is Gaussian distributed and un is a sequence of

independent and identically distributed noise terms with Gaussian probability distribution,

p(u) = N(u∣0, σ2
oIdy), then

p(yn∣xn,θ) = N(yn∣xn, σ
2

oIdy) (94)

which denotes a dy-dimensional Gaussian density with zero mean and covariance matrix

σ2
oIdy , where Idy is the dy × dy identity matrix.

In Appendix B we provide a simplified numerical scheme for the approximate computation

of the dx×dx predictive covariance matrices of the EKF algorithm when the Jacobian matrix

J f̄ ,x,θ corresponds to the Lorenz 96 model just described.

VI. NUMERICAL RESULTS

We have conducted computer simulations to illustrate the performance of the proposed

nested hybrid filtering methods. In particular, we have carried out computer experiments

for three different schemes: the NPF of [10] and the two NHFs described in Section IIIC

that rely on the EKF and the EnKF, respectively. The simulation setup is described below,

followed by the discussion of our numerical results in Section VIB.

A. Simulation setup

For our computer experiments we have used the two-scale Lorenz 96 model of Eq. (86),

in order to generate

• reference signals x̃k, k = 0,1, . . ., used as ground truth for the assessment of the

estimators, and

• sequences of observations, yn, n = 1,2, . . ..

The model is integrated using the RK4 method with Gaussian perturbations (as outlined

in Eqs. (87) and (88)). The integration step is set to h = 10−3 continuous-time units through

all experiments and the fixed model parameters are F = 8, H = 0.75, C = 10 and B = 15. For
all experiments, we assume that there are L = 10 fast variables per slow variable, hence the
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total dimension of the model is 10dx (with different values of dx for different experiments).

The noise scaling factors are σ = h
4
= 0.25×10−3 and σo = 4, both assumed known. We assume

that half of the slow variables are observed in Gaussian noise, i.e., K = 2.
We assess the accuracy of the estimation algorithms in terms of the mean square error

(MSE) of the predictors of the dynamic variables. For the NHFs, these estimators take the

form

ˆ̃xk =
N

∑
i=1

wi
nx̆

i
k, (95)

and the estimator of the error is

Ẽk = N

∑
i=1

wi
ntrace{P̆ i

k}. (96)

In the plots, however, we show the empirical MSE per dimension resulting directly from the

simulations,

MSEk = 1

dx
∥ x̆k − x̃k ∥2 . (97)

averaged over several independent simulation runs.

The simulations presented below include running times for the different methods. They

have been obtained with an iMac computer with 32 GB of DRAM and equipped with an

Intel Core i7 processor.

B. Results

Table I shows a comparison of the performance of the NPF and the two NHFs, based

on the EKF and the EnKF schemes as described in Section III, in terms of their running

times and the MSE of the state estimators (averaged over time and dimensions). We have

carried out this computer simulation for a model with dimension dx = 50 and a gap between

observations of hT = 0.05 continuous-time units. All algorithms work with N = 200 particles

for the approximation of the posterior distributions of the fixed parameters. The second-

layer particle filters in the NPF use M = 200 particles each and the EnKFs run with M = 50
samples each. It can be seen that the least error is achieved by the NHF-EnKF method, with

a running time similar to the NPF, which achieves an MSE that is one order of magnitude

higher. The NHF-EKF attains a moderate MSE (considerably better than the NPF) with

just a fraction of the running time. In order to improve the performance of the NPF, the
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numbers of particles M and N would have to be considerably increased, but this would

increase the running times correspondingly (the complexity of the NPF is O(NM) [10]).
Algorithm Running time (minutes) MSE

NPF 9.872 6.062

NHF + EKF 1.196 1.653

NHF + EnKF 11.674 0.472

TABLE I: Running times and average MSE (over time and state dimensions) for the NPF

and two NHFs, based on the EKF and the EnKF, respectively.

Next, we show results for a computer experiment in which we have used the NHF-EKF

method to estimate the parameters F and a and track the state variables of the two-scale

Lorenz system with dimension dx = 4,000 and a gap between consecutive observations of

hT = 0.05 continuous-time units. As in the rest of computer simulations, the number of

particles used to approximate the sequence of parameter posterior distributions is N = 200.
Figure 2 shows the true state trajectories, together with their estimates, for the first two

state variables of the two-scale Lorenz 96 model. We note that the first variable, x1(t), is
observed in Gaussian noise (with σo = 4) while the second variable, x2(t), is not observed.
The accuracy of the estimation is similar, though, over the 20 continuous-time units of the

simulation run (corresponding to 20 × 103 discrete time steps).

In Figure 3 we observe the estimates of the fixed parameters F , a1 and a2, together with

the reference values. Note that the value F = 8 is ground truth, but the values of a1 and a2

are genie-aided least squares estimates obtained by observing directly the fast variables of

the two-scale model. There is a similar time-to-convergence for the three parameters: after

5 continuous time units, the algorithm yields reliable estimates of F , a1 and a2.

In the next set of computer experiments we compare the NHF-EKF and the NHF-EnKF

methods in terms of their average MSE and their running times for different values of the

state dimension dx and the gap between consecutive observations T (in discrete time steps).

For each combination of dx and T we have carried out 20 independent simulation runs. The

number of particles in the parameter space is fixed, N = 200, for all simulations, but the size

of the ensemble in the EnKFs is adjusted to the dimension, in particular, we set M = dx.
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FIG. 2: Sequences of state values (dashed red line) and estimates (blue line) in x1 (a) and

x2 (b) over time. Variable x1 is observed (in Gaussian noise), while x2 is unobserved.
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FIG. 3: Estimates of the parameters a = [a1, a2]⊺ and F in a 4,000-dimensional Lorenz 96

model. The reference values are represented in red dashed lines.

Figure 4 shows the running times and the average MSE attained by the two NHFs when

the state dimension dx ranges from 100 to 500. The gap between observations is fixed to

T = 50 (i.e., 0.05 time units). We observe that the NHF-EKF method attains significantly

lower running times (by a factor of ∼ 6, compared to the NHF-EnKF), which increase only

moderately with the dimension dx. The NHF-EnKF scheme yields smaller values of MSE,

however they appear to grow relatively quickly with dx.

Finally, Figure 5 displays the running times and the average MSEs attained by the two

NHFs as we increase the gap between observations from T = 10 to T = 150 (hence, from

hT = 0.01 to hT = 0.15 continuous time units). The dimension of dynamic variables for

this experiment is fixed to dx = 500. Note that, as the gap T increases, less data points are

effectively available for the estimation of both the parameters and the states. We observe,

again, that the NHF-EnKF is computationally more costly than the NHF-EKF, however
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it attains a consistently smaller MSE. Moreover, in this simulation we observe that the

estimation errors of the NHF-EnKF increase at a lower rate (compared to the NHF-EKF)

as less observations are collected, suggesting that it may be a more efficient algorithm in

data-poor scenarios.
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FIG. 4: Comparison of the NHF-EKF (red lines) and NHF-EnKF (blue lines) in terms of

their running time (a) and their MSE (b) as the state dimension dx increases, with a fixed

gap between observations of T = 50 discrete time steps. The dashed lines in (b) indicate

the one standard deviation w.r.t. the mean.
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FIG. 5: Comparison of the NHF-EKF (red lines) and NHF-EnKF (blue lines) in terms of

their running time (a) and their MSE (b) as the gap between observations T increases,

with fixed state dimension dx = 500. The dashed lines in (b) indicate the one standard

deviation w.r.t. the mean.
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VII. CONCLUSIONS

We have introduced a nested filtering methodology to recursively estimate the static

parameters and the dynamic variables of nonlinear, possibly chaotic, dynamical systems.

The proposed framework combines a recursive Monte Carlo approximation method to

compute the posterior probability distribution of the static parameters with a variety

of filtering techniques to estimate the posterior distribution of the state variables of the

system. In particular, we have investigated the use of Gaussian filters, as they admit fast

implementations that can be well suited to high dimensional systems. As a result, we have

proposed two nested hybrid filters that combine a sequential importance sampling scheme

for the (moderate dimensional) unknown static parameters of the dynamical system with

either extended Kalman filtering or ensemble Kalman filtering for the (higher dimensional)

time-varying states. We have presented numerical results for a two-scale stochastic Lorenz

96 system, a model commonly used for the assessment of data assimilation methods in the

Geophysics. We illustrate the average performance of the methods in terms of estimation

errors and running times, and show numerical results for a 4,000-dimensional system. This

has been achieved with a relatively inefficient implementation of the method running on a

desktop computer, hence we expect that the method can be applied to much larger scale

systems using adequate hardware and software.
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Appendix A: Simplification of the inverse (Si)−1

The predictive covariance of the observation vector yn is a dy×dy matrix Sn. Inverting Sn

has a cost O(d3y), which can become intractable. Assuming that variables located “far away”

in the circumference of the Lorenz 96 model have small correlation we can approximate Sn
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as a block diagonal matrix, namely, Ŝn = Sn ⊙M , where ⊙ denotes element-wise product,

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0

0 1 . . . 0

⋮ ⋮ ⋱ ⋮
0 0 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A1)

is a mask matrix and 0 and 1 are, respectively, matrices of zeros and ones of dimension

dq×dq. There are Q blocks in the diagonal of M , hence dy = Qdq. The original matrix could

contain some non-zero values where the zero blocks of M are placed, however their values

are assumed close to zero. The resulting matrix,

Ŝ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S̄1 0 . . . 0

0 S̄2 . . . 0

⋮ ⋮ ⋱ ⋮
0 0 . . . S̄Q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, is easily inverted as Ŝ

−1
n =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S̄
−1
1 0 . . . 0

0 S̄
−1
2 . . . 0

⋮ ⋮ ⋱ ⋮
0 0 . . . S̄

−1
Q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
with a computational cost O(Qd3q) = O( d3yQ2 ).

Appendix B: Jacobian product simplifications for the Lorenz 96 model

Applying the Lorenz 96 model, the Jacobian matrix J f̄ ,x,θ in Algorithm 2 can be written

as

J f̄ ,x,θ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1,1 c1,2 0 0 0 . . . 0 0 c1,dx−1 c1,dx

c2,1 c2,2 c2,3 0 0 . . . 0 0 0 c2,dx

c3,1 c3,2 c3,3 c3,4 0 . . . 0 0 0 0

0 c4,2 c4,3 c4,4 c4,5 . . . 0 0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 . . . cdx−2,dx−3 cdx−2,dx−2 cdx−2,dx−1 0

0 0 0 0 0 . . . cdx−1,dx−3 cdx−1,dx−2 cdx−1,dx−1 cdx−1,dx

cdx,1 0 0 0 0 . . . 0 cdx,dx−2 cdx,dx−1 cdx,dx

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where J(f̄) is a dx × dx matrix. The ci,j’s denote the non-zero entries of the matrix. The

division by blocks of this matrix is quite similar to the one made in Eq. (A1). However, there

are some additional restrictions. We can name the q-th block as J (q), where q = 1,2, . . . ,Q
and Q is the number of blocks used. Then, if we adopt a Matlab notation to indicate the
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rows and columns, we obtain J
(q)
a∶b,c∶d, where a and b (respectively c and d) are the indices of

the initial and final rows (columns) of the q-th block and they are computed as

a = (q − 1) × dx
Q
+ 1, (B1)

b = a + dx
Q
− 1, (B2)

c = a − 2, (B3)

d = b + 1. (B4)

Moreover, the covariance matrix P̌ k−1 can be simplified applying the division by blocks

as in Eq. (A1), taking R blocks. After that, the first part of the product can be computed

as

Aa∶b,⌊ c
R
⌋×R+1∶⌈ d

R
⌉×R = Ja∶b,c∶dP̌ k−1,c∶d,⌊ c

R
⌋×R+1∶⌈ d

R
⌉×R (B5)

where the matrix A is auxiliary to calculate the final product as

P̌ k =A∶,a∶b × J−1a∶b,c∶d +Q (B6)

We have particular cases for the first and the last blocks, being necessary to rewrite Eqs.

(B5) and (B6). The indices used to indicate the initial and final columns of the block,

(c ∶ d), are replaced in the first case by (a ∶ d) in addition to the last two columns of the

whole matrix. In the same way, for the last block we replace the columns by (c ∶ b), adding
the first column of the matrix as well.
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