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Abstract

We investigate a new sampling scheme to improve the performance of particle
filters in scenarios where either (a) there is a significant mismatch between the
assumed model dynamics and the actual system producing the available observa-
tions, or (b) the system of interest is high dimensional and the posterior probability
tends to concentrate in relatively small regions of the state space. The proposed
scheme generates nudged particles, i.e., subsets of particles which are determin-
istically pushed towards specific areas of the state space where the likelihood is
expected to be high, an operation known as nudging in the geophysics literature.
This is a device that can be plugged into any particle filtering scheme, as it does
not involve modifications in the classical algorithmic steps of sampling, computation
of weights, and resampling. Since the particles are modified, but the importance
weights do not account for this modification, the use of nudging leads to additional
bias in the resulting estimators. However, we prove analytically that particle filters
equipped with the proposed device still attain asymptotic convergence (with the
same error rates as conventional particle methods) as long as the nudged particles
are generated according to simple and easy-to-implement rules. Finally, we show
numerical results that illustrate the improvement in performance and robustness
that can be attained using the proposed scheme. In particular, we show the results
of computer experiments involving misspecified Lorenz 63 model, object tracking
with misspecified models, and a large dimensional Lorenz 96 chaotic model. For
the examples we have investigated, the new particle filter outperforms conventional
algorithms empirically, while it has only negligible computational overhead.

1 Introduction

1.1 Background

Inferring the hidden states of state-space models (SSMs) has received considerable atten-
tion since SSMs are ubiquitous in many fields including object tracking, mathematical
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finance, weather dynamics, population dynamics, machine learning, and other topics
where inferring the states of dynamical systems from data plays a big role.

An SSM comprises a pair of stochastic processes (xt)t≥0 and (yt)t≥1 called signal
process and observation process respectively. The conditional relations between these
processes are defined with a transition and an observation model (also called likelihood
model) where observations are conditionally independent given the signal process, which is
itself a Markov process. Given an observation sequence y1:t, the filtering problem in SSMs
is then estimation of expectations with respect to the posterior probability distribution
of the hidden states conditioned on the sequence of observations y1:t, which is also called
as the filtering distribution.

Apart from few special cases, neither the filtering distribution nor the integrals (or
expectations) with respect to can be computed exactly, hence one needs to resort to nu-
merical approximations of these quantities. Bootstrap particle filters (BPFs) have been
a classical choice for this task since their introduction [1–5]. The BPF constructs an em-
pirical approximation of the posterior probability distribution via a set of Monte Carlo
samples which are modified or killed sequentially as more data are taken into account.
These samples are then used to estimate the relevant expectations. The BPF, in its orig-
inal form, has received significant attention due to its efficiency in a variety of problems,
its intuitive form, and its straightforward implementation. A large body of theoretical
work concerning the BPF is also conducted, for example, it has been proved that the ex-
pectations with respect to the empirical measure that the BPF constructs converge to the
expectations with respect to the true posterior distribution when the number of Monte
Carlo particles tends to infinity [6–9]. Also, it has been shown that the BPF converges
uniformly over time, i.e., the errors do not accumulate under regularity assumptions
about the state-space and the model [10]. We refer the reader to the monographs [11–13]
for an extensive compilation of theoretical results.

Despite the success of the BPF in relatively low dimensional settings, its use has
been shown to be impractical in models where (xt)t≥0 and (yt)t≥1 are sequences of high-
dimensional random variables. This problem is an instance of general class of problems
named as the curse of dimensionality. It is observed that, in high dimensional systems,
the estimates provided by the BPF significantly deviate from the ground truth, rendering
the algorithm useless in practice. The problem is referred to as the collapse of the particle
filter within the particle filtering context and it has been studied from various empirical
and theoretical viewpoints in recent years. The authors of [14] study the weights of the
BPF in a high-dimensional setting and they show that the maximum weight tends to 1
which, they argue, causes the filter to collapse effectively (also see [15, 16] for additional
research on the collapse of the BPF). In [17], it is argued that the error bounds for the
BPF depend on the dimension exponentially and, to overcome this problem, they propose
a block particle filter which requires a model property called decaying correlations.

BPFs can be seen as one of the possible implementations of a more general class of
algorithms called sequential Monte Carlo (SMC) methods [18]. In the BPF setup, one
generates samples from the transition model only, using a proposal distribution which is
the same as the assumed transition model. One can also use different proposal densities,
in which more information about the system is encoded, so effectively generating better
samples to prevent the collapse. Within this approach, numerous studies have been con-
ducted, leading to, e.g. auxiliary particle filters (APFs) [19], Rao-Blackwellized particle
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filters [20], or Gaussian sum particle filters [21].
The collapse of the particle filter has received significant attention, also, in the weather

dynamics literature, where models are high-dimensional, obviously approximate, and
do not have analytic solutions. In particular, in the data assimilation literature, high-
dimensional systems are handled via a well-known operation called nudging [22–25]. The
history of nudging can be traced back to [22] where it is introduced as pushing the
state-variables towards available observations. Since then, nudging has been extensively
explored in the data assimilation literature leading to a variety of algorithms (see [26] for
a survey).

Over the years, in the filtering and data assimilation literature, the term nudging has
been increasingly used for operations where state variables (particles in our setup) are
pushed towards observations via some observation-dependent operation. If the dimen-
sions of the observations and the hidden states are different, which is often the case, a
gain matrix is computed in order to perform the nudging operation. Specifically, in the
particle filtering context, [27], and others [28–30] developed different nudging schemes
for particle filters. In these works, nudging is performed after the sampling step of the
particle filter to push the state-variables towards the observations. In order to compen-
sate for the movement of particles, the weighting step is adjusted so that weights are still
unbiased and do not degenerate. It is shown that proposed schemes in [27–30] can track
high-dimensional systems with a low number of particles. However, generating samples
from proposal requires costly computations for each particle and computation of weights
is not trivial from a computational perspective. It is also not trivial to apply the proposed
nudging schemes when non-Gaussianity and nontrivial nonlinearities are present in the
observation model.

1.2 Contribution

In this work, we propose a modification of the particle filter, termed nudged particle filter
(NuPF) and assess its performance in high dimensional settings and with misspecified
models. Although we use the same idea for nudging that is presented in the literature,
our algorithm has subtle but crucial differences.

First, we define the nudging step not just as a relaxation step towards observations
but as a step that increases the likelihood of particles strictly. We define the nudging step
as an operation aiming at pushing the particles to the regions in the state-space where
they have higher likelihoods. This definition paves the way for using different nudging
schemes, such as using the gradients of likelihoods or employing random search schemes
to move around the state-space. In particular, classical nudging (relaxation) operations
arise as a special case of nudging using gradients when the observation model is linear
and the likelihood is assumed to be Gaussian.

Second, unlike the other nudging based particle filters, we do not correct the bias
induced by the nudging operation during the weighting step. Instead, we compute the
weights in the same way they are computed in the standard BPF. However, we carry out
the nudging step in a way that preserves the convergence rate of the BPF under mild
standard assumptions. In particular, we push only a fraction of particles and leave others
untouched, which is key to preserving the Monte Carlo convergence rate, in addition to a
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significant computational gain1. Also, computing biased weights using only the likelihood
function (i.e. regardless of the proposal) is usually much faster than computing full
weights as one needs to evaluate only one function for each weight. Since we do not have
to perform any heavy computation, the algorithm has almost negligible computational
overhead compared to the BPF.

We present computer simulation results on tracking a stochastic chaotic Lorenz 63
attractor with model misspecification, object tracking with a misspecified model involving
a heavy-tailed nonlinear observation model, and tracking a high-dimensional Lorenz 96
model. We show that the algorithm can track a high dimensional system without requiring
heavy computations and the algorithm can be robust to model misspecification in the
transition model provided that the likelihood is well-specified. This is helpful in real-world
applications because practitioners often have more control over measurement systems,
which determine the likelihood, than they have over the state dynamics.

The paper is structured as follows. After a brief note about notation, we describe the
state-space models of interest and the BPF in Section 2. Then in Section 3, we outline
our algorithm and the specific nudging schemes we propose to use within the particle
filter. We prove a convergence result in Section 4 which shows that our algorithm has the
same asymptotic convergence rate as the BPF. We discuss the results of our computer
experiments in Section 5, and then, finally, we conclude with Section 6.

1.3 Notation

We denote the real line with R and R
d is a d-dimensional product space where d is a

positive integer. We denote the set of positive integers with N+ and the set of positive
reals with R+. We represent the state space with X ⊂ R

dx and the observation space
with Y ⊂ R

dy . We denote the supremum norm of a function f : X → R by ‖f‖∞ =
supx∈X |f(x)|. We indicate the space of bounded functions on X with B(X).

In order to denote vectors, we use the shorthand notation xi1:i2 = {xi1 , . . . , xi2}. For
sets of integers, we use [n] = {1, . . . , n}. The p-norm of a vector x ∈ R

d is defined
by ‖x‖p = (xp

1 + · · · + xp
d)

1/p. The Lp norm of a random variable z is denoted with

p ≥ 1 is ‖z‖p =
(∫

|z|pP (z)dz
)1/p

. We use a shorthand notation for the likelihood, i.e.,
gt(xt) := g(yt|xt).

When needed, we use the generic measure theoretic-notation µ(dx) to denote the
probability measure µ and we abuse the notation to denote its density with respect to
Lebesgue measure with µ(x). We denote the integral with respect to this distribution as
µ(f) =

∫
f(x)µ(x)dx. We define the Dirac distribution δy(dx) located at y as f(y) =

∫
f(x)δy(dx). To denote the empirical measure that approximates µ(dx), we use µN(dx)

where N denotes the number of Monte Carlo samples used for approximation.

1In principle, we can also nudge all particles. However, although it would enjoy the same theoretical
properties as nudging only a fraction of particles, it has a much higher computational cost and it is
harder to tune empirically. So we do not consider this possibility.
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Algorithm 1 Bootstrap Particle Filter

1: Generate the initial particle system {x(i)
0 }Ni=1 and set W

(i)
0 ∝ 1.

2: for t ≥ 1 do

3: Sampling
x̄
(i)
t ∼ τt(xt|x(i)

t−1)

for all i = 1, . . . , N .
4: Weighting:

w
(i)
t = gt(x̄

(i)
t )/Z̄

(i)
t

for all i = 1, . . . , N where Z̄
(i)
t =

∑

i gt(x̄
(i)
t ).

5: Resampling:

x
(i)
t ∼

∑

i

w
(i)
t δ

x̄
(i)
t

(dx)

6: end for

2 State-space models and bootstrap particle filters

In Section 1, we briefly described our model of interest. We now return to a more detailed
description of the class of state-space models, which are our main interest in this paper.
We consider the following system,

x0 ∼ π0(x0) (1)

xt|xt−1 ∼ τt(xt|xt−1) (2)

yt|xt ∼ gt(yt|xt). (3)

where xt ∈ X and yt ∈ Y, and τt is a Markov transition kernel on X, and gt(yt|xt)
denotes the likelihood. We assume the observation sequence is arbitrary but fixed, hence
we use the notation gt(yt|xt) := gt(xt) for brevity. We are interested in inferring the
conditional distributions of (xt)t≥0 given the observation sequence y1:t, which are referred
as the filtering distributions, denoted with πt(xt) := π(xt|y1:t) for each time t. We denote
the filtering measure as πt(dxt) with a slight abuse of notation. Similarly, we denote the
predictive distribution of the state variable xt with ξ(xt|y1:t−1) and the predictive measure
with ξ(dxt). Accordingly, Monte Carlo approximations of the filtering and predictive
measures will be denoted with πN

t (dxt) and ξNt (dxt) respectively.
Bootstrap particle filters are sequential importance sampling algorithms, aiming at

obtaining a Monte Carlo based approximation of the filtering distribution for each time
t with a fixed computational budget. BPFs propagate the samples according to the
assumed dynamic model and modify them upon receiving the most recent observation in
a way that the new samples are approximating the filtering distribution of the current
time step. Algorithmically, it includes three main steps, called as sampling, weighting,
and resampling. A depiction of the algorithm can be seen from Algorithm 1. More
compactly, Algorithm 1 proceeds in a three step which can be depicted as,

πN
t−1 →

︸︷︷︸

sampling

ξNt →
︸︷︷︸

weighting

π̃N
t →

︸︷︷︸

resampling

πN
t .
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where ξNt , πN
t are the approximations of the predictive and filtering distributions respec-

tively. Given a set of samples {x(i)
t−1}Ni=1 approximating the filtering distribution πt−1

(denoted with πN
t−1 above), the BPF aims at obtaining a new set of samples {x(i)

t }Ni=1

to approximate πt (denoted with πN
t ). As depicted in the Algorithm 1, given {x(i)

t−1}Ni=1,
the BPF first obtains the particle approximation of the predictive distribution ξt via the
sampling step. Hence its Monte Carlo approximation provided by the BPF is given as,

ξNt (dxt) =
1

N

N∑

i=1

δ
x̄
(i)
t

(dxt).

Next, the BPF obtains weights by weighting each sample according to the likelihood
gt(xt). After the weighting step in Algorithm 1, we obtain the weighted distribution,
which is an approximation of the filtering distribution, as follows.

π̃N
t (dxt) =

N∑

i=1

w
(i)
t δ

x̄
(i)
t

(dxt).

Finally, the BPF employs the resampling step to obtain the another approximation of
the filtering distribution

πN
t (dxt) =

1

N

N∑

i=1

δ
x
(i)
t

(dxt).

As can be seen from the discussion, both π̃N
t and πN

t can be used to approximate ex-
pectations with respect to the filtering distribution, however, the former is argued to
be providing estimates with less variance. The resampling step commonly employed to
prevent degeneracy and it is an optional step [4].

Using the empirical distributions the BPF constructs, the expectation of a test func-
tion f ∈ B(X) with respect to the filtering distribution can be estimated using the
weighted distribution,

πt(f) =

∫

f(xt)πt(dxt) ≈
N∑

i=1

w
(i)
t f(x̄

(i)
t ) = π̃N

t (f)

where w
(i)
t are normalized weights as given in the Algorithm 1. Alternatively, one can

estimate the expectation using the resampled distribution,

πt(f) ≈ πN
t (f) =

1

N

N∑

i=1

f(x
(i)
t ).

Convergence results mentioned in the introduction are usually proven for expectations
with respect to bounded test functions f , see e.g. [6, 10, 11]

BPFs can be extended for more general, possibly observation-dependent proposals,
known more generally as SMC algorithms. Instead of drawing samples from τt(xt|xt−1),

we can draw samples from a general proposal qt(xt|x(i)
1:t−1, yt) which includes (possibly)
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past samples and observations. Then, evaluation of weights become more elaborate, i.e.,
the unnormalized weights must be computed as [4],

W
(i)
t =

gt(x̄
(i)
t )τt(x̄

(i)
t |x(i)

t )

qt(x̄
(i)
t |x(i)

1:t−1, yt)

and the rest of the algorithm can be employed in the same way. This point is related
to our algorithm as we also use the most recent observation to generate new samples.
However, unlike in a classical SMC scheme where weights should be modified accordingly
with respect to the proposal, we leave weights same as the BPF setting – an idea we will
discuss in the next section.

3 Nudged Particle Filter

As we mentioned before, the nudged particle filter differs from the BPF with an extra step,
the nudging step, employed after the sampling step. It is a mechanism to push particles
to the regions in state-space where they have higher likelihoods. Since it is employed
right after the sampling step, it can be seen as a modification of the proposal, employed
in two-steps. However, unlike other approaches which use different proposals, we do not
correct the effect of using a different proposal in the weighting step. We then carry out
the weighting step as if we use the proposal as in the BPF, i.e., as if the proposal is the
transition density itself. In effect, doing so introduces some bias without compensating
for it. However, we only employ this step to a small subset of particles, leaving others
untouched. We show that, provided that the nudging step is employed carefully, it is
possible to preserve the usual convergence rate of the BPF, but with a worse constant
than usual. This means that, asymptotically, our algorithm provides same performance
with the BPF. In practice, however, there are significant differences and the step improves
the performance significantly, as can be seen from Section 5.

From a general viewpoint, we can illustrate the nudged particle filter in four steps,

πN
t−1 →

︸︷︷︸

sampling

ξNt →
︸︷︷︸

nudging

ξ̃Nt →
︸︷︷︸

weighting

π̃N
t →

︸︷︷︸

resampling

πN
t

where we have an extra step after the sampling step. The general algorithm is given in
Algorithm 2.

Next, we define the nudging operator in a precise way. In order to capture a general
class of nudging operations, we define the nudging operator as follows.

Definition 1. The nudging operator αt : X → X associated with the likelihood function
gt(x) is a mapping such that

if x′ = αt(x) then gt(x
′) ≥ gt(x) (4)

for every x, x′ ∈ X.

Intuitively, we define nudging as an operation that increases the likelihood determin-
istically. There are many possible ways to perform it in practice, we will describe some
of them in the next section.
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Algorithm 2 Nudged Particle Filter

1: Generate the initial particle system {x(i)
0 }Ni=1 and set W

(i)
0 ∝ 1.

2: for t ≥ 1 do

3: Sampling:
x̄
(i)
t ∼ τt(xt|x(i)

t−1)

for all i = 1, . . . , N .
4: Nudging:

x̃
(i)
t = αt(x̄

(i)
t−1)

for i ∈ I where I ⊂ [N ].
5: Weighting:

w
(i)
t = gt(x̃

(i)
t )/Z̃

(i)
t

for all i = 1, . . . , N where Z̃
(i)
t =

∑

i g(x̃
(i)
t ).

6: Resample:

x
(i)
t ∼

∑

i

w
(i)
t δ

x̃
(i)
t

(dx)

7: end for

The nudging step is implemented as follows. We choose M ≤ N number of particles to
be pushed around the state-space. For theoretical reasons which we will make clear in the
next section, this number is usually chosen so that M ≤

√
N . There are two important

aspects of the step where different choices are possible. First, we have to decide how to
choose the particles to be nudged. Second, we need to decide how to nudge the particles.

3.1 How to choose the particles to be nudged

In this paper, we identify two ways of choosing the particles to be modified. The ways we
propose to choose particles are straightforward. More concretely, we propose two random
mechanisms to choose particles, one of which suitable for parallel implementations of
particle filters.

3.1.1 Batch nudging

In the first way, one can push M randomly chosen particles at once. So one can choose
M unique indices between [1, N ] at once and apply the operator αt to each of them. The
index set of nudged particle is denoted with I. Algorithmically, the step can be seen
from Algorithm 3. We refer to this scheme as batch nudging, referring to selection of the
indices at once.

Algorithm 3 Batch nudging

1: Choose I = {i1, . . . , iM} ∼ [N ] without replacement.
2: Set

x̃
(ik)
t = αt(x̄

(ik)
t )

for ik ∈ I.
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3.1.2 Independent nudging

Second way, which is suitable for parallel implementations, would be to nudge particles
independently. One can choose each particle for some probability, which will make the
nudging step trivial to implement under parallel implementations. The step can be seen
from Algorithm 4.

Algorithm 4 Independent nudging

1: for i ∈ [N ] do

x̃
(i)
t = αt(x̄

(i)
t )

with probability M/N .
2: end for

This scheme, which we call as independent nudging, is based on the idea that we would
like to nudge M particles in expectation. Therefore I would be a random index set with
random cardinality. The price to pay for enabling parallelization is that we cannot be
sure that M is below a certain number.

3.2 How to nudge

As it follows from our definition, the nudging step is aiming at increasing the likelihood of
individual particles. This means that we need operations for maximizing the likelihood for
individual particles we fixed to nudge. Here, one straightforward idea is to employ steps
where the likelihood is maximized, in the same way that one would do when estimating
the maximum likelihood solution. However, we do not want to go all the way down to
the maximum likelihood solution (this would result in degeneracy). Also, to keep the
algorithm lightweight, we focus on single steps where the likelihood is increased.

3.2.1 Gradient nudging

In principle, one can apply single step of any operator αt whose fixed points are solutions
to the problem,

max
xt∈X

gt(xt)

i.e. any operator that move particles in the direction of the maximum likelihood estimate.
If gt(xt) is a differentiable function of xt, one straightforward way to do nudging would be
to take gradient steps. The generic gradient nudging step can be seen from Algorithm 5.

Algorithm 5 Gradient nudging

1: for i ∈ I do

x̃
(i)
t = x̄

(i)
t + γ∇xt

gt(x̄
(i)
t ).

2: end for

Alternatively, one can take more gradient steps as well, but in this work, we limit it
to a single step in order to keep the step lightweight. Note that, it is also possible to
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use different operators that target the maximum of gt(x), such as single steps of similar
operators that target the maximum of the likelihood. But we leave the investigation of
those options to future work.

3.2.2 Random search nudging

Another option is to use gradient-free techniques to push particles towards regions where
they have higher likelihoods. For example, a stochastic search based technique can be
employed [31]. This nudging scheme can be seen from Algorithm 6. We call this scheme
as random search nudging.

Algorithm 6 Random search nudging
1: repeat

2: Perturb x̃
(i)
t = x̄

(i)
t + ηt where ηt ∼ N (0, C) for some covariance matrix C.

3: Keep x̃
(i)
t if gt(x̃

(i)
t ) > gt(x̄

(i)
t ), otherwise x̃

(i)
t = x̄

(i)
t .

4: until the particle is nudged.

3.2.3 Model specific nudging

Finally, one can nudge particles using the specific model information. If the model vari-
ables have a tractable relationship to each other, one can modify the position of un-
observed state variables with respect to the observed ones. For example, in an object
tracking scenario, positions and velocities have a special and simple physical relationship
but usually only position variables are observed through a linear or nonlinear transforma-
tion. In this case, nudging would only effect position variables. However, using position
variables, one can also nudge velocity variables with simple rules. We discuss this idea
in the object tracking experiment and show its utility in the Section 5.

4 Analysis

In this section, we prove a convergence result for our algorithm by using well-known tools
from the literature. In particular, we derive an Lp bound for the error made at each time
step. The proofs of Lp convergence for the BPFs are well known, see e.g. [32]. Since our
algorithm differs from the bootstrap particle filter with a single step, it suffices to bound
the nudging step in order to prove an Lp convergence result. For the proof of Theorem 1,
we only sketch the bounds for other steps, except the nudging step, for which we detail
the proof.

4.1 An Lp convergence result

Assumption 1. The likelihood function is positive and bounded, i.e.,

gt(xt) > 0 and ‖gt‖∞ = sup
xt∈X

|gt(xt)| < ∞

for t = 1, . . . , T .
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Theorem 1. Let y1:T be arbitrary but fixed and choose any 0 < t ≤ T . Let f ∈ B(X) and
fix the number of nudged particles M ∈ N+ such that M ≤

√
N . If Assumption 1 holds,

then

‖πN
t (f)− πt(f)‖p ≤

ct‖f‖∞√
N

where ct < ∞ is a constant independent of N .

Proof. We prove the result by induction. Note that, for the case of t = 0, the bound is
satisfied trivially as πN

0 (f) will be an i.i.d. approximation of the expectation π0(f), we
have [33],

∥
∥π0(f)− πN

0 (f)
∥
∥
p
≤ c0‖f‖∞√

N
.

where c0 < ∞ is a constant independent of N . Now, as an induction hypothesis, let us
assume that,

∥
∥πN

t−1(f)− πt−1(f)
∥
∥
p
≤ ct−1‖f‖∞√

N

for some constant ct−1 < ∞ independent of N . Given the particles from πN
t−1, particle

filters first employ a sampling step, that is proposing new particles to obtain the predictive
measure ξNt . Through a combinatorial argument, it is possible to show that (see e.g. [32,
Lemma 1]),

∥
∥ξNt (f)− ξt(f)

∥
∥
p
≤ c1,t‖f‖∞√

N
. (5)

where c1,t < ∞ is a constant independent of N . Next, we analyze the error introduced

in the nudging step. Let {x̄(i)
t }Ni=1 be the particles of the empirical predictive distribution

ξNt and {x̃(i)
t }Ni=1 be the particles of the nudged distribution ξ̃Nt . There are M nudged

particles. Therefore,

∥
∥
∥ξNt (f)− ξ̃Nt (f)

∥
∥
∥
p
=

∥
∥
∥
∥
∥

1

N

∑

i∈I

(

f(x̄
(i)
t )− f(x̃

(i)
t )

)
∥
∥
∥
∥
∥
p

≤ 2‖f‖∞M

N
≤ 2‖f‖∞√

N
(6)

where the first inequality holds because |f(x)− f(x′)| ≤ 2‖f‖∞ for every (x, x′) ∈ X× X

and the second inequality follows from the construction of the algorithm where we chose
M ≤

√
N . Combining (5) and (6), we arrive at,

∥
∥
∥ξt(f)− ξ̃Nt (f)

∥
∥
∥ ≤ c̃1,t‖f‖∞√

N
(7)

where c̃1,t = 2 + c1,t < ∞ is a constant independent of N . The rest of the proof is
standard. Following [32, Lemma 1], we readily obtain that,

∥
∥πt(f)− π̃N

t (f)
∥
∥
p
≤ c2,t‖f‖∞√

N
, (8)
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where

c2,t =
2‖gt‖∞c̃1,t

ξt(gt)
< ∞

is a constant independent of N but depends on c̃1,t and the upper bound of the likelihood
which we assumed to be finite. Note that our assumptions imply ξt(gt) > 0. The
analysis of the resampling step is also standard. Given π̃N

t (f), we obtain the particle
approximation of the expectation with respect to the filter measure πN

t (f) by employing
the resampling step. If we perform multinomial resampling, the same argument in the
base case yields

∥
∥π̃N

t (f)− πN
t (f)

∥
∥
p
≤ c3,t‖f‖∞√

N
(9)

where c3,t < ∞ is a constant independent of N . Now we can combine bounds (8) and (9)
and conclude,

∥
∥πN

t (f)− πt(f)
∥
∥
p
≤ ct‖f‖∞√

N

which concludes the proof. �

We can also analyze specific choices of nudging schemes. The easiest setup to consider
is gradient nudging. Within this scheme, we push the particles to the regions where they
have higher likelihood using the gradient information. In what follows, we derive the
bound specific to the batch gradient nudging.

Assumption 2. The gradient of the likelihood is bounded, in particular, ‖∇xgt(x)‖2 ≤
G < ∞ for every x ∈ X.

Theorem 2. Fix a step-size γ ∈ R+ and the number of nudged particles M ∈ N+ such
that γM ≤

√
N . If Assumption 2 holds and f is a Lipschitz test function, then the error

introduced by the batch gradient nudging step can be bounded as,

∥
∥
∥ξNt (f)− ξ̃Nt (f)

∥
∥
∥
p
≤ LG√

N

where L is the Lipschitz constant of f .

Proof. Notice that since x̃
(i)
t = x̄

(i)
t + γ∇xt

gt(x̄
(i)
t ), we arrive at,

∣
∣
∣f(x̃

(i)
t )− f(x̄

(i)
t )

∣
∣
∣ ≤ L

∥
∥
∥x̃

(i)
t − x̄

(i)
t

∥
∥
∥
2

= Lγ
∥
∥
∥∇xt

g(x
(i)
t )

∥
∥
∥
2

≤ γLG (10)

where the first line follows from the Lipschitz assumption and the equality in the second
line follows from the implementation of the nudging step as a gradient step and finally

12



the last inequality follows from the Assumption 2. Then we have,

∥
∥ξNt (f)− ξ̃Nt (f)

∥
∥
p
=

∥
∥
∥
∥
∥

1

N

∑

i∈I

(

f(x̄
(i)
t )− f(x̃

(i)
t )

)
∥
∥
∥
∥
∥
p

≤ 1

N

∑

i∈I

∥
∥
∥f(x̄

(i)
t )− f(x̃

(i)
t )

∥
∥
∥
p

≤ M

N
γLG

where the first inequality follows from Minkowski’s inequality and the second inequality
follows from (10). Here, by assumption, we have γ and M so that γM ≤

√
N . So we

have,
∥
∥
∥ξNt (f)− ξ̃Nt (f)

∥
∥
∥
p
≤ LG√

N
.

which concludes the proof. �

This theorem provides important intuition on our method. First, given Theorem 2,
by the same argument used in Theorem 1, we can obtain the convergence of the filter πN

t

by replacing the bound in the nudging step with the one we have in the latter theorem.
This would be of same rate of convergence as in Theorem 1. However, it suggests a way
to choose M and γ. In particular, one can choose M = Nβ where 0 < β < 1. This
would suggest choosing γ ≤ N

1
2
−β in order to have γM ≤

√
N . One can also choose

γ ≤ CN
1
2
−β so that one can allow for some flexibility and still guarantee γM ≤ C

√
N

for some constant C > 1. More concretely, this theorem provides us with a heuristic to
balance the step size with the number of nudged particles. We can increase the number of
nudged particles but in that case we need to shrink the step size accordingly so as to keep
γM ≤

√
N . Second, instead of the gradient of the likelihood, one can use the gradient of

the log-likelihood if the likelihood comes from the exponential family densities. Third, by
using standard tools, one can prove a uniform convergence result in the same vein of [11]
without extra trouble in addition to what is available in the literature.

5 Numerical simulations

In this section, we conduct three experiments. In the first experiment, we use a mis-
specified chaotic Lorenz 63 model. In the second experiment, we consider an object
tracking scenario where the model is again misspecified, the observation model is nonlin-
ear and the observation noise is heavy-tailed. Finally, we describe an experiment where
we demonstrate the results on a high-dimensional Lorenz 96 model in order to show that
our algorithm is capable of estimating high-dimensional systems2.

For all experiments, we have chosen M =
√
N . This ensures the validity of the

theoretical results we have presented in Section 4. For the object tracking experiment,
we have used a large-step size, but note that this does not change the convergence rate
as well, see the discussion following the Theorem 2.

2For the experiments involving Lorenz 96 model, simulation from the model is implemented in C++
and integrated to Matlab. The rest of the algorithms are implemented in Matlab.
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Figure 1: (a) Normalised mean squared error (NMSE) results of Lorenz 63
system. The results obtained with 1000 Monte Carlo runs for each N ∈
{10, 100, 500, 1K, 5K, 10K, 20K, 50K, 100K}. Dashes mark up to 1 standard deviation
(σ). For the misspecified parameter bǫ = b + ǫ, we set b = 8/3 and ǫ = 0.75. (b) A
sample path from estimation of an unobserved dimension (second dimension) in a run
where N = 500.

5.1 Misspecified stochastic Lorenz 63 model

In this experiment, we demonstrate the algorithm on a misspecified stochastic Lorenz 63
model. In continuous time, the model equations can be written as a stochastic differential
equation in three dimensions,

dx1 = −s(x1 − x2) + dw1,

dx2 = rx1 − x2 − x1x3 + dw2,

dx3 = x1x2 − bx3 + dw3,

where {wi(s)}s∈(0,∞) for i = 1, 2, 3 are unidimensional Wiener processes and (s, r, b) ∈ R

are model parameters. We discretise the model using the Euler-Maruyama scheme with
integration step Te > 0 and obtain the following discrete-time system,

x1,t = x1,t−1 − Tes(x1,t−1 − x2,t−1) +
√

Teu1,t

x2,t = x2,t−1 + Te(rx1,t−1 − x2,t−1 − x1,t−1x3,t−1) +
√

Teu2,t

x3,t = x3,t−1 + Te(x1,t−1x2,t−1 − bx3,t−1) +
√

Teu3,t

where (ui,t)t∈N, i = 1, 2, 3 are i.i.d. Gaussian random variables with zero mean and unit
variance. We assume that the system is partially observed both through time and space.
We assume that we can partially observe only one dimension from the system which is
the first one. So essentially we have an observation model,

yn = kox1,tsn + vn

where (vn)n∈N is a sequence of i.i.d. Gaussian random variables with zero mean and unit
variance and ko assumed known.
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We set parameters (s, r, b) in a certain way which makes the system chaotic. In
particular, while generating the true data, we set

(s, r, b) =

(

10, 28,
8

3

)

.

Moreover, we choose a specific initial condition which is known to be generating chaotic
behaviour x0 = [−5.91652,−5.52332, 24.5723]⊤ [32]. We assume that the system is ob-
served every ts time steps which is set to ts = 40. We have simulated the system for
T = 20000. Since ts = 40, we have T/ts number observations from the system where in
this example it is 500.

We misspecify the model while running the filtering algorithms. We can choose to
misspecify any parameter and in this work we choose to misspecify b. In particular,
we run the filters with bǫ = b + ǫ where we set ǫ = 0.75 which amounts to a serious
misspecification considering that the system is chaotic and any small perturbation would
effect estimation performance significantly.

We have implemented the NuPF with independent gradient nudging with γ = 0.75.
Normalised mean square errors (NMSE) and a sample path from estimated trajectories
can be seen in Fig. 1. The experiment shows that the NuPF is able to track a misspec-
ified model whereas the BPF catches the performance of the NuPF with low number of
particles only with a large number of particles.

5.2 Object tracking with a misspecified model

In this experiment, we consider an object tracking scenario where objects are observed
through nonlinear measurement models (sensors) with heavy-tailed noise. The object of
interest is following a model,

xt = Axt−1 +BL(xt−1 − xtarget) + vt

where xt ∈ R
4 denotes the state of the object, consisted of two coordinates and two veloc-

ity states. The variable xtarget is the deterministic, pre-chosen target state. The sequence
(vt)t∈N here is a sequence of zero-mean Gaussian random variables with covariance matrix
Q. The parameters A,B,Q are set as,

A =

[
I2 κI2
0 0.99I2

]

B =
[
0 I2

]⊤
Q =

[
κ3

3
I2

κ2

2
I2

κ2

2
I2 κI2

]

where I2 is 2× 2 identity matrix and κ = 0.04. The object is simulated so that it follows
a policy and the policy matrix L ∈ R

2×4 is found by solving the Riccati equation, see [34]
for details. In particular, the object tries to reach a certain state which results in a highly
maneuvering trajectory. The nudged particle filter, on the other hand, is not informed
about the true model and the policy it follows, it only assumes the following model,

xt = Axt−1 + vt

as the simplest model to assume. Observations are assumed to be nonlinear and coming
from 10 sensors placed around the object3. For each sensor, the observations are modelled

3With a well-specified model, fewer sensors would suffice. But we found that with misspecification,
more observations are needed.
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Figure 2: Visualisation of a sample run of the experiment for different algorithms using
500 particles. Black dots denote the real trajectory of the object, red dots are sensors
where observations were collected, and blue points are estimates provided by the different
algorithms. As can be seen from the left, NuPF manages to closely track the target, while
other algorithms collapse. EKF is the second best performing algorithm thanks to the
gradient information, however, Gaussianity assumptions cause the collapse. We have run
this experiment for 10000 Monte Carlo runs. Average errors are tabulated in Table 1.

Algorithm BPF APF EKF NuPF
NMSE 0.5418 0.5418 0.2087 0.0402

Table 1: Average NMSE values for the algorithms on object tracking problem with 10000
Monte Carlo runs.

in the following way,

yt,i = 10 log10

(
P0

‖rt − si‖2
+ η

)

+ wt,i

where rt = [x1,t, x2,t]
⊤ and si is the position of the ith sensor and wt,i ∼ MT (µ,Σ, ν)

assumed to be a Multivariate-t distributed random variable for each i = {1, . . . , 10},
see [35] for a definition of the Multivariate-t distribution. We choose µ = 0 and Σ = I,
meaning that sensor observations are zero-mean and are not correlated. Intuitively, the
closer the parameter ν to 1, the more explosive observations become. In particular, we
set ν = 1.01 to make the observations explosive and heavy-tailed to make the problem
more challenging. For the sensor parameters, we set η = 10−9 and P0 = 1.

We have implemented the nudged particle filter with batch gradient nudging with a
large-step size γ = 5.5, with an additional model specific nudging step. In other words,
in addition to the batch gradient step, we also used model specific information to further
nudge unobserved state variables. In particular, after nudging the observed variables
x
(i)
1:2,t, we nudged the rest of the state variables as,

x
(i)
3:4,t =

1

κ
(x

(i)
1:2,t − x

(i)
1:2,t−1).

The motivation behind this nudging comes from the physical relationship between posi-
tions and velocities. We note, however, without this special nudging, the algorithm also
outperforms other algorithms we mention in the next paragraph.
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Figure 3: Comparison of NuPF and BPF for the Lorenz 96 model where model dimension
d = 40 for 1024 Monte Carlo runs. On the left, NMSEs are plotted with respect to
changing number of particles for N ∈ {10, 100, 1K, 10K}. Dashes mark up to 1 standard
deviation (σ). It can be seen that NuPF provides much better performance for the same
number of particles. On the right, we compared runtimes of BPF and NuPF for the same
experiment. NuPF is only marginally slower than BPF so that it basically improves the
performance with virtually no extra computational cost.

We have run 10000 Monte Carlo runs while setting the number of particles N = 500 for
the auxiliary particle filter (APF), the BPF, and the NuPF. For comparison, we have
also implemented the extended Kalman filter (EKF) which also uses the gradient of the
observation model. An illustrative run of a single experiment can be seen from Fig. 2 and
average NMSEs can be seen from Table 1. In particular, from Fig. 2, we can draw some
insights. Although, the EKF also uses the gradient information of the observation model,
there is no way to consider the nature of the noise distribution as the EKF approximates
it as a Gaussian. BPF and APF collapse, simply, due to model mismatch in the transition
model and we have not been able to see any significant difference between them, despite
APF also uses the most recent observation to propose new samples.

5.3 High-dimensional stochastic Lorenz 96 model

In this experiment, we compare the nudged particle filter with the ensemble Kalman filter
(EnKF) to show that the NuPF scales to high dimensions with a computational budget
which is linear in dimension.

We consider Lorenz 96 model which is defined as follows,

dxi = (xi+1 − xi−2)xi−1 − xi + F + dwi

where (wi(s))s∈(0,∞) are Wiener processes for i = 1, . . . , d where d is the dimension of the
system. We set F = 8 which is known to be generating a chaotic regime. The model
is assumed to have a circular structure, so that x−1 = xd−1, x0 = xd, and xd+1 = x1.
In order to simulate data from this model, we apply the Euler-Maruyama discretization
scheme and obtain a discrete-time model,

xi,t = xi,t−1 + Te((xi+1,t−1 − xi−2,t−1)xi−1,t−1 − xi,t−1 + F ) +
√

Teui,t
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Figure 4: Comparison of NuPF with EnKF for the Lorenz 96 model with varying di-
mensions. More specifically, we changed the dimension d = [10, 40, 100, 1000, 2000, 5000]
while N = 500 kept fixed, we have run the experiment for 1000 Monte Carlo runs. On the
left, the performance of the algorithms with increasing dimensions can be seen. EnKF
with 500 ensemble members is superior to NuPF in terms of error up to 1000 dimensions.
However, then it collapses while NuPF attains the same performance with increasing
dimensions. On the right, the running times for the same experiments can be seen. The
computational cost of EnKF increases drastically with dimension while NuPF has a linear
increase, basically because the system dimension is bigger so the dimensions of particles
are bigger.

where ui,t are zero-mean, unit-variance Gaussian random variables. We assume that this
model is also observed partially through both time and space. In particular, we assume
that we observe half of the state variables, with a certain period,

yk,n = x(2k−1),tsn + vn

where ts = 10 and (vn)n∈N are zero-mean Gaussian random variables with variance r = 1
(observation noise variance).

We consider two experiments for Lorenz 96 model. For both experiments, we have run
the NuPF with batch gradient nudging with a step size γ = 0.075. In the first experiment,
we fix the dimension d = 40 and run the BPF and the NuPF with increasing number
of particles. This experiment is mainly intended to show how computational load of the
NuPF and the BPF compares to each other. The results can be seen from Fig. 3. We
show that the NuPF has a superior performance to the BPF in terms of NMSEs while
the running times of both algorithms are almost the same. In fact, the difference between
running times is negligible.

For the second experiment, we compare the NuPF with the EnKF, which is the
standard choice for data assimilation problems. The results can be seen from Fig. 4. In
particular, we show that, as we increase the dimensions with fixed number of particles and
ensemble members (N = 500), EnKF collapses as its performance depends on the number
of ensemble members and as with increasing dimension, it needs more computational
power whereas NuPF has a consistent performance among varying dimensions. We found
that NuPF is also able to track higher dimensional systems with low number of particles,
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similar to what has been reported in [29] and [30].

6 Conclusions

We proposed a modification of the particle filter which is capable of operating under
model misspecification and estimating high-dimensional systems without needing heavy
computations. We showed that the algorithm enjoys the same convergence rate with the
BPF, it has almost negligible computational overhead compared to the BPF, and it enjoys
much better empirical performance than the BPF. Our algorithmic step is general and
generic and it can be used with any differentiable or non-differentiable likelihood. Since
this scheme does not require any modification of the well-defined steps of the particle
filter, it can be plugged into a variety of particle filters. We think that elaboration of the
nudging step can provide a number of possibilities also for SMC algorithms. Just as the
resampling step, which is employed solely for numerical reasons, the nudging step can
become a standard step for improving the performance of the particle filters. We hope
to pursue different directions implied by our algorithm in near future.
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