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Abstract. A method to extract turbulent statistics from three-dimensional (3D)

PIV measurements via ensemble averaging is presented. The proposed technique is

a 3D extension of the ensemble particle tracking velocimetry methods, which consist

in summing distributions of velocity vectors calculated on low image density samples

and then extract the statistical moments from the velocity vectors within sub-volumes,

with the size of the sub-volume depending on the desired number of particles and on

the available number of snapshots.

The extension to 3D measurements poses the additional difficulty of sparse velocity

vectors distributions, thus requiring a large number of snapshots to achieve high

resolution measurements with a sufficient degree of accuracy. At the current state,

this hinders the achievement of single-voxel measurements, unless millions of samples

are available. Consequently, one has to give up spatial resolution and live with still

relatively large (if compared to the voxel) sub-volumes. This leads to the further

problem of the possible occurrence of a residual mean velocity gradient within the sub-

volumes, which significantly contaminates the computation of second order moments.

In this work, we propose a method to reduce the residual gradient effect, allowing

to reach high resolution even with relatively large interrogation spots, therefore still

retrieving a large number of particles on which it is possible to calculate turbulent

statistics. The method consists in applying a polynomial fit to the velocity distributions

within each sub-volume trying to mimic the residual mean velocity gradient.
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This is a post-print version of the paper Agüera, N., Cafiero, G., Astarita, T., Discetti, S. (2016).

Ensemble 3D PTV for high resolution turbulent statistics. Measurement Science and Technology,

27(12), 124011, doi: https://doi.org/10.1088/0957-0233/27/12/124011



2

1. Introduction

In the last decades, the inexorable advancement of computer technologies impulsed

the development and the extensive application of computational fluid dynamics.

Notwithstanding with the great progresses reached in recent years, direct numerical

simulation of the Navier-Stokes equations is still limited to relatively low Reynolds

number flows (if compared to those of interest for the industry). Consequently, the lead

for industrial applications has been maintained by RANS (Reynolds Averaged Navier-

Stokes equations) simulations, which need high resolution / high accuracy experimental

benchmarks to validate turbulence closure models. For this reason, experimental

aerodynamics has been pushed towards its limit with the aim, among others, to provide

high resolution 3D statistics on turbulent flows.

Following this line of thought, Tomographic Particle Image Velocimetry (Tomo-

PIV, Elsinga et al, 2006) has demonstrated a huge potential since its early stages and it

could be considered the most versatile and powerful experimental technique to extract

three-dimensional (3D) three-components (3C) velocity field information. Tomo-PIV

is based on reconstructing the particles’ intensity distribution within an illuminated

volume from multiple camera views captured simultaneously. Using the light intensity

information along each line of sight as an additional aid to the simple triangulation

of Particle Tracking velocimetry (PTV), Tomo-PIV can work with significantly higher

image density than PTV (typically 0.05 − 0.10 ppp, i.e. particles per pixel, instead

of the maximum 0.005 ppp affordable by a 4 cameras system in 3D PTV, Maas et al,

1993). Nonetheless, the main weakness of Tomo PIV is its limited spatial resolution.

Indeed, the seeding density (and, consequently, the achievable resolution) is limited

by the occurrence of ghost particles (Maas et al, 1993) due to the under-determined

nature of the tomographic reconstruction problem. Ghost particles are spurious intensity

peaks in the reconstructed volume, formed at the intersection of the lines of sight of

the different cameras of the system carrying non-zero intensity which pertains to true

particles located elsewhere. Ghost particles move according to the average displacement

of the set of particles generating them, thus smearing out velocity gradients and reducing

the effective spatial resolution (Elsinga et al, 2011).

An estimate of the fraction of ghost particles is given by Discetti and Astarita

(2014):

Nghost

Ntrue

≈ NpppdτLz(1− e−Ns)Ncam−2 (1)

where Nppp is the particle image density expressed in particles per pixel, dτ is the particle

image diameter in pixels, Lz is the volume depth, Ns = Npppπd
2
τ/4 is the source density

and Ncam is the number of cameras. For instance, for the typical case of a volume

of 50 × 50 × 10 mm3 discretized with 20 voxels/mm, for an image density of 0.05 ppp,

particle image diameter of 2.5 pixels (thus leading to Ns = 0.24) and four cameras, the

ghost fraction is approximately 120%. Doubling the imaging density leads rapidly to

a ghost fraction of more than 700%. Typically, a compromise between the number of
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seeding particles and the ghost/true ratio has to be achieved. Obviously, maximizing

the particle image density Nppp is fundamental to improve the spatial resolution and we

can easily relate this magnitude to the size of the interrogation window DI , supposing

NI particles are sufficient to achieve an acceptable signal to noise ratio:

DI = 3

√
NILz
Nppp

(2)

In this fashion, for the case of 0.05 ppp using the same setup as in the previous

example and supposing NI = 7, we are left with an interrogation window size

DI ≈ 30 voxels (see Discetti (2013) for a more detailed discussion on the effects

of the experimental parameters on the window size). The affordable image density

can be increased with advanced methods exploiting time coherence in time-resolved

experiments (see, for instance, the Sequential Motion Tracking Enhancement by Lynch

and Scarano (2015), based on time-marching prediction of the particles’ distributions

updated with the common algebraic methods for tomographic reconstruction), or in two-

frames Tomo-PIV scenario, with techniques based on features-oriented improvement

of the reconstructed volume, such as, for example, the Spatial Filtering Improved

Tomographic PIV by Discetti et al (2013), which is based on filtering the reconstructed

distributions to reduce discretization artifacts and particles elongation. Nevertheless,

even by doubling Nppp, according to Eq. 2 the spatial resolution is improved only by a

factor of 2−1/3, i.e. about 20%.

The spatial resolution of turbulent statistics can be improved following an

alternative approach rather than increasing the resolution of the instantaneous

measurements. Some solutions can be borrowed from the developments in 2D PIV.

Single-pixel ensemble correlation (Westerweel et al, 2004), which relies on summing

correlation maps to shrink the size of the interrogation window down to a single pixel, is

a potential candidate. Its capabilities have been recently extended to the computation

of Reynolds stresses (Scharnowski et al, 2012) by extracting the pdf of the velocity

fluctuations from the ensemble correlation maps. In the more general scenario of

volumetric data provided by either tomographic PIV or holographic PIV, as well as for

standard planar PIV, Soria and Willert (2012) presented a method to extract the joint

probability density function of turbulent flows from the correlation maps. Moreover,

the rate of convergence of ensemble correlation has been recently improved by the use

of symmetric double correlation (Avallone et al, 2015), thus reducing by a factor of√
2 the number of samples needed to achieve a prescribed accuracy and widening the

portfolio of applications in planar PIV. However, on one side the spatial resolution of

single-pixel ensemble correlation is limited by the particle image diameter (Kähler et al,

2012), which indeed averages out the displacement field on the size of the imaged spot.

On the other side, its implementation in 3D tomographic PIV is complex due to the

large computational cost and memory requirements.

In this work, we extend to 3D the ensemble particle tracking procedure outlined

in Kähler et al (2012) and propose significant improvements which would make the
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application of the technique feasible for the extraction of turbulent statistics down to

the single voxel or possibly beyond that. For PTV, the spatial resolution is no longer

limited by the particle image diameter but by the error in the determination of the

position of the particle images corresponding to a particle image pair. The idea is to

improve the spectral response of the window on which the vectors are spatially averaged

in order to reduce significantly the number of samples required to achieve the desired

spatial resolution and accuracy. In Sec.2 the ensemble PTV process and the algorithm

for resolution improvement are described. The algorithms are validated with 2D and

3D synthetic test cases in Sec.3, and tested in an experimental scenario in Sec.4.

2. Ensemble Particle Tracking Velocimetry

The Ensemble PTV (EPTV) process is sketched in Figure 1 and conceptually detailed

below.

Step 1 - Image acquisition The images are captured simultaneously from different

angles, as in the traditional 3D PTV/Tomo-PIV fashion.

Step 2 - Particles identification The particles’ position are identified on the

images, and then triangulated in space. Sub-pixel precision is achieved by using

a combination of 1D Gaussian fits on the particles intensity. The triangulation

procedure used in this work is the one outlined in Discetti and Astarita (2014). In

order to reduce the number of ghost matchings, a relatively small particle image

density should be used, according to Eq. 1. This aspect is discussed in more detail

later in this section.

Step 3 - Particle matching Particle pairs should be identified between subsequent

exposures. Since the particles’ spacing is larger than in planar PIV, the choice of

the matching algorithm is less critical. In most cases, a rough velocity predictor

obtained by low resolution Tomo-PIV is enough to enable a nearest neighbour

search with very high reliability.

Step 4 - Ensemble creation Particle matches coming from the different image pairs

are all included into a single ensemble to increase the spatial density of the velocity

vectors.

Step 5 - Averaging An interrogation spot size is selected according to the number

of samples and the number of particles desired in each spot. In this work, spherical

interrogation volumes have been used, whose radius was chosen depending on the

ensemble density of velocity vectors. The local statistical moments of the velocity

can be extracted from the statistical dispersion of the velocity vectors.

2.1. Choice of the number of samples

The number of samples required to achieve, with the desired spatial resolution, a certain

uncertainty on the statistics due to the random fluctuations can be easily obtained by
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Figure 1: Sketch of the ensemble PTV process.

using the well-known relations for the standard error of the mean and of the variance.

For example, the standard error of the mean is given by:

σU =

√
u′2 + σ2√
Np

(3)

where u′ is the standard deviation of the velocity fluctuations and σ is the random

error due to the incorrect particles positioning. For example, assuming that u′2 >> σ2

and that 1% accuracy is required on the mean velocity for the case of 10% turbulence

intensity, then Np = 100 statistically independent particles are required.

The standard error of the variance can be roughly estimated, under the assumption that

u′2 >> σ2 and of Gaussian statistical moments of the turbulent fluctuations, as follows:

σu′2 =

√
2u′2√
Np

(4)

thus leading, for the same example detailed above, to around 800 particles to get 5%

accuracy on the turbulent fluctuations.

Then, given a set of Nsnap snapshots, it turns out that, for a spherical averaging

region of diameter DI :

4

3
π
(
DI

2

)3 Nppp

Lz
Nsnap = Npart (5)

In the end, the best achievable DI is set by practical limitations. For instance, from

Eq. 5 it comes that, for DI = 1 voxel, Nppp = 0.01 ppp, Lz = 200 voxels and

Npart = 800 particles, more than 30 million statistically independent samples would be

required, which would results in 565 hours of experiment if capturing at 15Hz. Luckily,

just by increasing DI to 8 voxels, this requirement leads to 60000 samples, which is

certainly more affordable.
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2.2. Choice of the particle image density

Unless advanced methods are used (see, for instance, the Iterative Particle

Reconstruction, Wieneke, 2013) it is desirable to have a relatively small particle image

density so that the number of ghost particles is limited and the reconstruction can

be performed with a straightforward triangulation. While this might be perceived as

moving in the opposite direction to that of reducing the number of samples, as it can

be seen in Eq. 1, the ghost fraction increases more than linearly with the particle image

density while the interrogation spot size is only linearly dependent on Nppp, as can be

extracted from Eq. 5. Indeed, according to Eq. 5, a reduction of a factor of 5 in the

particle image density can be easily compensated by increasing the size of DI by a factor

of ∼ 1.7, and/or by increasing the number of samples.

There are two additional fundamental reasons to set a low value of the image

density:

• The computational cost is consistently reduced if the particles’ identification can

be performed by straightforward triangulation. This aspect compensates the larger

number of samples required to reach the same results as indicated by Eq. 5 when

reducing Nppp. Additionally, only particles peaks are of interest, so the image can

be stored in sparse format, thus reducing memory storage.

• The principal source of random error in the particles’ location is due to the

occurrence of overlapping particles. Nobach and Honkanen (2005) documented

that 1D Gaussian interpolation along each physical direction locates the particles

with an uncertainty ranging between 0.02− 0.05 pixels, provided that the particle

image diameter is larger than 2.5 pixels, which is the typical situation of 3D PIV

experiments, in which a relatively large f# is required to achieve proper focusing

throughout the depth of the imaged volume. Besides, this uncertainty can be

further reduced with 2D regression in the case of elliptical non-axially orientated

particles. This is true for isolated particles, while for partially overlapping particles

the uncertainty can be as large as 0.5 pixels. Furthermore, this error is transmitted

to the estimation of the variance of the velocity vectors, thus contaminating second

order moments. According to Adrian (1991), the probability of overlapping particles

can be obtained via a Poisson distribution:

Pr(0 particles) = e−Ns (6)

Pr(1 particle) = Nse
−Ns (7)

For instance, for a particle image density of 0.01 ppp, corresponding to a source

density of 0.05 for a particle image diameter of 2.5 pixels, the probability of having

zero particles overlapping is more than 95%. If the particle image density increases to

0.10 ppp, thus resulting in Ns = 0.49, this probability reduces to 61%. Additionally, as

argued previously, according to Eq. 1, the ghost particles fraction would be of the order

of around 750% for a 4 cameras system.
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Figure 2: Illustration of sources of error due to residual velocity gradient within an

interrogation spot. ( ) Particles velocities; ( ) Exact mean field; ( ) Filtered mean

field.

2.3. Reducing the error due to unresolved velocity gradient

Apart from the frustration of being limited in spatial resolution, a large final

interrogation spot has a detrimental effect on the evaluation of the velocity statistical

moments. The effect of the impulsive response of the interrogation algorithm on the

statistics is a widely explored topic in the field of PIV. Saikrishnan et al (2006) compared

Dual-Plane PIV data with DNS simulations in the logarithmic region of a turbulent

boundary layer, and demonstrated that PIV is a suitable tool for statistics extraction

provided that the small scales are sufficiently resolved (in their experiments a final

interrogation spot of 24.6x24.6 wall units was sufficient). Lavoie et al (2007) investigated

the modulation effects of PIV due to spatial averaging in decaying homogeneous isotropic

turbulence, and proposed a correction based on previous knowledge of the velocity

spectra. Atkinson et al (2014) studied the 3D spatial filtering and noise effects in terms

of resolution on the Reynolds stresses and velocity power spectra. They demonstrated

that the limited spatial resolution can easily lead to strong underestimation of the

Reynolds stresses (up to 50% in their application to wall turbulence), but measurement

noise can offset this effect, thus leading to ambiguity in determining the uncertainty

on the measurement of turbulent statistics. Notwithstanding the large interest on the

modulation effects in standard PIV, the extension of these considerations to ensemble

PTV is still an unexplored field. In the following a discussion on the consequences of a

poorly resolved mean velocity field on the estimation of Reynolds stresses is reported,

as well as two possible solutions to reduce its effects.

In Figure 2, the source of error coming from assuming constant velocity within the

interrogation spot is made evident by supposing the problem to be 1D for illustration

purposes. Consider the particle local velocities spread around the mean velocity profile

within one interrogation spot and the mean being variable due to an unresolved velocity

gradient. In the standard ensemble PTV approach, all velocity vectors would have the

same weight, thus resulting in a top-hat filtered mean velocity field (Figure 2, left). More

importantly, second order moments would be computed around a mean value supposed
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to be uniform in space within the interrogation spot, which would result in a spurious

contribution to the turbulent kinetic energy.

In this work, we propose two approaches to tackle this problem. The first approach

consists in weighting the velocity contributions to the statistical moments according

to their distance with respect to the center of the interrogation spot. For example,

by applying a Gaussian weighting function, the error in the central part is reduced

according to the improved spectral response of the algorithm. Second order moments

are still affected by large errors, but due to the improved mean velocity measurement in

the central part of the window, the regions with larger deviations are those with lower

weight, thus reducing their spurious contribution. Obviously, the price to pay is a larger

number of particles to reach convergence; however, this is not exactly equivalent to use a

smaller window with a top-hat approach, since peripheral particles are still participating

in building up the signal, even though with smaller weights.

The second approach is that of enjoying the large amount of particles within the

window to fit the distributions with a polynomial function. In this work, we used a

second order polynomial function in x, y and z so that, for each particle n in the

averaging region, each of its associated velocity components is expressed as a second

order polynomial which is a function of the distance (∆xn,∆yn,∆zn) to the grid point

considered. For instance, the velocity component u for particle n can be modelled

as in Eq. 8. When doing this for the Np particles contained in the interrogation

volume, a system of equations is obtained, where the unknowns are the coefficients

of the polynomial fit, a0, a1, . . . a9.

(8)un = a0 + a1∆xn + a2∆yn + a3∆zn + a4∆x
2
n + a5∆xn∆yn

+ a6∆y
2
n + a7∆xn∆zn + a8∆yn∆zn + a9∆z

2
n

Expressing the system of equations in matrix form, we can solve for the the vector

of coefficients, a, arriving at Eq. 9, where u is the vector of particles’ velocities and M

is the matrix that completes the system.

a = (M
T
M)−1M

T
u (9)

Then, the value of the polynomial fit at the center of the window determines the

corresponding component of the mean velocity vector associated to that interrogation

spot. The advantage of this approach is that second order moments are computed with

respect to a locally adapted mean, thus improving precision. Additionally, all particles

are used with the same weight, thus removing the detrimental effect of the weighting

windows of reducing the effective density. From now on, this method will be referred

to as polynomial fit. It is important to remark that the polynomial approach is still a

spatial averaging over the interrogation domain, even though ”weighted” in a non-linear

way. This has two important consequences. The first one is that non-uniformity of

the fluctuations intensity distributions within the window cannot be accounted for, as

a single value of the Reynolds stresses per window is delivered. The second is that the

method essentially delivers a sort of weighted spatial average of the statistical moment.



9

u [px]

X [px]
20 40 60 80 100 120

Y
[p
x
]

20

40

60

80

100

120

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Figure 3: Mean sinusoidal field ū used in the 2D test case for algorithm validation.

3. Validation

3.1. 2D test case

The performances of the proposed methods are tested on 2D images with imposed

sinusoidal displacement. The 2D algorithm is different from the one sketched in Figure

1 only for the step 2, in which particles are simply identified with Gaussian interpolation

on the images. A set of 200 image pairs is generated, with particle image density of

0.01 ppp, thus resulting in approximately 10 particles in a 32 × 32 pixels interrogation

spot for PIV, and size of 128×128 pixels. The particle image diameter is set to 3 pixels.

The simulated displacement field is depicted in Figure 3 and can be described as:

uexact = 0.25sin
(

2π
y

λ

)
(10)

with λ being the wavelength of the displacement and y being the vertical coordinate in

the images.

The sinusoidal test allows to quantify the Modulation Transfer Function (MTF)

of the algorithm, thus giving a straightforward evaluation of the spatial resolution.

The MTF is calculated from a least-squares fitting of the measured displacement to a

sinusoidal function. It can be demonstrated that this leads to:

MTF =

∑n
i=1 uiuexact∑n
i=1 uexact

2
(11)

being n the number of grid points and ui the measured mean displacement.

In Figure 4, the performances of standard PIV –performed with a classical top-hat

correlation algorithm with interrogation spot of 32 × 32 pixels– and of the ensemble

PTV with Top-hat and Gaussian filters and polynomial fit are presented. The ensemble

PTV methods are applied on circular interrogation spots of 16 pixels of diameter, thus

resulting on average in 400 particles for each interrogation spot. The results are reported

in terms of the normalized frequency W/λ, where W is the interrogation window size for
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Figure 4: Modulation Transfer Function as a function of the normalized frequency.

( ) Sinc function; ( ) Top-hat filter; ( ) Gaussian filter σ = 1/4; ( ) Polynomial

fit; ( ) PIV. The line corresponding to MTF = 0.9 ( ) is also depicted for reference.

the PIV process, namely W = 32 pixels in this case. The argument behind this choice is

to set a comparison between what can be achieved with a standard PIV experiment (with

the limit of the minimum number of 7-10 particles within the interrogation windows) and

using the ensemble PTV process given the generated dataset. It is clear, nonetheless,

that the ensemble PTV resolution can be pushed ad libitum increasing the number of

samples. The comparison with PIV has to be interpreted only as indicative in this case.

The impulsive response of the PIV process, as expected, follows with good

approximation sinc(W/λ). As for the ensemble PTV with top-hat filter, the MTF

is not exactly following a sinc since the displacement is 1D while the interrogation spots

are circular. The adopted Gaussian filter has a standard deviation equal to 1/4 of the

interrogation spots, and it allows to achieve a noticeable improvement of the MTF.

However, the polynomial fit achieves strikingly high MTF, even higher than 0.8 at

λ = DI = 16 pixels. If a cut-off wavelength is estimated by considering the wavelength

in which MTF falls below 0.9 (depicted in grey in Figure 4 for illustration purposes),

the cut-off is set at λcut−off = 3.8W for standard PIV, λcut−off = 1.8W for ensemble

PTV with top-hat average, λcut−off = 0.8W for ensemble PTV with Gaussian averaging

and λcut−off = 0.6W for the case of the polynomial fit.

Thus, we can conclude that the polynomial fit is approximately equivalent to

working with a 3 times smaller interrogation window than the top-hat moving average,

but still maintaining the same number of particles. In other words, it reduces potentially

by 3N times (with N = 2 for 2D measurements and N = 3 for 3D measurements) the

number of samples required to reach the same accuracy and resolution on the mean

displacement.

An additional test case has been performed in which random noise has been

superimposed on a mean sinusoidal displacement described by Eq. 10 with λ = 32

pixels. The random noise has a maximum intensity of 0.25 pixels2, and it is sinusoidally
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distributed along the y direction similarly to the mean sinusoidal field but with a different

wavelength, namely λu′ = 128 pixels. Note that, in absence of an unresolved mean

displacement, the three presented methods for ensemble PTV are equivalent.

The results reported in Figure 5 show that the mean streamwise square turbulence

fluctuations profile (averaged over 128 x-lines) is contaminated by the unresolved mean

sinusoidal displacement. This effect is much less pronounced on the ensemble PTV with

Gaussian filter, even though the detrimental effect of reducing the number of particles

affects the convergence of the results. The profile obtained with ensemble PTV when

using the polynomial fit follows with quite good fidelity the exact profile, observing some

discrepancy at low turbulence intensity due to the smoothing effect of the window size

and the residual error in the particles identification step. The contour maps for this

same magnitude, u′2, are presented in Figure 6, where the modulation errors of the top

hat filter and the convergence issues of the gaussian filter can be easily observed.

3.2. 3D test case

The algorithms are validated with a 3D synthetic test using four cameras imaging a

10× 10× 10 mm3 with a resolution of 20 pixels/mm. The cameras form a square, with

each camera forming an angle of approximately 35 degrees both in pitch and yaw. The

volume is seeded with 400 particles, thus resulting in a particle image density of 0.01 ppp

and in a volumetric concentration of 5 · 10−5 ppv (particles per voxel), assuming that a

resolution ratio of 1 between voxels and pixels is used for reference. The particle image

diameter is about 3 pixels. A set of 2000 volume pairs, each reconstructed from the four

2D views, is generated to perform ensemble averaging. A jet-like displacement flow field

with a pseudo-shear layer with random turbulence was simulated. The jet is directed

along the x direction of the volume, and it has an axisymmetric cosinusoidal profile, as
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Figure 6: Contour maps of the squared velocity fluctuations: comparison between

the exact solution and the results obtained with the top-hat, gaussian filters and the

polynomial fit.

described in Eq. 12:

u = 1.5
[
1 + cos

(
2π
r

λ

)]
(12)

with r being the radial distance from the x axis. The maximum displacement is set to 3

voxels, while the wavelength λ increases linearly with the x coordinate, ranging between

60 and 90 voxels. A pseudo-turbulence is generated by adding random noise on the local

velocity in a shear layer centered at r = 0.5λ and with thickness of 0.4λ (thus ranging

between 24 and 36 voxels). A degree of correlation is added between axial and radial

fluctuations, while tangential fluctuations are statistically uncorrelated either with the

axial or the with radial ones. Spherical interrogations spots with diameter of 16 voxels

are used for ensemble PTV, thus resulting in about 200 particles for each interrogation

spot according to Eq. 5. Besides, an additional set of 500 volume pairs with particle

image density of 0.05 ppp has been generated to perform an equivalent Tomographic

PIV experiment under the same flow field conditions. The interrogation spot chosen for

Tomo PIV is 40× 40× 40 voxels, containing in average 16 particles.
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Figure 7: Exact velocity field: Y = 0 plane contoured with mean streamwise velocity

component; X = −5mm plane contoured with the intensity of the squared streamwise

velocity fluctuations.
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Figure 8: Comparison of the mean streamwise velocity component in the X = −5mm

plane: tomographic PIV vs. ensemble averaging PTV with different filtering approaches.

The exact velocity field is represented in Figure 7, while the test results are

presented in non-dimensional form in cylindrical coordinates in the Figures 8 and 9

in terms of mean velocity and turbulence fluctuations. The symbols u′x, u
′
r and u′ϑ

indicate respectively the fluctuations in the axial, radial and tangential directions. The

maps reported in the Figures 8 and 9 have to be intended as ensemble averages. It is

important to note that the simulated turbulence lacks instantaneous spatial coherence

and therefore it is not possible to assess the performance of tomographic PIV on the

turbulent fluctuations.

The smoothing effect due to the larger interrogation spot size is evident on the
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Figure 9: Turbulent fluctuations in the X = −5mm plane using Ensemble PTV with

the top-hat, and gaussian filters as well as the polynomial fit and comparison with the

exact solution.

tomographic PIV mean flow field (Figure 8). The ensemble PTV filters seem to provide

very similar results, even though a data inspection reveals a slightly higher modulation

of the velocity peak on the jet axis with the top hat filter, coherently with the results

of the previous section. An evidence of this is the contamination in the region close

to the jet axis of the intensity of the axial turbulent fluctuations achieved by ensemble

PTV with a top hat filtering, as it can be seen in Figure 9, top-left. The data obtained

with the polynomial fit and the Gaussian filter seem to be much less affected by this

issue. However, the intensity of the turbulent fluctuations calculated with the Gaussian

filter is significantly contaminated by noise, thus showing poor convergence. In fact,

this problem is clearly observed in all the turbulent fluctuations results in Figure 9 and

is due to the effective lower number of particles used within the averaging process, as

discussed in the previous section.

4. Experimental validation

The experimental validation of the technique is performed on a turbulent round jet

flow. The experiments are carried out in the water jet facility at the University of

Naples Federico II schematically represented in Figure 10. A round jet is issued through

a short pipe nozzle (diameter D = 20 mm and length 6.2D) mounted on the bottom

wall of a nine-sided Plexiglas water tank facility, as the one used in Cafiero et al (2014).

A centrifugal pump is used to feed the circuit with the required mass flow rate of

about 0.5 kg/s, corresponding to a Reynolds number based on the nozzle diameter D



15

Camera 

system

Water tank

Nozzle

Laser

Optics

Figure 10: Schematic representation of the water jet facility.

equal to about Re =30, 000. The working fluid passes through a stagnation chamber

(diameter 5D and length 20D), where two sets of grids are introduced in order to remove

fluctuations due to the feeding circuit. The water is then forced within the short pipe

nozzle, which discharges within the water tank.

The flow is seeded with neutrally-buoyant polyamide particles (mean diameter equal

to 56µm) uniformly dispersed within the tank. The seeding density depends upon the

experiment: for the Tomographic PIV a standard particle image density of 0.05 ppp is

used, whilst for the Ensemble PTV experiment a much lower density is employed, of

the order of 0.003− 0.005ppp.

The investigated area is illuminated from the side using a Quantel Evergreen

Nd:YAG Laser for PIV applications (200 mJ/pulse, 15 Hz). For both the Tomo-PIV

and the Ensemble PTV experiments the laser beam is shaped into a rectangular cross

section volume by means of a lenses system. Moreover, the exact volume thickness is

adjusted introducing a knife-edged mask, which sets it to 1.5D. The imaging system

is composed of four Andor sCMOS Zyla 5.5 Mpixels equipped with Tokina objectives

(100 mm focal length, f# = 16); three of them are disposed in Scheimpflug arrangement,

whilst one faces directly the illuminated region. The imaged region extends for about 5D

in the streamwise direction (Y ) and 5D in the crosswise direction (X); it is discretized

with a digital resolution of about 10 voxels/mm.

An optical calibration procedure is performed by recording images of a target (black

dots on white background, 5 mm pitch) translated with micrometric precision through

the measurement volume. The target images are captured in correspondence of seven

equally spaced locations along the direction orthogonal to the target plane. The mapping

function is obtained using the pinhole camera model, as suggested by Tsai (1987). The

resulting maximum calibration error is of the order of 0.5 pixels. A self-calibration
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procedure (Wieneke, 2008) is then carried out in order to further correct the location of

the laser volume using the scattering particles and to reduce reciprocal misalignments

of the cameras. This leads to a reduction of the calibration error down to 0.03 pixels.

A pre-processing is applied to the raw images in order to reduce the background

noise and improve both tomographic reconstruction for Tomo-PIV and particle detection

for the ensemble PTV. The pre-processing consists in the temporal minimum image

subtraction, in order to limit the effect of laser reflections within the flow. Additionally,

a sliding minimum subtraction (with window size of 7×7 pixels) has been performed to

remove the residual fluctuating part of the background.

For the tomographic PIV experiments, the 3D volume is reconstructed from the

pre-processed images using four C-SMART iterations on a binned volume (Discetti and

Astarita, 2012b) three C-SMART iterations on the full volume, one MTE iteration

(Novara et al, 2010) aimed to detect and remove the ghost particles generated during

the reconstruction process, 3 further C-SMART iterations on the full volume and finally

one SMART iteration. The resulting volume extends for 1000× 1000× 300 voxels.

During the iterative reconstruction with C-SMART, a non-isotropic Gaussian

smoothing is applied on a [3 × 3 × 1] kernel (Spatial filtering improved tomography,

Discetti et al, 2013) in order to reduce the artefacts of the reconstruction due to particles

elongation along the depth direction in the reconstructed volumes. In order to check

the quality of the reconstruction, the signal to noise ratio defined as the reconstructed

particles intensity inside the illuminated region (true particles + ghost particles) versus

that reconstructed outside (ghost particles) is calculated. The S/N ratio results to be

larger than 2.5, which is a typical value for a good reconstruction (Scarano, 2013).

The reconstructed volumes are interrogated using an efficient 3D cross-correlation

algorithm (Discetti and Astarita, 2012a) based on sparse correlations on blocks to

reduce the amount of redundant operations when using overlapping windows. The

final windows size is 48× 48× 48 voxels, 75% overlap, thus leading to a vector pitch of

1.2 mm. A Blackman weighting window is used both on the correlation map and on the

velocity to properly tune the spatial resolution and to ensure the stability of the PIV

process.

The ensemble PTV process is applied on 49000 snaphots triangulating particles

with a search radius on the images of 3 pixels. The low image density ensures that

the number of ghost particles is less than 1%, according to Eq. 1 (Discetti and

Astarita, 2014). In order to compensate for the large particles displacement (the jet

bulk velocity corresponds to approximately 12 pixels for the chosen time separation

between the exposures) and maintain a small search radius, a predictor mean field has

been constructed using the low density snapshots captured for the ensemble PTV. The

use of a predictor field to bias the particles search in PTV is a well assessed procedure

(commonly referred as super-resolution PTV, Keane et al, 1995); in the presented case

the additional difficulty is that the particles concentration is relatively low, thus affecting

the cross-correlation signal strength. For this reason a pseudo-reconstructed volume

pair has been built summing particles detected on the first and second exposure of 500
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Figure 11: Comparison of the mean axial velocity and axial and radial velocity

fluctuations on the plane Z = 0 for the case of Ensemble PTV with a top-hat approach

and Tomo-PIV

snapshots. Gaussian blobs with diameter of 3 voxels at 10 voxels/mm resolution have

been generated around the particles location. The volumes are cross-correlated with

interrogation windows of 243 voxels, 50% overlap. Subsequently, a biased matching

search using the calculated predictor and a search radius of 8 voxels has been carried

out. Finally, the results are averaged over cubic blocks with 24 voxels side (thus leading

to a resolution of 2.4 mm) and spacing of 6 voxels (i.e. 0.6 mm). It has to be remarked

that for the mean velocity field much smaller averaging regions would already suffice

for the task of an acceptable accuracy, considering that for the chosen resolution the

average number of velocity vectors is of the order of 8000.
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Figure 12: Comparison of the mean axial velocity and axial and radial velocity

fluctuations obtained using the Tomo-PIV (continuous black line) and EPTV approach

with the top-hat, gaussian and polynomial fit approaches

The results of Tomo-PIV and Ensemble PTV are compared in terms of mean

streamwise velocity and intensity of the streamwise velocity fluctuations on the mid-

plane of the jet in Figure 11. As foreseeable, Tomo-PIV provides a smeared velocity

distribution, with a lower peak of average velocity on the jet axis and fictitiously larger



19

jet diameter if compared to the Ensemble PTV. This has to be addressed to the larger

interrogation regions, as well as to the modulation effect of ghost particles motion.

The effects of limited spatial resolution are similarly evident in the evaluation of the

streamwise Reynolds stress distribution, with significantly underestimated values of the

fluctuation intensity, as well as a wider measured shear layer.

The comparison of the mean axial velocity V/V0, the squared axial and radial

velocity fluctuation (v′2/V 2
0 and u′2/V 2

0 , respectively) obtained using the Tomo-PIV

and the Ensemble PTV is reported in Figure 12 in form of profiles. The profiles

are extracted at 2.5D from the nozzle exit section. The three tested Ensemble PTV

approaches achieve a much better resolution of the streamwise velocity profile than

Tomo-PIV both due to a smaller averaging region and to the absence of ghost particles.

Differences between the Ensemble PTV approaches are perceivable only in the region

of high curvature of the streamwise velocity profile, where indeed modulation effects

start being relevant. The unresolved part of the velocity profile is expected to show

up on the Reynolds stresses. Indeed, the profiles of the streamwise normal Reynolds

stress reported in Figure 12 show that the differences between the used algorithms are

significant. While if compared to Tomo-PIV in all 3 cases the profile of v′2 is closer to

the physical representation of a relatively unperturbed potential core and of relatively

thin shear layer turbulence production regions, remarkable differences are experienced

on the peak intensity values. The top-hat approach, which is supposed to have lower

spatial resolution, leads to the largest intensity value of the peak of v′2/V 2
0 . It can be

inferred that the differences have to be addressed to poorer resolution of the mean field.

The sharper peaks observed when using the top-hat approach can be ascribed, indeed,

to the modulation effects of the mean velocity profiles, as they occur in the region of

larger curvature of the mean field. A further evidence that the only reason for differences

between the top hat and the polynomial method is the resolution of the mean velocity

is given by the profiles of the radial velocity fluctuations intensity u′2/V 2
0 . Since the

mean radial velocity is small and well resolved, there is no modulation effect observable,

thus top-hat and polynomial approaches are practically equivalent. The Gaussian filter,

coherently with what observed on the axial component, exhibits convergence issues due

to the small equivalent number of particles. These results are perfectly in line with the

contamination of computed Reynolds stresses distributions due to the poorly resolved

mean velocity field outlined on the basis of theoretical arguments in Sec.2.3 and observed

in Sec.3. It can be concluded that, provided that the mean velocity field is adequately

resolved, the polynomial and top-hat approaches are practically equivalent, while the

Gaussian filtering approach is more affected by convergence issues.

5. Conclusions

The performance of ensemble particle tracking velocimetry to extract high resolution

three-dimensional turbulent statistics has been assessed. Owing to the low

concentrations typical of volumetric experiments (both due to the introduction of the
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third dimension and to the low particle image density to be set to limit the occurrence

of ghost particles), two methods have been proposed to improve the computation of the

mean velocity components and to reduce the contamination of second order moments

due to unresolved velocity gradients. The first method, based on the use of weighting

functions to modulate the impulsive response of the averaging window, is affected by

an effective lower number of particles used within the averaging process due to the

introduction of weights. The second method, based on fitting locally the velocity

vectors distribution with a polynomial function and computing statistical moments

around the locally adaptive fit, reduces significantly the modulation error, acting as

a top-hat filtering with an approximately 3 times smaller window. This allows to reduce

the number of required samples to achieve the same spatial resolution in 3D by a factor

of ∼ 33 times if compared to the standard 3D ensemble PTV process. The reported

applications in the 3D scenario (both synthetic and experimental) show encouraging

results in terms of potential improvement of the spatial resolution.
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