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Abstract

This contribution discusses the thermodynamic limit for black holes in loop
quantum gravity by using the number-theoretic methods introduced to compute
their entropy in this framework. We show how that the subdominant corrections
for the entropy in this limit differ from the ones corresponding to the statistical
entropy.
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Black holes and their thermodynamic limit

The main purpose of this work is to discuss the thermodynamic limit for black
holes in loop quantum gravity (LQG), in particular regarding the logarithmic correc-
tions to the Bekenstein-Hawking law. These are important because different models
for quantum black holes give different types of corrections (even those that have
appeared within LQG itself) and hence they can be used to discriminate between
different proposals. An important issue that must be taken into account when study-
ing this problem is the thermodynamic limit [1–3]. The main reason is that the
subdominant corrections to the entropy in this limit differ generically from those cor-
responding to the statistical entropy. The statistical entropy of black holes in LQG
differs for the different proposals that have been put forward [4–7]. In particular the
solution that can be obtained by using the combinatorial methods developed to deal
with the type of problems that crop up in the obtention the statistical entropy [8–10]
gives
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for the Domaga la-Lewandowski and the Engle-Noui-Perez proposals respectively [5,7]
From these integral representations it is straightforward to obtain the asymptotic be-
havior of the entropy in the large area limit by studying the analytic structure of the
integrands. In particular it is straightforward to derive the Bekenstein-Hawking law.
The logarithmic corrections to this behavior originate in the extra integration in ω
that must be performed. This integration must be introduced to deal with the so
called projection constraint of the original Ashtekar-Baez-Corichi-Krasnov prescrip-
tion (in the form introduced by Domaga la and Lewandowski) or a similar condition
in the Engle-Noui-Perez approach. The logarithmic corrections are respectively given
by −

1
2 log a in the Domaga la-Lewandowski case and −

3
2 log a in the Engle-Noui-Perez

case.
The preceding expressions for the statistical entropy (coming from a direct state

counting) are staircase functions. In order to get suitable smoothed expressions for
the entropy it is necessary to modify them. The most appropriate way to do this is
by introducing a suitable thermodynamic limit (see, for example, references [1, 2]).
It is important to point out that this is not just the large area limit but rather a
limit consisting in considering a large system while keeping the relevant intensive
parameters constant. The thermodynamic limit can be studied by using both the
microcanonical and the canonical ensembles (the result is independent of this choice
although the mathematical details involved in the computations differ) and provides
and entropy function with the right mathematical properties regarding, in particular,
its differentiability and its convexity. Differentiability is very important in order to
be able to use the standard formalism of thermodynamics whereas convexity plays
a central role in the discussion of thermodynamical stability. If one believes that
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the area ensemble is the right one to describe black holes [11] then their stability
hinges precisely in the convexity of the entropy and this, in turn, on the subdominant
corrections to the entropy as a function of the area. The best way to get the LQG black
hole entropy in the thermodynamic limit is to use the area canonical ensemble [12].
The partition functions can be obtained by relying on the generating functions given
in references [9, 13]. They are
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In the thermodynamic limit the average area and the (smoothed) entropy σ̃ are given
by

a(α) = −
d

dα
logZ(α) , σ̃(α) ∶= αa(α) + logZ(α) .

where the parameter α is conjugate to the area (and, hence, is not an inverse tem-
perature, that would be conjugate to the energy).

In order to obtain the asymptotic behavior of the entropy as a function of the area
it is necessary to find the singularities of the integrand in the previous expressions
and understand their asymptotic behaviors at them. This can be done as explained
in reference [13]. That analysis shows that the Bekenstein-Hawking law holds in
the thermodynamic limit, as expected, and also that the subdominant corrections to
the large-area behavior of the entropy differ from those obtained for the statistical
entropy. In particular, in the Domaga la-Lewandowski case the logarithmic correction
is 1

2 log a whereas in the ENP case the correction is just a constant (see reference [13]
for details). The first result is striking because it has a sign opposite to the one
obtained for the statistical entropy. Notice, however, that the positive sign that we
find in the thermodynamic limit is what one should expect form the theorems of
references [1, 2]. It is also important to point out that, in the ENP case, the absence
of logarithmic corrections does not contradict the general results on the convexity
of the entropy but just shows that the corrections for large areas have a different
mathematical nature and are very small.

The main conclusion of the work that we have briefly discussed here is the fact that
one has to carefully consider the thermodynamical limit in order to understand the
subdominant corrections to the entropy behavior. This conclusion should be relevant
for every approach to the study of black hole entropy and not only for those inspired
in Loop Quantum Gravity.
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