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Abstract

Human Activity Recognition (HAR) is a research topic with a relevant interest

in the machine learning community. Understanding the activities that a person

is performing and the context where they perform them has a huge importance

in multiple applications, including medical research, security or patient monitor-

ing. The improvement of the smart-phones and inertial sensors technologies has

lead to the implementation of activity recognition systems based on these devices,

either by themselves or combining their information with other sensors. Since

humans perform their daily activities sequentially in a specific order, there exist

some temporal information in the physical activities that characterize the different

human behaviour patterns. However, the most popular approach in HAR is to as-

sume that the data is conditionally independent, segmenting the data in different

windows and extracting the most relevant features from each segment.

In this thesis we employ the temporal information explicitly, where the raw data

provided by the wearable sensors is fed to the training models. Thus, we study

how to perform a Markov modelling implementation of a long-term monitoring

HAR system with wearable sensors, and we address the existing open problems

arising while processing and training the data, combining different sensors and

performing the long-term monitoring with battery powered devices.

Employing directly the signals from the sensors to perform the recognition can

lead to problems due to misplacements of the sensors on the body. We propose an

orientation correction algorithm based on quaternions to process the signals and

find a common frame reference for all of them independently on the position of the

sensors or their orientation. This algorithm allows for a better activity recognition

when feed to the classification algorithm when compared with similar approaches,

and the quaternion transformations allow for a faster implementation.

One of the most popular algorithms to model time series data are Hidden

Markov Models (HMMs) and the training of the parameters of the model is per-

formed using the Baum-Welch algorithm. However, this algorithm converges to
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local maxima and the multiple initializations needed to avoid them makes it com-

putationally expensive for large datasets. We propose employing the theory of

spectral learning to develop a discriminative HMM that avoids the problems of

the Baum-Welch algorithm, outperforming it in both complexity and computa-

tional cost.

When we implement a HAR system with several sensors, we need to consider

how to perform the combination of the information provided by them. Data fusion

can be performed either at signal level or at classification level. When performed

at classification level, the usual approach is to combine the decisions of multiple

classifiers on the body to obtain the performed activities. However, in the sim-

ple case with two classifiers, which can be a practical implementation of a HAR

system, the combination reduces to selecting the most discriminative sensor, and

no performance improvement is obtained against the single sensor implementa-

tion. In this thesis, we propose to employ the soft-outputs of the classifiers in

the combination and we develop a method that considers the Markovian struc-

ture of the ground truth to capture the dynamics of the activities. We will show

that this method improves the recognition of the activities with respect to other

combination methods and with respect to the signal fusion case.

Finally, in long-term monitoring HAR systems with wearable sensors we need

to address the energy efficiency problem that is inherent to battery powered de-

vices. The most common approach to improve the energy efficiency of such devices

is to reduce the amount of data acquired by the wearable sensors. In that sense,

we introduce a general framework for the energy efficiency of a system with mul-

tiple sensors under several energy restrictions. We propose a sensing strategy to

optimize the temporal data acquisition based on computing the uncertainty of

the activities given the data and adapt the acquisition actively. Furthermore, we

develop a sensor selection algorithm based on Bayesian Experimental Design to

obtain the best configuration of sensors that performs the activity recognition ac-

curately, allowing for a further improvement on the energy efficiency by limiting

the number of sensors employed in the acquisition.
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Resumen

El reconocimiento de actividades humanas (HAR) es un tema de investigación

con una gran relevancia para la comunidad de aprendizaje máquina. Compren-

der las actividades que una persona está realizando y el contexto en el que las

realiza es de gran importancia en multitud de aplicaciones, entre las que se in-

cluyen investigación médica, seguridad o monitorización de pacientes. La mejora

en los smart-phones y en las tecnoloǵıas de sensores inerciales han dado lugar a

la implementación de sistemas de reconocimiento de actividades basado en dichos

dispositivos, ya sea por si mismos o combinándolos con otro tipo de sensores. Ya

que los seres humanos realizan sus actividades diarias de manera secuencial en un

orden espećıfico, existe una cierta información temporal en las actividades f́ısicas

que caracterizan los diferentes patrones de comportamiento, Sin embargo, los algo-

ritmos más comunes asumen que los datos son condicionalmente independientes,

segmentandolos en diferentes ventanas y extrayendo las caracteŕısticas más rele-

vantes de cada segmento.

En esta tesis utilizamos la información temporal de manera expĺıcita, usando

los datos crudos de los sensores como entrada de los modelos de entrenamiento. Por

ello, analizamos como implementar modelos Markovianos para el reconocimiento

de actividades en monitorizaciones de larga duración con sensores wearable, y

tratamos los problemas existentes al procesar y entrenar los datos, al combinar

diferentes sensores y al realizar adquisiciones de larga duración con dispositivos

alimentados por bateŕıas.

Emplear directamente las señales de los sensores paa realizar el reconocimiento

de actividades puede dar lugar a problemas debido a la incorrecta colocación de

los sensores en el cuerpo. Proponemos un algoritmo de corrección de la orientación

basado en quaterniones para procesar las señales y encontrar un marco de refer-

encia común independiente de la posición de los sensores y su orientación. Este

algoritmo permite obtener un mejor reconocimiento de actividades al emplearlo

en conjunto con un algoritmo de clasificación, cuando se compara con modelos
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similares. Además, la transformación de la orientación basada en quaterniones da

lugar a una implementación más rápida.

Uno de los algoritmos más populares para modelar series temporales son los

modelos ocultos de Markov, donde los parámetros del modelo se entrenan usando

el algoritmo de Baum-Welch. Sin embargo, este algoritmo converge en general

a máximos locales, y las múltiples inicializaciones que se necesitan en su imple-

mentación lo convierten en un algoritmo de gran carga computacional cuando se

emplea con bases de datos de un volumen considerable. Proponemos emplear la

teoŕıa de aprendizaje espectral para desarrollar un HMM discriminativo que evita

los problemas del algoritmo de Baum-Welch, superándolo tanto en complejidad

como en coste computacional.

Cuando se implementa un sistema de reconocimiento de actividades con mul-

tiples sensores, necesitamos considerar cómo realizar la combinación de la infor-

mación que proporcionan. La fusión de los datos, se puede realizar tanto a nivel

de señal como a nivel de clasificación. Cuando se realiza a nivel de clasificación, lo

normal es combinar las decisiones de multiples clasificadores colocados en el cuerpo

para obtener las actividades que se están realizando. Sin embargo, en un caso sim-

ple donde únicamente se emplean dos sensores, qué podŕıa ser una implentación

habitual de un sistema de reconocimiento de actividades, la combinación se reduce

a seleccionar el sensor más discriminativo, y no se obtiene mejora con respecto a

emplear un único sensor. En esta tesis proponemos emplear salidas blandas de

los clasificadores para la combinación, desarrollando un modelo que considera la

estructura Markoviana de los datos reales para capturar la dinámica de las activi-

dades. Mostraremos como este método mejora el reconocimiento de actividades

con respecto a otros métodos de combinación de clasificadores y con respecto a la

fusión de los datos a nivel de señal.

Por último, abordamos el problema de la eficiencia energética de dispositivos

alimentados por bateŕıas en sistemas de reconocimiento de actividades de larga

duración. La aproximación más habitual para mejorar la eficiencia energética con-

siste en reducir el volumen de dats que adquieren los sensores. En ese sentido,
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introducimos un marco general para tratar el problema de la eficiencia energética

en un sistema con multiples sensores bajo ciertas restricciones de enerǵıa. Pro-

ponemos una estrategia de adquisición activa para optimizar el sistema temporal

de recogida de datos, basándonos en la incertidumbre de las actividades dados los

datos que conocemos. Además, desarrollamos un algoritmo de selección de sen-

sores basado diseño experimental Bayesiano y aśı obtener la mejor configuración

para realizar el reconocimiento de actividades limitando el número de sensores

empleados y al mismo tiempo reduciendo su consumo energético.
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1
Introduction

1.1 Human Activity Recognition

Human behavior analysis is a popular interdisciplinary research topic. Understand-

ing the reasons behind human actions, or in another perspective what are people

doing and why, has an increasing interest in a wide range of research fields, from

medical research to marketing and finance. The main problem of human behavior

analysis can be summarized with a simple question: What constitutes human be-

havior? It seems that there exist different possible answer to this question, since

experts from different fields have their own definitions of human behavior [15, 116].

The activities that the people perform during the day, their social interactions or

their habits are integral aspects of the essence of human behavior.

We can define the activities of the daily life as the basic unit that describes

the structure of the different human behavior patterns. Indeed, the sequence of
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CHAPTER 1. INTRODUCTION

activities that a person performs during a day, week or month essentially define

their behavior. The nature of human activities constitutes a complex topic in itself.

We can distinguish between the different activities attending to different criteria.

For example, some of the activities are static in a physical sense, like sitting or

lying while others are dynamic, like walking. Some activities are considered simple,

like moving an arm or a leg, while others are complex, since they involve the

combinations of different simple activities, e.g., brushing your teeth or sweeping the

floor. Furthermore, people can perform more than one activity at the same time,

adding even more possibilities to the different activity patterns. Consequently,

the automatic recognition of physical activities is an arduous problem gaining a

considerable attention from multiple research fields, including medical, security or

military [20, 61].

Modern approaches in HAR date from the late nineties [31, 36]. The main

idea behind the activity recognition is to provide information about the behavior

of the users, allowing the implementation of computing systems that helps them

with their daily life tasks [3]. For example, in ambulatory monitoring of elderly

patients, knowing the activities that the patients are performing is vital to un-

derstand the context in which the patients are being monitored. This context

awareness can help to overcome the limitations associated with the use of self-

reporting in medical assessment, consequently improving the patients quality of

life by reducing the frequency of visits to medical centres and reducing medical

costs [11]. Another example is the employment of actigraphy for the treatment

of chronic insomnia [102]. The authors showed that actigraphy data were more

accurate than sleep-diary data when compared to polysomnography and it should

be used as a complement to sleep-diary evaluation.

The inherent complexity of the daily life activities affect directly to the defini-

tion of the HAR problem. There is no specific set of activities that is considered

universal in the implementation of a HAR system, leading to a large amount of

possible design and implementation options. As a simple example, we will com-

pare the differences in the implementation of a HAR system employed to monitor

8



CHAPTER 1. INTRODUCTION

the progress of injured athletes during rehabilitation and a HAR system employed

during the monitoring of elderly patients in their daily life. In the first case, the

activities that needs to be analyzed are dynamic activities, like walking and run-

ning, to find differences with common walking or running patterns. In the second

case, the number of activities to be considered can be as small or large as we want,

increasing the complexity of the system with the number of activities while at

the same time improving its ability to characterize the daily behavior patterns of

the patients. Furthermore, while in the first case the number of activities is fixed

in advance, in the second case we can generalize the system for the appearance

of unexpected new activities that only appear in real life. Another aspect that

conditions the implementation of a HAR systen is the context of the monitoring.

In the rehabilitation system, we want to monitor the activity patterns of an ath-

lete under a controlled environment. In such systems, it is common to employ a

large number of devices to track the patients, from video recordings, to accelerom-

eters or Electrocardiogram (ECG). The number of devices and its nature it is not

restricted, since the athletes only use these devices during the rehabilitation ses-

sions. However, in the case of an ambulatory monitoring system, the number of

possibilities is much more restricted, since the HAR system needs to be employed

under naturalistic conditions, and privacy and comfortability of the patients must

be addressed. Ultimately, the definition of the HAR problem is completely depen-

dent on the application, and we refer to the review of HAR presented in [20] for

an extensive description of the different HAR problem statements.

In human behavior analysis, there exist the necessity of huge amounts of data

to perform the HAR and ultimately detect the different behavior patterns. Data

recordings range from days to months or years, and long-term monitoring systems

are essential under these conditions. The acquisition devices that can be employed

in the implementation of a long-term monitoring system depend completely on the

definition of the HAR problem. The number of available devices is huge and is

increasing with the new advances in the sensing technologies [113].

One of such sensing technologies are infrastructure sensors. These devices are
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CHAPTER 1. INTRODUCTION

fixed in different positions in a closed environment, and the recognition of the ac-

tivities depend completely on the interaction of the users with such devices. The

most popular infrastructure system and one of the first technologies employed in

HAR is the use of video recordings [5, 86]. In such systems, different people are

recorded performing several physical activities and image processing algorithms [4]

are implemented in the core of the HAR system to perform different tasks, includ-

ing automatic recognition of the physical activities [44] or detection of abnormal

activities [47]. One of the first applications with a huge interest in HAR employing

video cameras were video surveillance systems [79]. Such systems use real-world

video data to automatically distinguish normal behaviors from suspicious ones in

different indoor and outdoor scenarios, like parking lots or bank branches. Other

examples include medical applications, like the life-logging activity recognition sys-

tem for elderly care in smart home environments detailed in [52]. Even though

the amount of information retrieved by such systems is huge, privacy, installation

cost and restricted sensing area limit the implementation of such systems.

In addition to video recordings, another popular infrastructure technologies are

environment sensors in home controlled scenarios [54]. These devices are attached

to several objects in a house and detect the interaction of the users with them. It

is the main approach in the implementation of smart home houses, where privacy

issues limit the use of video recordings. The data recorded by these sensors are

binary signals that indicate whether the object is being used or not. For example,

when the sensors are attached to the doors inside the house, they can identify

the location of the user. Combining this information with other sensors they can

restrict the set of possible activities that the users are performing. One of the main

problems of such systems is the identification of the best positions in the house to

attach the sensors and the number of sensors to be employed. Depending on the

set of activities to be recognized the design can vary significantly. Furthermore,

maintenance and installation costs of such systems are huge, and they are not

useful for ambulatory purposes, since the monitoring is restricted to the home

environment.
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CHAPTER 1. INTRODUCTION

Though infrastructure sensors are shown to be an interesting design choice for

the implementation of HAR sytems, they lack the ability to analyze the activi-

ties of the daily life of different people under naturalistic conditions during long

periods of time. The devices to be employed must be able to perform long-term

monitoring independently of the places where the people are located (home, job,

street, etc.), guaranteeing their privacy. With the development of the wireless pro-

tocols like Bluetooth Smart (also known as Bluetooth Low Energy) [27, 28] wireless

wearable sensors are increasingly becoming an attractive alternative in the imple-

mentation of HAR systems [74]. Their unobtrusiveness and handiness make them

appropriate for applications which require long-term continuous monitoring [17].

The first devices employed were 3-axis accelerometers attached to the body, where

they record the acceleration of the person wearing these sensors to recognize the

different activities. Later, with the advancement of the sensing technologies, the

number of sensors included in the wearable sensors increased. One of such tech-

nologies are Inertial Measurement Units (IMUs) [6]. These devices consist on a

3-axis accelerometer and a 3-axis gyroscope enabling the measuring of accelera-

tion and angular velocity, respectively. In addition, Magnetic, Angular Rate and

Gravity (MARG) sensors extend the capabilities of IMUs by integrating a 3-axis

magnetometer. More sophisticated devices include smart-phones, whose sensing

power and capabilities are increasing with the advance of the technology [98],

and make them and interesting alternative in the implementation of wearable sen-

sors HAR systems. A smart-phone acquires data from the inertial sensors while

additionally including information from many other sources, like the location of

the patient (GPS) [80], the measurement of the air pressure to detect elevation

(barometer) [63] the accessibility of the patients to wireless connections or even

their personal environment from message applications and social media [115].

However, the implementation of HAR systems with wearable sensors present

several limitations. First of all, the location of the sensors on the body directly

affects to the recognition of the activities. In a single sensor system, the position

of the sensor on the body greatly limits the recognition performance of the differ-
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CHAPTER 1. INTRODUCTION

ent activities [13, 10]. Depending on the activities considered, the optimal position

varies significantly. For example, while performing dynamic activities like walking,

running or cycling, a sensor placed on one of the ankles provides the most infor-

mation to distinguish them. However, this sensor is not optimal to discriminate

between static activities, like standing, sitting or lying, which rely in the position

of the body to identify them. Furthermore, under naturalistic conditions where

the people are going to manipulate the sensors, we must expect misplacements

on the position of the sensors. We need to find some mechanisms to correct the

orientation of the sensors automatically, since the position of the sensors can vary

significantly. As an example, a smart-phone is not a device that is attached to the

body, and the data provided by the inertial sensors changes dramatically depend-

ing on the location. The location of the sensors and the presence of misplacements

are still open problems in the implementation of HAR systems.

The energy efficiency of wearable sensors and smart-phones is another impor-

tant limitation [84], and it is directly related with the long-term monitoring prop-

erty. HAR systems implemented with a smart-phone need to share the battery

resources between all of the applications, but the embedded sensors are one of the

main sources of battery consumption. Furthermore, acquiring synchronous data

from all the inertial sensors at high sampling frequencies, decreases dramatically

the battery of the devices. Existing approaches to improve the energy efficiency

include the work in [65], where the authors study the effect of the sampling fre-

quency of the mobile phones in a HAR system. Previous work in the topic claims

that the sampling frequency needed to recognize physical activities should be no

less than 20Hz [19]. However, the authors demonstrate in [65] that an activity

recognition based on low sampling frequencies is feasible for long-term activity

monitoring. Furthermore, in relation with the sensor position problem, not all

the devices are informative while recognizing some of the activities, and most of

the data acquired is either useless or redundant. In that respect, the authors

in [109] develop a HAR system where they dynamically adapt the sampling fre-

quency and the classification features employed on the system depending on the
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CHAPTER 1. INTRODUCTION

performed activities. They select a priori the parameters needed in terms of the

activities and change the working operation of the mobile phones accordingly while

tracking continuously the ongoing activities. Both approaches consider a continu-

ous monitoring, adapting the sampling frequency of the sensors depending on the

specifications. However, sampling frequency reduction based methods can be still

inefficient with some long-term activities, e.g. sleeping, where data acquisition can

be halted completely without losing information. Though all of the previous works

present interesting alternatives, energy efficiency of wearable sensors remains an

open problem in the literature.

A HAR system can be implemented with a single sensor or with the combina-

tion of multiple sensors. Although the implementation of a single sensor system

is feasible for a simple recognition problem, employing multiple sensors increases

the recognition performance in general [85]. For example, the detection of epilepsy

seizures can be improved substantially combining the information provided by a

continuous video/EEG monitoring system with the data provided by a wearable

sensor located at the wrist [67]. In a simple system, several IMUs can be attached

to different positions on the body and additional sensors can be attached as well.

These sensors could present different sampling frequencies and synchronisation

across the different sensors becomes a technical problem. When combining the

raw data from different sensors directly, the main technique consist of transform-

ing the potentially non-synchronous data from the sensors in a multivariate time

series matrix D

D = [d1,d2, · · · ,dT ]

where dt ∈ RN is the N -dimensional data point at time instant t. This processing

step only depend on the devices employed and is independent of the people being

monitored. However, the differences in sampling frequencies and the presence of

missing data during the acquisition makes the combination of the data at signal

level problematic in many cases. How to perform the data fusion of several sensors

is a main topic in the implementation of HAR systems, since nowadays most

of them employ several sensors jointly. An alternative to the combination at
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CHAPTER 1. INTRODUCTION

signal level consists of performing the combination at classifier level, i.e., after a

classification of the different activities has been already performed. This method

will be explained later in more detail.

Modeling the activities in wearable sensor based systems is not a simple task.

In this setting, the activities are just physical signals provided by the sensors,

changing constantly depending on the activity. For example, a ECG measures the

heart rate of the people monitored. It is expected that when people are running

the heart rate increases, returning to a neutral state when people are relaxed.

With an accelerometer, during static activities, the gravity component will provide

information about the relative position of the sensor, and thus, of the position of

the people’s body. In a long-term monitoring, due to the nature of the human

behavior, it is expected that there exist a temporal relation between the activities

that dictates the dynamics of the physical signals. One of the main approaches

while modeling wearable sensors based systems is to consider that the activity

sequences can be divided in several segments, each of them with a unique label or

activity. In such cases, the temporal relation between the activities is lost, and the

data can be considered conditionally independent. Another approach consists of

benefiting from the temporal dynamics of the physical activities, employing the raw

signals provided by the sensors. I this case, there exists an activity label for every

time instant, and the activities that a person is performing at one time instant

depend on the activities that they were performing the previous instant. This

property makes Markov modelling an interesting approach for the HAR setting

with wearable sensors.

Modelling of HAR when the data is conditionally independent usually follows

the same structure. First, the data provided by the sensors is grouped in reduced

information units called windows or segments, which contain relevant information

about the activities. Each window is defined by an initial ti and ending te time

instant in the time series, wi = (ti, te). This data segmentation process obtains a

set of windows W from the data, each of them assigned to a label or activity

W = [w1,w2, · · · ,wM ]
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The basic approach to obtain these windows consists of fixing a window of a spe-

cific size and divide all the data in fixed length windows, assigning a single label to

every window. The size of the window is a parameter of the system and the per-

formance of the HAR system is directly related to this window size [49]. However,

a fixed sized window does not consider the structure of the time series data. Other

schemes consider dynamic window sizes, where the size of the window is not fixed

in advance, and a probabilistic approach is employed to derive the window size

for every sensor event, depending mainly on the information contained in the sig-

nals [58]. Another approach is the implementation of a sliding window algorithm,

where the size of the window can be fixed or adjusted dynamically and the data is

grouped in each window sequentially, with the data being overlapped in consecu-

tive windows [60]. The amount of overlapping constitutes a trade-off between the

precision of the segmentation and the computational cost of the system [49].

When the data is segmented, we need to extract relevant information or fea-

tures from this segments, allowing the system to improve the recognition of the

activities. This feature extraction step involves the application of several transfor-

mations on every data segment wi to obtain a vector of F features xi ∈ RF that

are relevant to discriminate between the different activities

xi = f(D,wi).

Each vector of features constitutes a data point, and a label is assigned to every

data point. Feature extraction allows the HAR system to reduce the length of

the data sequences by grouping every data window in vectors containing all the

relevant information of the raw signals inside these windows. There are multiple

types of features that have been demonstrated to work well during the implemen-

tation of HAR systems in the literature [90, 13], though the most frequent ones

are time domain features, which include the mean, standard deviation, variance,

covariance, entropy and kurtosis among others, and frequency domain features,

including energy, Fast Fourier Transform, Discrete Fourier Transform and many

others [61].

Depending on the features employed, feature extraction can be computation-
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ally expensive. Furthermore, the more highly dimensional is the feature space the

more data is needed in training to obtain the parameters and the more computa-

tionally expensive becomes the classification. Working with high dimensionality

data is usually complicated. There are two common approaches in HAR systems:

feature reduction and feature selection. Feature reduction or dimensionality re-

duction algorithms involve obtaining a transformation of the data that reduces the

number of features needed to separate the data in different groups, with each group

corresponding to a single label. Some common approaches include Principal Com-

ponent Analysis (PCA) [7] and Linear Discriminant Analysis (LDA) [23]. PCA

performs a linear mapping of the data to a lower-dimensional space in such a way

that the variance of the data in the low-dimensional representation is maximized.

However, PCA does not take into account the different labels. On the contrary,

LDA finds a linear combination of features that characterizes or separates two or

more labels. LDA explicitly attempts to model the difference between the labels

in the data. In feature selection approaches, no transformation is made on the

data, and a reduced subset of the features extracted is selected instead. Feature

selection method are usually divided in filter methods and wrapper methods and

we refer to [106] for more details.

Once the data has been collected and processed, we need to discover auto-

matically patterns in the data corresponding to the different activities. Research

in machine learning and computational statistics has developed many different

algorithms to explain the contents of the data in applications like biology [99],

marketing [25] or geology [70] among other research fields. In general, models in

machine learning can be divided in supervised and unsupervised [16]. In super-

vised learning, we try to infer the parameters of a function given a labelled dataset.

On the contrary, in unsupervised learning we try to infer a function that describes

hidden structures in unlabelled data. In the context of HAR, supervised learning

is the most common approach, since the pattern discovery process is performed

employing some example instances, or training set, to find the parameters that

characterize the different classification algorithms and evaluate their performance
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in a different data set, the test set [61].

More specifically, given a labelled training dataset D = {xi, yi}Ti=1, with T

pairs of processed data points xi and its label or activity yi, we need to infer the

parameters defining a model M such as we minimize the classification error on

D. After the model M is trained, every data point in the test set is mapped to

the set of possible labels Y and we compute the classification performance of the

algorithm. One of the most common approaches is to compute the probability of

every possible activity given the data and the model p(y|xi,M) and assign the

estimated label y∗i as the one that maximizes these probabilities

y∗i = arg max
y∈Y

p(y|xi,M).

Depending on the correspondence between the ground truth labels of the test set

and the estimated labels, we can determine the performance of the algorithm.

The most common performance metrics employed in classification algorithms with

multiple classes are precision and recall, though other metrics are also possible.

We refer to [20] for a more extensive review in the topic.

In the context of conditionally independent data points, multiple classifica-

tion algorithms have been employed for the recognition of the activities in the

literature. Some of these approaches include decision trees [82], Support Vector

Machines (SVMs) [8], logistic regression [59] or k-nearest neighbours [57] among

others. We refer to these HAR reviews [20, 61] for a more extensive description

of the different classification approaches. A recent research line in HAR that is

becoming popular is employing Deep Learning (DL) for the implementation of

the activity recognition system. The first approaches were proposed for video

recording HAR systems [12], where Convolutional Neural Networks (CNNs) are

employed to extract the relevant information from the recordings and automati-

cally classify different sets of activities. Additionally, in the last years DL is being

employed extensively in HAR systems with wearable sensors [81]. The main ap-

proach of these systems is to perform the feature extraction and feature selection

steps automatically employing CNNs and to model the temporal structure of the

data employing Recurrent Neural Networks (RNNs).

17



CHAPTER 1. INTRODUCTION

Once the classification of the different activities is obtained, in HAR systems

implemented with several wearable sensors, it is possible to perform a combination

of the classification results. Data fusion can be implemented at signal or feature

level and at classification level [20], as previously stated. Since combination at

signal level imposes high bandwidth and synchronization requirements in wireless

transmission, an estimation of the performed activity can be transmitted instead,

leading to a decision fusion configuration (also named as classifiers combination).

Existing approaches to the classifier combination problem include the seminal work

of Dawid and Skene [26]. The authors propose a model where each classifier is char-

acterized by a confusion matrix and they use the Expectation Maximization (EM)

algorithm to estimate the most likely values of both the ground truth and the pa-

rameters governing the behaviour of each classifier. Another common approach for

the combination of classifiers are ensemble methods [112]. Ensemble methods use

multiple learning algorithms to obtain better predictive performance than could

be obtained from any of the constituent learning algorithms alone [92]. Classifiers

based on ensembles are more computationally expensive, since they require several

models to be trained and evaluated.

In general, the classifier combination problem consists of finding a mapping

between the classification results from every single classifier and the final estimated

activity

y∗t = g(y1t , y
2
t , · · · , yKt )

where ykt is the estimated activity of the classifier k at time instant t, and g(·) is the

mapping function. This general approach allows for the employment of different

classifiers for each sensor, as only the combination of the estimated activities is

needed. Furthermore, decision fusion offers the advantage of robustness against

sensor failures, since only a single available sensor is needed to have an estimation

of the performed activity. However, HAR is a setting that employs a reduced

number of wearable sensors, and in such cases, the combination reduces to always

selecting the best sensor.

In general, the conditionally independent approach performs a mapping be-
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tween the data provided by the sensors D and the set of features X that are later

feed to the classification algorithms. One of the main drawbacks of this structure

is that the feature extraction and selection on the data can be computationally ex-

pensive depending on the features selected and the number of features. Although

these computations can be performed offline, when online HAR systems are con-

sidered, this could become problematic. Furthermore, humans commonly perform

their daily activities sequentially in a specific order, existing some temporal rela-

tionship between the physical activities. For example, when a person is sitting in a

sofa, the probability that this person suddenly starts running is much less than ly-

ing down. A different approach to the HAR problem is employing Markov models

to consider the temporal dynamics of the activities. Employing the signals pro-

vided by the inertial sensors, without performing any data segmentation or feature

extraction processing, the computational cost of the data processing becomes neg-

ligible, allowing for online implementations of HAR systems. Additionally, the raw

physical signals maintain the Markovian structure, since the sampling frequency

of the wearable sensors typically ranges between tens and hundred of Hertz. How-

ever, the raw signals are particularly sensitive to the placement of the sensors on

the body in terms of location and orientation. There exist several techniques in

the literature dealing with the sensor orientation problem [29, 110]. In particular,

in [35] the authors transform the accelerometer and gyroscope data of the sensors

to a virtual reference system where all the raw signals are invariant to sensor ori-

entation. However, this work only deals with the orientation of a sensor on the

waist, and is not extended to other locations. A computationally efficient algo-

rithm that corrects the orientation of the sensors independently of their position

is to be desired in this approach.

The most common temporal probabilistic models employed in HAR systems

are HMMs [55] and conditional random fields [101]. These methods have been

employed extensively in combination with the feature extraction and selection

methods described before for the recognition of human activities, but they are more

suitable when the data retains the temporal structure of activities. In particular,
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a HMM is described by a sequence of observations X = [x1,x2, · · · ,xN ] of length

N and a sequence of unobserved hidden states S = [s1, s2, · · · , sN ] explaining the

data. A first order Markov process models the hidden states, and the observations

are conditionally independent given the states (Figure 5.1).

s1

x1

s2

x2

· · · sN

xN

Figure 1.1: Graphical model of a HMM.

A HMM is characterized by three parameters M = (π,Ψ,θ), the initial prob-

abilities distribution π, with πi = p(s1 = i), representing the probability distribu-

tion of the first state of the sequence, the transition probabilities matrix Ψ, with

Ψij = p(sn+1 = j|sn = i), which describes the probability of transitioning between

the different states of the chain, and the parameters θ of the conditional likelihood

of the observations given the states of the HMM. Depending on the data employed

in the system, the observation model can be a discrete model, e.g., Bernoulli dis-

tribution, or a continuous probability distribution, e.g., Gaussian distribution.

Inference over a HMM to obtain the sequence of states S that explains the

data X is performed using the Forward-Backward (FB) algorithms. To compute

the parameters of the model M = (π,Ψ,θ) an EM algorithm is employed. In

particular, in the literature of HMMs this EM algorithm is known as the Baum-

Welch algorithm [89]. For a more extensive review on HMMs we refer to [89].

However, the Baum-Welch algorithm exhibits two main problems: 1) the like-

lihood of the observations p(X|S) is in general multi-modal so the EM is guar-

anteed to converge only to a local maxima, and 2) although the complexity of

the algorithm growths linearly with the length of the training sequence, the mul-

tiple initializations required for minimizing the effects of the local convergence

and the more than quadratic growth with the number of hidden states makes EM

computationally expensive with large training datasets. Other possible inference

methods for HMMs include Gibbs sampling [91] and variational inference [68],
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but are even more computationally expensive and global convergence is still not

guaranteed. Additionally, HMMs are unsupervised learning algorithms, meaning

that the information of the activities is not considered while performing the infer-

ence. A mapping between the hidden states and the different activities is needed

to perform classification.

HMMs are not the only existing model that preserves the temporal dynamics

of the data. As stated before, Conditional Random Field (CRF) is another com-

mon machine learning approach employed while performing structure prediction.

The main difference with HMMs is that CRF is an undirected graphical model

whose nodes can be divided into the observed and output variables, respectively.

Furthermore, exact inference in CRF is intractable in general, and the approxi-

mate solutions available are computationally expensive when employed with long

duration data sequences. Other alternatives in the same family of HMMs include

the Hierarchical Hidden Markov Models (HHMMs) [32], which consider a hierar-

chical structure on the hidden states and the Factorial Hidden Markov Models

(FHMMs) [39], which consider several parallel hidden chains. Furthermore, non-

parametric versions of all this algorithms also exist in the literature, the Infinite

Hidden Markov Models (IHMMs) [38], the Infinite Factorial Hidden Markov Model

(IFHMM) [38] and the Infinite Hierarchical Hidden Markov Model (IHHMM) [43].

In non-parametric algorithms the number of hidden states is not set in advance,

and though theoretically it can increase infinitely, in practice, only a finite num-

ber of states appear during the inference. However, again, the inference in these

methods is computationally prohibitive in long-term monitoring scenarios, where

the activity sequences of one day can perfectly surpass one million of observations.

Markov modelling can be employed in during the classifier combination algo-

rithms. There are many approaches to the classifier combination problem that

consider the Markovian structure of the data. In [111], the authors train a dis-

criminative HMM classifier for each individual sensor, and then a Naive Bayes

classifier fuses these individual classification results. A more elaborated approach

to classifier combination in a general framework, that can be seen as a Bayesian ex-
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tension of [26], is the Independent Bayesian Classifier Combination (IBCC) method

proposed in [56]. In particular, the authors develop models for dependent and inde-

pendent classifiers that simultaneously infer both the ground truth and the model

parameters from the individual classifier outputs. However, in the extreme case

of using only two sensors, these methods are equivalent to selecting the most dis-

criminative sensor and, therefore, the combination does not yield better precision

than the best single classifier. Furthermore, in [96] the authors derive a variational

inference algorithm for the IBCC and, more interestingly, a time-varying classifier

combination model. While all of these methods consider hard-output classifiers,

i.e., the output of the classifier is the activity (running, sitting, etc.) an alternative

that needs to be explores is employing soft-output classifiers, where the outputs are

the probability of performing every possible activity defined in the HAR problem

instead of the actual activity.

1.2 Contributions and organization

In this thesis we are addressing the main limitations in the Markov modelling

implementation of a HAR system with wearable sensors, detailed in the previous

section.

In Chapter 2 we consider the problem of the wearable sensors orientation and

presence of misplacements. We present an orientation correction method using

quaternions that estimates the orientation of a person with respect to the Earth

frame, whose results are summarized in [30]. This estimation is performed auto-

matically without any extra information about where the sensor is placed on the

body of the person, only detecting the walking patterns to estimate the orienta-

tion of the sensor with respect to the person. Furthermore, we show that this

method is robust to displacements of the sensor with respect to the body. This

novel data processing technique is used to feed a classification algorithm showing

excellent results that outperform those obtained by an existing state-of-the-art

feature extraction techniques.

In Chapter 3 we address the limitations of the Baum-Welch algorithm while
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training HMMs with large training databases. To overcome its convergence prob-

lems and reduce the computational cost related with the multiple initializations

required, we extend the spectral learning method of HMMs developed in [46] to

train a discriminative HMM and we detail the algorithm in [77]. The resulting

method provides the posterior probabilities of the activities without explicitly de-

termining the parameters of the HMM, being able to deal with missing labels and

avoiding the optimization problems of the Baum-Welch algorithms. We apply and

evaluate this method in two different settings: a wearable inertial sensors setting,

and a wireless binary sensor network implemented in a home environment setting.

This method outperform the standard Baum-Welch algorithm in both complexity

and computational cost.

The classifier combination problem is treated in Chapter 4. We propose new

Bayesian models to combine the outputs of a small number of sensors in a HAR

setting and we perform the inference in [78]. The models are based on a soft out-

puts combination of individual classifiers, more appropriate for a small number

of sensors setting, instead of the most common approach of hard outputs for the

combination. We also incorporate the dynamic nature of human activities as a first

order homogeneous Markov chain. We develop both inductive and transductive in-

ference methods for each model to be employed in supervised and semi-supervised

situations, respectively. Using different real HAR databases, we compare our clas-

sifiers combination models against a single classifier that employs all the signals

from the sensors and to previous classifier combination models. Additionally, we

will demonstrate how our models exhibit an increase of robustness against sensor

failures.

In Chapter 5 we study the optimization of the energy efficiency of wearable

sensors in a HAR system. We present an active sensing strategy to maximize

the performance of the system while increasing at the same time the efficiency

of the devices, whose main results are described in [76]. Under this strategy the

sensors decide when they must acquire data samples based on the entropy of the

posterior probability distribution of the activities. Furthermore, we develop a
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general framework for the sensor configuration employed when a HAR system is

implemented combining several sensors. The sensor selection problem is treated as

a Bayesian Experimental Design problem, where the maximization of the mutual

information between the posterior of the activities and the observation model

of the sensors results in the optimal sensor selection strategy. We evaluate this

framework in a publicly available HAR database, demonstrating that employing

an optimal data acquisition strategy allows the system to increase significantly

the energy efficiency of the devices, consequently extending the duration of the

monitoring, while maintaining the performance of the HAR system.

To conclude this thesis, in Chapter 6 we summarize the conclusions extracted

from our contributions, partially published in [30, 77, 78, 76], and propose possible

future lines that can further improve HAR systems.
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2
Data Processing

2.1 Introduction

Inertial based sensory systems (see [62] for a review) are the most popular ap-

proach for the implementation of a Human Activity Recognition (HAR) system

with wearable sensors. A basic Inertial Measurement Unit (IMU) consists of a

3-axis accelerometer and a 3-axis gyroscope, enabling the measuring of acceler-

ation and angular velocity respectively. A Magnetic, Angular Rate and Gravity

(MARG) sensor is an extended IMU that also integrates a 3-axis magnetometer.

Most of the work dealing with data processing in a HAR system is based in the

extraction of features from the data provided by the wearable sensors. The basic

approach for the data processing in such systems consists of dividing the data ac-

quired from these sensors in different segments or windows and obtaining a feature

vector that groups all the information of the windows. Common feature extrac-
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tion schemes include time domain features and frequency domain features among

others.

A different approach is considered in this chapter, where the raw signals pro-

vided by the wearable sensors are employed directly to perform the activity recog-

nition. Deleting the feature extraction and selection steps from the HAR system

makes the wearable sensors more energy efficient and computationally efficient and

allows performing the data processing in the devices. The only transformation ap-

plied to the raw signals is an orientation algorithm that returns the raw signals

from the sensors in the same reference system.

We focus on the processing of the signals acquired by a MARG sensor, since it

is the one that provides more information in indoor scenarios (i.e., without Global

Positioning System (GPS) signal). A MARG sensor provides the measurements

referenced to the sensor frame. However, these raw signals are sensitive to the

placement of the sensor on the body of the person, in terms of position and orien-

tation. Most of the classification algorithms for HAR proposed in the literature are

fed with raw or mildly processed signals [62, 87]. Few of them try to extract the

orientation of the sensor or the person in order to feed the classification algorithms

[35]. In this chapter, we propose to use as inputs of the classification algorithms

the orientation of the person w.r.t. the earth frame, and the acceleration in the

person frame. To that end, a novel scheme of data processing for HAR systems

is presented, including an efficient algorithm based on quaternion representation

that computes the orientation of the person from the measurements of the MARG

sensor.

2.1.1 Coordinate Systems and Notation

The orientation methods developed in this chapter are described in terms of three

different three-dimensional frames that define the orientation of the person w.r.t.

the earth. First, the sensor frame (S) is defined along the orthonormal axes

of the physical devices, {Sx,S y,S z}. The recorded signals are referred to this

frame. Secondly, the earth frame (E) is defined by the orthonormal set of vectors
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{Ex,E y,E z}={North, West, Up}. Finally, we describe the person frame (P ), de-

fined by an orthonormal set of vectors whose directions when the person is standing

are aligned as {Px,P y,P z}={Forward, Left, Up}.

We use a notation system of leading superscripts and subscripts to describe

relative frame orientations and vector representations adopted from [69]. A leading

subscript denotes the frame being described, and a leading superscript denotes the

frame this is with reference to. For example, ABq̂ describes the orientation of frame

B relative to frame A while Av represents a vector described in frame A.

Throughout the rest of this chapter we use quaternions to represent three-

dimensional orientations and rotations. Quaternions retain several advantages

compared to Euler rotation matrices: they do not suffer from problematic sin-

gularities such as gimbal lock [94], and they are more compact, computationally

efficient, and numerically stable.

Quaternions constitute a four-dimensional space over the real numbers. They

are composed by the real axis and three imaginary orthogonal axes. Here we list

some relevant quaternion properties, where the ⊗ operator denotes the Hamilton

product, and v̂ denotes the normalised vector v:

1. A rotation through an angle of α around a unit vector û is represented by

the unit quaternion

q̂ = cos
(α

2

)
+ sin

(α
2

)(
uxi + uyj + uzk

)
. (2.1)

2. Two rotation quaternions q̂1 and q̂2 can be combined into one equivalent

quaternion, q̂ = q̂2 ⊗ q̂1 that represents a rotation given by q̂1 followed by

a rotation given by q̂2.
1

3. For any unit quaternion q̂, its inverse is equal to its conjugate q̂−1 = q̂∗.

4. If a quaternion q̂ represents a rotation, and v is a three-dimensional vector,

the rotated vector v′ can be computed as p′ = q̂⊗ p⊗ q̂∗, where p = pxi + pyj + pzk

and p′ = p′xi + p′yj + p′zk.
1Note that quaternion multiplication is not commutative
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2.2 Acceleration Angular Rate method

In [35] the authors propose a data processing method for a HAR system based

entirely on raw data from the sensors instead of traditional feature extraction

methods. The inertial sensors they used were equipped with 3-axis accelerometers

and 3-axis gyroscopes. The accelerometers measure in m/s2 the total inertial force

applied on the sensor. The gyroscopes measure the angular velocity of the sensors

in rad/s.

They compute the frame transformation between the sensor frame and a virtual

frame F , where the gravitational component of the force of acceleration is constant.

To do this, they compute the angle of roll θx (angle between the Sy-axis and the

Fxy plane) and angle of pitch (angle between the Sx-axis and the Fxy plane) using

the acceleration component of each sensor:

θx = arctan

(Say
Saz

)
θy = arcsin

(
−

Sax
||Sa||

)

They compute the roll and pitch when the person is in standing position, and

compute the rotation matrix that is needed to apply to transform the signals from

the sensor frame to the person frame:

R(θx, θy) =


cos(θy) sin(θx)sin(θy) cos(θx)sin(θy)

0 cos(θx) −sin(θx)

−sin(θy) sin(θx)cos(θy) cos(θx)cos(θy)


Using the previous matrix, the measured signals are all transformed by the

same constant rotation at each time instant, such that it appears that all mea-

surements have been recorded from the virtual frame F . As an example, the

transformation of the acceleration at time instant t is:

Pat = R(θx, θy) · Sat
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2.3 Acceleration Quaternion method

The proposed data processing scheme processes the magnetic, angular rate, and

accelerometer signals provided by the MARG sensors in order to excerpt

1. the orientation of the person w.r.t. the earth frame, and

2. the acceleration in the person frame, Pa.

In contrast to the Acceleration Angular Rate (AAR) method, we consider that

angular rate measurements provided by the gyroscopes are not valuable signals

any longer for the classification algorithms, since their information is incorporated

to the orientation of the person.

Therefore, the main goal consists of computing P
Eq̂, i.e., the orientation of the

earth frame (E) relative to the person frame (P ). The proposed algorithm uses the

quaternion property 2., decomposing the estimation of PEq̂ as a concatenation of

the estimation of the orientation of Ez w.r.t. to P z, PEq̂z, followed by the estimation

of the orientation of the plane Exy w.r.t. the plane Pxy, PEq̂xy, i.e.,

P
Eq̂ = P

Eq̂xy ⊗ P
Eq̂z, (2.2)

where P
Eq̂z is also decomposed as

P
Eq̂z = S

Eq̂⊗ P
S q̂z. (2.3)

The orientation of the earth frame relative to the sensor frame, S
Eq̂, is com-

puted by means of the gradient descent algorithm proposed in [69]. This algorithm

has shown an accurate performance close to a Kalman-based algorithm [93], while

remaining computationally very efficient. The algorithm updates the current orien-

tation via integration of the provided angular rate, and corrects the gyroscope drift

with accelerometer and magnetometer measurements. This correction is driven by

a parameter, β, that represents the correction rate of the gyroscope drift (see [69]

for more details). The authors prove that, if the sampling rate is large enough,

the algorithm performs accurately just computing one gradient descent iteration
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per sample, which implies a very low computational cost. The convergence of the

algorithm can be tuned by increasing the parameter β (see Section 2.4 for more

details).

The second term of equation (2.3), PS q̂z, corresponds to the orientation of the

Sz axis w.r.t. the P z axis. Note that, if the sensor is strongly attached to the body

of the person, this orientation should remain constant. Nevertheless, considering

that the sensor is fixed to the clothes (for instance bounded by a belt at the waist),

P
S q̂z may suffer from small variations. Although knowing S

Eq̂ during the standing

position would be enough to find this orientation, with unlabelled data it is not

possible to determine a priori when the person is standing. Nonetheless, walking

sequences are easier to detect automatically, and while walking, the person is in

average also upright; i.e., the P z axis is aligned to the Ez axis in average. For this

purpose, we have used a walking detection algorithm similar to that proposed in

[35]. Therefore, SP q̂z can be computed by averaging S
Eq̂ during the walking period.

Due to quaternion property 3., we obtain the second term of equation (2.3) as

P
S q̂z = S

P q̂∗z. Note that although there exist several ways to average a quaternion

[71], we use an unweighted mean of SEq̂ during the walking period since it provides

good results while being computationally efficient. In this way, P
S q̂z is updated

every time a walking period is detected.

Finally, we compute the first term of equation (2.2), PEq̂xy, by estimating the

direction of the velocity in Exy plane when the person is walking. For that purpose,

we integrate the acceleration in the earth frame to get the velocity [18], we remove

the velocity drift [105], and we compute the angle γ of the projection of the velocity

vector onto the Exy plane w.r.t. Ex. Let φ be the angle between Ex and the

projection of the vector P
Eq̂z ⊗ i onto the Exy plane. Then, defining θ = γ − φ,

and according to quaternion properties 3. and 4., PEq̂xy = cos(θ/2) + sen(θ/2)k.

Algorithm 1 summarises the process to compute P
Eq̂[n], the orientation of the

earth frame w.r.t. the person frame. The calculation is performed for the N

available samples of magnetic field, angular rate, and acceleration measurements

acquired by the MARG sensor. Note that β, the key parameter of the sensor
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orientation algorithm [69] must be selected at the beginning, and it plays a key

role in the performance of the classification algorithm, as it can be seen in Section

2.4.

Algorithm 1 Pseudocode of person orientation algorithm

Select β

for n = 1 : N do

Compute S
Eq̂[n] with the algorithm of [69] and β

Detect whether the person is walking

if walking then

Update P
S q̂z[n]

Update P
Eq̂xy[n]

else

P
S q̂z[n] = P

S q̂z[n− 1]

P
Eq̂xy[n] = P

Eq̂xy[n− 1]

end if

P
Eq̂[n] = P

Eq̂xy[n]⊗ S
Eq̂[n]⊗ P

S q̂z[n]

end for

2.4 Experiments

2.4.1 Experimental Setting

The evaluation of the proposed method is performed using real data acquired by

APDM OPAL miniature sensors [50]. These sensors provide 3-axis acceleration,

3-axis gyroscope, and 3-axis magnetometer data. 18 data sequences have been

collected, each one from a different person. A single sensor has been placed at the

waist of each subject, and they have been asked to perform some of activities in

no particular order. These sequences are combinations of five different activities:

running, walking, standing, sitting, and lying. This data acquisition procedure

has provided us with 6 hours and 21 minutes of real data samples acquired at a
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sampling rate of 128 Hz.

In order to randomize the testing process, we have built 25 sets of sequences.

For each set, we have randomly selected 12 sequences for training from the database,

and the 6 ones left have been used for testing. The 25 sets have been used to test all

feature extraction algorithms, in order to maintain the consistency. The data have

been processed both with the Acceleration Quaternion (AQ) method presented in

this chapter (using different values of β) and with the AAR method.

For sake of simplicity and a fair comparison in terms of computational com-

plexity, we have not made use of PEq̂xy in equation (2). Thus, we have provided

the classification algorithm with the orientation of the P z w.r.t. the earth.2 We

have visually checked that the processed acceleration and quaternion signals are

consistent with the dynamics of the activities performed.

2.4.2 Training description

Although the proposed feature extraction technique is not restricted to any clas-

sification algorithm, in this paper, we evaluate its performance by applying it to

an state-of-the-art Hierarchical Dynamic Model (HDM) based on Hidden Markov

Models (HMMs). We train a different HMM for each activity independently using

the Baum-Welch algorithm, following the scheme of [33] that will be explained in

detail in Chapter 3.

Each HMM is modelled using five states per activity, i.e., having a global model

with 25 identifiable states, and a Gaussian Mixture Model (GMM) observation

probability distribution with three mixture components. We use the Forward-

Backward (FB) algorithm to obtain the Maximum a Posteriori (MAP) estimate

of the test sequences.

2We believe that most of the useful information residing in the orientation of the subject must

rely on the inclination of its z-axis w.r.t. the earth. Nevertheless, further investigations will be

performed.
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2.4.3 Results

We compare the performance of the proposed AQ algorithm (with three different

values of β) with the AAR algorithm. Table 2.1 shows the probability of error of

both methods broken down by activity. The proposed AQ algorithm exhibits a

lower error rate for all tested β, largely outperforming the AAR algorithm in some

activities, and remaining very close in the others. Note that decreasing from 0.16

to 0.11 in probability of error is a remarkable reduction, since the bottleneck must

presumably lie on the classification algorithm.

Activity AAR AQ AQ AQ

β = 1 β = 3 β = 5

Running 0.38 0.18 0.19 0.20

Walking 0.02 0.05 0.02 0.05

Standing 0.03 0.06 0.05 0.05

Sitting 0.15 0.12 0.06 0.07

Lying 0.21 0.23 0.23 0.23

Mean 0.16 0.13 0.11 0.12

Table 2.1: Probability of error comparison of the AAR method and the proposed AQ

method.

In Table 2.2, the feature extraction algorithms have also been compared in

terms of the F-measure [104]. For all different values of β, the classification with

the proposed algorithm outperforms that obtained with the AAR method. Again,

the AQ method with β = 3 obtains the best results.

Finally, Figure 2.1 shows the F-measure range of accumulating the 6 test se-

quences of the 25 different sets, i.e., 150 different test sequences in total. For each

method, the horizontal red line inside every box shows the median value, the upper

and lower edges of the blue boxes are the 25th and 75th percentiles respectively,

and the vertical black dashed lines extend to the extreme cases. It can be seen

that most of the test sequences for all three values of β fall around a F-measure of
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Activity AAR AQ AQ AQ

β = 1 β = 3 β = 5

Running 0.75 0.88 0.87 0.86

Walking 0.92 0.95 0.95 0.94

Standing 0.98 0.96 0.97 0.97

Sitting 0.81 0.76 0.81 0.79

Lying 0.82 0.84 0.86 0.85

Mean 0.86 0.88 0.89 0.88

Table 2.2: F-measure of the AAR method and the proposed AQ method.

0.9 whereas for the AAR method they are around 0.85. The worst sequence with

the proposed AQ method with β = 3 obtains a F-measure = 0.8 while the worst

one with AAR remains at 0.75.

0.75

0.8

0.85

0.9

0.95

AQ                      AQ                     AQ                    AAR
β = 1                   β = 3                   β = 5                           

F−
m

ea
su

re

Figure 2.1: F-measure results for all test sequences using the AAR method and the pro-

posed AQ method.
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2.5 Conclusions

We have presented a novel data processing technique for human activity recogni-

tion based on quaternion representation. The proposed algorithm computes the

acceleration referred to the person frame, and the orientation of the person frame

with respect to the earth frame. Numerical results show a substantial improve-

ment in the results of the classification algorithm when the feature extraction is

performed with the proposed method. The computational cost of the proposed

algorithm is linear with the length of the sequence and extremely low for each

sample, requiring only few quaternion multiplications and additions. Moreover,

the simplicity of the algorithm would also allow, with a slight adjustment, an

online estimation of the person orientation.
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3
Discriminative Learning

3.1 Introduction

Hidden Markov Models (HMMs) have been applied to a wide range of sequence

modelling problems like speech recognition, Human Activity Recognition (HAR)

or time series analysis [88]. The Expectation Maximization (EM) algorithm is the

classical method used to learn the parameters of HMMs [14]. However, it exhibits

two main problems: 1) the likelihood is multi-modal so the EM is guaranteed to

converge only to a local maxima, and 2) although the complexity of the algorithm

growths linearly with the length of the training sequences, the multiple initializa-

tions required for minimizing the effects of the local convergence and the more than

quadratic growth with the number of hidden states makes EM computationally ex-

pensive with large training datasets. Bayesian inference methods including Gibbs

sampling [91], variational optimization [68], or Bayesian non-parametric methods
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[100] are even more computationally expensive and global convergence is still not

guaranteed.

The authors in [46] propose a spectral algorithm for learning HMMs with dis-

crete observations. Basically, the method adjusts the model by moment matching

instead of maximizing the likelihood, and it relies on the use of the observable

operators view of the HMM [51]. They use this approach to solve the prediction

and filtering problems. Although the authors focus on HMMs with discrete obser-

vations, there exists several extensions for continuous observations using kernels

[95, 97], solving the prediction and filtering problems too.

The application of HMMs to the HAR problem follows two main approaches.

The first one [114] consists of learning a unique HMM, modelling only the temporal

dependencies between different classes and assigning the same number of hidden

states and classes. This is a very simple model and it usually must be combined

with supervised learning algorithms. The second one [41] consists of learning one

HMM for each possible class and then choosing the model with the maximum

likelihood for each test case. The main problem of this approach is the need of

defining a sequence size to learn each model and to infer the test sequences. A

similar approach has been used in speech recognition where they initially train a

different HMM for each class (phoneme or word) using the EM, and then they fine

tune them discriminatively [53]. A more direct approach is based on discriminative

training of the HMM, computing directly the posterior probabilities of the classes

[108].

In this chapter, we propose a spectral algorithm for learning a discriminative HMM

with discrete observations. We extend the work in [46] obtaining a recursive al-

gorithm for estimating the labels of an observation sequence. We will introduce

the hierarchical dynamic model [34] employed to implement the discriminative

HMM and we will compare this approach with the spectral learning algorithm,

both considering discrete observations and a Gaussian Mixture Model (GMM) for

modelling the observations. The comparison between all the models will be evalu-

ated in two different HAR settings. We will show than under the same conditions,
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our algorithm outperforms the EM algorithm in computation time increasing the

accuracy performance. When comparing with continuous observations, the accu-

racy error is slightly worse, but again, the computational time duration of our

algorithm dramatically outperforms the EM.

3.2 Hierarchical Dynamical Model

The hierarchical dynamical model of a HMM was introduced in [34]. Under this

model, every activity is modelled independently using the raw signals from the

sensors and then the temporal dependencies between the different activities are

included in the model. The resulting model is a global HMM,M = (π,Ψ,θ) built

from several sub-HMMs, one for each activity, which are joined to yield the final

HMM. This model incorporates two different temporal dynamics, the intra-activity

dynamics, explaining the significant events happening in between the activities

and the inter-activity dynamics, explaining the behavior of the system when we

are transitioning between different activities. The observation model depends on

the data and the specifications of the problem.

3.2.1 Intra-activity dynamics

The intra-activity dynamics are modelled as a HMM for every activity j = {1, · · · , J},

Mj = (πj ,Ψj ,θj). The number of states used to train the different activities Nj is

a parameter that needs to be fixed in advance. We can model the joint distribution

of the activities and the states corresponding to a particular activity employing

the Markov Property as

p(X,S|j) =
T∏
t=1

p(xt|st, j)p(st|st−1, j) (3.1)

In [34], the authors study different topologies for the transition matrix depending

on the nature of the activities. For this thesis however, we are considering a fully

connected transition matrix with one initial state, one ending state and Nj − 2
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Figure 3.1: Topology of the transition matrix for every independent activity.

fully connected intermediate states to explain the temporal dependencies of the

Markov Chain (Figure 3.1). The initial probability distribution for each intra-

activity model πj is forced to start always with the first state of the HMM, that

is πj = [1, 0, · · · , 0].

3.2.2 Inter-activity dynamics

Once the intra-activity models have been trained, we can obtain the global HMM

defining the transition probabilities between the different activities. This global

HMM is expressed asM = (π,Ψ,θ), where the initial probabilities and the obser-

vations matrices are built by concatenating the corresponding parameters of the

different intra-activity models, and the transition matrix Ψ is built with two steps:

1. Setting the transition matrices of the intra-activity models Ψj in the block

diagonal matrix

Ψ =


Ψ1 0 · · · 0

0 Ψ2 · · · 0
...

...
. . .

...

0 0 · · · ΨJ

 (3.2)

2. Connecting the sub-HMMs, setting the last state of the sub-HMMs to the

initial state of all of the rest.

3. Resetting the self-transition probabilities corresponding to the last state of

each activity, such as all the rows in the transition matrix sum to 1.
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Finally, the initial probabilities distribution of the global HMM, π, is a uniform

distribution over the number of activities, where we set to 1
J the probability of the

first state of every sub-HMM, and the rest to 0.

3.3 Spectral Algorithm for Learning HMMs

In this section, we briefly explain the spectral algorithm for learning HMMs with

discrete observations presented in [46]. Let S ∈ {1, · · · , N} the set of hidden states

of a HMM and X ∈ {1, · · · ,M} the alphabet of the discrete observations. The

probability transition matrix is Ψ ∈ RN×N where Ψij = p(st+1 = i|st = j), the

observation probability matrix is O ∈ RM×N where Oij = p(xt = i|st = j), the

initial probabilities distribution is π ∈ RN with πi = p(s1 = i) and t is any time

instant. We can compute the probability of a sequence of observations in terms of

observable operators [51] for each observation in X :

Ax = Ψ · diag (Ox,:)

Ox,: = (Ox,1, · · · , Ox,M )

where diag(Ox,:) is a diagonal matrix with elements Ox,: and A is the tensor of

observable operators.

For any t, the probability of any sequence of observations x1:t = [x1, · · · , xt] can

be written as the following product of matrices:

p (x1:t) = 1TNAxt · · ·Ax1π = 1TMAxt:1π (3.3)

where 1N is a column vector of N ones. This expression depends on the transition

matrix Ψ and the observation matrix O of the model, but neither are known at

the training stage.

If we are only interested in the value of (3.3) and not in the parameters of the

model, we can use an invertible transformation of this equation that only depends

on observable quantities:

1TNAxt:1π = 1TNT−1TAxtS
−1 · · ·TAx1T

−1Tπ

= bT∞Bxt:1b1 (3.4)
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where T ∈ RN×N is the invertible transformation matrix and

bT∞ = 1TNT−1, Bx = TAxT
−1, b1 = Tπ

The idea of this transformation is to avoid the identification problem of the hidden

structure of the model by expressing (3.4) in terms of the marginal probabilities

of the vector of singletons p1 ∈ RM , matrix of pairs P21 ∈ RM×M and tensor of

triples Px
31 ∈ RM×M , ∀x. These quantities can be estimated from the data, and

they are related to the parameters of the HMM

p1 = p(x1) = Oπ

P21 = p(x2, x1) = OΨdiag (π) OT

Px
31 = p(x3, x2 = x, x1) =

= OAxΨdiag (π) OT ,∀x

In [46], the authors proof that T = UTO is a valid invertible transformation for

the HMM model, where U ∈ RM×N is the matrix of N left singular vectors of the

joint probability matrix P21. With this transformation, we can express the new

parameters of the model as:

b1 = UTp1

b∞ =
(
PT

21U
)†

p1 (3.5)

Bx =
(
UTPx

31

) (
UTP21

)†
,∀x

where (·)† is the Moore-Penrose pseudo-inverse operation.

To compute the spectral algorithm for learning a HMM, first we take m i.i.d.

triples [x1, x2, x3] from the training observations to obtain an estimation of p1,

P21 and Px
31. Then, we compute the Singular Value Decomposition (SVD) of P21,

obtaining the matrix of N left singular vectors U. Finally, we compute the HMM

transformed parameters in (3.5).
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3.4 Spectral Algorithm for Learning Discriminative HMMs

The algorithm in Section 3.3 can be used to obtain the probability of a sequence

of observations or the probability of the last observation given all the previous

ones. However, the focus of this thesis is the classification of a sequence of dis-

crete labels (or activities) given the observations, using the discriminative HMM

model in Figure 4.1. We want to solve 1) the problem of predicting the probabil-

ity of a sequence of labels given the observations and 2) the problem of predicting

the conditional probability of a label given all the previous labels and observations.

s1

y1x1

s2

y2x2

· · · st

ytxt

· · ·

Figure 3.2: Discriminative HMM graphical model of a sequence of t observations x1:t and

labels y1:t

Let L ∈ {1, · · · , L} be the alphabet of labels of the model and D ∈ RL×N

the label probability matrix where Dij = p(yt = i|st = j). We define the joint

probability of a sequence of labels y1:t and observations x1:t as in (3.3)

p(y1:t, x1:t) = 1TNAytxt · · ·Ay1x1π (3.6)

where the label and observation operators are

Aytxt = Ψdiag(Dyt,:)diag(Oxt,:) (3.7)

We have ML label and observation operators, i.e., the combination of all its pos-

sible values. In this discriminative HMM model, the labels and the observations

are independent given the hidden states, so we can define for simplicity a joint

label-observation matrix F ∈ RML×N where

Fijk = P (yt = i|st = k)P (xt = j|st = k) = DikOjk

and from (3.7), our new operators are Aytxt = Ψdiag(Fytxt,:).
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To solve the first problem, we compute the probability of a sequence of labels

given the observations applying the Bayes theorem and combining the expressions

(3.3) for the denominator and (3.6) for the numerator:

p(y1:t|x1:t) =
p(y1:t, x1:t)

p(x1:t)
=

1TNAytxt · · ·Ay1x1π

1TNAxt · · ·Ax1π
(3.8)

We are again only interested in the value of (3.8), and not in the values of the

matrices Ψ, O and D. We can apply an invertible transformation in the numer-

ator and the denominator of this expression so it only depends on the training

observations and labels. We follow Section 3.3 to obtain the denominator, and

we use an invertible transformation matrix R ∈ RML×N as in (3.4) to obtain the

numerator:

1TNAyt:1xt:1π = cT∞Cyt:1xt:1c1

where Ayt:1xt:1 is the product Aytxt · · ·Ay1x1 and

cT∞ = 1TNR−1, Cyx = RAyxR
−1, c1 = Rπ (3.9)

We want to represent the numerator in (3.8) in terms of the observable vector

q1 ∈ RML, matrix Q21 ∈ RML×ML and tensor Qyx
31 ∈ RML×ML,∀y, x. Also, these

observable quantities can be expressed in terms of the hidden parameters of the

model.

q1 = p(y1, x1) = Fπ

Q21 = p(y2, x2, y1, x1) = FΨdiag (π) FT

Qyx
31 = p(y3, x3, y2 = y, x2 = x, y1, x1) =

= FAyxΨdiag (π) FT

From [46] it is straightforward to proof that R = VTF is a valid invertible trans-

formation matrix for the model, where V is the matrix of left singular vectors of

Q21. We can calculate the transformed parameters of the model in (3.9) in terms

of V and these observable quantities:

c1 = VTq1

c∞ = (QT
21V)†q1

Clx = (VTQyx
31)(VTQ21)

†, ∀y, x
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To solve the second problem, we use the Bayes Theorem to express the condi-

tional probability of a label yt given the all the previous labels y1:t−1 and all the

observations x1:t

p(yt|y1:t−1, x1:t) =
cT∞Cyt:1xt:1c1

bT∞BxtZCyt−1:1xt−1:1c1
(3.10)

where Z = (UTO)(VTF) is the transformation term between Bxt and Cyt−1xt−1 .

We can further express Z in terms of an additional observable operator W21 ∈

RM×ML

W21 = P (x2, y1, x1) = OΨdiag (π) FT

Z = (UTW21)(V
TQ21)

†

Finally, equation (3.10) can also be represented recursively as follows:

P (yt|y1:t−1, x1:t) =
cT∞Cytxtct∑
y cT∞Cyxtct

ct+1 =
Cytxtct

bT∞Bxt+1ZCytxtct
(3.11)

We describe the spectral algorithm to solve both classification problems for dis-

criminative HMMs in Algorithm 2. It is interesting to notice that this algorithm

can also handle missing labels in the training. If we take a triple {x1, x2, x3} with

missing labels, we can just actualize p1, P21 and Px
31 without changing the other

operators and proceed normally.

3.5 Results

3.5.1 Inertial sensors database

In the first experiment, we use a HAR database obtained using miniature inertial

sensors from APDM [50], which provide acceleration, gyroscope and magnetometer

data. 18 different people were used as subjects for the experiments and only one

sensor was placed at the waist of each of them. Then, they were asked to perform

a sequence of activities, that were combinations of running, walking, standing,
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Algorithm 2 Spectral Algorithm for discriminative HMMs

Input:

Number of hidden states N and labels L.

Sample size M

m i.i.d. groups of triples {x1, x2, x3} and {y1, y2, y3},

Test sequence x1:t

Output: p(yt|y1:t−1, x1:t)

1. Compute the empirical estimates of p̂1, P̂21, P̂x
31, q̂1, Q̂21, Q̂yx

31 and Ŵ21.

2. Compute both the SVD of P̂21 to get the matrix of N left singular vectors

Û and the SVD of Q̂21 to get the matrix of N left singular vectors V̂.

3. Compute the transformed HMM model quantities b̂1, b̂∞, B̂x, ĉ1, ĉ∞, Ĉyx

and Ẑ.

4. Compute sequentially for all t the probabilities of the labels y1:t using

(3.11).
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sitting and lying, in no particular order. Also, the data was processed to make it

invariant to sensor orientation, following the work presented in Chapter 2. The

bottleneck of the spectral algorithm is the computation of the SVD. However,

we can overcome this problem by substituting the SVD by a random normalized

matrix and a regularization step, following the work in [73].

To evaluate our algorithm, we get 1000 random unique observations as cen-

troids from the training data and assign each observation to one of these centroids

according to the minimum euclidean distance. We re-estimate the centroids 100

times getting the mean accuracy error for each case1. Also, the number of cen-

troids for each activity is proportional to the number of training observations of

each activity. We perform a leave-one-out strategy, where we use 17 sequences of

activities as training and one sequence as test to evaluate the performance of the

algorithms. The number of hidden states is set to N = 25. For the EM algorithm,

we perform 5 iterations of the algorithm with k-means initialization. We consider

two different EMs, one with continuous observations, assuming that the proba-

bility of the observations is a GMM and the other one with the same discrete

observations as with the spectral case. We include the results from performing

clustering on the observations using the minimum euclidean distance as a baseline

performance. In Figure 3.3 we show the comparison of all the methods for each

leave-one-out case. We observe that the accuracy error for the GMM EM is in

mean 3.39% better than in the spectral learning. Also, the discrete EM algorithm

performs a 1.40% worse than the spectral learning algorithm. We can conclude

that the reason for the loss in accuracy is due to the use of discrete observations.

In fact, under the same assumptions, the absence of local minima in the spectral

algorithm results in a better performance.

The most important point of this comparison is the drastic difference in compu-

tation time. The EM algorithm requires multiple initializations to avoid the local

minima. Furthermore, the EM algorithm is a recursive algorithm with the number

of observations, meanwhile this restriction is not present in the spectral algorithm.

1The standard deviation for all the cases is less than 0.04.
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Figure 3.3: Accuracy error of the activity classification using a clustering classification,

the discriminative HMM with the EM algorithm, both with continuous and discrete ob-

servations, and the discriminative HMM with spectral learning and discrete observations.

In particular, in a 2.5 Ghz Intel Core i5 processor with Matlab and C for the

recursive section of the EM, 30.9 minutes are needed in the training step for one

of the sequences of the leave-one-out case, while in the spectral algorithm case

implemented exclusively in Matlab, only 1.37 seconds are needed.

3.5.2 Binary sensors database

In the second experiment, we have used the databases with discrete observations

generated by the authors in [103]. They implemented a binary sensor network

in three different home environments to detect several events, like movement of

objects or motion in a specific area. They placed 14, 23 and 21 sensors in each

house respectively and they tagged between 10 and 16 activities. We use the last-

fired feature representation of the database, where a sensor remains activated as

long as another sensor is not activated. We compare the results of the HMM using

the EM algorithm with the spectral algorithm for each of the three settings in

terms of the accuracy error in Table 3.1. We can see that our spectral algorithm

obtains better results in the first two houses while performing worse in the other

one.
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House HMM+EM Spectral HMM

A 0.105 0.053

B 0.516 0.332

C 0.161 0.227

Table 3.1: Accuracy error of the activity classification using both the discriminative HMM

with the EM algorithm and the discriminative HMM with spectral learning and discrete

observations.

3.6 Conclusions

In this chapter, we have proposed a spectral algorithm for learning a discriminative

HMM with discrete observations. Our algorithm exhibits a similar performance as

the continuous observations HMM while dramatically outperforming it in terms

of time computation. Also, it performs better in general than the discrete HMM,

leading to the hypothesis that the loss of accuracy is due to the discreteness of the

observations, not to the spectral algorithm implementation. The low computation

time and complexity and the possibility of obtaining directly the probability of

the labels make it useful for on-line tracking problems, e.g. human on-line activity

recognition applications. In the future, we will try to extend this spectral algorithm

for discriminative HMMs with continuous observations and for other models where

the large amount of training data make iterative methods prohibitive.
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4
Classifier Combination

4.1 Introduction

In multi-sensor systems we have to address the problem of information fusion. The

most common approach is to send the sensors’ raw signals to a central unit which

estimates the performed activity. This configuration, referred as signal fusion, im-

poses high bandwidth and synchronization requirements for wireless transmission.

Instead, a summary of the signals (features), or an estimation of the performed

activity can be transmitted, leading to feature fusion and decision fusion (also

named as classifiers combination) configurations respectively. Decision fusion also

offers the advantage of robustness against sensor failures with respect to feature

fusion, because only a single available sensor is needed to have an estimation of

the performed activity.

In ambulatory Human Activity Recognition (HAR) systems, the number of
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sensors employed in [83] and [111] are unrealistic. In some experiments a single

sensor system is used [42] and the placement of the sensor is of critical importance,

i.e., depending on the activity some positions are preferred over others. More

sensible numbers of sensors are 2 (e.g., waist and ankle, or waist and wrist, or

wrist and chest), 3 or 4. A system with this number of sensors can be practically

implemented using smartphones, wristbands, smartwatches, and some additional

low-consumption wearable sensors [40], being some of them commercially available

[1].

In this work we are considering a classifier combination approach. The same

approach is followed in [111], where a discriminative Hidden Markov Model (HMM)

classifier is trained for each individual sensor, and a Naive Bayes classifier fuses

these individual classification results. A more elaborated approach to Bayesian

classifier combination in a general framework is proposed in [56]. In particular,

the authors develop models for dependent and independent classifiers that simulta-

neously infer both the ground truth and the model parameters from the individual

classifier outputs. However, in the extreme case of using only two sensors, these

methods are equivalent to select the most discriminative sensor and, therefore,

the combination does not yield better precision than the best single classifier. To

obtain advantages even in the two sensors case, we propose to directly combine

the soft outputs of the classifiers.

Another important question in the HAR problem is the dynamic structure of

the human activities. Most HAR state-of-the-art methods (see [22] for a review

not restricted to inertial sensors) make use of some kind of dynamic Bayesian net-

work (mostly HMMs) to capture the dynamics of human activities. However, to

the extent of our knowledge, none of the proposed classifier combination methods

consider the dynamic structure on the combination result, i.e., no classifier combi-

nation method considers that the result of the combination depends on previous

classifier combination results.

Our work extends the Independent Bayesian Classifier Combination (IBCC)

model proposed in [56] in two directions. First, we substitute the categorical (hard)
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output of the individual classifiers with a vector that contains the confidence on

being performing each of the possible activities (soft output), which allows dealing

with a low number of sensors. The confidence can be the posterior probability of

the performed activity, but can be also a categorical value (for example: not likely,

perhaps, almost sure), or any other probabilistic or non probabilistic confidence

measure. The only restrictions to the confidence measure are to be positive and

normalized (the sum of all confidence measures must be one). Second, we include a

first-order Markov chain approximation to model the classifier combination output,

i.e., the ground truth, to capture the dynamics of the human activities. We call

Soft-output Classifier Combination (SCC) the model that includes the soft output

extension, and Markov Soft-output Classifier Combination (MSCC) the model that

includes both the soft output and the Markovian ground truth extensions. MSCC

provides good results in comparison with existing classifier combination methods

for the HAR problem in accuracy, speed of the inference process, and robustness

against sensor failures.

4.2 Human Activity Recognition by Soft Output Clas-

sifier Combination

4.2.1 Problem Formulation

We observe sequences from different people. Each sequence is composed of two

parts, the output of the soft classifiers, C, and the ground truth, T . We assume

that each pair (C, T ) is a realization of the same random process. Each sequence C

is composed by I instances of K soft output classifiers, C = {cki : i = 1, . . . , I, k =

1, . . . ,K, cki ∈ SJ}, where J is the number of classes (activities) and SJ is the

J-dimensional probability simplex, i.e., ckij ∈ R+,
∑

j c
k
ij = 1. If ckij > cki` then

p(ti = j|xki , θk) > p(ti = `|xki , θk), where xki is the i-instance input to classifier k,

that is characterized by a set of parameters θk. No other assumptions are made

on cki . The ground truth sequence is T = {ti : i = 1, . . . , I, ti ∈ {1, . . . , J}}, and

it can be unknown for some sequences.
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We consider two inference problems. The first and most computationally de-

manding is a transductive semi-supervised estimation problem. The data consist

of a set of labelled sequences, {(Cn, Tn) : n = 1, . . . , N} ≡ (C1:N , T1:N ), and a set

of unlabelled sequences, {Cun : n = 1, . . . , Nu} ≡ Cu1:Nu , and the aim is to estimate

the unknown ground truth sequences, T1:Nu . In the second problem, the aim is

to design an inductive classifier that avoids retraining the combination algorithm

every time we want to estimate the ground truth T ∗ from a new sequence C∗.

4.2.2 Soft Output Combination of Classifiers model

We assume that the outputs {cki : i = 1, . . . , I} of the classifier k are conditionally

independent of the ground truth. We propose a Dirichlet prior distribution on

cki with mean hkj and strength αkj as a natural choice for variables that lie in the

SJ simplex, contrary to the multinomial distribution used as a prior for discrete

observations in [56]. The observation model is the following

cki |ti = j,αk,Hk ∼ Dir(αkjh
k
j ), ti|p ∼ Cat(p),

where Hk = {hkj : j = 1, · · · , J} is the confusion matrix of the k classifier, and H

is the tensor containing the confusion matrices of the K classifiers. Like in [56], the

model of the ground truth ti is a categorical distribution with parameters p ∈ SJ ,

where pj = P (ti = j).

We propose a Gamma prior on the strength αkj and Dirichlet priors on hkj and p,

αkj |a, b ∼ Gamma(a, b), hkj |β,λj ∼ Dir(βλj),

p|ε,γ ∼ Dir(εγ),

where a, b, β, ε ∈ R+ and λj ,γ ∈ SJ . We further parametrize λj` = κδ(j, `) + (1−

κ)/J , where κ ∈ [0, 1], and δ(j, `) = 1 when j = ` and 0 otherwise. This prior

reflects our belief that the classifiers perform better than random, and κ controls

how close we believe the classifiers are to the ideal one, i.e., κ = 1. We call this

model SCC, and its graphical representation is shown in Figure 4.1.

The joint probability distribution of the observations and the model parameters
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Figure 4.1: Graphical representation of the SCC model.

is

p(C, T,α,H) = p(C|T,α,H)p(T |ε,γ)p(α|a, b)p(H|β,λ),

where the result of integrating out p, p(T |ε,γ), is the Dirichlet compound multi-

nomial distribution.

The probability of C given the rest of the parameters is

p(C|T,α,H) =

J∏
j=1

K∏
k=1

∏
i:ti=j

Dir
(
cki |αkj ,hkj

)
=

=
J∏
j=1

K∏
k=1

 Γ(αkj )

J∏
`=1

Γ(αkjh
k
j`)

J∏
`=1

(c̄kj`)
αk
j h

k
j`−1


nj

,

(4.1)

where c̄kj` =
(∏

i:ti=j
cki`

) 1
nj is the geometric mean of the observations whose ti = j,

nj =
∑I

i=1 I(ti = j) is the number of instances with ground truth j, I(·) is the

indicator function and Γ(·) is the gamma function. To infer the hidden variables

from the observations, we use a Gibbs sampling algorithm where the conditional
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distribution of each parameter given the rest is

p(αkj |rest) ∝
∏
i:ti=j

Dir
(
cki |αkj ,hkj

)
Gamma(αkj |a, b), (4.2)

p(hkj |rest) ∝
∏
i:ti=j

Dir
(
cki |αkj ,hkj

)
Dir(hkj |β,λj), (4.3)

p(ti = j|rest) ∝
K∏
k=1

Dir
(
cki |αkj ,hkj

)
(εγj + n¬ij ), (4.4)

where n¬ij is the same as nj without the i-th element.

In the case of the conditionals (4.2) and (4.3) there is no analytic expression

for the normalization constant, so we cannot directly sample from them. Sam-

pling from (4.2) is done using the Double Adaptive Rejection Metropolis Sam-

pling (A2RMS) algorithm proposed in [72]. Sampling from (4.3) is done with a

Metropolis-Hastings algorithm, using as proposal a uniform distribution in the

simplex of SJ . To draw samples uniformly from the simplex, we use the method

described in [45]. As an alternative, we also considered the Dirichlet prior of the

conditional distribution of hkj as proposal, obtaining similar results in both cases.

For the semi-supervised inference problem, the initial sampling from (4.4) is

done using the values of hkj and αkj estimated from the labelled sequences. This

strategy has shown to be effective against the peaky nature of the Dirichlet distri-

butions due to the low values of αkj obtained in the HAR problem.

To build the inductive classifier we use the predictive distribution which is

approximated by averaging M samples after the Gibbs algorithm reaches the sta-

tionary regime

p(T ∗|C∗, C1:N , T1:N ) ∝ p(C∗|T ∗, C1:N , T1:N )p(T ∗|C1:N , T1:N ) ≈

≈ 1

M

∑
m

p(C∗|T ∗,α(m),H(m))p(T ∗|T1:N ).

We compare this expression with a point estimate inference using the average

values of α and H in the Gibbs sampler, α and H,

t∗ = arg max
1≤j≤J

log p(t∗|c∗,α,H) = arg max
1≤j≤J

{
K∑
k=1

wk
j
T

log c∗k + w0
k
j

}
,
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where

wk
j = ᾱkj h̄

k
j − 1,

w0
k
j = log (εγj + nj) +

K∑
k=1

(
log Γ(ᾱkj )−

J∑
`=1

log Γ(ᾱkj h̄
k
j`)

)
.

We can see that the soft outputs of each classifier are weighted differently depend-

ing on the ground truth.

4.2.3 SCC With Markovian Ground Truth

In the HAR problem, the dynamic structure of the activities performed by a person

can be modelled using a Markov model. For example, the probability that a person

is running at a given instant is different depending on whether that person was

running or sitting at the previous instant. In its simplest form, the ground truth

can be modelled as a first order homogeneous Markov chain defined by the initial

state probability distribution π and the transition probability matrix Ψ. We will

consider Dirichlet priors for both π and the rows of Ψ, ψj , with independence

between the rows (1 ≤ j ≤ J), and favouring self transitions. In summary,

p(T |π,Ψ) = p(t1|π)

I∏
i=2

p(ti+1|ti,Ψ),

with priors

t1|π ∼ Cat(π),

ti+1|ti = j,Ψ ∼ Cat(ψj),

π|η ∼ Dir(ηuJ),

ψj |µ,φj ∼ Dir(µφj),

where η, µ ∈ R+ are the strength parameters, uJ is the J-dimensional vector

[1/J, . . . , 1/J ] and φj ∈ SJ with φj` = φδ(j, `) + (1 − φ)/J , where φ ∈ [0, 1]. uJ

can be replaced with a more informative hyper parameter if further information is

available. The observation model is the same as in the SCC model (4.1). We call

this model MSCC, and its graphical representation is shown in Figure 4.2.

57



CHAPTER 4. CLASSIFIER COMBINATION

ck2ck1 ckI

t2t1 tI

π

αkj hkj

ψjη µ φj

a b β

λj

. . .. . .

. . .
k = 1 . . .K

j = 1 . . . J

j = 1 . . . J

Figure 4.2: Graphical representation of the MSCC model.

The joint probability distribution of the observations and the model parameters

is now

p(C, T,α,H,Ψ,π) = p(C|T,α,H)p(T |π,Ψ)p(α|a, b)p(H|β,λ)p(π|η)p(Ψ|µ,φ).

In the semi-supervised inference problem, inference for the unknown ground

truth sequences is done using the Forward-Filtering Backward-Sampling (FFBS)

algorithm [37]. The forward step of the FFBS for each unlabelled sequence is

defined by the recursion

a1(j) = p(t1 = j|c1:K1 ,α,H,π) = πj

K∏
k=1

Dir(ck1|αkj ,hkj ),

ai(j) = p(ti = j|c1:K1:(i−1),α,H,Ψ) ∝
K∏
k=1

Dir(cki |αkj ,hkj )
J∑
`=1

ψ`jai−1(`),

and the backward step is done by sampling recursively from

ti ∼ p(ti = j|ti+1 = `, c1:K1:(i+1),α,H,Ψ) ∝

∝

K∏
k=1

p(cki+1|ti+1 = `, αk` ,h
k
` )ψj`ai(j)

ai+1(`)
,
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initializing by sampling from tI ∼ Cat(aI). The Gibbs sampling updates for α

and H are the same as in the SCC model. The conditional distributions of π and

Ψ are easily determined due to conjugacy

p(π|rest) = Dir(π|q1, . . . , qJ), qj =
η

J
+ I(ti = j),

p(ψj |rest) = Dir(ψj |µφj + mj),

where mj is the count of transitions from state j to the rest of the states.

The derivation of the sampled based approximation of the predictive distribution,

as well as the point estimate method in the second inference problem are straight-

forward.

4.3 Performance evaluation

4.3.1 Databases

Two HAR databases were created using APDM Opal [2] wearable inertial sensors.

These sensors provided synchronized measurements from three axis accelerome-

ters, gyroscopes and magnetometers. The first database contains the measure-

ments from eight different people with two sensors placed on the waist and ankle,

whereas the second database contains the measurements from seven different peo-

ple with four sensors placed on the waist, ankle, chest and wrist. People with ages

between 24 and 33 were chosen as subjects for the data acquisition system. Each

of them was asked to perform a combination of five different activities: running,

walking, standing, sitting and lying (in no particular order) under semi-naturalistic

conditions in an indoor environment during a minimum of 20 minutes.1 In Table

4.1 we show the empirical probabilities of each activity in both databases, that

we consider typical from an active person during the day. The activities were

labelled with the help of a synchronous video recording and the original data was

downsampled to 16 Hz. The orientation correction of the database was performed

using the algorithm in [30].

1The datasets are available at http://www.tsc.uc3m.es/dataproy/har/databases.zip
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Table 4.1: Empirical activities distribution in the databases.

Database Running Walking Standing Sitting Lying

Two sensors 0.034 0.208 0.296 0.287 0.175

Four sensors 0.026 0.156 0.305 0.300 0.213

We also employ the publicly available database described in [64] and named

DaLiAc. This database contains the synchronized measurements from three axis

accelerometers and gyroscopes of four wearable inertial sensors placed on the wrist,

chest, waist and ankle, similar to our second database. 19 people performed a

sequence of 13 different activities (standing, sitting, lying, washing dishes, vac-

uuming, sweeping, walking, ascending and descending stairs, treadmill running,

bicycling (50 watt), bicycling (100 watt) and rope jumping). We merged the two

bicycling activities because this distinction is the main source of errors of the sys-

tem and obscures the comparison among methods. This modification does not

change the conclusions of the rest of this work. We downsampled the data to 16

Hz to make a fair comparison between all the databases. As the DaLiAc database

does not contain data from magnetometers, we employ the orientation correction

algorithm in [35].

Among the multiple classification techniques that provide a posterior prob-

ability or soft output (see [61] for a review), we apply HMMs directly on the

observations, so no feature selection is required. HMMs offer the advantage of

estimating the posterior probability of the activities using the Forward-Backward

(FB) algorithm. In particular, we trained a HMM classifier with a Gaussian mix-

ture observation model for each sensor using the standard Baum-Welch algorithm

[75]. We configure our HMMs using the structure described in [34], assigning

three states per activity. The outputs of the classifiers are obtained following a

leave-one-person-out methodology, i.e. the soft outputs C for each person’s record

correspond to the posterior distribution obtained using the forward-backward al-

gorithm with the HMM that is trained with the rest of the people in the database.

This methodology allows us to evaluate the inter-person variability of the database.
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The error results from each person and sensor when performing Maximum a Pos-

teriori (MAP) estimation over the individual classifiers are shown in Table 4.2.

4.3.2 Baseline models

For the validation of the whole approach, we apply a single classifier trained with

all the sensor signals, labelled as joint sensors in Table 4.2. As a baseline measure

for classifier combination we use a model that assumes i.i.d. classifiers. Under

this model, given a true posterior probability output ckij = p(ti = j|xki , θk), we

directly calculate the posterior probability of the ground truth as the product of

the outputs of the soft classifiers

p(T |c1:K) =
K∏
k=1

ck.

This model assumes that we have an i.i.d. equiprobable ground truth, p(T ) =∏I
i=1 p(ti), p(ti) = 1/J and i.i.d. classifiers p(c1:Ki ) =

∏K
k=1 p(c

k
i ). In Table

4.2 we call this baseline model Posterior Probability Combination (PPC) and we

also include the error results of the joint sensors model and the error results of

performing MAP estimation on the PPC model.

We observe that there exist significant differences in the error results between

different sequences and sensors. A significant inter-person variability is present in

the databases due to the nature of the experiments. This problem naturally arises

in all HAR databases where data from more than one subject is collected. One

method to reduce this variability is to employ an increasing number of sensors.

Another issue is that the location of the sensors changes between individuals. As

an example, right and left ankles were equally used. This obviously leads again to

important differences in error performance.

In general, PPC performs better than the joint sensors baseline model. The

high dimensionality of the data makes the posterior probability highly multi-

modal, and finding the optimal solution becomes challenging. Moreover, as we

increase the number of sensors, this approach obtains worse error results than the
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Table 4.2

Leave-one-person-out test error results of all the databases, with a comparison between

each independent classifier, the PPC method and the joint sensors method.

(a) Two sensors database

Person Waist sensor Ankle sensor PPC Joint sensors

1 0.139 0.349 0.081 0.166

2 0.112 0.320 0.086 0.060

3 0.046 0.239 0.027 0.136

4 0.140 0.497 0.299 0.183

5 0.057 0.443 0.094 0.048

6 0.122 0.374 0.177 0.127

7 0.101 0.185 0.126 0.012

8 0.017 0.423 0.013 0.191

Average 0.092 0.354 0.113 0.116

(b) Four sensors database

Person Wrist sensor Chest sensor Waist sensor Ankle sensor PPC Joint sensors

1 0.390 0.164 0.228 0.018 0.056 0.084

2 0.340 0.304 0.249 0.265 0.174 0.296

3 0.385 0.286 0.141 0.154 0.120 0.256

4 0.248 0.249 0.096 0.143 0.086 0.140

5 0.171 0.109 0.200 0.129 0.016 0.016

6 0.283 0.024 0.110 0.093 0.028 0.114

7 0.406 0.182 0.307 0.059 0.097 0.279

Average 0.317 0.188 0.190 0.123 0.083 0.169

(c) DaLiAc database

Person Wrist sensor Chest sensor Waist sensor Ankle sensor PPC Joint sensors

1 0.099 0.183 0.048 0.117 0.042 0.263

2 0.330 0.110 0.339 0.189 0.095 0.052

3 0.615 0.071 0.273 0.201 0.125 0.176

4 0.162 0.362 0.349 0.798 0.140 0.285

5 0.572 0.359 0.275 0.192 0.246 0.146

6 0.326 0.086 0.041 0.181 0.216 0.103

7 0.605 0.188 0.306 0.188 0.098 0.147

8 0.534 0.349 0.386 0.176 0.111 0.081

9 0.244 0.047 0.162 0.153 0.091 0.171

10 0.494 0.144 0.270 0.224 0.152 0.149

11 0.182 0.054 0.179 0.139 0.081 0.139

12 0.297 0.096 0.454 0.343 0.113 0.322

13 0.367 0.116 0.240 0.114 0.071 0.083

14 0.451 0.224 0.124 0.176 0.139 0.295

15 0.336 0.248 0.156 0.178 0.102 0.038

16 0.272 0.175 0.205 0.261 0.112 0.342

17 0.324 0.084 0.554 0.321 0.299 0.309

18 0.199 0.155 0.119 0.338 0.125 0.232

19 0.109 0.032 0.075 0.298 0.147 0.071

Average 0.343 0.162 0.240 0.241 0.132 0.179
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PPC method.

PPC performs better with four than two sensors due to averaging. We should

expect an increase of performance in this baseline model as we increase the number

of classifiers. Although in all databases we could choose one of the sensors to

classify the different activities, obtaining a similar performance, the high inter-

person variability of HAR systems makes this approach intractable, as we would

over-fit the solution to our data.

4.3.3 Basic set of activities experiment

We use the first two databases to test the SCC and MSCC models in a low number

of activities setting. First we describe some details about the inference, then we

compare SCC and MSCC and finally we evaluate their performances in comparison

to PPC and the IBCC as proposed in [56]. The IBCC results have been obtained

after performing a MAP classification in each of the cki values in the databases.

As hyper parameters in the SCC model we set a = 20 and b = 10, β = 20

and κ = 0.6 (this prior enforces our belief that our classifiers perform better than

random and have most of their mass located at the true class), ε = 20 and γj = 1
J .

In the MSCC model we additionally set µ = 20 and φ = 0.8 (we assume a diagonal

dominant transition matrix because of the nature of human activities and the

sampling rate in the database), and η = 20. We have tried several combinations of

values for the hyper parameters without any significant differences in the results.

This independence on the hyper parameters is a consequence of the large databases

used in the experiments, that make the likelihood term in (4.2) dominant.

In the semi-supervised inference setting, we first run 10 iterations of the Gibbs

sampler using the labelled sequences to obtain the initial values H and α. Then,

with both the labelled and the unlabelled sequences we gather 500 samples to

estimate the unknown T after a burn-in period of 100 iterations. To build the

inductive classifier, we run the Gibbs sampler using exclusively the labelled data.

Likewise, after a burn-in period of 100 samples, we collect 500 samples from the

posterior probability of H and α to compute the predictive distribution and the
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point estimate approximation.

Although we choose the same number of iterations in the Gibbs sampler, the

behaviour of both the SCC and MSCC methods differ significantly. In Figure 4.3

we represent the error rate convergence of both algorithms after the 100 burn-in

iterations in one sequence of the two sensors database, and Figure 4.4 represents

the percentage of the estimated activity samples that varies between consecutive

iterations. We can see how averaging is essential for SCC but both averaging and

the 500 iterations were unnecessary for the MSCC. This is corroborated in Figures

4.5-4.6, where we represent the estimated activity in the last Gibbs iteration. It

becomes evident that the iterations in the MSCC model are more stable than in

the SCC model, leading to a faster practical convergence of the algorithm.
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Figure 4.3: Cumulative mean error rate of SCC and MSCC models.

Tables 4.3 to 4.6 show the error rates obtained with PPC, IBCC, and both

SCC and MSCC using the three inference methods. The standard deviations of

the error rates for all cases are of order 10−3 and were not included in the results.

As expected, both SCC and MSCC achieve a lower error rate than IBCC, due

to the use of soft classifiers instead of hard ones. Also, SCC and MSCC perform
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Figure 4.4: Variation percentage of ground truth samples between consecutive Gibbs sam-

pling iterations.

better than PPC, due to the classifier combination structure of both models. The

differences between the SCC and MSCC with semi-supervised inference are neg-

ligible but, as mentioned above, the run-time complexity of the MSCC can be

significantly lower. In the two sensors database there are no differences between

the semi-supervised and the inductive methods, but in the four sensors database

semi-supervised inference methods perform better. The difference between the

semi-supervised and the Gibbs averaging inference methods is due to the change

in the paradigm, from transductive to inductive learning. The difference between

the Gibbs averaging and the point estimate of the predictive distribution is simply

due to the averaging effect. The later differences are smaller in the MSCC due to

the stability of the estimated ground truth.

4.3.4 Rich set of activities experiment

We have replicated the experiments performed by the authors in [64] using the

DaLiAc database. We used a sliding window of 5s with 50% overlap in the data,
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Table 4.3

Leave-one-person-out mean error results of SCC in the two sensors database.

SCC

Person PPC IBCC Semi-supervised Gibbs averaging Point estimate

1 0.081 0.135 0.115 0.115 0.115

2 0.088 0.066 0.066 0.066 0.066

3 0.027 0.016 0.014 0.014 0.014

4 0.299 0.140 0.139 0.138 0.138

5 0.094 0.065 0.046 0.046 0.046

6 0.177 0.112 0.086 0.087 0.087

7 0.126 0.126 0.096 0.097 0.096

8 0.013 0.079 0.012 0.013 0.012

Average 0.113 0.092 0.072 0.072 0.072

Table 4.4

Leave-one-person-out mean error results of MSCC in the two sensors database.

MSCC

Person PPC IBCC Semi-supervised Gibbs averaging Point estimate

1 0.081 0.135 0.115 0.113 0.113

2 0.088 0.066 0.066 0.066 0.066

3 0.027 0.016 0.013 0.013 0.013

4 0.299 0.140 0.137 0.137 0.136

5 0.094 0.065 0.041 0.040 0.040

6 0.177 0.112 0.084 0.085 0.085

7 0.126 0.126 0.095 0.095 0.095

8 0.013 0.079 0.011 0.010 0.010

Average 0.113 0.092 0.070 0.070 0.070

Table 4.5

Leave-one-person-out mean error results of SCC in the four sensors database.

SCC

Person PPC IBCC Semi-supervised Gibbs averaging Point estimate

1 0.056 0.008 0.011 0.010 0.010

2 0.174 0.058 0.039 0.052 0.128

3 0.120 0.149 0.119 0.120 0.120

4 0.086 0.013 0.013 0.070 0.065

5 0.016 0.017 0.019 0.026 0.026

6 0.028 0.037 0.018 0.063 0.087

7 0.097 0.117 0.018 0.017 0.017

Average 0.083 0.057 0.034 0.055 0.065
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Figure 4.5: Estimated activity in the last Gibbs iteration of the 6th sequence using the

SCC.

then we extracted the 152 specified features and we replicated the hierarchical

classification algorithm based on different classifiers depending on the group of

activities.

For comparison, we used Support Vector Machines (SVMs) for the whole sys-

tem, as we obtained better performance than using K-Nearest Neighbourss (kNNs)

for the walk classifier and AdaBoost for the house classifier.2 Considering one bicy-

cling activity, the overall error is 5%, estimated from the confusion matrix reported

in [64].

2The results were obtained with MatlabR©2012b version for all the experiments. To compute

the SVM we employed the functions svmtrain and svmclassify from the Bioinformatics Toolbox

using a radial basis kernel. We set the scaling factor to 1 and gamma to 1 divided by the number

of features, as proposed in [64]. To compute the KNNs we employed the function knnclassify,

also from the Bioinformatics Toolbox, setting k = 5 and using an euclidean distance. To compute

the AdaBoost we employed the adaboost function from the publicly available spider toolbox

for MatlabR© (http://people.kyb.tuebingen.mpg.de/spider/main.html). We used KNNs as weak

classifiers setting k = 5 and performing a 5-folds cross validation.
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Figure 4.6: Estimated activity in the last Gibbs iteration of the 6th sequence using the

MSCC.

For our classifier combination algorithms, we obtain the classifiers as in the pre-

vious section. The FB algorithm provides 16 samples of the posterior probability

of the activities per second. We calculate the average of the posterior probabili-

ties every 5s with a sliding window with 50% overlap to make a fair comparison

between the different methods. The rest of the settings of the experiment is un-

altered; i.e., the hyper parameters and the semi-supervised inference conditions.

We also compare the MSCC results to the PPC and IBCC models in the same

conditions.

In Table 4.7 we show the error results of all the algorithms. We only present the

results of the best case algorithm on the previous experiment, the MSCC method

with the semi-supervised inference setting.

We observe that MSCC is also the best method employing a rich set of activities

database. We obtain an increase of performance of around 3% with respect to the

IBCC model and the algorithm in [64], which is consistent with the basic activities

experiment results. Replicating the experiments in the aforementioned conditions,
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Table 4.6

Leave-one-person-out mean error results of MSCC in the four sensors database.

MSCC

Person PPC IBCC Semi-supervised Gibbs averaging Point estimate

1 0.056 0.008 0.009 0.009 0.009

2 0.174 0.058 0.036 0.068 0.070

3 0.120 0.149 0.120 0.121 0.121

4 0.086 0.013 0.012 0.037 0.038

5 0.016 0.017 0.018 0.017 0.017

6 0.028 0.037 0.018 0.021 0.022

7 0.097 0.117 0.017 0.016 0.016

Average 0.083 0.057 0.033 0.041 0.042

Table 4.7

Leave-one-person-out error performance results of PPC, IBCC, MSCC and hierarchical

classifiers method for the DaLiAc database with four sensors and 19 different sequences

Person Joint PPC IBCC MSCC [64]

1 0.263 0.042 0.025 0.023 0.071

2 0.052 0.095 0.037 0.010 0.044

3 0.176 0.125 0.042 0.018 0.054

4 0.285 0.140 0.256 0.012 0.068

5 0.146 0.246 0.323 0.258 0.111

6 0.103 0.216 0.028 0.023 0.023

7 0.147 0.098 0.137 0.047 0.043

8 0.081 0.111 0.053 0.011 0.104

9 0.171 0.091 0.012 0.051 0.031

10 0.149 0.152 0.089 0.059 0.106

11 0.139 0.081 0.026 0.015 0.062

12 0.322 0.113 0.024 0.006 0.066

13 0.083 0.071 0.033 0.008 0.073

14 0.295 0.139 0.029 0.038 0.061

15 0.038 0.102 0.034 0.023 0.093

16 0.342 0.112 0.137 0.088 0.133

17 0.309 0.299 0.060 0.008 0.118

18 0.232 0.125 0.058 0.165 0.118

19 0.071 0.147 0.009 0.004 0.082

Mean 0.179 0.132 0.074 0.046 0.077
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Table 4.8

Confusion matrix of the MSCC algorithm for the DaLiAc database. The code of the

activities is: ST = standing, SI = sitting, LY = lying, WD = washing dishes, VC =

vacuuming, SW = sweeping, WK = walking, AS = ascending stairs, DS = descending

stairs, RU = running, BC = bicycle and RJ = rope jumping

ST SI LY WD VC SW WK AS DS RU BC RJ

ST 446 0 2 3 0 0 0 0 0 0 0 0

SI 0 430 5 20 0 0 0 0 0 0 0 0

LY 4 26 426 0 0 0 0 0 0 0 0 0

WD 4 0 0 931 3 0 0 0 0 0 0 0

VC 0 0 0 5 426 29 0 0 0 0 0 0

SW 0 0 0 0 41 698 0 0 0 0 0 0

WK 0 0 0 0 0 21 1951 64 7 0 0 0

AS 0 0 0 0 0 0 22 295 2 0 0 0

DS 0 0 0 0 0 0 2 18 255 0 0 0

RU 0 0 0 0 0 0 6 0 0 897 7 0

BC 0 96 0 0 2 19 0 0 0 0 1727 0

RJ 0 0 0 0 0 0 0 0 0 0 10 245

we obtained an error of 0.077 instead of the 0.050 reported in [64]. Nonetheless,

we still improve their original results with our algorithm.

In Table 4.8 we show the confusion matrix of the MSCC algorithm for this

experiment. We observe that all activities are mostly classified correctly, with less

than an 8% error in any activity. This shows the robustness of our algorithms with

respect to the different activities of the database, where our worst case activity is

better by a 7% than the worst case activity reported by [64].
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Table 4.9

Mean error results of the Daliac database when one of the sensors stops working at test.

Sensor PPC IBCC MSCC [64] SVM + IBCC

Wrist 0.134 0.082 0.051 0.271 0.126

Chest 0.186 0.111 0.052 0.681 0.138

Waist 0.161 0.087 0.042 0.816 0.136

Ankle 0.138 0.117 0.079 0.735 0.115

No failure 0.132 0.074 0.042 0.077 0.131

4.3.5 Robustness

We have also tested the robustness of the system against sensor failures. In both

SCC and MSCC, we only need to include an indicator variable aki in the observation

models (4.1). This variable is one if the classifier is active or zero if the classifier

is inactive for a given time instant. The probability of the classifiers C given the

rest of the parameters is now

p(C|T,α,H) =
J∏
j=1

K∏
k=1

∏
i:ti=j

Dir
(
cki |αkj ,hkj

)I(aki =1)
.

According to the previous equation, when a sensor becomes inactive we simply do

not consider its data in the observation model.

We have performed an experiment where we simulate the malfunction of one

of the sensors during the test stage by deleting its data only in the test sequences.

The results are shown in Table 4.9 where we consider all cases with one sensor

broken.

The loss in performance in the PPC and IBCC is similar to the MSCC algo-

rithm, as both methods are based on the combination of classifiers. Losing one of

the sensors in the combination algorithms implies a loss in performance of around

4% whereas in the method based on hierarchical classifiers it is much larger. As

expected, all schemes based on sensor combination are more robust against fail-

ures than single classifier schemes. In fact, if we compare the robustness of using

the model in [64] against training one SVM per sensor and then combining the
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classification using the IBCC model, we can see that there exists almost no loss in

performance.

4.4 Conclusions

We have proposed new Bayesian techniques to combine soft outputs classifiers for

the person-independent HAR problem. Our work extends the IBCC model pro-

posed in [56] by using soft output classifiers to deal with a low number of sensors

and a first-order Markov ground truth to capture the dynamics of the human

activities. Our methods exhibit consistent error rate reduction and higher robust-

ness against sensor failures when compared with a single classifier that employs

all the sensor signals using different real HAR databases. These results show the

advantages of classifier combination models over single classifier designs. When

compared with the IBCC, both the SCC and the MSCC models take advantage of

the soft output model and lower the error rate of the IBCC, but the real advantage

here is the low run-time complexity of the MSCC due to algorithm stability and

the use of the FFBS algorithm.

The contribution of this work is not a new classifier, but a classifier combination

model for the HAR problem. Although we used HMMs as individual classifiers,

the model can be employed without any modification for combining homogeneous

or heterogeneous individual classifiers of any kind.

The remaining challenge is to increase the robustness of our methods against

inter-person variability. Multi-task learning schemes may help to address this

problem. Another future extension consists of considering more robust classifiers,

which can be easily incorporated in the combination algorithms due to their ability

to work with non-probabilistic soft or hard-output classifiers.
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Energy efficiency in HAR Systems

5.1 Introduction

The energy efficiency of smart-phones is an important topic in many sensing related

applications [84]. The HAR system needs to share the battery resources between

all the applications of the smart-phones. However, the embedded sensors are one

of the main sources of battery consumption, decreasing dramatically the battery

of the devices during synchronous data acquisition at high sampling frequencies.

Many different approaches exist to reduce the data acquisition of the wearable sen-

sors. The authors in [65] study the effect of the sampling frequency of the smart-

phones in a HAR system. They demonstrate that an activity recognition based on

low sampling frequencies is feasible for long-term activity monitoring. In [109] the

authors study the influence of the performed activities over the energy efficiency of

the sensors. They develop a HAR system where they dynamically adapt the sam-
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pling frequency and the classification features employed on the system depending

on the performed activities. They obtain a priori the configuration parameters for

every activity and select them accordingly while tracking continuously the ongo-

ing activities. Both approaches consider a continuous monitoring, adapting the

sampling frequency of the sensors depending on the specifications. However, with

some long-term activities, e.g. sleeping, data acquisition can be halted completely

without losing information, further enhancing the energy efficiency of the sensors.

In this work, an active sensing solution based on the acquisition of intermittent

data windows when the uncertainty over the performed activities exceeds a critical

value is proposed.

Determining the optimal position of the sensors on the body is also vital to

increase the energy efficiency of the sensors. Not all the body positions are in-

formative while recognizing some of the activities, and most of the data acquired

becomes either useless or redundant. In that respect, the authors in [10] ana-

lyze the recognition performance of IMUs located on several body areas, choosing

the sensor that maximizes the accuracy of the system while employing many dif-

ferent sensor position configurations. Furthermore, they demonstrate that the

performance of each device strongly depends on the measured human activities.

A common alternative to optimizing the position of a unique sensor on the body

is the combination of the information provided by multiple sensors. In [111] the

authors implement a Naive Bayes classifier that fuses the individual classification

results of each sensor. This approach selects the best sensor for the recognition of

every activity independently. A more elaborate approach is the Bayesian Classifier

Combination problem studied in [56], where the authors infer simultaneously the

ground truth and the model parameters of the individual classifiers. In [78], a

soft output combination of individual classifiers is considered, where the posterior

probability of the activities provided by each individual classifier is employed to

infer the parameters of the combination model. In these approaches, all the sensors

are employed in the recognition and no consideration over the energy consump-

tion of the sensors is addressed. A different approach is considered in [107], where
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the authors propose a hierarchical sensor management strategy to recognize user

activities and to detect activity transitions, deciding which sensors to use at any

given time. Instead of the ad hoc approximation considered in [107], a systematic

approach to decide when to perform the data acquisition with a HAR system based

on Markov processes is followed.

The main purpose of this paper is to develop a general framework that achieves

the joint optimization of the energy efficiency of the sensors, the number of sensors

employed and its location and the performance of the HAR system. In a single

sensor long-term monitoring HAR system, when the sensor acquires data with a

sampling frequency of tens of Hertz, the mass of the posterior probability distribu-

tion of the activities given the data is located on a single activity during most of

the time. Accordingly, the uncertainty (or entropy) of the performed activity is low

in general. Modelling the data with a Markov process, the posterior probability

distribution of the activities when data is not available approaches asymptotically

to the stationary distribution of the process and the entropy of this posterior in-

creases. A novel active sensing strategy exploiting this property is proposed, i.e.,

to stop acquiring observations when this entropy is low, and to estimate the next

time instant when the entropy reaches a certain threshold and new data needs to

be acquired. This is a reasonable assumption in a long-term activity recognition

system, where some activities are performed continuously during extended periods

of time and only a few observations are needed to recognize these activities.

Additionally, an optimization problem for the multiple sensors framework with

energy constraints is proposed. The maximization of the mutual information be-

tween the activities and the models of the sensor observations provides the optimal

sensor configuration to be employed [21]. Depending on the activities distribution

and the energy constraints of the devices, the sensor configuration is adapted dy-

namically to provide the maximum amount of information to the HAR system.

There exists several approaches to numerically characterize this mutual informa-

tion. In [9] the authors find an expression of the lower and upper bound of the

mutual information by employing an arbitrary auxiliary distribution that approx-
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imates the conditional probability distribution of the mutual information. Alter-

natively, the authors in [48] find an expression of the lower and upper bound of the

entropy of a random variable with Gaussian probability distribution. However, as

reflected in this work, finding a tractable expression of the bounds for a general

observation model is difficult. An approximation of the mutual information us-

ing Monte Carlo (MC) sampling [66] is considered instead, since the model of the

observations is known in the energy efficiency setting.

5.2 Problem Statement

The implementation of a HAR system with K classifiers to recognize J different

activities is considered. The sequence of observations Xk = {xkn}Nn=1 of length

N , indicates the confidence of the kth classifier over the sequence of performed

activities S = {sn}Nn=1, with sn ∈ {1, 2, · · · , J} and xkn belonging to the J − 1 di-

mensional probability simplex. All the classifiers X are conditionally independent

given S, and the conditional likelihood of the observation xn for all the classifiers

given the performed activity sn is

p(xn|sn) =
K∏
k=1

p(xkn|sn)z
k
n , (5.1)

where zkn ∈ {0, 1} is an indicator variable representing whether the kth classifier

is active or inactive at time instant n. The observation model proposed for the

classifiers is a Dirichlet distribution with parameters γ, p(xkn|sn) = Dir(xkn|γksn),

since the observations of the classifiers are defined over a probability simplex. A

HAR system modelled as a Hidden Markov Model (HMM) with observations X,

hidden variables S and indicator variables Z over the observations is proposed

(Fig. 5.1). This HMM is characterized by an initial probabilities distribution, a

transition matrix Ψ ∈ RJ×J and the model of the observations p(xkn|sn) [89]. The

parameters of the model are trained in advance, and the remaining problem is how

to perform the data acquisition for a new sequence of observations.

The energy efficiency problem consists of selecting the optimal sensor configu-

ration, Z = {zkn}Nn=1 for k = {1, · · · ,K} that minimizes the data acquisition of the
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Figure 5.1: Graphical model of the HMM employed in the HAR system.

HAR system while maximizing its performance. No further assumptions are made

over Z, i.e., data is acquired from a combination of the available sensors during

some periods of time while no data is acquired during other periods. This con-

figuration needs to be updated online, adapting the strategy employed depending

on the observations provided by the classifiers, the posterior of the activities given

these observations and the energy constraints of the system.

The energy efficiency method is divided in two separate optimization problems:

1) Selecting the temporal scheme for the data acquisition, 2) Selecting the sensor

configuration to be employed during each data acquisition given our knowledge

over the posterior of the activities, the sensor observation models and the energy

constraints. The algorithm optimizes both problems iteratively to perform the

activity recognition until the long-term monitoring concludes.

5.3 Active Sensing Strategy

The objective of the active sensing strategy consists of selecting an optimal tempo-

ral acquisition policy that reduces the data acquired by the sensors while maximiz-

ing the performance of the HAR system. Under this strategy the system decides

when to acquire a new window of data observations based on the previous data

acquisitions and the posterior of the activities given this data. When the system

is modelled using HMMs, the posterior probability of the activity sn given all the

observations until time instant n, x1:n, and the sensor configuration employed,
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z1:n, is defined by the forward step of the Forward-Backward algorithm [89]. The

posterior probability distribution of any activity in the future given the current

known data is computed by marginalizing all the activities between the current

time instant n and the future time instant n + n0. This marginalization results

in an expression of the posterior distribution p(sn+n0 |x1:n, z1:n) given by the n0

power of the transition matrix multiplied by the posterior distribution of sn

p(sn+n0 |x1:n, z1:n) = Ψn0p(sn|x1:n, z1:n). (5.2)

Equation (5.2) represents the evolution of the system’s knowledge over the activ-

ities when data is not available. As n0 increases, p(sn+n0 |x1:n, z1:n) becomes less

informative and the uncertainty over the activities increases. This uncertainty can

be measured as the entropy of a random variable Sn+n0 with probability distribu-

tion p(sn+n0 |x1:n, z1:n)1.

The active sensing strategy reduces to finding the next time instant n0 where

data needs to be acquired by restricting H(Sn+n0) to a certain threshold H0

H(Sn+n0) < H0. (5.3)

When the entropy exceeds this threshold, the posterior distribution becomes un-

reliable and new data is acquired to reduce the entropy. Unfortunately, (5.3) is

intractable in general, so three different numerical approximations are proposed

to obtain n0 [76].

5.3.1 Activity independent approximation

The transition matrix of a HMM is a stochastic matrix with a limiting distribution

or stationary state p. The existence of this limiting distribution implies that

H(Sn+n0) must converge

lim
n0→∞

H(Sn+n0) = −pT log(p) , Hp.

1The definition of the entropy of a random variable X with probabilities p(x) is H(X) ,

−
∑|x|

i=1 p(xi) log p(xi), where |x| is the dimensionality of the vector x.
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The entropy of Sn+n0 is asymptotically independent of p(sn|x1:n, z1:n), only de-

pending on the structure of the transition matrix. Furthermore, every stochastic

matrix contains at least one eigenvalue that is equal to 1 and the largest absolute

value of all its eigenvalues is also 1. The limiting distribution p corresponds to

the eigenvector with eigenvalue λ1 = 1. Computing the eigendecomposition of the

n-power of the transition matrix in (5.2),

Ψn = UΛnU−1,

where U is the matrix of eigenvectors of Ψ and Λ is a diagonal matrix containing

its eigenvalues {λ1, · · · , λJ}, with |λ1| > |λ2| > · · · > |λJ |, it is observed that the

n-power only affects Λ.

A naive solution of the active sensing method involves finding the value of n0

where p(sn+n0 |x1:n, z1:n) = p and the system reaches its stationary point. This

approach, called activity independent method, consists of finding the minimum

value of n0 such as |λ2|n0 < ε, where ε controls the precision of the approximation,

np0 =

⌊
log(ε)

log(|λ2|)

⌋
. (5.4)

Under (5.4), for j > 1, all |λj | are negligible, and the only contribution of Ψnp
0 is

the limiting distribution p with eigenvalue λ1 = 1.

Fig. 5.2 shows an example of H(Sn+n0) as a function of n0 for a transition

matrix with 10 states. For any transition matrix, this function is not monotonically

increasing in general, with several local maxima in the interval [0, np0] that are

larger than the value of the entropy in the limiting distribution. When n0 > np0,

H(Sn+n0) converges to the entropy of the limiting distribution Hp. When n0 = 0,

H(Sn+n0) is just the entropy of the posterior of sn, H(Sn). Choosing np0 as the

time instant when new data must be acquired is a naive approximation, since there

exists in general an interval of values in [0, np0] where the uncertainty is larger than

Hp, and n0 must be chosen in the first interval where (5.3) holds.
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Figure 5.2: Representation of H(Sn+n0
) for a transition matrix with 10 states.

5.3.2 Threshold method

A direct approach to solve the active sensing problem consists of finding numer-

ically the value of n0 that satisfies (5.3), given that a suitable value of H0 is

chosen. When a small value of H0 is considered the time between data acquisi-

tions decreases and the energy consumption of the devices increases. When H0 is

too large, this value is not reached since the entropy is bounded above and data

is never acquired again. In the threshold method, H0 is chosen in terms of the

entropy of the limiting distribution, H0 = cHp, where c ∈ [0, 1] is a parameter that

controls the distance to Hp. Consequently, the maximum value of n0 is found such

as (5.3) holds,

H(Sn+n0) < cHp.

When c = 1, the threshold is equal to Hp. Depending on the structure of the transi-

tion matrix, this could be problematic. Particularly, if H(Sn+n0) is monotonically

increasing in terms of n0, this solution reduces to the activity independent approx-

imation, i.e., n0 = np0. Choosing c < 1 a new data window is acquired faster, and

the posterior distribution of the activities can be updated properly. For small val-

ues of c, data is acquired too quickly, and the data acquisition reduction becomes

negligible. Increasing the value of c, the distance between time intervals when new
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data is acquired becomes larger, reducing the number of observations employed

and thus increasing the energy efficiency of the devices.

5.3.3 Line intersection method

Fixing a constant threshold H0 is not always the best approach as it does not

consider the curvature of the function H(Sn+n0). An alternative to directly finding

a solution for (5.3) involves selecting n0 as the value of the intersection between

two lines instead, a constant line defined by the entropy of the limiting distribution

y1(n) = Hp and the tangent line of the entropy of the activities at some nk ∈ [0, np0]

y2(n) = yk +m(n− nk),

where yk is the entropy of the posterior at nk, H(Sn+nk
), and m is the slope of

the tangent line, corresponding to the derivative of the entropy at nk, H
′(Sn+nk

)

yk = −(Ψnkαn)T log(Ψnkαn),

m = −(U log(Λ)ΛnkU−1αn)T log(Ψnkαn),

with αn , p(sn|x1:n, z1:n).

Computing the intersection between both lines and replacing yk and m by its

expressions, the value of the intersection point is obtained

n = nk +
pT log(p)− (Ψnkαn) log(Ψnkαn)

(U log(Λ)ΛnkU−1αn)T log(Ψnkαn)
,

constantly increasing nk as long as the value of the slope is greater than a certain

value. With this approach, the limitation of the entropy is given by the slope of

the tangent line y2(n), and the stopping value changes depending on the activities

being performed. When n approaches the location of the maximum of the entropy,

the slope will decrease and the intersections of both lines will provide a good

estimate of n0.

5.4 Sensor selection framework

Choosing an optimal sensor configuration during the data acquisition allows the

HAR system to increase the energy efficiency of the devices. For every time window
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obtained by the active sensing strategy the system needs to find the optimal sensor

configuration to perform the data acquisition, based on the posterior distribution of

the activities computed at a given time instant n′ = n+n0, αn′ , p(sn′ |x1:n, z1:n).

This decision must be made before acquiring new data, so the observations xn′ are

considered unknown.

The sensor selection problem can be formulated as a decision problem using

the Bayesian Experimental Design theory [21], where an utility function reflecting

the objective of the experiment is selected. The utility function considered in this

problem is the mutual information between the known posterior probabilities of

the activities Sn′ and the unknown sensor observations Xn′

I(Sn′ ;Xn′) ,
∫ ∑

sn′

p(xn′ , sn′) log
p(xn′ |sn′)
p(xn′)

dxn′ , (5.5)

with p(xn′ |sn′) defined in (5.1). The optimal sensor configuration depends on the

energy constraints imposed on the data acquisition for the different sensors. The

maximization of the mutual information in (5.5) results in the most informative

sensor configuration z∗n′ for a particular posterior distribution αn′

maximize
zn′

I(Sn′ ;Xn′)

subject to cT zn′ ≤ E,∀n′

with c = {c1, · · · , cK} being the data acquisition costs related to each classifier

and E the maximum amount of energy consumption per time instant allowed by

the system. The simplest solution to the sensor selection problem with energy

constraints consists of choosing beforehand all the possible combinations of the

sensor configurations that fulfil the energy constraints z0n′ =
{
zkn′ |cT zn′ ≤ E

}
, and

then obtain z∗n′ as the strategy that maximizes the mutual information of all the

available sensor combinations

z∗n′ = arg max
z0
n′

I(Sn′ ;Xn′). (5.6)

Unfortunately, integral (5.5) cannot be solved analytically, since the likelihood of

the observations of a sensor p(xn′) is a mixture distribution model depending on
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the activities and the number of classifiers, and its logarithm is not tractable. Two

different approaches are considered to compute numerically the mutual informa-

tion: 1) Computing the bounds of the mutual information, 2) Approximating the

mutual information by MC sampling.

5.4.1 Mutual Information Bounds

The mutual information can be expressed as the difference between two entropies

I(Sn′ ;Xn′) = H(Sn′)−H(Sn′ |Xn′).

Finding the bounds of the entropies is an equivalent problem to finding the bounds

of the mutual information. In [48] the authors obtain an expression of the lower

and upper bounds on the entropy of a random variable with Gaussian probability

distribution. In this section, the same approach is considered for the case where

the conditional likelihood of the observations is a Dirichlet distribution.

Upper bound (UB)

An expression of the upper bound is obtained using the properties of the mutual

information [24], i.e., the mutual information between two random variables must

be positive

I(Sn′ ;Xn′) = H(Sn′)−H(Sn′ |Xn′) ≥ 0.

H(Sn′ |Xn′) cannot be computed in this problem. However, Sn′ is discrete, and

the entropy of a discrete random variable is always positive, so an expression of

the upper bound is given by

I(Sn′ ;Xn′) ≤ H(Sn′) = IUB(Sn′ ;Xn′).

The upper bound only depends on the posterior distribution of the activities and

is independent of the likelihood of the observations. As the posterior becomes less

informative, the upper bound increases until reaching its maximum value when

αn′ is the uniform distribution over the J activities, IUB(Sn′ ;Xn′) = log J . This

bound always exists and it is independent of the observation likelihood model, so

a solution of (5.6) always exists.
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Lower bound (LB)

In the expression of the mutual information as a difference of entropies

I(Sn′ ;Xn′) = H(Xn′)−H(Xn′ |Sn′),

the conditional entropy H(Xn′ |Sn′) is given by the entropy of a Dirichlet distri-

bution, so only an expression of the lower bound of H(Xn′) is needed. Applying

Jensen’s inequality in H(Xn′)

H(Xn′) ≥ −
∑
sn′

αn′(sn′) log (f) ,

f ,
∫
p(xn′ |sn′)p(xn′)dxn′ . (5.7)

where αn′(sn′) represents the element sn′ of the posterior αn′ . Although this lower

bound can be computed for several distributions, e.g., Gaussian distributions [48],

this integral is intractable for many others. In (5.7), the integral f is the product

of Dirichlet distributions, which is also a Dirichlet distribution

f ∝
J∑
j=1

αn′(j)
K∏
k=1

∫
Dir(xkn′ |γk` )z

k
n′dxkn′ ,

with γk` = γksn′ + γkj − 1, and γkj the parameters of the sensor k for a particular

activity j. This integral is only defined when γksn′ + γkj > 1, since the support

of the parameters of the Dirichlet distribution is the positive real numbers. This

is a critical restriction in the sensor selection problem, since the classifiers are

usually confident in this setting and the parameters of the observation model range

between 0 and 1. For γk` > 0 a closed form solution of the lower bound of H(Xn′),

and consequently of the lower bound of the mutual information is obtained

f =

J∑
j=1

αn′(j)

(
K∏
k=1

B(γk` )

B(γksn′ )B(γkj )

)zk
n′

,

HLB(Xn′) = −
∑
sn′

αn′(sn′) log (f) ,

ILB(Sn′ ;Xn′) = HLB(Xn′)−H(Xn′ |Sn′),

where the beta function of a vector v ∈ RD is defined as

B(v) ,

∏D
d=1 Γ(vd)

Γ(
∑D

d=1 vd)
,
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with Γ(·) being the gamma function.

There exist no guarantees in the previous results implying that ILB(Sn′ ;Xn′) ≥

0. In many cases, the best lower bound is ILB(Sn′ ;Xn′) = 0, which is not an

informative solution, since the observation model of the sensor is irrelevant when

computing the bounds of the mutual information.

5.4.2 Monte Carlo approximation

The computation of the analytical solution of the mutual information bounds re-

sults in an uninformative solution for the sensor selection problem. An alternative

involving an approximation of its value for any p(sn′ |x1:n, z1:n) and p(xn′) is con-

sidered. The mutual information in (5.5) can be expressed as the expectation with

respect to the joint distribution of the variables

I(Sn′ ;Xn′) = Ep(sn′ ,xn′ )

[
log

p(xn′ |sn′)
p(xn′)

]
. (5.8)

In the sensor selection problem the parameters of the likelihood model are trained

in advance, and the posterior distribution of the activities is known. This implies

that the joint distribution model is completely characterized, and the expectation

in (5.8) can be approximated by MC sampling,

I(Sn′ ;Xn′) ≈
1

M

M∑
m=1

log
p(xn′m|sn′m)

p(xn′m)
, (5.9)

whereM groups of samples (sn′m,xn′m) are obtained from the joint probability dis-

tribution p(sn′ ,xn′). As the number of samples increases, the MC approximation

approaches the true value of the mutual information asymptotically. Furthermore,

this approximation is independent of the observation likelihood model. As long as

the models of p(xn′) and p(xn′ |sn′) are fully characterized, (5.9) holds.

To compute this approximation, M instances of sn′m are sampled from the

posterior distribution p(sn′ |x1:n, z1:n). Then M instances of xn′m are sampled from

the corresponding mixture component p(xn′ |sn′m). Finally, an approximation of

the mutual information is obtained evaluating (5.9) for every group of samples

(sn′m,xn′m). The solution of the sensor selection problem (5.6) with the MC
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approach consists of choosing the sensor configuration z∗n′ that maximizes the

approximation of the mutual information (5.9).

5.5 Experiments

The evaluation of the energy efficiency framework is conducted using the publicly

available database described in [64] and named DaLiAc. This database contains

the synchronized data of four wearable sensors (placed on the wrist, chest, waist

and ankle) from 19 different people while performing a sequence of 12 activities

(standing, sitting, lying, washing dishes, vacuuming, sweeping, walking, ascending

and descending stairs, treadmill running, bicycling and rope jumping). The sensors

provide data from three axis accelerometers and gyroscopes, and is processed using

the sensor orientation correction technique described in [30]. This data is modelled

using HMMs, and the soft outputs of the classifiers X are obtained estimating the

posterior probability of the activities using the Forward-Backward algorithm (FB).

In particular, a HMM classifier with a Gaussian mixture observation model for

each sensor is trained using the Baum-Welch algorithm [89]. Three states and two

mixture components are assigned per activity, following the configuration described

in [34]. The parameters γ of the Dirichlet conditional observation model (5.1) and

the transition matrix Ψ are trained using the MSCC method described in [78].

The duration of the window when data is acquired by the sensors is a fixed

parameter for all the algorithms. Three different window sizes are considered in

the experiments, W = {5, 10, 20} seconds. When a window of data is obtained,

the data acquisition ceases, and the active sensing algorithm decides the next time

instant n0 when the sensors need to acquire a new window of observations. In the

threshold algorithm, three different values of c = {0.7, 0.8, 0.9} are used. In the

line intersection algorithm, the algorithm stops when the value of the slope of the

line y2, is less than 0.1, 0.01 and 0.001 respectively. In the activity independent

algorithm, the values ε = {0.1, 0.01, 0.001} are employed.

The MC expression obtained in (5.9) for the sensor selection is evaluated us-

ing the Mean Square Error (MSE) between its true value and the approximation
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for every sensor. The true value of the mutual information is reached when the

number of samples considered is extremely large. In these experiments, 109 sam-

ples is assumed to be a large enough value. Sampling from the joint distribution

p(S,X) is performed with a sample size ranging from 101 to 107 samples. 1000

independent simulations are performed, and the average of the MSE of the set

of simulations is computed and represented in Fig. 5.3. The MSE decreases
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Figure 5.3: Logarithmic representation of the MSE between the true values of the mutual

information for each sensor and the MC approximation.

logarithmically with the logarithm of the number of samples considered in the

approximation for all the sensors. In this work, the number of samples considered

for the rest of the experiments is 105, since the MSE between the true and approx-

imated mutual informations is less than 10−5 in this case. Other alternatives to

sample from (5.8) have been implemented, like Rejection Sampling or Importance

Sampling [66]. However, neither of these methods seem to improve the MSE with

the number of samples, so sampling directly from the distribution is the chosen

method. While other sampling methods could find a better approximation with

less samples, employing an efficient MC sampling method is out of the scope of

this work.

Fig. 5.4 shows a comparison of the precision loss between all the methods in
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terms of the number of observations employed in the system. Decreasing the num-

ber of samples acquired reduces the performance of the system. However, under

the same conditions, the loss in precision is not heavily influenced by the reduction

in window size. It is more important to update the model with new observations

when the entropy increases than to acquire large windows of observations, since

the entropy is practically zero during these windows.
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Figure 5.4: Comparison of all the algorithms in Section 5.3 using three different window

sizes. A1 is the threshold algorithm, A2 is line intersection algorithm and A3 is the activity

independent algorithm.

Table 5.1 shows in more detail the evaluation of the energy efficiency framework

for all the different acquisition algorithms when no energy restrictions are assumed

on the sensors. The estimation of the performed activities is compared with the

case where all the data and sensors are used in the activity recognition, using the
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MAP of the posterior probabilities combination (PPC)

p(S|X) =

K∏
k=1

p(S|Xk).

Table 5.1

Average data reduction and accuracy error obtained with all the active sensing

algorithms. A1 corresponds to the threshold algorithm, A2 to the Line intersection

algorithm and A3 to the activity independent algorithm.

Algorithms
Window = 5s Window = 10s Window = 20s

Reduction Accuracy Reduction Accuracy Reduction Accuracy

of data % error of data % error of data % error

A1 - 0.7 85.5 0.177 75.0 0.169 60.6 0.155

A1 - 0.8 88.8 0.204 80.5 0.220 67.6 0.164

A1 - 0.9 92.1 0.288 85.6 0.242 75.7 0.223

A2 - 1e-1 71.9 0.114 57.0 0.123 41.5 0.100

A2 - 1e-2 77.2 0.142 63.1 0.133 46.4 0.128

A2 - 1e-3 83.2 0.264 75.0 0.284 62.9 0.268

A3 - 1e-1 97.3 0.620 94.7 0.608 89.8 0.580

A3 - 1e-2 98.6 0.802 97.2 0.816 94.6 0.789

A3 - 1e-3 99.0 0.834 98.0 0.859 96.2 0.865

PPC 0.0 0.132 0.0 0.132 0.0 0.132

The results show that the best model in terms of precision loss is the line

intersection algorithm, maintaining or even increasing the performance, though

the number of samples employed is in general larger than in the other models.

The activity independent algorithm performs much worse than the others, since

the posterior of the activities is not considered while computing the next time

instant when new data must be acquired.

The evolution of the entropy of the posterior of the activities strongly depends

on the transition matrix of the system. With the MSCC method employed to

obtain it, the transition matrix becomes more confident with the amount of data

employed to train each of the activities. This implies that the evolution of the

entropy becomes slower for a specific posterior when the data for that activity

increases. This effect can be observed in Fig. 5.5 for the threshold algorithm. It

is observed that the entropy of activities that are overrepresented present a slower
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Figure 5.5: Entropy evolution of the posterior of the activities for each data acquisition

algorithm (A1 = Threshold algorithm, A2 = Line intersection algorithm, A3 = Activity

independent algorithm) employing the first sequence of the database. The true activity

labels, from 1 to 12 are: 1-running, 2-walking, 3-standing, 4-sitting, 5-lying, 6-rope jump-

ing, 7-ascending stairs, 8-descending stairs, 9-bicycling, 10-washing dishes, 11-vacuuming,

12-sweeping.

evolution, while the under-represented activities evolve faster.

There exists several differences in the entropy evolution between the different

active sensing strategies. In the threshold algorithm the entropy increases until a

certain fixed value, and a new window of data is acquired. The number of win-

dows employed for each activity differs considerably depending on the performed

activities. In the line intersection algorithm, the next time window is chosen when

the derivative of the entropy, i.e. the slope, is less than 0.01. Depending on the

shape of the entropy function, this method stops at different values. The number

of windows acquired in this model is larger in general, leading to shorter periods
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of time where there is no data acquisition and consequently to reduce the loss in

precision of the system. The activity independent method reduces to a sampling

method where the distance between data acquisitions is constant, since it is inde-

pendent on the activities. Discarding the information of the activities in the data

acquisition leads to poor results in the HAR system performance.

Table 5.2 shows an evaluation of the effects of the energy restrictions imposed

on the sensors. When all the sensors present the same energy restrictions but only

a given number of sensors can be used per data acquisition, the sensor selection

algorithm finds the optimal configuration depending on the performed activities.

It can be observed that the performance of the HAR system degrades with the

reduction on the number of sensors employed. However, since the number of sen-

sors employed decreases, the amount of data employed decreases too. Depending

on the specifications of the problem it is possible to find an optimal working point

for the HAR system in terms of the data employed and the performance.

Table 5.2

Average data reduction and accuracy error for the best data acquisition algorithm (Line

intersection algorithm with m < 0.1 and a window of 5 seconds) for all the energy

restriction cases.

# Sensors Reduction of data % Accuracy Error

1 92.6 0.239

2 85.8 0.160

3 79.1 0.136

4 71.9 0.114

Table 5.3 shows the probability of choosing each sensor depending on the energy

constraints of the problem. When there exist no restrictions and all sensors can be

selected, the algorithm combines the information of all the sensors. When some

decisions over the number of sensors must be performed, the algorithm prefers

some of the sensors (waist) among others (wrist) and the performance of the system

degrades since less data is employed in the recognition task.
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Table 5.3

Probability of choosing each sensor for all the energy restrictions considered and all

sequences.

# Sensors Wrist Chest Waist Ankle

1 0 0.362 0.549 0.090

2 0.041 0.399 0.428 0.132

3 0.143 0.326 0.326 0.205

4 0.250 0.250 0.250 0.250

5.6 Conclusions

A general framework for the joint optimization of the energy efficiency of wearable

sensors, the number of sensors and their location and the performance of a HAR

system has been proposed. This work shows that employing the maximum entropy

of the posterior of the activities, the data acquisition can be reduced while main-

taining the performance of the recognition system. An active sensing algorithm

with three different approaches has been implemented and evaluated, emphasizing

the importance of updating the model with new data when the entropy increases.

In addition, an optimization problem for the multiple sensors case with energy

constraints was implemented using a MC approximation of the mutual informa-

tion between the observations and the posterior probability of the activities. The

sensor configuration that maximizes this mutual information provides the maxi-

mum amount of information to HAR system. The data acquisition employing the

proposed methodology is reduced by a 72% while maintaining the performance

of the system when no energy restrictions are considered and all the sensors are

employed. When the energy constraints force the HAR system to choose other

sensor configurations, the performance decreases by a 10% in the limit where only

one of the sensors is employed.
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6
Conclusions

6.1 Summary

The main objective of this thesis is the development of novel techniques to address

several open problems in the Markov modelling implementation of a Human Ac-

tivity Recognition (HAR) system employing the raw signals provided by wearable

sensors. In this chapter, we summarize the contributions of this thesis, and we

also describe some possible lines for future research.

• We have presented an orientation correction algorithm for the sensor mis-

placement on the body when using raw signals from Inertial Measurement

Units (IMUs). This algorithm was implemented with quaternion operations

allowing for a much faster computation of the rotations of the signals with re-

spect to the reference system. Furthermore, numerical results in Chapter 2
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show a substantial improvement in the activity recognition in comparison

with other orientation correction methods.

• In Chapter 3, we have developed a discriminative spectral learning of Hidden

Markov Models (HMMs) with discrete observations as an alternative training

method. Our work is an extension of the spectral learning of HMM presented

in [46], where we develop an algorithm to perform activity recognition with

discriminative HMMs. We show how the low computation time and complex-

ity and the possibility of obtaining directly the probability of the activities

make it specially useful for the implementation of online HAR systems and

an alternative to the Baum-Welch algorithm while training HMMs.

• We perform the inference of the Bayesian combination of soft-output classi-

fiers in a HAR system. Our work extends the Independent Bayesian Classifier

Combination (IBCC) model proposed in [56] by using soft output classifiers

to deal with a low number of sensors and a first-order Markov ground truth

to capture the dynamics of the human activities. The results in Chapter

4 show consistent error rate reduction and higher robustness against sensor

failures when compared with a single classifier that employs all the sensor

signals using different publicly available HAR databases.

• Finally, a general framework for the joint optimization of the energy effi-

ciency of wearable sensors, the number of sensors and their location and the

performance of a HAR system has been proposed. In Chapter 5 we show

that employing the maximum entropy of the posterior of the activities, the

data acquisition can be reduced while maintaining the performance of the

recognition system. An active sensing algorithm [76] with three different

approaches has been implemented and evaluated, emphasizing the impor-

tance of updating the model with new data when the entropy increases. In

addition, we implemented an optimization problem for the multiple sensors

case with energy constraints using a Monte Carlo (MC) approximation of

the mutual information between the observations and the posterior proba-
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bility of the activities. The sensor configuration that maximizes this mutual

information provides the maximum amount of information to HAR system.

The data acquisition employing the proposed methodology is reduced by a

72% while maintaining the performance of the system when no energy re-

strictions are considered and all the sensors are employed. When the energy

constraints force the HAR system to choose other sensor configurations, the

performance decreases by a 10% in the limit where only one of the sensors

is employed.

6.2 Future Lines

Our work also suggests several paths for further research in the Markov modelling

of a HAR system with wearable sensors. We provide below a list with what we

consider are some of the main potential future research lines.

Complete orientation correction. The data processing algorithm proposed

in Chapter 2 computes the acceleration referred to the person frame, and the

orientation of the person frame with respect to the earth frame. However, the

complete orientation of the person where we obtain the direction of movement

is not computed. This is an interesting future line, since it allows for tracking

methods based completely on IMUs and correction applications of simple Global

Positioning System (GPS) systems.

Discriminative spectral learning with continuous observations. The al-

gorithm described in Chapter 3 is implemented to work with discrete data, where

several approximations were performed to employ the data provided by the wear-

able sensors, which are continuous observations in nature. There exists several

extensions of the spectral learning for HMMs for continuous observations using

kernels [95, 97]. However, to our best knowledge, an algorithm working with a dis-

criminative version of the HMM is not yet developed, and it would be an important

improvement in the implementation of fast learning methods for HAR systems.

Hybrid of features and classifiers combination. Most of the approaches of
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the literature in data fusion either combine the data provided by the sensors or by

the classifiers. However, a combination of classifiers and signals is not considered.

As an example, in a smart-phone it can be implemented a HAR system of basic

activities and combine the output with raw signals from other devices, like location

or phone usage among others. This is a topic related with data processing from

heterogeneous sources, and performing the inference for an hybrid combination of

features and classifiers could improve the activity recognition or even extend the

number and complexity of the activities to be recognized in the HAR system.

Adaptive HAR systems. The models developed in this thesis consider a general

model of the activities for every user. However, there exists several differences

between the physical activities performed by young people, elder people or people

with physical diseases. Developing an adaptive HAR system based on a general

model that adapts to every specific human group would allow for a better activity

recognition.
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