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Abstract

The thesis considers the estimation of sparse precision matrices in the high-

dimensional setting. First, we introduce an integrated approach to estimate

undirected graphs and to perform model selection in high-dimensional Gaussian

Graphical Models (GGMs). The approach is based on a parametrization of the

inverse covariance matrix in terms of the prediction errors of the best linear predictor

of each node in the graph. We exploit the relationship between partial correla-

tion coefficients and the distribution of the prediction errors to propose a novel

forward-backward algorithm for detecting pairs of variables having nonzero partial

correlations among a large number of random variables based on i.i.d. samples.

Then, we are able to establish asymptotic properties under mild conditions. Finally,

numerical studies through simulation and real data examples provide evidence of

the practical advantage of the procedure, where the proposed approach outperforms

state-of-the-art methods such as the Graphical lasso and CLIME under different

settings.

Furthermore, we study the problem of robust estimation of GGMs in the high-

dimensional setting when the data may contain outlying observations. We propose a

robust precision matrix estimator under the cellwise contamination mechanism that is

robust against structural bivariate outliers. This framework exploits robust pairwise

weighted correlation coefficient estimates, where the weights are computed by the Ma-

halanobis distance with respect to an affine equivariant robust correlation coefficient

estimator. We show that the convergence rate of the proposed estimator is the same

as the correlation coefficient used to compute the Mahalanobis distance. We conduct

numerical simulation under different contamination settings to compare the graph

recovery performance of different robust estimators. The proposed method is then

applied to the classification of tumors using gene expression data. We show that our

procedure can effectively recover the true graph under cellwise data contamination.
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and Jorge Herrera for many stimulating discussions.

My time in Madrid was made enjoyable in large part due to the many friends that

became a part of my life. I am grateful to my lovely friends: Gisela, Mar, Florinda,

Elena and Gabri.

Last but not the least, I would like to thank my family: my parents and to my

brother and sister and the rest of the family for their unconditional love and support

throughout writing this thesis they have cherished with me every great moment and

encourage me to be disobedient and to follow my intuitions.

iv



To the memory of Lito

v



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Precision Matrix Estimation . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Estimation by Multiple Regression . . . . . . . . . . . . . . . 5

1.2.2 Penalized Maximum Likelihood . . . . . . . . . . . . . . . . . 8

1.3 Robust Precision Matrix Estimation . . . . . . . . . . . . . . . . . . . 13

1.4 Organization and Outline of the Thesis . . . . . . . . . . . . . . . . . 14

2 A Stepwise Approach for High-Dimensional Gaussian Graphical

Models 16

2.1 Undirected Graphical Models . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 Gaussian Graphical Models . . . . . . . . . . . . . . . . . . . 22

2.1.2 Inverse Covariance Estimation . . . . . . . . . . . . . . . . . . 25

2.2 The Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.1 The Proposed Method: Relation with the Information Diver-

gence Measure . . . . . . . . . . . . . . . . . . . . . . . . . . 34

vi



2.2.2 The Proposed Method: Example . . . . . . . . . . . . . . . . 36

2.3 Analytical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4.1 Simulation Experiments . . . . . . . . . . . . . . . . . . . . . 47

2.4.2 Analysis of Breast Cancer Data . . . . . . . . . . . . . . . . . 56

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.6 Proof of Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.6.1 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.6.2 Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . 60

2.6.3 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . 62

3 Robust and Sparse Estimation of High-dimensional Precision Ma-

trices via Bivariate Outlier Detection 64

3.1 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2 The Proposed Winsorized Correlation Matrix . . . . . . . . . . . . . 75

3.3 Analytical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.4 Empirical Performance in Simulated Data . . . . . . . . . . . . . . . 88

3.4.1 Simulation Framework . . . . . . . . . . . . . . . . . . . . . . 88

3.4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 91

3.5 Robust Cancer Classification based on Gene Expression Data . . . . . 101

3.5.1 Analysis of Breast Cancer Data . . . . . . . . . . . . . . . . . 102

3.5.2 Analysis of Leukemia Data . . . . . . . . . . . . . . . . . . . . 104

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4 Conclusion and Future Research Lines 108

4.1 Future Research Lines . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Bibliography 112

vii



List of Tables

2.1 Graphical Stepwise algorithm. Selected edges in forward and backward

step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2 Comparison of average numerical performance for four models over 100

replications with standard deviation in brackets. . . . . . . . . . . . . 54

2.3 Comparison of average support recovery for four models over 100 repli-

cations with standard deviation in brackets. . . . . . . . . . . . . . . 55

2.4 Comparison of average pCR classification errors over 100 replications

with standard deviation in brackets. . . . . . . . . . . . . . . . . . . . 57

3.1 Estimation performance of the bivariate winsorized correlation coef-

ficient under non contamination over 100 replications with standard

deviations in brackets. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.2 Average computing times (in seconds) over 100 replications with stan-

dard deviations in brackets. . . . . . . . . . . . . . . . . . . . . . . . 81

3.3 AR(1)-Model Specification. Numerical performance under the first

contamination mechanism over 100 replications with standard devi-

ation in brackets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
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Chapter 1

Introduction

1.1 Motivation

Many statistical and practical problems require the estimation of different measures

of linear dependence to infer whether there exists an association between a pair of

variables, when we conditioned on the rest of them. Statistically, this is measured by

the partial correlation coefficient. Thus, when two variables are linearly and condi-

tionally associated, the partial correlation coefficient is different from zero (Edwards,

2000).

Let x = (X1, ..., Xp)
T ∈ Rp be a multivariate and centered vector with covariance

matrix Σ and precision matrix Ω = Σ−1. Then, the linear relation between two

variables excluding the effect of the others can be measured by the partial correlation

coefficient defined as follows:

Definition 1. The partial correlation coefficient between two variables (Xi, Xj), con-

dition on the rest of them and denoted by ρij, is defined as the correlation coefficient

between Xi and Xj when the effect of the other variables is eliminated.

Assuming that the vector x = (X1, ..., Xp)
T is multivariate Gaussian distributed

with mean zero and covariance matrix Σ. A notable result is that the partial corre-
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lation coefficients are closely related with the elements of the precision matrix Ω (see

Lauritzen, 1996). Hence, we can relate the nonzero entries in the precision matrix

with the nonzero partial correlation coefficients. This procedure was first proposed by

Dempster (1972) and is denoted by Covariance Selection. Let ωij be the ij-element

of the precision matrix Ω. Then, the partial correlation coefficient between variables

Xi and Xj is given by the following expression:

ρij = − ωij
[ωiiωjj]1/2

for i, j = 1, ..., p. (1.1.1)

A problem that is closely related with covariance selection is the recovery of the

support of the precision matrix (i.e. non-zero elements of Ω). This problem is con-

nected with model selection in undirected graphical models. An undirected graph,

denoted by G = (V,E) is defined as the set of p vertices, denoted by V , that repre-

sents the p variables and the set of edges, given by E ⊆ V ×V . The undirected graph

establishes that if the variables Xi and Xj are connected, then the pair (i, j) ∈ E, and

the variables Xi and Xj are adjacent. Furthermore, the edge (i, j) is excluded from

E if and only if Xi and Xj are independent given (Xk, k ∈ V \ {i, j}). In particular,

if x = (X1, ..., Xp)
T is multivariate Gaussian distributed then, the conditionally inde-

pendence between Xi and Xj is equivalent to ωij = 0. Thus, recovering the structure

of the graph G = (V,E) is equivalent to estimate the non-zero elements in Ω. This is

known in the literature as Gaussian Graphical Models (GGMs) (Lauritzen, 1996).

Given an independent and identically distributed random sample {x1, ...,xn} from

the distribution of x, the most natural estimator of Σ is the empirical covariance

matrix defined as:

S =
1

n

n∑
k=1

(xk − x̄)(xk − x̄)T , (1.1.2)

where x̄ = n−1
∑n

k=1 xk. For data sets in which the ratio between the dimension p

and the number of available observation n is less than one and negligible, the inverse

2



of the empirical covariance matrix can be used as an estimate for Ω. However, when

p > n, S is not invertible. Moreover, when the ratio p/n is approximately one, S is

still invertible but ill-conditioned, meaning that its inverse will amplify the estimation

error, which can be observed by the presence of small eigenvalues (Ledoit and Wolf,

2004). Moreover, from the asymptotic point of view, when both n and p are large

(i.e. p = O(n)), the empirical covariance matrix is not a consistent estimator (see

El Karoui, 2008). Therefore, in the high-dimensional setting, traditional methods that

relies on the optimization of a discrete function (Speed and Kiiveri, 1986; Lauritzen,

1996; Edwards, 2000) do not work well due to the lack of a pivotal estimator like

the empirical covariance matrix. Hence, different methods focus on obtaining an

estimator of Σ that can be inverted and is well-conditioned.

Moreover, in the high-dimensional setting several covariance selection procedures

focus on the assumption that the precision matrix is sparse, that is, Ω is mostly

composed by zero elements. This suggests that even when we are dealing with p =

O(n), the dimension of the problem may still be tractable since the number of edges

will grow slowly than the number of observations (Meinshausen and Bühlmann, 2006).

Sparse Gaussian Graphical Models have been apply to the construction of gene

regulatory networks (see Wille et al., 2004; Li and Gui, 2006; Kiiveri, 2011). In the

genetic literature, a well known result is that the process in which the cell controls

the interaction between RNAs and proteins can be theoretically represented as a

network. This approach explores dependence relations between genes through the

estimation of the corresponding precision matrix. Moreover, this framework assume

that the patterns of variation in gene expressions will be predicted by a small subset of

other genes. Hence, genetic networks are not fully connected, suggesting that genetic

networks are intrinsically sparse and hence the associated precision matrix is mostly

composed by zero elements outside its principal diagonal.

3



Finally, We have to note that there is a growing literature on Direct Acyclic Graph-

ical Models or Bayesian Networks (see Spirtes et al., 2000; Kalisch and Bühlmann,

2007; Bühlmann et al., 2010). These are defined as graphical models in which the

edges have directional arrows but not directed cycles (see Chapter 2 Lauritzen, 1996).

However, in the present thesis we focus on the estimation of GGM where all edges

are undirected. For the remainder of this chapter we review existing approaches to

estimate the precision matrix and we present the organization and outline of the

thesis.

1.2 Precision Matrix Estimation

Existing methods to estimate undirected GGM in the high-dimensional setting can

be classified in two classes: the nodewise regression methods and maximum likeli-

hood methods. The nodewise regression method was proposed by Meinshausen and

Bühlmann (2006). This method estimate for each node in the graph the set of par-

tial correlated variables. Penalized likelihood methods include Yuan and Lin (2007),

Banerjee et al. (2008) and Friedman et al. (2008), among others. These methods

propose to estimate the precision matrix by penalizing the log-likelihood function.

Notation. Given a vector v ∈ Rp and parameter a ∈ [1,∞), we use ‖ v ‖a to

denote the usual `a norm. We consider ‖ v ‖1=
∑p

i=1 |vi|, ‖ v ‖2=
√∑p

i=1 v
2
i and

‖ v ‖∞= maxi |vi|. Given a matrix U = (uij) ∈ Rp×p we define the elementwise `∞

norm ‖ U ‖∞= max1≤i≤p,1≤j≤p |uij|, the spectral norm ‖ U ‖2= sup‖x‖2≤1 ‖ Ux ‖2,

the matrix `1 norm ‖ U ‖L1= max1≤j≤p
∑p

i=1 |uij|, the Frobenius norm ‖ U ‖F=√∑
i,j u

2
ij and the elementwise `1 norm ‖ U ‖1=

∑p
i=1

∑p
j=1 |uij|. The notation

U � 0 indicates that U is positive definite.

4



1.2.1 Estimation by Multiple Regression

The methods that rely on estimation by multiple regression aim to detect pair of vari-

ables with non-zero partial correlation based on independent identically distributed

samples. Meinshausen and Bühlmann (2006) develop a procedure, called Neighbor-

hood Selection, that uses lasso penalty (Tibshirani, 1996) to estimate the conditional

independence structure of a set of variables x = (X1, ..., Xp)
T which are Gaussian

distributed with mean zero and covariance Σ. The neighborhood of a variable is

defined in the following way:

Definition 2. The neighborhood of a node i ∈ V , denotes by Ai, is the smallest

subset of the set of vertices that not contain the node i (i.e. V \ {i}) such that, given

all the nodes in the neighborhood, Xi is conditionally independent of all the remaining

variables that do not belong to the subset Ai.

For each node i ∈ V , the optimal predictor for Xi, β
i ∈ Rp, is defined as

βi = arg min
β∈Rp,βi=0

‖ Xi −
p∑
j=1

βjXj ‖2
2, (1.2.1)

Meinshausen and Bühlmann (2006) show that

βij = −ωij
ωii

. (1.2.2)

Given an identically and independent distributed random sample {x1, . . . ,xn}, the

Neighborhood Selection approach aims to estimate individually the neighborhood of

a variable Xi assuming that the precision matrix Ω is sparse. The Neighborhood

Selection procedure estimates for each node i ∈ V the vector of coefficients βi ∈ Rp

by minimizing the following lasso regression for each variable:

β̂
i

= arg min
β∈Rp,βi=0

n−1

n∑
k=1

(
Xki −

p∑
j=1

βjXkj

)2

+ λ1 ‖ β ‖1

 , (1.2.3)

5



where λ1 > 0 is the penalty parameter in the lasso regression and ‖ β ‖1=
∑p

j=1 |βj|

is the `1 norm of the coefficient vector. Hence, Meinshausen and Bühlmann (2006)

define the estimated set of neighborhoods for node i ∈ V as:

Âi = {j ∈ V : β̂ij 6= 0}, (1.2.4)

Hence, neighborhood selection estimates p separate lasso regressions. The elements

of Ω are estimated to be non-zero if β̂ij 6= 0 or β̂ji 6= 0. The solution will depend

on the penalty parameter λ1, large values will tend to increase the set of variables

included in the neighborhood, while low values will shrink the set.

Meinshausen and Bühlmann (2006) prove that under certain conditions it is pos-

sible to estimate consistently the neighborhood of each node in the graph when the

dimension grows exponentially as a function of the sample size. Hence, the Neigh-

borhood Selection approach has an exponentially fast convergence rate and the con-

ditional independence structure of a multivariate Gaussian distribution can be esti-

mated consistently by combining the neighborhood estimates for all variables.

The neighborhood selection procedure is a simple method to recover the neighbor-

hood of a variable consistently under a set of suitable assumptions. Moreover is also

computationally fast for large data sets. However, it does not take into account the

intrinsic symmetry of Ω. This could produce a loss in efficiency and contradictory

neighborhoods. Also, the same penalty is used for all the p lasso regressions, which

is only efficient when the distribution of the network is nearly uniform (Peng et al.,

2009).

Peng et al. (2009) develop a procedure, called Sparse Partial Correlation Estima-

tion (SPACE), that is based on a joint sparse regression model that simultaneously

perform neighborhood selection and preserves symmetry. SPACE can detect pairs of

variables that have non-zero partial correlations among a large number of random

6



variables based on independent identically distributed samples with mean zero and

covariance matrix Σ. Using the fact that Xi can be expressed as Xi =
∑

j 6=i β
i
jXj+εi,

such that εi is uncorrelated with X−i, we can write βij in terms of the coefficients of

the precision matrix Ω:

βij = −ωij
ωii

= ρij

√
ωjj
ωii

, (1.2.5)

where ρij is the partial correlation coefficient and ωij the coefficients of the precision

matrix Ω.

Given this result, Peng et al. (2009) define the following loss function

Ln(θ,Ω,X) =
1

2

 p∑
i=1

wi

n∑
k=1

(
Xki −

∑
j 6=i

ρij

√
ωjj
ωii

Xkj

)2
 , (1.2.6)

where θ = (ρ12, ..., ρ(p−1)p), ω = {ωii}pi=1, X = {xk}nk=1 and w = {wi}pi=1 are nonneg-

ative weights.

The partial correlation vector θ = (ρ12, ..., ρ(p−1)p) is estimated by minimizing the

following penalized loss function

L(θ,ω,X) = Ln(θ,ω,X) + λ2 ‖ θ ‖1, (1.2.7)

where λ2 is the regularization parameter and ‖ θ ‖1=
∑

1≤i<j≤p |ρij| is an `1 penalty.

There are three different types of weights that can be considered: (1) uniform

weights , wi = 1, (2) residual variance based weights wi = ω̂ii and (3) degree based

weights, where wi is proportional to the estimated degree of Xi (i.e. this is related

with the number of variables such that ρ̂ij 6= 0 for j 6= i).

Peng et al. (2009) show that under certain conditions the SPACE method produces

consistent estimates and can identify the correct neighborhood when both n → ∞

and p→∞.

7



1.2.2 Penalized Maximum Likelihood

Under the assumption that x = (X1, ..., Xp)
T are normally distributed with mean

µ and covariance Σ. The objective of the following procedures is to estimate the

precision matrix Ω imposing some type of penalization on the likelihood function to

control the number of zeros in the precision matrix.

Yuan and Lin (2007) propose a method to estimate sparse graphical models. As-

suming that the data is multivariate Gaussian, a `1 penalty is imposed on the likeli-

hood function to estimate Ω. Therefore, the objective is to maximize the following

`1 regularized log-likelihood function:

max
Ω�0

{
log|Ω| − tr(SΩ)− λ3

p∑
i=1

p∑
j=1

|ωij|

}
. (1.2.8)

where λ3 > 0 is the regularization parameter.

From the optimization problem in (1.2.8), we can define the sub-gradient equation

for minimizing the log-likelihood

W− S− λ3Λ = 0, (1.2.9)

where W = Ω−1, Λij ∈ sign(ωij) (i.e. Λij = sign(ωij) if ωij 6= 0 and Ωij = 0 if

Λij ∈ [−1, 1]).

Given that the problem in (1.2.8) is convex, Banerjee et al. (2008) consider the

estimation of the covariance matrix Σ. Assuming that W is an estimate of Σ, they

show that the solution can be obtained by optimizing over each row and corresponding

column of W in a block coordinate descending fashion. To illustrate the idea, if the

matrix W and S are partitioned in the following way

W =

W11 w12

wT
12 w22

 S =

S11 s12

sT12 s22

 ,
8



the solution for w12 is given by:

w12 = arg min
y

{
yTW−1

11 y :‖ y− s12 ‖∞≤ λ3

}
. (1.2.10)

Which is identical to solve the following dual problem:

w12 = m
β
in

{
1

2
‖W1/2

11 β − b‖2 + λ4‖β‖1

}
, (1.2.11)

where b = W
−1/2
11 s12. Consequently, if β solves the problem in (1.2.11) then w12 =

W11β solves equation (1.2.10).

Friedman et al. (2008) state that the problem in (1.2.11) resembles a lasso re-

gression and is similar to the first order condition, given by equation (1.2.9), when

optimizing the log-likelihood imposing and `1 penalty. To illustrate the similarities

between the two approaches, we can partition W and Ω in the following way:

WΩ =

W11 w12

wT
12 w22


Ω11 ω12

ωT12 Ω22

 =

 I(p−1) 0(p−1)×p

0p×(p−1) 1

 . (1.2.12)

The sub-gradient equation (1.2.9) can be written in terms of the elements of the

partition matrices as

w12 − s12 − λ4γ12 = 0. (1.2.13)

Given the result in Banerjee et al. (2008) we can conveniently write the problem in

(1.2.13) as a lasso regression problem:

W11β − s12 + λ4v = 0, (1.2.14)

where β = W−1
11 w12 and v = γ12 such that v ∈ sign(β) elementwise.
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If we set W11 = S11, the estimates of the problem in (1.2.8) are the same to those

proposed by Meinshausen and Bühlmann (2006), in which a lasso regression is fitted

to each of the p variables taking as regressors the rest (p − 1) variables. However,

Banerjee et al. (2008) show that this approach does not yield the maximum likelihood

estimator, since in general W11 6= S11. Therefore, to solve this problem, Friedman

et al. (2008) propose a new algorithm, the Graphical Lasso or Glasso, that uses an

estimate of the upper block of W instead of using S11 directly. The Glasso algorithm

works in the following manner:

1. Start with W = S + λ4Ip. The diagonal of W remains unchanged in the

following steps.

2. For each j = 1, 2, ..., p, 1, 2, ..., p, ... solve the Lasso problem in (1.2.11), that

takes as input the inner products W11 and s12. This gives a (p − 1) vector of

solution β̂. Fill in the corresponding row and column of W using w12 = W11β̂.

3. Continue until convergence.

Step 2 implies a permutation of the rows and columns to make the target column

the last. Thus each lasso problem can be efficiently solved by a coordinate descent

algorithm (see Friedman et al., 2008). Since, the estimated β̂ will be sparse the

computation of w12 = W11β̂ will be fast. The Glasso algorithm will estimate Σ̂ = W,

and the precision matrix can be recovered solving the system of equations in (1.2.12).

A disadvantage of the Graphical lasso algorithm is that the `1 penalty tends to

produce biases even in the simple regression setting, due to the linear increase of

penalty on regression coefficients. Fan et al. (2009) propose two different procedures

to remedy this situation, one of them relies on non-concave penalties, the Smoothly

Clipped Absolute Deviation (SCAD), and the other is the Adaptive Lasso.

Fan and Li (2001) consider that a good penalty function should be able to produce

and estimator with three properties: (1) the estimator should be unbiased when the

10



true parameter is large to avoid unnecessary modeling bias. (2) It should produce

sparsity, this implies that the resulting estimator is a thresholding rule which auto-

matically sets small estimated coefficients to zero to reduce model complexity. (3)

The resulting estimator should be continuous in data to avoid instability in model

prediction. Fan and Li (2001) and Fan et al. (2009) show that these properties are

achieved by the SCAD penalty, which is symmetric on a quadratic spline [0,∞) where

the first order derivative is given by

SCAD′λ5,a = V
{
I(|x| < λ5) +

(aλ5 − |x|)+
(a− 1)λ5

}
, (1.2.15)

for x ≥ 0, where λ5 > 0 and a > 2 are two tuning parameters. When a→∞ equation

(1.2.15) corresponds to the `1 penalty. This penalty function leaves large values of

|x| not excessively penalized and makes the solution continuous. Using the SCAD

penalty, the optimization problem is given by

max
Ω�0

{
log|Ω| − tr(SΩ)−

p∑
i=1

p∑
j=1

SCADλ5,a(|ωij|)

}
. (1.2.16)

Fan and Li (2001) demonstrate that the rates of convergence for the penalized likeli-

hood estimators depend on the regularization parameter. While for the `1 penalized

likelihood the oracle property does not hold, the SCAD penalty performs as well as

the oracle procedure in terms of selecting the correct model.

Another procedure that achieves the three properties mention before is the Adap-

tive Lasso penalty (Zou, 2006), which set a different weight to each component, thus

the problem is to optimize the following restricted log-likelihood function:

max
Ω�0

{
log|Ω| − tr(SΩ)− λ6

p∑
i=1

p∑
j=1

wij|ωij|

}
, (1.2.17)
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where wij = 1/|ω̃ij|γ for some γ > 0 and any consistent estimator Ω̃ = [ω̃ij]1≤i,j≤p, the

initial estimates of Ω̃ can be obtained by estimating the precision matrix applying a

lasso penalty.

The SCAD penalty is a more flexible approach than the Adaptive Lasso, since an

element being estimated zero can escape from zero in the next iteration. While the

Adaptive Lasso absorbs zeros in each iteration producing estimates that are always

sparser than the initial values (see Fan et al., 2009).

Finally, another method that considers the dual problem of optimizing a `1 penal-

ized likelihood function to estimate Ω is developed by Cai et al. (2011) and denoted

by Constrained `1-minimization for Inverse Matrix Estimation (CLIME). Let Ω̂1 to

be the solution of the following optimization problem:

min ‖ Ω ‖1 subject to | ΣΩ− I |∞≤ λ7 Ω ∈ Rp×p, (1.2.18)

where λ7 is a tuning parameter. This problem does not impose the symmetry con-

dition on Ω, thus the solution, ω̂1
ij, is not symmetric. Therefore, the final CLIME

estimator of the precision matrix is obtained in the following way:

ω̂ij = ω̂ji = ω̂1
ij1(| ω̂1

ij |≤ ω̂1
ij) + ω̂1

ji1(| ω̂1
ij |> ω̂1

ij). (1.2.19)

This implies that between ω̂1
ij and ω̂1

ji, the one that is selected is the one with the

smallest magnitude. The method will also guarantee that Ω̂ is positive definite.

Cai et al. (2011) prove that the rate of convergence of CLIME outperforms the

rates of convergence for `1 Penalized Maximum Likelihood estimators and also satisfies

that

‖ Ω̂−Ω ‖2= Op

(√
log p

n

)
. (1.2.20)
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1.3 Robust Precision Matrix Estimation

One of the main drawback of the popular procedures to estimate the precision matrix

is that they are not well suited to handle noisy data (contaminated by outliers). The

existing approaches to estimate the precision matrix and recover the support of the

GGM use as input the empirical covariance matrix. The empirical covariance and

correlation matrix estimates are very sensitive to the presence of multidimensional

outliers (Alqallaf et al., 2002). The violation of the Gaussian assumption may re-

sult in poor recovery of the GGM and biased estimation of the precision matrix (see

Finegold and Drton, 2011; Liu et al., 2012; Sun and Li, 2012). Moreover, in the

high-dimensional setting, the fraction of perfectly observed rows may be very small.

If all components of a row have an independent chance of being contaminated, then

the probability that a case is perfectly observed is small. To deal with outliers in the

high-dimensional setting, Alqallaf et al. (2009) propose a contamination model where

the contamination in each variable is independent from other variables (i.e. compo-

nentwise outliers). It allows for cellwise contamination that can be applied to explain

the contamination mechanism in Microarrays experiments (see Troyanskaya et al.,

2001; Liu et al., 2003). The cellwise contamination model lacks the affine equivariant

property. Henceforth, existing approaches for robust covariance estimation such as

M-estimates (Hampel, 1973; Maronna, 1976), Minimum Volume Ellipsoid (MVE) and

Minimum Covariance Determinant (MCD) estimators (Rousseeuw, 1985, 1984) and

the Stahel-Donoho (SD) estimators (Stahel, 1981; Donoho, 1982), may not be reliable

in high-dimensional data sets.

To deal with outliers in high-dimensional data sets, many procedures construct

robust covariance and correlation matrices by using pairwise robust correlation coeffi-

cients. Liu et al. (2009) and Liu et al. (2012) propose to apply a univariate monotone

transformation to make the data Gaussian distributed. Then, a robust precision es-

timator of the correlation matrix can be computed from the transformed data. The
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main drawback of these procedures is that they are not robust under the presence of

structural bivariate outliers which could lead to a misleading graph support recovery.

1.4 Organization and Outline of the Thesis

The thesis is structure as follows. In Chapter 2 we present an approach to esti-

mate undirected graphs and to perform model selection in high dimensional Gaussian

Graphical Models. We consider a parametrization of the precision matrix in terms

of the prediction errors of the best linear predictor of each node in the graph. We

exploit the relationship between partial correlation coefficients and the distribution

of the prediction errors. We propose a novel forward-backward algorithm for detect-

ing pairs of variables having nonzero partial correlations among a large number of

random variables based on i.i.d. samples. We establish asymptotic properties under

mild conditions. The proposed algorithm outperforms the existing methods, such as

the Graphical lasso and CLIME, when we compare the graph recovery and numerical

performance under different settings. Numerical studies through simulation and real

data examples provide evidence of the theoretical advantage of the procedure.

Chapter 3 is concerned with robust estimation of Gaussian Graphical Models

in the high-dimensional setting when the data may contain outlying observations.

These outliers can lead to drastically wrong inference on the intrinsic graph struc-

ture. Several procedures apply univariate transformations to make the data Gaussian

distributed. However, these transformations do not work well under the presence

of structural bivariate outliers. We propose a robust precision matrix estimator un-

der the cellwise contamination mechanism that is robust against structural bivariate

outliers. This estimator exploits robust pairwise weighted correlation coefficient esti-

mates, where the weights are computed by the Mahalanobis distance with respect to

an affine equivariant robust correlation coefficient estimator. We show that the con-
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vergence rate of the proposed estimator is the same as the correlation coefficient used

to compute the Mahalanobis distance. We conduct numerical simulation under dif-

ferent contamination settings to compare the graph recovery performance of different

robust estimators. Finally, the proposed method is then applied to the classification

of tumors using gene expression data. We show that our procedure can effectively

recover the true graph under cellwise data contamination. Chapter 4 concludes the

thesis.
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Chapter 2

A Stepwise Approach for

High-Dimensional Gaussian

Graphical Models

High-dimensional Gaussian Graphical models (GGMs) have been widely used to rep-

resent the linear dependency between variables. The idea underlying GGMs is to

measure linear dependencies by estimating partial correlations to infer whether there

is an association between a pair of variables, conditionally on the rest of them. More-

over, there is a close relation between the nonzero partial correlation coefficients and

the nonzero entries in the inverse of the covariance matrix (Lauritzen, 1996; Edwards,

2000). This procedure is known as covariance selection and is widely used to iden-

tify the conditional independence in an undirected graph from a set of independently

indentically distributed observations (Dempster, 1972).

In a high-dimensional framework, when the dimension p is larger than the number

of available observations n, the sample covariance matrix is badly conditioned and

its inverse tends to amplify the estimation error (Ledoit and Wolf, 2004). From the

asymptotic point of view, when both n and p are large (i.e. p = O(n)), the sample
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covariance matrix is not a consistent estimator (El Karoui, 2008). To deal with this

problem, several covariance selection procedures have been proposed based on the

assumption that the inverse of the covariance matrix (i.e. precision matrix) is sparse.

This implies that most of the variables are conditionally independent.

Existing methods to estimate the GGM can be classified in three classes: the

nodewise regression methods, maximum likelihood methods and limited order partial

correlations methods. The nodewise regression method was proposed by Meinshausen

and Bühlmann (2006). This method estimate a lasso regression for each node in the

graph. Peng et al. (2009) present a procedure that simultaneously performs neigh-

borhood selection for all variables to estimate joint sparse regressions, applying an

active-shooting to solve the lasso. Yuan (2010) replaces the lasso regression with a

Dantzig selector. Liu and Wang (2012) propose an asymptotically tuning-free proce-

dure that estimates the precision matrix in a column-by-column fashion. Zhou et al.

(2011) propose an estimator for the precision matrix base on `1 regularization and

thresholding to infer a sparse undirected graphical model. Ren et al. (2015) propose

a nodewise regression approach to obtain asymptotically efficient estimation of each

entry of the precision matrix under sparseness conditions.

Penalized likelihood methods include Yuan and Lin (2007), Banerjee et al. (2008)

and Friedman et al. (2008), among others. These methods propose to estimate the

precision matrix by penalizing the log-likelihood function. Friedman et al. (2008)

propose the Graphical lasso (Glasso) procedure to estimate sparse precision matrices

fitting a modified lasso regression to each variable and solving the problem by a co-

ordinate descent algorithm. Rates of convergence under the Frobeniuos norm were

study by Rothman et al. (2008). Ravikumar et al. (2008) and Ravikumar et al. (2011)

obtain convergence rates under the elementwise `∞ norm and the spectral norm as-

suming subgaussian distributions. Lam and Fan (2009) and Fan et al. (2009) propose

methods to diminish the bias imposed by the `1 penalty by introducing a non-convex
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SCAD penalty. Cai et al. (2011) propose an estimator called CLIME that estimate

precision matrices for both sparse and non-sparse graphs, without imposing a specific

sparsity pattern, by solving the dual of an `1 penalized maximum likelihood prob-

lem. They establish convergence rates under the elementwise `∞ norm and Frobenius

norm. A greedy forward-backward algorithm to optimize a Gaussian log-likelihood

loss was proposed by Johnson et al. (2011). This algorithm starts with an empty set

of active variables and adds (and removes) variables to the active set. In doing so

they use a greedy coordinate ascent algorithm, this implies optimizing a quadratic

function for every pair of nodes in each iteration. They show that the greedy algo-

rithm requires a restricted eigenvalue condition on the true precision matrix. This

condition is weaker than the irrepresentable condition impose by the `1 regularized

log-likelihood methods (see Ravikumar et al., 2011).

Limited order partial correlation procedures use lower order partial correlations

to test for conditional independence relations. Spirtes et al. (2000) propose the PC-

algorithm, which works in an iterative procedure, it starts with a complete undirected

graph and deletes edges based on conditional independence decisions. This algorithm

works in the worst case in exponential time, but under sparsity assumptions the com-

putational complexity is reduced to polynomial time. Kalisch and Bühlmann (2007)

and Rütimann et al. (2009) modify the PC-algorithm to estimate direct acyclic graphs.

However, their approach has a large degree of computational complexity. Liang et al.

(2015) propose an equivalent measure of partial correlations based on the Markov

property and adjacency faithfulness to estimate partial correlation coefficients. Huang

et al. (2016) propose a partial correlation screening approach that uses a screen step

and a clean step. In the screen step, the algorithm select a reduce neighborhood set

for each node using a stagewise algorithm. In the clean step, the algorithm removes

false positives and uses the resultant neighborhood set to reconstruct each row of the

precision matrix.
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In this article, we present an approach to estimate partial correlations and to per-

form model selection in high dimensional Gaussian Graphical Models (GGM) based

on a forward-backward algorithm. Our method is motivated by the relation between

the partial correlation coefficients and the elements of the precision matrix. We pro-

pose to parametrize the precision matrix in terms of the prediction errors of the best

linear predictor of each variable. Hence, we convert the original problem of estimating

the precision matrix into that of the covariance matrix estimation. We estimate the

edge set applying a forward-backward algorithm. The algorithm begins with an empty

edge set and gradually adds and removes edges from the edge set. In the forward

step the algorithm finds the best next candidate given by the pair of variables with

the largest absolute empirical partial correlation coefficient, otherwise the algorithm

terminates. In the backward step the algorithm removes the unlikely edges. The max-

imization of this coefficient is related to the maximization of a empirical information

divergence measure. We the call this procedure Graphical Stepwise. Compare with

existing methods, our approach is able to provide a set of edges associated with the

largest absolute partial correlation coefficients for a given threshold. Moreover, under

mild conditions we show that the Graphical Stepwise procedure is able to consistently

estimate the true set of edges.

The rest of the chapter is organized as follows. In the next section we present

a parametrization of the precision matrix which exploits the relation between the

elements of the precision matrix and a system of linear regressions. In Section 2.2 we

present the Graphical Stepwise procedure to estimate a set of edges with a forward-

backward algorithm. In Section 2.3 we establish the consistency of the proposed

approach. Section 2.4 presents simulation results and real data analysis. We compare

the numerical and classification performance of the method with that of Glasso and

CLIME. In Section 2.5 we conclude the article with a brief discussion. Proof of the

main results are presented in Section 2.6.
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2.1 Undirected Graphical Models

To make the manuscript self-contained, we first introduce some definitions and ana-

lytical results for Graphical Models. Suppose that x = (X1, . . . , Xp)
T is a p-variate

random vector with joint distribution F . The conditional independence structure

of the distribution can be represented by a graphical model G = (V,E), where

V = {1, . . . , p} is the set of nodes and E ⊆ V × V the set of edges. The graph

is called undirected when all the edges are undirected. If two nodes i and j ∈ V form

and edge, then i and j are adjacent or neighbors (Lauritzen, 1996; Edwards, 2000).

Definition 3. Let G = (V,E) be an undirected graph. The set of neighbors of a node

i ∈ V is denoted as Ai and is defined by the following set of nodes:

Ai = {k ∈ V \ {i} : (i, k) ∈ E}. (2.1.1)

Associated with and undirected graph G and the probability distribution F we

can assume a range of different Markov properties. If I ⊆ V let XI = {Xi : i ∈ I}.

Definition 4. (Pairwise Markov Property) We say that F satisfies the Pairwise

Markov property (P) with respect to an undirected graph G, if for any pair of un-

connected nodes (i, j) /∈ E

Xi � Xj | XV \{i,j}.

Definition 5. (Local Markov Property) We say that F satisfies the Local Markov

property (L) with respect to an undirected graph G, if for any node i ∈ V

Xi � XV \(Ai∪{i}) | XAi .

A stronger notion is the Global Markov property. Let I, J , S three disjoint and

nonempty subsets of V . We denote XI � XJ | XS when XI is independent of XJ

20



conditioned on XS; the set S is said to separate I from J if for every node i ∈ I and

j ∈ J , all paths from i to j have at least one node in S. We introduce the following

definition.

Definition 6. (Global Markov Property) The probability distribution F satisfies the

Global Markov property (G) with respect to G if for every triplet of disjoint and

nonempty subsets of nodes I, J , S it holds that XI � XJ | XS whenever S sepa-

rates I and J in G.

The three Markov properties are related as follows.

Proposition 1. For any undirected graph G and any probability distribution F , it

holds that

(G) =⇒ (L) =⇒ (P).

The following theorem states that if F has a positive and continuous density func-

tion with respect to a product measure then the Markov properties are all equivalent

(see Lauritzen, 1996).

Theorem 1. (Pearl and Paz, 1985) If F has a strictly positive and continuous density

function with respect to a product measure, then

(G)⇐⇒ (L)⇐⇒ (P).

A special class of undirected graphical models is the conditionally independence

graph. This is a graphical model with undirected graph G and probability distribution

F where the pairwise Markov property holds. Hence, if (i, j) /∈ E then Xi � Xj |

XV \{i,j}.
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2.1.1 Gaussian Graphical Models

Suppose that x = (X1, . . . , Xp)
T has a joint Gaussian distribution with mean µ = 0

and p × p covariance matrix Σ = (σij)i,j=1...,p and let G = (V,E) be the associated

graphical model . If Σ is regular then Ω = (ωij)i,j=1...,p denote the precision matrix

Σ−1.

Consider Xi and Xj with i < j and let xi,j = (Xi, Xj)
T and x−{i,j} the random

vector containing the rest of the variables (the indexes in V \ {i, j} in ascending

order) and let x0−{i,j} ∈ R(p−2)×1 be a (fixed) vector. By Proposition C.5. of Lau-

ritzen (1996), the conditional distribution of xi,j given x−{i,j} = x0−{i,j} is normally

distributed with covariance matrix Σi,j|−{i,j} given by the inverse of the matrix

Ai,j =

 ωii ωij

ωji ωjj

 .

Hence

Σi,j|−{i,j} = A−1
i,j =

1

ωiiωjj − ωijωji

 ωjj −ωij

−ωji ωii

 . (2.1.2)

By the normality, conditionally to x−{i,j} = x0−{i,j}, Xi and Xj are independent if

and only if ωij = ωji = 0 (hereafter, for the sake of simplicity, we will omit the vector

x0−{i,j}).

The partial correlation between variables Xi and Xj, ρij, is defined as the cor-

relation coefficient of the conditional distribution of x{i,j} given x−{i,j} and so, by

(2.1.2),

ρij =
−ωij

[ωiiωjj]
1/2

(2.1.3)

and, as a consequence, the following proposition is established (see Proposition of 5.2

of Lauritzen, 1996).
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Proposition 2. (Conditional Independence) Assume that x = (X1, . . . , Xp)
T is mul-

tivariate Gaussian distributed with regular covariance matrix Σ. Then, it holds that

∀i, j ∈ V , with i 6= j:

Xi � Xj | XV \{i,j} ⇐⇒ ωij = 0 (2.1.4)

or, equivalently,

(i, j) /∈ E ⇐⇒ ωij = 0. (2.1.5)

Note that, since the joint Gaussian density function is positive and continuous,

as a result of applying Theorem 1 the GGMs also satisfies Local and Global Markov

properties.

We are interested to express partial correlation in terms of regression coefficients.

Let x−i ∈ R(p−1)×1 the random vector with the set of indexes V \ {i} in ascending

order,

Σ−i,−i = Cov (x−i,x−i) (2.1.6)

Σi,−i = Cov (Xi,x−i)

= Cov (Xi,x−i) = (Cov (Xi, X1) , . . . ,Cov (Xi, Xi−1))

and Σ−i,i = Cov (x−i, Xi).

Note that, by the same proposition Proposition C5 of Lauritzen (1996), the con-

ditional distribution of Xi | x−i satisfies

Xi | x−i ∼ N
(
µi|−i,Σi|−i

)
, (2.1.7)

where µi|−i = Σi,−iΣ
−1
−i,−ix−i and Σi|−i = Σii −Σi,−iΣ

−1
−i,−iΣ−i,i.

23



Then, for each node i ∈ V the optimal predictor for Xi, β
i, given the remaining

variables is defined as (see Meinshausen and Bühlmann, 2006):

βi = argmin
β∈Rp:βi=0

‖ Xi −
p∑

j∈V

βjXj ‖2
2

= argmin
β∈Rp:βi=0

EXi|x−i

(
Xi −

∑
j∈V

βjXj

)2

.

(2.1.8)

The following Lemma summarizes very well known properties related to multi-

variate normal distribution and its proof is given in Section 2.6.

Lemma 1.

a) For every node i ∈ V the optimal predictor for Xi, β
i ∈ Rp, satisfies

βij = −ωij
ωii

, ∀j 6= i (2.1.9)

and βii = 0 (by definition).

b) Given i, j ∈ V , the partial correlation ρij is related to βij by the following ex-

pression

ρij = sign(βij)
√
βji β

i
j. (2.1.10)

c) For every i ∈ V , Xi satisfies the following regression model

Xi =
∑
j 6=i

βijXj + εi = βixT−i + εi

where βij is given by (2.1.9) and the error term εi ∼ N
(
0,Σi|−i

)
is independent

of x−i.
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As a simple consequence of the previous Lemma the errors vector ε = (ε1, . . . , εp)
T

has a N (0,Ψ) distribution with Var(εi) and Cov(εi, εj) given by

ψi,i = ω−1
ii and ψi,j = ωij/(ωiiωjj), (2.1.11)

respectively.

As a generalization of equation (2.1.8), for a every node i and Ai ⊆ V \ {i} the

optimal prediction of Xi given the set of variables {Xk : k ∈ Ai} is characterized by

the vector βi,Ai (see Meinshausen and Bühlmann, 2006) by

βi,Ai = argmin
β∈Rp:βj=0,∀j /∈Ai

‖ Xi −
∑
j∈V

βjXj ‖2
2

= argmin
β∈Rp:βj=0,∀j /∈Ai

E

(
Xi −

∑
j∈V

βjXj

)2

.

(2.1.12)

2.1.2 Inverse Covariance Estimation

Let x = (X1, . . . , Xp)
T ∼ N (0,Σ), where Σ is the covariance matrix, Ω = Σ−1 the

precision matrix and let G = (V,E) be the associated graphical model as before. Let

{x1, . . . ,xn} be a random sample of the random vector x where xk = (xk1, . . . , xkp)
T ,

k = 1, . . . , n. Let X = (x1, . . . ,xn)T ∈ Rn×p be the data matrix.

In gaussian graphical models (GGMs) we are interested in recovering, based on X,

the underlying graph structure and this problem corresponds to determining which

off-diagonal entries of Ω are non-zero. Considering (2.1.5) and (2.1.9)

E = {(i, j) : ωij 6= 0} =
{

(i, j) : βij 6= 0
}
.

The neighborhood of a node i ∈ V is defined as

Ai = {j ∈ V \ {i} : (i, j) ∈ V }, (2.1.13)
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and, in consequence, the estimation of the inverse covariance matrix is equivalent to

the estimation of the set of neighborhoods of the nodes i ∈ V .

As we mentioned in the introduction when p > n the sample covariance matrix

is badly conditioned and its inverse tends to amplify the estimation error. For large

precision matrix estimation Fan et al. (2016) proposed the innovated scalable efficient

estimation (ISEE) breaking the large-scale precision matrix estimation into smaller-

scale linear regression problems. In the following we give a brief explanation of ISEE.

Consider the linear transformation, termed as innovation (in time series litera-

ture),

x̃ = Ωx (2.1.14)

and note that the unobservable p−variate random vector x̃ has a N(0,Ω) distribution.

If A,B are subsets of V define (the sub–matrix of Ω) ΩA,B = (ωij)i∈A,j∈B and for

A = B let ΩA = ΩA,A. Consider a partition (Al)
L
l=1 of the set of nodes and, for every

Al, let xAl be the sub–vector of x formed by its components with indexes in Al. So,

by the definition of x̃ we can write the sub–vector x̃Al as

x̃Al = ΩAlηAl

with ηAl = xAl + Ω−1
Al

ΩAl,A
c
l
. Note now that the result in (3.1.6) can be general-

ized to xAl|xAc
l
∼ N

(
−Ω−1

Al
ΩAl,A

c
l
,Ω−1

Al

)
suggesting the following multivariate linear

regression model

xAl = CAlxAcl + ηAl (2.1.15)

where CAl is a matrix of regression coefficients and ηAl is the vector of model errors.

Equation (2.1.15) suggest to fit this model and to propose, using some regression

technique, an estimate η̂Al considering ηAl as a residual vector.

Hence, ΩAl can be estimated by the inverse of the sample covariance matrix,

Ω̂Al , of the model residual vector η̂Al and, finally, it is possible to estimate x̃Al by
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x̂Al = Ω̂Alη̂Al . By stacking all these sub-vectors (x̃Al)
L
l=1 together it is possible to

estimate the oracle innovated vector x̃.

We will briefly discuss below the implementation of the ISSE that will use in our

forward-backward method in the next section. Given X = (x1, . . . ,xn)T ∈ Rn×p the

data matrix, the oracle empirical matrix X̃ ∈ Rn×p is defined as, (see Fan et al.,

2016),

X̃ = XΩ. (2.1.16)

If A is a subset of the set of nodes V , using matrix notation, the model (2.1.15)

can be written

XA = CAXAc + EA (2.1.17)

where XA,XAc are the sub–matrices of X with columns in A and Ac respectively, EA

is an n× |A| model error matrix with rows as i.i.d. copies of η̂TA. The corresponding

matrix X̃A can be written as

X̃A = ΩAEA.

Note now that for every node i ∈ A, it is possible to define the univariate linear

regression model for response Xi (ithe column of X) given by the linear regression

Xi = XAcβ
i + Ei (2.1.18)

where Ei is the corresponding column of the matrix EA and βi ∈ R(p−|A|)×1 is the

column of the regression coefficients matrix CA.

As we mentioned before, using some technique regression we obtain an estimation,

β̂i, of the βi coefficients and so

Êi = Xi −XAcβ̂
i and ÊA =

(
Êi

)
i∈A

(2.1.19)
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This equations give a natural estimate, Ω̂A, of the sub–matrix ΩA defined by

Ω̂A =
(
n−1Ê

T

AÊA

)−1

(2.1.20)

and so, a plug-in estimator for the unobservable sub–matrix X̃A is ÊAΩ̂A.

When A ranges the partition (Al)
L
l=1 we obtain the estimate X̂ of the the oracle

empirical matrix X̃ and an initial estimate Ω̂ of the precision matrix Ω:

X̂ =
(
X̂Al

)
1≤l≤L

and Ω̂ =
1

n
X̂
T
X̂ (2.1.21)

To estimate the regression coefficients, ISEE introduced by Fan et al. (2016) use

penalized least square with the scale Lasso. Sun and Zhang (2012) show that under

mild regularities conditions, the residual error and the regression coefficients, esti-

mated with the scaled lasso, are consistent and asymptotically normal. However, this

may result in a dense network, thus the final sparse precision matrix estimator is

computed by thresholding the elements of n−1X̂
T
X̂ (Bickel and Levina, 2008a).

To show that the lasso can consistently estimate the neighborhood of each node, we

need to assume the irrepresentable condition and the beta-min condition on the size

of the minimal absolute value of non-zero regression coefficients (see Meinshausen and

Bühlmann, 2006; Zhao and Yu, 2006; van de Geer and Bühlmann, 2009; Bühlmann

and Van De Geer, 2011). This assumption may be restricted, hence we proposed an

alternative approach to estimate the oracle empirical matrix X̃ without resorting to

`1 regularization procedures.

In the next section we propose a non-regularized greedy forward-backward algo-

rithm to recover the graph structure and this technique is based, partially, in the

estimation of the precision matrix based on innovation although our method use least

square regression.
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For each node i ∈ V , the optimal predictor βi,Ai = βi based on the variables

in the neighborhood set Ai was defined in (2.1.12). Let β̂
i

the estimated coefficient

vector and let Êi be the estimated residual error of the best predictor of Xi given the

variables in the neighborhood set

Êi = Xi −
p∑
j=1

β̂ijXj. (2.1.22)

By (2.1.20) if Ω̂i = n−1Ê
T

i Êi and if X̂ ∈ Rn×p denotes the estimator of the oracle

empirical matrix X̃, the estimate of the i-th element of the oracle empirical matrix

X̃ is

X̂i = ÊiΩ̂i for i ∈ V. (2.1.23)

The estimator of the precision matrix Ω is the sample covariance matrix of the esti-

mate oracle empirical matrix

Ω̂ = n−1X̂
T
X̂. (2.1.24)

So, for an undirected graph G = (V,E), if we can efficiently recover the support of Ω

supp(Ω) = {{i, j} ∈ V : (i, j) ∈ E}, (2.1.25)

then we can estimate the precision matrix as the sample covariance matrix of a random

vector that depends on the residuals of the best linear predictor for each node and,

so, supp(Ω) can be estimated by supp(Ω̂).

2.2 The Proposed Method

In this section, we present a new forward-backward greedy algorithm to recover the

structure of a GGM. This procedure estimates, sequentially, the oracle empirical
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matrix and as a consequence obtains an estimation of the precision matrix. We call

this procedure Graphical Stepwise.

The algorithm begins with an empty set of edges (i.e. Ê(0) = ∅ where the super-

scripts denotes the number of steps). Moreover, the initial neighborhoods sets are

given by Â(0)
i = ∅ for each i ∈ V . In the forward step, the initial optimal edge is

given by the pair of variables with the largest absolute empirical correlation:

(i∗, j∗) = argmax
(i,j)∈(Ê(0))c

| Ĉor(Xi,Xj) | . (2.2.1)

The edge set and the neighborhood sets are updated as: Ê(1) ← {(i∗, j∗)}, Â(1)
i∗ ←

{j∗} and Â(1)
j∗ ← {i∗}. Next, the algorithm sets k = k+1 and estimates the prediction

errors of Xi∗ and Xj∗ using the result in (2.1.12). If the corresponding absolute

empirical correlation is smaller or equal to a threshold γ (i.e. |Ĉor(Xi∗ ,Xj∗)| ≤ γ),

the algorithm stops and outputs the current estimate set of edges.

At step k, the current edge set is given by Ê(k−1). In the forward step, the

procedure finds the edge that maximizes the absolute value of the empirical partial

correlation coefficient which is define as the empirical correlation coefficient between

the estimated prediction errors Ê
(k−1)

i and Ê
(k−1)

j of the best linear predictors of Xi

and Xj based on the set of variables in the neighborhood sets Â(k−1)
i and Â(k−1)

j ,

respectively for (i, j) ∈ (Ê(k−1))c:

ρ̂
(k−1)
ij = Ĉor(Ê

(k−1)

i , Ê
(k−1)

j ). (2.2.2)

Then the best next candidate is given by the pair of nodes with the largest absolute

empirical partial correlation coefficient:

(i∗, j∗) = argmax
(i,j)∈(Ê(k−1))c

| Ĉor(Ê
(k−1)

i , Ê
(k−1)

j ) | . (2.2.3)
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Next, the edge set and the neighborhood sets are updated as Ê(k) ← Ê(k−1)∪{(i∗, j∗)},

Â(k)
i∗ ← Â(k−1)

i∗ ∪ {j∗} and Â(k)
j∗ ← Â(k−1)

j∗ ∪ {i∗}. If the corresponding absolute

empirical partial correlation is smaller than γ, the algorithm stops and outputs the

current estimate set of edges. Otherwise, the algorithm sets k = k + 1 and estimates

the prediction errors of Xi∗ and Xj∗ using the result in (2.1.12) assuming that the

neighborhood sets are given by Â(k)
i∗ and Â(k)

j∗ . In the backward step, the algorithm

eliminates the unlikely edges in E(k). Thus, the procedure selects the pair of nodes

from the edge set with the minimum absolute empirical partial correlation coefficient:

(i∗, j∗) = argmin
(i,j)∈(Ê(k))

| Ĉor(Ê
(k)

i , Ê
(k)

j ) |, (2.2.4)

if the corresponding absolute empirical partial correlation corresponding to nodes

(i∗, j∗) is smaller than γ, the algorithm removes the pair of variables from the edge

set: Ê(k−1) ← Ê(k) − {(i∗, j∗)}, Â(k−1)
i∗ ← Â(k)

i∗ − {j∗} and Â(k−1)
j∗ ← Â(k)

j∗ − {i∗}.

Algorithm 1 summarizes the Graphical Stepwise procedure to learn the structure of

a GGM.

The Graphical Stepwise procedure outputs the estimated set of edges, denoted by

Ê and the corresponding prediction errors Êi for i ∈ V . To estimate the precision

matrix we convert the original problem of estimating Ω into that of a covariance

estimation problem. Let X̂ ∈ Rn×p be the estimator of the oracle empirical matrix X̃

define in (2.1.16). The diagonal elements of Ω̂ are computed as ω̂ii = n−1Ê
T

i Êi, and

the estimate of the i-th element of the oracle empirical matrix X̃ is

X̂i = ÊiΩ̂i for i ∈ V. (2.2.5)

The estimator of the off-diagonal elements of the precision matrix Ω are given by the

covariance of the oracle empirical matrix estimate for all pairs of nodes that belong
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to the estimated set of edges Ê:

ω̂ij = n−1X̂
T

i X̂j (i, j) ∈ Ê

ω̂ij = 0 (i, j) /∈ Ê
(2.2.6)

The Graphical Stepwise procedure is able to estimate an undirected graph that

contains the set of edges with the largest absolute empirical partial correlations coeffi-

cients for a given threshold. Also, it is possible to introduce previous knowledge when

we construct the network. For instance, if we have information that some variables

are conditionally independent we can exclude them from the candidate set of edges

Ê. Moreover, we can reduce the candidate set of edges by performing a correlation

screening proposed by Fan and Lv (2008). We propose to obtain a reduce candidate

set of edges by thresholding the empirical correlation matrix by a constant ξ > 0.

Then, the set of candidate edges is defined as follows

Êξ = {(i, j) : |Ĉor(Xi,Xj)| > ξ, i, j = 1, . . . , p}. (2.2.7)

Luo et al. (2014) and Liang et al. (2015) show that for an appropriate choice of ξ, the

true set of edges is contained in the candidate set of edges Êξ with high probability,

when p grows exponentially with n.
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Algorithm 1: Graphical Stepwise algorithm for Gaussian covariance estimation
input : X, Stopping Threshold γ > 0
output: Edge Set Estimation Ê, Residual Error Estimation Êi for i ∈ V

Initialize Ê(0) ← ∅, Â(0)
i ← ∅, Ê(0)

i ← Xi for i ∈ V , k ← 1;
while true do

Forward Step;

(i∗, j∗)← argmax(i,j)∈(Ê(k−1))C | Ĉor(Ê
(k−1)
i , Ê

(k−1)
j ) |;

Ê(k) ← Ê(k−1) ∪ {(i∗, j∗)};
Â(k)
i∗ ← Â

(k−1)
i∗ ∪ {j∗};

Â(k)
j∗ ← Â

(k−1)
j∗ ∪ {i∗};

if | Ĉor(Ê
(k−1)
i∗ , Ê

(k−1)
j∗ ) |≤ γ then

break
end

β̂i
∗

= argmin
β∈Rp:βl=0,l∈V \Â(k)

i∗
‖ Xi∗ −

∑p
l=1 βlXl ‖22 ;

Ê
(k)
i∗ = Xi∗ −

∑p
l=1 β̂

i∗
l Xl;

β̂j
∗

= argmin
β∈Rp:βl=0,l∈V \Â(k)

j∗
‖ Xj∗ −

∑p
l=1 βlXl ‖22 ;

Ê
(k)
j∗ = Xj∗ −

∑p
l=1 β̂

j∗

l Xl;

k ← k + 1;
while true do

Backward Step;

(i∗, j∗)← argmin(i,j)∈Ê(k−1) | Ĉor(Ê
(k−1)
i , Ê

(k−1)
j ) | ;

if | Ĉor(Ê
(k−1)
i∗ , Ê

(k−1)
j∗ ) |≤ γ then

break
end

Ê(k−1) ← Ê(k) − {(i∗, j∗)};
Â(k−1)
i∗

← Â(k)
i∗
− {j∗};

Â(k−1)
j∗

← Â(k)
j∗
− {i∗};

β̂i∗ = argmin
β∈Rp:βl=0,l∈V \Â(k−1)

i∗
‖ Xi∗ −

∑p
l=1 βlXl ‖22 ;

Ê
(k−1)
i∗ = Xi∗ −

∑p
l=1 β̂

i∗
l Xl;

β̂j∗ = argmin
β∈Rp:βl=0,l∈V \Â(k−1)

j∗
‖ Xj∗ −

∑p
l=1 βlXl ‖22 ;

Ê
(k−1)
j∗ = Xj∗ −

∑p
l=1 β̂

j∗
l Xl;

k ← k − 1;

end

end
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2.2.1 The Proposed Method: Relation with the Information

Divergence Measure

The Kullback-Leibler information divergence between two densities f and g for the

random vector x is defined as

I(f ; g) = Ef [log (f(x)/g(x))]

where Ef denotes expectation with respect to the density f (see Whittaker, 2009, pp.

87–104).

Let x, y and z be random vectors with joint density function fx,y,z and let fy|x

and fz|x the densities of the conditional distribution of y | x and z | x, respectively;

let fx be the density function of the vector x. The information (Inf) in y about z

conditional on x is defined by

Inf
(
y � z | x

)
= I

(
fx,y,z; fz|xfy|xfx

)
and it represents a measure of the average amount of information in fx,y,z against the

independence of y and z conditional on x because Inf
(
y � z | x

)
= 0 if and only if

y � z | x.

Let x = (X1, . . . , Xp)
T be a random vector with multivariate Gaussian distribution

and let G = (V,E) be its graphical model. For a fixed pair of nodes i, j consider

xi,j = (Xi, Xj)
T and x−{i,j} (the random vector containing the rest of the variables)

defined in Subsection 2.1.1.

The following proposition claims that information divergence for measuring the

conditional independence of a pair of random variablesXi andXj, given the remaining

variables, has a simple expression as a function of the partial correlation (of the two
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variables). Although its proof is a consequence of Proposition 6.4.6 of Whittaker

(2009) we give a straightforward proof for this particular case.

Proposition 3. For every i, j ∈ V it holds

Inf
(
Xi � Xj | x−{i,j}

)
= −1

2
log(1− ρ2

ij), (2.2.8)

where ρij is the partial correlation coefficient between variables Xi and Xj conditioned

on x−{i,j}.

Let x1, . . . ,xn be a random sample x and let Ĉor(Ê
(k−1)

i , Ê
(k−1)

j ) be the empirical

partial correlation coefficient defined as the empirical correlation coefficient between

the estimated prediction errors Ê
(k−1)

i and Ê
(k−1)

j of the best linear predictors of Xi

and Xj based on the set of variables in the neighborhood set Â(k−1)
i and Â(k−1)

j .

Lemma 1 relates the correlation between the regression errors and partial coefficient

regression and Proposition 3 establishes the relation with the information divergence.

Hence, by the previous considerations, at step k the Graphical Stepwise algorithm

select the pair of nodes (i∗, j∗) that satisfies

(i∗, j∗) = argmax
(i,j)∈(Ê(k−1))C

−1

2
log(1− Ĉor(Ê

(k−1)

i , Ê
(k−1)

j )2). (2.2.9)

So, at step k the algorithm select the pair (i∗, j∗) with largest absolute empirical

partial correlation coefficient or largest empirical divergence information.
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Figure 2.1: Undirected block graph (when p = 6). Nodes are represented by circles
and undirected edges are represented by lines.

2.2.2 The Proposed Method: Example

The technique proposed in Section 2.2 will now be illustrated numerically on the 6×6

precision matrix Ω:

Ω =



1.0 0.5 0.5 0.0 0.0 0.0

0.5 1.0 0.5 0.0 0.0 0.0

0.5 0.5 1.0 0.0 0.0 0.0

0.0 0.0 0.0 1.0 0.5 0.5

0.0 0.0 0.0 0.5 1.0 0.5

0.0 0.0 0.0 0.5 0.5 1.0


(2.2.10)

This is a block graph G = (V,E) where the set of nodes are given by V = {1, 2, 3, 4, 5}

and the set of edges is given by E = {(1, 2), (1, 3), (2, 3), (4, 5), (4, 6), (5, 6)}. The

graphical representation is shown in Figure 2.1.

We now show how the Graphical Stepwise procedure works. In doing so, we draw

n = 100 independent samples from a multivariate Gaussian distribution with mean

zero and covariance matrix Σ = Ω−1. To select the threshold γ we follow the scheme
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proposed by Cai et al. (2011). We generate a training sample of size n = 100 from a

multivariate Gaussian distribution with mean zero and covariance matrix Σ = Ω−1,

and an independent sample of the same distribution for validating the thresholding

parameter. From the training data, we apply Algorithm 1 for 50 different values of

γ. The optimal parameter is given by the one that minimize the log-likelihood loss

defined by:

− log(det(Ω̂)) + tr(Ω̂XTX)− p. (2.2.11)

We replicate each simulation experiment 100 times.

First, we show how the algorithm works in each step for an specific replication

where the thresholding parameter is set to γ = 0.165. The algorithm is initialized at

step k = 0 assuming that all variables are conditionally independent. The initial set of

edges is Ê(0) = ∅ and the the initial neighborhoods sets are given by Â(0)
i = ∅ for i ∈ V .

The initial residual errors are given by Ê
(0)

i = Xi for i ∈ V . The empirical correlation

matrix of the estimated residual errors is computed as the empirical correlation matrix

of X:

Ĉor(Ê
(0)
, Ê

(0)
) =



1.00 −0.28 −0.37 0.03 −0.01 −0.06

−0.28 1.00 −0.38 −0.11 0.08 0.10

−0.37 −0.38 1.00 −0.06 0.05 −0.00

0.03 −0.11 −0.06 1.00 −0.33 −0.30

−0.01 0.08 0.05 −0.33 1.00 −0.31

−0.06 0.10 −0.00 −0.30 −0.31 1.00


(2.2.12)

In the forward step, the initial optimal edge is given by the pair of variables with the

largest absolute empirical correlation. From the result in (2.2.12), we observe that the

largest absolute partial correlation is given by the ordered pair (i∗, j∗) = (2, 3) with

|Ĉor(Ê
(0)

2 , Ê
(0)

3 )| = 0.38. Given that the corresponding absolute empirical correlation

is not smaller or equal to γ = 0.165 the algorithm sets k = 1. Then the edge set and
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the neighborhood sets are updated as: Ê(1) = {(2, 3)}, Â(1)
2 = {3} and Â(1)

3 = {2}.

The prediction errors of X2 and X3 are estimated using the result in (2.1.12). The

empirical correlation matrix of the estimated residual errors at step k = 1 is given

by:

Ĉor(Ê
(1)
, Ê

(1)
) =



1.00 −0.45 −0.51 0.03 −0.01 −0.06

−0.45 1.00 0.38 −0.15 0.11 0.11

−0.51 0.38 1.00 −0.11 0.09 0.04

0.03 −0.15 −0.11 1.00 −0.33 −0.30

−0.01 0.11 0.09 −0.33 1.00 −0.31

−0.06 0.11 0.04 −0.30 −0.31 1.00


(2.2.13)

In the backward step, the algorithm eliminates the unlikely edges in E(1). Thus, the

procedure selects the pair of edges from the edge set with the minimum absolute

partial correlation. Since the absolute empirical partial correlation of the edge (2, 3)

is not smaller than γ, we do not eliminate the edge.

Next, we add an additional edge. In the forward step we select the ordered pair

of nodes with the maximum absolute correlation between the empirical residuals in

(2.2.13). Which is given by (i∗, j∗) = (1, 3). Given that |Ĉor(Ê
(1)

1 , Ê
(1)

3 )| = 0.51 is

larger than γ, The algorithm keeps running. Then, we set k = 2 and the edge set

and the neighborhood sets are updated as: Ê(2) = {(1, 3), (2, 3)}, Â(2)
1 = {3} and

Â(2)
3 = {1, 2}. The prediction errors of X1 and X3 are estimated using the result in

(2.1.12). The empirical correlation matrix of the estimated residual errors at step
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k = 2 is given by:

Ĉor(Ê
(2)
, Ê

(2)
) =



1.00 −0.48 0.31 0.01 0.00 −0.06

−0.48 1.00 0.32 −0.15 0.11 0.11

0.31 0.32 1.00 −0.13 0.11 0.03

0.01 −0.15 −0.13 1.00 −0.33 −0.30

0.00 0.11 0.11 −0.33 1.00 −0.31

−0.06 0.11 0.03 −0.30 −0.31 1.00


(2.2.14)

In the backward step, we choose from the edges in Ê(2) the edge with the minimum

absolute empirical partial correlation (i.e. Ĉor(Ê
(2)

1 , Ê
(2)

3 ) = 0.31), since the coefficient

is not smaller than γ = 0.165, we do not eliminate the ordered pair from the edge set.

In the following run of the algorithm the maximum correlation of the residu-

als errors in (2.2.14) is |Ĉor(Ê
(2)

1 , Ê
(2)

2 )| = 0.48. The algorithm does not stop and

we set k = 3. The edge set and the neighborhood sets are updated as: Ê(3) =

{(1, 3), (1, 2), (2, 3)}, Â(3)
1 = {2, 3} and Â(3)

2 = {1, 3}. We estimate the prediction

errors Ê
(3)

1 and Ê
(3)

2 and we compute the correlation matrix of the empirical residual

errors as:

Ĉor(Ê
(3)
, Ê

(3)
) =



1.00 0.48 0.53 −0.07 0.06 −0.01

0.48 1.00 0.54 −0.16 0.13 0.09

0.53 0.54 1.00 −0.13 0.11 0.03

−0.07 −0.16 −0.13 1.00 −0.33 −0.30

0.06 0.13 0.11 −0.33 1.00 −0.31

−0.01 0.09 0.03 −0.30 −0.31 1.00


(2.2.15)

In the backward step we do not eliminate any ordered pair from the edge set since

all estimated partial correlations in absolute value are larger than γ.
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In the following step, the additional edge is given by (i∗, j∗) = (4, 5) and

|Ĉor(Ê
(3)

4 , Ê
(3)

5 )| is larger than γ, the algorithm sets k = 4: Ê(4) = {(1, 3), (1, 2), (2, 3), (4, 5)}

and Â(4)
4 = {5}, Â(4)

5 = {4}. The prediction errors of X4 and X4 are estimated using

the result in (2.1.12) and the correlation matrix of the empirical residual errors is:

Ĉor(Ê
(4)
, Ê

(4)
) =



1.00 0.48 0.53 −0.05 0.05 −0.01

0.48 1.00 0.54 −0.13 0.08 0.09

0.53 0.54 1.00 −0.10 0.07 0.03

−0.05 −0.13 −0.10 1.00 0.33 −0.43

0.05 0.08 0.07 0.33 1.00 −0.43

−0.01 0.09 0.03 −0.43 −0.43 1.00


(2.2.16)

The backward step does not eliminate any edge.

At the beginning of step k = 6, the additional edge is (i∗, j∗) = (5, 6) and the

estimated correlation between the residuals in absolute value is larger than γ (i.e.

|Ĉor(Ê
(4)

5 , Ê
(4)

6 )| = 0.43). We set k = 5, Ê(5) = {(1, 3), (1, 2), (2, 3), (4, 5), (5, 6)} and

Â(5)
5 = {4, 6}, Â(5)

6 = {5}. We compute the residuals errors of X5 and X6 and we

update the empirical correlation matrix of the residual errors:

Ĉor(Ê
(5)
, Ê

(5)
) =



1.00 0.48 0.53 −0.05 0.03 0.01

0.48 1.00 0.54 −0.13 0.11 0.14

0.53 0.54 1.00 −0.10 0.07 0.06

−0.05 −0.13 −0.10 1.00 0.29 −0.45

0.03 0.11 0.07 0.29 1.00 0.27

0.01 0.14 0.06 −0.45 0.27 1.00


(2.2.17)

In the following round, the additional edge is given by (i∗, j∗) = (4, 6) and the

corresponding estimated correlation between the empirical errors is larger than the

threshold value. We set k = 6, Ê(6) = {(1, 3), (1, 2), (2, 3), (4, 5), (4, 6), (5, 6)} and
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Â(6)
4 = {5, 6}, Â(6)

6 = {4, 5}. We compute the residuals errors of X4 and X6 and the

empirical correlation matrix of the residual errors:

Ĉor(Ê
(6)
, Ê

(6)
) =



1.00 0.48 0.53 −0.05 0.03 −0.01

0.48 1.00 0.54 −0.07 0.11 0.09

0.53 0.54 1.00 −0.08 0.07 0.02

−0.05 −0.07 −0.08 1.00 0.46 0.45

0.03 0.11 0.07 0.46 1.00 0.45

−0.01 0.09 0.02 0.45 0.45 1.00


(2.2.18)

The backward step does not eliminate any of the edges since the correlation between

the residual errors in absolute value are larger than γ.

In the following run, the additional edge is (i∗, j∗) = (2, 5). Since |Ĉor(Ê
(6)

2 , Ê
(6)

5 )| =

0.11 is smaller than γ = 0.165, the algorithm stops and output the estimated set of

edges Ê = {(1, 3), (1, 2), (2, 3), (4, 5), (4, 6), (5, 6)} and the corresponding prediction

errors Êi for i ∈ V . We estimate the oracle empirical matrix X̃ and the precision

matrix using the result in (3.2.5):

Ω̂ =



0.90 0.49 0.55 0.00 0.00 0.00

0.49 1.13 0.62 0.00 0.00 0.00

0.55 0.62 1.20 0.00 0.00 0.00

0.00 0.00 0.00 0.96 0.40 0.44

0.00 0.00 0.00 0.40 0.78 0.40

0.00 0.00 0.00 0.44 0.40 1.00


(2.2.19)

Table 2.1 and Figure 2.2 summarize the results for each step of the Graphical Step-

wise procedure. Finally, Figure 2.3 shows the corresponding frequency of the zeros

identified for each entry of Ω out of 100 replications. We observe that the Graphical

Stepwise procedure is able to recover the support of Ω in an efficient way.
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Table 2.1: Graphical Stepwise algorithm. Selected edges in forward and backward
step.

Forward Step Backward Step

Step (i∗, j∗) ĈorÊ
(k−1)
i∗ , Ê

(k−1)
j∗ ) (i∗, j∗) Ĉor(Ê

(k)
i∗ , Ê

(k)
j∗ ) Ê(k)

k = 1 (2, 3) -0.38 (2, 3) 0.38 {(2, 3)}
k = 2 (1, 3) -0.51 (1, 3) 0.31 {(1, 3); (2, 3)}
k = 3 (1, 2) -0.48 (1, 2) 0.48 {(1, 2); (1, 3); (2, 3)}
k = 4 (4, 5) -0.33 (4, 5) 0.33 {(1, 2); (1, 3); (2, 3); (4, 5)}
k = 5 (5, 6) -0.43 (5, 6) 0.27 {(1, 2); (1, 3); (2, 3); (4, 5); (5, 6)}
k = 6 (4, 6) -0.45 (5, 6) 0.45 {(1, 2); (1, 3); (2, 3); (4, 5); (4, 6); (5, 6)}
k = 7 (2, 5) 0.11 - - {(1, 2); (1, 3); (2, 3); (4, 5); (4, 6); (5, 6)}

(a) k = 1 (b) k = 2 (c) k = 3

(d) k = 4 (e) k = 5 (f) k = 6

Figure 2.2: Graph representation of the estimated undirected graphs in each step of
the Graphical Stepwise Algorithm.
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Figure 2.3: Heatmaps of the frequency of the zeros identified for each entry of Ω
(when p = 6) out of 100 replications. White represents 100 zeros identified out of 100
runs, and black represents 0/100.

2.3 Analytical Properties

We conjecture some analytical properties for the Graphical Stepwise procedure to

estimate the set of edges of a GGM. The analysis is related with the theoretical prop-

erties of the PC algorithm (Spirtes et al., 2000) proposed by Kalisch and Bühlmann

(2007) and the ψ-learning algorithm proposed by Liang et al. (2015).

Assume that observations x1, . . . ,xn are identically independently distributed with

x1 ∈ Rp and probability distribution F . We let the dimension grow as a function of

the sample size. Thus, we rewrite the dimension p as pn, the distribution F as F (n)

and the undirected graph G = (V,E) as G(n) = (V (n), E(n)). We define the set of

edges:

E(n) = {(i, j) : ρij 6= 0, i, j = 1, . . . , pn}. (2.3.1)

To establish consistency of the Graphical Stepwise procedure, we make the following

assumptions (see Section 3.3 Liang et al., 2015):

(A1) The distribution F (n) is multivariate Gaussian.

(A2) The dimension pn = O(exp(nδ)) for some constant 0 ≤ δ < 1.
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(A3) The correlation coefficients satisfy:

inf{| Cor(Xi, Xj) |; Cor(Xi, Xj) 6= 0, i, j = 1, . . . , pn, i 6= j} ≥ c0n
−κ, (2.3.2)

where c0 > 0 and 0 < κ < (1− δ)/2. Moreover,

sup{| Cor(Xi, Xj) |; i, j = 1, . . . , pn, i 6= j; } ≤Mr < 1, (2.3.3)

for some constant 0 < Mr < 1.

(A4) There exist a constant c1 > 0 and 0 ≤ τ ≤ 1−2κ for some 0 < κ < (1−δ)/2 such

that λmax(Σ) ≤ c1n
τ , where λmax(Σ) is the largest eigenvalue of the covariance

matrix Σ.

Assumption (A1) is often used in graphical modeling. When we compare our approach

with that of Kalisch and Bühlmann (2007) and Liang et al. (2015), we do not require

the distribution F (n) to be faithful to the graph G(n). The adjacency faithfulness

condition restricts the class of probability distributions. Assumption (A2) allows for

exponential growth of the dimension as a function of the sample size. (A3) ensures we

can detect nonzero correlations, and restrict the linear dependencies of the variables

by requiring an upper bound 0 < Mr < 1. Assumption (A4) restricts the rate of

growth of the maximum eigenvalue of Σ as the sample size increases.

Let denote the empirical partial correlations coefficients between variables Xi and

Xj conditioned on the variables XSij , where the conditioning set is defined as Sij =

{k ∈ V \ {i, j}}, as Ĉor(Xi, Xj|XSij). Let qn = maxi,j∈{1,...,pn} |Sij| be the maximal

cardinality of the subset set Sij given in the Graphical Stepwise procedure. Also,

we note that Sij denotes every possible conditioning set. In order to ensure that the

conditioning sets are bounded we need to reduce the problem of estimating a GGM

form a high-dimensional setting (n < p) to a low-dimensional setting n > qn. Then,
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we can reduce the conditioning set Sij by performing a correlation screening proposed

by Fan and Lv (2008). For a given threshold ξn > 0, let Êξn,i be the set of candidate

neighborhood set of node i ∈ Vn

Êξn,i = {j : j 6= i, |Ĉor(Xi,Xj)| > ξn, i, j = 1, . . . , pn}. (2.3.4)

Lemma 2 gives a probabilistic upper bound for the candidate neighborhood set of

node i (see Lemma 2 in Liang et al., 2015).

Lemma 2. Assume (A1), (A2), (A3) and (A4) hold. Let and ξn = 2/3c1n
−κ. Then,

for each node i,

Pr
{
|Êξn,i| ≤ O(n2κ+τ )

}
≥ 1− c2exp(−c3n

1−2κ), (2.3.5)

for some constants c2 and c3.

Let γn denote the threshold value used to screen the partial correlations in the

Graphical Stepwise algorithm. Let Êγn denote the estimated set of edges. We define:

Êγn = {(i, j) : |Ĉor(Xi, Xj|XSij)| > γn, i, j = 1, . . . , pn}. (2.3.6)

To establish the consistency of Êγn , we assume that the population partial corre-

lations, denoted by Cor(Xi, Xj|XSij), with non-zero coefficients in E(n) satisfy the

following condition:

(A5) The partial correlation coefficients satisfy:

inf{| Cor(Xi, Xj|XSij) |; ρij 6= 0, i, j = 1, . . . , pn, i 6= j; |Sij| ≤ qn} ≥ c4n
−d,

(2.3.7)
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where qn = O(n2κ+τ ), 0 < c4 <∞ and 0 < d < (1− δ)/2. Moreover,

sup{| Cor(Xi, Xj|XSij) |; i, j = 1, . . . , pn, i 6= j; |Sij| ≤ qn} ≤M < 1, (2.3.8)

for some constant 0 < M < 1.

Assumption (A5) ensures that we can detect non-zero partial correlation coefficients

and restrict the linear dependencies between the variables by requiring an upper

bound 0 < M < 1.

The following Lemma is concerned with the uniform consistency of the esti-

mated partial correlations coefficients, which is adopted from Corollary 1 in Kalisch

and Bühlmann (2007) and assuming that the cardinality of the conditioning sets is

bounded (see Lemma 2 in Liang et al., 2015).

Lemma 3. Assume (A1) and (A5) hold and qn < n− 4. Then, for any 0 < γ < 2,

sup
i,j∈{1,...,pn}

Pr
{
|Ĉor(Xi, Xj|XSij)− Cor(Xi, Xj|XSij)| > γ

}
≤ c5(n− qn − 2)exp

{
(n− qn − 4)log

(
4− γ2

4 + γ2

)}
,

(2.3.9)

for some constant 0 < c5 <∞ depending on M in (A4) only.

In Algorithm 1, we select sequentially ordered pair of nodes by finding the variables

with the largest absolute empirical partial correlation and then adding to the selected

active set of edges in each step. Theorem 2 establishes the consistency of the Graphical

Stepwise algorithm.

Theorem 2. Consider a GGM with distribution F (n) and underlying undirected graph

G(n) = (V (n), E(n)). Assume (A1)-(A5) hold and let γn = 1
2
c4n
−d. Then,

Pr
{
Êγn = E(n)

}
≥ 1− o(1), as n→∞. (2.3.10)
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To prove Theorem 2 we follow the analysis propose by Kalisch and Bühlmann

(2007), Bühlmann et al. (2010) and Bühlmann and Van De Geer (2011). Detail of

the proof is given in Section 2.6.

2.4 Numerical Results

In this section, we conduct an exhaustive numerical study on the performance of the

Graphical Stepwise procedure. We consider the empirical performance for simulated

and real data. We compare our estimation method with the Graphical lasso (Glasso)

proposed by Friedman et al. (2008) and CLIME proposed by Cai et al. (2011). These

methods aim to estimate Ω by solving the following `1 penalized-likelihood problem

min
Ω�0
−log(det(Ω)) + tr(ΩXTX) + θ ‖ Ω ‖1, (2.4.1)

where θ ≥ 0 is the regularization parameter and ‖ Ω ‖1=
∑

j 6=i | ωij | the element-wise

`1 norm.

2.4.1 Simulation Experiments

In this section we present simulation experiments to examine the performance of

the proposed method to estimate high-dimensional GGMs. We first investigate the

numerical and classification performance of our procedure and we compare with that

of Graphical lasso (Glasso) and CLIME.

We draw n independent samples from a multivariate Gaussian distribution with

mean zero and covariance matrix Σ = Ω−1. We fix n = 100 and consider different val-

ues of p = {90, 100, 120}. We consider four different specifications for the population

precision-matrix Ω:

1. AR(1) Model: ωii = 1, ωi,i+1 = ωi−1,i = 0.4 and 0 otherwise.
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2. AR(2) Model: ωii = 1, ωi,i+1 = ωi−1,i = 0.4, ωi,i+2 = ωi−2,i = 0.2 and 0

otherwise.

3. 2-nearest-neighbor graph: p points are randomly selected from a unit square

and all pairwise distances among the points are computed. Then, the 2 nearest

neighbors of each node are selected. The entries of the precision matrix are

randomly chosen from the interval [−1,−0.5] ∪ [0.5, 1]. To ensure that the

precision matrix is positive definite the matrix is normalized as: Ω+(λ(Ω)min +

0.2)Ip where λ(Ω)min refers to the smallest eigenvalue.

4. Block Graph: Ω is a block diagonal matrix with block size p/4. Each block

has off-diagonal elements equal to 0.5 and diagonal elements equal to 1. The

matrix is guarantee to be positive definite. The resulting matrix is randomly

permuted by rows and columns. The graph have approximately 90 edges when

p = 60, 150 edges when p = 100 and 180 edges when p = 120.

To select the threshold γ we follow the scheme proposed by Cai et al. (2011). For each

model, we generate a training sample of size n = 100 from a multivariate Gaussian

distribution with mean zero and covariance matrix Σ = Ω−1, and an independent

sample of the same distribution for validating the thresholding parameter. From the

training data, we estimate the different precision matrices estimators for 50 different

values of γ. The optimal parameter is given by the one that minimize the log-

likelihood loss defined by:

−log(det(Ω̂)) + tr(Ω̂XTX)− p.

The same scheme is used to choose the regularization parameter of Glasso and

CLIME. We replicate each simulation experiment 100 times.

To evaluate the performance of the method, we study specific assessment measures

to evaluate support recovery and numerical performance. To compare the numeri-
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cal performance, we compute the Frobenius and spectral norm between Ω and Ω̂.

Moreover, we evaluate the performance of the estimator Ω̂ with the expected value

of the Likelihood Ratio Test (LRT), measured by E(LRT(Ω̂)), where LRT(Ω̂) is the

likelihood ratio distance computed as

LRT(Ω̂) = tr(Ω̂Ω−1)− log(det(Ω̂Ω−1))− p, (2.4.2)

small values imply a better performance of the method in estimating the true Ω (see

Danilov et al., 2012).

The graph structure recovery is evaluated by specificity, sensitivity, and Mathews

correlation coefficient (MCC) criteria, defined as follows:

Specificity =
TN

TN + FP
Sensitivity =

TP

TP + FN
(2.4.3)

MCC =
TP× TNFP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
, (2.4.4)

where TP be the true non-zero elements and TN be the true zero elements estimated

by Ω̂ and FP be the false non-zero elements and FN be the false zero elements

estimated by Ω̂.

We first evaluate the estimation performance. Table 2.2 reports the average and

standard errors of LRT and matrix losses. We see that Graphical Stepwise uniformly

outperforms Glasso. The improvement is more significant when the graph is sparse

and n < p. When we compare the Graphical Stepwise average LRT and Frobenius

norm with that of CLIME, we observe that our procedure outperforms CLIME and

is specially favorable when p is large and Ω is sparse. We observe that for the AR(1)

and 2-nearest-neighbor specifications, CLIME shows a slightly better behavior than

Graphical Stepwise in terms of spectral norm.
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(a) p = 60

(b) p = 100

(c) p = 120

Figure 2.4: AR(1) Model. Heatmaps of the frequency of the zeros identified for each
entry of Ω out of 100 replications. White represents 100 zeros identified out of 100
runs, and black represents 0/100.

Regarding the support recovery, Table 2.3 shows the classification performance for

the four specifications. We observe that Graphical Stepwise significantly outperforms

CLIME and Glasso in terms of the overall classification performance measure by the

MCC criteria. Our procedure estimate more sparse graphs than Glasso and CLIME.

Glasso tends to introduce erroneous non-zero elements. To illustrate the recovery

performance, Figures 2.4 to 2.7 show the heatmaps out of 100 replications. We

observe that Graphical Stepwise estimates a sparsity pattern that is closely related

with the true model. We also note that CLIME and Glasso tend to introduce false

positive edges.
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(a) p = 60

(b) p = 100

(c) p = 120

Figure 2.5: AR(2) Model. Heatmaps of the frequency of the zeros identified for each
entry of Ω out of 100 replications. White represents 100 zeros identified out of 100
runs, and black represents 0/100.
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(a) p = 60

(b) p = 100

(c) p = 120

Figure 2.6: 2-nearest-neighbor graph. Heatmaps of the frequency of the zeros identi-
fied for each entry of Ω out of 100 replications. White represents 100 zeros identified
out of 100 runs, and black represents 0/100.
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(a) p = 60

(b) p = 100

(c) p = 120

Figure 2.7: Block graph. Heatmaps of the frequency of the zeros identified for each
entry of Ω out of 100 replications. White represents 100 zeros identified out of 100
runs, and black represents 0/100.
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Table 2.2: Comparison of average numerical performance for four models over 100 replications with standard deviation in
brackets.

Graphical Stepwise CLIME Glasso
Model p LRT Frobenius Spectral LRT Frobenius Spectral LRT Frobenius Spectral

60 2.203 1.914 0.749 4.378 2.563 0.730 4.571 2.876 0.783
(0.448) (0.217) (0.178) (0.392) (0.139) (0.049) (0.318) (0.113) (0.033)

AR(1) 100 4.076 2.536 0.824 8.533 3.646 0.803 9.093 4.097 0.853
(0.704) (0.218) (0.193) (0.593) (0.194) (0.044) (0.403) (0.137) (0.029)

120 4.843 2.744 0.822 10.811 4.089 0.816 11.526 4.637 0.876
(0.795) (0.217) (0.131) (0.669) (0.178) (0.046) (0.433) (0.116) (0.027)

60 6.024 3.268 1.030 5.612 3.701 1.120 6.032 4.011 1.187
(0.763) (0.226) (0.127) (0.392) (0.179) (0.066) (0.264) (0.116) (0.038)

AR(2) 100 11.870 4.565 1.136 10.516 5.280 1.242 11.474 5.661 1.296
(1.054) (0.234) (0.150) (0.489) (0.161) (0.044) (0.315) (0.121) (0.029)

120 14.956 5.152 1.133 13.287 5.944 1.274 14.355 6.351 1.327
(1.147) (0.236) (0.119) (0.522) (0.197) (0.045) (0.356) (0.123) (0.027)

60 2.707 2.305 0.864 3.471 2.704 0.861 3.862 2.878 0.921
(0.496) (0.220) (0.162) (0.246) (0.132) (0.081) (0.211) (0.104) (0.057)

Neighbor 100 4.065 2.712 0.862 6.214 3.395 0.809 7.200 3.804 0.877
(0.640) (0.217) (0.147) (0.457) (0.149) (0.059) (0.339) (0.112) (0.047)

120 5.569 3.216 0.952 7.969 3.790 0.854 9.277 4.288 0.929
(0.731) (0.239) (0.207) (0.516) (0.156) (0.065) (0.374) (0.122) (0.040)

60 4.517 2.987 1.245 5.738 4.651 1.402 7.552 5.593 1.543
(0.830) (0.333) (0.222) (0.470) (0.279) (0.073) (0.291) (0.182) (0.046)

Block 100 9.702 4.287 1.373 11.412 6.843 1.570 14.329 7.923 1.686
(1.472) (0.396) (0.174) (0.640) (0.308) (0.061) (0.316) (0.135) (0.028)

120 14.921 5.799 1.520 14.763 7.941 1.644 17.928 8.940 1.733
(1.569) (0.351) (0.089) (0.553) (0.235) (0.052) (0.282) (0.157) (0.027)
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Table 2.3: Comparison of average support recovery for four models over 100 replications with standard deviation in brackets.
Graphical Stepwise CLIME Glasso

Model p Sensitivity Specificity MCC Sensitivity Specificity MCC Sensitivity Specificity MCC
60 0.983 0.999 0.971 0.999 0.830 0.374 1.000 0.743 0.295

(0.017) (0.001) (0.021) (0.003) (0.028) (0.031) (0.000) (0.022) (0.015)
AR(1) 100 0.975 0.999 0.965 0.999 0.900 0.392 1.000 0.804 0.275

(0.018) (0.001) (0.017) (0.003) (0.019) (0.034) (0.001) (0.016) (0.013)
120 0.975 0.999 0.968 0.999 0.921 0.403 1.000 0.823 0.267

(0.016) (0.000) (0.014) (0.003) (0.012) (0.032) (0.000) (0.011) (0.010)
60 0.651 0.990 0.714 0.773 0.841 0.382 0.834 0.723 0.297

(0.091) (0.005) (0.052) (0.045) (0.030) (0.028) (0.037) (0.025) (0.018)
AR(2) 100 0.566 0.994 0.657 0.705 0.898 0.356 0.775 0.803 0.272

(0.079) (0.002) (0.041) (0.030) (0.017) (0.025) (0.030) (0.017) (0.014)
120 0.523 0.995 0.633 0.669 0.917 0.348 0.751 0.824 0.259

(0.072) (0.002) (0.040) (0.033) (0.017) (0.028) (0.028) (0.016) (0.011)
60 0.847 0.997 0.858 0.975 0.826 0.329 0.973 0.787 0.290

(0.070) (0.002) (0.039) (0.024) (0.034) (0.033) (0.022) (0.022) (0.016)
Neighbor 100 0.909 0.999 0.902 0.987 0.906 0.339 0.991 0.843 0.259

(0.042) (0.001) (0.030) (0.013) (0.017) (0.032) (0.011) (0.013) (0.013)
120 0.877 0.998 0.873 0.972 0.926 0.352 0.974 0.856 0.250

(0.041) (0.001) (0.030) (0.017) (0.013) (0.030) (0.015) (0.014) (0.013)
60 0.956 0.988 0.871 0.995 0.813 0.422 0.993 0.673 0.303

(0.031) (0.005) (0.037) (0.008) (0.028) (0.031) (0.010) (0.027) (0.015)
Block 100 0.938 0.990 0.831 0.976 0.874 0.408 0.970 0.772 0.292

(0.044) (0.003) (0.031) (0.015) (0.019) (0.030) (0.016) (0.018) (0.012)
120 0.797 0.995 0.795 0.960 0.902 0.417 0.953 0.804 0.288

(0.045) (0.001) (0.034) (0.016) (0.013) (0.020) (0.020) (0.018) (0.011)
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2.4.2 Analysis of Breast Cancer Data

We apply the procedure to evaluate gene expression profiling to breast cancer patients

data to predict who may achieve pathological complete response (pCR). Using nor-

malized gene expression data of patients in stages I-III of breast cancer data analyzed

by Hess et al. (2006), we aim to predict response state to neoadjuvant (preoperative)

chemoterapy of patients with pathological complete response (pCR) and with residual

disease (RD). The importance of study the subject response to neoadjuvant (preoper-

ative) chemoterapy, resides in the fact that complete eradication of all invasive cancer

(i.e. pCR) is associated with long-term cancer free survival.

The data set consist of 22,283 gene expression levels of 133 subjects, with 34 pCR

and 99 RD, respectively. We follow the analysis scheme proposed by Fan et al. (2009)

and Cai et al. (2011). The data is randomly split into the training and testing set, we

repeat this procedure 100 times. The testing set is formed by randomly selecting 5

pCR subjects and 16 RD subjects (approximately 1/6 subjects in each group). The

remaining subjects form the training set. From the training set a Wilcox singed-rank

test is performed to select the 113 most significant genes.

Based on the estimate of the precision matrix, we apply a linear discriminant anal-

ysis (LDA) to predict whether a patient may achieve pathological complete response

(pCR). From the training set, we compute the mean and precision matrix estimates.

For the test data we compute the linear discriminant score as follows

δr(Xi) = XT
i Ω̂µ̂r −

1

2
µTr Ω̂µr + logπ̂r for i = 1, . . . , n, (2.4.5)

where π̂r is the proportion of group r subjects in the training set, µr the sample

mean of group r and Ω̂ the precision matrix estimate for the whole training set. The
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classification rule is taken to be

r̂(Xi) = argmax δt(Xi) for r = 1, 2. (2.4.6)

To perform model selection we use 5-fold cross validation on the training data.

Table 3.7 displays the average classification performance and the number of miss-

classified tumor samples for each precision matrix estimator. We can see that Graph-

ical Stepwise and CLIME improve over Glasso in terms of Sensitivity, MCC and the

classification error. While all three methods give similar Specificity performance.

Graphical Stepwise is slightly better than CLIME in classifying the pCR subjects,

which is measure by the MCC and Testing Set Error values. Moreover, our procedure

estimates sparse precision matrices then, we can obtain simpler models with small

number of edges which is usually favorable for interpreting real data sets.

Table 2.4: Comparison of average pCR classification errors over 100 replications with

standard deviation in brackets.

Sensitivity Specificity MCC Test Error Set Sparsity

Graphical Stepwise 0.718 0.804 0.484 0.216 0.004

(0.187) (0.083) (0.179) (0.076) (0.002)

CLIME 0.652 0.812 0.437 0.226 0.788

(0.210) (0.082) (0.199) (0.078) (0.045)

Glasso 0.522 0.828 0.345 0.245 0.230

(0.216) (0.086) (0.214) (0.077) (0.022)

2.5 Conclusions

In this article, we have presented an integrated approach to estimate undirected

graphs and to perform model selection in high dimensional Gaussian Graphical Mod-

els (GGMs). We consider a parametrization of the precision matrix in terms of the
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prediction errors of the best linear predictor of each node in the graph. We exploit the

relationship between partial correlation coefficients and the distribution of the pre-

diction errors. We propose a novel forward-backward algorithm for detecting pairs

of variables having nonzero partial correlations among a large number of random

variables based on i.i.d. samples. We obtain a set of the most probable edges in a

GGM which are related with the largest absolute partial correlation coefficients. The

position of the new non-zero element in the precision matrix corresponds to the pair

of variables with the largest absolute partial correlation conditioned on the set of

active nodes previously detected. We show that under mild conditions the Graphical

Stepwise procedure is able to consistently estimated the set of true edges. The nov-

elty of the approach is that we can obtain a set of more probable edges in a GGM

for a given threshold value without resorting to penalized regression procedures. The

Graphical Stepwise has good numerical and GGM classification performance when

sparse precision matrices are estimated. Simulation studies show that the procedure

is able to detect the true set of edges. The numerical examples indicate that our

procedure outperforms existing algorithms, such as the Graphical lasso and CLIME.

Applications to real data to perform a classification analysis show that our approach

has a satisfactory predictive performance. Finally, we note that the computation

time of the Graphical Stepwise algorithm is similar to that of CLIME and it depends

strongly on the value of the threshold.

There are several possible extensions of our method. In the forward-backward

procedure we use a constant threshold value to select edges. A possible extension is

to consider that the threshold varies with the effective sample size, which is given

by n − |Sij| − 3, where Sij is the separator set od nodes i and j. This adjustment

is able to improve the performance of the Graphical Stepwise procedure. Further-

more, we can apply multiple testing hypothesis procedure for selecting the non-zero

partial correlation coefficients. Liang et al. (2015) introduce a generalized Bayesian
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method for conducting multiple hypothesis testing that can be apply to test for con-

ditional independence in our procedure. Finally, our procedure can be extended to

binary graphical models by replacing linear regressions with logistic regression (see

Ravikumar et al., 2010). For non-Gaussian random variables we could apply the non-

paranormal transformation proposed by Liu et al. (2009) or the rank-based partial

correlation coefficient proposed by Harris and Drton (2013).

2.6 Proof of Main Results

2.6.1 Proof of Lemma 1

Proof. We will prove item a). The proof of item b) can be found in pp. 32–33 of

Kurowicka and Cooke (2006) and the proof of c) is straightforward.

Let vT = (v1, . . . , vp−1) ∈ R(p−1) be a vector. By definition (see (2.1.8)) the op-

timal predictor βi minimizes, over the set {β ∈ Rp : βi = 0}, the conditional expec-

tation h(β) = EXi|x−i=v

(
Xi −

∑
j∈V

βjXj

)2

. By (2.1.6) and (3.1.6), EXi|x−i=v (Xi) =

µi|−i and Σi|−i = VarXi|x−i (Xi) and, in consequence,

h(β) = EXi|x−i=v

(
X2
i

)
− 2

∑
j∈V

EXi|x−i=v (XiβjXj) +

+EXi|x−i=v

(∑
j∈V

βjXj

)2

= µ2
i|−i + Σi|−i − 2µi|−i

∑
j∈V

βjvj +

(∑
j∈V

βjvj

)2

.
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Hence the minimum value of h(β) solves the set of equations:

∀k ∈ V \ i : 0 =
∂h(β)

∂βk
or, equivalently

∀k ∈ V \ i : 0 = −2µi|−ivk + vk

(∑
j∈V

βjvj

)
.

So, the solution βi satisfies

µi|−i = xT−iβ
i (2.6.1)

(given x−i = v).

By equation (C.4) of Lauritzen (1996, p. 256) ω−1
ii Ωi,−i = −Σi,−iΣ

−1
−i,−i (see

(2.1.6)). Hence, by this equality and considering that µi|−i = Σi,−iΣ
−1
−i,−ix−i (see

(3.1.6)) we have

−ω−1
ii Ωi,−ix−i = −Σi,−iΣ

−1
−i,−ix−i = µi|−i (2.6.2)

By (2.6.1) and (2.6.2) βi = −ω−1
ii Ωi,−i minimices h(β) and then if βij is the j-th

component of βi then βij = −ωi,j
ωii

.

2.6.2 Proof of Proposition 3

Proof. Let I = V \ {i, j}, J = {i, j}, x = (X1, . . . , Xp)
T , xJ = (Xi, Xj)

T and

xI = x−{i,j}, as before, the vector containing the remaining variables with indexes in

the set V \ {i, j} considered in ascending order.
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Let fXi|xI and fXj |xI be the conditional distributions of Xi and Xj given xI . By

definition and a very simple calculation

Inf
(
Xi � Xj | xI

)
= E

(
log

fx

fXi|xIfXj |xIfxI

)
(2.6.3)

= E

(
log

fxJ |xI
fXi|xIfXj |xI

)
= E

(
logfxJ |xI

)
− 2E

(
logfXi|xI

)
Using (C.2) of Lauritzen, 1996

Xi | xI ∼ N(µi|I ,Σi|I). (2.6.4)

where µi|I = Σi,IΣ
−1
II xI and Σi|I = Σii −Σi,IΣ

−1
II ΣI,i.

Analogously, the conditional distribution of xJ given xI is also Gaussian dis-

tributed

xJ | xI ∼ N(µJ |I ,ΣJ |I). (2.6.5)

where µJ |I = ΣJIΣ
−1
II xI and ΣJ |I = ΣJJ −ΣJIΣ

−1
II ΣIJ

From the definition of Gaussian density functions we have

E
(
logfXi|xI

)
= −1

2

(
log(2π) + log(Σi|I)

)
− 1

2

E(Xi − µi|I)2

Σi|I

= −1

2

(
log(2π) + log(Σi|I)

)
− 1

2
.

(2.6.6)

The partial correlation coefficient, introduced in Subsection 2.1.1, was defined as the

correlation coefficient of the conditional distribution of xJ given xI . So, denoting for

k = i, j : Zk =
(
Xk − µk|I

)
the centered variables, we have that
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E
(
logfxJ |xI

)
= −log

(
2πΣi|IΣj|I

√
1− ρ2

ij

)
(2.6.7)

− 1

2(1− ρ2
ij)

(
E(Zi)

2

Σi|I
+

E(Zj)
2

Σj|I
− 2ρij

E(ZiZj)

(Σi|IΣj|I)1/2

)

= −log(2π)− log
(

Σi|IΣj|I

√
1− ρ2

ij

)
− 1.

Replacing (2.6.6) and (2.6.7) in (2.6.3) the statement in the proposition is proved.

2.6.3 Proof of Theorem 2

Proof. We follow the scheme of the proof of Lemma 4 in Kalisch and Bühlmann

(2007). The Graphical Stepwise algorithm estimates partial correlations conditioning

on the set of neighborhoods that corresponds to the active variables at each step.

Let Aij|Sij denote the event an error occur in the Graphical Stepwise procedure when

testing partial correlations for zero at nodes (i, j) conditioning on the set Sij. Hence,

Pr
{

an error occur in Êγn

}
= Pr{∪i6=jAij|Sij} ≤ O(p2+qn

n ) sup
i6=j

Pr{Aij|Sij}. (2.6.8)

Let AIij|Sij and AIIij|Sij denote the false positive and false negative errors, respectively.

Then,

Aij|Sij = AIij|Sij ∪ A
II
ij|Sij , (2.6.9)

where:

False positive error AIij|Sij : |Ĉor(Xi, Xj|XSij)| >
c4

2
n−d and ρij = 0

False negative error AIIij|Sij : |Ĉor(Xi, Xj|XSij)| ≤
c4

2
n−d and ρij 6= 0.

(2.6.10)
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Then, using Lemma 3 and that log((4 − a2)/(4 + a2)) converge to −a2/2 as a → 0,

there exist a constant 0 < C <∞ such that:

sup
ij

Pr{AIij|Sij} = sup
ij

Pr
{
|Ĉor(Xi, Xj|XSij)− Cor(Xi, Xj|XSij)| >

c4

2
n−d
}

sup
ij

Pr{AIij|Sij} ≤ O(n− qn)exp
{
−Cn−2d(n− qn)

}
,

(2.6.11)

The probability of the false negative error is given by:

sup
ij

Pr{AIIij|Sij} = sup
ij

Pr
{
|Ĉor(Xi, Xj|XSij)| ≤

c4

2
n−d
}
. (2.6.12)

Moreover, by assumption (A4) minij |Ĉor(Xi, Xj|XSij)| ≥ c4n
−d,

sup
ij

Pr{AIIij|Sij} ≤ sup
ij

Pr
{
|Ĉor(Xi, Xj|XSij)− Cor(Xi, Xj|XSij)| >

c4

2
n−d
}
.

(2.6.13)

By Lemma 3, we have

sup
ij

Pr{AIIij|Sij} ≤ O(n− qn)exp
{
−Cn−2d(n− qn)

}
, (2.6.14)

for some constant 0 < C <∞. From the results in (2.6.11) and (2.6.14), we have

Pr
{

an error occur in Êγn

}
≤ O(p2+qn

n (n− qn))exp
{
−Cn−2d(n− qn)

}
= o(1),

(2.6.15)

since 0 < d < (1− δ)/2, also in (A2) we assume that log(pn) = nδ for some 0 ≤ δ < 1

and from Lemma 2 we have qn = O(n2κ+τ ).
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Chapter 3

Robust and Sparse Estimation of

High-dimensional Precision

Matrices via Bivariate Outlier

Detection

We consider the problem of estimating high-dimensional undirected graphs when the

data possibly contains anomalies that are difficult to visualize and clean. Given n

independent samples of a p-dimensional random vector x = (X1, . . . , Xp), we can

represent the linear dependency between variables by an undirected graph. The con-

ditional dependence structure of the distribution can be represented by a graphical

model, G = (V,E), where V = {1, . . . , p} is the set of nodes and E the set of edges

in V × V . The undirected graph establishes that if the variables Xi and Xj are con-

nected, then they are adjacent (Lauritzen, 1996). Statistically, we can measure linear

dependencies by estimating partial correlations to infer whether there is an associa-

tion between a pair of variables, conditionally on the rest of them. Furthermore, we

can relate the nonzero entries in the precision matrix, denoted by Ω = (ωij), with
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the nonzero partial correlation coefficients (Edwards, 2000). This procedure is known

as covariance selection and is widely used to identify the conditional independence

restrictions in an undirected graph (Dempster, 1972). In particular, under a Gaus-

sian distribution, the nonzero entries of the precision matrix imply that each pair of

variables is conditionally dependent when controlling for the rest of them. These are

known in the literature as Gaussian Graphical Models (GGMs) (Lauritzen, 1996).

In a high-dimensional framework, the estimation of Ω is not straightforward be-

cause of the lack of a pivotal estimator such as the empirical covariance matrix.

Moreover, when the dimension p is larger than the number of available observations,

the sample covariance matrix is not invertible. And even when the ratio p/n is ap-

proximately (but less than) one, the sample covariance matrix is badly conditioned

and its inverse tends to amplify the estimation error, which can be observed by the

presence of small eigenvalues (Ledoit and Wolf, 2004). From the asymptotic point

of view, when both n and p are large (i.e. p = O(n)), the sample covariance matrix

is not a consistent estimator (El Karoui, 2008). To deal with this problem, several

covariance selection procedures have been proposed based on the assumption that Ω

is mostly composed by zero elements. This suggests that even when p = O(n) the

dimension of the problem may still be tractable since the number of edges will grow

more slowly than the number of observations (Meinshausen and Bühlmann, 2006).

Several precision matrix estimators have been proposed in the literature. Bickel

and Levina (2008a) and Bickel and Levina (2008b) propose banding and thresholding

estimators and obtain rates of convergence in the operator norm. El Karoui (2008)

propose a hard thresholding estimator for the convariance matrix assuming a flexible

notion of sparsity. Other procedures rely on the idea of regression to parameterize a

covariance or precision matrix. Some of these include regression-based interpretation

of a Cholesky decomposition of the covariance matrix (Pourahmadi, 2007; Rothman

et al., 2010). Meinshausen and Bühlmann (2006) propose the neighborhood selection
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procedure that consistently estimates sparse high-dimensional graphs by estimating

a lasso regression for each node in the graph. Peng et al. (2009) present a procedure

that simultaneously performs neighborhood selection for all variables to estimate

joint sparse regressions, applying an active-shooting to solve the lasso. Yuan (2010)

replaces the lasso regression with a Dantzig selector. Liu and Wang (2012) propose an

asymptotically tuning-free procedure that estimates the precision matrix in a column-

by-column fashion. Zhou et al. (2011) propose an estimator for the precision matrix

base on an `1 regularization and thresholding to infer a sparse undirected graphical

model. Ren et al. (2015) propose a nodewise regression approach to obtain assymp-

totically efficient estimation of each entry of the precision matrix under sparseness

conditions.

Penalized likelihood methods have also been introduced for estimating sparse pre-

cision matrices. Yuan and Lin (2007) propose to estimate the precision matrix by

penalizing the log-likelihood function. Convex and fast algorithms were developed by

Banerjee et al. (2008) and Friedman et al. (2008). Friedman et al. (2008) propose

the Graphical lasso (Glasso) procedure to estimate sparse precision matrices fitting

a modified lasso regression to each variable and solving the problem by a coordinate

descent algorithm. Lam and Fan (2009) and Fan et al. (2009) propose methods to di-

minish the bias imposed by the `1 penalty by introducing a non-convex SCAD penalty.

Cai et al. (2011) estimate precision matrices for both sparse and non-sparse matrices,

without imposing a specific sparsity pattern solving the dual of an `1 penalized max-

imum likelihood problem. Consistency of penalized likelihood procedures were also

explored. Rothman et al. (2008) estimate convergence rates under the Frobeniuos

norm and Yuan and Lin (2007), Ravikumar et al. (2008) and Ravikumar et al. (2011)

estimate convergence rates for subgaussian distributions.

One of the main drawback of the popular estimation procedures is that they are

not well suited to handle noisy data (contaminated by outliers). The existing ap-
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proaches to estimate the precision matrix and recover the support of the GGM use as

input the empirical covariance matrix. The empirical covariance and correlation ma-

trix estimates are very sensitive to the presence of multidimensional outliers (Alqallaf

et al., 2002). The violation of the Gaussian assumption may result in poor recovery

of the GGM and biased estimation of the precision matrix (see Finegold and Drton,

2011; Liu et al., 2012; Sun and Li, 2012). In the high-dimensional setting, the fraction

of perfectly observed rows may be very small. If all components of a row have an in-

dependent chance of being contaminated, then the probability that a case is perfectly

observed is small. Alqallaf et al. (2009) propose a contamination model where the

contamination in each variable is independent from other variables (i.e. component-

wise outliers). It generalizes the classical Tukey-Huber row-wise contamination model

(see Tukey, 1962; Huber et al., 1964) and allows for cellwise contamination that can

be applied to explain the contamination mechanism in Microarrays experiments (see

Troyanskaya et al., 2001; Liu et al., 2003). The cellwise contamination model lacks

the affine equivariant property. Henceforth, existing approaches for robust covariance

estimation such as M-estimates (Maronna, 1976), Minimum Volume Ellipsoid (MVE)

and Minimum Covariance Determinant (MCD) estimators (Rousseeuw, 1985, 1984)

and the Stahel-Donoho (SD) estimators (Stahel, 1981; Donoho, 1982), may not be re-

liable in high-dimensional data sets since the operations to compute affine equivariant

estimates tend to propagate the effect of multivariate outliers. Also, these estimators

downweight contaminated observations to reduce their influence, which produces a

significant loss of information when n < p.

To deal with outliers in high-dimensional data sets, many procedures construct

robust covariance and correlation matrices by using pairwise robust correlation co-

efficients. Liu et al. (2009) propose to apply a univariate monotone transformation

to make the data Gaussian distributed. Then, a robust precision estimator of the

correlation matrix can be computed from the transformed data. The estimated cor-
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relation matrix is plugged into the existing parametric procedures (the Graphical

Lasso, CLIME, or graphical Dantzig Selector) to obtain the final estimate of the in-

verse correlation matrix and the graph. Liu et al. (2012) and Xue et al. (2012) propose

to estimate the unknown correlation matrix with robust nonparametric rank-based

statistics Spearman’s rho and Kendall’s tau. Finegold and Drton (2011) propose to

use multivariate t-distribution for more robust inference of graphs. However, there is

not a direct relationship between the zero elements on the estimated precision ma-

trix and the conditional independences when a t-distribution is assumed. Sun and Li

(2012) propose a robust estimator of the GGM through `1-penalization of a robustified

likelihood function. Öllerer and Croux (2015) and Loh and Tan (2015) propose robust

precision matrix estimation under the cellwise contamination setting. These methods

estimate robust pairwise scatter covariance using rank-based statistics and plug them

into the existing parametric procedures. Öllerer and Croux (2015), and Loh and Tan

(2015) analyze the breakdown property of the Graphical lasso and CLIME.

The robust correlation matrix based on univariate transformations to achieve nor-

mality are not robust under the presence of structural bivariate outliers which could

lead to a misleading graph support recovery. We propose an approach to robustly es-

timate a Gaussian Graphical Model when there is cellwise contamination in the data.

Following the idea of Khan et al. (2007), we estimate robust correlation coefficients

applying a bivariate winsorization to the data given an affine equivariant robust cor-

relation coefficient. This transformation allows us to identify bivariate outliers. The

proposed correlation matrix is plugged into a parametric procedure to compute the

precision matrix. We show that the bivariate winsorized pairwise correlation coef-

ficient converges to the true parameter at the same rate as the affine equivariant

correlation coefficient. This result suggests that if the robust correlation coefficient

estimator, which is used to winzorize the data, converges to the true parameter at the

optimal parametric rate, then the bivariate winsorized correlation matrix achieves the
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optimal parametric rate of convergence in terms of both precision matrix estimation

and graph recovery.

Finally, we perform simulation studies and show that under different contami-

nation settings our procedure outperforms the normal-score based nonpararnomal

estimator proposed by Liu et al. (2009) and the nonparanormal SKEPTIC proposed

by Liu et al. (2012). We also apply our procedure to the classification of tumors using

gene expression data. We show that our procedure achieves good classification per-

formance. The empirical results suggest that, by using bivariate winsorization on the

data based on some affine equivariant robust correlation estimate, we can efficiently

recover the GGM under cellwise contamination.

The rest of the Chapter is organized as follows. In the next section we briefly

review the cellwise contamination model and the existing approaches to estimate

robust precision matrices. In Section 3.2 we present the winsorized correlation matrix

estimator, which is able to identify structural bivariate outliers under the cellwise

contamination mechanism. In Section 3.3 we present a theoretical analysis of the

method. In Section 3.4 we present numerical results on simulated data under different

contamination mechanisms. Section 3.5 presents the results based on real data where

the problem is the classification of tumors using gene expression data. Finally, we

discuss the connections to existing methods and possible future directions.

3.1 Problem Setup

In this Section we consider the problem of estimating a high-dimensional undirected

graph when the data possibly contains anomalies that are difficult to visualize and

clean. A robust statistic must be able to efficiently model the bulk of data points,

be resistant to model deviations, and to perform well under the correct model. The

performance of a robust estimator can be analyzed with contamination or mixture
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models. We introduce a general contamination model able to capture properties

of high-dimensional outliers, gross errors or missing values, among other perturbed

observations. In high-dimension, the fraction of perfectly observed rows may be very

small. To deal with this issue, Alqallaf et al. (2009) propose a contamination model

where the contamination in each variable is independent from other variables (i.e.

componentwise outliers).

Suppose the random vector x = (X1, . . . , Xp) has a multivariate Gaussian distri-

bution with mean µ and correlation matrix Γ = (ρij). The linear dependency between

variables are represented by an undirected graph G = (V,E), where V = {1, . . . , p}

is the set of nodes and E the set of edges in V × V . The contamination model can

be written as follows:

y = (I−B)x + Bz (3.1.1)

where I is a p × p identity matrix, z ∈ Rp an arbitrary random vector and B is the

contamination indicator matrix:

B =



B1 0 · · · 0

0 B2 · · · 0

...
...

. . .
...

0 0 · · · Bp


(3.1.2)

and each Bj is a Bernoulli random variable with P (Bj = 1) = ε.

The classical contamination setting or row-wise contamination model, proposed

by Tukey (1962) and extended by Huber et al. (1964), assume that B1, . . . , Bp are

fully dependent P (B1 = B2 = . . . = Bp) = 1. Then, the observed variable y is a

mixture of two independent distributions. Under this model a fraction (1 − ε) of

the rows are multivariate Gaussian distributed and a fraction ε are outliers. Fur-

thermore, the percentage of contaminated cases is preserved under affine equivariant

transformations.
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But the Tukey-Huber model does not adequately represent the reality of many

multivariate high-dimensional data sets. This model assumes that the majority of

the cases are not contaminated. When p > n, downweighting an entire case may be

inconvenient. The main drawback is that the probability of a perfectly observed row

became very small when the number of variables increases (i.e. p = O(n)).

Alqallaf et al. (2009) propose an alternative model where the contamination in

each variable is independent from other variables (i.e. componentwise outliers). In

this model, the variables B1, . . . , Bp are independent:

P (B1 = 1) = . . . = P (Bp = 1) = ε (3.1.3)

Then, the probability of an outlier occurring in the each variable is the same. In this

model the probability that a row is not contaminated is (1−ε)p, which decreases with

p. This model allows for cellwise contamination and is denoted by fully independent

contamination model.

The fully independent contamination model lacks of affine equivariance. Under

the cellwise contamination, each column has on average (1− ε) of clean observations.

Then, linear combinations of these columns produce an increment in the number of

contaminated cases (i.e. outlier propagation). Henceforth, in the high-dimensional

setting, robust affine equivariant methods are not robust against propagation of out-

liers.

Under the cellwise contamination model, a robust estimation of the precision ma-

trix Ω can be obtained by plugging a robust correlation matrix estimator, denote by

Γ̂, into the following `1-regularized log-determinant program (see Öllerer and Croux,

2015; Loh and Tan, 2015):

Ω̂ = argmin
Ω�0

{tr(ΩΓ̂)− logdet(Ω) + λ ‖ Ω ‖1,off} (3.1.4)
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where λ > 0 is the regularizing constant of the off-diagonal `1 regularizer

‖ Ω ‖1,off :=
∑
i6=j

|ωij| for i, j = 1, . . . , p (3.1.5)

Ravikumar et al. (2011) show that, for any positive λ and Γ̂ with strictly positive

diagonals elements, the problem has a unique solution and the resulting matrix is

positive definite (i.e. Ω̂ � 0).

Classical approaches for robust scatter estimation such as M-estimates (Maronna,

1976), Minimum Volume Ellipsoid (MVE) and Minimum Covariance Determinant

(MCD) estimators (Rousseeuw, 1985, 1984) and the Stahel-Donoho (SD) estimators

(Stahel, 1981; Donoho, 1982), are not well suited when the contamination mechanism

operates on individual variables (columns) rather than individual cases (rows). Under

cellwise contamination each column in the data table contains on average a fraction

of ε contaminated observations. Classical affine equivariant estimators apply linear

combination of the columns on the original data. This spreads the contamination in

one of the cells of an observation over all its components.

To deal with high-dimensional cellwise outliers, Alqallaf et al. (2002) propose to

use coordinated wise outlier insensitive transformations to estimate pairwise scat-

ter estimates. These procedures operate one variable at a time and guarantee the

protection against outlier propagation.

Let y(1), . . . ,y(n) be a sample of size n where y(k) = (Y
(k)

1 , . . . , Y
(k)
p )T ∈ Rp for

k = 1, . . . , n. Let’s assume that there exists an appropriate score function, denoted

by fi(Yi), that preserves monotone ordering and commute with permutations of the

components of (Y
(1)
i , . . . , Y

(n)
i ). Huber (2011) defines the pairwise robust correlations

coefficients through the Person correlation coefficient computed on the outlier free

univariate transformed data.
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To estimate the robust pairwise correlation matrix, Liu et al. (2009) propose the

nonparanormal model where the random vector y = (Y1, . . . , Yp)
T is replaced by

the transformed variable f(y) = (f1(Y1), . . . , fp(Yp))
T such that f(y) is multivariate

Gaussian with mean zero and correlation matrix denoted by Γnpn.

Let F̂i(t) = 1
n+1

∑n
k=1 I(Y

(k)
i ) be the scaled empirical cumulative function of Yi. To

estimate the nonparanormal transformation, Liu et al. (2009) define the coordinated

wise transformation function f̂i(t) = Φ−1
(
Tδn [F̂j]

)
where Φ−1(·) is the standard

Gaussian quantile function and Tδn is a winsorization operator defined as

Tδn(y) =


δn if F̂i(y) < δn

y if δn ≤ F̂i(y) ≤ (1− δn)

(1− δn) if F̂i(y) > (1− δn),

(3.1.6)

where δn = 1
4n1/4

√
πlogn

is a truncation parameter. The nonparanormal estimate of the

correlation matrix is computed as follows

ρ̂npnij =
1
n

∑n
k=1 f̂i(Y

(k)
i )f̂j(Y

(k)
j )√

1
n

∑n
k=1 f̂

2
i (Y

(k)
i ) ·

√
1
n

∑n
k=1 f̂

2
j (Y

(k)
j )

. (3.1.7)

Then, the precision matrix nonparanormal estimator is computed by plugging Γnpn

into the `1 log-determinant program (3.1.4). Liu et al. (2009) establish convergence

rate for estimating the precision matrix in the Frobenious and spectral norm when p

is restricted to a polynomial order of n.

Liu et al. (2012) show that rate of convergence of the nonparanormal estimator is

not optimal. Liu et al. (2012) and Xue et al. (2012) present an alternative procedure

that applies rank based methods to estimate the pairwise correlation matrix with-

out computing explicitly the marginal transformations. This approach is called the
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nonparanormal SKEPTIC and achieves the optimal parametric rate of convergence

in terms of both precision matrix estimation and graph recovery.

Let r
(k)
i be the rank of Y

(k)
i among Y

(1)
i , . . . , Y

(n)
i and r̄i = 1

n

∑n
k=1 r

(k)
i = n+1

2
. The

Spearman’s rho statistics can be computed as follows

ρ̂ρij =

∑n
k=1(r

(k)
i − r̄i)(r

(k)
j − r̄j)√∑n

k=1(r
(k)
i − r̄i)2

∑n
k=1(r

(k)
j − r̄j)2

. (3.1.8)

The nonparanormal model implies that (fi(Yi), fj(Yj)) follows a bivariate normal

distribution with correlation parameter ρnpnij . A classical result due to Kendall and

Gibbons (1990) and Kruskal (1958) shows that ρnpnij = 2sin
(
π
6
ρρik
)
. Henceforth, the

correlation matrix of the nonparanormal model can be alternatively computed as

follows:

ρ̂Sij =


2sin(π

6
ρ̂ρij) for i 6= j

1 for i = j

(3.1.9)

Liu et al. (2012) show that when the data contamination is low, the nonparanormal

estimator is slightly more efficient than the nonparonormal SKEPTIC. But when the

contamination increases the later siginificantly outperforms the normal-score based

estimator proposed by Liu et al. (2009).

The main drawback of the univariate outlier insensitive transformations is their

lack of robustness against structural outliers (see Alqallaf et al., 2009). This type

of outliers can only be handled via robust affine equivariant methods. In the next

section we propose an alternative robust pairwise correlation coefficient estimator

that apply robust affine equivariant methods to the bivariate data. This method

applies a bivariate winsorization that shrinks observations to the border of a tolerance

ellipse so that outlying observations are appropriately downweight to obtain a robust

correlation coefficient estimate that allows for protection against structural bivariate

outliers.
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3.2 The Proposed Winsorized Correlation Matrix

In this section, we propose to estimate the precision matrix by computing an affine

equivariant transformation to the bivariate data. This transformation takes into ac-

count the orientation of the bivariate data and allows for protection against structural

bivariate outliers. Then, a pairwise correlation matrix is computed from the outlier

free bivariate transformed data. The resulting correlation matrix is plugged into the

`1 log-determinant divergence optimization problem defined in (3.1.4).

To obtain a correlation estimator that is robust against structural bivariate outliers

we could apply affine equivariant bivariate M estimators (Maronna, 1976). However,

in the high-dimensional setting we require fast robust correlation estimates. Following

the idea of Khan et al. (2007), we estimate the robust correlation coefficients applying

a bivariate winsorization to the bivariate data given an affine equivariant robust

correlation coefficient. In order to compute a correlation matrix that is robust against

bivariate outliers, we are going to use reweighted robust pairwise estimators of scatter,

where the weights are computed by the Mahalanobis distance with respect to an affine

equivariant robust correlation estimator.

Let the vector xJ = (Xi, Xj)
T , for i, j = 1, . . . , p, follow a bivariate Gaussian

distribution with mean µJ = (µi, µj), covariance σ2
J = (σ2

i , σ
2
j ) and correlation matrix

ΓJ . Let’s compute the squared population Mahalanobis distance as follows

d2
k =

(
Y

(k)
i − µi
σi

,
Y

(k)
j − µj
σj

)
(ΓJ)−1

(
Y

(k)
i − µi
σi

,
Y

(k)
j − µj
σj

)T

. (3.2.1)

We define the following weights

wk(d
2
k) =


√
c2/d2

k if d2
k > c2

1 if d2
k ≤ c2

(3.2.2)
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where c2 is given by Pr(χ2
2 > c2) = ε and ε is the proportion of outliers we want to

control assuming that the majority of the data follows a bivariate Gaussian distribu-

tion.

Assuming we observe the vector of bivariate observations y
(k)
J =

(
Y

(k)
i , Y

(k)
j

)T
for i, j = 1, . . . , p and k = 1, . . . , n, the following Proposition, due to Cerioli (2010),

refers to the distribution of the Mahalanobis distance of the observations for which

wk = 1.

Proposition 4. The distribution of y
(k)
J conditioned on wk = 1 is a truncated bivari-

ate Gaussian distribution with

E(y
(k)
J |wk = 1) = µJ and Cor(y

(k)
J |wk = 1) = κ−1

ε ΓJ (3.2.3)

where

κε =
1− ε

P (χ2
2 > χ2

2,1−ε)
. (3.2.4)

If we denote wε =
∑n

k=1 wk and

(µ̂εi , µ̂
ε
j) =

(
1

wε

n∑
k=1

wkY
(k)
i ,

1

wε

n∑
k=1

wkY
(k)
j

)

(σ̂εi , σ̂
ε
j ) =

( κε
wε − 1

n∑
k=1

wk(Y
(k)
i − µ̂εi )2

)1/2

,

(
κε

wε − 1

n∑
k=1

wk(Y
(k)
j − µ̂εj)2

)1/2


ρ̂εij =
κε

wε − 1

n∑
k=1

wk

(
Y

(k)
i − µ̂εi
σ̂εi

)(
Y

(k)
j − µ̂εj
σ̂εj

)
,

(3.2.5)

then Γ̂
ε

J = (ρ̂εij) and wε/n = (1− ε) +Op(1/
√
n) and it follows that E(µ̂εJ)→ µJ and

E(Γ̂
ε

J)→ ΓJ .

A direct result from Proposition 4 is that we can obtain consistent estimators of

µJ and ΓJ applying a bivariate winsorization to the observations of y
(k)
J . To obtain

robust estimates against two-dimensional structural outliers we propose to estimate
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the Mahalanobis distance using some affine equivariant robust correlation coefficient.

To do that, we can define n bivariate standardized observations

(
Y

(k)
i −µ̂0i
σ̂0
i

,
Y

(k)
j −µ̂0j
σ̂0
j

)
where µ̂0

i is a robust scale estimate and σ̂0
i is a robust location estimate. Now let

Γ̂
0

J = (ρ0
ij) be a robust and affine equivariant correlation estimator of the correlation

matrix ΓJ . We will use Γ̂
0

J as a diagnostic tool to identify two-dimensional structural

outlying observations. If the initial robust estimator reflects the bulk of data, then

the outlying observation will have a large Mahalanobis distance and the outlying

observations could be downweighted in order to minimize their influence. We define

the Mahalanobis distance estimate as follows:

d2

k,Γ̂
0
J

=

(
Y

(k)
i − µ̂0

i

σ̂0
i

,
Y

(k)
j − µ̂0

j

σ̂0
j

)
(Γ̂

0

J)−1

(
Y

(k)
i − µ̂0

i

σ̂0
i

,
Y

(k)
j − µ̂0

j

σ̂0
j

)T

. (3.2.6)

We propose two estimators to compute the correlation matrix Γ̂
0

J and to perform

the bivariate winsorization. First, we apply the Adjusted Winsorization proposed

by Khan et al. (2007). This approach takes into account the quadrants relative to

the coordinatewise medians and considers two tuning constants to perform univariate

winsorization of the data. A larger tuning constant c1 is used to winsorize the points

lying in the two diagonally oppose quadrants that contains most of the standardize

data. A smaller tuning constant c2 is used to winsorize the remaining data. We set

c1 = 2 and c2 =
√
hc1 where h = n2/n1, n1 is the number of observations in the major

quadrants and n2 = n−n1. The adjusted winsorization is then defined as (see Khan,

2006)

Ψ(Yi, Yj) =


(
ψc1

(
Yi−µ̂0i
σ̂0
i

)
, ψc1

(
Yj−µ̂0i
σ̂0
i

))
if

(
Yi−µ̂0i
σ̂0
i

)(
Yj−µ̂0j
σ̂0
j

)
≥ 0(

ψc2

(
Yi−µ̂0i
σ̂0
i

)
, ψc2

(
Yj−µ̂0i
σ̂0
i

))
if

(
Yi−µ̂0i
σ̂0
i

)(
Yj−µ̂0j
σ̂0
j

)
< 0,

(3.2.7)

where ψc(y) = min{max{−c, y}, c} is a non-decreasing symmetric function and c1 and

c2 are previous constants. Then, the correlation coefficient estimator ρ̂0
J is obtained
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by computing the Pearson correlation on the adjusted winsorized data. In the second

alternative, we compute Γ̂
0

J using the Spearman’s rho as in equation (3.1.9). This

approach is denoted by Spearman’s Winsorization.

Therefore, given an affine equivariant robust correlation estimator Γ̂
0

J (i.e. Ad-

justed Winsorized correlation coefficient or Spearman’s rho), we estimate the robust

Mahalanobis distance as in equation (3.2.6), then the outlier-free bivariate trans-

formed data is computed as follows

ΨW (Y
(k)
i ) =


√
c2/d2

k,Γ̂
0
J

(
Y

(k)
i −µ̂0i
σ̂0
i

)
if d2

k,Γ̂
0
J

> c2

Y
(k)
i −µ̂0i
σ̂0
i

if d2

k,Γ̂
0
J

≤ c2,

(3.2.8)

where c2 is given by P (χ2
2 > c2) = ε and ε is the proportion of outliers we want to

control assuming that the majority of the data follows a bivariate Gaussian distribu-

tion.

Given the observations (Y
(k)

1 , . . . , Y
(k)
p )T , the winsorized correlation matrix Γ̂

W
=

(ρ̂Wij ) is obtained by computing the Pearson correlation coefficient with respect to the

bivariate winsorized data. The robust precision matrix is estimated by plugging the

winsorized correlation matrix ΓW into the `1 log-determinant divergence (3.1.4).

To show how the bivariate winsorization works under cellwise contamination, we

simulate data from a bivariate Gaussian distribution where the correlation is set equal

to -0.8. We select n = 1000 and generate 5 structural bivariate outliers. Figure 3.1,

Panel (a) and (b), shows the scatter plot of the uncontaminated and contaminated

simulated data, respectively. Figure 3.1, Panel (c), shows the scatter plot when we

apply the non-paranormal transformation (see Liu et al., 2009). The non-paranormal

transformation shrinks the correlation outliers to the boundary of a square. However,

it does not take into account the orientation of the data and the effect of the structural

outliers is not significantly downweighted. In Figure 3.1, Panel (d), we observe that
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(a) Non contaminate data (b) Contaminated data

(c) Nonparanormal transformation (d) Bivariate Winsorization

Figure 3.1: Illustration of nonparanormal tranformation and bivariate winsorization
under bivariate contamination. The nonparanormal transformation does not take
into account the orientation of the bivariate data. The bivariate data winsorization
shrinks points outside an ellipse that connects points of equal Mahalanobis distance
(2.45) towards its boundary.

the bivariate transformation shrinks the outliers to the boundary of an ellipse of equal

Mahalanobis distance. Henceforth, the influence of the bivariate outliers, when we

compute the robust correlation coefficient, is appropriately downweighted.
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Table 3.1: Estimation performance of the bivariate winsorized correlation coefficient
under non contamination over 100 replications with standard deviations in brackets.

n Sample Correlation Adjusted Winsorization Spearman Winsorization
20 -0.795(0.078) -0.784(0.083) -0.783(0.082)
30 -0.790(0.069) -0.789(0.069) -0.788(0.069)
50 -0.791(0.060) -0.790(0.062) -0.789(0.063)

100 -0.799(0.037) -0.797(0.038) -0.797(0.039)
1000 -0.800(0.012) -0.800(0.011) -0.799(0.012)

10,000 -0.801(0.004) -0.801(0.004) -0.801(0.004)

We also study the intrinsic bias of ρ̂Wij when there is no contamination (i.e. ε = 0)

and assuming we observe the vector x that is Gaussian distributed with mean µ and

correlation matrix Γ. The intrinsic bias of the bivariate winsorized estimator occurs

due to the data transformation. To compare the bivariate winsorized correlation co-

efficient and the true correlation coefficient empirically, we generate random samples

of sizes: 20, 30, 50, 1000, 10,000 from a bivariate normal distribution with mean zero

and correlation coefficient equal to -0.8. We compare the empirical correlation coeffi-

cient denoted by “Sample Correlation”, the bivariate winzorized correlation coefficient

based on adjusted winsorization (i.e. “Adjusted Winsorization”) and the bivariate

winzorized correlation coefficient based on Spearman’s correlation (i.e. “Spearman

Winsorization”). We observe from Table 3.1 that the intrinsic bias diminishes as n

increases. For small sample sizes the bivariate winsorized correlation estimator tends

to underestimate the true correlation coefficient. When we compare the “Adjusted

Winsorization” estimator with the “Spearman Winsorization”, we observe that the

later slightly underestimates the true correlation coefficient for small sample sizes.

This is due to the fact that the Spearman’s rho is computed using univariate rank

transformation, while the adjusted winsorization operates directly on the data.

In terms of computational time, the correlation coefficient based on bivariate win-

sorization has a computational complexity of O(nlog(n)) (see Khan et al., 2007).

The log-determinant divergence can be computed with the Graphical Lasso algo-
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Table 3.2: Average computing times (in seconds) over 100 replications with standard
deviations in brackets.

p = 90 p = 200
Adjusted Winsorization 1.290(0.044) 6.462(0.098)
Spearman Winsorization 1.040(0.027) 4.604(0.079)
Sample Correlation 0.029(0.007) 0.191(0.012)
npn 0.210(0.009) 0.445(0.016)
npn-SKEPTIC 0.208(0.009) 0.453(0.014)

rithm proposed by Friedman et al. (2008). The fast implementation of the Graphical

Lasso algorithm makes use of the block diagonal structure in the graphical lasso so-

lution, the computational complexity is O(p2 + (p − q)3), where q is the number of

fully unconnected nodes (see Witten et al., 2011; Mazumder and Hastie, 2012). We

conduct a numerical experiment to compare the computational time of the proposed

bivariate winzorization plug-in estimators with the robust estimators based on uni-

variate transformations. We simulate Gaussian data from an AR(1) model: Ωii = 1,

Ωi,i−1 = Ωi−1,i = 0.4, and zero otherwise. We chose a regularization parameter so

that the solution contains roughly the actual number of non-zero elements in the true

model. Table 3.2 shows the average computing times (in seconds) over 100 replica-

tions. We observe that estimating correlations coefficients via bivariate winsorization

takes more time than computing the univariate winsorized normal-score nompara-

normal transformation (i.e. “npn”) from Liu et al. (2009) and the Spearman’s rho

non-paranormal SKEPTIC from Liu et al. (2012). However, the bivariate winsoriza-

tion is much more accurate when there are structural bivariate outliers in the data.

Therefore, the gain in robustness compensated the extra computing time.

In the next section we prove that the rate of convergence of the bivariate win-

sorized pairwise scatter estimate is the same as the affine equivariant robust correla-

tion estimates used to compute the Mahalanobis distance (i.e. Adjsuted Winsorized

correlation coefficient or Spearman’s rho). This result suggests that if the initial ro-

bust correlation coefficient estimate converges to the true parameter at the optimal

81



parametric rate, then the winsorized precision matrix achieves the optimal parametric

rates of convergence in terms of both precision matrix estimation and graph recovery.

3.3 Analytical Properties

In this section we establish some analytical properties for the proposed bivariate win-

sorized correlation estimator. The main conclusion drawn from the theoretical results

is that the location and scatter estimates computed from the bivariate winsorized

data have the same rate of convergence as the affine equivariant robust location and

pairwise scatter estimates used to compute the Mahalanobis distance.

Let y
(1)
J , . . . ,y

(n)
J be independent bivariate random vectors that follow a distribu-

tion in an elliptical family with density

f(yJ) = det(ΓJ)−1/2h

((
Yi − µi
σi

,
Yj − µj
σj

)T
(ΓJ)−1

(
Yi − µi
σi

,
Yj − µj
σj

))
(3.3.1)

where h : [0,∞) → [0,∞) is assumed to be known. Under the assumption that the

vector yJ = (Yi, Yi)
T is bivariate Gaussian distributed, the function h corresponds to

h(r) = (2π)er/2. Moreover, we assume the following smoothness conditions on the

function h:

(H1) h is continuous differentiable.

(H2) h has finite fourth moment:
∫

(yTJyJ)2h(yTJyJ)dyJ <∞.

Let θ̂
0

= (µ̂0
i , µ̂

0
j , σ̂

0
i , σ̂

0
j , ρ̂

0
ij) denote robust and affine equivariant estimators of lo-

cation and scatter. We will use these estimates as diagnostic tool to identify structural

bivariate outliers. Let d̂2
k be the Mahalanobis distance computed as in (3.2.6). We

apply the bivariate transformation in (3.2.8) and we compute the bivariate winsorized

correlation estimator ρ̂Wij .
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Let w : [0,∞)→ [0, 1] be the function defined in (3.2.2), that satisfies the following

condition

(W) w is bounded and of bounded variation and almost everywhere continuous on

[0,∞).

We study the asymptotic behavior of ρ̂Wij as n → ∞. Let θ∗ = (µi, µj, σi, σj, ρij)

denoted the true vector of parameters. Assuming that the estimates θ̂
0

are affine

equivariant and consistent in probability (i.e. θ̂
0
→ θ∗ in probability), the next

Theorem analyzes the asymptotic properties of the bivariate winsorized correlation

coefficient. The proof follows the analysis for reweighted estimators of multivariate

location and scatter of Lopuhaä (1999).

Theorem 3. Let y
(1)
J , . . . ,y

(n)
J be independent bivariate random vectors with parame-

ter vector θ∗ = (µi, µj, σi, σj, ρij) which are assumed to have density function defined

in (3.3.1). Suppose that w : [0,∞) → [0, 1] satisfies (W) and h satisfies (H1) and

(H2). Let θ̂
0

be affine equivariant and consistent estimate in probability of θ∗. Then,

ρ̂Wij −c1ρij = op(1/
√
n)+op(θ̂

0
−θ∗)+ 1

n

n∑
k=1

{
w(d2

k)

(
Y

(k)
i − µi
σi

)(
Y

(k)
j − µj
σj

)
− c1ρij

}
,

(3.3.2)

where the constant c1 is given by

c1 = π

∫ ∞
o

w(r2)h(r2)r3dr > 0. (3.3.3)

Proof. Theorem 3 can be proved by adapting the proof in Lopuhaä (1999). The

Mahalanobis distance can be written as a function of the vector θ. Thus, we define

the following functions

Ψ1(yJ ,θ) = w
(
d2(θ)

)
yJ

Ψ2(yJ ,θ, t) = w
(
d2(θ)

)
(yJ − t)(yJ − t)T .

(3.3.4)
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We define the bivariate adjusted winsorization estimates of location and covariance

as follows

µ̂WJ =
1

n

n∑
k=1

w
(
d̂2
k

)
y

(k)
J

Σ̂
W

J =
1

n

n∑
k=1

w
(
d̂2
k

)
(y

(k)
J − µ̂

W
J )(y

(k)
J − µ̂

W
J )T .

(3.3.5)

Then, µ̂WJ and Σ̂
W

J can be written as:

µ̂WJ =

∫
Ψ1(yJ ,θ)dPn(yJ)

σ̂WJ =

∫
Ψ2(yJ ,θ, µ̂

W
J )dPn(yJ),

(3.3.6)

where Pn denotes the empirical measure corresponding to y
(1)
J , . . . ,y

(n)
J .

Moreover, estimates in (3.3.6) can be written as:

∫
Ψ1(yJ , θ̂

0
) =

∫
Ψ1(yJ , θ̂

0
)dP (yJ) +

∫
Ψ1(yJ ,θ

∗)d(Pn − P )(yJ)

+

∫ (
Ψ1(yJ , θ̂

0
)−Ψ1(yJ ,θ

∗)
)
d(Pn − P )(yJ),

(3.3.7)

Suppose that ΣJ = D2 where C belongs to the class of positive definite symmetric

matrices. Let µ̂0
J = (µ̂0

i , µ̂
0
j)
T and Σ̂

0

J = C2
n be affine equivariant location and scatter

estimates such that (µ̂0
J −µJ ,Cn−C) are consistent in probability. Then, using the

result in Lopuhaä (1999) the first term in the right-hand side of (3.3.7) is c0(µ̂0
J −

µJ) + op(µ̂
0
J −µJ , Bn−B) and the third term is op(1/

√
n). The second term is equal

to: ∫
Ψ1(yJ ,θ

∗)d(Pn − P )(yJ) =
1

n

n∑
k=1

w(d2
k)(y

(k)
J − µJ). (3.3.8)

This proves the expansion for µ̂WJ :

µ̂WJ −µJ =
1

n

n∑
k=1

w(d2
k)(y

(k)
J −µJ) + c0(µ̂0

J −µJ) + op(1/
√
n) + op(µ̂

0
J −µJ , Σ̂

0

J −σJ)

(3.3.9)
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the constants are given by

c0 = 2π

∫ ∞
o

w(r2)[h(r2) + h′(r2)r2]rdr (3.3.10)

c1 = π

∫ ∞
o

w(r2)h(r2)r3dr > 0. (3.3.11)

In a similar way, using that the expansion of µ̂WJ implies that µ̂WJ → µJ , it can

be shown that∫
Ψ2(yJ , θ̂

0
, µ̂WJ ) = c1ΣJ + c2{tr(B−1(Bn −B))ΣJ + 2C−1(Cn −C)ΣJ}

+
1

n

n∑
k=1

{w(d2
k)(y

(k)
J − µJ)(y

(k)
J − µJ)T − c1σJ}

+ op(1/
√
n) + op(µ̂

0
J − µJ ,Cn −C, µ̂WJ − µJ),

(3.3.12)

where C−1(Cn −C) = (Cn −C)C−1 = An, An is op(1) and the constant c2 is given

by

c2 = π

∫ ∞
o

w(r2)

[
r2h(r2) +

r4

2
h′(r2)

]
rdr. (3.3.13)

Finally, let define the vector of standardized observations ŷJ =

(
Y

(k)
i −µ̂Wi
σ̂Wi

,
Y

(k)
j −µ̂Wj
σ̂Wj

)T
The bivariate winsorized correlation matrix can be define as:

Γ̂
W

J =

∫
Ψ2(ŷJ ,θ)dPn(ŷJ). (3.3.14)

Using the result in (3.3.12) we obtain (3.3.2).

Theorem 3 shows that the bivariate winsorized correlation estimate of ρij works as

well as the affine equivariant robust estimator ρ̂0
ij used to identify structural bivariate

outliers. Hence, if ρ̂0
ij converges at a rate slower than

√
n, then the bivariate winsorized

estimator ρ̂Wij converges to c1ρij at the same rate.

85



We propose to use the correlation coefficient based on adjusted winsorization and

the Spearmans’ rho as diagnostic tool to estimate the Mahalanobis distance and

obtain robustness against two-dimensional outliers. Khan (2006) shows that under

certain regularity condition, the correlation coefficient based on adjusted winsorized

data is consistent and asymptotically normal. Liu et al. (2012) and Xue et al. (2012)

show that the Spearman’s rank correlation estimate is consistent and converge to ρij

with the optimal parametric rate.

Regarding the precision matrix estimator, Ravikumar et al. (2008) and Ravikumar

et al. (2011) study the sufficient condition on the estimated correlation matrix in order

to achieve the optimal parametric rate in high-dimension. A sufficient condition

to ensure consistency and graph recovery of the precision matrix estimator, at the

minimax optimal rate, is given by the condition that the robust correlation matrix

estimate Γ̂ converges to the true correlation matrix Γ at the optimal parametric rate

(see Liu et al., 2012; Xue et al., 2012).

The following Lemma, adopted from Ravikumar et al. (2011), shows that if the bi-

variate winsorized correlation coefficient works as well as the usual sample correlation

estimator based on uncontaminated data, then the bivariate winsorized correlation

estimate achieves the optimal parametric rate.

Lemma 4. Assume there exists a constant C such that the robust bivarite winsorized

correlation coefficient estimator satisfies the following concentration bound

Pr(|ρ̂Wij − ρij| > ε) ≤ 4exp(−Cnε2) (3.3.15)

for any ε ∈ (0, C−1/2).

Let denote by d = maxj
∑

i6=j Iωij 6=0 to be the maximal degree over the underlying

graph corresponding to Ω and by A the support set of the off-diagonal elements in

Ω. Moreover, we define by KΓ =‖ Γ ‖∞= maxi
∑

j |ρij| to be the matrix `∞ norm of
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the true correlation matrix Γ, the matrix HAA = [Ω−1 ⊗Ω−1]AA and the parameter

KH =‖ H−1
AA ‖∞. The following Theorem shows that if we plug a robust estimate

of the correlation matrix, that achieves the optimal parametric bound in (3.3.15),

into the Graphical Lasso algorithm (Friedman et al., 2008), then the precision matrix

estimate achieves the optimal rate of convergence in term of both precision matrix

estimation and graph recovery.

Theorem 4. If there exists a constant κ ∈ (0, 1) such that ‖ HAcA(HAA)−1 ‖`∞<

1 − κ. Let Ω̂
W

be the unique solution of the log-determinant program (3.1.4) with

regularization parameter λn = 8
κ

√
log4n
Cpτ

for some τ > 2. Then, if the sample size is

lower bounded as

n >
log
(
4/max{C−1/2, 6(1 + 8κ−1)d max{KΓKH , K

3
ΓK

3
H}}

)
Cp2τ

, (3.3.16)

then with probability greater than 1− 1/pτ−2 we have that the estimated Ω̂
W

satisfies

the elementwise-`∞ bound:

‖ Ω̂
W
−Ω ‖∞≤ {2(1 + 8κ−1)KH}

√
log4n

Cpτ
. (3.3.17)

Moreover, the corresponding estimated edge set Ê is a subset of the true set of edges

E and includes all edges (i, j) with |Ωij| > {2(1 + 8κ−1)KH}
√

log4n
Cpτ

.

If we consider that KΓ, KH and κ remain constant as a function of (n, p, d), we can

obtain an asymptotic bound for the elementwise-`∞ norm ‖ Ω̂
W
−Ω ‖∞≤ O

(√
log4n
Cpτ

)
.

Assuming the concentration bound in Lemma 4, Theorem 4 can be prove by adapting

the proof presented in Ravikumar et al. (2011).

From the theoretical results, we observe that if the affine equivariant robust corre-

lation coefficient estimate ρ̂0
ij converges to ρij in probability at the optimal parametric

rate, then the bivariate winsorized correlation coefficient ρ̂W converges at the same
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rate as ρ̂0. Thus, if we plug the estimated correlation matrix Γ̂
W

into the parametric

Graphical lasso, the robust precision matrix estimate based on bivariate winsorized

data achieves the optimal minimax rate under the same conditions that when the

data is not contaminated.

3.4 Empirical Performance in Simulated Data

In this section we analyze the empirical performance of the proposed methods through

simulated data using different contamination mechanisms. We focus on the perfor-

mance of the precision matrix estimators when we plug-in a robust correlation matrix

onto the `1 log-determinant divergence function. To do that, we use the Graphical

lasso algorithm proposed by Friedman et al. (2008) to solve the convex optimiza-

tion problem in (3.1.4). In particular we consider the following correlation matrix

estimates: “Adjusted Winsorization”, for the pairwise correlation matrix estimator

using bivariate winzorization when the correlation coefficient used to compute the Ma-

halanobis distance is estimated with the adjusted winsorized data. “Spearman Win-

sorization”, for the pairwise correlation matrix estimator using bivariate winzorization

when the Mahalanobis distance is computed using the Spearman’s rho. “Sample Cor-

relation”, for the empirical correlation matrix. “npn” is the winsorized normal-score

nonparanormal estimator from Liu et al. (2009). Finally, “npn-SKEPTIC” represents

the non-paranormal SKEPTIC using Spearman’s rho from Liu et al. (2012).

3.4.1 Simulation Framework

We present simulation experiments to examine the performance of the proposed meth-

ods to estimate the precision matrix under different contamination mechanisms. We

consider two different specifications for the population precision matrix Ω:

1. AR(1) Model: Ωii = 1, Ωi,i+1 = Ωi−1,i = 0.4 and 0 otherwise.
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2. Erdös-Rényi random graph: Ω = D(M + (|λmin(M)|+ 0.2)Ip)D where M is a

zero diagonal matrix where mij = 0.3m, such that m is independently generated

and Bernoulli distributed with probability 0.01 and λmin(M) is the minimum

eigenvalue of matrix M. D is a diagonal matrix with dii = 1 for i = 1, . . . , p/2

and dii = 3 for i = p/2 + 1, . . . , p. The matrix is standardized to have unit

diagonals.

We assume that the random vector x = (X1, . . . , Xp)
T is Gaussian distributed with

mean zero and covariance matrix Σ = Ω−1. We study the performance of the precision

matrix estimator under the fully independent contamination model:

y = (I−B)x + Bz (3.4.1)

assuming that the variables B1, . . . , Bp are independent:

P (B1 = 1) = . . . = P (Bp = 1) = ε (3.4.2)

We follow Öllerer and Croux (2015) and we study two contamination mechanisms.

In the first contamination mechanism we assume that z is multivariate Gaussian

distributed with mean µzi = 10 for i = 1, . . . , p and covariance matrix Σz = Ω−1.

In the second contamination mechanism we assume that z is multivariate Gaussian

distributed with mean µzi = 10 for i = 1, . . . , p and covariance matrix Σz = 0.2Ip.

We robust standardized the data using the median as a robust location estimator

and the median absolute deviation as a robust scale measure. We set the sample size

n = 100 and the dimension p = {90, 200}. We select three values for the probability

that a variable is contaminated in model (3.4.1): ε = {0, 0.05, 0.1}. We generate 100

replicates for each simulation experiment.

To evaluate the performance of the proposed methods we study specific assessment

measures to evaluate numerical performance and support recovery. To compare the
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numerical performance, we compute the Mean Squared Error (MSE) between Ω and

Ω̂, given by the expectation of the squared of the Frobenius norm:

MSE(Ω̂) = E(‖ Ω̂−Ω ‖2
F ). (3.4.3)

Moreover, we evaluate the performance of the estimator Ω̂ with the expected value

of the Likelihood Ratio Test (LRT), measured by E(LRT(Ω̂)), where LRT(Ω̂) is the

likelihood ratio distance computed as

LRT(Ω̂) = tr(Ω̂(Ω)−1)− log(det(Ω̂(Ω)−1))− p. (3.4.4)

Small values of either the MSE and LRT imply a better performance of the method

in estimating the true precision matrix (see Danilov et al., 2012).

To study the support recovery we use specificity, sensitivity, and Mathews corre-

lation coefficient (MCC) criteria. Let TP be the true non-zero elements and TN be

the true zero elements estimated by Ω̂. Let FP be the false non-zero elements and FN

be the false zero elements estimated by Ω̂. The classification performance measures

are then defined as follows:

Specificity =
TN

TN + FP
Sensitivity =

TP

TP + FN
(3.4.5)

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(3.4.6)

To select the optimal tuning parameter λ∗ in the log-determinant divergence prob-

lem, we choose the Bayesian Information Criteria (BIC):

λ∗ = argmin
λ>0

{
−log(det(Ω̂)) + tr(Ω̂Γ̂) + h

log(n)

2n

}
(3.4.7)
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where h is the number of non-zero off-diagonal elements in Ω̂, and Γ̂ the robust cor-

relation estimate. The BIC has shown to have satisfactory performance for selecting

the regularization parameter and for estimating the precision matrix (see Wang et al.,

2007; Chen and Chen, 2008).

3.4.2 Simulation Results

We present detailed analysis based on numerical simulations under the first contam-

ination mechanism for the two proposed specifications of Ω.

Regarding the support recovery under the first contamination mechanism, Panel

(a) of Figures 3.2 and 3.3 illustrate the overall performance of different plug-in correla-

tion estimates to robustly estimate the precision matrix under the first contamination

mechanism for the full path of regularization parameters. For clean data, when the

probability that a variable is contaminated is zero (i.e. ε = 0), the performance of

the robust precision matrix estimates is similar to “Sample Correlation”. Under con-

tamination, the performance of the different estimates change. Panel (b) and Panel

(c) of Figures 3.2 and 3.3 show that under cellwise contamination (i.e. ε = 0.05 and

ε = 0.10), “Sample Correlation” becomes very sensitive to the presence of cellwise

outliers. When ε = 0.05, we observe that the support recovery of “Adjusted Win-

sorization” and “Spearman Winsorization” performs slightly better than the robust

estimates based on univariate outlier insensitive transformations. When ε = 0.10

the precision matrix estimates based on bivarite winsorization significantly outper-

form the non-paranormal SKEPTIC proposed by Liu et al. (2012) and the winsorized

normal-score nonparanormal from Liu et al. (2009).
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(a) ε = 0 (b) ε = 0.05 (c) ε = 0.10

(d) ε = 0 (e) ε = 0.05 (f) ε = 0.10

Figure 3.2: AR(1)-Model Specification. ROC curves under the first contamination mechanism over 100 replications.
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(a) ε = 0 (b) ε = 0.05 (c) ε = 0.10

(d) ε = 0 (e) ε = 0.05 (f) ε = 0.10

Figure 3.3: Erdös-Rényi Specification. ROC curves under the first contamination mechanism over 100 replications.
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Tables 3.3 and 3.4 show the results for the numerical performance for the op-

timal regularization parameter under the first contamination mechanism when the

precision matrix is specified as in the AR(1) Model and Erdös-Rényi random graph,

respectively. For clean data, the “Sample Correlation” sightly outperforms the robust

plug-in estimators. The performance of the estimates based on bivariate winsoriza-

tion is comparable with that of the empirical correlation matrix. Also, they slightly

outperform the non-paranormal SKEPTIC and the winsorized normal-score nonpara-

normal estimator. When the probability that a variable contains outliers is positive,

“Sample Correlation” performs very poorly in terms of efficiency on the precision

matrix estimation. We observe that the robust estimators of the precision matrices

have similar performance in terms of the expected likelihood ratio test and the mean

squared error as the contamination increases. The similarity in their numerical per-

formance is related with the fact that the BIC criteria selects models that contain a

large number of false negatives.

Second contamination mechanism. Regarding the second contamination specifica-

tion, Figure 3.4 and 3.5 illustrate the overall performance of the bivariate winsorized

estimators to recover the true GGM for AR(1) Model and Erdös-Rényi random graph,

respectively. We observe from the ROC curves that the robust precision matrix es-

timates behave in a similar way as the first contamination mechanism. When the

probability that a variable contains outliers is low, the bivariate winzorized estima-

tors perform slightly better than “npn” and “npn-SKEPTIC”. When the probability

is high, “Adjusted winsorization” and “Spearman Winsorization” significantly outper-

form the rank-based procedures. Tables 3.5 and 3.6 show the numerical performance

under the second contamination mechanism. We observe that under cellwise con-

tamination the precision matrix estimates based on bivariate winsorization exhibit

satisfactory numerical performance.
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Table 3.3: AR(1)-Model Specification. Numerical performance under the first con-
tamination mechanism over 100 replications with standard deviation in brackets.

ε = 0 ε = 0.05 ε = 0.10

p LRT MSE LRT MSE LRT MSE

Spearman Winzorization 90 13.468 15.964 19.701 22.455 26.902 34.092
(0.597) (0.736) (0.657) (0.728) (0.190) (0.196)

200 32.592 40.122 57.933 82.646 60.349 76.702
(0.859) (1.014) (0.233) (0.240) (0.249) (0.254)

Adjusted Winsorization 90 13.374 15.849 19.518 22.249 26.773 35.061
(0.593) (0.732) (0.663) (0.737) (0.133) (0.136)

200 34.799 44.587 57.844 82.555 60.059 78.421
(0.862) (1.010) (0.247) (0.254) (0.193) (0.196)

Sample Correlation 90 12.446 13.980 27.646 34.239 27.668 34.269
(0.558) (0.689) (0.057) (0.047) (0.003) (0.018)

200 32.348 39.813 60.731 79.059 61.431 77.764
(0.855) (1.014) (0.047) (0.030) (0.024) (0.009)

npn 90 13.784 16.363 25.734 36.320 26.587 34.873
(0.586) (0.707) (0.174) (0.179) (0.178) (0.185)

200 33.369 41.086 57.883 82.594 59.479 79.909
(0.875) (1.028) (0.241) (0.248) (0.166) (0.171)

npn-SKEPTIC 90 13.566 16.093 25.467 37.259 26.041 35.457
(0.621) (0.757) (0.160) (0.165) (0.210) (0.218)

200 35.219 45.080 57.251 84.174 58.483 81.026
(0.853) (0.997) (0.261) (0.268) (0.212) (0.219)

As a summary, simulation results show that bivariate winsorization have better

support recovery performance in comparison with rank-based procedures. In gen-

eral, both “Adjusted Winsorization” and “Spearman Winsorization” have satisfactory

overall numerical performance properties. In terms of which method should be used,

we observe that “Adjusted Winsorization” is slightly more efficient than “Spearman

Winsorization” when the uncontaminated data is Gaussian distributed. This is due to

the fact that the Spearman’s rho is computed using univariate rank transformations,

while adjusted winsorization operates directly on the data.
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Table 3.4: Erdös-Rényi Specification. Numerical performance under the first contam-
ination mechanism over 100 replications with standard deviation in brackets.

ε = 0 ε = 0.05 ε = 0.10

p LRT MSE LRT MSE LRT MSE

Spearman Winzorization 90 10.118 10.168 13.537 13.274 17.953 17.082
(0.410) (0.464) (0.535) (0.526) (0.893) (0.588)

200 32.129 43.434 36.125 45.066 37.976 43.658
(0.752) (0.482) (0.825) (0.365) (0.746) (0.254)

Adjusted Winsorization 90 10.083 10.126 13.381 13.131 17.767 16.956
(0.407) (0.463) (0.537) (0.532) (0.904) (0.599)

200 33.693 45.995 35.99 44.988 37.846 43.603
(0.712) (0.425) (0.834) (0.375) (0.764) (0.261)

Sample Correlation 90 10.049 10.093 22.758 22.771 23.213 22.234
(0.400) (0.455) (0.311) (0.135) (0.105) (0.038)

200 32.073 43.405 39.995 49.502 39.996 46.808
(0.746) (0.492) (0.132) (0.035) (0.030) (0.010)

npn 90 10.273 10.360 16.016 16.690 20.239 20.525
(0.412) (0.456) (0.633) (0.509) (0.757) (0.436)

200 35.589 48.757 37.265 46.883 38.834 46.321
(0.667) (0.353) (0.702) (0.299) (0.533) (0.184)

npn-SKEPTIC 90 10.863 11.661 15.281 16.770 19.267 20.637
(0.455) (0.482) (0.585) (0.493) (0.800) (0.499)

200 35.283 48.508 36.977 48.104 38.317 47.387
(0.691) (0.370) (0.697) (0.314) (0.648) (0.229)
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(a) ε = 0 (b) ε = 0.05 (c) ε = 0.10

(d) ε = 0 (e) ε = 0.05 (f) ε = 0.10

Figure 3.4: AR(1)-Model Specification. ROC curves under the second contamination mechanism over 100 replications.
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(a) ε = 0 (b) ε = 0.05 (c) ε = 0.10

(d) ε = 0 (e) ε = 0.05 (f) ε = 0.10

Figure 3.5: Erdös-Rényi Specification. ROC curves under the second contamination mechanism over 100 replications.
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Table 3.5: AR(1)-Model Specification. Numerical performance under the second
contamination mechanism over 100 replications with standard deviation in brackets.

ε = 0 ε = 0.05 ε = 0.10
p LRT MSE LRT MSE LRT MSE

Spearman Winzorization 90 13.468 15.964 19.702 22.484 26.889 34.078
(0.597) (0.736) (0.711) (0.783) (0.198) (0.203)

200 32.592 40.122 57.987 82.701 60.470 76.823
(0.859) (1.014) (0.192) (0.196) (0.220) (0.222)

Adjusted Winsorization 90 13.374 15.849 19.523 22.283 26.759 35.047
(0.593) (0.732) (0.715) (0.791) (0.140) (0.143)

200 34.799 44.587 57.904 82.616 60.153 78.516
(0.862) (1.010) (0.200) (0.205) (0.161) (0.162)

Sample Correlation 90 12.446 13.980 27.424 34.609 27.855 33.985
(0.558) (0.689) (0.054) (0.048) (0.020) (0.007)

200 32.348 39.813 60.723 79.057 61.426 77.761
(0.855) (1.014) (0.051) (0.038) (0.024) (0.007)

npn 90 13.784 16.363 25.730 36.317 26.570 34.858
(0.586) (0.707) (0.207) (0.216) (0.180) (0.186)

200 33.369 41.086 57.923 82.635 59.719 78.082
(0.875) (1.028) (0.219) (0.224) (0.218) (0.221)

npn-SKEPTIC 90 13.566 16.093 25.454 37.246 26.060 36.655
(0.621) (0.757) (0.194) (0.202) (0.137) (0.142)

200 35.219 45.080 57.277 84.200 58.559 81.103
(0.853) (0.997) (0.216) (0.222) (0.197) (0.202)
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Table 3.6: Erdös-Rényi Specification. Numerical performance under the second con-
tamination mechanism over 100 replications with standard deviation in brackets.

ε = 0 ε = 0.05 ε = 0.10
p LRT MSE LRT MSE LRT MSE

Spearman Winzorization 90 10.118 10.168 13.537 13.274 17.953 17.082
(0.410) (0.464) (0.535) (0.526) (0.893) (0.588)

200 32.129 43.434 36.125 45.066 37.976 43.658
(0.752) (0.482) (0.825) (0.365) (0.746) (0.254)

Adjsuted Winsorization 90 10.083 10.126 13.381 13.131 17.767 16.956
(0.407) (0.463) (0.537) (0.532) (0.904) (0.599)

200 33.693 45.995 35.99 44.988 37.846 43.603
(0.712) (0.425) (0.834) (0.375) (0.764) (0.261)

Sample Correlation 90 10.049 10.093 22.758 22.771 23.213 22.234
(0.400) (0.455) (0.311) (0.135) (0.105) (0.038)

200 32.073 43.405 39.995 49.502 39.996 46.808
(0.746) (0.492) (0.132) (0.035) (0.030) (0.010)

npn 90 10.273 10.360 16.016 16.690 20.239 20.525
(0.412) (0.456) (0.633) (0.509) (0.757) (0.436)

200 35.589 48.757 37.265 46.883 38.834 46.321
(0.667) (0.353) (0.702) (0.299) (0.533) (0.184)

npn-SKEPTIC 90 10.863 11.661 15.281 16.770 19.267 20.637
(0.455) (0.482) (0.585) (0.493) (0.800) (0.499)

200 35.283 48.508 36.977 48.104 38.317 47.387
(0.691) (0.370) (0.697) (0.314) (0.648) (0.229)
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3.5 Robust Cancer Classification based on Gene

Expression Data

Microarrays experiments have being widely used to study the behavior of genes un-

der various conditions. Microarrays raw data consist of image files and is subject to

different preprocessing steps (Wu and Irizarry, 2007). First, probe intensities are ad-

justed for optical noise or nonspecific binding. Then, the data is adjusted to remove

systematic bias due to different experimental designs. This task is often called nor-

malization. As a result, gene expression data is often subject to numerous sources of

experimental and preprocessing errors (Daye et al., 2012) and it may contain outliers.

Moreover, the violation of the Gaussian assumption can lead to bias in the recovery

of the true undirected graph and estimation of the precision matrix.

In this section we focus on the performance of robust precision matrices estimators

for the classification of tumors using gene expression data. The different estimators

are compared using two gene expression profile studies. For each study the data

have being preprocessed, including image analysis of the microarray probe intensities,

normalization and selection of differential expressed genes.

For an observed gene expression profile k we write the cellwise contamination

model in the following form (see Alqallaf et al., 2002):

y(k) = (I−B)X(k) + BZ(k) for k = 1, . . . , n (3.5.1)

where y(k) denotes the observed gene expression vector of p genes in mRNA sample

k. The unobservable random vector of gene expression levels X(k) is assumed to be

Gaussian distributed, z(k) ∈ Rp is an arbitrary random vector and B is the contami-

nation indicator matrix where P (B1 = 1) = . . . = P (B1 = 1) = ε (i.e. the probability

of an outlier occurring in the each gene is the same). The mRNA samples belong to
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T known tumor classes, so a class label t(k) ∈ {1, . . . , T} can be predicted from the

expression profiles y(k) = (Y
(k)
i , . . . , Y

(k)
p )T .

Based on the robust estimate of the precision matrix of the gene expression levels,

we apply a linear discriminant analysis (LDA) to predict tumor classes. The different

predictors are compared based on randomly splitting the data into training and testing

sets. From the training set, we compute the robust center, scale and precision matrix

estimates. For the test data we compute the linear discriminant score as follows

δt(y
(k)) = −1

2
log(det(Ω̂))− 1

2
d2(y(k), µ̂t, Ω̂) + logπ̂t, (3.5.2)

where π̂t is the proportion of subjects in group t in the training set, µ̂t the within

class mean estimate, Ω̂ the precision matrix estimate for the whole training set and

d2(·) is the squared Mahalanobis distance. The classification rule is

t̂(y(k)) = argmax δt(y
(k)) for t = 1, . . . , T. (3.5.3)

To perform model selection for λ we use 5-fold cross validation on the training data.

Next, we analyze the performance of the bivariate winsorized precision matrix for the

classification of tumors from gene expression datasets.

3.5.1 Analysis of Breast Cancer Data

We apply the procedure to evaluate gene expression profiling to breast cancer patients

data to predict who may achieve pathological complete response (pCR). Using nor-

malized gene expression data of patients in stages I-III of breast cancer data analyzed

by Hess et al. (2006), we aim to predict response stated to neoadjuvant (preopera-

tive) chemoterapy of patients with pathological complete response (pCR) and with

residual disease (RD). The importance of analyzing the subject response to neoadju-
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vant (preoperative) chemoterapy, resides in the fact that complete eradication of all

invasive cancer (i.e. pCR) is associated with long-term cancer free survival.

The data set consist of 22,283 gene expression levels of 133 subjects, with 34 pCR

and 99 RD, respectively. We follow the analysis scheme proposed by Fan et al. (2009)

and Cai et al. (2011). The data is randomly split into the training and testing set, and

we repeat this procedure 100 times. The testing set is formed by randomly selecting

5 pCR subjects and 16 RD subjects (approximately 1/6 subjects in each group). The

remaining subjects form the training set. From the training set, a Wilcox singed-rank

test is performed to select the 113 most significant genes.

Table 3.7 displays the average classification performance and the number of miss-

classified pCR subjects (Test Set Error) for each precision matrix estimator. We

observe that “Sample Correlation” has the worst performance in predicting the pCR

subjects in comparison with the robust precision matrix estimates. The overall classi-

fication performance measure by MCC criteria shows that “Adjusted Winsorization”

outperforms the other procedures. From the results, we observe that the bivariate

winsorized estimators improve over “npn” and “npn-SKEPTIC” in terms of the sen-

sitivity and MCC, while all of them give similar specificity.

Table 3.7: Comparison of average pCR classification errors over 100 replications with
standard deviation in brackets.

Sensitivity Specificity MCC Test Set Error # of edges

Spearman Winzorization 0.558 0.816 0.366 0.246 2039.340
(0.198) (0.092) (0.202) (0.080) (87.990)

Adjusted Winsorization 0.556 0.814 0.360 0.247 2006.820
(0.196) (0.085) (0.189) (0.073) (90.722)

Sample Correlation 0.512 0.813 0.317 0.259 1891.240
(0.215) (0.089) (0.222) (0.080) (90.703)

npn 0.540 0.816 0.345 0.250 2185.910
(0.212) (0.082) (0.220) (0.081) (78.147)

npn-SKEPTIC 0.528 0.821 0.341 0.249 1978.700
(0.214) (0.086) (0.225) (0.081) (76.069)
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3.5.2 Analysis of Leukemia Data

The Leukemia dataset comes from a study of gene expression in two types of acute

leukemia: acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML),

and was described by Golub et al. (1999). It has been shown that is critical for

determining the chemotherapy regime to obtain discriminating tumor tissues between

ALL and AML. Gene expression levels were measured using Affymetrix high-density

oligonucleotide arrays. The raw data set consists of 6,817 gene expression levels of

38 bone marrow samples (27 ALL and 11 AML). The data was preprocessed and

reduced to a subset of 3,051 with the most differential gene expression values.

The preprocessed data is randomly split into the training and testing set, and we

repeat this procedure 100 times. The training set is formed by randomly selecting 25

cases and the testing set by randomly selecting 13 tissue samples. The training set

is formed by 18 ALL samples and 7 AML samples. From the training set, a Wilcox

singed-rank test is performed to select the 50 most significant genes.

Table 3.8 displays the average classification performance and the number of miss-

classified tumor samples for each precision matrix estimator. The bivariate winsorized

estimate based on adjusted winsorization has the better overall performance measure

by MCC. We see that “Adjusted Winsorization” and “Spearman Winsorization” out-

performs “npn” and “npn-SKEPTIC” in Sensitivity and MCC. In terms of Specificity

all estimators have good performance in estimating false negatives. When we compare

the rank-based procedures we observe that the winsorized normal-score nonparanor-

mal estimator has better performance than the non-paranormal SKEPTIC estimator.

This is due to the fact that when the contamination is low the “npn” is slightly more

efficient than the nonparanormal SKEPTIC (see Liu et al., 2012).
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Table 3.8: Comparison of average leukemia classification errors over 100 replications
with standard deviation in brackets.

Sensitivity Specificity MCC Test Set Error # of edges

Spearman Winzorization 0.870 0.959 0.841 0.063 380.410
(0.195) (0.070) (0.191) (0.074) (29.026)

Adjusted Winsorization 0.903 0.956 0.860 0.057 382.290
(0.179) (0.071) (0.174) (0.069) (31.672)

Sample Correlation 0.887 0.961 0.857 0.057 379.120
(0.197) (0.070) (0.183) (0.071) (30.951)

npn 0.797 0.926 0.743 0.107 360.470
(0.232) (0.092) (0.199) (0.081) (23.916)

npn-SKEPTIC 0.760 0.927 0.717 0.115 352.370
(0.255) (0.091) (0.236) (0.091) (17.170)

3.6 Conclusions

In this article we have presented a method to robustly perform model selection in a

Gaussian Graphical model when the data contain outliers. Several authors, includ-

ing Liu et al. (2009) and Liu et al. (2012), have proposed robust estimators for the

precision matrix in the high-dimensional setting. These methods are based on univari-

ate outliers insensitive transformations to achieve normality. These transformations

guarantee the protection against outlier propagation. However, they are not robust

under the presence of structural bivariate outliers which may lead to misleading graph

support recovery. Our approach is able to handle structural bivariate outliers while

protecting against outlier propagation.

We estimate a high-dimensional and sparse robust precision matrix by plugging

a robust correlation matrix estimate into a constraint `1 log-determinant divergence.

We estimate the robust correlation matrix applying robust affine equivariant meth-

ods to the bivariate data and compute robust pairwise weighted correlation estimates,

where the weights are computed by the Mahalanobis distance with respect to an affine

equivariante robust correlation estimate. The proposed transformation applies a bi-

variate winsorization that shrinks observations to the border of a tolerance ellipse so
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that outlying observations are appropriately downweight to obtain a robust correla-

tion estimate against two-dimensional structural outliers.

We analyze the analytic properties of the proposed bivariate winsorized pairwise

scatter estimate and show that the rate of convergence is the same as the affine

equivariant estimates used as a diagnostic tool to identify outlying observations. Fur-

thermore, we show that if the initial robust affine equivariant correlation coefficient

converges to the true correlation at the optimal parametric rate, then the bivariate

winsorized precision matrix estimate achieves the optimal parametric rate in highdi-

mensions.

Finally, we conducted extensive numerical simulations under different contamina-

tion settings to compare graph recovery performance of different robust estimators.

We show that the proposed precision matrix estimate is robust against structural

bivariate outliers and works well under the cellwise contamination model. The nu-

merical simulations show that the bivariate winsorized transformation outperforms

the existing rank-based methods when we aim to recover the support of Ω. Moreover,

the proposed methods were then applied to the classification of tumors using gene

expression data and we obtained satisfactory and promising prediction results.

There are several future directions of research. First, it would be interesting to

derived specific concentration bounds for the Spearman’s bivariate winsorization and

the adjusted bivariate winsorization correlation coefficient. The performance of the

bivariate winsorized estimate could also be studied under alternative precision ma-

trix estimators such as CLIME (Cai et al., 2011), neighborhood selection with the

lasso (Meinshausen and Bühlmann, 2006) and neighborhood Dantzig selector (Yuan,

2010). Also, we would like to establish the breakdown properties of the pairwise

weighted correlation estimates under the cellwise contamination model. It would be

important to determine the breakdown properties of the Graphical lasso when the

bivariate winsorized correlation matrix is plugged into the `1 log-determinant diver-
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gence. Moreover, the proposed bivariate winsorized correlation coefficient could be

used to perform robust correlation screening to deal with ultrahigh-dimensional data

(see Li et al., 2012). Finally, it would be possible to study the bivariate outliers

detection approach to estimate high-dimensional and sparse undirected graphs un-

der more general elliptical distributions such as the multivariate t−distributions and

nonparanormal models.
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Chapter 4

Conclusion and Future Research

Lines

The thesis considered the problem of estimating sparse Gaussian Graphical Models

(GGMs) in the high-dimensional setting. Also, we study the problem of estimating

robust precision matrices when the dataset may contain a fraction of outliers that are

difficult to visualize and clean

In Chapter 2, we have introduced an approach to estimate undirected graphs

and to perform model selection in high dimensional Gaussian Graphical Models. We

consider a parametrization of the precision matrix in terms of the prediction errors

of the best linear predictor of each node in the graph. We exploit the relationship

between partial correlation coefficients and the distribution of the prediction errors.

We propose a novel forward-backward algorithm for detecting pairs of variables having

nonzero partial correlations among a large number of random variables based on i.i.d.

samples. We obtain a set of the most probable edges in a GGM which are related

with the largest absolute partial correlation coefficients. The position of the new

non-zero element in the precision matrix corresponds to the pair of variables with the

largest absolute partial correlation conditioned on the set of active nodes previously
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detected. We show that under mild conditions the Graphical Stepwise procedure is

able to consistently estimated the set of true edges. The novelty of the approach is

that we can obtain a set of more probable edges in a GGM for a given threshold value

without resorting to penalized regression procedures. The Graphical Stepwise has

good numerical and GGM classification performance when sparse precision matrices

are estimated. Simulation studies show that the procedure is able to detect the

true set of edges. The numerical examples indicate that our procedure outperforms

existing algorithms, such as the Graphical lasso and CLIME. Applications to real

data to perform a classification analysis show that our approach has a satisfactory

predictive performance.

In Chapter 3, we have presented a method to robustly estimate a Gaussian Graph-

ical model when the data contain outliers. Several authors, including Liu et al. (2009)

and Liu et al. (2012), have proposed robust estimators for the precision matrix in the

high-dimensional setting. These methods are based on univariate outliers insensitive

transformations to achieve normality. These transformations guarantee the protec-

tion against outlier propagation. However, they are not robust under the presence

of structural bivariate outliers which may lead to misleading graph support recovery.

We estimated a high-dimensional and sparse robust precision matrix by plugging a ro-

bust correlation matrix estimate into a constraint `1 log-determinant divergence. We

estimated the robust correlation matrix applying robust affine equivariant methods

to the bivariate data and compute robust pairwise weighted correlation estimates,

where the weights are computed by the Mahalanobis distance with respect to an

affine equivariante robust correlation estimate. The proposed transformation applies

a bivariate winsorization that shrinks observations to the border of a tolerance el-

lipse so that outlying observations are appropriately downweight to obtain a robust

correlation estimate against two-dimensional structural outliers. We analyzed the

analytic properties of the proposed bivariate winsorized pairwise scatter estimate and
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show that the rate of convergence is the same as the affine equivariant estimates

used as a diagnostic tool to identify outlying observations. Furthermore, we show

that if the initial robust affine equivariant correlation coefficient converges to the true

correlation at the optimal parametric rate, then the bivariate winsorized precision

matrix estimate achieves the optimal parametric rate in highdimensions. Finally, we

conducted extensive numerical simulations under different contamination settings to

compare graph recovery performance of different robust estimators. We showed that

the proposed precision matrix estimate is robust against structural bivariate outliers

and works well under the cellwise contamination model. The numerical simulations

showed that the bivariate winsorized transformation outperforms the existing rank-

based methods when we aim to recover the support of Ω. Moreover, the proposed

methods were then applied to the classification of tumors using gene expression data

and we obtained satisfactory and promising prediction results.

4.1 Future Research Lines

There are several possible extensions of the approaches presented in Chapter 2. In

the forward-backward procedure we use a constant threshold value to select edges. A

possible extension is to consider that the threshold varies with the effective sample

size. This adjustment is able to improve the performance of the Graphical Stepwise

procedure. Furthermore, we can apply multiple testing hypothesis procedure for

selecting the optimal partial correlation coefficients. Liang et al. (2015) introduce

a generalized Bayesian method for conducting multiple hypothesis testing that can

be apply to test for conditional independence in our procedure. The procedure can

be extended to binary graphical models by replacing linear regressions with logistic

regression (see Ravikumar et al., 2010). For non-Gaussian random variables we could

apply the non-paranormal transformation proposed by Liu et al. (2009) or the rank-
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based partial correlation coefficient proposed by Harris and Drton (2013). Finally,

the procedure can be apply to covariate-adjusted precision matrix estimation (see Yin

and Li (2011), Cai et al. (2012), Chen et al. (2016)). This model is apply when the

graph structure among variables arises from both intrinsic connections and external

effects, adjusting the effect of these external effects is of importance for understanding

the underlying graph structure.

There are several future directions of research for robust estimation of Gaussian

Graphical Models. First, it would be interesting to derived specific concentration

bounds for the bivariate winsorization correlation coefficients. The performance of

the bivariate winsorized estimate could also be studied under alternative precision

matrix estimators such as CLIME (Cai et al., 2011), neighborhood selection with the

lasso (Meinshausen and Bühlmann, 2006) and neighborhood Dantzig selector (Yuan,

2010). Also, we would like to establish the breakdown properties of the pairwise

weighted correlation estimates under the cellwise contamination model. It would be

important to determine the breakdown properties of the Graphical lasso when the

bivariate winsorized correlation matrix is plugged into the `1 log-determinant diver-

gence. Moreover, the proposed bivariate winsorized correlation coefficient could be

used to perform robust correlation screening to deal with ultrahigh-dimensional data

(see Li et al., 2012). Finally, it would be possible to study the bivariate outliers

detection approach to estimate high-dimensional and sparse undirected graphs un-

der more general elliptical distributions such as the multivariate t−distributions and

nonparanormal models.
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