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Abstract

The analysis of the interaction between a plasma plume and a satellite is gradually
becoming a very demanded task in the space industry, given the increasing use of
electric propulsion. In fact, the plasma plumes generated by the electric thrusters
can damage sensitive spacecraft components, such as the solar arrays or onboard
optical sensors. Moreover, plasma plumes can be used to one’s benefit in the context
of the ion beam shepherd technique for space debris removal, in which a shepherd
spacecraft relocates a debris object to a different orbit, by directing towards it a
plasma plume, at an operational distance of several meters.

This thesis focuses on the numerical study of the expansion of a plasma thruster
plume into vacuum and its interaction with the satellite and any downstream object.
Two simulation codes have been developed.

The first code, named EASYPLUME, is based on an axisymmetric two-fluid
plasma plume model and allows to quickly estimate the plasma plume properties
farther downstream. With this code the physics of the plume expansion has been
investigated, understanding its dependence on the most important plume parame-
ters, such as the divergence angle, the ion Mach number, and the electron cooling
rate. Moreover, the code has been used in the context of the ion beam shepherd
technique to estimate the force transmission to a space debris object, and optimize
the overall electric propulsion subsystem of the shepherd spacecraft.

The second code, named EP2PLUS, is a three-dimensional hybrid particle-in-
cell/fluid code that simulates the complex interaction between a plasma plume, the
spacecraft and other objects. The most relevant modeling novelties regard the elec-
tron model, which enables the computation of the electric currents in the plume,
and the treatment of quasineutral and non-neutral plasma regions. This code has
been applied to study both the satellite-plume interaction and a reference ion beam
shepherd scenario. In the latter, several operational problems have been evaluated:
the ion backscattering towards the shepherd satellite, the sputtering of the debris
object (due to the impingement of hypersonic ions), the backsputtering contamina-
tion of the spacecraft, and the electric charging of both the satellite and the target
debris.

Finally, the report of an experimental campaign, carried out during my PhD visit
at the “Laboratoire de Physique des Plasmas” (Paris) and aiming at characterizing
the plasma plume of the PEGASES plasma thruster, completes this work.





Resumen

El estudio de la interacción entre el satélite y un chorro de plasma producido
por un propulsor eléctrico se está convirtiendo en un análisis muy demandado en
la industria espacial, debido al uso cada vez más extenso de la propulsión eléctrica.
Dicho chorro puede dañar seriamente componentes sensibles del satélite, como los
paneles solares o los sensores ópticos. Por otra parte, puede utilizarse activamente
en el contexto de la técnica de eliminación de desechos espaciales conocida como
“ion beam shepherd”. Esta técnica se basa en trasladar dichos objetos a una órbita
diferente, por medio de la presión producida por el impacto de los iones de un chorro
de plasma dirigido hacia ellos, desde una distancia de varios metros.

Esta tesis se centra en el estudio numérico de la expansión de un chorro de plasma
generado por un propulsor eléctrico en el vaćıo, y de su interacción con otros objetos.
Con este propósito, se han desarrollado dos códigos de simulación.

El primero, llamado EASYPLUME, se basa sobre un modelo axial simétrico
con dos fluidos (iones y electrones) y permite estimar rápidamente las propiedades
del chorro de plasma a grandes distancias aguas abajo. Con este código, se ha
estudiado la f́ısica de la expansión del plasma en detalle, comprendiendo la influencia
de parámetros como el ángulo de divergencia, el número de Mach y la tasa de
enfriamiento electrónico. Además, el código ha sido utilizado en el contexto del “ion
beam shepherd” para estimar la fuerza transmitida al objeto y optimizar el sistema
de propulsión eléctrica del satélite.

El segundo, llamado EP2PLUS, es un código tridimensional h́ıbrido PIC-fluido
que simula la interacción compleja entre un chorro de plasma, el satélite y otros
objetos. Entre las novedades más relevantes destacan el nuevo modelo electrónico,
que permite estudiar las corrientes eléctricas en el plasma, y el tratamiento de re-
giones quasi-neutras y no neutras. Este código se ha empleado en el estudio de la
interacción chorro-satélite y en el análisis de la interacción chorro-satélite-objeto en
el contexto del “ion beam shepherd” para una misión de referencia. En este último
estudio, diferentes problemas operacionales han sido evaluados numéricamente: el
retorno de los iones lentos hacia el satélite, la emisión de part́ıculas erosionadas desde
la superficie del desecho espacial (debido al impacto de los iones hipersónicos), la
contaminación por difusión de dichas part́ıculas hacia el satélite, y la acumulación
de carga eléctrica de éste y del objeto espacial.

Finalmente, el informe de una campaña de caracterización experimental del chorro
del motor de plasma PEGASES completa este trabajo. Dicha campaña se realizó
durante mi estancia de visita al “Laboratoire de Physique des Plasmas” en Paŕıs.
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Glossary

List of symbols

The following symbols are used throughout this work. When multiple subscripts,
superscripts or accents are used and are not explained here, refer to the “subscripts”,
“superscripts” and “accents” sections for their meaning.

1 Unit vector

α 95% ion current divergence angle of the plume. In the current work,
it is defined as the exact slope with respect to the plume axis of the
streamtube that contains 95% of the total ion current

βtot Parameter giving the ratio between the available energy in the plume
(pressure and directed motion) and in the external magnetic field

β1, β2, βs Empirical coefficients used to model the dependency of the thruster
divergence angle on the beam voltage (β1), the RF input power on the
thruster radius (β2), and the backscattered particle kinetic energy on
the impact angle (βs)

γ Electron polytropic cooling coefficient or rate

δ Divergence angle tangent profile along the normalized radius (with the
radius of the 95% ion current streamline), at the initial plane of the
far-region

δφ Electric potential correction, required to yield sonic conditions, in the
hybrid code context

δn Plasma density correction, applied by the Bohm’s condition forcing
algorithm, in the hybrid code context

∆φ Electric potential change or drop (depending on the context)

∆k Number of time steps, in the hybrid code context

∆l Linear size of the mesh cell, in the hybrid code context

∆m Variation of mass or generated mass



xii

∆t Time interval

∆V PIC cell physical volume, or associated volume to a mesh node, in the
hybrid code context. Equivalent shepherding phase delta-V (∆Veq), in
the IBS mission study context

ϵ Error vector along the three physical coordinates, in the computational
coordinates estimation algorithm of the hybrid code

ϵ0 Dielectric constant of a vacuum

ϵ Relative (ϵrel) or absolute (ϵabs) error of a generic algorithm

ϵl Residual error in the momentum balance equation, in the SSM

ε Expansion parameter used in the AEM, equal to 1/M2
0

εn, εf , εmax Non-neutrality ratio at the mesh nodes (εn), cell-faces centers (εf ), and
its maximum value (εmax) below which the node or face is considered
quasineutral, in the hybrid code context

(ζ, η) Non-dimensional coordinates in the axisymmetric fluid model, normal-
ized with the radius R0 of the 95% ion current streamline, at the initial
plane. ζ is along the plume axis, while η labels the streamlines (curved
streamlines in the SSM, straight zeroth order streamlines in the AEM)
and represents their normalized radius at the initial plane.

ηB Momentum transfer efficiency of the ion beam shepherd

ηdiv Plume divergence efficiency

ηm Propellant utilization efficiency of the electric thruster

ηPPU Power conversion efficiency of the power processing unit

ηT Total thrust efficiency of an electric thruster

θ Azimuthal angle (in axisymmetric model) or angle between the plume
axis, the plume vertex and the scanning probe (in the divergence effi-
ciency measurement)

Λ Constant appearing in the electron-ion collision frequency formula

λc Collision mean free path

λd Debye length

µ0 Magnetic permeability in a vacuum

Π(i, j, k, p) Macro-particles track (4-D matrix) containing, for each population, the
IDs of the macro-particles located inside each PIC cell. The indices
(i, j, k) specify the cell, while p is used for the macro-particles IDs



xiii

ν Non-dimensional density profile along the normalized radius (with the
radius of the 95% ion current streamline), at the initial plane of the
far-region

νij, νe Momentum transfer frequency from the ith to the jth population (νij),
and total momentum transfer collision frequency for electrons (νe)

ξ = (ξ, η, ζ) Computational coordinates vector, in the hybrid code context

ρc Electric charge density

ρF Probability distribution function of the state of an ensemble of elemen-
tary particles

ρpwr Specific mass of the power generation system, per unit power

Σ Plasma plume volume

σ Collision cross section

σe Electron conductivity

σs Surface charge density

τ Torque vector

υ Non-dimensional axial velocity profile along the normalized radius
(with the radius of the 95% ion current streamline), at the initial plane
of the far-region

φ Electric potential

ωB Angular velocity vector associated to the Larmor motion of a charged
particle (around the magnetic field)

Ω Velocity space

P Pressure tensor of a given particle population

J , Ji Jacobian matrices of the transformation from the computational to the
physical coordinates (and viceversa)

A Generic particle species

AW Accomodation coefficient for the material walls

B Magnetic induction field vector

c Speed of light

cs Sonic velocity (or Bohm’s velocity)



xiv

C Electric capacity of an object or a generic constant (specified within
the text)

d Operational distance, in the IBS mission study context

d0 Extension of the near region of a plasma plume

E Electric field vector

E Kinetic energy of an elementary particle at wall impact (Eimp), re-
injection (Ereinj), or emission from a sputtered surface (Eemi)

e Total energy flux vector

e Electric charge of an electron, or total energy flux vector magnitude
(depending on the context)

F Force vector (thrust if referred to a thruster)

F Total distribution function of a given particle population

f Probability distribution function in the velocity space of a given particle
population

fl Fraction of the IBS orbit characterized by light conditions

G Momentum gain vector of a given particle population, due to collisions

g Particle flux vector of a given particle population

g0 Standard gravity acceleration

He Bernoulli’s function for the electron fluid, in the hybrid code context

h Self-similarity or dilation function, used by the Self-Similar methods

he Barotropic function for the electron fluid, in the hybrid code context

I Electric current

IB Total ion current in the beam

Isp Specific impulse of the electric thruster

(i, j, k) Indices of either the mesh nodes or the cell-faces, in the hybrid code
context

j Current density of a given particle population or total electric current
density (when no subscript is used)

Kn Knudsen number, which is the ratio between the mean free path (for
collisions) and the characteristic length of the domain

M Ion Mach number

m Elementary particle mass of a given particle population or mass of a
specific satellite component (depending on the subscript)

ṁ Mass flow rate of the thruster (total mass flow if without subscript)



xv

N Number of macro-particles (in total, or per cell, depending on the con-
text)

Nep Number of elementary particles

(Nξ, Nη, Nζ) Number of nodes along the three coordinate directions of the PIC struc-
tured mesh

n Number density of a given particle population. If no subscript is used,
it refers to the quasineutral plasma density

ṅ Number density rate, appearing in the continuity equation, of a given
particle population

L Number of particle populations. It includes electrons in fully-kinetic or
full-PIC codes. It refers to the number of heavy species populations in
hybrid codes

P Power (in the IBS study context) or variable considered for the Bohm’s
condition criterion evaluation (in the hybrid code context, P ≥ 0)

p Linear momentum vector

p Scalar pressure of a given particle population

pc, pbks Collision probability (pc) or backscattering probability (pbks) from a
sputtered material surface, in the context of the hybrid code

Q Volumetric power source for a given particle population

q Thermal flux vector of a given particle population

q Elementary particle charge of a given particle population

r Position vector

R 95% ion current streamline radius (e.g. R0 or R(z)), or radius of a
specific thruster component (e.g. Rthr is the thruster exhaust area
radius)

Ri Ionization rate for a given ionization reaction

Rlm Resistance between the lth and mth conductive object, in the equivalent
circuit context of the hybrid code

t Time

T Temperature (in energy units) of a given population

U Random number, uniformly distributed between 0 and 1

u Fluid velocity vector of a given particle population

Vlm Applied voltage between the lth andmth conductive object, in the equiv-
alent circuit context of the hybrid code



xvi

v Velocity vector of a particle or macro-particle

W Macro-particle weight (number of elementary particles represented by
a single macro-particle), in the hybrid code context

(x, y, z) Physical domain coordinates, in the hybrid code context

Y Particle yield of a sputtered material surface (number of sputtered
atoms per incident atom/ion)

Z Charge number of a given particle population (+1 for singly charged
ions, −1 for electrons, 0 for neutrals, etc...)

(z, r) Axial and radial coordinates, used in the axisymmetric fluid model
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Subscripts

The following list describes the meaning of the subscripts used throughout this
work.

θ along the azimuthal direction (used in the context of axisymmetric
models)

⊥ perpendicular to the considered surface or cell-face (used in the 3D
hybrid code context) and directed towards the plasma

∥ parallel to the considered surface or cell-face (used in the 3D hybrid
code context). In a 3D environment, there are two parallel unit vectors,
at each cell-face

∞ referring to infinity

0 referring to either a reference node (in the hybrid code context) or to the
initial plane of the plume far region, on the axis (in the axisymmetric
fluid model context)

acc referring to the acceleration grid of an ion thruster

avg referring to an averaging effect (e.g. ∆kavg is the number of averaging
PIC time steps)

B referring to the beam

bks referring to backscattered particles

CEX referring to charge-exchange particles (ions and neutrals)

c referring to the conical mesh origin (with coordinates (xc, yc, zc)), cell
face center (with computational coordinates (ξc, ηc, ζc)), plume center-
line (density ñc) or collisions (probability pc), depending on the context.

chamber referring to the ionization chamber of an ion thruster

cross referring to a crossing condition (e.g. ∆tcross is the elapsed time between
the PIC time step start and the time at which a macro-particle crosses
a given surface)

DOF referring to the degrees of freedom

d referring to a driving term (jd is the driving current density in the
electron momentum equation)

e referring to electrons

emi referring to an emitted flux of particles, from the wall to the plasma

ep referring to elementary particles

eq referring to an equivalent quantity
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F referring to a final distance (e.g. the distance of the target debris center,
in the context of the ion beam shepherd scenario)

f referring to a cell-face, in the hybrid code context, or to the floating
plasma potential, in the experimental characterization of the PEGASES
plume

feed referring to the feedthrough of the vacuum chamber

gen referring to generated macro-particles. For example Wgen is the gener-
ation weight, at a given cell, for new macro-particles in injection and
collision algorithms

hit referring to macro-particles hitting a given surface, from within the
plasma

IBS referring to the ion beam shepherd spacecraft

ICT referring to the impulse compensation thruster

ITT referring to the impulse transfer thruster

i referring to ions or to ionization (depending on context)

imp referring to particles property at wall-impact

inj referring to injection

j referring to the jth particle

l,m indices for a generic simulated object

min,max referring to a minimum or maximum value

n referring to neutrals, non-neutrality or to a mesh node (depending on
the context)

neut referring to the neutralization process in the very near plume

osc referring to the oscilloscope

out referring to an output measurement

p referring to the plasma

pair referring to a pair of macro-particles in the DSMC algorithm

prop referring to the propellant

pwr referring to the power subsystem

RF referring to the radio-frequency generator

r along the radial direction

rel referring to a relative variable (e.g. relative velocity vrel or relative error
ϵrel)
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reinj referring to re-injection (due to neutrals reflection or ions wall recom-
bination)

ring referring to the ring-shaped plasma potential sensor

(sw) referring to a surface-weighted version of the variable

S referring to the sheath edge (in quasineutral regions) or to the simula-
tion boundary (in non-neutral regions)

s referring to the generic sth population

screen referring to the screen grid of an ion thruster

sput referring to sputtered particles

TG referring to the target debris object

tg referring to a generic target (e.g. the target material for sputtering,
or the targeted number of macro-particles per cell, in the population
control algorithm)

th referring to the thermal component (e.g. vth is the thermal component
of a particle velocity vector)

thr referring to the thruster

W referring to the material wall

z along the axial direction
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Superscripts

The following list describes the meaning of the superscripts used throughout this
work.

(exp) referring to a direct experimental measurement

(hit) referring to macro-particles that have crossed a non-transparent cell-
face, in the hybrid code context

(k) referring to time step or iteration k

O referring to an auxiliary variable in the physical to computational coor-
dinates transformation, for a conical mesh, in the hybrid code context

(rem) referring to the macro-particles that need to be removed from the sim-
ulation, in the hybrid code context

(sw) referring to a surface-weighted version of the variable

∗ referring to the quasineutral solution, in the hybrid code context

⋆ referring to an optimization property
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Accents

The following list describes the meaning of the accents used throughout this work.

X̃ generic normalized property X. The normalization magnitude is spec-
ified within the text

X̄ generic time-averaged property X. Used in the context of the hybrid
PIC-fluid code

Ẋ generic time derivative of the property X

X ′ generic derivative of the property X with respect to the independent
variable

X̂ value that maximizes some other property (e.g. v̂⊥ is the normal veloc-
ity that maximizes the injection probability, in the hybrid code context)
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Acronyms

The following is a description of the acronyms considered in this work.

ADR Active debris removal

AEM Asymptotic expansion method

AMU Atomic mass unit

BCF Bohm’s condition forcing

CEX Charge-exchange collision

CIC Cloud-in-cell method for macro-particle weighting

CNES Centre national d’études spatiales

DCFT Diverging cusped field Hall thruster

DSMC Direct Simulation Montecarlo Collisions

ECR Electron cyclotron resonance

ELP External Langmuir probe

EPS Electric propulsion subsystem

EP2PLUS Extensible parallel plasma plume simulator

ESA European space agency

FEEP Field emission electric propulsion

GIT Gridded ion thruster

GNC Guidance, navigation and control

HEMP(T) Highly efficient multistage plasma (thruster)

HET Hall effect thruster

IBS Ion beam shepherd

ICT Impulse compensation thruster

IEDF Ion energy distribution function

ILP Internal Langmuir probe

ITT Impulse transfer thruster

LEO Low Earth orbit

LEOSWEEP Low Earth orbit security with enhanced electric propulsion

LPP Laboratoire de physique des plasmas
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MCC Monte Carlo Collisions

MEX Momentum exchange collision

MoC Method of characteristics

MPD(T) Magneto-plasma dynamic (thruster)

MRFEA Magnetic retarding field energy analyzer

NASA National aeronautics and space administration

PEGASES Plasma propulsion using electronegative gases

PIC Particle-in-cell

PMD Post mission disposal

PPT Pulsed plasma thruster

PPU Power processing unit

RF Radio-frequency

RIT Radio-frequency ion thruster

S/C Spacecraft

SM-MURF Spacecraft multi-scale/multi-physics universal research framework

SPIS Spacecraft-plasma interaction software

SSM Self-similar method

SUGAR Scalable unstructured gas dynamics with adaptive mesh refinement

TG Target debris

USC University of Southern California

VASIMR Variable specific impulse magnetoplasma rocket
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Chapter 1

State-of-the-art and research
objectives

1.1 Electric propulsion

Electric propulsion [1, 2] has gradually become a mature and widely used technol-
ogy in modern spacecrafts, given the advantages it offers in terms of propellant con-
sumption with respect to the conventional chemical propulsion. The term “electric”
comes from the fact that electric thrusters use the electric energy from a primary
power source (like the solar array) to produce an ionized propellant and accelerate
it into vacuum. In this way, the propellant exhaust velocity is not limited by the
chemical reaction energy, as for the conventional chemical thrusters, although the
limited available electric power permits achieving much lower thrust levels.

In terms of the principle behind the thrust generation, electric thrusters can be
classified into three categories:

Electro-thermal thrusters : the available electric energy is used to heat up the
propellant, which is then accelerated through a conventional nozzle (conversion
of thermal energy into directed kinetic energy). This is the case of arcjets and
resistojets [2, 3, 4, 5, 6].

Electro-static thrusters : the thrust is generated by the interaction of a positive
space-charge region (populated of ions) with the electrodes of an extraction
system. This is the case of the gridded ion thruster (GIT) [1, 7, 8, 9, 10, 11],
and of the FEEP thrusters [12, 13], in which the thrust density assumes the
form −ρcE, where ρc is the charge density, and E is the local electric field.

Electro-magnetic thrusters : the thrust is generated by the interaction of an
internal plasma current j with the magnetic field B created by an external
magnetic circuit. The thrust density assumes the form −j ×B. This is the
case of many existing thrusters, such as the annular Hall effect thruster (HET)
[1, 14, 15, 16], the HEMP thruster [17], the Helicon thrusters [18, 19, 20, 21, 22],
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the electron-cyclotron resonance (ECR) thruster [23, 24], the magnetoplasma-
dynamic thruster (MPDT) [25, 26], the pulsed plasma thruster (PPT) [27, 28],
or the variable specific impulse magnetoplasma rocket (VASIMR) [29, 30]. The
above thrusters differ in terms of the ionization process (based on either an
electric discharge or a plasma-wave interaction) and of the physical principle
behind the generation of the ambipolar electric field (responsible for the ac-
celeration of the ions). In the case of the HET, this is the electrons reduced
axial mobility (due to their closed azimuthal drift), while for the Helicon, the
ECR, the MPD thrusters and the VASIMR, the source is a magnetic nozzle
[22, 31, 32, 33].

This work focuses on the plumes generated by these electric thrusters, whose
composition and properties depend on the thruster type. Although the models de-
veloped here are equally applicable to any thruster type, we are primarily interested
in the electro-static and electro-magnetic thrusters, since they emit a proper plasma
plume, that is a plume constituted by a significant fraction of ion mass flow. For
these thrusters, a propellant utilization efficiency is commonly used to measure the
ionization efficiency:

ηm =
ṁi

ṁi + ṁn

=
ṁi

ṁ
, (1.1)

where ṁ is the total mass flow rate, and ṁi, ṁn respectively the ion and neutral
mass flow rates. If F is the total thrust generated by the thruster, then a specific
impulse can be defined as:

Isp =
F

g0ṁ
≈ ηmūzi

g0
, (1.2)

with ūzi representing the average axial velocity of the exhaust ions, and g0 the
standard gravity acceleration. In the second equality, the contribution of emitted
neutrals has been neglected, since they are much slower than the emitted ions.

Electric thrusters can then be divided into cathodeless thrusters and thrusters
that need at least one cathode for either sustaining the electric discharge or neutral-
izing the emitted plume:

Cathodeless thrusters: this is the case of Helicon, ECR, and VASIMR thrusters,
which require neither an internal cathode to ionize the propellant, nor an ex-
ternal one to neutralize the already quasineutral plume.

Thrusters with cathode: this is the case of HEMP, MPD, Hall Effect, FEEP
and gridded ion thrusters. The MPDT requires an internal cathode to gen-
erate the electric discharge, the HET features an external cathode to both
sustain the discharge and neutralize the emitted ions plume, while the GIT
works with either one cathode as neutralizer (Radio-frequency ion thrusters)
or two cathodes (electron-bombardment). Finally, the FEEP always requires
an external cathode neutralizer, since it only emits ions.
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Finally, depending on the type of emitted plasma plume, thrusters can be classi-
fied into quasineutral and non-neutral:

Quasineutral plume thrusters: this is the case of Hall Effect, Helicon, HEMP,
ECR, pulsed plasma and MPD thrusters, and of the VASIMR, which emit
a quasineutral plasma plume (both ions and electrons with the same current
density).

Space-charge thrusters: this is the case of both the GIT and the FEEP
thrusters, which accelerate ions through an electrodes system. Therefore, in
the very-near plume region, the plume is non-neutral with an excess of posi-
tive ion charge. In the GIT, the electrons of the plasma discharge are collected
by the screen grid and must be emitted by the neutralizer into space to avoid
charge build-up. The electric power required to move electrons from the screen
grid to the emitting neutralizer is commonly known as beam power.

The classification of the presented thrusters according to the above described
criteria is finally summarized in Tab. 1.1.

Table 1.1: Existing thrusters classification.

Thruster
type

Thrust
principle

Cathodeless
design

Emitted plume
type

GIT electro-static no space-charge
FEEP electro-static no space-charge
HET electro-magnetic no quasineutral

HEMPT electro-magnetic no quasineutral
Helicon electro-magnetic yes quasineutral
ECR electro-magnetic yes quasineutral
PPT electro-magnetic no quasineutral
MPDT electro-magnetic no quasineutral
VASIMR electro-magnetic yes quasineutral

Among all mentioned thrusters, GITs and HETs deserve a particular attention,
since they have undergone several decades of development, testing and flight, and
represent, nowadays, the most reliable and tested technology. Nevertheless, research
is still focusing on improving their performance with innovative designs. For what
concerns the HET, new magnetic circuit topologies and thruster geometries are being
considered to enhance their lifetime, by applying the so-called magnetic shielding
(magnetic fields parallel to the thruster walls to reduce the ion flux). As to the ion
thrusters, on the other hand, new cathodeless designs (not requiring an external
neutralizer) are being investigated, like the PEGASES thruster concept [34, 35, 36,
37, 38], which accelerates alternatively positive and negative ions, or the NEPTUNE
concept [39], in which ions and electrons are alternatively extracted.
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1.2 Plasma plume effects on the S/C

The plasma plumes produced by the electro-static and electro-magnetic thrusters,
being made of ions and electrons, are strongly affected by the local electric and
magnetic fields, so that understanding how they interact with the satellite itself is
becoming a very demanded task. In fact, as shown in Fig. 1.1, a plasma plume
can induce electric charging, produce mechanical erosion/contamination and exert
forces/torques on any object it interacts with [40, 41].

Figure 1.1: Schematic representation of the plasma plume interaction with the emit-
ting S/C and an immersed object.

In the context of spacecraft design, it is therefore crucial to minimize this interac-
tion with different key components, such as the solar array and the onboard sensors,
whose performance would be greatly degraded. Apart from avoiding the direct im-
pingement of the hypersonic thruster plume ions, satellite integrators are mostly
concerned about the effect of backscattered ions. As shown in Sec. 1.3, these ions
are generated by charge-exchange collisions close to the thruster exit, and are easily
deflected towards the satellite by the local electric fields. Upon impact with space-
craft surfaces, these ions can produce sputtering, while the sputtered material can
deposit on other surfaces, contaminating them. Both the direct sputtering damage
and the contamination due to deposition provoke a degradation in the performance
of the affected components.

The importance of studying plasma plumes, however, cannot be restricted en-
tirely to modern spacecraft design. In fact, they can also be used to one’s benefit,
like in the context of the ion beam shepherd (IBS) [42, 43, 44, 45]. This is an ac-
tive debris removal (ADR) technique, in which an impulse transfer thruster (ITT)
directs its main plume at a target debris and, through the consequent ion push, it
progressively relocates the object to a different, less crowded orbit. At the same
time, an impulse compensation thruster (ICT) pushes the shepherd spacecraft in
the opposite direction, in order to maintain formation flying. A schematic of the
IBS concept is shown in Fig. 1.2.

Finally, the study of similar plasma jets is also relevant in other research fields,
such as plasma material processing [46], in which they are used to obtain special
properties, and in astrophysics [47, 48], where a large variety of plasma jets are
naturally found. This work shall focus, however, on plasma thruster plumes.
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Figure 1.2: Schematic representation of the ion beam shepherd concept.

1.3 The main characteristics of a plasma plume

The plasma plumes produced by electro-static and electro-magnetic thrusters are
typically very rarefied and weakly collisional, with peak densities in the order of
1016 − 1018 m−3 [1, 2, 49, 50], and a Knudsen number Kn ≫ 1. This indicates
that they don’t behave like a classical fluid, in which inter-particle collisions play a
major role. In addition, these plumes are characterized by very different dynamics
for ions and electrons, with the latter being 4 or 5 orders of magnitude lighter, and
responding much more quickly to external perturbations. As a consequence, the self-
consistent electric fields depend mostly on the electrons dynamics, and are strongly
affected by the presence of any externally applied magnetic field, so that a classifi-
cation into magnetized and unmagnetized plasma plumes is necessary. Magnetized
plumes present anysotropic properties, since electrons are forced to follow Larmor
orbits around the local magnetic field direction and can traverse the field lines only
through rare collisional events. This hinders the plume expansion in the normal
direction (where the electron mobility is lowest) and facilitates it along the parallel
direction. When B is along the plume axis, it can then channel the expansion,
reducing the plume divergence, whereas, when it is at an angle, it can significantly
distort the plume cross section, as claimed by recent research [51, 52, 53] and shown
in Fig. 1.3.

Be the plasma plume magnetized or not, two different regions can always be
identified, as shown in Fig. 1.4: a near-region and a far-region. In the near-region,
which extends up to a few thruster radii from the thruster exit surface, the plasma
is markedly non-homogeneous: a GIT plume consists of numerous “beamlets” that
gradually merge into a single beam, while a HET plume features an initially annular
profile, given the thruster channel geometry. In this region, several three-dimensional
effects play an important role.

First of all, at the thruster exit, the emitted neutral density can reach values up
to 100 times the emitted ion density, so that the effect of ion-neutral collisions is
non-negligible. These collisions may feature either an elastic momentum exchange
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Figure 1.3: Sketch of the plasma plume distorsion effect due to an external magnetic
field, perpendicular to the plume axis.

Figure 1.4: Characteristics and most important phenomena occurring in the near and
far regions of a plasma plume.

(MEX) or a charge-exchange (CEX) [54, 55], the latter being the most important
one. When a fast hypersonic ion transfers its charge to a slow neutral, a slow ion
is created, which easily follows the local electric fields and is backscattered towards
the S/C, with all the consequences already described in Sec. 1.2. Secondly, the
near region is characterized by intense local electric and magnetic fields, created
by either the satellite or the thruster (e.g. the potential well at the last grid of a
GIT, or the magnetic field generated by the magnetic circuit of a HET). Thirdly,
the emitted plume of the neutralizer (consisting of both ions and neutrals) mixes
with the main thruster plume, resulting in asymmetric distributions of the plasma
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plume properties.
The combined effect of the above phenomena is to produce a smooth, single-

peaked plasma profile, after a few thruster radii: when this occurs, the far-region
begins, where the effects of neutralizer, thruster and collisions become negligible
with respect to the plume kinetic energy, the residual thermal pressure, and the
self-consistent ambipolar electric field. The subsequent plasma expansion is then
current-free, quasineutral, and near-collisionless, and the plume is constituted by
highly hypersonic ions with velocity ui in the order of tens of km/s, and electrons
with a mild temperature Te of 1–5 eV [56, 57, 58], which are nearly confined by
the ambipolar electric field. The expansion in this far-region, then depends on the
following initial conditions, which refer to an initial plane at the end of the near
region (e.g. 50− 100 cm downstream from the thruster exit):

the initial divergence angle α0,

the electron cooling rate inside the plume,

the initial ion Mach number M0,

the plume initial shape.

The existing definitions for the divergence angle are shown in Fig. 1.5.

Figure 1.5: Divergence angle geometry. α0 represents the slope with respect to the

thruster axis of the 95% ion current streamline, while α
(exp)
0 is the angle typically

measured in experiments (from the value of its radius R0). The virtual plume vertex
used for the computation of the divergence efficiency and the measured current density
profile j(r) (by the beam scanning system) are also shown.

First of all, the radius R0 of the streamtube that contains 95% of the total emitted
ion current is identified. Then, the divergence angle is either defined as the angle α0

of this streamline with respect to the thruster symmetry axis, or as the angle α
(exp)
0

at the radius of this ion streamline, as seen from the thruster center. Clearly the two
definitions tend to coincide as the ratio between the thruster radius Rthr and the
near region extension d0 goes to zero. The α

(exp)
0 definition, in fact, assumes a point

source at the center of the thruster exit area, and does not require the knowledge
of the streamlines direction, but only the current density measurements obtained
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with a beam scanning system. Therefore, experiments typically determine the angle
α
(exp)
0 . Other authors, however, consider a different experimental definition based on

the divergence efficiency [1, 59]. As shown in Fig. 1.5, they assume a conical velocity
field, with the ion streamlines originating at a common vertex (typically inside the
thruster), and they compute this efficiency as:

ηdiv =< cos θ >=

∫ Rmax

0
cos(θ) (2πrj(r) cos(θ)) dr

IB
, (1.3)

where Rmax is the maximum beam scanning system radius, j(r) is the current den-
sity (measured with an array of Faraday cups oriented towards the beam vertex) at
an angle θ(r), as seen from the plume vertex, and IB is the total emitted ion current.
This divergence efficiency thus represents an average divergence angle cosine loss,
weighted with the axial current density (and taking into account a cylindrical geom-
etry). A corresponding average divergence angle can be obtained as the arccos(ηdiv),

and is generally smaller than the α0 or α
(exp)
0 angles defined above, which refer to

an outer streamline (the 95% ion current streamline). In the present work, we shall
assume the α0 definition, when talking about the plume divergence angle, as it is
not based on simplifying assumptions and is valid for any type of velocity profile
(not only for a conical one).

The second parameter that influences the far region expansion is the electron
cooling in the plume. In this work, although it is not justified for a collisionless
plasma plume, this is modeled with a polytropic state law, a common assumption
made in both experiments and numerical simulations [16, 49, 50, 60, 61, 62], which
is found to predict well the general features of the plume expansion:

Te = Te0

(
ne

ne0

)γ−1

, (1.4)

where γ is the polytropic cooling coefficient, and ne0, Te0 represent the known elec-
tron density and temperature at some reference point. In general, the faster the
electrons cool down, and hence the larger the γ, the lower is their effect on the
plume divergence growth, because their pressure decays more rapidly. In addition
γ also appears in the expression of another important parameter of the far-region
expansion, the ion Mach number M0, which, for a plume made of singly charged
ions, is defined as:

M0 =

√
miu

2
i0

γTe0

, (1.5)

where mi is the ion mass, ui0 their initial velocity at the axis, and Te0 their initial
temperature (in energy units). A quick inspection of Eq. (1.5) shows that the square
of the ion Mach number represents the ratio between the directed kinetic energy of
the plume ions and the thermal energy of the electrons. As it will be shown in
Chapter 2, the divergence angle of the ion streamlines continues to increase as they
expand downstream, and this increase is higher the lower the ion Mach number.
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Regarding the plume initial shape at the start of the far-region, this depends
dimly on the type of thruster considered, since the thruster geometry effects are
smeared out in the near region. Finally, Tab. 1.2 summarizes, for the existing elec-
tric thrusters, the most important plume properties, like the specific impulse, the
divergence angle and the ion Mach number. In the case of the VASIMR, the very
high specific impulse (or exhaust velocity) does not correspond to a high ion Mach
number, because the collected data refer to a very light propellant, the deuterium.
Moreover, the initial divergence angle appears to be well characterized only for the
ion and Hall effect thrusters, and it is roughly 10–25 deg for former, and 35–50 deg
for latter.

Table 1.2: Typical specific impulse, divergence angle and ion Mach number for differ-
ent types of electric thrusters (xenon propellant, unless noted).

Thruster
type

Specific
impulse [s]

Divergence
angle [deg.]

Ion Mach
number

GIT 1000− 10000 10− 25 7− 67
HEMPT 1600− 2600 45 11− 17
HET 800− 3000 35− 50 5− 20

Helicon 250− 500 > 15 2− 3
ECR 250− 600 35− 50 2− 4
PPT 1 1500− 17000 n/a 5− 62
MPDT 250− 3000 n/a 3− 20

VASIMR 2 5000− 12000 n/a 4− 10

1.4 Limitations of the experimental approach

Plasma plumes can be studied both numerically, and experimentally, either in
vacuum chambers or onboard real satellites. Of course, experiments are quite limited
by the avaiable budget and by the technological limits posed by existing vacuum
chambers. For these reasons, they typically focus only on the plume near-region,
where the plasma properties are routinely measured at distances of about 1 m from
the exit of the thruster [11, 16, 56, 57, 63, 64, 65]. Such measurements, apart
from determining the thruster performance figures, also permit identifying important
plume properties, such as the 95% ion current divergence angle (refer to Fig. 1.5),
or the electron polytropic cooling coefficient γ relating the plasma density with the
electron temperature.

The far-region (and the peripheral plasma), on the contrary, present serious chal-
lenges for vacuum chamber testing, as large vacuum tanks and high vacuum levels
are required to limit the influence of the tank walls and the background plasma
density on the measurements of a low-density plume [1]. These difficulties have
been confirmed in the test campaign of a recent project, named LEOSWEEP [66]

1with argon propellant
2with deuterium propellant
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(2013-2016), which aimed at characterizing the plasma plume in the far region, up
to a distance of 7− 10 m from the thruster exit, and also studying the effects of the
geomagnetic field. Although some matching of the experimental measurements with
fluid model predictions could be found, results were characterized by a large uncer-
tainty in several plasma properties (especially in the electron temperature), and,
most importantly, by the absence of a proper plume neutralization (the neutralizer
was kept off for technical issues). This inconvenient invalidated any conclusion re-
garding the effect of the geomagnetic field on the plume expansion, since it was not
acting over a quasineutral plasma plume.

In order to overcome vacuum chamber limitations, experiments should be carried
out directly in orbit, however, up to date, there are only a few cases in which a proper
plume characterization has been performed out in space. One of such experiment,
presented in Ref. [53], focuses on the distortion effects created by the Earth magnetic
field, as predicted by Korsun in 1997 [51]. Another experiment has been carried out
onboard the SMART-1 spacecraft [67, 68], focusing on the charge-exchange plasma
contamination of sensitive surfaces.

1.5 State of the art of numerical simulations

Due to the obvious limitations of experiments, numerical simulations of plasma
plumes have been gaining a larger importance in the last two decades. In this
field, it is the simulation of the peripheral plasma and of the near region plume,
which becomes the most demanding, due to the abundance of competing physical
effects requiring complex numerical codes. In contrast, the far-region of a plume is
amenable to simpler models such as collisionless fluid models, which confer a clearer
understanding of the main physics of the problem and can be used to propagate
experimental data downstream, extrapolate vacuum chamber measurements to space
conditions, and identify facility effects on far-region measurements.

In the following, the available approaches for the simulation of a plasma plume
and its interaction with a satellite are described:

Fully-kinetic models

Full-PIC models

Multi-fluid models

Hybrid PIC-fluid models

1.5.1. Fully-kinetic models

When describing an ensemble of particles, the highest level of information is
provided by the exact one-particle distribution function [69]:

Fex (r,v, t) =

Nep∑
j=1

δ (r − rj(t)) δ (v − vj(t)), (1.6)
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which tells us both the position r and the velocity v of each individual particle of
the ensemble. By integrating Fex over the position and velocity space, the total
number Nep of elementary particles is obtained. Since such an expression based on
Dirac deltas is very noisy, Fex is normally substituted with a smoothed distribution
function, representing its ensemble average over the 6Nep-dimensional space formed
by the positions and velocities of the Nep particles.

If ρF (r1, · · · , rNep ,v1, · · · ,vNep)dr1 · · · drNepdv1 · · · dvNep is the probability of find-
ing the system ofNep particles in the phase space volume dr1 · · · drNepdv1 · · · dvNep at
position

(
r1, · · · , rNep ,v1, · · · ,vNep

)
, then this smoothed particle distribution func-

tion can be defined as:

F (r,v, t) =

∫
ρFFexdr1 · · · drNepdv1 · · · dvNep

= Nep

∫
ρF (r, r2 · · · rNep ,v,v2 · · ·vNep)dr2 · · · drNepdv2 · · · dvNep .

(1.7)

Then F (r,v, t) drdv represents the average number of particles in the 6-dimensional
phase space volume drdv at position (r,v). From Liouville’s theorem, and with the
use of the BBGKY hierarchy, it is finally possible to obtain Boltzmann’s equation
[69, 70, 71], which provides an evolution law for this smoothed particle distribution
function:

∂Fs

∂t
+

ps

ms

· ∇Fs + qs(E + v ×B) · ∂Fs

∂ps

=

(
∂Fs

∂t

)
c

, (1.8)

where the subscript ‘s’ refers to a specific particle population (i.e. an ensemble of
particles sharing at least the same particle mass ms and charge qs), ps is the linear
momentum vector of an elementary particle of the sth population, and qs(E+v×B)
is the total electro-magnetic force acting on it. The right hand side models the
effect of collisions for the sth population. Boltzmann’s equation is then coupled
with Maxwell’s equations, in order to determine a self-consistent solution that takes
into account the electro-magnetic field produced by the plasma itself:

∇ ·B = 0, (1.9)

∇ ·E =
ρc
ϵ0
, (1.10)

∇×E = −∂B

∂t
, (1.11)

∇×B = µ0j +
1

c2
∂E

∂t
, (1.12)

where ϵ0 is the dielectric constant of a vacuum, µ0 is the vacuum magnetic perme-
ability, c is the speed of light, ρc is the plasma charge density, and j is the plasma
current density. Maxwell’s equations are then coupled with Boltzmann’s equation
through ρc and j. If L is the total number of particle populations, these plasma
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properties can be computed as:

ρc =
L∑

s=1

eZsns, (1.13)

j =
L∑

s=1

js =
L∑

s=1

eZsgs, (1.14)

where eZs is the electric charge of an elementary particle, ns the number density and
gs the average particle flux vector of the sth population. Both the number density
and the particle flux vector are particular moments of the distribution function Fs

over the velocity space. In particular, ns is the zeroth moment:

ns(r, t) =

∫
Ω

Fs(r,v, t)dv, (1.15)

while gs is the order-1 moment:

gs(r, t) =

∫
Ω

vFs(r,v, t)dv. (1.16)

The probability distribution function is then defined as fs = Fs/ns. At a given
position r and time t, the product fs(r,v, t)dv represents the probability of finding
a particle within the velocity interval dv, centered at v. Obviously, integration over
the velocity space of the probability distribution function gives 1 (100% probability
of finding the particle with any velocity):∫

Ω

fs(r,v, t)dv = 1. (1.17)

Fully-kinetic models then try to solve directly the system formed by Boltzmann’s
and Maxwell’s equations, Eqs. (1.8) to (1.12). Typically, a simplified version of
Maxwell’s equations is considered, for example one neglecting the wave terms (dis-
placement current), or simply an electrostatic closure, featuring Poisson’s equation
alone. The high dimensional phase space (6-dimensional for a 3D problem), and the
difficulty of modeling the collisional term of Eq. (1.8) make however the fully-kinetic
approach only feasible for low dimensional studies, as done in recent studies aimed
at solving Vlasov’s equation (e.g. Eq. (1.8) with a zero collisional term) for a 1D
magnetic nozzle [33, 72].

1.5.2. Full-PIC models

Full particle-in-cell (PIC) models [69, 73, 74, 75, 76, 77, 78, 79] follow an alterna-
tive Lagrangian-Eulerian approach, in which the particle populations are modeled
as macro-particles and moved self-consistently with the electric and magnetic fields,
that are known at dedicated mesh nodes. As shown in Ref. [69], instead of solving
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for the Boltzmann’s equation, the particle-in cell method discretizes the particle
distribution functions with a finite number of macro-particles as:

Fs(r,v, t) =
Ns∑
j=1

Wjδ (r − rj(t)) δ (v − vj(t)), (1.18)

where Ns represents the total number of macro-particles considered (for the sth

population), Wj is the number of elementary particles represented by the jth macro-
particle, referred to as macro-particle weight, and rj(t), vj(t) are respectively its
position and velocity vector. Full-PIC models then reproduce the total distribution
function Fs with a limited number of degrees of freedom, by collapsing a large
number of elementary particles into a single macro-particle. This permits saving
a large computational time, at the cost a much larger statistical fluctuation of the
fluid properties, which is not observed in nature, given the extremely high number
of elementary particles.

The trajectory of the jth macro-particle is simply obtained by solving Newton’s
equation (in which the macro-particle weight appears on both sides and, hence,
cancels out):

mj
dvj

dt
= eZj [E(rj) + vj ×B(rj)] , (1.19)

while the ensemble average properties ns and js for each population, necessary to
update self-consistently the electro-magnetic field, are obtained by weighting the
macro-particles to the nodes of a dedicated mesh (hence the name particle-in-cell).
The overall scheme is shown, for the sake of clarity, in Fig. 1.6.

Figure 1.6: Logical loop of a typical PIC code.

The choice of solving for the new fields at the mesh nodes, and then interpolat-
ing them to the macro-particle position, permits decreasing the cost of the electro-
magnetic forces computation fromO(N2) toO(N), since it requires a particle weight-
ing step (with a computational cost proportional to the number of macro-particles
N) and a fields solver step (with a computational cost proportional to the number of
nodes Nnodes, generally lower than N). On the contrary, should the electromagnetic
interaction with any of the macro-particles of the domain be considered, the eval-
uation of the force on each macro-particle would require already O(N) operations,
and the total cost would scale as O(N2). This is the case of particle-particle codes
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like those used for molecular dynamics simulations [80], in which the interactions
with all surrounding particles (up to a maximum interaction distance) is taken into
account. In PIC codes, on the other hand, the electro-magnetic interaction between
particles is indirect and simulated through a mesh weighting step, so that, instead
of being point masses, macro-particles actually behave like Green’s functions (space
distributions of mass and velocity), with a shape determined by the weighting algo-
rithm. This is a similar approach to the one done in fully-kinetic codes when sub-
stituting the exact one-particle distribution function with an ensemble average one.
Moreover, the weighting scheme for assigning macro-particles to the nodes and the
interpolation scheme for computing the electro-magnetic field at the macro-particle
position must be the same, in order to avoid undesired and unphysical effects, such
as the self-force, as shown in Ref. [74], consisting in a macro-particle generating an
electro-magnetic force on itself. Another cause of the self-force might be the use of a
highly deformed mesh [74], so that care is needed when using non-Cartesian meshes,
be them structured or not.

Another important advantage of PIC models with respect to fully-kinetic codes
is in the simpler approach used for dealing with collisions. As discussed above,
macro-particles interact with each-other only through time-averaged, long-range
fields known at the mesh nodes. However, an individual macro-particle might be
subject to instantaneous fields very different from these time-averaged long-range
ones, especially if it happens to approach closely another macro-particle (e.g. due
to the Coulomb’s interaction in the case of charged particles). Therefore, the to-
tal force acting on a macro-particle presents 2 contributions: a long-range and a
short-range one. As shown in Ref. [73], PIC models simulate the short-range forces
with dedicated collisional algorithms (Direct Simulation Monte Carlo, [73, 81, 82]
DSMC, or Monte Carlo collisions, MCC [82, 83]), in which macro-particles in each
cell can collide with the others, in a fashion as similar as possible to the elementary
particles collisions. In such a way, if the number of simulated macro-particles is high
enough, the resulting distribution function resembles the solution of either particle-
particle codes or of kinetic codes that solve directly the Boltzmann’s equation with
the collisional term (approaches that are, most of the times, impractical).

The collision event in PIC codes thus represents the integrated effect (over the in-
teraction time) of the short-range forces. Since the real interaction time is extremely
short with respect to the integration PIC time step, collisions are often assumed to
be instantaneous and their outcome modeled statistically, every time step (e.g. with
the use of collision cross sections or rates, and with an instantaneous update of the
colliding macro-particles properties).

1.5.3. Multi-fluid models

Multi-fluid models [49, 50, 60, 61, 84, 85] solve a simplified set of equations, that
originate from Eq. (1.8) by taking different moments of the distribution function in
the velocity space, and expressing them in terms of ensemble average properties,
such as the particle density, velocity, pressure, temperature, etc. By taking the
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zeroth moment, the first moment (with v), and the second moment (with mv2/2)
of Boltzmann’s equation, the following three conservation equations are obtained:

ms
∂ns

∂t
+∇ · (msnsus) = msṅs, (1.20)

∂

∂t
(msnsus) +∇ · (msnsusus) = −∇ · Ps + Zsens (E + us ×B) +Gs, (1.21)

∂

∂t

(
3

2
nsTs +

1

2
msnsu

2
s

)
+∇ ·

[(
3

2
nsTs +

1

2
msnsu

2
s

)
us + qs

]
= −∇ · (Psus) + Zsensus ·E +Qs.

(1.22)

Let us now analyze each one of them. Eq. (1.20) is known as mass continuity equa-
tion, and features the number density ns, defined in Eq. (1.15), and the average
velocity us, which can be obtained from Eq. (1.16), dividing by ns:

us =
gs

ns

=

∫
Ω

vfs(r,v, t)dv, (1.23)

and the term ṅs, which represents the volumetric source of particles (new particles
per unit volume and time, generated or destroyed by collisional events).

Eq. (1.21) is known as momentum balance equation, and features the additional
unknowns of collisional momentum gainGs, which models the effects of the collisions
with the other populations, and the pressure tensor Ps, defined as:

Ps =

∫
Ω

msvthvthFs(r,v, t)dv, (1.24)

where the thermal velocity vth = v − us is the particle velocity with respect to the
average fluid motion. A scalar pressure can then be defined from the trace of this
pressure tensor as:

ps =
1

3
tr (Ps) =

∫
Ω

1

3
msv

2
thFs(r,v, t)dv. (1.25)

Eq. (1.22) is finally the energy balance equation and features the new unknowns
of the isotropic temperature Ts, the thermal flux vector qs and the energy source
Qs, which represents the volumetric energy creation rate (due to generation or loss
of particles with a finite energy). The isotropic temperature Ts and the thermal flux
vector qs are, once again, particular moments of the distribution function:

Ts =
ps
ns

=

∫
Ω

1

3
msv

2
thfs(r,v, t)dv, (1.26)

qs(r, t) =

∫
Ω

1

2
msv

2
thvthFs(r,v, t)dv. (1.27)

In order to obtain simplified expressions for the unknowns Gs and qs in terms of
other ensemble averages (density, velocity and temperature), a commonly made as-
sumption in fluid models is to consider an isotropic Maxwellian distribution function,
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an hypothesis which is justified only in a highly collisional regime, when equilibrium
has been reached (H-theorem, [73]). This means that the particle distribution func-
tion, for each population, takes the form:

Fs(r,v, t) = ns(r, t)

(
ms

2πTs(r, t)

)3/2

exp

(
−ms |v − us(r, t)|2

2Ts(r, t)

)
. (1.28)

With Fs given by Eq. (1.28), simplified expressions for both the heat flux vector and
the momentum gain can be made, as shown below:

qs = −ks∇Ts, (1.29)

Gs =
∑
j ̸=s

νsjmsns(uj − us), (1.30)

with Eq. (1.29) commonly known as Fourier law, and νsj representing a momentum
transfer collision frequency from the population s to the population j.

Multi-fluid models finally solve the system of Eqs. (1.20) to (1.22), coupled with
Maxwell’s equations, by assuming different types of fluid closures:

Closure at the level of the pressure tensor: in this case the energy equation is
discarded and an expression for the pressure tensor is assumed. An example
is an isotropic closure based on a polytropic state equation, Eq. (1.4). In this
case, the divergence of the pressure tensor simply becomes ∇ · Ps = ∇ps =
∇
(
nγ
sTs0/n

γ−1
s0

)
, where ns0, Ts0 are the known number density and temperature

of the sth population, at some reference location.

Closure at the level of the heat flux vector: in this case the energy equation is
retained (important for simulations of plasma discharges), and the fluid closure
consists in assuming a simplified expression for the heat flux vector, typically
a Fourier law.

In all cases, the simplifying expressions for Gs, qs and Ps are only justified for
collisional plume regimes. When dealing with low collisonal plasma plumes, the
solution of the fluid equations can be tricky, and hardly justified, although some
comparison studies with full-PIC simulations, like the one in Ref. [62], have shown
that a simple fluid model can reproduce the most important plume expansion physics
in the far-region (the ambipolar electric field plays the role of the pressure gradient
in a collisional plume).

1.5.4. Hybrid models

An intermediate approach between full-PIC and multi-fluid models, is represented
by hybrid PIC models [86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98], in which the
electrons are treated as a fluid and the heavy species are simulated as macro-particles
of a PIC sub-model. This choice allows to:
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Reduce significantly the computational cost with respect to full-PIC or fully
kinetic codes, because the PIC time step is now dictated by the fastest ion
species, which is typically 2−3 orders of magnitude slower than the electrons.

Maintain a generic distribution function for all heavy species particles, without
relying on unjustified closures, at least for ions and neutrals (as done by multi-
fluid models).

Nevertheless, since hybrid models treat electrons as a fluid, strong assumptions
must still be made, especially for what concerns the electron thermodynamics, which
is typically assumed to follow a kinetic fitting (like a polytropic law approach).
Therefore, some fundamental physics studies, such as the electron collisionless cool-
ing, cannot be done using hybrid modeling, but must still rely on more complex
kinetic models (fully-kinetic or full-PIC).

While full-PIC and fully kinetic codes are inherently non-neutral codes, in which
Poisson’s equation, Eq. (1.11), is always solved for, hybrid codes can be classified
into quasineutral and non-neutral. The former assume equal and opposite charge
densities for ions and electrons, obtaining the electric potential from the electron
conservation equations:

ne =
L∑

s=1

Zsns → φ from conservation equations. (1.31)

In the above equation L represents the number of heavy particles populations and
does not include the electrons, which are now treated as a fluid. As discussed in
Sec. 1.3, however, this quasineutrality assumption is only justified in the central,
denser regions of the plume, and typically fails when the Debye length becomes
comparable to the PIC cell size, like in the peripheral plume regions. This is taken
into account by the latter non-neutral codes, which solve the coupled Poisson’s and
electron conservation equations. In the context of hybrid codes this means to solve
a non-linear Poisson’s equation, in which the unknown electron density is an explicit
function of the unknown electric potential.

While always considering the continuity equation, like multi-fluid models, hybrid
codes are finally classified in terms of the fluid closure and the physical effects
considered in the conservation equations:

Momentum equation closure: these approaches can include different physical
effects: (i) electron pressure and electric field (ii) electron pressure, electric
field and collisions (iii) electron pressure, electric field, collisions and mag-
netic field. The first of these approaches reduces to a simple Boltzmann or
polytropic relation for the electric potential, as shown in Refs.[49] and [50].
The other approaches, on the other hand, permit determining the electron
streamlines and therefore the total electric current density in the plasma.

Energy equation closure: again different terms of the momentum and energy
equations can be considered, with a Fourier closure for the heat flux vector.
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1.5.5. Existing plasma plume codes and their capabilities

Table 1.3 provides a summary of the most important tools dedicated to plasma
plumes simulation, ordered chronologically.

Table 1.3: Existing plasma plume codes and their capabilities.

Code name
or author Refs.

Publ.
date

Model
type

Struct.
mesh

Non
neutral

Electron
fluid closure

Parks [60] 1979 2D fluid yes no Boltzmann
Korsun [84, 52] 1997 2D fluid yes no Boltzmann
Oh [99] 1999 3D hybrid yes no Boltzmann

Ashkenazy [61] 2001 2D fluid yes no Boltzmann
SPIS [96, 97, 98] 2001 3D hybrid no yes Boltzmann
CNES [100] 2002 2D hybrid yes yes Boltzmann

AQUILA [93, 101] 2003 3D hybrid no no polytropic
DRACO [102] 2004 3D full-pic yes yes n/a
Taccogna [91] 2011 3D hybrid yes no polytropic

USC [77, 78] 2014 3D full-pic yes yes n/a
SUGAR [87, 88] 2014 3D hybrid no no Boltzmann

EASYPLUME [49, 50] 2015 2D fluid yes no polytropic

Greifswald
university

[103]
[86]

2014
2015

3D full-pic
2D hybrid

yes
yes

yes
yes

n/a
polytropic

Hall2De [85] 2015 2D fluid yes no heat flux

New Mexico
State university

[90] 2015 3D hybrid yes no heat flux

SM/MURF [89] 2016 3D hybrid yes 3 yes polytropic

Simplified plume models for the study of the far-region were introduced very early
at the end of the 70s by Parks [60], later followed by Korsun [84, 52] and Ashkenazy
[61]. These models were two-fluid (ions and electrons) collisionless models, and part
of this thesis has been dedicated to unify these approaches under a single Self-Similar
Method (SSM) framework, as desribed in Chapter 2. A plasma plume code named
EASYPLUME (2015) has been developed following these activities.

For what concerns more complex codes for the study of the near region and its
interaction with the satellite, the first published ones date back to the end of the 90s.
One of these codes is Oh’s code [99], which consisted in a 3D hybrid PIC-fluid code,
which considered polytropic electrons and included a non-linear Poisson’s solver
for the non-neutral regions. The code mesh was Cartesian, with the possibility
of embedding more refined meshes inside the initial coarse one (thus testing the
improvements of finer meshes quite easily).

Almost at the same time, the “Spacecraft Plasma Interaction Software” (SPIS)
[96, 97, 98] was being developed at ONERA, with the goal of providing a reference
tool for studying the S/C interaction problem, at least at European level. As such,

3it can use also an unstructured mesh.



1.5. STATE OF THE ART OF NUMERICAL SIMULATIONS 19

SPIS includes the possibility of solving for non-neutral regions and features a non-
structured mesh to increase the tool flexibility to model complex S/C geometries.
Moreover, it presents a complex equivalent circuit for the interaction between the
plasma and the satellite surfaces. Nevertheless, the code is still not applicable to
direct ion impingement studies (from the main ion plume) on a secondary object,
as shown by a bachelor degree study of the plasma bridge of an ion beam shepherd
mission [104].

Another code, originally designed to study HET plumes, is one from CNES [100],
which is axisymmetric and permits studying non-neutral regions. Shortly after-
wards, the AQUILA [93, 101] code became a direct competitor of SPIS, featuring
an unstructured mesh, with polytropic electrons. In 2004, DRACO [102] became
the first full-PIC 3D code, dedicated to study the plasma plume interaction with
the S/C, although no full-PIC simulations can be found in the literature. In 2011,
Taccogna [91] completed the coding of yet another 3D hybrid PIC-fluid code, based
on polytropic electrons and quasineutrality, and applied it, for the first time, to the
study of a HET cluster plume, which is strongly asymmetric (thus requiring a 3D
code).

In recent years, since 2014, plasma plume codes have been receiving an ever
growing interest, as SUGAR (2014) [87, 88], the codes (both 2D hybrid and 3D full-
PIC) from the university of Greifswald [86], Hall2De [85], the code from the New
Mexico State university [90], and SM/SMURF [89] (a replacement of the already
existing AQUILA code) clearly suggest. Hall2De, originally created to simulate Hall
effect thrusters and their near region, is completely based on fluid equations (one
population for electrons, one for the neutrals and several for the ions, to model
deviations of the total ion distribution function from a Maxwellian). Moreover, it is
quasineutral and solves for the energy balance equation, with a Fourier law closure.
The same characteristics are shared by the electron fluid model of the hybrid code
from the New Mexico State university.

Hybrid codes clearly represent the most popular approach. Full-PIC simulations
of plasma plume expansions, on the other hand, have been carried out only by a
few authors, such as Wang in Refs. [77] and [78]. In these studies, however, the 3D
domain considered is periodic along the y direction, so that the simulated plume is
actually bidimensional (a plasma plume slab, as it will be shown in Sec. 2.6). Full-
PIC codes have been applied more frequently to the simulation of axisymmetric Hall
Effect thruster discharges, like shown in Refs. [105, 106, 107], or to other plasma
thrusters, as shown in Ref. [103]. In the HET studies, retaining the full physics
(with a full-PIC) was essential to study problems like the anomalous transport of
the electrons in the axial direction.

1.5.6. Choice of the optimal modeling approach

The optimal modeling approach clearly depends on the type of problem to be
solved. In the case of the plasma plume interaction with either the spacecraft
or with downstream objects, as shown in Fig. 1.1, the problem is clearly three-
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dimensional, and features a large number of physical phenomena, plasma density
variations of several orders of magnitude, and simulation domains of a few meters in
all directions. This makes the computational cost of both fully-kinetic and full-PIC
models extremely high, given the very small simulation time steps required by the
former, and the high dimensional solution space of the latter. As a matter of fact,
both 3D full-PIC and fully-kinetic codes are extremely rare in the plasma plumes
study context, as it can be observed from Tab. 1.3. Moreover, given the low colli-
sionality of plasma plumes, multi-fluid models are limited by (i) the complexity of
introducing a large number of fluids per species (to better represent deviations of
the distribution function from a pure Maxwellian), and, (ii) the need of assuming
kinetically-unjustified closures for the corresponding fluid equations.

Hybrid codes, on the other hand, by treating only ions and neutrals as particles,
permit overcoming the full-PIC and fully kinetic codes drawbacks, while solving
directly for the heavy particles distribution functions. Although the treatment of
electrons still features strong assumptions, which limit the applicability of these
codes (e.g. collisionless cooling or anomalous transport, the latter expected to be
negligible in most plasma plumes, cannot be tackled), hybrid codes represent the
best compromise for modeling a plasma plume expansion and its interaction with
the satellite and other objects.

For what concerns the analysis of the far-region plume expansion alone, however,
simpler approaches are more convenient, as shown by the existing literature on two-
fluid models. The fluid solution, being much quicker, enables parametric studies
of plasma plumes expansions, which can be of fundamental importance in order to
understand the fundamental physics governing the far-region.

Therefore, in this work, the following choices have been made, for what concerns
the modeling approach:

A multi-fluid model for the study of the plasma plume far-region.

A hybrid code for the study of the plasma plume interaction with the satellite.

1.6 Objectives and description of this work

This thesis has the objectives of (i) developing and validating numerical codes
for the simulation of the plasma plume expansion and interaction with any object,
and (ii) applying such codes to study both the plasma plume expansion physics and
other specific plasma plume applications.

Given the observations of Sec. 1.5.6, two codes have been developed: (i) a fluid
code to study the plasma plume expansion in the far-region, and (ii) a hybrid PIC-
fluid code for the analysis of the plume interaction with the satellite and any down-
stream object. Since most of the work has been carried out in the framework of
LEOSWEEP [66], a European Commission funded project aiming at assessing the
feasibility of the IBS technique for space debris removal, the developed codes have
been primarily applied to this mission scenario.
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Regarding the fluid code, which is dealt with in Chapter 2, the work has focused on
(i) synthesizing the existing fluid plume solutions into a common framework, the Self-
Similar method (SSM), (ii) developing a more flexible method, named Asymptotic
Expansion method (AEM), and (iii) analyzing parametrically the physics of the
plume far region.

For what concerns the hybrid code, described in Chapter 3, being aware of the
large number of existing codes (see Tab. 1.3), after a first phase of literature review
and identification of poorly-explored areas, the work has focused on introducing (i) a
new electron fluid model, and (ii) a new approach for dealing with quasineutral and
non-neutral plasma regions. More specifically, the major goal of the electron model,
presented in Sec. 3.3.1, was to enable the computation of the electron streamlines of
an unmagnetized plasma plume. Regarding the latter topic, an automatic criterion
for splitting the simulation domain into quasineutral and non-neutral regions has
been introduced, as described in Sec. 3.3.3. Moreover, a large importance has been
given to validating this hybrid code algorithms, with a full set of validation tests,
which are described in the AppendixC.

In what regards the applications, the developed hybrid code has first been applied
to the simulation of the interaction between a plasma plume, emitted by a plasma
thruster, and the satellite. This study is introduced in Chapter 4.

Then, the developed codes have been applied to relevant studies in the context of
the ion beam shepherd technique, which, being a relatively new concept, still features
many unexplored areas. These studies are presented in Chapter 5 and consist of
(i) an optimization study of the electric propulsion subsystem of a representative
IBS mission, with the use of the fluid code, and (ii) a study of the complex satellite-
plasma plume-debris interaction, with the use of the hybrid code.

A full report of an experimental campaign aiming at characterizing the PEGASES
thruster plasma plume, and carried out during my research visit at the “Laboratoire
de Physique des Plasmas” between November 2015 and February 2016, is finally
provided in Chapter 6 and completes this work.





Chapter 2

Fluid model for the far-region of a
plasma plume

This chapter introduces the fluid model for the far-region of a plasma plume. Two
different solution methods are presented: the Self-Similar method (SSM) and the
Asymptotic Expansion method (AEM), which are validated by benchmarking their
results with the exact solution obtained with the Method of Characteristics (MOC).
The far-region plume physics is then analyzed in detail in terms of the free pa-
rameters: the ion Mach number, the divergence angle, and the polytropic cooling
coefficient. Finally the solution obtained with this fluid model is compared with that
of a full-PIC code for a two dimensional plasma plume slab geometry. In this way,
the validity of a fluid model approach with a polytropic closure, for a collisionless
plume expansion, is demonstrated 1

1The contents of this chapter are based on a journal publication [50], and on two conference
papers [49, 62]
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2.1 Model derivation

The far-region of a plasma plume is near-collisionless, unmagnetized, with the
dominant effects being the ion inertia, the electron pressure, and the ambipolar
electric field that relates the two charged species (here singly charged ions and
electrons). As already discussed in Sec. 1.3, the plasma profile has already become
smooth, meaning that in the bulk of the far-region expansion the gradient length
is in the order of the thruster radii (typically ∼ 10 cm) or more, much greater
than the Debye length (∼ 1 mm or less), which means that the expansion can be
considered quasineutral in most of the plume. We consider below the expansion of an
axisymmetric, non-rotating plume from an initial reference plane z = 0, already in
the far-region, where ions are assumed to be hypersonic (M0 ≫ 1). This reference
plane can be chosen at 0.5 − 1 m distance from the thruster exit, where the ion
current and the plasma density are typically measured in laboratory experiments.

Under these considerations, the steady-state, far-region plume expansion is macro-
scopically described by the following two-fluid equations for singly-charged ions and
non-rotating electrons:

ni = ne ≡ n, (2.1)

∇ · (nui) = 0, (2.2)

∇ · (nue) = 0, (2.3)

nmi (ui · ∇)ui = −en∇φ, (2.4)

0 = −∇ · Pe + en∇φ, (2.5)

uθi = uθe = 0, (2.6)

where φ is the ambipolar electric potential, Pe is the electron pressure tensor, and the
rest of symbols are conventional. In these equations, the ion thermal pressure and
the electron inertia have been neglected assuming the typical scaling of a propulsive
plasma plume in the whole region of interest,

meu
2
e, Ti ≪ Te ≪ miu

2
i .

A state equation from the kinetic theory is needed to close the fluid model and
provide the components of Pe. Solving the plasma plume at a kinetic level is a
challenging task beyond the scope of this simplified fluid model. Hence, in the
following, Pe is approximated as a diagonal (isotropic) tensor, so that ∇ · Pe =
∇pe, where pe = nTe is the scalar electron pressure. Furthermore, a polytropic
law is assumed, given by Eq. (1.4), as a simplified electron cooling model. The
polytropic coefficient γ = d ln pe/d lnne, which sets the effective cooling rate, can be
tuned to fit either experimental measurements or kinetic model studies, with γ = 1
corresponding to the isothermal limit, and γ = 5/3 to an adiabatic plasma.

In first approximation, the high conductivity of collisionless electrons, near-totally
confined by the electric potential, suggests a near-isothermal behavior or a mild
cooling in a large region of the plasma plume. This approximation is supported
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by various experimental observations of the far plume, with values in the range
γ = 1–1.3 showing good overall agreement [11, 16, 56, 57, 58, 63, 108].

Using this form for the electron pressure in Eq. (2.5) gives the following depen-
dency for the plasma potential φ:

eφ

Te0

=

{
ln(n/n0) for γ = 1,

[(n/n0)
γ−1 − 1] γ/(γ − 1) for γ > 1,

(2.7)

with subindex 0 denoting values at the origin, and φ0 ≡ 0. Likewise, the plasma
momentum equation, Eq. (2.4) plus Eq. (2.5), becomes

mi (ui · ∇)ui = −γTe∇ lnn. (2.8)

Before proceeding, three comments are due. First, observe that Eqs. (2.2) and (2.8)
are coupled and give n and ui. Once n is known, Eq. (2.7) yields φ, while ue cannot
be directly obtained, since we have neglected all terms containing it in the electron
momentum equation, Eq. (2.5). Note nevertheless that, since the plume needs to
be globally current free, the small electron drift (compared to the thermal motion
of the nearly-confined electron cloud) satisfies ue ≃ ui as a first approximation.
We shall see in Chapter 3, that, for an unmagnetized plume, this is a quite good
assumption in the far region, and only fails very close to electron emitters (e.g.
a neutralizer) and the thruster exit surface. For magnetized plumes, like those
emitted by thrusters with a magnetic nozzle [31, 109], such as the helicon plasma
thruster [110, 111], both the local electric currents and the applied magnetic field
are dominant features of the expansion [32], and the assumption ue ≃ ui generally
fails. Second, note that the system formed by Eqs. (2.2) and (2.8) is analogous
to the fluid equations of a neutral, non-viscid gas expanding into vacuum. The
role of the pressure gradient of the neutral gas case is here taken by the ambipolar
electric field, which transmits this force from the electrons to the ions. Thus, the
solution methods to be presented are equally applicable to the case of a hypersonic
neutral gas expanding into vacuum, when the same conditions are satisfied. Third,
observe that a plasma plume model with non-negligible ion temperature that obeys
the same thermodynamic assumptions as electrons and shares the same parameter γ
can be immediately reduced to the model presented above, by redefining the effective
temperature and potential as Ti + Te → Te and e∇φ+ γTi∇ ln(n/n0) → e∇φ.

It is convenient to normalize the problem with the values at z = r = 0 and with
a characteristic length such as the initial radius R0 of the plasma tube R = R(z)
carrying 95% of the ion current, i.e.,

z̃ = z/R0; r̃ = r/R0; R̃ = R/R0 ñ = n/n0;

ũzi = uzi/ui0; ũri = uri/ui0; T̃e = Te/Te0; φ̃ = eφ/Te0.

In these non-dimensional tilded variables, Eq. (2.2) and (2.8) can be written in cylin-
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Figure 2.1: Sketch of a plasma plume near and far regions, and the plasma streamtube
R(z) containing 95% of the ion current. The reference plane that serves as the initial
condition to the far-region, typical shapes for the initial profiles of velocity slope, axial
velocity, and density (δ, υ, ν), the initial divergence angle, α0, and the equivalent final
divergence angle, αF , are schematically shown.

drical coordinates as

ũzi
∂ ln ñ

∂z̃
+ ũri

∂ ln ñ

∂r̃
+

∂ũzi

∂z̃
+

1

r̃

∂ (r̃ũri)

∂r̃
= 0, (2.9)

ũzi
∂ũzi

∂z̃
+ ũri

∂ũzi

∂r̃
= − ñγ−1

M2
0

∂ ln ñ

∂z̃
, (2.10)

ũzi
∂ũri

∂z̃
+ ũri

∂ũri

∂r̃
= − ñγ−1

M2
0

∂ ln ñ

∂r̃
, (2.11)

where the dependency on the main non-dimensional parameter, the initial ion kinetic
energy to electron thermal energy ratio, i.e. the square of the initial ion Mach
number,

M2
0 = miu

2
i0/(γTe0),

becomes explicit, with cs0 =
√

γTe0/mi the ion sonic velocity. Note that M0 ≃ 10–
40 ≫ 1 in the highly-hypersonic plume of a plasma thruster, as shown in Tab. 1.2.

The resulting hyperbolic ion problem, given by Eqs. (2.9)– (2.11), is then closed
with the initial profile for both the plasma density n and the ion velocity ui at the
z̃ = 0 plane. Introducing a nomenclature that will become useful later, we will refer
to these initial conditions as:

ñ(0, r̃) = ν(η); ũzi(0, r̃) = υ(η); ũri(0, r̃)/ũzi(0, r̃) = δ(η), (2.12)

where the coordinate η represents the normalized radius r̃ at the initial plane. The
typical shape of these profiles has been plotted in Fig. 2.1. Also, as done in Sec. 1.3,
we will call α0 the initial divergence angle of the 95% ion current streamtube, i.e.,
tan(α0) = δ(η = 1).

The model can be integrated with different approaches. In particular, the method
of characteristics (MoC) can be used to integrate numerically Eqs. (2.9)–(2.11). In
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the present work, due to its great accuracy [112], the MoC is used mainly to provide
a benchmark solution against which we can compare the semi-analytical integration
methods derived in the next sections.

The MoC technique is briefly described as follows: in the meridional plane, ion
equations present three families of characteristic lines: two Mach lines, and the ion
streamlines. The slopes of these lines are determined by the local plasma properties.
After discretizing the initial plasma front in a number of nodes, the characteristic
lines are propagated forward and intersected to calculate a new plasma front using
a predictor-corrector integration scheme, following an approach similar to that in
the DIMAGNO code for the plasma expansion in a magnetic nozzle, as described
in Ref. [109]. Further details on the MoC can be found in Ref. [112]. The MoC
integrates supersonic plumes with any given initial profile. However, it requires the
full numerical solution of the model, and therefore lacks the analytical insight offered
by the other two solution methods presented in the next sections. Furthermore, the
MoC becomes inadequate in the limit M0 → ∞, as the three characteristic line
families collapse into one (the ion streamlines). This limitation does not affect the
semi-analytic methods, which actually require M0 ≫ 1, and therefore complement
the MoC in the hypersonic limit.

2.2 The AEM solution method

2.2.1. Cold plasma limit

A first approach to reduce the fluid model of Sec. 2.1 to a tractable analytical
expression is to neglect the pressure term completely, which is equivalent to taking
M0 → ∞ (fully hypersonic jet). In this cold plasma limit, the plasma momentum
equations Eqs. (2.10) and (2.11) (with the right hand side equal to zero) decouple
completely from the continuity equation Eq. (2.9) as the three characteristic line
families collapse into one (the ion streamlines). Observe also that no electric poten-
tial builds up in this case.

The solution for the velocity and density in this cold plasma limit, which we will
call ũ

(0)
i and ñ(0) respectively, depends only trivially on the initial plasma profile

functions, ν, υ and δ. It is immediate to see that ũ
(0)
i is simply conserved along the

streamlines, which are straight characteristic lines projected from the initial plane
(z̃ = 0), with radius:

r̃ = η + δ(η)z̃, (2.13)

where η, their radial position at the initial plane, can be used to label them. Thus,
propagating the streamlines to determine the η = η(z̃, r̃) map (implicitly given by

the equation above) yields ũ
(0)
zi (z̃, r̃) and ũ

(0)
ri (z̃, r̃) from the initial plasma profile.

This map can be understood as the transformation of the reference system (z̃, r̃)
into the new reference system (ζ, η), where simply ζ = z̃. Differentiation in Eq. (2.13)
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provides the Jacobian matrix J ,

J (ζ, η) =

[
∂z̃/∂ζ ∂r̃/∂ζ
∂z̃/∂η ∂r̃/∂η

]
=

[
1 δ
0 1 + ζδ′

]
. (2.14)

In the new coordinates and using these relations, Eq. (2.9) allows the straightforward
integration of the plasma density:

ñ(0)(ζ, η) =
ν

(1 + ζδ/η)(1 + ζδ′)
, (2.15)

which reflects the decrease in density as the radius of the streamlines increases
(1 + ζδ/η) and as they diverge relative to each other (1 + ζδ′).

This cold beam solution, while extremely simple, provides a fast first estimate
of the plasma plume in the far region as a cone (i.e., without any divergence angle
growth). Clearly, the local error committed in the momentum equations is of the
order 1/M2, while the global error (the accumulated integration error, i.e. the
difference at each point between the exact solution and the approximation) grows
with the distance from the initial plane.

Note that this method requires δ, δ′ ≥ 0 to ensure a clean solution exists ev-
erywhere. Were such condition not met, streamlines would eventually cross, with
density gradients going to infinity locally, a symptom that pressure effects cannot
be neglected around that point.

2.2.2. First order corrections

The method presented above can be regarded as the zeroth-order solution of
the hypersonic plume when the variables are expanded in the small parameter ε =
1/M2

0 ≡ γTe0/(miu
2
i0), the initial thermal-to-kinetic energy ratio in the beam, i.e.:

ũzi = ũ
(0)
zi + εũ

(1)
zi + ε2ũ

(2)
zi + . . . ,

ũri = ũ
(0)
ri + εũ

(1)
ri + ε2ũ

(2)
ri + . . . , (2.16)

ln ñ = ln ñ(0) + ε ln ñ(1) + ε2 ln ñ(2) + . . . ,

where all terms of order one or larger are zero at the initial plane, but grow gradually
downstream. The quality of the cold beam solution can be improved substantially
by including one or more of these corrections, which allow reducing the local error
to O

(
M−4

0

)
(for the first order), O

(
M−6

0

)
(second order), etc...

Luckily, momentum and continuity equations remain decoupled at all orders and
can be readily integrated along the zeroth-order streamlines, requiring only to cal-
culate the gradients of already-known magnitudes.

Introducing these expansions into the problem, the first-order correction for the
velocity is given by the two plasma momentum equations at order ε, which are solved
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simultaneously by numerical integration in a single variable (ζ):

υ
∂ũ

(1)
zi

∂ζ
+

υ′

1 + ζδ′

(
ũ
(1)
ri − ũ

(1)
zi δ
)
= −

(
ñ(0)
)γ−1 ∂ ln ñ(0)

∂z̃
, (2.17)

υ
∂ũ

(1)
ri

∂ζ
+

(υδ)′

1 + ζδ′

(
ũ
(1)
ri − ũ

(1)
zi δ
)
= −

(
ñ(0)
)γ−1 ∂ ln ñ(0)

∂r̃
, (2.18)

where υ, δ are those defined at the initial plane (see Eq. (2.12)), and the right-hand-
sides of the equations are fully known, with the derivative terms expressed in terms
of z̃ and r̃ for compactness.

Once ũ
(1)
i is known, the first-order correction to density is then similarly given

by Eq. (2.9):

υ
∂ ln ñ(1)

∂ζ
= −ũ

(1)
zi

∂ ln ñ(0)

∂z̃
− ũ

(1)
ri

∂ ln ñ(0)

∂r̃
− ∂ũ

(1)
zi

∂z̃
− 1

r̃

∂
(
r̃ũ

(1)
ri

)
∂r̃

. (2.19)

It is emphasized that in the expressions above, integrating along ζ means integrating
along the known, straight, zeroth-order streamlines (η = const).

The same procedure can be applied to easily obtain higher-order corrections, and
the general expressions are given in the Appendix A. Note that the non-linearity
introduced by the ion inertia term and the ñγ−1 term in non-isothermal plumes
means that all previous-orders contribute to higher-order velocity corrections.

Figure 2.2 shows the second-order solution of the AEM for a representative initial
profile with α0 = 15 deg, M0 = 20 and two values of γ. A comparison of this solution
to the MoC solution shows that a small error develops and grows downstream.
Additional simulations show that, in all cases, the committed error is larger, the
lower M0 and γ are, as expected, due to the larger contribution of pressure effects
in a wider region of the plume.

2.2.3. Region of convergence

For the AEM solution to be valid, the series expansion of Eq. (2.16) must converge
in the region of interest.

Without making any strict statement on the convergence of the series (which
depends on the behavior of the ith-perturbations as i → ∞), a practical means to
explore the convergence of the method is to equate (in absolute value) the first-order
corrections to the zeroth-order solution. The region bounded by this condition is
a useful concept to study the behavior of the first terms in the truncated series,
and roughly indicates where the error become of order 1. In fact, this analysis
helps determine where to stop the integration and “reinitialize” the method before
the error becomes too large, taking as a new reference plane a section where the
plasma properties have already been calculated. This procedure is further illustrated
in Sec. 2.2.4, and permits increasing arbitrarily the method accuracy and validity
region.



30 CHAPTER 2. FLUID MODEL FOR THE FAR-REGION OF A PLASMA PLUME

0 20 40 60 80 100
0

10

20

30

40
(a) log10 ñ, γ = 1
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Figure 2.2: Plasma density contour levels (plots (a) and (b)) and plasma streamtubes
containing 50% and 95% of the ion current (plots (c), (d)) for two plasma plumes
with M0 = 20. The 2nd order AEM is shown in blue dash-dot lines; SSM is shown in
red solid lines; MoC solution is given in black dashed lines. The dotted blue lines in
(c) and (d) correspond to the cold plasma (conic) approximation, i.e., the 0th order
AEM. The initial profiles used in this example are the same as in Fig. 4(a) of Ref. [49]
but with α0 = 15 deg.
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Figure 2.3: Approximate region of convergence of the AEM for γ = 1, calculated with
the condition that the 1st order correction of any one variable be equal or smaller
than the 0th order solution. The initial profile is the same as in Fig. 2.2.
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While the detailed behavior of this region depends on the initial plasma profile,
the general behavior can be summarized as follows: the most critical correction
is typically the density one, since it grows faster than the velocity correction. As
expected, the convergence region extends axially and radially further downstream
the higherM0 (as the plasma approaches the hypersonic limit) and γ (faster cooling).
Thus, the region plotted in Fig. 2.3 is shown for γ = 1, the most restrictive case in
terms of convergence. Also, it is found that the three first-order perturbations are
generally larger the smaller the initial divergence angle, as the divergence growth
(and therefore the need for a correction) is larger in that case. In the example of
Fig. 2.3, M0 > 10 already extends this region far beyond z̃ = 100.

2.2.4. Down-marching scheme

In order to extend the convergence region of the AEM, a down-marching scheme
can be applied, in which the cold-beam streamlines are updated at regular intervals
of z̃, with the velocity corrections predicted by the method. The corrections to the
fluid variables are then evaluated in sub-domains of z̃, with the (j+1)th sub-domain
considering the perturbed ion streamlines at the end of the jth sub-domain, as its
new zeroth order streamlines. This process is illustrated in Fig. 2.4.

Figure 2.4: The down marching scheme for the AEM. Zeroth order streamlines and
initial plume profiles are updated at regular intervals in the z̃ direction, with the cor-
rections predicted by the method. The shaded area represents the effective simulation
domain.

With the above described technique, the axial validity of the AEM method can
be extended to infinity regardless of the M0, γ and α0 values, by choosing an ap-
propriate restarting interval ∆z̃. This means that the plume does not need to be
very supersonic any longer to be able to meaningfully extend the AEM simulation
far downstream. Nevertheless, the method might turn out to be very inefficient for
M0 ∼ 1, for which the restarting interval ∆z̃ would need to be impractically small.
Since the accuracy of the AEM can be arbitrarily increased by decreasing ∆z, the
solutions of Figs. 2.2 and 2.3 refer to the AEM without this down-marching scheme.
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Nevertheless, this scheme has been applied in Sec. 2.6 to obtain an accurate fluid
solution for an arbitrary initial plume profile.

2.3 The SSM solution method

Existing measurements and simulations of the far region of GIT and HET beams
show the development of a typically smooth, bell-shaped radial plasma profile, which
remains essentially invariable along the axial direction, except of course for its radial
broadening. This observation suggests modeling the plume expansion as a self-
similar phenomenon [60, 61, 84]. While the self-similarity assumption is only an
approximation, it turns out to be an accurate one for hypersonic plasma plumes.

We first assume that all the streamlines (given again by η = const, with η the
initial radius of the streamline) expand self-similarly, so that their radius is expressed
through

r̃ (ζ, η) = ηh(ζ), (2.20)

where h(ζ) (with h(0) = 1) is a self-similarity or dilation function to be determined,
and (ζ = z, η) can be used again as alternative coordinates to describe the plume.
Now, however, the lines η = const are no longer straight as in the AEM. Observe
that, once h is determined, we can calculate the ion streamlines directly from it.

We further assume that the initial plasma profiles ν(η) and υ(η) are simply prop-
agated in ζ with two scaling functions,

ñ = ν(η)ñc(ζ), (2.21)

ũzi = υ(η)ũc(ζ), (2.22)

with ñc(0) = ũc(0) = 1. Note that the functions ñc and ũc contain the evolution of
density and velocity along η = 0 (the ‘centerline’, hence the subindex ‘c’). Derivation
with respect to time in Eq. (2.20) leads to the following basic relation between the
velocity components:

ũri = ũziηh
′, (2.23)

and its particularization at ζ = 0 reveals a first constraint on the initial plasma
profile necessary to find self similar solutions, namely, that δ has to be linear in η
(i.e., an initially conical velocity profile),

δ′ = const. (2.24)

Using Eqs. (2.21) and (2.22) in the continuity equation, Eq. (2.9), leads to:

h2ñcũc = 1 (2.25)

while the radial momentum equation, Eq. (2.11), can be separated in ζ and η as:

υ2 = −νγ−2ν ′

ηC
, (2.26)

M2
0

hũc (ũch
′)′

ñγ−1
c

= C, (2.27)



2.3. THE SSM SOLUTION METHOD 33

where C is a separation constant.
Eq. (2.26) establishes a ligature between υ and ν, the second constraint on the

initial plasma profile for the SSM to be applicable, from which it is apparent that
ν must satisfy ν ′ ≤ 0 for all η. Taking η → 0 in this equation also states that
C = −ν ′′(0) ̸= 0 for consistency.

So far, we have the two equations, Eqs. (2.25) and (2.27), to determine the three
unknowns h, ñc and ũc. The third and last equation should come from the axial
momentum equation, Eq. (2.10). Unfortunately, trying to apply the same approach
to it leaves us with an expression that cannot be separated in ζ, η as before:(

ũ2
c

)′ − ñγ−2
c ñ′

c

2Cη2

M2
0

(
ν

ν ′η
− h′

h

ñc

ñ′
c

)
= 0. (2.28)

Moreover, Eq. (2.28) renders the system incompatible, since the second term cannot
be made independent of η. This proves that no self-similar solutions of this type
strictly exist, and provides a means to measure the differential error committed by
the SSM at any point, as the residual ϵl of Eq. (2.28).

Therefore, in order to proceed with the derivation of the approximate SSM, we
need to replace Eq. (2.28) with an appropriate condition. Incidentally, observe that
the AEM becomes self-similar in zeroth order when δ′ = const, i.e., for an exact,
purely conical expansion.

2.3.1. SSM methods with constant axial velocity profiles

A convenient replacement for Eq. (2.28) in the case of a hypersonic plasma plume
is the approximation:

ũc = const ≡ 1, (2.29)

which is justified by the fact that relative variations in axial velocity are O(1/M2
0 )

and therefore vanishing for M2
0 ≫ 1. Thus, the error committed by the SSM is

proportional to M−2
0 . The SSM solution in this case follows immediately, with ñc

given by Eq. (2.25):
ñc = 1/h2, (2.30)

and h being directly integrable from Eq. (2.27) (now h2γ−1h′′ = C/M2
0 ), using the

transformation h′′ = h′dh′/dh:

(h′)
2 − (h′(0))

2
=

C

M2
0

×
{
− (h2−2γ − 1) / (γ − 1) for γ > 1,

2 lnh for γ = 1.
(2.31)

Eq. (2.31) shows that the slope of h is unbounded in the isothermal case (although
its growth is logarithmically slow), whereas for γ > 1, its asymptotic slope is given
by:

(h′)2 → (h′(0))2 + 1/(γ − 1). (2.32)

The final integration step can be carried out numerically (in the isothermal case the
solution is analytical, in terms of erf(ζ), the error function).
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Lastly, the differential error from Eq.(2.28) can be written compactly in this case
as:

ϵl =
C

M2
0

h′

h2γ−1

(
4η

ν

ν ′ + 2η2
)
, (2.33)

showing that ϵl is only zero for initial plasma profiles with ν ∝ η−2, which gives a
singular condition that cannot be extended down to η = 0.

Interestingly, it turns out that, by fully retaining pressure effects in the r̃ direction
and neglecting them in the z̃ direction, the SSM approximation is very accurate even
if globally it is only O(1/M2

0 ), as the role of pressure forces on the radial direction is
far more important than in the axial direction, in a low-divergence plasma plume.

In Fig. 2.2 the streamlines and density contours for the SSM are plotted and
compared against the MoC solution for an illustrative example. As it can be seen,
except for low values of z̃ and high values of r̃ (for which the AEM yields a better
result), the SSM has a solution that is as accurate or more than the 2nd order AEM,
in spite of the O(M−2

0 ) error in the z̃ equation.
The only degrees of freedom of the solution, besides the parameters M0 and γ, are

the value of h′(0) (which dictates the initial divergence angle of the plasma plume)
and the initial profile, for which only ν or υ can be freely fixed.

Parks and Katz [60], Korsun and Tverdokhlebova [84], and Ashkenazy and Frucht-
man [61], following different approaches, reached independently three formulations
of SSMs and initial profiles, which can be regarded as particularizations of the gen-
eral SSM framework derived here. These SSMs have been successfully employed to
propagate a known plume profile into the far-region, as done e.g. in Ref. [16].

In Ref. [60], a uniform axial velocity profile is chosen, leading to a Gaussian density
profile:

γ = 1; ν = exp
(
−Cη2/2

)
; υ = 1. (2.34)

The local differential error committed by this SSM cancels out for the streamline
η =

√
2/C.

In Ref. [84] the choice is the following:

ν =

(
1 + C

η2

2

)−1

; υ =

(
1 + C

η2

2

)−γ/2

, (2.35)

which incidentally makes the differential momentum error independent of η.
Lastly, in Ref. [61] υ is defined in the isothermal case γ = 1:

γ = 1; ν =
(
1 + kη2

)−C/(2k)
; υ =

(
1 + kη2

)−1/2
, (2.36)

where k is an arbitrary constant and (h′(0))2 = k to enforce an initially conical
expansion. Observe that by choosing k = C/2, this profile coincides with the
isothermal model of Korsun et al, and that for k → 0, it tends to the profile of
Parks et al. Like in the method of Ref. [60], the differential error cancels out for a
single streamline. These initial profiles are compared graphically in Fig. 2.5.

It is important to note that the profile choice in SSM is not restricted to these
three cases nor the condition ũc = const, and that therefore there is a certain freedom
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Figure 2.5: Initial SSM profiles, for normalized plasma density (black lines), axial
velocity (blue lines), and divergence angle tangent (red lines), for Parks (solid lines),
Ashkenazy (dashed lines), and Korsun (dotted lines)]. A common divergence angle
α0 = 20 deg is considered, while Korsun profile features γ = 1.

(within the mentioned constraints) to better match the experimental data (see e.g.
Ref. [16], where the plasma profile is defined from an experimental vector of data)
or obtain greater accuracy in the regions of interest. As additional examples, we
propose two generalizations to non-isothermal plumes of the υ = 1 case, and of the
Gaussian density profile case. In the first case, the corresponding profile is given by:

γ > 1; ν =

[
1− (γ − 1)C

η2

2

]1/(γ−1)

; υ = 1, (2.37)

while, for a Gaussian density profile, we have:

γ > 1; ν = exp
(
−Cη2/2

)
; υ =

[
exp

(
−Cη2

2

)] γ−1
2

. (2.38)

By comparing Eq. (2.38) with the isothermal Parks profile, Eq. (2.34), we observe
that the axial velocity must decrease radially if γ > 1, as shown also in Fig. 2.6,
representing this generalized Gaussian density profile, for different values of γ. The
effects on the plasma density are, on the other hand, much smaller.
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δ(η) for all γ

Figure 2.6: Initial plume density (black lines), axial velocity (blue lines), and diver-
gence angle tangent (red lines) of the generalized Gaussian profile, for different values
of γ: 1.0 (solid lines), 1.1 (dashed lines), and 1.2 (dotted lines).
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Finally, it is worth discussing also SSMs where ũc ̸= 1. An interesting alternative
choice to the cases described in this section is the one given by:

1

2

(
ũ2
c

)′
= − ñγ−2

c

M2
0

ñ′
c, (2.39)

which is the ion energy equation (see Eq. (2.28)) particularized on the axis of the
plume, η = 0. This choice has the advantage that the local error committed by
the SSM when ignoring the axial momentum equation is zero, at and near the axis,
which is of particular importance for applications where the main concern is to study
the core of the plume. Since the condition given by Eq. (2.26) is not affected by ũc,
the same profiles discussed before can be used. As a drawback, in this case ũc, h
and ñc are coupled through Eqs. (2.25), (2.27) and (2.39), which complicates the
solution procedure.

2.4 Comparison of the methods and error discus-

sion

The MoC solution can be regarded as exact (except for the numerical truncation
error), since it does not introduce any further simplification with respect to the
model. However, the MoC necessitates full numerical integration, whereas the semi-
analytical AEM and SSM require only minimal numerical work and are therefore
markedly faster.

As it can be observed in Fig. 2.2, both the AEM (at first- and second-order) and
the SSM follow closely the numerical solution of the MoC, with deviations only
becoming visible far downstream. The AEM provides a better approximation than
the SSM for short distances, especially for the higher-order AEM solutions, while
the SSM is in general better suited than the AEM farther downstream. In return,
the AEM can reach arbitrary accuracy by adding higher-order correction terms,
and is more precise within a short distance from the initial plane. The region in
which the AEM outperforms the SSM is larger the higher M0 and γ. Note that
the AEM solutions shown here do not restart the integration on intermediate planes
(down-marching scheme), which would further improve their accuracy.

Figure 2.7 presents the relative error committed by each method at z̃ = 10 and
50. The largest relative error is typically committed in the plasma density. Under-
standably, since the methods rely on M0 ≫ 1, the error depends on M0 and vanishes
for M0 → ∞ as we approach the cold beam limit.

AEM errors are lower than SSM errors at relatively low distances from the ini-
tial plane (e.g. z̃ = 10), specially in the velocity. This trend is inverted further
downstream (e.g. at z̃ = 50).

The error also depends on γ, with a purely isothermal plasma (i.e., one that
maintains a higher electron pressure downstream) yielding the largest error in both
methods, as expected, and on the initial profile. Smoother initial profiles, in fact,
lead in general to a smaller error downstream. A larger initial divergence angle α0,
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Figure 2.7: Relative density error (upper, black lines; left vertical axis) and relative
velocity magnitude error (lower, red dashed lines; right vertical axis) with respect to
the MoC numerical solution, for the AEM (1st order: circles; 2nd order: diamonds)
and the SSM (triangles) at z̃ = 10 (a) and 50 (b) for the same plasma plumes as in
Fig. 2.2, with γ = 1.2.

improves the accuracy of the AEM, but decreases slightly that of the SSM (cf. Fig. 8
of Ref. [49]).

The main differences between the AEM and the SSM are as follows. Firstly, the
AEM allows for more general initial plasma profiles, while the SSM sets stronger
constraints on the permitted ν, υ and δ (Eqs. (2.24) and (2.26)). This points out
that modeling ‘exotic’ plasma plumes with unconventional profiles (e.g., the plume
with high-density wings observed in the HEMPT[17] and DCFT [113]) can only be
approached with the AEM (or the MoC). Secondly, each semi-analytical method
has a differing advantage: the SSM yields the O(M−2

0 ) streamlines directly as part
of the solution, whereas the correction terms of the AEM are independent of M0

(facilitating, for example, parametric studies).
As a final comment, observe that the two methods are more adequate than the

MoC at high Mach numbers, when the latter is geometrically ill-conditioned (the
characteristic lines become near parallel), thereby complementing it in those cases.

2.5 Discussion of the plume expansion physics

The presented model and solution methods allow us to explore the fundamental
magnitudes of the expansion of a plasma plume. This section discusses the im-
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portance of the ambipolar electric field in the plume, its divergence angle, and the
limitations of the model in the light of other physical effects.

2.5.1. Ambipolar electric field

As electrons with temperature Te expand, the plasma generates an ambipolar
electric field−∇φ ∝ Te that confines them both axially and radially. Simultaneously,
the presence of this field accelerates ions downstream and raises their divergence
angle, becoming a central ion transport mechanism in the plasma plume. The
evolution of φ̃ = eφ/Te0 along the axis and along η = 1 is shown in Fig. 2.8.
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γ = 1.2 , η = 1

γ = 1.2 , η = 0
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for γ=1.2

γ = 1 , η = 1

Figure 2.8: Ambipolar electric potential, φ̃ along η = 0 (axis) and η = 1 (95% ion
current tube), for γ = 1 and 1.2, and the same plasma plumes as in Fig. 2.2. The
asymptotic value of the potential in the polytropic case is shown on the right side.
The solution shown is the (exact) MoC solution.

A first observation, anticipated already in the derivation of the AEM and SSM
above, is the modest value of 2eφ/(miu

2
0) = 2φ̃/M2

0 in a highly hypersonic plume
(M0 ≫ 1). The resulting low axial electric field is responsible for the small axial
ion acceleration, which allowed us to assume ũc = const as a first approximation in
the SSM. In spite of its moderate strength, the ambipolar electric field is the only
mechanism in our model responsible for the radial ion acceleration and the increase
of the plasma plume divergence angle.

Secondly, observe that the actual value of φ̃ is determined by the full kinetic
description of the electrons. It is noted that, while the full fluid equations are
always satisfied in a collisionless plasma (as integral moments of Vlasov’s equation),
a closure is always needed in a fluid model with a finite number of equations, which
affects the thermodynamics of electrons. In our model, this closure is carried out
by assuming isotropic pressure and a polytropic or isothermal expansion, Eq. (1.4),
leaving the effective cooling rate γ as an additional degree of freedom to match
the experimentally observed behavior of a plume. The relevance of this unknown
parameter is evidenced by the appreciable differences between the expansions with
γ = 1 and 1.2 in Fig. 2.2. Observe that another simple closure, not explored here,
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would be to retain the electron energy equation and introduce a Fourier law-like
heat equation with a constant electron thermal conductivity [108]. Any of these
two choices (or any similar approximation) is equally unjustified from a collisionless
kinetic viewpoint, neglects the possible anisotropization of the electron population,
and unavoidably means a loss of accuracy in the obtained electric field.

The isothermal limit in the model is equivalent to an infinite electron thermal
conductivity and to the so-called Boltzmann relation, φ̃ = ln ñ (our Eq. (2.7)),
widely used in more complex models of plasma plume expansions, as seen in Tab. 1.3
[87, 88, 96, 97, 98, 99, 100, 114]. In spite of its ample use, the γ = 1 limit has the
inconvenience of yielding an unrealistic φ̃ → −∞ as ñ → 0, which is approached as
the plasma expands downstream. This unbounded decrease of φ̃ brings the following
unphysical consequences. Clearly, ũi → ∞, so that ions appear to be continuously
accelerated (albeit logarithmically slow). Secondly, sustaining the constant Te ev-
erywhere (in spite of the expansion) and the unbounded ion acceleration requires an
infinite supply of thermal power by the plasma source, in the form of infinite elec-
tron heat fluxes. This impedes the computation of the energy balance in a plasma
thruster with an isothermal model. Lastly, ∆φ̃ = −∞ means that the spacecraft
emitting the plume is floating at an infinite positive potential with respect to the am-
bient plasma. Hence, Boltzmann’s relation (the isothermal limit) is not applicable
to an infinite expansion.

This unphysical behavior at infinity is not present if the plasma is allowed to cool
down at a rate γ > 1, for which the ambipolar potential exhibits an asymptotic
value,

φ̃ → φ̃∞ = − γ

γ − 1
, (2.40)

as ñ, T̃e → 0, defining an (asymptotic) complete expansion state where the electric
field vanishes, and ũ2

i → υ2(1+δ2)+2νγ−1/(M2
0 (γ−1)). As stated in Section 2.1, the

polytropic model is more consistent with the reported behavior in several laboratory
plume experiments. Recent advances in the kinetic modeling of electrons (but in
the case of a magnetized expansion [33]) do indeed predict the gradual cooling and
anisotropization of electrons downstream, albeit not with a single value of γ for the
whole plume domain. Moreover, the inadequacy of γ = 1 is already apparent in
fully-kinetic simulations of the first instants of plume formation [77].

Finally, note that the η = 0 lines in Fig. 2.8 depart at about z ≃ 10R0 in this
example, a distance at which the isothermal and polytropic models start to yield
different results in the central part of the plume.

2.5.2. Plume divergence angle

The divergence angle is a central figure of merit of a plasma plume. A practical
convention to characterize the divergence angle of the plume and compare similar
thrusters is to consider the angle of the streamtube R̃(z̃) containing 95% of the
plasma current. Clearly, due to the continued radial expansion, the divergence
angle does not remain constant in the far-region, but keeps increasing downstream
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due to the effect of the residual thermal pressure and the ambipolar electric field.
To discuss this behavior, we define an equivalent far-region divergence angle,

αF (z̃F ) = arctan
R̃(z̃F )− 1

z̃F
(2.41)

as the half-angle of the cone that contains 95% of the ion current at a chosen distance
from the initial plane (shown in Fig. 2.1). Although αF is a function of z̃F , notice that
(i) α0 sets a lower boundary to αF , and (ii) this cone is a conservative boundary for
that fraction of the ion current within the distance z̃ ∈ [0, z̃F ]. Calculating the angle
αF allows a rapid estimation of the momentum transferred to a surface downstream
(following, e.g., the formulation in Ref. [43]). Nevertheless, note that αF does not
fully characterize the divergence characteristics of the plume, it being necessary to
know the details of the radial plasma profile to describe where the ion current (and
momentum) is concentrated. This is particularly true for unconventional plumes
such as those of the HEMPT[17] or DCFT[113] that can have a hollow central part
and most of the current on the plume periphery.

Figure 2.9 displays the calculated value of αF at z̃F = 50 as a function of the
two main parameters of the expansion M0, α0, and for two values of γ. Several
conclusions can be drawn from this graph.
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Figure 2.9: Equivalent far-region divergence angle αF at z̃ = 50, as a function of the
initial Mach number M0 and the initial divergence angle α0. The initial profiles are
those of Fig. 2.2, adapted to the value of α0 used. Both the isothermal limit (red
dashed lines) and a polytropic plume with γ = 1.2 (black lines) are shown. The
contours have been calculated with the MoC for the lower Mach numbers (M0 <
30), and with the SSM for the larger ones, where the MoC is geometrically worse
conditioned (characteristic lines are nearly parallel at high M).

Firstly, at sufficiently large values of the initial Mach number M0 (approximately
M0 > 35), the electron pressure effect becomes negligible, and αF approaches asymp-
totically α0, independently of the polytropic coefficient. Secondly, at moderate Mach
numbers (say, M0 < 20), αF depends strongly on M0, and increasing M0 (whether
by imparting a larger acceleration voltage to the ions or by reducing the electron
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temperature in the plume with a careful neutralizer design) may be more effective
to reduce the far-region plume divergence than reducing α0, specially if the latter
is already low. Thirdly, αF is higher the lower the γ for a given M0 and α0, due
to the electron pressure decaying more slowly closer to the isothermal limit. In
fact, while unphysical, the isothermal limit γ = 1 provides a conservative value of
αF (z̃F ). Finally, αF also has a small dependency on the initial density and velocity
profile, which, in view of the SSM’s evolution of the h function (Eq. (2.31)), is only
second-order.

Note that, like for φ̃, there is no asymptotic value for αF as z̃F → ∞ in the
isothermal limit. On the contrary, for γ > 1, the equivalent divergence angle is
upper-bounded, and (in the SSM case) the tangent of the asymptotic αF is given
by Eq. (2.32).

2.5.3. Additional plume physics

While the fluid model has a clear set of assumptions that limit its range of ap-
plication to collisionless, quasineutral plasma plumes, it is worth exploring, at least
qualitatively, the effect and tendencies of other physical phenomena that may be
relevant in the expansion, as those affecting the near-region, introduced in Sec. 1.3.

Near-region collisions are an important source for slow charge-exchange ions that
may depart at large angles from the axis. Collisions of all types participate in the
setting-up of the initial divergence and help homogenize the plume profile; however,
they soon become negligible downstream. As a conservative estimate for a typical
propulsive application, consider a 10 cm thruster that emits a xenon plasma with
n0 = 1018 m−3, Te0 = 3 eV, u0 = 30 km/s, α0 = 15 deg, and a mild propellant
utilization efficiency of 75%. Assuming that the remaining 25% of the massflow
leaving the thruster are cold neutrals (∼ 300 K) at their sonic velocity, we have an
initial neutral density nn ≃ 7 · 1019 m−3. At this ion energy, the charge-exchange
collision cross section is roughly [54] 1.6 ·10−19 m2; hence, the ion mean-free-path for
charge-exchange collisions is already larger than 1 m initially, and increases rapidly
downstream as nn and n decrease. Observe that the temperature of neutrals, ap-
proximately the temperature of the propellant distributor, plays a minor role in this
estimation (to double neutral density and halve the mean free path, the propellant
injector has to be at 75 K). Similarly, recombination collisions are infrequent in the
plume even in the case of a fast cooling rate, and can therefore be neglected for very
large distances.

The presence of a sufficiently dense ambient plasma and neutrals can affect the
plume expansion in two ways. First, the background plasma will start modifying
the solution of the ambipolar potential as soon as its density becomes comparable
to the beam density. This could result in (i) an effective cancellation of the expand-
ing electric field, (ii) a limitation to the acceleration of ions, (iii) the entrainment
of background plasma into the plume, and/or (iv) the induction of two-stream in-
stabilities in the very far downstream region. Second, background species will
slightly enhance collisions due to the additional density. The effects of background
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plasma and neutrals are probably largest in vacuum chamber tests due to the limited
dynamic pumping capacities, affecting the quality of the peripheral and far-region
measurements that can be taken in the laboratory. In space operation, however, the
main practical effect of the background plasma (n ∼ 1011 m−3 in low Earth Orbit)
is probably to set a limit to the total ∆φ along the plume, as φ∞ must match the
background potential, and the satellite cannot float very positive due to the negative
charging produced by the ambient electrons. As such, this effect may work together
with the plasma cooling described above to set the actual φ∞.

Finally, the presence of an ambient magnetic fieldB such as the geomagnetic field
(≃ 0.5 G at low Earth orbit) can deform the shape of the plume by magnetizing and
guiding the trajectories of the light electrons. Macroscopically, the external magnetic
field induces electric currents j on the plume. Concurrently, these currents induce
a plasma-generated magnetic field that opposes and tends to expel the external
one from the core of the plasma (i.e., the currents are diamagnetic). The relative
importance of the induced magnetic field compared with the external one is given
by the total beta parameter [115], which relates the energy available in the plasma
and the energy of the external magnetic field,

βtot =
n(Te +miu

2
i /2)

B2/µ0

. (2.42)

A value βtot ≫ 1 indicates dominant induced field effects and that the external
field therefore only perturbs the thinner peripheral plasma. For the same numerical
example as above with n0 = 1018 m−3, we need to travel more than 20 m downstream
before βtot < 1, which suggests a strong expulsion of the external magnetic field from
the core of the beam up to long distances. The electric currents in the plasma also
receive the Lorentz force j ×B. This force distorts the plume expansion depending
on the direction of the magnetic field with respect to the axis of the plume, possibly
affecting its divergence. As suggested in Ref. [52], the magnetic field would flatten
the plume in the direction perpendicular to both B and the axis of the plume, along
which the transport is hindered, and stretch it in the plane defined by B and the
axis. This behavior of the plume is of particular concern for spacecraft charging and
contamination studies, where we are interested in determining precisely the ion flux
to a given satellite surface.

Notwithstanding, a qualitative analysis shows that a uniform external magnetic
field B0 can deform, but not deflect, a globally-current-free plasma plume. Indeed,
assuming that no electrical currents flow in or out of the plasma domain or to infinity,
the total magnetic force on the whole plasma domain Σ is zero, since the induced
magnetic field forces are purely internal, and for the external field:

Fplume =

∫
Σ

j ×B0dΣ =

(∫
Σ

jdΣ

)
×B0 = 0, (2.43)

where the integral in parenthesis is zero since no current flows in or out of the volume
(i.e., for each vector component of the integral, e.g. x, we have

∫
jxdydz = 0 over a

yz cross-section of the plume).
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2.6 Fluid model validation against full-PIC sim-

ulations

In collisionless plasma plumes, all types of fluid closures appear to be equally
unjustified, as commented in Sec. 1.5.3. Therefore, a natural question arises as to
whether or not the fluid model introduced in this chapter is capable of retaining the
essential physics of a plume expansion. For this reason, a comparison study between
our fluid model (Sec. 2.1, solved with the AEM method of Sec. 2.2), and a full-PIC
model, developed at the University of Southern California, has been carried out [62].
The AEM method has been preferred to the SSM, as it allows more flexibility in the
choice of the initial plasma plume profiles.

In the following subsections, the plume geometry chosen for this comparison is
introduced, and then a generalization of the AEM method to this different plume
geometry is described. Finally, the comparison study results are shown and dis-
cussed.

2.6.1. Simulation geometry

The full PIC simulations feature a planar plume geometry like the one depicted
in Fig. 2.10. The plume is a plasma slab, which is symmetric with respect to the
(y, z) plane, extends to infinity along y and expands in the x and z directions.
This choice, instead of the more usual axisymmetric configuration considered in
the previous sections, is dictated by a present limitation in the full-PIC code, and
allows to reduce the required number of simulated macro-particles and, hence, the
computational cost. To allow for a direct comparison of the results, the fluid model
solver must consider this plume geometry as well.

Figure 2.10: Simulation domain and plume geometry for the comparison study. The
2D planar plume is symmetric with respect to the (y, z) plane.

2.6.2. AEM model for a plasma plume slab

Although the fluid model presented in Sec. 2.1 is applied to an axially symmetric
plume case, the stationary fluid equations derived there can be easily generalized
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to the planar 2D geometry of Fig. 2.10, obtaining the following non-dimensional
equations for mass conservation and momentum balance:

ũzi
∂ ln ñ

∂z̃
+ ũxi

∂ ln ñ

∂x̃
+

∂ũzi

∂z̃
+

∂ũxi

∂x̃
= 0, (2.44)

ũzi
∂ũzi

∂z̃
+ ũxi

∂ũzi

∂x̃
= − ñγ−1

M2
0

∂ ln ñ

∂z̃
, (2.45)

ũzi
∂ũxi

∂z̃
+ ũxi

∂ũxi

∂x̃
= − ñγ−1

M2
0

∂ ln ñ

∂x̃
, (2.46)

Note that the only difference is the missing axisymmetric term, with respect to
Eqs. (2.9), (2.10), and (2.11). In this case, in the cold beam limit (M0 → ∞), the
analytical solution for the density and velocity of the plasma, takes the form:

ñ(0)(x̃, z̃) =
ν(η)

1 + δ′z̃
(2.47)

ũ
(0)
zi (x̃, z̃) = υ(η) (2.48)

ũ
(0)
xi (x̃, z̃) = υ(η)δ(η), (2.49)

where now η = x̃ at the initial plane. Such density solution differs from the one
presented in Sec. 2.2 due to the absence of the axisymmetric term (1 + z̃δ/η) in the
denominator, which models the density decrease as the streamline radius increases.
In this planar 2-D geometry, the density only decreases if the streamlines diverge
from one another.

Finally, the down-marching scheme of Sec. 2.2.4 has been applied to extend the
validity of this AEM method to arbitrary M0 and α0 values.

2.6.3. Full particle-in-cell simulator

The electrostatic full particle-in-cell model considered for this comparison study
is described in detail in Refs. [76, 77, 116, 117, 118]. As in all full-PIC models,
both the electrons and the singly-charged ions are modeled as macro-particles. The
ion and electron dynamics, the space charge and the electric potential φ are solved
self-consistently with Eqs. (2.50) and (2.51), with m, eZ representing respectively
the elementary particles mass and charge, and v,r the macro-particle position and
velocity vectors:

ϵ0∇2φ = e (ne − ni) (2.50)

d

dt
(mv) = eZE, v =

dr

dt
. (2.51)

The simulation setup is similar to that described in Refs. [77] and [116]. First of
all, the simulation domain is initially a vacuum. At each step, macro-particles
representing singly charged ions and electrons are emitted along the z direction
into the simulation domain. The ions are sampled from a cold drifting Maxwellian
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distribution and have a finite temperature Ti0. The electrons inside the plume source,
on the other hand, are thermal and stationary. Simulations are run using the real
mass ratio of proton to electron, mi/me = 1836, with a temperature ratio of ion to
electron at the source equal to Ti0/Te0 = 0.01, where the subscript 0 denotes the
condition at the plume source plane (0 < x̃ < 10, z = 0). This corresponds to a
normalized ion thermal velocity of vth,i0/vth,e0 = 0.0023. Two different macroscopic
drifting velocity for the ion beam, uB/cs = M0 = 5 and 15 have been considered,
as shown in Tab. 2.1, with cs =

√
Te0/mi representing the ion sonic velocity at the

plume source plane.
Regarding injection, a zero net current density has been assumed at the source

plane, meaning that je0 = ji0. The cell size is taken to be the Debye length at this
plane, λD0, with respect to which the coordinates are normalized. The simulation
domain in the x̃ − z̃ plane is 600 λD0 ×1000 λD0, with a time step resolution of
∆t×ωpe = 0.05 (∆t×ωpi ≃ 1.16×10−3), where ωpe and ωpi are the electron and ion
plasma frequencies at the plume source plane. The initial plasma plume size along
x̃ is taken to be RB = 10λD0, as pointed out in Fig. 2.10.

For the M0 = 15 case, the normalized simulation duration is tωpe = 856.8 or
tωpi ≃ 20 (a total number of simulation steps equal to 17136). At each step, approx-
imately 1000 simulation particles are injected. For the M0 = 5 case, the simulation
normalized duration is tωpe = 2570.4 or tωpi ≃ 60 (51408 total simulation steps).
At each step, approximately 400 simulation particles are injected. Note that the
simulations duration is much longer than the ion plasma period and that the beam
transient length, LB = uBt is much larger than the beam initial radius, RB. There-
fore, a steady state for both electrons and ions is well established behind the beam
front (the farthest section that the ions have reached, located at z ≃ uBt). Since
the electrons oscillate back and forth many times around this front, it can be rea-
sonably assumed that they reach a quasi-stationary condition. In the following, for
the comparison with the stationary fluid simulations, we shall therefore consider a
simulation region extending downstream to z̃ ∼ 250.

2.6.4. Comparison simulations set

For this comparison study, a set of 4 different plume cases has been taken into
account, as reported in Tab. 2.1. The initial density profile for the plasma plume
has been assumed to be uniform in the range x̃ ∈ [0, 10], while for the injection ion
velocity components, the conical profile of Eq. (2.52) and (2.53) has been used:

ũzi (x̃, z̃ = 0) =

(
1 +

(
x̃

10
tanα0

)2
)−1

, (2.52)

ũxi (x̃, z̃ = 0) = ũzi (x̃, z̃ = 0) tanα0
x̃

10
. (2.53)

The ion Mach number shown in Tab. 2.1 is computed by assuming γ = 1. This
means that, if the electrons of the PIC simulation are injected with a thermal random



46 CHAPTER 2. FLUID MODEL FOR THE FAR-REGION OF A PLASMA PLUME

velocity corresponding to a temperature Te0, the ion injection fluid velocity at the
axis is computed as ui0 = M0

√
Te0/mi.

Table 2.1: Simulation set parameters considered in the fluid-full PIC comparison

Parameter Sim. 1 Sim. 2 Sim. 3 Sim. 4

Initial Mach number 15 15 5 5
Initial outermost streamline div. angle 0 10 0 10

Initial density profile flat flat flat flat

The initial density and velocity profiles are finally plotted for the Sim. 2 and
Sim. 4 case in Fig. 2.11.
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Figure 2.11: The initial normalized plume profiles at the beam injection: initial
density profiles for the AEM (dashed black) and for the PIC (solid black), initial
velocity profiles ũzi(x̃, 0) (solid blue) and ũxi(x̃, 0) (solid red) for both methods.

The Sim. 1 and Sim. 3 cases feature an identical density profile, but with a con-
stant initial axial velocity ũzi and a zero velocity component along x̃ (α0 = 0).
Note that the AEM density profile has necessarily been smoothed for its correct
implementation in the fluid solver, which requires a smooth transition to vacuum,
while preserving the total mass flow in the z̃ direction. The PIC density profile, on
the other hand, is provided for the ions only, since that of the electrons is slightly
different and determined by the current flux condition je0 = ji0, as explained in
Sec. 2.6.3.

2.6.5. AEM simulation results

The AEM fluid solution provides insight into the essential physical processes
occurring in the plasma plume expansion. Fig. 2.12 shows the evolution of the
density profiles and of the divergence profiles ũxi/ũzi for the 4 simulation cases of
Tab. 2.1 and at successive planes z̃i, with the assumption of γ = 2. This γ value,
allows to match well the fluid and PIC simulation results, as it will be shown in
Sec. 2.6.6. The reported simulations have been carried out with the down marching
scheme presented in Sec. 2.2.4 and a correction up to second order. Such initial
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Figure 2.12: Density and divergence profiles at different z̃ sections in the AEM fluid
model: (a) Sim. 1 case, (b) Sim. 2 case, (c) Sim. 3 case, (d) Sim. 4 case. The polytropic
coefficient γ has been assumed equal to 2.0.

profiles are a subset of the input initial profiles, which are fed to the AEM fluid
solver, at each re-start.

In Fig. 2.12 (a) and (c) (zero initial plume divergence and Mach number of re-
spectively 15 and 5), the propagation of the expansion Mach line can be observed
clearly. In fact, the density gradient and the related ambipolar electric field, gen-
erating at the plume edge x̃ = 9, z̃ = 0 (refer to Fig. 2.11), propagates inwards
towards x̃ = 0 along a line with a slope given by − arcsin (1/M0) and reaches the
axis after a certain axial distance, which is larger the higher the Mach number (bold
lines in the plots). Once the expansion wave reaches the beam symmetry plane,
the wave reflection effect is that of generating a density plateau in the x-direction,
which extends further downstream. The generation of the expansion wave can be
appreciated at the outer edge of the plasma plume, by observing the gradual onset
with z̃ of a non-zero divergence angle (red curves), which propagates inwards. The
plume develops a conical velocity field, or a divergence profile linear with x̃ at the
expansion wave reflection, but not elsewhere. This conical divergence profile is the
only admitted profile of the fluid models based on the self-similarity assumption
[49, 50, 52, 60, 119]. After the expansion wave reflection, the divergence profile is
no more completely self-similar (or linear in x̃).

Fig. 2.12 (b) and (d) show the evolution of the plume profiles for the Sim. 2 and
4 cases. Since the divergence angle is not zero in these cases, the density drops
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since the beginning. For the Sim. 2 case (M0 = 15), the expansion Mach line has a
slope relative to the outermost streamline lower than α0 = 10 degrees. Therefore,
it gradually gets farther away from the symmetry plane, producing an increasingly
wider region with z̃, which is completely unaffected by the expansion and that
expands conically, according to Eq. (2.47). Eventually, the expansion wave will reach
the symmetry plane, as it crosses plume regions with a decreasing ion divergence
angle, and this crossing is farther downstream the higher the γ coefficient and the
M0. For the Sim. 4 case (M0 = 5), in fact, the lower Mach number makes the
expansion wave approach the plume symmetry plane since the very beginning.

2.6.6. Comparison of the results and discussion

In order to match the full-PIC simulation results with those of the fluid model,
an error figure of merit ϵ has been introduced. This is defined as the root mean
square of the relative density error over a common AEM-PIC simulation domain,
with a weight, for each common node (i, j), given by wij = nAEMij/

∑
i,j

nAEMij:

ϵ =

√∑
i,j

wij ·
(
nAEMij − nPICij

nAEMij

)2

. (2.54)

Referring to Fig. 2.13, the comparison domain extends from z̃ = 0 to z̃ = 250,
the upper boundary being due to the PIC “stationary” region extension. In the x̃
direction, on the other hand, such domain is limited by the radius of the outermost
AEM streamline solution.

Figure 2.13: Common 2-D domain considered for the comparison between the full-PIC
and the fluid model results

The fluid model parameters have then been tuned to minimize this figure of merit.
This has been done by evaluating the fluid solution for a set of γ and M0 values
contained in a 2-D solution space. The results for the Sim. 1 case are shown in
Fig. 2.14.
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Figure 2.14: Error figure of merit as a function of the M0 and γ parameters of the
fluid model for the Sim. 1 case. The adiabatic γ limit is 2.

The R.M.S. relative density error ranges between a minimum of 3.4% for the
M0 = 15, α0 = 10 deg. case and a maximum of 7.5% for the M0 = 5, α0 = 0 deg.
case. The pairs of γ and M0 that minimize the errors and the corresponding R.M.S.
error are finally reported in Tab. 2.2, for all the simulation cases.

Table 2.2: Optimal γ and M0 values

Parameter Sim. 1 Sim. 2 Sim. 3 Sim. 4

M0 14.0 15 4.5 4.0
γ 2.0 1.7 1.6 1.9
ϵ 5.0% 3.4% 7.5% 5.3%

The optimal γ coefficient (for density prediction) appears to be somewhere be-
tween 1.6 and 2, depending on the simulation case, with 2 representing the adiabatic
value for the considered geometry. In fact, although ions and electrons have always
3 degrees of freedom (along x,y,z), it is clear that the degree of freedom in the
infinite direction (y) does not participate at all in the expansion, thus remaining
frozen. Therefore, in the computation of the adiabatic specific heat ratio, only two
degrees of freedom should be taken into account, leading to an adiabatic value equal
to γ = 1 + 2/NDOF = 2. The fact that the optimal γ appears to be close to this
adiabatic limit, seems to contradict the expectations from experimental measure-
ments, where γ is found between 1.0 and 1.3 (being 1.67 the adiabatic limit of the
axisymmetric case). Two reasons can explain these differences:

1. the considered case is a 2D plasma plume slab, which might yield to different
results with respect to the axisymmetric plume case of experiments.

2. The optimal polytropic coefficient (minimizing the density error in the given
domain) can be different from the global coefficient found in experiments,
which is obtained by processing density and temperature measurements at
different axial and radial coordinates. As suggested in Refs. [116], [117] and
[118], the polytropic coefficient seems to vary from streamline to streamline
and along their expansion. So, this optimal coefficient might reflect the value
of the plasma region where most of the divergence increase takes place.
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For what regards the optimal M0, this is not very different from the full-PIC
simulation one, computed with Eq. (1.5) and taking γ = 1. Again, two reasons
may explain the observed differences. Firstly, the optimal Mach number should
approach the value of the effective Mach number, which controls the real speed
of density perturbations within the supersonic plume (in the full-PIC simulation).
Such effective Mach number is lower than the Mach number of Tab. 2.1 because
it depends on an effective coefficient γ > 1, through Eq. (1.5). Secondly, just like
the optimal γ, also the optimal Mach number of the fluid simulation minimizes the
error figure of merit and, therefore, it does not necessarily coincide with the effective
Mach number.

With the optimal values for M0 and γ of Tab. 2.2, the AEM solutions have finally
been compared with those of the full-PIC model, in terms of density contours and
ion streamlines, as shown in Fig. 2.15.
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Figure 2.15: Density contour (solid lines) and streamlines (dashed lines) comparison
(25, 50 and 85% ion current). Red lines refer to the PIC, while black lines to the
AEM. (a) Sim. 1 case, (b) Sim. 2 case, (c) Sim. 3 case and (d) Sim. 4 case.

In all cases, the agreement is quite satisfactory, both in terms of the density con-
tours and of the ion streamlines. Regarding the former, the iso-density lines only
depart significantly at the outer periphery of the plume, where the difference between
the initial profiles for AEM and PIC simulations is important (refer to Fig. 2.11).
Regarding the latter, it can be noticed that the AEM slightly overestimates the
divergence growth of the core streamlines (e.g. the 25% ion current streamlines),
while underestimating the divergence growth of the outermost streamlines. This is
clearly due to the assumption of a single polytropic coefficient for the fluid model,
while the full-PIC simulations show that the effective γ value changes from stream-
line to streamline [116, 117, 118]. In particular, the outermost streamlines present a
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lower γ value, thus retaining their thermal energy farther downstream and expand-
ing more than the core streamlines. The AEM optimal solution thus assumes an
average effective polytropic coefficient, that minimizes the overall error.

Finally, referring to Fig. 2.15 (a), the density perturbation (or the expansion
Mach line), represented by the iso-density line with value 0.999, moves towards the
plume symmetry plane more quickly in the PIC simulation than in the fluid one.
This suggests that the effective initial Mach number (dictating the wave propagation
velocity) is lower than the optimal initial Mach number, used for the fluid simulation.

The major conclusions that can be extracted from this comparative study are
finally summarized below:

The fluid model reproduces correctly the results of the full-PIC simulations in
terms of plasma density and velocity at least down to a distance of 25 initial
plume radii.

A single value for the polytropic exponent (γ ≃ 1.6 − 2) appears to be rea-
sonably good for all the 2D planar plume simulations considered. Although a
detailed analysis [117, 118] suggests the existence of different γ regions, this
is not particularly relevant for the prediction of the plume density. In fact, a
near adiabatic γ seems to correctly model the plume divergence growth and
hence the density field.

The above-mentioned conclusions, however, do not reduce the importance of kinetic
simulations in the study of the plasma plume expansion. Firstly, they remain the
only way to study the evolution of the electron and ion energy distribution functions,
and their deviations from pure Maxwellian ones (due to collisions such as MEX or
CEX). Secondly, they allow to properly study the electron cooling mechanism, which
affects the electric potential drop, far downstream. In fact, this is strongly related
to the local γ coefficient in the far region of the plume, whose value may be different
from the optimal one obtained here.

2.7 Conclusions

The behavior of hypersonic plasma plumes has been studied with a two-fluid
model, which has been integrated with two semi-analytic solution methods (AEM
and SSM) and the MoC. The AEM and SSM methods both yield approximate
solutions, and each has its own advantages. The AEM method enables to reach
arbitrary accuracy in a limited region, can be used to set up a marching integration
scheme, and provides more flexibility in the choice of initial density and velocity
profiles, allowing the study of complex plumes. An additional advantage of the
AEM is that the perturbation terms themselves are independent of M0 and can be
reused to explore the effect of different Mach numbers on the expansion without
recalculating the solution each time (useful e.g. for parametric studies). The SSM,
in contrast, is algebraically simpler, provides the ion streamlines directly as part of
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the solution (h function) for a limited range of initial plasma profiles, and a relatively
easier calculation with an accurate solution in a wider region.

The relative error of AEM and SSM in density and velocity, when compared with
the MoC exact solution, is small in all the studied cases (10−2–10−3 at 50 thruster
radii downstream at the axis). Both methods are particularly accurate near the
hypersonic limit where the MoC is geometrically ill-conditioned (Mach lines become
near parallel at highM), thereby complementing it (which remains more appropriate
for problems with M0 & 1).

The electron thermodynamics, through the effective cooling rate γ, have been
shown to condition the plume expansion, the evolution of the ambipolar plasma
potential, and the divergence angle growth rate. The isothermal limit, γ = 1, which
yields the well-known Boltzmann’s relation, leads to unphysical results at infinity,
indicating that there must exist a collisionless cooling mechanism in the plume, and
revealing the inadequacy of Boltzmann’s relation for infinite expansions.

The equivalent divergence angle αF at a given downstream section depends fun-
damentally on M2

0 (conversely, on the ratio of beam accelerating voltage to electron
temperature in the plume) and α0. An important observation is that, in order to
decrease αF , it may be more advantageous to increase the ion Mach number M0

(i.e., increase the voltage or limit the electron temperature in the plume) than to
decrease the initial divergence angle α0, which can be more challenging in certain
thruster designs, specially at lower Mach numbers and already low divergence angles
(M0 < 20 and α0 < 20 deg). In regard to αF , γ = 1 yields the upper bound for
plume divergence angle.

Moreover, several physical aspects of plasma plumes not included in the fluid
model have been briefly discussed and some of them (e.g. collisions effects) will
be treated in the following chapter. Collisions and recombination have been shown
to be negligible in the far plume, while electron kinetic effects can play a major
role in the expansion and warrant detailed modeling. A dense ambient plasma
or a neutral species could alter the expansion of the plume, while a background
magnetic field can distort the expansion of the plasma profile, but—at least under
certain assumptions—not its propagation direction.

Finally, in order to evaluate the applicability of a two-fluid model with a poly-
tropic closure to a collisionless plume, a comparison study between the results of a
full-PIC model (developed at the University of Southern California) and our fluid
model based on the AEM method has been carried out. The AEM method has been
adapted to a 2D plasma slab geometry (considered by the computationally expen-
sive full-PIC code), with a down-marching scheme to ensure a sufficient accuracy,
independently of the ion Mach number and plume divergence. Such a study has
permitted to determine the optimal values of the free parameters of the fluid model,
M0 and γ, which allow to minimize the relative errors between the two models. The
optimal Mach number appears to be close to the effective Mach number of the PIC
simulations, while the optimal polytropic cooling coefficient assumes values close the
adiabatic limit. These optimal parameters yield reasonably low density errors over
a large domain, extending up to 25 initial plume radii downstream, thus demon-
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strating that a good accuracy in the prediction of a plasma plume expansion can be
reached even with a simple fluid model based on polytropic electrons.

Regarding future work, an extension of this comparison study to a 3-D axisym-
metric plume geometry should be carried out, in order to investigate the existence
of an optimal γ value, also in this more realistic case.





Chapter 3

The hybrid PIC-fluid model

This chapter presents the hybrid PIC-fluid model that has been developed to study
the plasma plume interaction with a satellite and any nearby object. The code is
named EP2PLUS, and has already been presented in Ref. [94]. Here, the detailed
modeling aspects of the PIC model, of the electron model, and of the fluid closure
algorithms, for both quasineutral and non-neutral plasma regions, are presented 1

1The contents of this chapter are based on a conference paper [94], and primarily on two journal
publications, submitted at the time of this thesis defense [120, 121]
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3.1 EP2PLUS: Extensible Parallel Plasma

PLUme Simulator

3.1.1. Motivation for a three-dimensional hybrid code

The simulation of the plasma plume interaction with the satellite and with any
downstream object is a three-dimensional problem, except for very rare scenarios,
featuring axisymmetric satellites (with respect to the plasma plume axis). Moreover,
as discussed in Sec. 1.5.6, the hybrid approach permits saving a large computational
power, with respect to full-PIC and fully-kinetic codes, while being more flexible
than fluid ones, when dealing with the heavy particles distribution functions (which
are arbitrary). For these reasons, a three-dimensional hybrid code has been de-
veloped, and named EP2PLUS, acronym for “Extensible Parallel Plasma PLUme
Simulator”. Although a first phase has been completed within the LEOSWEEP
project, which requested the capability of simulating an ion beam shepherd mission
scenario, the developed code can be employed to study a large variety of plasma
plume applications.

3.1.2. Development methodology and overall code structure

EP2PLUS has been developed following strict development and validation stan-
dards. A test driven design (TDD) development has permitted validating new mod-
ules by designing, in the first place, dedicated validation tests. In this way, new code
functions have been added only when validated, while the functionality of old func-
tions has been continuously checked throughout the development phase by running
the existing tests suite. The Appendix C can be consulted for a detailed description
of the existing functional and integration tests.

Moreover, as suggested by its acronym, the code is scalable and highly modular,
with industry level input/output formats, like HDF5. The physical unit, which
actually performs the simulation, is called CORE and is coded in Fortran, while
the pre-processing (PRE) and post-processing (POST) units are coded in Python.
As clearly stated by the code acronym, parallelization has been implemented with
Open-MP, to take the advantage of large shared memory workstations. A schematic
representation of the overall code is given in Fig. 3.1, while a brief description of the
three units is given hereafter:

SET: coded in Python, it is in charge of the pre-processing tasks, including the
generation of the necessary input files for the CORE. The simulation settings
are specified by a dedicated input file, “set.inp”, editable by the user. The
outputs are “sim params.inp” (text file), which contains the simulation pa-
rameters, and “SimState.hdf5” (HDF5 format), which contains the minimum
set of variables to start or re-start the simulation (particle data, mesh data,
fields data, etc...).
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Figure 3.1: Overall structure of the EP2PLUS code, featuring a SET, a CORE, and
a POST unit.

CORE: coded in Fortran, it represents the simulation core unit, which carries
out the plasma physics simulation. Taking as inputs both “sim params.inp”
and “SimState.hdf5”, it runs the simulation and generates the “PostData.hdf5”
output file, which contains the plasma plume properties at given time steps,
and an updated version of the “SimState.hdf5” file, at the last simulation time
step.

POST: coded in Python, it reads the CORE output files and produces differ-
ent graphical results (plots and diagrams) as required by the user, through a
dedicated POST input file, named “post.inp”.

This chapter shall focus exclusively on the CORE unit algorithms.

3.1.3. Main characteristics and capabilities of the code

Being a hybrid PIC-fluid code, EP2PLUS presents a PIC sub-model to deal with
the heavy particles (ions and neutrals), an electron sub-model for the fluid electrons,
and dedicated fluid closure algorithms that update the electric field self-consistently.

The PIC sub-model features the following:

Use of a 3D structured mesh, which can be either Cartesian or non-uniform,
thus adapting to the geometric plume expansion.

Sub-division of heavy particles in dedicated particle populations, depending
on their charge state, mass, and energy content.

Use of a population control algorithm that permits controlling the macro-
particles number at those cells adjacent to injection surfaces, or where colli-
sional effects are important.

Use of Direct Simulation Monte-Carlo (DSMC), Monte Carlo Collisions (MCC),
or deterministic algorithms for the simulation of heavy particles collisions.
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Simulation of the interaction between macro-particle and simulation objects,
with different wall types: particles injection, ion recombination, neutral reflec-
tion, and sputtering.

Bohm’s condition forcing on quasineutral material boundaries.

The electron fluid model and the corresponding fluid closure algorithms, on the
other hand, represent the most innovative contribution, in this work. Their main
features are briefly summarized below:

Electron fluid model for an unmagnetized plasma, based on a kinetic closure for
the electron pressure tensor (polytropic electrons), and retaining a collisional
term, in order to compute the electron current streamlines.

Dynamic division of the simulation domain into quasineutral and non-neutral
sub-domains. In the former, the electron momentum equation directly yields
the electric potential, while in the latter it is coupled with Poisson’s equation
(non-linear Poisson’s solver).

Computation of boundary conditions for both the electric potential and electric
current density, through a dedicated plasma sheath model and an equivalent
circuit that model the interaction between the plasma and dielectric/conduc-
tive objects.

The above defined characteristics permit simulating the following physics:

Interaction of heavy particles with conductive (iso-potential) or dielectric ob-
jects.

Electric charging of conductive objects.

Backscattering ion flux estimation. Slow ions are generated mostly by near-
region collisions, such as ionizations of different degrees and resonant symmet-
ric CEX reactions.

Backsputtering flux estimation, when a sputtered target is considered. This
is useful for studying the satellite-plasma-debris interaction, in the context of
an IBS mission, as reported in Sec. 5.3.

Simulation of the electric current loop within the plasma, as done in the sim-
ulations of Chapter 4.

Proper characterization of non-neutral regions, such as the lateral plume re-
gions (where ions are deflected towards the spacecraft), and the wake behind
a debris object, in the context of the IBS scenario, without having to generate
complex meshes, locally adapting to the Debye length.
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3.2 The particle-in-cell model for heavy species

The PIC model simulates both ions and neutrals as macro-particles and its sim-
plified scheme is shown in Fig. 3.2.

Figure 3.2: Scheme of the PIC model for the heavy species. Fs represents the dis-
tribution function of the sth particle population, or equivalently a list containing the

position, velocity and weight of the macro-particles of the sth population. F
(hit)
s ,

F
(rem)
s are respectively the list of macro-particles that have hit a non-transparent

surface and the list of macro-particles to be removed due to collisional events, in the
current time step, for the sth particle population. Finally, Πs is the particle track,
which contains the IDs of the sth population macro-particles that are contained in
each PIC cell (used for weighting purposes).

Referring to the above figure, this module is responsible for:

Simulation of macro-particles collisions (and removal of to-be-removed macro-
particles).

Macro-particles moving loop. For each macro-particle, this includes: (i) in-
terpolating the known electric and magnetic fields to the particle position,
(ii) moving the macro-particle self-consistently with the known fields (Sec. 3.2.3),
(iii) checking for material surface crossing (Sec. 3.2.6.1), thus updating a list
F (hit) of hitting macro-particles, and, finally, (iv) sorting the macro-particle
into the corresponding PIC cell (a particle track structure Π is updated).
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Simulation of the interaction between the macro-particles and the material
surfaces (Sec. 3.2.6). This includes (i) the simulation of the effects on macro-
particles (injection of new particles, reflection, re-injection, sputtering, etc...),
and (ii) the surface weighting of emitted or colliding macro-particles (to update
the plasma properties at the corresponding cell-faces centers).

Volume weighting of sorted macro-particles (Sec. 3.2.4) to obtain plasma prop-
erties at the mesh nodes.

Macro-particles removal. All particles that have crossed an external boundary
or an absorbing surface have to be removed from the simulation.

Bohm’s condition forcing (Sec. 3.2.7), in which the surface weighted plasma
density, if need be, is corrected to yield supersonic ion conditions, followed
by an interpolation of this corrected density at the cell-faces centers n

(sw)
e to

the cell nodes (the fluid closure algorithms, in fact, only make use of plasma
properties known at the mesh nodes).

3.2.1. PIC mesh: computational and physical coordinates

As shown in Tab. 1.3, hybrid codes can make use of either unstructured or struc-
tured meshes. In this work, a structured mesh is used, given its higher computa-
tional efficiency in terms of macro-particles sorting algorithms, at the cost of a lower
flexibility when dealing with complex object geometries.

In a structured mesh, each position vector is identified by a set of 3 computational
coordinates ξ = (ξ, η, ζ), which have a bijective relation with the corresponding
physical coordinates r = (x, y, z), as shown in Fig. 3.3. If Nξ, Nη, Nζ are the
numbers of nodes along the three coordinate directions, then the computational
coordinates vary respectively in the ranges [0, Nξ − 1], [0, Nη − 1] and [0, Nζ − 1].

Figure 3.3: Physical and computational domains, associated to the PIC mesh. For
the sake of clarity, a 2-dimensional x, z plane slice of the domain is shown.

Given the physical coordinates of the nodes xn, yn and zn, it is straightforward to
compute, at their location, the inverse Jacobian matrix of the transformation from
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computational to physical coordinates:

Ji =
∂(x, y, z)

∂(ξ, η, ζ)
=

∂r

∂ξ
, (3.1)

where the elements of Ji are evaluated with a centered difference scheme of the 2nd
order, and a simple matrix inversion provides J = J −1

i .
The transformation from computational to physical coordinates is then a simple

trilinear interpolation of the physical coordinates of the occupied cell nodes to the
macro-particle position. In a structured mesh, the occupied cell is identified by the
3 indices corresponding to the integer part of the particle computational coordinates
ξ = (ξ, η, ζ). If ξ0 are the computational coordinates of the lower left node of this
cell, then the relative macro-particle computational coordinates are

ξ′ = ξ − ξ0, (3.2)

and the physical coordinates are finally obtained by interpolating the physical coor-
dinates of the cell nodes to the particle position, using the 8 trilinear weights defined
below: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w000 = (1− ξ′)(1− η′)(1− ζ ′),

w001 = (1− ξ′)(1− η′)ζ ′,

w010 = (1− ξ′)η′(1− ζ ′),

w011 = (1− ξ′)η′ζ ′,

w100 = ξ′(1− η′)(1− ζ ′),

w101 = ξ′(1− η′)ζ ′,

w110 = ξ′η′(1− ζ ′),

w111 = ξ′η′ζ ′,

(3.3)

where, for example, w110 is the weight corresponding to the cell node with compu-
tational coordinates (ξ0 + 1, η0 + 1, ζ0).

For what concerns the inverse transformation, that is from physical to computa-
tional coordinates, it requires an initial guess and the use of the Jacobian matrix.
The initial guess can be either a point in the middle of the simulation domain, or
the previous time step computational coordinates (if the macro-particle already ex-
isted). Let ξ(0) =

(
ξ(0), η(0), ζ(0)

)
be this initial guess, and r(0) the corresponding

physical coordinates. Then, an initial estimation error is computed as:

ϵ(0) = r − r(0), (3.4)

and, if the error magnitude is above a maximum tolerance, a correction loop is
entered in which, at each iteration k, the computational coordinates are corrected
by an amount ∆ξ(k) provided below:

∆ξ(k) = J (k−1)
⏐⏐
ξ(k−1) ϵ

(k−1). (3.5)

In this expression, the Jacobian matrix is evaluated at the previously computed
computational coordinates ξ(k−1), through a trilinear interpolation with the same
weights of Eq. (3.3), and the error ϵ(k−1) is the (k − 1)th step reconstruction error.
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3.2.1.1. The PIC mesh types

EP2PLUS can use three different types of mesh, as shown in Fig. 3.4:

Cartesian type: all nodes are aligned with the x, y and z axes, although the
spacing may be different along each coordinate direction.

Conical mesh type: all nodes are aligned with the straight trajectories of the
ions of a cold beam (zeroth order ion streamlines, described in Sec. 2.2.1).
In order to fully define this mesh, it is necessary to define a characteristic
initial plume radius R0, and the divergence angle α0 of the corresponding ion
streamline.

Generic structured mesh.

Figure 3.4: The different available mesh types in EP2PLUS. For the sake of clarity,
only two-dimensional slices of the domain are shown.

The algorithms described in the previous section are applicable to all meshes,
however, for the Cartesian and conical meshes, the following simplified approaches
are followed.

In a Cartesian mesh, the physical coordinates are directly retrieved as:

x = xmin + ξ∆x,

y = ymin + η∆y,

z = zmin + ζ∆z,

(3.6)

where xmin, ymin and zmin represent the minimum coordinates values, and ∆x,
∆y, ∆z are the nodes spacing along the coordinate directions. The computational
coordinates, on the other hand, are obtained from the knowledge of x, y, z, by simply
inverting Eq. (3.6).

In a conical mesh, featuring a plume origin at (xc,yc,zc) on an initial z = zc
plane, and a divergence angle α0 at a radius R0, the following approach is followed.
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Regarding the physical coordinates, these are obtained as:

x = xc + xO

[
1 +

z

R0

tan(α0)

]
,

y = yc + yO
[
1 +

z

R0

tan(α0)

]
,

z = zc + ζ∆z,

(3.7)

where ∆z is constant throughout the domain, and xO, yO are given by:

xO = ξ∆x0 + xmin0 − xc,

yO = η∆y0 + ymin0 − yc.
(3.8)

In this equation, ∆x0 = ∂x
∂ξ

⏐⏐⏐
z=zc

and ∆y0 = ∂y
∂η

⏐⏐⏐
z=zc

are the x and y node spacings

at the initial plume plane z = zc (constant by construction), and (xmin0, ymin0) the
minimum x and y coordinates at this plane. In what regards the computational
coordinates, they are retrieved by first evaluating xO, yO:

xO =
(x− xc)

1 + tanα0
(z − zc)

R0

,

yO =
(y − yc)

1 + tanα0
(z − zc)

R0

,

(3.9)

and then:

ξ =
xc + xO − xmin0

∆x0

,

η =
yc + yO − ymin0

∆y0
,

ζ =
z − zc
∂z/∂ζ

.

(3.10)

3.2.1.2. The PIC cell-faces and the definition of objects

In the PIC model, macro-particles can interact with “special” cell-faces (or sur-
face elements) that represent material, injection or sink surfaces. The use of a
structured mesh allows to identify each cell-face with a set of 3 indices, and store
their corresponding surface types in a 3-D matrix. The available cell-face types are
summarized in Tab. 3.1, each one being uniquely identified by an integer number
in this cell-face types matrix. The indices (if , jf , kf ) of each cell-face are a simple
function of the computational coordinates of the cell-face center (ξc, ηc, ζc):

if = 2ξc + 1,

jf = 2ηc + 1,

kf = 2ζc + 1,

(3.11)
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where, for convention, indices start from 1.

Figure 3.5: Indexing logic of PIC cell-faces into a cell-face types matrix. For the sake
of clarity, a 2-dimensional x, y plane slice of the domain is shown. The shaded matrix
elements refer to non-existing cell-faces. External boundary cell-faces feature a −1
type, the material cell-faces a +1 type, and the transparent cell-faces a 0 type.

Fig. 3.5 shows how the external simulation domain (blue lines) and the surface
of a rectangular object map into the cell-face types matrix, for a two-dimensional
x, y slice of the domain. Some matrix entries refer to non-existing cell-faces, while
the dimensions of the cell-face types matrix are (2Nξ − 1)× (2Nη − 1)× (2Nζ − 1).
Given the large number of zero elements (the non-existing and the transparent types,
which represent no special surface), this matrix can be allocated in sparse format.
However, since it is continuously accessed by the surface-crossing check algorithm,
the quickest solution is to store it in dense format, so that memory access is quickest.

Finally, objects can be added to the simulation, as shown in Fig. 3.5 (for a square
object), by storing in dedicated lists, the indices (if , jf , kf ) of their boundary cell-
faces.

3.2.2. Particle populations

In the PIC model, ion and neutral macro-particles are grouped into L different
populations, in terms of:

their atomic mass m, which determines the atomic species,

their charge number Z (singly charged ions have Z = 1, neutrals have Z = 0),
and

their origin or energy content.
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The division of macro-particles of the same type and charge in terms of the last
property is used to achieve better statistics. The clearest example is that of the CEX
collision, in which the slow ions and the fast neutrals produced by this event are
stored into dedicated “slow ions” and “fast neutrals” populations, which are treated
independently from the others by the population control algorithm (Sec. 3.2.9).

3.2.3. Particle mover

The interpolation of the electric and magnetic field to the jth macro-particle po-
sition rj is accomplished through a trilinear interpolation from the occupied cell
nodes, with weights given by Eq. (3.3). Once the fields Ej and Bj have been ob-
tained, the macro-particle is advanced in time by a dedicated particle mover. In
order to maintain the stability of the integration scheme, every macro-particle has
to cross less than one cell per time step [74]. So, in this hybrid PIC context (in
which we are not interested in plasma oscillations), it is the macro-particles maxi-
mum velocity and the cell size that set the upper threshold to the integration ∆t.
The particle mover is based on Boris’ CYLRAD algorithm [69], a generalization of
the second order leap frog integration, and hence with velocity and position of the
macro-particles referring to interleaved time points (separated by ∆t/2). In particu-
lar, the macro-particle position is known at time k and the velocity at time k− 1/2,
and they are updated respectively to times k + 1 and k + 1/2.

The equation of motion for the jth macro-particle is given by Eq. (1.19), in which
relativistic terms are neglected because heavy particles in plasma plumes never reach
relativistic velocities: v ≪ c. From inspection of Eq. (1.19), it is noticed that neutral
macro-particles simply move in straight trajectories (the right hand side, in fact, is
zero), so that their velocity remains unaltered. For ion macro-particles, on the
other hand, the velocity changes. Neglecting the sub-index j in the following, and
introducing the Larmor motion angular velocity vector ωB = eZB/m, the ion
macro-particle velocity is first advanced to time k, with the sole effect of the electric
field:

v(k),1 = v(k−1/2) + Cf
eZ

m
E(k)∆t

2
, (3.12)

where Cf is a correction factor, equal to 1 when B = 0, and given by the expression
below, when B > 0:

Cf =
tan (ωB∆t/2)

ωB∆t/2
. (3.13)

This updated velocity v(k),1 is then rotated around the magnetic field vector as:

v(k),2 = v(k),1 +
Cf

1 +

(
tan (ωB∆t)

2

)2

(
v(k),3 × ωB

)
∆t, (3.14)

where another auxiliary velocity v(k),3 is computed as:

v(k),3 = v(k),1 + Cf

(
v(k),1 × ωB

) ∆t

2
. (3.15)
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Finally, v(k),2 is advanced to time (k + 1/2) by considering only the electric field
effect:

v(k+1/2) = v(k),2 + Cf
eZ

m
E(k)∆t

2
. (3.16)

Once the velocity has been advanced to time k+1/2, the particle position is simply
updated as:

r(k+1) = r(k) + v(k+1/2)∆t. (3.17)

The above described algorithm has been validated with the test case described in
Sec. C.1.

3.2.4. Particle volume weighting

After moving a macro-particle, if this has not crossed any special surface (external
boundary, material surface, etc...), it is assigned or sorted to the corresponding cell.
Once all macro-particles have been moved, a volume weighting algorithm assigns
the sorted macro-particles (stored within a dedicated particle track structure Π) to
the mesh nodes.

Regarding the sorting step, performed during the macro-particle loop of Fig. 3.2,
this is particularly simple in a structured mesh. In fact, as already commented in
Sec. 3.2.1, the occupied cell indices (i, j, k) are efficiently obtained from the knowl-
edge of the macro-particles computational coordinates (ξ, η, ζ). In particular the
integer part of these coordinates coincide with those of the lower left node of the
occupied cell ξ0.

For each cell and particle population, the volume weighting consists in a loop
over the sorted macro-particles, in which their computational coordinates ξ′ relative
to the lower left node are first evaluated, and their total weight W is then assigned
to the 8 neighboring nodes, with weights given by Eq. (3.3). This is equivalent to
assuming a macro-particle shape function in the computational domain, that belongs
to the first order cloud-in-cell method (CIC) [122].

For a generic node of the mesh, with computational coordinates ξ, the weighted
density then assumes the expression:

n =
1

∆V

N∑
j=1

S(ξj − ξ)Wj, (3.18)

where ∆V is the volume associated to the PIC mesh node, N is the number of macro-
particles, with a non-zero weight to the considered node (i.e. belonging to adjacent
cells), ξj = (ξ, η, ζ) are the computational coordinates of the macro-particle, and S
is the macro-particle shape function, to be evaluated at the node:

S(ξ′j) = (1−
⏐⏐ξ′j⏐⏐)(1− ⏐⏐η′j⏐⏐)(1− ⏐⏐ζ ′j⏐⏐), (3.19)

where (ξ′j, η
′
j, ζ

′
j) = (ξj − ξ, ηj − η, ζj − ζ) are the computational coordinates of the

jth macro-particle, relative to the considered node.
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Regarding the volume ∆V associated to the mesh node, this is generally computed
from the knowledge of the inverse Jacobian matrix Ji as:

∆V =

∫∫∫
S(ξ′, η′, ζ ′) |Ji(ξ

′, η′, ζ ′)| dξ′dη′dζ ′, (3.20)

where the integral extends over the applicable computational weighting volume for
the node (where to-be-weighted macro-particles are located, i.e. a maximum of
8 cells), and (ξ′, η′, ζ ′) are the relative computational coordinates (as considered
above). In Cartesian meshes, this integral turns out to be equal to the physical cell
volume for inner nodes and to a specific fraction of it for boundary nodes (which
feature a smaller applicable volume). For non-uniform meshes, in this work, an
approximation of the volume ∆V is considered, that is the sum of the physical
volumes of the neighboring applicable cells, divided by 8 (the expected number of
neighboring cells in a 3D geometry).

3.2.5. Macro-particles collisions

Although a plasma plume is weakly collisional, a large variety of collisional pro-
cesses can affect the heavy particles, especially in the near-region. At present, the
following have been included:

Ionization collisions:
A + e → A+ + 2e
A+ e → A++ + 3e
A+ + e → A++ + 2e

Symmetric and pure CEX collisions:
A+(fast) + A(slow) → A+(slow) + A(fast)
A++(fast) + A(slow) → A++(slow) + A(fast)

Regarding the former, higher ionization degrees have not been considered, given
their increasing ionization energies and hence decreasing reaction rates. For what
concerns the CEX, the considered ones are the resonant-symmetric reactions, with
no momentum exchange. Such reactions are the dominant collisions in a plasma
plume and have the highest cross sections, as shown in Refs. [50],[54],[55], and [123].
The assumption of a zero momentum exchange is a good approximation for reso-
nant CEX, made even by more complex ion-neutral collision models, like that of
Ref. [123], in which the collision outcome is either a pure CEX or an elastic momen-
tum exchange collision (MEX).

MEX collisions have generally little importance in a plasma plume. Ion-ion MEX
collisions, due to Coulomb interaction, modify the affected particles relative velocity
(for an ion species emitted by a plasma thruster, this amounts to fractions of eV in
terms of energy), which is much smaller than their absolute velocity (correspond-
ing to thousands of eV), so that their effect is clearly negligible. MEX collisions
between ions and neutrals, or between ions of different charge, on the other hand,
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can have larger effects. However, their importance with respect to that of the CEX
is still small, as shown in Refs. [124, 125], especially when it comes to determine
the backscattering ion flux towards the satellite, almost entirely constituted by slow
CEX ions.

Although excitation collisions are an important factor of energy loss inside a
plasma thruster, their effect in the dynamics of a plasma plume is also negligible.
From a PIC point of view, these collisions create a macro-particle belonging to
a different excited population, with possibly different collision cross sections, but
with the same charge number Z. This is clearly a second order effect, since only
the collision properties (but not the trajectory) of those few macro-particles that
suffer an excitation collision are affected. Finally, recombination collisions are also
neglected, given their low frequency in a cold rarefied plasma plume.

In the following, the collision algorithms for the considered collisions are pre-
sented. As already indicated in Fig. 3.2, these are cell-wise algorithms.

3.2.5.1. Ionization collisions.

The approach considered is similar to that of the HP-HALL code, described in
detail in Ref. [126]. All the macro-particles of the input particle population being
ionized, are sampled to be affected by ionization (deterministic sampling).

Then, an ionization rate Ri(Te) is evaluated at the cell center, by using exist-
ing literature models that are based on two assumptions: a Maxwellian electron
distribution function with temperature Te, and an electron thermal velocity much
larger than the heavy particles bulk velocity Te ≫ mu2. In particular, Drawin’s
model [127] is used for the ionization reactions of neutrals, while Bell’s model [128]
is considered for the ionization of singly charged ions. Once the generation rate
Ri(Te) has been evaluated, for the ionization of neutrals, the new ion mass ∆mi to
be generated in the cell is computed as:

∆mi = nennmRi(Te)∆V∆t, (3.21)

where ne is the electron density, nn is the density of the input neutral population,
and ∆V is the physical cell volume. The same formula can be applied for the
second ionization of an ion population by substituting nn with the corresponding
ion number density. The average number of new ion macro-particles is then obtained
as ∆N = ∆mi

mWgen
, where Wgen is the generation weight associated to both the cell

and the output ion population (refer to Sec. 3.2.9). The decimal part of this ratio,
is taken into account by producing one additional macro-particle with probability
∆N − int(∆N). Regarding the distribution of the generated macro-particles, the
velocity is sampled from a Maxwellian, with mean velocity and temperature equal to
those of the input population, while the position is uniformly distributed across the
cell. Finally, the weights of the macro-particles in the cell of the input population
(e.g. neutrals) are updated by reducing them proportionally to their values, with a
total reduction given by:

∑
j

∆Wj = −∆mi

m
.
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The validation of the above described algorithms has been carried out with a
dedicated test, described in Sec. C.8.

3.2.5.2. CEX collisions.

Given the two input populations (e.g. fast ions and slow neutrals), the first step
is to sample the macro-particles that undergo a CEX collision. Two approaches can
be followed:

1. Direct Simulation Monte Carlo (DSMC) sampling: macro-particles are checked
in pairs (one for each input population), and each pair collides if a random
number U is lower than the collision probability pc,pair of the pair:

pc,pair =
1− exp (−σ(vrel)nnvrel∆t)

Nn

, (3.22)

where σ is the collision cross section, vrel is the relative velocity between the
macro-particles of the pair, nn is the elementary number density of the neutral
population, Nn the number of neutral macro-particles inside the cell, and ∆t
must not be larger than the expected collision time (1/(σnnvrel)). It is noted
that the probability that an ion macro-particle collides with any of the neutral
macro-particles, that is pc,pairNn, is equal to the elementary particle collision
probability. This makes sense in a PIC code, in which the macro-particles must
behave like the elementary particles they represent, and therefore must be sub-
ject to the same collision probabilities. The number of pairs to be checked is
given by NiNn, and it can be particularly large. In order to reduce the com-
putational cost of the DSMC sampling, a more efficient version [73] has then
been adopted, which limits this number of collision checks to pc,maxNiNn, with
pc,max = pc,pair (|vrelσ(vrel)|max) representing the maximum expected collision
probability for the pair. The random number U is then compared to the ratio
pc,pair/pc,max, thus resulting into a more efficient macro-particles sampling (e.g.
less collision checks, with a higher acceptance probability).

2. Monte Carlo Collisions (MCC) / deterministic sampling: in this case, the
macro-particles of the fast ion population are sampled with a probability:

pc = 1− exp (−σ(vrel)nnvrel∆t), (3.23)

which represents the elementary particle collision probability (with any of the
neutrals). The relative velocity vrel now refers to the relative velocity with
respect to the average motion of the neutral population, which means that
vrel = vi − un, where vi is the ion macro-particle velocity, and un is the
fluid velocity of the slow neutrals population. For what concerns the neutral
population, on the other hand, all macro-particles are affected by the collision
outcomes, so that they are deterministically sampled (just like in the ionization
collisions).
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The CEX cross section for both types of CEX reactions (singly and doubly charged
ions with neutrals) is provided, for Xenon gas, by Miller’s model [55]:

σ(vrel) = C1 − C2 log10

(
1/2mv2rel

1eV

)
, (3.24)

where the argument of the logarithm represents the relative kinetic energy of the
impacting elementary particles, expressed in eV. The constants depend on the type
of reaction:

Xe+(fast) + Xe(slow) → Xe+(slow) + Xe(fast) : C1 = 87.3Å
2
, C2 = 13.6Å

2

Xe++(fast) + Xe(slow) → Xe++(slow) + Xe(fast) : C1 = 45.7Å
2
, C2 = 8.9Å

2

Another available model, valid only for the singly-charged ion CEX reaction, is
Rapp’s model [54]:

σ(vrel) = σ0

(
1− C ln

(
vrel

1km/s

))2

, (3.25)

where C = 0.1, and σ0 generally depends on the atomic type. For Argon σ0 = 65Å
2
,

while, for Xenon, σ0 = 81Å
2
.

After the sampling step, new macro-particles have to be generated in the slow
ion and fast neutral populations. This generation step can follow two different
approaches:

1. Random generation: referring to Fig. 3.6, new macro-particles are uniformly
distributed within the cell and have the generation weight of the corresponding
cell and output population. Regarding their velocities, these are sampled from
a local Maxwellian distribution with mean velocity and temperature given by
the corresponding input population. This means that the slow ions feature a
fluid velocity and temperature equal to that of the slow neutrals, while the fast
neutrals have the same fluid properties of the fast ions. This approach permits
controlling the number of generated macro-particles in the cell, although the
linear momentum is not exactly conserved, but only conserved on average.

2. Deterministic generation: referring to Fig. 3.7, the new macro-particles fea-
ture the exact positions and velocities of the corresponding sampled macro-
particles. This means that slow ions will have the positions and velocities
of the sampled slow neutrals, while fast neutrals will have the positions and
velocities of the sampled fast ions. Regarding their weights, both slow ions
and fast neutrals share the weight of the sampled ion macro-particles. In case
the slow neutrals population is deterministically sampled (in the MCC/deter-
ministic approach), the corresponding slow ion macro-particles are generated
at the positions of the sampled ion macro-particles, but with a random veloc-
ity that resembles the fluid properties of the slow neutrals population. The
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(a) (b)

Figure 3.6: Random CEX generation for (a) DSMC sampling, and (b) MCC sampling

(a) (b)

Figure 3.7: Deterministic CEX generation for (a) DSMC sampling, and (b) MCC
sampling

deterministic generation approach with DSMC sampling permits conserving
exactly the linear momentum and energy of the macro-particles, although the
macro-particles number is not actively controlled.

The input particle populations are finally updated with a scheme that depends
on the sampling type:

DSMC sampling: the update is done pair by pair, meaning that the weight of
the heavier macro-particle is updated by subtracting the weight of the lighter
macro-particle, which is removed from the simulation. An acceptance-rejection
scheme prevents the algorithm from producing very small residual macro-
particles when the input weights are very similar, while preserving mass on
average.

MCC/deterministic sampling: the weights of the deterministically sampled
population (slow neutrals) are reduced proportionally to their values, with a
total weight reduction equal to the number of collided elementary ions. The
macro-particles of the fast ions, on the other hand, are simply removed from
the simulation.

The validation of the above described algorithms has been carried out with a
dedicated test, described in Sec. C.7.
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3.2.6. Macro-particles surface interaction

As anticipated in Sec. 3.2.1.2, the PIC mesh presents different types of cell-faces,
some of which interact actively with the macro-particles. The considered cell-face
types are summarized in Tab. 3.1.

Table 3.1: Existing surface types. The effects of the injection type refer to the macro-
particles that happen to cross an injection element from within the simulated plasma.

Element type Effects on ions Effects on neutrals

Transparent none none

Particle sink removal removal

Injection re-injected as neutrals re-injected as neutrals

Standard
material wall

recombination reflection

Sputtered
material wall

recombination +
sputtering emission

reflection +
sputtering emission

Each cell-face type features a dedicated algorithm to simulate the produced effects
on the macro-particle, summarized in Sec. 3.2.6.3. By monitoring the variations of
the integer part of the macro-particles computational coordinates, a surface crossing
detection algorithm verifies if it has crossed a non-transparent cell-face. If this
happens, the macro-particle undergoes surface interaction, which consists of the
following steps:

1. Sorting and surface-weighting of impacting macro-particles (from the plasma
to the cell-faces).

2. Simulation of the surface-interaction effects on macro-particles, including di-
rect injection of new macro-particles into the domain.

3. Sorting and surface-weighting of the emitted macro-particles (from the cell-
faces to the plasma).

3.2.6.1. Surface crossing detection and check

The algorithm dedicated to surface crossing-detection monitors the integer part
of each macro-particle computational coordinates. If any change is detected (from
the previous time step), the indices of the crossed cell-faces are identified and the
corresponding types are read. If any of these types is not of the “transparent” type,
then the macro-particle is stored for surface interaction in a dedicated hit list F (hit),
as shown in Fig. 3.2. A different hit list per particle population is considered.

Fig. 3.8 shows a macro-particle trajectory between two successive PIC times (in
2D for the sake of clarity), with (i0, j0) being the indices of the initial occupied
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cell and (iF , jF ) the final ones. Since the occupied cell has changed, the crossing-
detection and check algorithm is activated. In the example, the macro-particle
crosses several cells, a rare condition if ∆t is small enough, although possible for
cell-face crossings that happen to be very close to one of the cell vertices.

Figure 3.8: Surface crossing-detection and check algorithm. The macro-particle moves
from a cell with indices i0, j0 to a final one with indices iF , jF .

Depending on the change of the initial/final cell indices (+1 along ξ and +3
along η, in the provided example), a certain number of cells are crossed (4 in the
example). For each crossed cell, the algorithm computes the times of the possible
crossings with the cell-faces as:

∆tcross =
1⊥ · (rn − r0)

1⊥ · v , (3.26)

where 1⊥ is the corresponding cell-face normal (known from the knowledge of the
mesh), r0 is the initial macro-particle position vector, rn is the position vector of
an arbitrary node of the cell-face, and v is the macro-particle velocity vector. The
surface type of the cell-face with the lowest crossing time is then read and checked.
If this is transparent, the process continues with the next crossed cell ((i0, j0 + 1)
in the example), otherwise, the macro-particle is sorted for surface interaction (as
it occurs at the last check, in Fig. 3.8).

3.2.6.2. Macro-particles injection

Some cell-faces of the simulation domain are dedicated to inject new particles into
the simulation domain. More specifically, a drifted Maxwellian injection is simulated,
which is defined by the injected particle flux ginj, the injection fluid velocity uinj,
and the injection temperature Tinj. In order to better represent smoothly changing
injection profiles, these injection properties can vary linearly across the injection
cell-faces, and are provided at the 4 vertices of each one of them. The number Ninj

of injected macro-particles, per cell-face and per time step, is obtained as:

Ninj =
ḡinj∆S∆t

Wgen

, (3.27)
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where ḡinj is the average particle flux of the injection cell (e.g. evaluated at the cell-
face center), ∆S is the injection cell-face area, and Wgen is the generation weight at
the injection cell, for the injected particle population.

Then, the injection algorithm generates a stochastic sample ofNinj macro-particles
per cell-face. Their injection positions are uniformly distributed across the cell-face,
while their weight is given by:

Winj = Wgen
ginj(rinj)

ḡinj
, (3.28)

where ginj(rinj) is the particle flux interpolated to the macro-particle position. The
generation of a stochastic injection velocity then requires also the interpolation of
the injection velocity uinj(rinj) and temperature Tinj(rinj) to the macro-particle
position, and is based on the algorithms of Ref. [73]. The probability distribution
function is proportional to the normal component v⊥ (with respect to the cell-face)
of the macro-particle velocity v:

finj(v) ∝ v⊥ exp

(
−m |v − uinj|2

2Tinj

)
. (3.29)

The direct proportionality on v⊥ models the fact that the particles reservoir (region
of space, upstream of the injection surface, that the injected macro-particle has
crossed in the last time step) extends linearly with this velocity. A random normal
velocity is then generated with the “acceptance-rejection” method: a minimum and
a maximum normal velocities v⊥min and v⊥max are first defined as u⊥ ± 4

√
Tinj/m,

with u⊥ representing the normal component of the injection fluid velocity. Then, a
normalized probability distribution function is introduced:

f̃v⊥ ∝ finj(v⊥)

finj(v̂⊥)
, (3.30)

with v̂⊥ the normal velocity that maximizes the injection probability, Eq. (3.29):

v̂⊥ =
u⊥ +

√
u2
⊥ + 4Tinj/m

2
. (3.31)

A uniformly distributed normal velocity v⊥ ∈ [v⊥min, v⊥max] is then accepted only if
a random number U ∈ [0, 1] (again, uniformly distributed) is lower (or equal) than
f̃v⊥ :

U ≤ f̃v⊥(v⊥) → v⊥ is accepted.

U > f̃v⊥(v⊥) → the generation process is repeated until a random v⊥ is ac-
cepted.

Once the normal component of the injection velocity has been generated, the tangen-
tial velocity components are directly obtained from a 2D Maxwellian distribution.
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This means that the probability distribution function for the tangential velocity
vector is given by:

fv∥(v∥1, v∥2) ∝ exp

(
−m

[
(v∥1 − u∥1)

2 + (v∥2 − u∥2)
2
]

2Tinj

)
, (3.32)

where v∥1,v∥2 are the tangential components of the macro-particle velocity and
u∥1,u∥2 are the tangential components of the injection fluid velocity, again evalu-
ated at the macro-particle position. This probability distribution function can be
directly integrated and inverted, so that a direct method for generating random 2D
Maxwellian samples is readily available, as described in the Appendix C of Ref. [73].
This method consists in generating a first random number U ∈ [0, 1], which deter-
mines the magnitude of the thermal component of the tangential velocity:

⏐⏐vth,∥
⏐⏐ =√v2th,∥1 + v2th,∥2 =

√
−2 ln(U)Tinj

m
, (3.33)

and then a random angle θ ∈ [0, 2π], which determines the two tangential thermal
components: {

vth,∥1 =
⏐⏐vth,∥

⏐⏐ cos θ,
vth,∥2 =

⏐⏐vth,∥
⏐⏐ sin θ. (3.34)

The stochastic injection velocity is finally obtained as:

v = v⊥1⊥ + (vth,∥1 + u∥1)1∥1 + (vth,∥2 + u∥2)1∥2, (3.35)

where 1∥1 and 1∥2 are the cell-face tangential unit vectors (normal to each other).
In order to simulate a continuous injection and avoid undesired discretization

effects, each injected macro-particle is finally advanced (in straight line, along its
velocity direction) from a random injection time, uniformly distributed between t(k)

and t(k+1) to the end of the PIC time step t(k+1).
The above described injection algorithms have finally been validated with the

test case of Sec. C.5.

3.2.6.3. Surface interaction effects on impacting macro-particles

Depending on the surface type, different effects have to be simulated, as described
in this section.

3.2.6.3.1. Particle sink
When a macro-particle crosses a particle sink cell-face, such as the external bound-

ary elements of the simulation domain, or a total absorption surface, it is simply
removed from the domain.
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3.2.6.3.2. Injection cells

For what concerns the macro-particles that cross an injection cell-face from within
the plasma, they are re-injected as additional neutrals with the algorithms described
in Sec.3.2.6.2. This means that all ions that cross the injection cells are assumed to
recombine there.

3.2.6.3.3. Standard material wall cells

When crossing a material wall surface, ion macro-particles recombine into neu-
trals, while neutral macro-particles suffer either a specular or a diffuse reflection,
with a user’s defined probability. While the neutral specular reflection is simply
simulated by inverting the normal velocity component of the macro-particle, the
neutral re-injection due to both ion recombination or neutral diffuse reflection, is
carried out independently for each impacting population.

For each cell-face, a dedicated counter accumulates the amount of mass to be
re-injected ∆mreinj, due to each impacting population. If Wgen represents the gen-
eration weight of the recombined neutrals population, and m their atomic mass,
then two conditions arise:

∆mreinj ≥ Wgenm: a number Nreinj = int [∆mreinj/(Wgenm)] of neutral
macro-particles (each one of weight Wgen) is re-injected. The accumulated
mass is then updated by subtracting the re-injected mass.

∆mreinj < Wgenm: the mass to be re-injected keeps accumulating, for the next
time steps.

When ∆mreinj < Wgenm, the above approach is equivalent to a re-injection with
probability given by the ratio ∆mreinj/(Wgenm) < 1, with no accumulation, as con-
sidered by the HP-HALL code, [126]. However it gives the advantage of conserving
mass exactly on the long-term (and not on average, every time step). Regarding
the re-injected neutrals velocity distribution, this depends on the mean impacting
energy Ēimp of the impacting population, the mean re-injected atom energy being

Ēreinj = 2AWTW + (1− AW )Ēimp, (3.36)

where TW is the wall temperature (in energy units), AW is a wall accommodation
coefficient, and Ēimp is evaluated as the time-averaged wall-impact kinetic energy
of the impacting population elementary particles. The factor 2 that multiplies TW

takes into account that the emission is semi-maxwellian, and hence the average
emission energy is twice the temperature of the thermalized source. Regarding the
angular distribution of the emission, a thermal cosine emission law is assumed for the
injection probability distribution function, which is equivalent to using Eq. (3.29),
with uinj = 0, and Tinj = Ēreinj/2.

The algorithms used for these standard material walls have been validated with
the test described in Sec. C.9.
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3.2.6.3.4. Sputtered material wall cells
When crossing a sputtered wall surface, apart from the recombination/reflection

effects considered for the material wall surface, sputtered macro-particles are gener-
ated as well. In fact, when a hypersonic macro-particle hits such surfaces, it knocks
out a certain average number of material surface atoms. The sputtering response
can be modeled, in general, by defining:

The sputtering yield Y : number of sputtered atoms per impacting particle.

The particle backscattering probability pbks: probability that an impacting
particle is reflected backwards. In the case of an ion, this means that it does
not recombine.

The emission mean energy Ēemi for the sputtered atoms.

These parameters are functions of the impacting particle species, of the surface
material (e.g. the binding energy), and of the impacting particle kinetic energy
Eimp and angle αimp (with respect to the surface normal). For a given impacting
species and target material, Y , Ēemi, and pbks are 2D functions of the sole impact
energy and angle. These properties can be obtained with SRIM/TRIM [129], a
dedicated plasma-matter interaction software. Alternatively they can be obtained
from simplified empirical models, like those described in Refs. [130] and [131].

In the PIC model context, the sputtering effects are considered to be the same in-
dependently of the impacting particle charge (be it singly-charged, doubly-charged or
neutral). Each impacting macro-particle produces a population of sputtered atoms
with a total mass msput = mtgWY , where mtg is the atomic mass of the target
material, W is the weight of the impinging macro-particle, and Y the corresponding
sputtering yield (that depends on the specific particle impacting energy and an-
gle). As considered also for the diffuse neutrals reflection or ions recombination, the
number of sputtered macro-particles is given by the population control algorithm of
Sec. 3.2.9, which controls their number per cell by dictating their generation weight
Wgen. Regarding the velocity distribution of the sputtered atoms, this is assumed to
be given by a thermal emission, like that of Eq. (3.29), where Tinj = Ēemi/2. This is
a clearly a simplifying assumption, because the distribution can be asymmetric with
respect to the surface normal, and generally depends on both the incidence angle
and the principal directions of the sputtered material lattice [130, 131].

Finally, the impinging macro-particle can undergo backscattering. This is a dif-
ferent process with respect to the accommodation process described above (based
on the accommodation coefficient AW ), since it represents a very quick reflection,
occurring within the first atomic layers of the target material. In order to deal
with this, a random number U is compared with pbks (Eimp, αimp). If U < pbks, the
macro-particle is backscattered along the specular reflection direction, but with a
lower kinetic energy (that is deterministically modeled as a function of the impact
angle, impact energy, and backsputtered atoms properties). More specifically, the
backscattered particle kinetic energy is computed as:

Ebks =
(
1− C∥

)
Ēemi + C∥

(
Eimp − Y Ēemi

)
, (3.37)
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with

C∥ =

[
αimp − αmin

π/2− αmin

]βs

, (3.38)

where βs is an empirical coefficient, and αmin is the minimum impact angle that
yields a non-zero backscattering probability (in the simulations of Sec. 5.3, βs = 4,
and αmin ≈ 50 deg.). Eq. (3.37) contains the most important dependencies of the
backscattered particle energy. As αimp → π/2 (parallel incidence), and hence C∥ →
1, the particle tends to conserve most of its kinetic energy Eimp, since it barely enters
in the material lattice. Nevertheless, it loses some energy due to the collisions with
the sputtered atoms, that is Y Ēemi. Secondly, as αimp → αmin, the particle tends
to be backscattered with the same energy as the rest of the sputtered atoms, since
it gradually loses memory of its impacting kinetic energy.

The above described approach is another simplification of the real physics for
two reasons: (i) the real backscattering direction does not coincide exactly with the
specular reflection direction (but it is rather distributed around it), and (ii) the
backscattered particles, of a given impact energy and angle, have a distribution of
energy, rather than a precise energy, as considered here.

The test of Sec. C.11 has finally been considered to validate the above algorithms.

3.2.6.3.5. Computation of the wall-impact energy
In order to evaluate both the re-injection atoms energy Ēreinj, the sputtered atoms

mean energy Ēemi, and the energy flux to the walls, it is necessary to compute the
macro-particles kinetic energy Eimp, at wall-impact. If the macro-particle is neutral,
the wall-impact energy coincides with its kinetic energy at the cell-face crossing. For
positive ions and quasineutral cell-faces (see description in Sec. 3.3.3), on the other
hand, the crossed cell-face represents only the plasma sheath edge, so that the
analysis is more complex. If φS is the sheath edge potential, φW the wall potential,
and E⊥ = 1

2
mv2⊥ the kinetic energy (per elementary particle) in the normal direction

(with respect to the cell-face), the following cases are considered:

φW < φS: the macro-particle hits the wall, and its wall-impact kinetic energy
(per elementary ion) is Eimp =

1
2
mv2 + eZ (φS − φW ).

φW > φS and eZ (φW − φS) > E⊥: the macro-particle does not hit the wall
and is specularly reflected inside the sheath. The specular reflection algorithms
are thus employed.

φW > φS and eZ (φW − φS) ≤ E⊥: the macro-particle hits the wall and its
wall-impact kinetic energy (per elementary ion) is Eimp =

1
2
mv2−eZ (φW − φS).

3.2.6.4. Surface-weighting

Every time a macro-particle crosses a non-transparent cell-face in both directions
(e.g. for impacting macro-particles, but also for emitted or reflected ones), it is sorted
for surface weighting. This is carried out with the Extended Surface Weighting
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algorithm introduced in Refs. [132] and [133], as this permits achieving more accurate
and less noisy results than volumetric weighting at the boundaries. The surface
weighted density and particle flux vector are obtained, for each population, as:

n(sw) =
1

∆t∆S

(
Nhit∑
j=1

Wj

|v⊥,j|
+

Nemi∑
j=1

Wj

|v⊥,j|

)
, (3.39)

g(sw) = (nu)(sw) =
1

∆t∆S

(
Nhit∑
j=1

Wjvj

|v⊥,j|
+

Nemi∑
j=1

Wjvj

|v⊥,j|

)
, (3.40)

where ∆S is the cell-face area, and |v⊥,j| is the absolute value of the jth macro-
particle perpendicular velocity (with respect to the cell-face). The summation ex-
tends over the Nhit impacting macro-particles from within the plasma (identified
by the hit list F (hit) of Fig. 3.2), and the Nemi macro-particles that are emitted or
reflected from the cell-face, both referring to the current time step. It is noticed that
a specularly reflected macro-particle thus appears twice in the summation, with the
same normal velocity magnitude. Therefore, it counts twice for what regards the
density (otherwise this would be given by the density of particles moving only in
one direction), while its total contribution to the particle flux vector is parallel to
the cell-face.

A similar process is also considered for computing the fluxes of other specific
properties, at the cell-faces centers. Of particular interest are the total particle flux
and the total energy flux, related to impacting particles, from the plasma to the
walls:

g
(sw)
imp =

1

∆t∆S

Nhit∑
j=1

Wj, (3.41)

e
(sw)
imp =

1

∆t∆S

Nhit∑
j=1

WjEimp, (3.42)

where Eimp is the wall-impact kinetic energy, computed as shown in the previous sec-
tion. The average wall-impact kinetic energy, for each population, is then obtained
as:

Ēimp =
e
(sw)
imp

g
(sw)
imp

. (3.43)

Finally, in order to compute the transmitted force to the wall, the transferred linear
momentum vector flux is obtained as:

ṗ(sw) =
1

∆t∆S

(
Nhit∑
j=1

Wjmvj −
Nemi∑
j=1

Wjmvj

)
, (3.44)

where the summation extends over both the impacting and emitted/reflected macro-
particles, and the macro-particle velocity refers to the simulation boundary (sheath
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edge for quasineutral boundaries, material wall for non-neutral ones). The minus
sign for the emitted or reflected macro-particles models the fact that they contribute
to the force transmission with a recoil effect.

Finally, in order to reduce the statistical noise of the above defined variables, a
time-averaged version at the time step k, is actually considered, meaning that:

n̄
(k)
(sw) =

(∆kavg − 1) n̄
(k−1)
(sw) + n

(k)
(sw)

∆kavg
(3.45)

for the density, and similarily for other variables. In Eq. (3.45), ∆kavg represents
the averaging number of time steps. This averaging scheme permits saving storage
memory with respect to a standard moving average scheme (which would require to
store all ∆kavg previous values).

3.2.7. Bohm’s condition forcing

In all quasineutral material cell-faces (refer to Sec. 3.3.3.1), which feature a wall
potential φW lower than the sheath edge potential φS, it is necessary to force Bohm’s
condition, which means to impose that ions reach them with sonic/supersonic con-
ditions.

The algorithm considered for this Bohm’s condition forcing (BCF) is the one
presented in Refs. [132] and [133], and considers the kinetic Bohm criterion, firstly
introduced by Harrison in 1959 [134]. As shown there, the supersonic conditions
at the domain boundaries of quasineutral codes are not automatically met, and
must be forced by applying a correction δne in the weighted plasma density. This
density correction has the effect of generating an additional accelerating electric field
towards the PIC cell-face. As the ion flow adapts self-consistently to this electric
field and sonic conditions are progressively approached, the density correction tends
to zero and Bohm’s condition is consistently self-sustained.

If electrons are assumed Maxwellian at the sheath edge, a monotonic, non-
oscillating plasma potential solution across the sheath requires that:

P (δφ) =
L∑

s=1

∫ ∞

0

(
Zs

Te

− Z2
s

msv2⊥(δφ)

)
Fs(v⊥)dv⊥ ≥ 0, (3.46)

where L is the total number of heavy particle populations, Fs andms are respectively
the heavy particles distribution function at the sheath edge and the elementary mass
of the sth population, δφ is the electric potential drop (≥ 0) applied in a virtual
pre-sheath region (not simulated by the PIC), and v⊥(δφ) is the corresponding
perpendicular velocity, which can be obtained from the energy conservation equation
(through the virtual pre-sheath region) as:

v⊥(δφ) =

√
v2⊥(δφ = 0) + 2

Zse

ms

δφ. (3.47)
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If P (0) < 0, the BCF algorithm looks for the δφ yielding P (δφ) = 0. In particular,
P (δφ) can be evaluated by surface-weighting the macro-particles that hit the surface
element as:

P (δφ) =
1

∆t∆S

L∑
s=1

Nhit∑
j=1

(
WjZs

Te |v⊥,j(δφ)|
− WjZ

2
s

ms |v⊥,j(δφ)|3

)
. (3.48)

By expanding P in terms of δφ, the BCF algorithm obtains the required δφ to
achieve P = 0. Since the computation of the electric potential is a prerogative of
the fluid closure algorithms, the electric potential correction must be translated into
a correction of the weighted plasma density δne (which is the real input of these
algorithms). As shown in Ref. [133], the ordinary derivative dne/dδφ, at first order
in δφ, can be computed as the following surface weighted variable:

dne

dδφ
= − 1

∆t∆S

L∑
s=1

Nhit∑
j=1

WjeZ
2
s

ms |v⊥,j(δφ = 0)|3
. (3.49)

Notice that, for positive potential drops δφ > 0 (if this is negative, there is no need
of enforcing Bohm’s condition as P > 0 already), this derivative is always negative.
The electron density correction, for each quasineutral boundary cell-face, is finally
obtained as:

δne =
dne

dδφ
δφ. (3.50)

The above described algorithms have been validated with the test case described
in AppendixC, Sec. C.14.

3.2.8. Interpolation from cell-faces centers to mesh nodes

As shown in Fig. 3.2, the corrected electron density at the quasineutral material
boundary refers to the centers of the cell-faces (Bohm’s correction considers, in
fact, surface-weighted variables). Therefore, since the fluid closure algorithms of
Sec. 3.3.2 and 3.3.3 consider plasma properties at the mesh nodes (gradients and
other differential operators are better defined there), it is necessary to interpolate
the “corrected” electron density to the mesh nodes.

Each node of the PIC mesh belongs to a given number Nf of material cell-faces.
Typically, this number is 4, although there are some situations in which it can be
smaller, like in the case of a 3D object vertices, for which Nf = 3. In all cases, the
density at each mesh node is computed as a simple average of the surface-weighted
variable on the applicable Nf cell-faces:

ne =
1

Nf

Nf∑
f=1

n
(sw)
e,f , (3.51)

where n
(sw)
e f is the surface weighted electron density (corrected), at the center of the

f th applicable cell-face. The same interpolation is also applied to all heavy particle
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population properties (density and particle fluxes), and to other surface-weighted
variables (mostly for post-processing needs).

3.2.9. The PIC population control

In PIC codes, controlling the macro-particle number is a fundamental task. In
fact, a low number of macro-particles per cell produces a large statistical noise,
while too large numbers may yield excessive computational costs. Moreover, the
macro-particle weight dispersion within each cell has to be controlled as well, as too
large dispersions affect negatively the performance of different algorithms, such as
the collision sampling algorithms (that work best with homogeneous weights within
each involved population and cell), and the statistical noise.

The goals of PIC population control algorithms are therefore to (i) ensure that
the number of macro-particles per cell be within a desired interval [Nmin, Nmax], and
(ii) to minimize the weights dispersion within each cell. The possible solutions to
achieve such goals are:

Active control of macro-particle number in collision and surface interaction
algorithms.

Use of a weight re-normalization algorithm, which either splits or groups ex-
isting macro-particles, while conserving their overall momentum and energy
[135, 136].

Use of a non-uniform mesh that expands as the expected number density drops.

The present code implements the first solution, described hereafter, while the other
two approaches are left for future work. Nevertheless, it is worth mentioning that an
expanding mesh, that follows the conical expansion of the plasma plume, can reduce
dramatically the numerical noise downstream, as shown in Appendix C, Sec. C.13,
and in Ref. [94], where a plume expansion test with a conical mesh is considered
and compared with the solutions obtained with either a Cartesian mesh or with the
SSM method (based on the fluid model of Chapter 2).

As noted in Secs. 3.2.5 and 3.2.6, collision and surface interaction algorithms make
use of a generation weight Wgen = Wgen(r), which depends on both the cell and the
particle population. A dedicated algorithm updates such a generation weight in all
cells, by monitoring the current number of macro-particles per cell N , its time steps
evolution dN/dk, and the average weight of the existing macro-particles W̄ in the
cell. Let Ntg be a targeted number of macro-particles per cell, within the interval
[Nmin, Nmax]. Then, if at least one macro-particle has been generated or injected in
the considered cell in the latest time step, the generation weight is updated only if:

1. N ∈ [Nmin, Nmax] ∩ dN̄
dk

< 1
∆kavg

: stationary within the control interval,

2. N < Nmin ∩ dN
dk

≤ 0: below the minimum and not increasing,

3. N > Nmax: above the maximum,
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where N̄ is the time-averaged number of macro-particles per cell. In the first two
cases, the generation weight is updated asWgen = W̄ N̄/Ntg, using the time-averaged
number of macro-particles per cell. In the third case, on the other hand, in order
to avoid large overshoots in the macro-particle number, the instantaneous value
N is used, and the generation weight updated as Wgen = W̄N/Ntg. Thus, Wgen

dynamically adapts to the different conditions of each individual cell, allowing to
actively control the macro-particle number for the injected or re-injected populations
(from a contiguous injection or material cell-face) or the generated population (due
to non-negligible collisional effects). A functional test for this population control
algorithm is presented in Sec. C.10.
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3.3 The electron fluid and electric field closures

In this hybrid code context, the electric potential and hence the electric field
required by the PIC sub-model are obtained by solving the electron conservation
equations, coupled in some cases, with Poisson’s equation for the electric potential.
Since the solution for the electron properties (density, velocity, and temperature) is
generally coupled with that of the electric potential, this section deals with the “fluid
and electric field closures” together. First, the electron fluid model is derived in
Sec. 3.3.1, and then, the algorithms necessary to update both the electron properties
and the electric potential are presented, for both quasineutral (Sec. 3.3.2) and non-
neutral plasma regions (Sec. 3.3.3).

3.3.1. Electron fluid model derivation

The fluid model for electrons, complemented with Poisson’s equation for the
electric potential φ, permits computing their density ne, temperature Te, and cur-
rent density je = −eneue. As commented in Sec. 1.5.3, since electrons are weakly-
collisional, local thermodynamic equilibrium cannot be invoked and the closure of
the fluid equations is delicate. If collisions are introduced through standard resis-
tive terms, the main concern is in the expressions for the pressure tensor Pe (in the
momentum equation) and for the heat flux (in the energy equation), in the collision-
less limit. Both should be derived from a kinetic approach, and several attempts
are under progress in this regard, both for magnetized and unmagnetized plumes
[33, 77, 116, 137] and even for anisotropic temperature plasmas [138], showing a
combination of near-isothermal and quasi-polytropic behaviors.

A key point is that, if an auxiliary kinetic model is used (and collisions are weak),
a closure of the fluid equations at the level of the momentum equation is the most
advantageous. Thus, the proposed electron fluid model consists of electric current
continuity and inertialess electron momentum equations,

∂ρc
∂t

+∇ · j = 0, (3.52)

0 = −∇ · Pe − ene(−∇φ+ ue ×B)−
L∑

s=1

νesmene (ue − us) , (3.53)

plus Poisson’s equation:

∇2φ = −ρc
ϵ0

with ρc = e

(
L∑

s=1

Zsns − ne

)
. (3.54)

Here ns and us are the fluid velocity of the sth population, obtained from the PIC
model, νes is the electron momentum transfer collision frequency with population s
(refer to Sec. 3.3.1.1 for more details), and ρc is the electric charge density. Adding for
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all heavy populations, we define the ion current density, the “quasineutral electron
density”, and the total electron collision frequency,

ji = e

L∑
s=1

nsZsus, n∗
e =

L∑
s=1

Zsns, νe =
L∑

s=1

νes, (3.55)

respectively. Notice that, in general, νes depends on electron properties too (density
and temperature).

For the purposes of the present work, we will limit the fluid model to an unmag-
netized plume (B = 0) and to the simple polytropic electron closure:

Pe = peI with pe(ne) = neTe, Te = Te0

(
ne

ne0

)γ−1

, (3.56)

where γ is the constant polytropic coefficient, and ne0, Te0 are the electron density
and temperature at the plume location where we set φ = 0.

In terms of the electric current density j = ji + je, Eq. (3.53) simplifies to:

0 = −∇pe + ene∇φ+
meνe
e

(j − jd) , (3.57)

where

jd = ji −
ene

νe

L∑
s=1

νesus (3.58)

is a “driving” current density (for the special case of one population of ions and
neutrals, some authors call this term “ion slip”). Solving the momentum equation
for j, the generalized Ohm’s law is finally obtained:

j =
σe

e
∇He + jd, (3.59)

where σe = e2ne/νeme is the electron conductivity,

He = he − eφ (3.60)

is the Bernoulli’s function, and

he(ne) =

⎧⎪⎨⎪⎩
Te0 ln

(
ne

ne0

)
for γ = 1

− γTe0

(γ−1)

[
1−

(
ne

ne0

)γ−1
]

for γ > 1
(3.61)

is the barotropic function, satisfying ∇he = ∇pe/ne. Notice that we have set
he, He = 0 at the location where φ = 0 and ne = ne0.

Introducing now Eq. (3.59) into Eq. (3.52), an elliptic differential equation for He

is obtained:

∇2He +∇ lnσe · ∇He = − e

σe

(
∇ · jd +

∂ρc
∂t

)
. (3.62)
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Therefore, the fluid model reduces basically to solving two coupled elliptic equations:
the above one for He and Poisson’s equation for φ. Typical conditions at different
boundaries set either these magnitudes or the derivatives perpendicular to the walls.
In the case of the Bernoulli’s function, the perpendicular derivative is indeed a
condition on the electric current density:

∂He

∂1⊥
=

e

σe

(j − jd) · 1⊥, (3.63)

where 1⊥ is the unit vector normal at the boundary and directed towards the plasma.

3.3.1.1. Computation of the electron collision frequency

In order to compute the electron momentum transfer collision frequency with the
sth particle population νes, only elastic collisions are here taken into account. The
electron-ion collision frequencies are then obtained as [139]:

νes =
21/2nsZ

2
s e

4 ln Λ

12π3/2ϵ20m
1/2
e T

3/2
e

, (3.64)

where ns is s
th population number density, and the parameter lnΛ ≈ 10 (for typical

plasma plumes). For the neutrals, on the other hand, the collision frequency is
computed by integrating the elastic collision cross section σes(ve) over a Maxwellian
electron distribution function [140, 141]:

νes = ns

√
2Te

9πme

∫ ∞

0

(x)5 σes(x) exp

(
−x2

2

)
dx, (3.65)

where x = ve/vth,e represents the normalized electron velocity with respect to the

electron thermal velocity vth,e =
√

Te/me, and σes(x) depends on the sth population
atomic type, and follows the model of Ref. [142] (for xenon). It is noticed, that
Eqs. (3.53), (3.64) and (3.65) are only valid if the electron thermal velocity vth,e is
much larger than the fluid velocity of both the heavy particle population us and of
the electrons ue.

3.3.2. The quasineutral closure

Let us consider first the zero Debye length limit, for which the whole plume can
be considered quasineutral. The mathematical structure of the problem changes and
simplifies. First of all, Poisson’s equation reduces to

ne = n∗
e (i.e. ρc = 0), (3.66)

which determines the electron density and, subsequently, the electron temperature
T ∗
e = Te(n

∗
e), the barotropic function h∗

e = he(n
∗
e), the conductivity σ∗

e = σe(n
∗
e),

and the driving current density j∗d = jd(n
∗
e). Notice that all these quantities are
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functions of the PIC model solution. The uncoupled equation for the Bernoulli’s
function then simplifies to:

∇2He +∇ lnσ∗
e · ∇He = − e

σ∗
e

∇ · j∗d . (3.67)

Once the solution for He is obtained, j is given by the generalized Ohm’s equation,
Eq. (3.59), and the electric potential from Eq. (3.60), that is:

φ =
he −He

e
. (3.68)

Notice that the widely-used isothermal and polytropic quasineutral models (like
those presented in Sec. 2.1) correspond to setting He ≡ 0 in the above equation.
Indeed He = 0 is the solution of Eq. (3.67) in the collisionless limit σ∗

e → ∞.
Therefore, He provides the electric potential correction due to collisional effects.
Being the plasma weakly collisional, such a correction is generally small: for a typical
scenario, featuring an NSTAR ion thruster and the corresponding neutralizer, as
considered in the study of Chapter 4, the potential corrections are of the order of
10−2 V (see Fig. 4.6). However, what matters for the computation of the electric
current is the gradient of He multiplied by the electron conductivity σe, which can be
very large in nearly collisionless plumes, thus yielding non-negligible electric currents
in the near region of the plasma plume, as shown in Fig. 4.7 (a).

In the collisionless limit σ∗
e → ∞, on the other hand, the electric current in the

generalized Ohm’s law becomes indefinite, which is a severe limitation, especially
when studying the plasma plume-SC interaction.

3.3.2.1. The sheath model

In the fully quasineutral closure, infinitely-thin Debye sheaths are postulated
between the quasineutral solution and the walls, in order to accommodate potentials
and electric currents there. Thus, at such boundaries, we must distinguish between
the wall potential φW , and the potential at the sheath edge φS (of the quasineutral
solution). The sheath model then establishes a relation between these two potentials
and the perpendicular current density to the wall jW = j ·1⊥ = ji,W + je,W (positive
if emitted by the wall, since the unit vector is oriented towards the plasma).

In the most common case of a “negative” sheath, it is φW < φS, in order to
confine electrons, while letting ions circulate free. The well-known solution for that
(collisionless) sheath, assuming a Maxwellian-like electron distribution at its edge,
yields:

φW = φS − Te

e
ln

(
(jW − ji,W )

ene

√
2πme

Te

)
, (3.69)

where the ion current density, the electron density ne and temperature Te refer to
the sheath edge.

In the case of a dielectric wall, the net-current free condition jW = 0 yields
φW locally. This is also the case of current-emitting walls (by thermoemission,
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photoemission, ion bombardment), where jW is known locally from the PIC model
solution (or from known wall heating/illumination conditions).

For conductive walls (emissive or not), the problem is more complex, since there
is no local condition setting either the wall potential φW or the total electric current
through a certain region of the boundary. In fact, the electric potential of conduc-
tive objects depends on a global current balance, as described in Sec. 3.3.2.2, and,
therefore, Eq. (3.69) is considered only to obtain the electric current jW as a function
of the wall potential φW :

jW = ji,W + je,W = ji,W + ene

√
Te

2πme

exp

(
e (φS − φW )

Te

)
. (3.70)

The computation of the electric current jW to conductive walls is necessary to (i) ob-
tain the boundary conditions for the computation of He (see Eq. (3.63)), and (ii) to
compute the total electric current to the conductive objects (needed by the equiva-
lent circuit), assuming a given electric potential φW .

Finally, in the case of “positive” sheaths, φW > φS, the boundary electric cur-
rent jW is obtained from Eq. (3.70), by assuming a unitary exponential term, or
equivalently, a thermal electron current contribution: je,W = ene

√
Te/(2πme). It is

then the PIC model, which must take into account the deceleration and the even-
tual reflection of the low energy ions within the sheath, as already discussed in
Sec. 3.2.6.3.

3.3.2.2. The equivalent circuit solver

The conductive objects potentials (and hence their walls potential φW ), are ob-
tained from a global plasma current equilibrium, and hence, not from a local equilib-
rium, as considered for dielectric walls. For each conductive object, a total current
from the plasma IW is first computed by integrating the electric current density to
its material wall boundaries. For a given object potential φW , jW is obtained from
Eq. (3.70), so that:

IW = −
∑
f

jW,f∆Sf , (3.71)

where the summation extends over the cell-faces of the object material boundary,
and the minus sign is considered because jW is positive if emitted by the object.
Once this plasma current is obtained, an equivalent circuit like the one shown in
Fig. 3.9 is considered. Each conductive object l is assumed to be an iso-potential
node, it receives a current from the plasma IW,l, and it can be connected arbitrarily
to another node m by means of both a resistance Rlm, and a forced voltage difference
Vlm. The electrical connections (either through a resistance or a power supply) split
the whole circuit into sub-circuits, each one represented by an ensemble of electrically
connected nodes (both directly and indirectly). Fig. 3.9 shows an example with two
sub-circuits, a spacecraft sub-circuit (with 5 conductive objects, or nodes), and a
target debris sub-circuit.
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Figure 3.9: Scheme of the equivalent circuit, for a simulation featuring 6 conductive
objects, and 2 independent sub-circuits

Each sub-circuit j is composed by independent and dependent nodes. The floating
potential of each sub-circuit, or of the independent node, is obtained as the time
evolution of the voltage of a capacitor Cj, which connects the jth sub-circuit to the
plasma:

dφj

dt
=

Ij
Cj

(3.72)

The charging current Ij for the j
th sub-circuit is obtained as the sum of the plasma

currents to the sub-circuit nodes:

Ij =
∑
l

IW,l (3.73)

where the summation extends to the nodes of the sub-circuit. The value of the
capacity Cj only affects the transient and not the stationary value of the independent
node potential.

In order to compute the dependent nodes potentials and inter-node currents Ilm
of each sub-circuit, a linear system is solved (derived from Kirchhoff’s laws). This
system consists of a current continuity equation for each dependent node, and an
electric potential variation equation for each electrical connection (in the figure, 4
dependent nodes and 4 electrical connections are considered for the first sub-circuit):⎧⎨⎩current continuity at node l : IW,l +

∑
m̸=l

Iml = 0,

potential across connection lm : φl − IlmRlm + Vlm − φm = 0.
(3.74)
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3.3.3. The non-neutral closure

Once the quasineutral solution for the electron density n∗
e, the electric potential

φ∗, and the electron temperature T ∗
e are known at the instant t(k), the simulation

domain is dynamically split into quasineutral and non-neutral subdomains, and the
solution at time t(k) is recomputed in the non-neutral subdomain. In the following,
the subdivision of the simulation domain is first introduced in Sec. 3.3.3.1, while the
non-neutral solver is described in Sec. 3.3.3.2.

3.3.3.1. The quasineutral and non-neutral sub-domains

First of all, the quasineutral subdomain, constituted by quasineutral nodes and
material boundary faces, must be defined. We will consider that cells and boundary
faces are quasineutral if their level of non-neutrality is below a maximum value,
called εmax. For inner cell nodes, non-neutrality is measured by

εn =

⏐⏐⏐⏐ϵ0∇2φ∗

en∗
e

⏐⏐⏐⏐1/2 = ⏐⏐⏐⏐n∗
e − ne

n∗
e

⏐⏐⏐⏐1/2 , (3.75)

and the cell node is part of the non-neutral subdomain when εn > εmax. The
square of εn thus represents the relative electric charge density. In the simulations
of Chapter. 4 and Sec. 5.3, the chosen threshold value is ϵmax = 0.032, corresponding
to a relative electric charge density of 1�.

For material boundary faces, non-neutrality is measured by the ratio between the
local Debye length and the cell size ∆l, in the direction normal to the surface:

εf =
1

∆l

√
ϵ0T

∗
e

e2n∗
e

. (3.76)

Depeding on the value of εf , material faces are then sorted into quasineutral, if
εf ≤ εmax, and non-neutral if εf > εmax. A typical subdivision of the simulation
domain nodes and material boundary faces is shown in Fig. 3.10.

The value of ϵf thus determines whether or not a discontinuity in the electric
potential has to be postulated between the material wall W and the simulation
boundary S. Numerical convergence for the transition between a quasineutral to
a non-neutral sheath, then demands to add an intermediate case, so that three
different cases are considered:

if εf ≥ 1: the boundary face is non-neutral, no sub-grid sheath exists (it is
spatially resolved) and the boundary face is the wall, i.e. φS = φW ,

if εf ≤ εmax: the boundary face is quasineutral, there is a sheath discontinuity,
and the potential at S is the quasineutral sheath edge potential φ∗

S,

if εmax < εf < 1, a partial sheath is added and the considered potential at the
simulation domain boundary is:

φS = φW +
1− εf
1− εmax

(φ∗
S − φW ), (3.77)
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Figure 3.10: Sketch of a typical sub-division of the simulation domain into quasi-
neutral and non-neutral nodes/cell-faces

where φ∗
S and φW are known from respectively the quasineutral electric po-

tential solution and the current wall potential. The applied potential at S, for
transition nodes like these, is shown in the sketch of Fig. 3.11.

Figure 3.11: Applied potential at the simulation boundary φS (black line), versus the
quasineutral electric potential solution φ∗

S (blue dashed line), and the Debye length
to cell size ratio ϵf , at a material surface featuring a transition from a quasineutral
sheath to a spatially resolved sheath. Quasineutral nodes are indicated by black dots,
while non-neutral nodes by white dots.

3.3.3.2. The non-neutral solver

While in quasineutral regions the PIC solution provides all the necessary inputs
for the computation of σe and jd and hence for He and φ, in non-neutral regions
the electron density ne and temperature Te are not known a priori, and the charge
density ρc is not identically zero. Therefore, Eq. (3.62) is coupled with Poisson’s
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equation for the electric potential, repeated here for the sake of clarity:

∇2φ = − e

ϵ0
(n∗

e − ne) , (3.78)

where we remind that en∗
e is the ion electric charge. The iterative solution of the

system composed by Eqs. (3.62) and (3.78) can be particularly costly, so that a
different approach is proposed here. Since we are primarily interested in the sta-
tionary solution, the time derivative of the charge density appearing in Eq. (3.62)
is neglected, while the electron conductivity and driving current vector, at the time
step k, are substituted by their values at the previous time step:

σe → σ(k−1)
e , jd → j

(k−1)
d . (3.79)

With this assumption, the Bernoulli’s function He is solved for, and a functional
dependence ne(He, φ) is obtained explicitely by inverting Eq. (3.60), with the use
of Eq. (3.61). For the sake of clarity, this functional dependence is shown for the
isothermal and polytropic cases:⎧⎪⎪⎨⎪⎪⎩

ne = ne0 exp

(
He + eφ

Te0

)
for γ = 1,

ne = ne0

[
1 +

(He + eφ) (γ − 1)

γTe0

] 1
γ−1

for γ > 1.

(3.80)

Eq. (3.78) then becomes a non-linear differential equation in the unknown φ, which
can be solved numerically, as shown in Appendix B, with the following boundary
conditions:

φ = 0 at a reference plasma node (where ne = ne0, Te = Te0).

φ = φ∗ at all quasineutral nodes of the domain (including those on the external
boundary).

φ = φW at non-neutral material boundary nodes.

φ = φS at the transition material boundary nodes, with φS given by Eq. 3.77.

∂φ

∂1⊥
= 0 at non-neutral external boundary nodes.

The non-linear solver has finally been validated with a dedicated test case, de-
scribed in Sec. C.12.

3.3.3.3. Sheath conditions for non-neutral boundaries

While the electric circuit shows no difference with respect to the one described
in Sec. 3.3.2.2, the sheath solver requires some clarifications, for what concerns the
non-neutral boundaries. At dielectric walls, the electric current density is still 0,
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while the wall potential φW (to be applied by the non-linear Poisson’s solver) is now
updated with Eq. (3.69), in which φS does not represent the sheath edge potential
(which is now within the computational domain), but simply the electric potential at
the computational boundary. Similarily, at conductive walls, the same approach can
be followed to compute the electric current density, provided that φS now represents
the electric potential at the computational boundary.

In both cases, if εf > 1, the non-linear Poisson’s solver shall force φS → φW

(sheath solved within the simulation domain), while, if εmax < ε < 1, φS shall tend
to an intermediate value between φW and φ∗

S, with a finite sheath discontinuity.
This discontinuity is always taken into account when dealing with the interaction
between macro-particles and material surfaces, just like considered for quasineutral
boundaries.
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3.4 The overall simulation loop

A generic step of the overall simulation loop is shown in Fig. 3.12, for a general
non-neutral simulation. The particle push represents several PIC algorithms and
generates updated fluid properties at times k + 1 (quasineutral electron density n∗

e,
and heavy particle densities ns) and k + 1/2 (heavy particle fluid velocities us,
current densities js, and surface weighted variables at material boundaries). The
quasineutral electron density and the surface weighted P variable are then fed to
the Bohm’s condition forcing algorithm, which corrects, if need be, the value of the
electron density at the quasineutral material boundaries, thus completing the PIC
sub-step.

Figure 3.12: The hybrid-particle code simulation loop, at the time step k + 1 (from
time t(k) to time t(k+1))

Then, boundary conditions for the fluid closure at this new time k + 1 need to
be updated. First, the sheath solver updates the electron current density je,W at
conductive walls, and the dielectric walls potential φW,d both at time k, since its
inputs (wall potential, sheath edge potential, electron density, temperature, and
ion current) are known at this time step. The electron current density is then
extrapolated to time k + 1/2 and passed together with the ion current density to
the wall ji,W (at time k + 1/2) to the equivalent circuit solver. This obtains the

electric current I
(k+1/2)
W,l to the conductive objects and updates their potentials to

time k+1, with a second-order leap-frog scheme. The sheath solver also extrapolates
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the dielectric walls potential and the total electric current density to the wall jW =
je,W + ji,W to time k + 1, as needed by the fluid closure algorithms.

This is then fed, together with the quasineutral electron density n∗
e, conductivity

σ∗
e , and driving current density j∗d , all at time k+1, to the quasineutral solver, which

solves for the quasineutral electric potential φ∗, the Bernoulli’s function H∗
e , and the

electric current density j∗ at time k + 1. The non-neutral solver then receives as
input the quasineutral potential φ∗, the wall potential φW , and the quasineutral
density n∗

e at time k + 1, and assumes the latest step values for σe and jd. Its
outputs are the electric potential φ, the electron temperature Te, density ne and
Bernoulli’s function He at the time step k + 1. These, together with the updated
wall potentials at time k + 1 are fed back to the PIC model and the next time step
is finally initiated.

The exact time consistency described above is important if we are interested in
a second-order time integration scheme. In the simulations of Chapters 4 and 5,
however, a less consistent approach has been followed in which the surface variables
and hence the currents to the objects, are time-averaged over ∆kavg = 100 time steps,
in order to minimize unwanted oscillations (due to PIC noise). This solution, clearly
motivated in non-oscillating stationary problems, is valid in all those scenarios, in
which the time scale of the object potentials variation is large compared with the
∆kavg averaging time steps.





Chapter 4

Simulation of the spacecraft-plume
interaction

This chapter presents a study of the spacecraft-plasma plume interaction featur-
ing both an ion thruster and a neutralizer. The simulations are carried out with
the EP2PLUS code, and serve as a benchmark simulation for demonstrating the ca-
pabilities of the developed code, as well as for assessing the effects of non-neutral
plasma regions, and of the electron thermodynamics. The electron model introduced
in Chapter 3 allows to analyze the electric currents in the near region of the plasma
plume, and the process by which the plasma plume gradually becomes current-free,
as expected to be in the far-region of the expansion 1

1The simulation results of this chapter have been presented in one journal publication [120]
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4.1 Simulation geometry and settings

The plume-S/C interaction scenario considered here features a cubic S/C with an
ion thruster, a hollow cathode neutralizer, and two solar arrays, as shown in Fig. 4.1
(a) and (b), while the corresponding equivalent circuit is shown in Fig. 4.2.

(a) (b)

Figure 4.1: Simulation domain for the spacecraft-plume interaction simulation: (a)
x− z cross-section, and (b) x−y cross-section, both through the satellite center. The
PIC mesh is Cartesian, with a number of nodes along x, y, and z of 101× 101× 121
(2 cm side cells). The white dot on the thruster symmetry axis is the reference point
for the electron properties, the electric potential, and the Bernoulli’s function. Two
additional points on the thruster side and on the neutralizer axis are considered for
the computation of the ion energy distribution function.

Figure 4.2: Scheme of the equivalent circuit, for the considered scenario. Although a
small physical gap is considered (that let some particles through), the metallic face
of the solar arrays is electrically short-circuited with the metallic cubic body.
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Three conductive objects are considered: the satellite ground (including cubic
body, thruster case and the back-face of the solar arrays), the neutralizer keeper
external surface, and the most external grid of the thruster. The resistances between
S/C ground and acceleration grid and neutralizer keeper are assumed to be zero
(R12 = R13 = 0). The front face of the solar arrays, as shown in Fig. 4.1 (a), is
modeled as a dielectric object (i.e. the wall potential is determined locally from
current equilibrium). The values of some simulation parameters are summarized in
Tab. 4.1.

Table 4.1: Considered parameters for the plasma-plume satellite interaction simu-
lation. Applied voltages refer to the spacecraft ground. All considered objects are
conductive, except for the front surface of the solar arrays, which is dielectric.

Simulation parameter Units Values

Neutralizer keeper voltage V +13
Acceleration grid voltage V −180
Thruster mass flow rate sccms 27.13

Thruster mass utilization efficiency % 90.0
Doubly to singly charged ion current ratio % 9.1

Injected Xe+ profile (thruster) n/a SSM 2

Injected Xe++ profile (thruster) n/a SSM 3

Injected Xe+ energy (thruster) eV 1040

Injected Xe++ energy (thruster) eV 2080

Injected Xe+ temperature (thruster) eV 0.1

Injected Xe++ temperature (thruster) eV 0.2
Injected neutrals profile (thruster) n/a Flat
Injected neutral velocity (thruster) m/s 247 (sonic)

Injected neutral temperature (thruster) eV 0.05
Neutralizer mass flow rate sccms 3.59

Injected neutrals profile (neutralizer) n/a Flat
Injected neutral velocity (neutralizer) m/s 247 (sonic)

Injected neutral temperature (neutralizer) eV 0.05
Neutralizer ion flow percentage % 5.0

Injected Xe+,Xe++ profile (neutralizer) n/a thermal, Gaussian 4

Injected Xe+ temperature (neutralizer) eV 0.2

Injected Xe++ temperature (neutralizer) eV 0.4
Electron temperature at thruster exit eV 3.5
Electron polytropic cooling coefficient n/a [1.0, 1.3]

The considered thruster simulates the NASA’s NSTAR ion thruster [143, 144],
while the applied voltages to the acceleration grid and neutralizer keeper are kept
constant to respectively V12 = −180 and V13 = +13 V. The negative grid potential
prevents most of electrons from backstreaming towards it, while the neutralizer
keeper is biased positive with respect to the spacecraft ground [144].

2with outermost streamline radius R0 = 14 cm and divergence angle α0 = 20.5 deg
3with outermost streamlines radius R0 = 14 cm, and divergence angle α0 = 30 deg
4with outermost streamlines radius R0 = 4 cm
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The injection areas for both the thruster and neutralizer are circular with radii of
respectively 14 and 4 cm. Neutrals are injected axially with sonic conditions and with
a flat density profile from both the thruster and neutralizer injection cells. Regarding
the thruster ions, these are injected following the Ashkenazy-Fruchtman Self Similar
profile [50, 61], with an outermost streamline divergence angle α0 = 20.5 deg (at the
radius R0 = 14 cm from the thruster centerline). This divergence profile corresponds
to a divergence efficiency of 0.98, as considered in Ref. [144]. An already developed
divergence angle is considered because the mesh is not fine enough to simulate the
effects of beamlets injection and coalescence into a single beam, so that the injection
surface is actually simulated as a quasineutral surface, with a thin sheath (across
which the potential drops from its value at the quasineutral plasma to that of the
acceleration grid). For what concerns the neutralizer ions, past studies [145] have
shown that a significant ion current is also emitted. Here we have considered that
5% of the total mass flow of the neutralizer is emitted in the form of singly or doubly
charged ions from a thermal reservoir (with temperature of respectively 0.2 and 0.4
eV). Finally, a ratio between doubly and singly charged ion current of 9.1% [146]
has been considered for both the thruster and the neutralizer emissions.

Regarding the electron thermodynamics, a peak electron temperature of 3.5 eV,
consistent with existing experimental measurements for similar thrusters [59], is
assumed at a node located 6 cm downstream from the thruster exit (which represents
the reference plasma point for potential, Bernoulli’s function and electron barotropic
function), while four different values for γ are considered: 1.0 (isothermal), 1.1
(reference case), 1.2 and 1.3.

For what concerns the applied fluid closure, the simulations are run with the sole
quasineutral solver between t = 0 and t = 1 ms, and, starting from t = 1 ms, the
non-neutral solver is activated. The required time for a slow CEX ion (with an
energy content of 5 eV) to cross the entire simulation domain is around 1 ms, so
that the considered simulation time is expected to be sufficient to reach stationary
conditions.

The boundary conditions for the computation of the Bernoulli’s function He, in
this simulation setup, are:

Current free condition j·1⊥ = 0 at the external boundaries and at the dielectric
walls of the solar arrays front surface, thus yielding:

∂He

∂1⊥
= − e

σe

jd · 1⊥

Fixed electric current jW = jW (φW ) to the other conductive walls:

∂He

∂1⊥
=

e

σe

(jW − jd · 1⊥)

Dirichlet conditions He = const, at the emissive surface of the neutralizer,
equivalent to leaving a free electron current to balance the electron current lost
to the boundaries, and generated inside the domain (e.g. due to ionization).
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Regarding the electric potential, the boundary conditions are:

Dielectric or conductive wall potential φ = φW at the non-neutral material
boundary nodes.

Transition conditions φ = φS (refer to Eq. 3.77) at the transition material
boundary nodes.

Quasineutral electric potential φ = φ∗ at all quasineutral nodes (including
those on the external boundary).

φ = 0 at the reference node for the electron properties (6 cm downstream from
the thruster exit area, on the plume axis).

Neumann conditions on φ at the non-neutral external boundary nodes:

∂φ

∂1⊥
= 0.

This is clearly an approximation, but it turns out to be good enough for
simulation purposes, if the external boundary is sufficiently far from regions
characterized by steep plasma density gradients. Moreover, from Gauss’ the-
orem, if this boundary condition is applied to the entire external boundary,
it ensures that the total electric charge inside the domain be zero. Finally
observe that, if the external boundary is locally quasineutral (because a dense
plasma crosses it), then the local normal electric field is not constrained to be
zero and is given by the quasineutral solution.
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4.2 Simulation results and discussion

The electric potential, and the corresponding electric field intensity (and stream-
lines) are shown respectively in Fig. 4.3 (a) and (b), at the y = 0 cross section,
for the reference γ = 1.1 case. In this case, the S/C is floating at a potential of
−38 V with respect to the neutralized plasma plume (more precisely with respect
to the white dot of Fig. 4.3 (a)), so that the iso-potential lines adapt to this value
close to the cubic S/C body, through spatially resolved plasma sheaths. The sheath
electric field is then always oriented towards the S/C surfaces. For what concerns
the emitted plasma plume, the ambipolar electric field is always oriented radially
outwards with a small component along the z axis, along the plume expansion. The
effect of the CEX ions is clearly visible on the left of the main plasma plume, while
the neutralizer creates a plasma bridge with the thruster (necessary for the plume
neutralization) and alters substantially the symmetry of the plasma properties.
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Figure 4.3: Reference case results at y = 0: (a) electric potential, and (b) electric field
intensity (with streamlines). The reference point for the electric potential is shown in
the sub-figure (a) with a white dot.

The electron density, the total ion and neutral density, and the relative electric
charge density for the reference case are shown respectively in Fig. 4.4 (a), (b), (c),
and (d). The electron density follows closely the evolution of the electric potential,
with densities rapidly dropping to zero as the very negative S/C surfaces are ap-
proached. The CEX ion density (sum of both the singly and doubly charged ion
density) reaches values of 1011 m−3 close to the solar array, and between 1012 m−3

and 1013 m−3 on the sides of the thruster, a result which is very similar to past
simulations of this NASA ion thruster, like those of Refs. [147], [148], and [149].
Regarding the neutral density, this drops quickly from 1018 m−3 to 1014 m−3 as
we move downstream and laterally from the thruster and neutralizer exit surfaces,
while it is much lower close to the S/C lateral walls where neutrals are produced
by ion recombination (and values between 1011 and 1013 are found). Finally, the
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electric charge density, normalized with respect to the electron charge density, shows
a negative region just on the right of the neutralizer, where ions are almost absent,
and positive regions close to the other S/C surfaces.
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Figure 4.4: Reference case results at y = 0: (a) electron density, (b) total ion density
(sum of the ion populations densities), (c) total neutral density, and (d) relative charge
density, normalized with the local electron charge density.

The electron conductivity σe and the total ion current density are shown respec-
tively in Fig. 4.5 (a) and (b). Regarding the former, this is highest inside the main
thruster plume (up to 3000 Ω−1m−1) and features a lateral peak on the left of the
thruster, where the ratio between the CEX ion and neutral densities is highest, and
a second peak at the neutralizer exit, where both the quasineutral plasma and the
neutral densities are high. The total ion current density is practically conical inside
the main plume and diverts towards the S/C in the lateral plume regions.

The solution for the Bernoulli’s function He is shown in Fig. 4.6. The electric
potential correction due to collisional effects is negligible for the present case, in the
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Figure 4.5: Reference case results at y = 0: (a) electron conductivity, and (b) total
ion current density.

order of a few mV, reaching the largest values, around 10 mV, at the neutralizer
exit (where collisional effects are largest).
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Figure 4.6: Solution for the Bernoulli’s function at the y = 0 plane. The reference
point (He = 0) is shown with a white dot.

However, although the absolute potential correction is small, the electric current
density is not negligible in the near region of the plume, as shown in Fig. 4.7 (a),
and presents values around 100 A/m2 at the thruster exit and even larger ones at
the neutralizer exit (given the lower emission area of the latter).

A virtually current-free plasma plume is achieved just 30 − 40 cm downstream
from the thruster exit, which is consistent with the assumption that the far-region
plasma is essentially current free. All electric current streamlines originate at the
thruster exit (due to the emitted ions) and reach the neutralizer emission surface
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Figure 4.7: Reference case results: (a) total electric current density (with streamlines),
(b) driving current density (with streamlines), (c) relative contribution of σe∇He/e
(with streamlines) to the total electric current density, and (d) electron current density
(with streamlines), at y = 0.

(due to emitted electrons) just as expected (no electric current sources exist inside
the domain). We remind the reader that the total electric current is given by Ohm’s
law, Eq. 3.59, and presents two different contributions: the product σe∇He/e and
the driving current jd. The latter is shown in Fig. 4.7 (b) and presents a shape
similar to that of the ion current, although it decays much more rapidly as the
plume expands. In fact, from its very definition in Eq. (3.58), the driving current
tends to zero in a quasineutral plasma plume, composed of only singly charged ions
and electrons (and no neutrals). The relative magnitude and streamlines of the
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σe∇He/e term are then shown in Fig. 4.7 (c). The observed values and streamlines
clearly indicate that this term is the predominant one in determining the electric
current in large portions of the domain, with the exception of the central region
of the main plasma plume, where the contribution of the driving current term is
comparable.

Finally, Fig. 4.7 (d) shows the electron current density and streamlines at the
y = 0 cross section. It would appear as though some electrons that neutralize the
plume are actually separated electrically from the neutralizer. However, the 3D
electron streamlines, shown in Fig. 4.8, have a complex three dimensional structure,
and the farthest (from the neutralizer) conical plume streamlines are neutralized by
electrons that circle around the dense region of the plume. It is noticed that such
an electric path may be justified by the local peaks of electron conductivity, due to
the CEX ions, found around the main core of the plume, as shown in Fig. 4.5 (a).
In any case, all streamlines originate inside the neutralizer, because ∇·je ≈ 0 inside
this weakly collisional plasma (ionization effects are almost negligible).

Figure 4.8: Three-dimensional electron current streamlines emanating from the neu-
tralizer and merging with the ion plume. The farther (from the neutralizer) the
ion streamline to be neutralized, the darker the color of the corresponding electron
streamline.

An important capability of a S/C-plasma interaction tool is to predict the ion flux
and the mean wall-impact energy of ions on the S/C surfaces, in order to evaluate
the effects of sputtering and deposition. Fig. 4.9 (a) and (b) show respectively the
backscattered CEX ion flux and their average wall-impact energy at the S/C sur-
faces. The flux on the cubic S/C surfaces is between 1015 and 5 · 1015 m−2s−1, while
it decreases to approx. 2 − 5 · 1014 m−2s−1 on the solar array surfaces. Regarding
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their energy, since CEX ions are mainly created at the center of the thruster plume
(where φ ≈ 0), and the S/C floats at −38 V, the average wall-impact kinetic energy
is between 30 and 40 eV, being larger at the S/C edges. At the solar array, this
impact energy decreases to less than 30 eV.
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Figure 4.9: Reference case results at the S/C surfaces: (a) CEX ion flux, (b) average
wall-impact kinetic energy of backscattered CEX ions.

Fig. 4.10 then shows the ion current density reaching the S/C front surfaces.
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Figure 4.10: Ion current density to the S/C walls.

Clearly the same behavior of Fig. 4.9 (a) is resembled. A maximum ion current
density of up to 10 mA m−2 is reached at the corners of the thruster case and on one
side (the one closer to the thruster) of the neutralizer keeper. The average current
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density to the S/C cubic body is around 0.5 mA m−2. The current density to the
solar array, on the other hand, is generally lower than 0.1 mA m−2.

The ion energy distribution function [150] is finally plotted at the three different
test points of Fig. 4.1 (a), in Fig. 4.11 (a). Close to the thruster exit (black solid
line), three well defined populations of ions can be identified: the emitted doubly
charged ions (with energies around 2080 eV), the emitted singly charged ions (with
energies around 1040 eV), and the slow CEX ions (including both singly and doubly
charged ions), which feature energies that are generally below 3 eV. On the thruster
side (dotted blue line), on the other hand, only CEX ions are present, and the
singly and doubly charged ions populations can be distinguished again in terms of
energy content. In fact the energy of these ions depends directly on the potential
difference between the location where they are generated (dense plume region, with
φ ∈ [0,−5]V) and the considered test point potential (φ ≈ −20V). Finally, at
the neutralizer axis, the emitted singly and doubly charged ions can be clearly
distinguished from CEX ions generated in the plume: the two well definite peaks at
energies of approx. 15 and 30 eV are indeed caused by the acceleration of the emitted
ions, due to the ambipolar electric field at the neutralizer exit (characterized by a
steep potential drop). Finally, a zoom of the ion energy distribution function at the
thruster axis is shown in Fig. 4.11 (b), which also provides the separate contributions
of singly and doubly charged ions. The disparity of energies and distributions of the
different ion populations shown in Fig. 4.11 (a) and (b) clearly makes the use of
multiple fluids for the ion species quite troublesome.
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Figure 4.11: (a) Ion energy distribution function at three different locations, shown
in Fig. 4.1 (a): thruster axis (black solid line), neutralizer axis (red dashed line),
and 40 cm off the thruster axis, opposite to the neutralizer position (blue dotted
line). (b) Zoom on the slow CEX ions distribution function at the thruster axis:
total (solid line), singly charged (dashed line), and doubly charged (dotted line) ions
contributions. All results are instantaneous and not time averaged.
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4.2.1. Effects of the electron thermodynamics

The interaction between the plasma plume and the satellite is strongly affected
by the electron thermodynamics, which is here modeled with a polytropic cooling
law. Fig. 4.12 (a) and (b) show respectively the S/C potential and the ion/electron
current to the S/C walls (including also the currents to neutralizer, thruster grid
and solar arrays), for the 4 γ-cases considered. After a short transient, the electric
potential of the S/C reaches a stationary value, which means that the total current to
the S/C node approaches zero or fluctuates dimly around it. Moreover, the floating
potential is quite stable for all γ cases (the chosen value for the charging capacity
C is 20 nF).
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Figure 4.12: Time evolutions for γ = 1 (black dashed line), γ = 1.1 (blue solid line),
γ = 1.2 (green dash-dot line), and γ = 1.2 (red dotted line) of (a) electric potential,
and (b) ion and electron currents. The electric potential refers to the S/C with
respect to the plasma reference node potential (6 cm downstream from the thruster
exit), while the ion and electron currents refer to sum of all currents to the S/C walls,
including the neutralizer, the last thruster grid, and the solar arrays. A vertical
dash-dot line indicates when the non-neutral solver is activated (t = 1 ms).

The higher the polytropic coefficient, the more positive the S/C floats, as sug-
gested by the limit to which the electric potential tends when the electron density
goes to zero, which is −γTe0/(γ−1), as shown in Sec. 2.5. Clearly, since the collected
electron current is affected by this limit, the floating potential of the S/C also adapts
to it. Moreover, the closer to isothermal the electrons, the larger the collected ion
and electron currents, because of the larger electric fields that are capable of devi-
ating a larger fraction of slow ions towards the spacecraft. From these results, it is
then apparent that the S/C floating potential is strongly affected by the polytropic
cooling coefficient of the electrons. A precise prediction of this potential thus re-
quires a good knowledge of γ. Alternatively, by measuring the potential difference
between the S/C and the plasma plume, important information can be obtained on
the effective value of this coefficient.

The electric potentials for γ = 1.1 and γ = 1.2 are compared in Fig. 4.13 (a),
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while the slow CEX ion density is compared in Fig. 4.13 (b). The larger the γ, the
larger the electric potential, with the largest differences close to the S/C surface.
The lower electric fields for γ = 1.2 yield a slightly higher CEX ions concentration
downstream (+20%), and a lower one close to the solar array (−20/50%).
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Figure 4.13: Comparison, at y = 0, of the γ = 1.1 and γ = 1.2 cases: (a) electric
potential difference φγ=1.2−φγ=1.1, and (b) relative difference in the slow ion number
density nγ=1.2
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Finally, Fig. 4.14 (a) and (b) show respectively the relative differences in CEX
ion flux and wall-impact energy at the S/C surfaces, between the γ = 1.1 and the
γ = 1.2 cases.
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Figure 4.14: Comparison, at the S/C surfaces, of the γ = 1.1 and γ = 1.2 cases: (a)
relative difference in the CEX ion backscattering flux gγ=1.2

i,CEX/gγ=1.1
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difference in the wall-impact energy per ion Ēγ=1.2
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As commented above, the ion flux is lower for the higher γ case (−20/40% on the
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front S/C surface), because of the smaller electric fields. Regarding the wall-impact
energy, on the other hand, this is lower in the γ = 1.2 case, mainly because of the
higher floating potential of the S/C (−31 versus −38 V).

4.2.2. Effects of non-neutral plasma regions

As already explained in Sec. 3.3.3, EP2PLUS considers an automatic sub-division
of the simulation domain into quasineutral and non-neutral regions. In this regard,
Fig. 4.15 (a) and (b) show the square of εn (refer to Eq. 3.75), or equivalently the
relative charge density (with respect to the quasineutral electron charge density), at
respectively y = 0 and x = 0, indicating whether the material boundary faces are as-
sumed to be quasineutral or non-neutral. The quasineutrality criterion for the inner
plasma nodes (εn < 0.032 or a relative charge density lower than 1�) is only met
inside the thruster and neutralizer plumes, while the S/C boundaries are generally
non-neutral, except for the quasineutral injection surfaces. As already commented
in Sec. 4.1, a finer mesh would give the possibility of simulating the thin non-neutral
region at the exit of the acceleration grid, however, a proper characterization would
require a mesh adapting to the thruster grid holes (to simulate beamlets coalescence
into a single beam profile), and this is beyond the objectives of this study.
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Figure 4.15: Reference case results: square of the non-neutrality ratio at (a) y = 0
and (b) x = 0. In both pictures, the non-neutral and quasineutral boundary cell-faces
are highlighted respectively with a red and black line, respectively. The white areas
correspond to quasineutral regions, in which ε2n < 10−3.

For what concerns the satellite floating potential, and the collected ion/electron
current, let us refer to Fig. 4.12 (a) and (b). As mentioned in Sec. 4.1, the non-
neutral solver is only activated at t = 1 ms. While the S/C potential is not affected
significantly by this activation (variations of tenths of V are observed), the collected
plasma current increases importantly, indicating that solving for a finite plasma
sheath (with the correct boundary conditions) yields a larger attraction region for
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the slow CEX ions. The relative increase in the collected plasma current is around
20% for all simulated γ cases.

The reference case electric potential and slow CEX ion density, obtained with a
fully quasineutral simulation and with the non-neutral simulation considered above,
both referring to the same final time t = 2 ms, are compared in Fig. 4.16 (a) and (b).
Regarding the electric potential, the largest differences are concentrated close to the
S/C surfaces, with the non-neutral solution featuring generally lower potentials (the
potential at the S/C surface is up to 10 V more negative in the non-neutral case,
due to the spatial resolution of the sheath). Regarding the CEX ion density, the dif-
ferences downstream are mainly due to the statistical noise (CEX collisions are very
rare downstream), while the non neutral solution generally shows larger densities
close to the S/C surfaces (with the exception of the right side of the neutralizer).
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Figure 4.16: Reference case comparison, at y = 0, between non-neutral and quasineu-
tral simulation results: (a) electric potential difference φ− φ∗, (b) relative difference
in the CEX ion number density ni,CEX/n∗

i,CEX − 1.

Fig. 4.17 (a) and (b) show the relative difference in the CEX ion flux and average
impact energy, between the non-neutral and the quasineutral solutions. The ion flux
increase (from quasineutral to non-neutral) at the S/C cubic body is around 20%,
with peaks above 100%, with a similar behavior shown by the left solar array. The
asymmetry introduced by the neutralizer makes the CEX flux change on the right
solar array quite different, with a significant portion of it presenting a moderate
decrease in the flux (−10/20%). The variation in the average impact energy, on the
other hand, is much smaller, between 0 and 5%, since the S/C floating potential does
not vary much when switching from the quasineutral to the non-neutral solution, as
shown in Fig. 4.12 (a).
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Figure 4.17: Reference case comparison, at y = 0, between non-neutral and quasineu-
tral simulation results: (a) relative difference in the CEX ion flux gi,CEX/g∗i,CEX − 1,

(b) relative difference in the wall-impact energy per ion Ēimp,CEX/Ē∗
imp,CEX − 1.

4.3 Conclusions

This study has permitted demonstrating the hybrid code capabilities as a whole,
obtaining consistent results. In particular, the predicted CEX ion density appears to
be definitely consistent with the available data in the literature, for the same thruster
type. Moreover, the new electron model has permitted evaluating the electric current
loop between the neutralizer and the ion thruster exit surface. An interesting result
is that approximately half of the conical ion beam is neutralized by electrons that
circle around the denser region of the plume, following a favorable conductivity
path (partially due to the CEX ions) and avoiding the generation of extremely large
electric currents in front of the thruster. Moreover, a virtually current free plume is
achieved after 20 − 30 cm from the thruster exit, thus validating our assumptions
for the fluid model of the plasma plume far-region (Chapter 2).

The simulation has also highlighted that both the electron thermodynamics and
the solution of non-neutral plasma regions have a non-negligible role in determin-
ing the backscattered CEX ion flux, the collected currents and the S/C floating
potential.

Regarding the electron thermodynamics, the closer to isothermal are the elec-
trons, the higher the backscattered CEX ion flux, the average wall-impact energy,
and the lower (more negative) the spacecraft floating potential, as already suggested
by the polytropic limit of the electric potential, identified in Chapter 2.

For what concerns the simulation of non-neutral plasma regions, the floating
S/C potential is weakly affected, whereas a significant increase (up to 20%) in the
backscattered CEX ion flux has been observed, when switching from a quasineutral
solution to a non-neutral one, which takes into account the finite plasma sheaths
that naturally appear around the S/C.
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Regarding future work, the following features should be added to improve the
simulation and its predictions:

New heavy particles collisions, such as the momentum exchange collisions be-
tween ions and neutrals (MEX).

Effects of new types of electron emission (photo-emission, ion bombardment
emission, secondary electron emission, etc...) on the floating S/C potential.

Study of the sputtering of affected S/C surfaces (especially the acceleration
grid of the thruster).

Effect of the ionosphere ambient plasma on the S/C floating potential (not
treated here).



Chapter 5

Application to the ion beam
shepherd scenario

This chapter presents two different studies, which focus on the ion beam shepherd
mission scenario. The first is an optimization study of the whole electric propul-
sion subsystem of an IBS spacecraft, carried out with the use of the fluid model of
Chapter 2 and a simplified plasma plume-target interaction model. The second is a
detailed study of the spacecraft-plasma-target interaction, the so-called plasma bridge
interaction, carried out with the EP2PLUS hybrid code of Chapter 3, with the goal
of assessing quantitatively some of the most important operational issues affecting
the performance of an IBS mission 1

1The contents of this chapter are based on two journal publications [151, 121] and a conference
paper [152]
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5.1 Introduction and study goals

The space debris problem is gradually becoming a serious threat for the future
exploitation of certain types of Earth orbits [153, 154, 155, 156], such as the sunsyn-
chronous, polar or geostationary orbits. In the absence of active removal actions, the
space debris density might reach a critical point, beyond which a cascade effect in
the inter-objects collisions would cause an uncontrolled population growth, thus en-
dangering the human space exploration for generations (Kessler’s syndrome). In any
case, the actual space debris population is already causing a non-negligible impact
on operational mission costs, as more frequent collision avoidance maneouvres are
becoming necessary. In order to tackle this serious issue, two remediation strategies
can be followed: (i) mitigation and (ii) active debris removal (ADR) or relocation.

Regarding mitigation, it is necessary to define common and international disposal
strategies at the end of life of both commercial and scientific satellites. This rep-
resents an extra cost to be added to the mission budget (e.g. extra propellant to
transfer the satellite from its operative orbit to a disposal orbit) and it ought to be
common to all space competitors in the international scene. While being strictly
necessary, this mitigation approach is not enough to prevent the debris population
from growing indefinitely, as suggested by recent research [153, 155], according to
which, even if all new launches respected the most recent legislation on spacecraft
postmission disposal strategies (e.g. a final disposal to a 25-year decay orbit), at
least 5 debris objects per year need to be actively de-orbited in order to prevent the
debris number from growing, due to collisions and explosions in the already existing
population. This can be clearly observed in Fig. 5.1, showing the predicted space
debris population, under three different future scenarios.

Figure 5.1: Predicted space debris objects population, under three different scenarios:
simple post-mission disposal (PMD), post-mission disposal + 2 removed objects per
year, post-mission disposal + 5 removed objects per year. Figure taken from Ref. [153].

For the above reasons, the international community interest in ADR techniques is
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rapidly growing. The ion beam shepherd [42, 43, 44, 45] is one of such techniques, in
which the space debris object is progressively relocated to a different orbit, through
the slowly pushing action of a hypersonic plasma plume, generated by a plasma
thruster onboard a shepherd spacecraft. Referring to Fig. 1.2, two thrusters are then
required: an impulse transfer thruster (ITT), and an impulse compensation thruster
(ICT), located on the other side of the spacecraft to maintain formation flying with
the debris. This technique is contactless (a security distance is maintained from
the debris), and uses electric propulsion, thus being very efficient from a propellant
point of view. This makes the IBS particularly appealing, when compared with
other ADR techniques that involve capturing physically the debris object and/or
using chemical propulsion (e.g. the space tug), as it avoids a docking maneuver
with an uncooperative body.

However, because of the thruster plume divergence, the operating distances are
limited to a few times the debris size (with the current plasma propulsion technolo-
gies). The effective force transferred to the debris is thus only a fraction of the
total ITT thrust, FITT , as shown in Eq. (5.1), with ηB representing the momentum
transfer efficiency of the beam:

FTG = ηBFITT . (5.1)

Formation flying between the spacecraft and the debris then demands that the
accelerations on both the IBS and the space debris be equal, meaning that the ICT
thrust, FICT , is generally higher than that of the ITT [43], as dictated by the thrust
ratio equation:

FICT =

(
1 + ηB

mIBS

mTG

)
FITT > FITT , (5.2)

where mIBS and mTG are respectively the IBS and target debris masses.
At system level, it is extremely important to identify the operational points of

both thrusters (e.g. the operating voltage and the mass flow rate) that yield the
lowest possible system mass, while complying with a vast set of constraints, ranging
from overall power availability to size and cost of the required components. Such
optimal points strongly depend on the distance between the IBS and the debris
object, on the thruster types and characteristics, and on the mission specifications.
The main goal of the study of Sec. 5.2 is to propose an approach for the optimization
of the ITT thruster alone and of the overall electric propulsion subsystem (EPS),
considering a realistic IBS mission scenario.

Sec. 5.3, on the other hand, focuses on specific technical issues of this technique.
Although the IBS is a relatively simple concept, the evaluation of some operational
issues requires an advanced study of the plasma plume interaction between the S/C
and the debris object. In particular, the following phenomena appear to be partic-
ularly critical, especially for long duration IBS missions (i.e. aiming at relocating a
large number of debris objects):

The ion backscattering flow: charge-exchange collisions at the thruster exit
produce a low energy ion population that is deflected back towards the satel-
lite by the local electric fields. This ion backscattering can produce erosion
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and/or contaminate sensitive spacecraft surfaces, such as the solar array or
some optical sensors, required by the formation control GNC.

The sputtered atoms backflow from the target debris: the hypersonic plume
ions are energetic enough to knock out atoms of the space debris object towards
the spacecraft. This clearly represents an additional source of contamination.

Electric charging effects: apart from the clearly dominating effect of the emit-
ted plume ions, which connect electrically the spacecraft and the debris object
(plasma bridge), other sources of electric charging are the backscattered ions
(from CEX), the photoemission due to the incident light on the objects, the
secondary electron emission, the ion bombardment emission, and the ambient
ions and electrons.

Sec. 5.3 then aims at evaluating quantitatively the above described phenomena with
the hybrid code of Chapter 3, for the optimal mission scenario identified in Sec. 5.2.
Moreover, the force and torque transmission to the target debris is evaluated pre-
cisely and compared with the results obtained using a Self-Similar fluid model, like
those of Chapter 2.
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5.2 Optimization of the electric propulsion sub-

system

This section is based on the journal publication of Ref. [151], and is organized as
follows. The mission specifications and the IBS power constraints and assumptions
are described in Sec. 5.2.1. The ITT and ICT performance models are introduced in
Sec. 5.2.2. Then, the simplified models for the plasma plume expansion and interac-
tion with the space debris are presented in Sec. 5.2.3. The independent optimization
of the ITT is described and discussed in Sec. 5.2.4. Sec. 5.2.5 then presents the re-
sults of the overall propulsion subsystem optimization, including both the ITT and
ICT. Finally, the conclusions of the study are reported in Sec. 5.2.6.

5.2.1. Mission specifications and propulsion subsystem con-
straints

An IBS mission generally consists of two phases: a rendezvous phase with the
target debris object, out of the scope of this study, and a shepherding phase, in which
the orbit change is carried out with the use of electric propulsion. The specifications
of a realistic de-orbiting IBS mission are summarized in Tab. 5.1.

Table 5.1: De-orbiting mission specifications and assumptions

Mission requirements and assumptions Values Units

IBS spacecraft mass, mIBS 500 kg
Target debris mass, mTG ≃ 1.5 tons

Target debris characteristic diameter 2.5 m
Orbit altitude change 300 km

Orbit altitude change per day ∼ 2 km/day
Daylight fraction in orbit, fl 67 %

Shepherding phase duration, ∆tIBS 170 days
Achieved target delta-V 0.190 km/s

Required force on the debris, FTG 30 mN
Operational distance, d, between ITT and target debris ≥ 7 m

A de-orbiting manoeuvre of approximately 300 km in 170 days, or equivalently a
de-orbit rate of approx. 2 km/day, has been considered as the baseline mission goal.
The debris object weighs 1.5 metric tons and currently orbits in a nearly-polar low
Earth orbit. Considering an average 67% orbit daylight fraction (thrusters cannot
operate on battery power alone, due to a S/C design choice), the above defined
specifications on the debris mass and orbit decay rate are equivalent to constraining
the transmitted force to the debris, FTG, to 30 mN. Moreover, the operational
distance between the ITT exhaust plane and the debris object must not be lower
than 7 m. This threshold corresponds to the half span of the S/C solar array and has
been chosen due to collision safety considerations in case of a failure of the relative
attitude control. Finally, the IBS wet mass, mIBS, is expected to be around 500 kg.
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The electric propulsion subsystem, which is in charge of transmitting the required
force to the target, must comply with stringent power constraints at platform level.
Referring to Tab. 5.2, the total input power to the power processing units (PPUs)
of the EPS is limited to 3 kW. This means that, assuming a PPU energy conversion
efficiency of 85% (a conservative value), this power limit corresponds to 2.6 kW at
thruster level. Finally, regarding the power generation subsystem, a value of 13.3
kg/kW has been considered for the specific mass of the dedicated solar arrays. This
value is representative of the current available technology.

Table 5.2: IBS power constraints and assumptions

EPS constraints and assumptions Values Units

Input power to the EPS PPUs ≤ 3 kW
PPUs efficiency, ηPPU 85 %

Input power to both thrusters ≤ 2.6 kW
Specific mass of the power generation subsystem, ρpwr 13.3 kg/kW

5.2.2. Characterization of the ITT and ICT

In this study, both the ITT and the ICT are assumed to be radio-frequency ion
thrusters (RIT). This is a particular type of gridded ion thruster, in which the ion-
ization process is achieved through the inductively-coupled RF antenna, wrapped
around the thruster chamber, as shown in Fig. 5.2. The generated ions are acceler-
ated through a grid system to a kinetic energy given by qi∆φB, with qi represent-
ing the ion charge and ∆φB the effective acceleration beam voltage. As shown in
Fig. 5.2, this beam voltage is the effect of various contributions: the plasma voltage
drop within the chamber (a few tens of volts), ∆φchamber, the voltage drop be-
tween screen and acceleration grids (several kilovolts) and a final voltage increment,
∆φneut, that brings the potential to a value slightly higher than the potential of the
neutralizing hollow cathode common [1] (a few tens of volts) and that is necessary
to attract the neutralizing electrons. Since the hollow cathode is grounded, the ef-
fective beam acceleration voltage is well approximated by the screen grid potential:

∆φB = ∆φchamber + (φscreen − φacc)−∆φneut ≃ φscreen. (5.3)

For this optimization study, a thruster performance model is needed to explore the
behavior of various thruster figures of merit as a function of some design parame-
ters. The details and the justification of such a performance model can be found
in Ref. [157]. Hereafter, only a summary of the main characteristics of the model
is provided. Referring to Fig. 5.3, the required input variables (or design parame-
ters) are the beam voltage, ∆φB, and the thrust force, F . The model then provides
as output the thruster plume divergence angle, α0, the necessary beam current,
IB, the thruster radius, Rthr, the mass utilization efficiency, ηm, and the RF input
power, PRF , necessary to sustain the discharge. These performance figures follow
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Figure 5.2: Generic working principle of a RIT thruster and electric potential evolu-
tion across the thruster symmetry axis. Voltage drops and lengths are not to scale.

Figure 5.3: Block diagram of the performance model used for both the ITT and the
ICT.

the dependencies shown in Eqs. (5.4) to (5.8):

α0 ∝ ∆φ−β1

B , (5.4)

IB ∝ F∆φ
−1/2
B , (5.5)

Rthr ∝ I
1/2
B , (5.6)

ηm ∝ ln (Rthr), (5.7)

PRF ∝ Rβ2

thr. (5.8)

First of all, the thruster divergence angle, α0, is modeled as a decreasing power law of
the beam voltage, with a coefficient β1 > 1, as shown in Eq. (5.4). The beam current
is then proportional to the ratio between the thrust and the ion exhaust velocity
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(which scales as ∆φ
1/2
B ), as shown in Eq. (5.5). Since the required ion extraction

area is proportional to the beam current and grows with the square of the thruster
radius, Rthr is proportional to the square root of IB, as dictated by Eq. (5.6). The
mass utilization efficiency, ηm, increases logarithmically with the thruster radius
according to Eq. (5.7), as a larger thruster requires a lower neutral gas pressure to
sustain the RF discharge and hence features a lower neutral outflow fraction. The
required RF input power is also modeled as a function of the thruster radius, and
more precisely as a power law with coefficient β2 > 1, so that a larger thruster
requires a higher RF input power, as shown in Eq. (5.8).

With the performance figures computed above, it is then straightforward to obtain
the beam power, PB, and hence the total thruster input power, P = PB + PRF , the
mass flow rate, ṁ, the specific impulse, Isp, and the total thrust efficiency, ηT ,
following their classical definitions, provided in Eqs. (5.9) to (5.13).

PB = IB∆φB, (5.9)

P = PRF + PB, (5.10)

ṁ =
mi

qi

IB
ηm

, (5.11)

Isp =
F

ṁg0
, (5.12)

ηT =
FIsp
2P

. (5.13)

The models for the ITT and for the ICT only differ in terms of the proportionality
constants and power law coefficients in Eqs. (5.4) to (5.8), as discussed in Ref. [157].

5.2.3. Momentum transfer efficiency

5.2.3.1. Simplified plume expansion and debris interaction models

A detailed description of the physical phenomena taking place in a plasma plume
expansion has already been provided in Sec. 1.3. Fig. 5.4 shows the near and far-
region of a plasma plume, in the context of an ion beam shepherd mission, and
includes a spherical target debris. Please also observe that the far region divergence
angle, introduced in Sec. 2.5.2, is particularized to the distance of the target debris
center of mass. As done in Chapter 2, we begin by defining a reference frame based
on an initial plane located within the far region, at a distance d0 from the thruster
exit. The plume is then modeled here with the Parks-Katz initial profiles, given by
Eq. (2.34) and shown in Fig. 2.5. This means that it features a Gaussian density
profile, a constant axial velocity and a linearly increasing radial velocity. As con-
sidered in Chapter 2, the streamtube containing 95% of the ion current has a radius
R0 and a half-cone angle given by the thruster divergence angle, α0, as shown in
Fig. 5.4.

Given the impossibility to obtain experimental near region data at this design
stage, we shall further assume that our far region starts at the exit plane of the
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Figure 5.4: Sketch of the plasma plume near and far regions, the plasma streamtube
containing 95% of the ion current, and the target debris.

thruster (i.e. we take d0 = 0), where the ITT performance model provides the
corresponding plume divergence angle, α0. To cover for the potential divergence
increase in the near-region, a +10% margin on this initial divergence angle (or
thruster divergence angle) is included in the following analyses.

The SSM method then allows to compute the plasma density and velocity through
a self-similar expansion function h, which obeys Eq. (5.14) and can be obtained
through numerical integration with the initial condition h(0) = 1. In this differential
equation, z̃ = z/R0 is the normalized axial coordinate and M0 is the initial ion Mach
number, whose square represents the ratio between the ion kinetic energy and the
electron thermal energy, and is shown in Eq. (5.15) as a function of the beam voltage,
where mi and qi are the ion mass and charge (we assume here singly charged xenon
ions) and Te0 is the electron temperature at the origin O of the reference frame of
Fig. 5.4, expressed in energy units (equal to the product of the Boltzmann’s constant
and the classical temperature):

dh

dz̃
=

√
tan2 α0 + 12

lnh

M2
0

; h(0) = 1, (5.14)

M0 =

√
miu2

i0

Te0

=

√
2qi∆φB

Te0

. (5.15)

The 95% ion current streamtube radius, R(z), the axial and radial plume veloc-
ity, uz(r, z) and ur(r, z), and the plume density, n(r, z), are finally obtained with
Eqs. (5.16) to (5.19). Here n0 and ui0 represent the plasma density and ion velocity
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at the origin O:

R(z) = R0h(z̃), (5.16)

uz(r, z) = ui0, (5.17)

ur(r, z) = ui0
dh

dz̃
(z̃)

r

R(z)
, (5.18)

n(r, z) =
n0

h2(z̃)
exp

(
−3

r2

R2(z)

)
. (5.19)

It is worth mentioning that the self-similar solution of Eq. (5.14) and Eqs. (5.16) to
(5.19) is valid only for isothermal electrons. Other thermodynamic models for the
electrons can be easily employed, such as polytropic electrons. However, as shown
in Sec. 2.5.2, the isothermal limit is conservative, in the sense that it causes the
largest increase of plume divergence and hence, in the context of an IBS mission, the
lowest momentum transfer efficiency [49, 50]. The electron temperature appearing
in Eq. (5.14) (through M0) assumes values around 2 − 3 eV [58, 92] in Hall Effect
thrusters and between 1 and 3 eV in ion thrusters [11]. Therefore, we have assumed
the conservative value of Te0 = 3 eV, as shown in Tab. 5.3. In fact, the higher the
electron temperature and their thermal energy, the higher the increase of divergence
in the plume. On the contrary, if we progressively decrease the electron temperature
to 0, we get the limit of M0 → ∞, for which the self similar function can be easily
solved as h (z̃) = 1+ z̃ tanα0, corresponding to a perfectly conical plume expansion.

With the plume solution of Eq. (5.14) and Eqs. (5.16) to (5.19), and following
the approach of Ref. [43], a simplified formula for the fraction of plume momentum
intercepted by the debris can be obtained. Firstly, to simplify the analysis, the debris
is modeled as an equivalent sphere of radius RTG = 1.25 m (half of the characteristic
diameter of the target debris, given in Tab. 5.1) and its center is located at a distance
d from the thruster exit plane. At this distance, assumed equal to 7 m (the minimum
operational distance of Tab. 5.1), the radius of the plasma tube carrying 95% of the
ion current is RF , which allows us to define an equivalent conical divergence angle
at the debris, αF , as:

αF = arctan

(
RF −R0

d

)
> α0. (5.20)

Note that αF is not the local slope angle of the 95% ion current streamline, as clearly
shown in Fig. 5.4. Integrating the plasma momentum over the surface of the sphere,
we can finally compute the momentum transfer efficiency as:

ηB = 1− exp

(
− 3R2

TG

R2
F − (tanαFRTG)

2

)
. (5.21)

Please note that a generalization of the force transmission to a generic target shape
(and hence not a spherical target) has been considered in a related study [158].

The assumptions described so far for the characterization of the momentum trans-
fer efficiency are finally summarized in Tab. 5.3.
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Table 5.3: Parameters affecting the plume expansion and target interaction

Plume and debris interaction parameters Values Units

Electron temperature, Te0, at the origin O 3.0 eV
Equivalent spherical radius, RTG, of the debris 1.25 m

Near region axial length, d0 0.0 m
Distance between thruster exit and debris centre, d 7.0 m
Margin on α0 to account for near region effects 10.0 %

Ion mass mi (xenon) 2.18 · 10−25 kg
Ion charge, qi 1.6 · 10−19 C

5.2.3.2. Equivalent conical divergence angle at the debris and momen-
tum transfer efficiency

In this section, the effect of the ITT beam voltage on αF and ηB is assessed and
discussed. With the use of the plume model described in Sec. 5.2.3, and with the
parameters of Tab. 5.3, we can obtain a 2-D map of the equivalent conical divergence
angle and of the momentum transfer efficiency as a function of ∆φB and α0 for 2
different values of R0 (7 and 25 cm), whose range should include the design radius
of the ITT thruster.

Referring to Fig. 5.5 (a), as the beam voltage, ∆φB, or the initial divergence
angle, α0, increase, the difference between the near and equivalent conical divergence
angles becomes smaller. Asymptotically, αF tends to α0 for both increasing beam
voltage and near region divergence angle. Regarding the initial plume radius effect,
the higher plume radius yields a lower equivalent divergence angle at the debris,
because the radial electron pressure gradients at the initial plume plane are lower,
thus yielding a lower divergence increase.
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Figure 5.5: Representations of (a) equivalent conical divergence angle and (b) mo-
mentum transfer efficiency, for R0 = 7 cm (solid line) and 25 cm (dashed line).

Fig. 5.5 (b) shows the corresponding dependence of the momentum transfer ef-
ficiency on ∆φB and α0 for the two initial radius cases. The momentum transfer
efficiency increases substantially for decreasing divergence angles, and, for a given
α0, it shows a weak dependence on the beam voltage, except at very low voltage and
small initial divergence angle. The effect of the initial plume radius, on the other
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hand, is twofold. At a sufficiently high beam voltage or divergence angle, when the
electron pressure effects are negligible, a higher initial plume radius R0 yields au-
tomatically a higher radius RF at the target debris, and hence a lower momentum
transfer efficiency (through Eq. (5.21)). At small initial divergence angles and beam
voltages, on the other hand, the increase in divergence angle plays a more important
role than the initial plume radius, so that a lower initial radius also yields a lower
momentum transfer efficiency.

In our ITT performance model, the near region divergence angle, α0, is a direct
function of the beam voltage, as given by Eq. (5.4), so that the momentum transfer
efficiency (and the equivalent conical divergence angle at the debris) is indeed a
function of ∆φB and R0.

In order to evaluate the real effect of the initial plume radius R0 on the mo-
mentum transfer efficiency for our ITT, ηB has been evaluated again for the two
different initial radius cases (7 and 25 cm). The use of the thruster performance
model of Sec. 5.2.2 has been limited to Eq. (5.4) to model the dependence of the
initial divergence angle on ∆φB (Eq. (5.6) has not been considered here). The mo-
mentum transfer efficiency evolution with ∆φB is shown in Fig. 5.6. At low beam
voltages (below 2.5 kV), the momentum transfer efficiency increases almost linearly
with ∆φB, while at higher voltages (above 2.5 kV) the increase becomes weaker,
saturating at almost 100% for voltages above 4.5 kV.
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Figure 5.6: Momentum transfer efficiency versus ∆φB , for R0 = 7 cm (solid line) and
25 cm (dashed line).

Although the differences between the two R0 cases are small (always lower than
5%), the worst case scenario is clearly represented by the higher initial radius case
(25 cm). The 25 cm case has then been considered to model conservatively the
dependence of ηB on ∆φB in the optimization study described in the following
sections.

Before proceeding with it, however, it is worth to further discuss the plume ex-
pansion effects on the momentum transfer efficiency. Referring to Fig. 5.5 (a), it is
apparent that the more hypersonic (the higher M0 or ∆φB) and the more divergent
(the higher α0) the plume is, the closer to conical its expansion. This conical-like
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expansion is the major source of momentum transfer efficiency loss, as shown in
Fig. 5.5 (b), where the iso-ηB lines are almost horizontal and show a weak depen-
dence on the beam voltage. Under a purely “geometrical” expansion, the plume
density decreases with the square of its streamline radius, which is proportional to
both the operational distance and tan(α0). Therefore, it is paramount to minimize
α0, which generally requires operating at a high beam voltage (Fig. 5.6).

Secondly, even if the initial divergence angle is small, the residual electron pressure
makes the plume expand further, meaning that the slope of the ion streamlines
increases away from the thruster [49, 50]. This effect is small in our case, except
at very low ∆φB and α0 (where the iso-αF and iso-ηB lines of Fig. 5.5 (a) and
(b) deviate from horizontal lines), and can always be mitigated by increasing the
operating Mach number, M0, provided by Eq. (5.15). For a fixed propellant atom
mass, this can be achieved by either increasing the beam voltage, ∆φB, or reducing
the residual electron temperature, Te0, in the plume.

5.2.4. Optimization of the ITT

Before proceeding with the optimization of the overall EPS, it is useful to firstly
optimize the ITT independently. This means to identify the operating beam voltage
of the ITT that maximizes some specific figure of merit. As explained in Ref. [157],
a key figure of merit for the ITT is the ratio between transmitted force to the debris
and input power to the thruster. Referring to Fig. 5.6, if we operate at a constant
ITT thrust, the transferred thrust to the debris grows linearly with ∆φB at low beam
voltages (Fig. 5.6), while the required input power grows with ∆φ

1/2
B (Eqs. (5.9) and

(5.5) with F constant). The transferred thrust to power ratio thus increases with
∆φB until the momentum transfer efficiency begins to saturate and its increase is
equal to the increase in input power. The voltage corresponding to this maximum
transferred thrust to power ratio represents the optimal ITT operational condition.

A method to maximize the above defined figure of merit is described hereafter.
By fixing the transmitted force on the target to the required 30 mN value (see
Tab. 5.1), we shall look for the operational voltage that minimizes the required ITT
input power. First, we compute the required ITT thrust as a function of ∆φB, with
the conservative curve of Fig. 5.6 to express the momentum transfer efficiency:

FITT (∆φB) =
30 mN

ηB(∆φB)
. (5.22)

Then, once ∆φB and FITT are fixed, with the use of the performance model of
Sec. 5.2.2, all the thruster performance figures can be obtained, including the input
thruster power, PITT . This power is finally plotted in Fig. 5.7 as a function of ∆φB.
As expected, a minimum operating power is found at a ∆φB = 3.3 kV (black dot in
the figure), with a corresponding thrust force of 31.9 mN and a momentum transfer
efficiency of 94.1%.

The choice of the design voltage of the ITT, however, cannot be determined solely
by the maximization of the transferred force to power ratio. A key figure of merit of
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Figure 5.7: ITT input power required to transfer a force of 30 mN to the debris.

the ITT is, in fact, the mass utilization efficiency, ηm, which should be high. In fact,
a low ηm can cause a high number of charge-exchange collisions between ions and
neutral atoms in the near region, and hence a large ion backflow towards sensitive
S/C surfaces, which could potentially endanger the mission, or increase the initial
plume divergence, α0, beyond the values assumed here. These effects are further
investigated in Sec. 5.3.

At the optimal ITT point discussed above, the mass utilization efficiency turns
out to be 72.2% (according to the ITT performance model). Although it is out of
the scope of this paper to assess the effects of such efficiency, it is a key aspect to
model when designing a real mission.

Finally, in order to get an idea of how an already existing technology would
perform as ITT, we have chosen the NASA Solar Technology Application Readiness
(NSTAR) thruster [11, 159, 160] as a representative candidate. At its throttle level
N.9 (out of 15), this thruster features a total input power of 1.57 kW, a beam voltage
of 1.1 kV, a thrust force of 62.5 mN, and a 95% ion current divergence angle of 28.5
deg.

Assuming an initial plume radius of 15 cm (equal to the NSTAR thruster radius),
and a 10% margin on the initial divergence angle, the NSTAR would feature a
momentum transfer efficiency equal to 20.1%, with a transmitted force on the target
equal to 12.5 mN. This means that, at a power level close to the minimum of Fig. 5.7,
the NSTAR thruster would achieve the mission in approximately 400 days (versus
the 170 days requirement). This illustrates clearly the central importance of a low
plume divergence to increase the IBS efficiency and reduce the debris removal time.

5.2.5. Optimization of the electric propulsion subsystem

5.2.5.1. Major assumptions

The optimization described in Sec. 5.2.4 provides very valuable inputs for the
choice of the operational point of the ITT alone. Nevertheless, from an overall
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subsystem perspective, what needs to be minimized are the input power to the two
thrusters, P ⋆, and the fraction of the EPS dedicated mass that can be optimized,
m⋆. In this section, we shall describe the approach we have followed to define the
optimal operational points (or beam voltages) of the two thrusters that minimize
P ⋆ and m⋆.

The total thruster input power to be optimized, P ⋆, is simply given by:

P ⋆ = PITT + PICT , (5.23)

while the definition of m⋆ is less straightforward. The total EPS dedicated mass can
be split into several contributions: the two thrusters mass, mITT +mICT , the total
dedicated power generation subsystem mass, mpwr (solar arrays fraction dedicated
to the generation of the PPUs input power), the total propellant mass, mprop, and
the power processing units mass, mPPU . In this study, however, we have considered
for m⋆ only a part of the above defined EPS dedicated mass, as shown in Eq. (5.24):

m⋆ = mpwr +mprop. (5.24)

In fact, the mass contributions of the thrusters and of the PPUs have not been
included, as their variations with the operational beam voltage are expected to
be quite small. The former (thruster units masses) would slightly depend on the
operating conditions, as a higher voltage yields a lower mass flow rate and hence a
smaller and lighter thruster [157]. However, a thruster unit weighs only a few kg (at
these power levels) and hence, its mass variation can be neglected with respect to
the major mass contributions: mpwr and mprop. Regarding the PPUs, on the other
hand, their mass can hardly be modelled as a linear function of ∆φB and their mass
variation is expected to be small (in the considered range of beam voltages). The
remaining mass contributions are modeled as given by Eqs. (5.25) and (5.26):

mprop = fl∆tIBS (ṁITT + ṁICT ) , (5.25)

mpwr =
ρpwrP

⋆

ηPPU

, (5.26)

where fl and ∆tIBS are respectively the orbital period fraction in daylight conditions
and the shepherding phase duration, ṁITT and ṁICT are the mass flow rates of the
ITT and ICT, and ρpwr, ηPPU are respectively the solar array specific mass and the
PPUs energy conversion efficiency.

The values of all the parameters required by the EPS optimization study are
listed in Tabs. 5.1 and 5.2.

5.2.5.2. Overall optimization method

The electric propulsion subsystem optimization consists of studying the evolution
of figures of merit such as the total thruster input power, P ⋆, the optimizable EPS
mass, m⋆, the total required propellant mass, mprop, and the equivalent shepherding
delta-V, ∆Veq, as 2-D functions of ∆φB,ITT and ∆φB,ICT . For any ITT beam voltage,
∆φB,ITT , the following applies:
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1. The ITT thruster parameters are computed following the approach of Sec. 5.2.4
with the model of Ref. [157] (described in Sec. 5.2.2).

2. Given the ITT thrust, FITT , the required ICT thrust is obtained through
Eq. (5.2).

3. For a varying ICT beam voltage in a range between 0.5 and 5 kV, the following
parameters are computed:

a) The ICT thruster performance figures, with the model of Ref. [157] (de-
scribed in Sec. 5.2.2); b) the overall (ITT+ICT) thruster input power, P ⋆ =
PICT + PITT ; c) the overall required propellant mass, mprop, using Eq. (5.25);
d) the overall power subsystem dedicated mass, mpwr, using Eq. (5.26); e) the
equivalent shepherding phase delta-V, ∆Veq. An equivalent propulsion subsys-
tem specific impulse is first obtained as follows:

Isp,eq =
ṁITT Isp,ITT + ṁICT Isp,ICT

ṁITT + ṁICT

, (5.27)

where Isp,ITT and Isp,ICT are respectively the ITT and ICT specific impulses.
Then, through Tsiolkovsky’s equation, ∆Veq is computed as:

∆Veq = Isp,eqg0 ln

(
mIBS

mIBS −mprop

)
, (5.28)

where g0 is the standard gravity acceleration constant.

5.2.5.3. Overall optimization results

Following the procedure described in the previous paragraph, the 2-D contours of
Fig. 5.8 have been obtained. Fig. 5.8 (a) shows the total thruster input power, P ⋆.
For a given ITT voltage, the total power presents a minimum at an ICT voltage of
approx. 1000 V. Then, it starts to increase again because, for a given ICT thrust,
the required ICT power grows with the ICT specific impulse (or beam voltage).
The lowest total power is 2.54 kW, achieved at the ITT-ICT voltages point (3.58,
1.01) kV. At this point, FITT = 31.1 mN and FICT = 40.6 mN. It is important to
underline that small changes in the ITT voltage around this optimal point produce
no significant variation in the total thruster power.

Fig. 5.8 (b) shows the optimizable EPS dedicated mass, m⋆. The optimal point
now shifts to higher voltages for both the ITT and the ICT with respect to that of
Fig. 5.8 (a), because the total propellant mass decreases for increasing voltages. The
optimal voltages (corresponding to a total mass of 56.6 kg) are (4.01,1.56) kV. At
this point, FITT = 30.5 mN and FICT = 40.1 mN. Observe that, for a wide region
around the optimal point, variations in both the ITT and ICT voltage produce no
significant changes inm⋆. Moreover, the total mass savings that an optimized design
yields are quite small (10− 15 kg), when compared to the total expected IBS mass
(500 kg).
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Figure 5.8: Representations of (a) total thrusters input power, (b) optimizable EPS
dedicated mass, (c) total propellant mass, and (d) equivalent shepherding delta-V.

Fig. 5.8 (c) shows the total propellant mass of the shepherding phase as a function
of both the ITT and the ICT beam voltages. Clearly, the higher these voltages,
the lower the overall propellant mass. However, the propellant mass savings of an
optimized design are, again, quite small. For example, at ∆φB = 3.5 kV, increasing
the ICT voltage from 1 to 2 kV only yields a mass saving of 5 kg.

Finally, Fig. 5.8 (d) shows the equivalent shepherding delta-V, ∆Veq. As expected,
for an ICT voltage above 1 − 1.5 kV, the delta-V depends essentially on the mo-
mentum transfer efficiency and hence on the ITT voltage alone: the higher the ITT
voltage, the lower the ∆Veq. At low ICT voltages however, the divergence losses
of the ICT become important and this means that the ICT mass flow necessary to
achieve the required thrust increases as the voltage decreases. For this reason, the
equivalent shepherding delta-V increases substantially as the ICT voltage becomes
smaller. It is also pointed out that ∆Veq does not represent the inertial velocity
change of either the target or the IBS (shown in Tab. 5.1), but rather the propul-
sion delta-V of a thruster, which is equivalent (in terms of mass consumption) to
the ITT-ICT system.

The main conclusion that can be extracted from the presented results is that the
optimal points for the ICT and ITT beam voltage are very different. The need to
guarantee a sufficiently high momentum transfer efficiency drives the optimal ITT
voltage to higher values. For the ICT, on the other hand, as long as the thruster
efficiency is not strongly affected, a lower voltage allows to keep the required power
low, at the expense of a higher propellant consumption. This results into an ICT
optimal beam voltage, which is generally quite lower than that of the ITT.

The optimal design choice may be either based on the total dedicated mass or on
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the total thruster power, depending on the specific mission constraints. For example,
for missions featuring a well defined limit for the total platform power, minimization
of the total thruster power should be pursued (Fig. 5.8 (a)). For other missions not
featuring such a stringent constraint, the total dedicated mass would represent a
more adequate figure of merit for the overall electric propulsion subsystem (Fig. 5.8
(b)). Nonetheless, as seen in this analysis for a single de-orbiting mission, m⋆ is quite
small with respect to the total IBS wet mass (10%), and therefore the dedicated mass
optimization has only a small impact on the total mass budget.

5.2.6. Conclusions

This section has presented a dedicated study of the optimization of the electric
propulsion subsystem of an ion beam shepherd mission, a novel technique for con-
tactless debris de-orbiting/relocation that requires two electric thrusters: an impulse
transfer thruster and an impulse compensation thruster. The optimal operational
points of the ITT alone and of the two thrusters considered simultaneously, ex-
pressed in terms of their beam voltages, have been identified and the corresponding
optimization method described.

Dedicated design performance models [157] have been used to model the effects
of changes in the operational conditions of both thrusters (beam voltage and thrust)
on their performance figures.

Then, simplified plasma plume and target interaction models have been used to
characterize numerically the momentum transfer efficiency, and it has been found
that, for the given mission scenario, the plume physics clearly affects the design
choice. First of all, the thruster must guarantee a small initial divergence angle,
as the conical beam expansion is the major factor that reduces the momentum
transfer to the target and hence the efficiency of the IBS technique. Secondly, a
high operational voltage also reduces the increase of the beam divergence due to
electron thermal effects.

From the point of view of the ITT alone, it is found that an optimal beam
voltage exists that maximizes the transmitted force to power ratio, or equivalently
that minimizes the required power for a given force on the target.

The optimization study for the whole electric propulsion subsystem has permitted
to identify the optimal operational points of both thrusters simultaneously, finding
that the minimum total dedicated mass or power are minimized for two different
beam voltages of ITT and ICT, being that of the ITT much higher. The choice on
whether to minimize the total dedicated mass or the total thruster power depends
on the individual mission specifications.

The study presented in this paper can be further refined in the future, by intro-
ducing additional effects in the total EPS mass budget, such as the influence of the
mass of the thruster units and of the dedicated PPUs.

In addition, although both thrusters have been considered of the same type (radio-
frequency ion thrusters) to reduce the system complexity, using a different technol-
ogy for the ICT, like a Hall Effect thruster, is also envisaged and should be further



5.2. OPTIMIZATION OF THE ELECTRIC PROPULSION SUBSYSTEM 133

investigated. In fact, such thrusters generally feature a better thrust to power ratio
than ion thrusters, thus turning out to be very promising for missions with stringent
constraints on the available platform power.

An important study to be addressed in future work is also the optimization of a
multiple debris removal mission. In fact, the IBS is clearly re-usable, a characteristic
that makes it particularly appealing, compared to other ADR techniques. Such an
optimization should take into account the time required by the rendezvous phases
with each of the successive debris objects, as well as the corresponding delta-V. For
what concerns the latter, its value is fixed by the mission orbital parameters and,
apart from driving upwards the S/C wet mass, it only affects the mass optimization,
favoring a higher specific impulse for the rendezvous thruster (ITT or ICT). On
the other hand, the rendezvous phases duration affects both the mass and power
optimizations, because it determines, together with the number and mass of the
debris objects, the minimum force to be transmitted to the debris, for a given
mission duration.

Finally, future work should also address the effects of an off-center plume impact
on the debris, which consist in a momentum transfer efficiency loss, but also in an
induced angular acceleration of the debris object. Recent research [45], suggested
the use of a dedicated control strategy, even though the associated fragmentation
risk is estimated to be quite small.
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5.3 Spacecraft-plasma-debris interaction study

This study is based on the journal publication of Ref. [121], and is structured as
follows. Sec. 5.3.1 introduces the main modeling aspects, and the simulation setup.
Then, Sec. 5.3.2 describes and discusses the corresponding results, while Sec. 5.3.3
summarizes conclusions and future work.

5.3.1. Spacecraft-plasma-target model and simulation setup

The study of the spacecraft-plasma-target interaction in an IBS mission requires
modeling some aspects that have not been fully covered in Chapter 3.

First of all, in order to evaluate the backsputtering contamination from the target
debris, the sputtering properties have to be properly characterized (yield, sputtered
atoms energy, backscattering probability). This is dealt with in Sec. 5.3.1.1.

Secondly, the equivalent circuit of Fig. 3.9 is considered to model the plasma
plume interaction with both the IBS and the target. In this scheme, the spacecraft
sub-circuit is composed of the last grids of both ion thrusters (ITT and ICT), the
neutralizers keepers, and the S/C ground, with the latter consisting of a cubic body,
the ITT and ICT cases, and the bottom face of the solar arrays. The top face
of the solar arrays, on the other hand, is considered to be dielectric and directly
illuminated by the Sun. For what concerns the space debris sub-circuit, it only
features the debris body.

Thirdly, the forces and torques transferred to the space debris are modeled fol-
lowing the approach described in Sec. 5.3.1.2.

Finally, the simulation setup is presented in Sec. 5.3.1.3.

5.3.1.1. Modeling the target debris sputtering

When a hypersonic particle hits the target debris surface, apart from the neutral
reflection and ion recombination phenomena, treated in Sec. 3.2.6.3, it can also cause
sputtering, which means that it knocks out a certain number of material surface
atoms. As already explained in Sec. 3.2.6.3, the sputtering response can be modeled,
in general, by defining: (i) the sputtering yield Y (number of sputtered atoms per
impacting particle), (ii) the particle backscattering probability pbks (probability that
an impacting particle is reflected backwards), and (iii) the emission mean energy
Ēemi for the sputtered atoms. While the sputtering effects in the PIC model are
simulated with the algorithms of Sec. 3.2.6.3, here it is important to adequately
characterize the above mentioned sputtering properties. For a target debris made
of aluminium and a xenon ion species, the resulting sputtering properties (obtained
with SRIM/TRIM [129]) are shown in Fig. 5.9. The yield presents a maximum
value at oblique incidence angles (around 75 deg.) and grows with the impacting
particle energy (since more collisions are capable of knocking out a lattice atom).
For what concerns the sputtered atoms energy, this grows monotonically with both
the particle energy and incidence angle, as expected. Finally, the backscattering
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probability is practically independent of the impacting particle energy and grows
with the incidence angle, being maximum at grazing incidence and null for αimp < 45
degrees. For instance, the values of the yield and of the mean sputtered atoms
energy for the ITT singly charged ions at 3500 eV of energy (refer to Tab. 5.4) and
impacting at normal incidence, are respectively 2 and 14 eV, while the backscattering
probability is zero.
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Figure 5.9: Sputtering properties for a hypersonic flow of Xe ions/atoms on an Al
target, showing (a) the particle yield (i.e. the average number of sputtered atoms per
incident particle), (b) the mean sputtered atoms emission energy, and (c) the incident
particle backscattering probability.

5.3.1.2. Transmitted force and torque to the debris

The estimation of the total force and torque transmitted to the target debris
is of fundamental importance in the context of an IBS mission. While the former
determines directly the momentum transfer efficiency ηB, the latter can be used to
estimate the angular acceleration of the space debris. In fact, angular momentum
build-up should be watched out to avoid fragmentation risk [45]. The present model
is able to refine former calculations of the thrust and torque [42, 43, 44, 45, 151, 152],
considering the contributions from (i) linear momentum of impacting and emitted
macro-particles (the latter contributing with a recoil effect), (ii) electron pressure,
and (iii) electric forces effect. Therefore, the total transmitted force assumes the
form:

FTG =

∫
S

(ṗ− pe1⊥ + σsE) dS (5.29)

where ṗ represents the linear momentum vector flux of the impacting and emitted
macro-particles, obtained with Eq. (3.44), pe = neTe is the electron pressure, and the
last term is the electric force effect, with σs representing the surface charge density.
From Poisson’s equation and Gauss’s theorem, this can be evaluated as:

σs = ϵ0E · 1⊥ (5.30)

The integral of Eq. 5.29 extends over the debris simulation boundary (sheath edge
for quasineutral regions, material wall for non-neutral ones), and is simply evaluated
numerically as a sum over the debris cell-faces that discretize it.
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Finally, from the knowledge of the elementary force dFTG acting on each cell-face,
the elementary torque with respect to the TG center of mass is computed as

dτTG = r × dFTG, (5.31)

with r the radius vector from the target center of mass to the cell-face center.

5.3.1.3. Simulation setup

The nominal scenario considered for this study is similar to that of Sec. 5.2, whose
mission facts are summarized in Tab. 5.1. The simulation geometry is described in
Fig. 5.10 (a) and (b), while the most relevant simulation parameters are summarized
in Tab. 5.4.

(a)

(b)

Figure 5.10: Simulation geometry for the IBS-plasma plume-debris interaction: (a)
3D rendering showing two important cross sections through the satellite center, y = 0
(in red) and x = 0 (in blue). (b) Schematic view of the y = 0 cross section showing
the simulation objects size and the ambient ions injection direction. The width of the
solar arrays along the y direction (towards the reader) is 4 cm, while the Sun is along
the +y direction. The cell size is 2 cm along x and y, and 4 cm along z. The number
of nodes is 201 along both x and y, and 276 along z.

Xe neutrals are emitted by the thrusters and neutralizers with sonic conditions
(M = 1), assuming a polytropic coefficient equal to 5/3 (adiabatic), and a temper-
ature of 0.05 eV.
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Table 5.4: IBS simulation parameters. Applied voltages refer to the spacecraft ground.
The thrusters injection surfaces are circular with radius R0 = 8 cm. The injection pro-
files for the thruster ions are self-similar profiles (as described in the footnotes). The
ITT and ICT data corresponds to the optimal operational points (for minimum power
consumption) identified in Sec. 5.2, and is obtained with the performance models of
Sec. 5.2.2.

Simulation parameter Units Values

Neutralizers keeper voltage V 10
ITT/ICT last grid voltages V −100
ITT/ICT beam voltage V 3500/1000

ITT/ICT thruster mass flow rate mg/s 0.566/1.293
ITT/ICT mass utilization efficiency % 75/85

Doubly charged to total ion current ratio % 9.1

ITT injected Xe+ profile n/a SSM 2

ICT injected Xe+ profile n/a SSM 3

ITT injected Xe++ profile n/a SSM 4

ICT injected Xe++ profile n/a SSM 5

ITT/ICT injected Xe+ temperature eV 0.1
ITT/ICT injected Xe++ temperature eV 0.2
ITT/ICT injected neutrals profile n/a flat
ITT/ICT inj. neutral axial velocity m/s 247

ITT/ICT injected neutral temperature eV 0.05
ITT/ICT neutralizers mass flow rate mg/s 0.0565

Neutralizers inj. neutrals profile n/a flat
Neutralizers inj. neutral axial velocity m/s 247

ITT/ICT neutralizers inj.neutral temperature eV 0.05
Neutralizers ion flow percentage % 5.0

Neutralizers injected Xe+,Xe++ ions profile n/a thermal, Gaussian 6

Neutralizers injected Xe+ temperature eV 0.2

Neutralizers injected Xe++ temperature eV 0.4
Electron temperature at ITT thruster exit eV 3.0

Electron polytropic cooling coefficient n/a 1.15
Background plasma density (O+ ions) m−3 5 · 1010

Background plasma temperature (O+ ions) eV 0.15
Background O+ ion velocity km/s 7.5

Target debris material n/a Al
Material walls accommodation coefficient n/a 0.98

Regarding the thrusters ions, both singly and doubly charged ions are emitted,
with a kinetic energy provided by their corresponding beam voltage (respectively
3500 and 1000 eV for the singly charged ions emitted by the ITT and ICT thrusters).
The injection profiles are based on the Ashkenazy-Fruchtman initial profile [61],
while the values for R0 and α0 are provided in the table footnotes. The neutralizers

2with outermost streamline radius R0 = 8 cm and divergence angle α0 = 7 deg
3with outermost streamline radius R0 = 8 cm and divergence angle α0 = 35 deg
4with outermost streamline radius R0 = 8 cm and divergence angle α0 = 15 deg
5with outermost streamline radius R0 = 8 cm and divergence angle α0 = 40 deg
6with outermost streamline radius R0 = 2 cm and zero divergence
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ions, on the other hand, are emitted as a thermal flux with temperatures of 0.2
and 0.4 eV for respectively the singly and doubly charged ions, and represent 5%
of the total emitted particle flow (the remaining part being neutrals). Finally, a
background population of O ions is assumed to be moving along the positive z
direction, with a velocity comparable to the LEO orbital velocity (7.5 km/s), a
temperature of 0.15 eV, and a density of 5·1010 m−3, which corresponds to an average
plasma density at an altitude of 600 km over the Sun activity cycle. The direction of
the injected ions is typical of a de-orbiting scenario, in which the shepherd spacecraft
is ahead of the space debris along the orbit direction. Finally, the solar panels
are oriented with their normal at 90 degrees with respect to the orbit plane, a
typical operational condition in sun-synchronous orbits with a local solar time at
the ascending node equal to either 6 AM or 6 PM.

Regarding the heavy particle collisions, the considered model includes (i) resonant
symmetric CEX collisions between the emitted Xe ions and neutrals (both Xe++Xe
and Xe+++Xe), and (ii) ionization collisions of different degrees, again only for the
Xe species (Xe → Xe+, Xe → Xe++ and Xe+ → Xe++). Collisions within the
oxygen ambient ions population, the sputtered Al atoms population, and the cross-
species collisions between these two species and the emitted Xe species, are not
considered as their effect is clearly negligible. In fact, a rough estimation of the
mean free path for the cross-species collisions involving Xe shows that: (i) Xe-O
collisions have a mean free path λc = O(106) km, and (ii) Xe-Al collisions, at the
very surface of the target debris (where Al density is highest), have a mean free path
λc = O(10) km. Comparing these values with the simulation domain size (≈ 10
m), we can reasonably assert that their effect is negligible.

For what concerns the sputtering effect of the ambient ions on both the target
debris and on the spacecraft, this is also negligible (with respect to the impinging
Xe ions), because (i) their density is 3− 4 orders of magnitude lower (at the target
debris surface), and (ii) the corresponding yield at their low energy (tens of eVs at
most) is almost negligible.

Additional simulations are finally considered to investigate the effect of different
physical phenomena:

Electron cooling: one simulation with γ = 1.25 (versus the nominal γ = 1.15).

Ambient plasma: one simulation with a perfect vacuum.

CEX and ionization collisions: one simulation without them.

Space debris attitude and position: one simulation with an off-axis target
debris.
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5.3.2. Simulation results

5.3.2.1. Nominal scenario

Fig. 5.11 (a) and (b) show the electric potential at the y = 0 and x = 0 cross
sections. The reference point (φ = 0), where the electron temperature is fixed to 3.0
eV, is located 8 cm downstream of the ITT exhaust plane, on the axis. The effects
of CEX ions and emitted plume of the neutralizers are clearly visible in Fig. 5.11 (a),
while Fig. 5.11 (b) shows more symmetric results. The electric potential close to the
metallic objects (SC cubic body, neutralizer, thruster cases, target debris) adapts
locally to their electric potential, except at the quasineutral material boundaries of
the thruster and neutralizer exit surfaces and of the front surface of the debris (the
one facing the S/C).
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Figure 5.11: Nominal scenario results: electric potentials at (a) y = 0, and (b) x = 0.
Both cross sections pass through the geometric center of the satellite cubic body. The
potentials refer to a plasma location, 8 cm downstream from the ITT thruster exit
plane, at its axis. The horizontal and vertical axes scales are different.

The total Xe ion and neutral densities are shown in Fig. 5.12 (a) and (b), while
the electron density and the resulting charge density are shown in Fig. 5.12 (c) and
(d). The neutral density is quite symmetric with respect to the ITT plume axis,
with peak values of almost 1018 m−3 at the thruster exits, and above 1014 m−3 at the
target debris surface (due to ion recombination). The plume of the neutralizer, on
the other hand, introduces a larger asymmetry in both the ion and electron densities
close to the spacecraft. The peak plasma density of the ITT is slightly above 1015

m−3, a quite low value corresponding to the combined effect of a low mass flow rate
and a large acceleration voltage (3500 V). The peak density of the ICT thruster,
which features a beam voltage of 1000 V, is above 1016 m−3. Moreover, no ions hit
the lateral sides of the target debris, while the electron density is not identically
zero there, and presents a value corresponding to the target potential (≈ −16 V).
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Finally, the charge density shows extended non-neutral regions on the sides of the
ITT plume, in the resolved plasma sheaths close to the S/C surfaces, and in the
wake regions behind the target. In particular, the front surface of the target debris
is quasineutral with a thin sheath drop smaller than the typical floating potential
(with respect to the plasma potential), because the ions enter it with hypersonic
velocities (the local Mach number is around 50 at the target debris). On the other
hand, inside the wake region behind the target, the charge density is negative, since
ions cannot deflect rapidly enough to fill it.
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Figure 5.12: Nominal scenario results at y = 0: (a) Xe ion density, (b) total Xe
neutral density, (c) electron density, and (d) electric charge density.

Of particular interest are the plots of the slow Xe ion density and vector particle
flux (not including emitted ions of thrusters and neutralizers). These are shown
respectively in Fig. 5.13 (a) and (b), for a simulation region close to the S/C. The
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ions emitted by the neutralizer generate a potential barrier that prevents the slow Xe
ions (mostly produced by CEX collisions, with a minor contribution of ionization)
from crossing over to the right solar array (at least in the y = 0 plane). Moreover,
the slow ion velocity progressively turns towards the S/C, as shown in the flux vector
plot.
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Figure 5.13: Nominal scenario results at y = 0: (a) slow Xe ion density (for both
Xe+ and Xe++), and (b) slow Xe+ particle flux. Only slow ions from CEX and
ionization are taken into account (injected ions from the thrusters and neutralizers
are not included). Regarding the vector flux, its direction is shown by the arrows.

The fast neutral density, on the other hand, is shown in Fig. 5.14. CEX neutrals
are generated at the thrusters and neutralizers exits, and being very fast with a
small divergence, they reach the target with a moderate drop in density (a factor of
10), with values around 1011 m−3 at the debris surface.
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Figure 5.14: Nominal scenario results at y = 0, for the fast CEX neutral density.
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The slow Xe ion backscattering flux towards the S/C front surface (the side facing
the debris), and on the solar arrays, are then shown in Fig. 5.15 (a), and in Fig. 5.16
(a) and (b), while the corresponding wall-impact energies are shown in Fig. 5.15 (b),
and Fig. 5.17 (a) and (b).
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Figure 5.15: Nominal scenario results at the S/C front surface: (a) slow Xe ion
flux, and (b) slow Xe ions mean wall-impact energy. Only slow ions from CEX and
ionization are taken into account.
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Figure 5.16: Nominal scenario results at the solar arrays surface for the slow Xe ion
flux at (a) the conductive faces, and (b) at the dielectric faces. Only slow ions from
CEX and ionization are taken into account.

The regions on the S/C surface with the largest CEX ion flux are located close to
the sides of the neutralizer, with values as high as 2 · 1015 m−2s−1, with peak wall-
impact energies around 26 eV. The CEX ion flux on the solar arrays is negligible
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Figure 5.17: Nominal scenario results at the solar array surfaces for the slow Xe ions
wall-impact energy at (a) the conductive faces, and (b) at the dielectric faces. Only
slow ions from CEX and ionization are taken into account.

very close to the S/C body, and reaches values close to 1015 m−2s−1 at the arrays side
close to the ICT. The wall-impact energies, on the other hand, are around 25− 30
eV for the conductive face, and 15− 20 eV for the dielectric face.

The difference in the ion impact energy on the two faces of the arrays can be
explained by observing the electric potential distribution at the z = 0 cross section,
shown in Fig. 5.18. The electric potential at the conductive face (y < 0) is lower than
at the dielectric face, meaning that it draws a net positive current (the dielectric
face draws no net current). This yields a wider sheath region and a larger impact
energy of the slow CEX ions, at the conductive face.
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Figure 5.18: Nominal scenario results at z = 0, for the electric potential. The con-
ductive face of the arrays is the one at y < 0, while the dielectric face is at y > 0.
The scales are different along x and y.
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Regarding the backsputtering contamination, Fig. 5.19 (a) and (b) show the sput-
tered Al atoms density and vector flux. The density decreases from a peak value of
almost 1015 m−3 at the debris to much lower values around 1013 m−3 close to the
S/C surface, where the density increases again due to the atoms diffuse reflection.
The sputtered atoms vector flux follows the same trend with the distance from the
target, and drops rapidly to zero very close to the S/C, due to the diffuse reflection.
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Figure 5.19: Nominal scenario results at y = 0 for the sputtered atoms (a) density,
and (b) vector flux. The direction of the vector flux is shown by the arrows.

The sputtered Al flux on both the S/C front surface and the solar arrays dielectric
face (here equivalent to the conductive face) is shown in Fig. 5.20 (a) and (b).
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Figure 5.20: Nominal scenario results at y = 0 for the sputtered atoms flux on (a)
the S/C front surface, and on (b) the dielectric face of the solar arrays.
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Values between 1 and 4 · 1016 m−2s−1 are found on the S/C front surface, while
much lower fluxes impact on the solar arrays, given their orientation (lower, on
average, than 1015 m−2s−1). Assuming no reflection of Al atoms (worst case for
contamination), an average flux of 2 · 1016 m−2s−1, an IBS mission duration of 170
days with a sunlight orbit fraction of 67% (IBS is not active during solar eclipses),
then a contamination layer with a thickness of 3.2 µm would form on all surfaces
with a normal oriented along the z direction. This could affect the solar arrays
efficiency, if they were oriented with a normal along z (in the considered case, on the
other hand, they would suffer a much smaller contamination). Please observe that
the ambient O+ flux for the considered scenario is, at normal incidence, 3.75 · 1014
m−2s−1, approx. 2 orders of magnitude smaller than the above considered flux.

The mean wall-impact energy of the sputtered atoms on the S/C front surface
and on the dielectric face of the solar arrays are finally shown in Fig. 5.21 (a) and
(b). Values between 10 and 16 eV are found on the S/C front surface, as expected
from the knowledge of the sputtered atoms mean emission energy of Fig. 5.9 (b) (for
αimp ≈ 0 and Eimp = 3500 and 7000 eV for respectively Xe+ and Xe++ ions). The
lower average impact energy of Al atoms on the solar arrays, on the other hand, is
due to the contribution of reflected atoms from the S/C cubic body, which have a
lower energy than the impacting ones (the accommodation coefficient is AW = 0.98).
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Figure 5.21: Nominal scenario results for the mean wall-impact kinetic energy of
sputtered atoms on (a) front S/C surface, and (b) solar arrays dielectric face.

The ambient ion density and vector flux are finally shown in Fig. 5.22 (a) and
(b). The emitted plume of the ICT acts as a potential barrier (5−10 V, as shown in
Fig. 5.11) that prevents most of the ambient ions (with kinetic energies of approx. 5
eV) from reaching the S/C cubic body. Moreover, even if they tend to flow around
the thin solar arrays, the main plasma plume core of the ITT also rejects them. As
a consequence of the S/C wake, only a negligible fraction of ambient ions finally hits
the target debris.
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Figure 5.22: Nominal scenario results: (a) oxygen ion density and (b) oxygen ion flux,
at the y = 0 cross section . The direction of the vector flux is shown by the arrows.

The evolution with time of the electric potential and collected ion currents of the
S/C and of the target debris are finally reported in Fig. 5.23 (a) and (b).
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Figure 5.23: Time evolutions of (a) electric potentials and (b) collected ion currents
for both the S/C (black lines) and the target (red lines). The nominal case is shown
with filled circles, the γ = 1.25 case with empty squares, the off-axis debris case
with triangles, the no-CEX collisions case with empty stars, and the no ambient ions
case with empty diamonds. The potentials refer to a plasma location, situated 8 cm
downstream of the ITT thruster exit plane, at its axis, while the collected S/C ion
currents include the currents to neutralizers, thrusters and both faces of the solar
arrays. The sudden changes in electric potentials and currents, that occur at t ≃ 4.18
ms as indicated by the vertical line, are due to the activation of the non-neutral solver.

As explained in Chapter 3, the code features both a quasineutral and a non-
neutral solver. To speed up the simulation, thus quickly filling the simulation domain
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with particles, the first 15000 steps (corresponding to a simulation time t = 4.18 ms)
are run with the quasineutral solver alone, while the non-neutral solver is activated
afterwards and produces a change in the electric potentials and collected ion currents
evolutions (for both the S/C and the TG). In the nominal scenario, featuring γ =
1.15, the target debris finally charges positively with respect to the S/C, with a
constant difference of approx. 10 V. Regarding the ion currents, on the other hand,
the debris collects approx. 0.3 A, while the S/C approx. 1.5 mA (mostly due to
CEX ions).

Finally Tab. 5.5 shows the transferred force to the debris along the plume axis
and its partial contributions, for the considered simulation cases.

Table 5.5: The different contributions to the transferred force along z to the target
debris, for the considered simulation cases. The contribution of the injected Xe+

ions for the nominal and off-axis target cases is compared with an SSM plume model
prediction (given in parenthesis).

Transferred force (mN) along z, for the different cases

Contributions nominal γ = 1.25 no coll. no amb. off-axis TG

Injected Xe+ 28.8(27.7) 29.0 28.9 28.8 22.4(21.2)

Injected Xe++ 1.07 1.11 1.07 1.07 0.903

Recombined Xe 2.67 2.70 2.66 2.67 2.08

Fast CEX Xe 0.170 0.173 0.0 0.173 0.147

Sputtered Al 0.934 0.941 0.934 0.933 0.739

O+ ions 1.2 · 10−8 1.4 · 10−6 2.1 · 10−9 0.0 6.3 · 10−7

Electron pressure 1.1 · 10−8 3.1 · 10−9 1.1 · 10−8 1.1 · 10−8 9.1 · 10−9

Electric field −6.6 · 10−10 −2.1 · 10−10 −6.7 · 10−10 −6.6 · 10−10 −9.4 · 10−10

Total 33.6 34.0 33.6 33.6 26.3

The predicted contributions for injected singly charged ions is compared with
the prediction of the Parks-Katz Self-Similar model, generalized with γ = 1.15
(Eq. 2.38). A particularly good match is found, with the SSM underestimating
slightly the transferred force (1 mN less). In the nominal case, the backsputtered
atoms contribution is around 3% of the total transmitted force, while the effect of
recombined Xe neutrals is around 8% (this depends greatly on the wall accommoda-
tion coefficient, here AW = 0.98). The contributions of oxygen ions, surface electric
fields and electron pressure are all negligible. The achieved total force transferred
to the debris is above the requirement of 30 mN (it is actually 33.6 mN), which,
for a total ITT simulated thrust of 31.5 mN, corresponds to a momentum transfer
efficiency of 107% (above 100% because of the recoil effect of recombined Xe neutrals
and sputtered Al atoms). Finally, the torque is negligible in the nominal case, being
(1.51, 4.55, 0.08) µN m.
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5.3.2.2. Effects of the electron cooling

The comparison of the nominal scenario, featuring γ = 1.15, with the non-nominal
γ = 1.25 case, provides important information on the effects of the electron cooling
in the plume.

Referring to Tab. 5.5, a larger polytropic coefficient yields a slightly larger trans-
ferred force to the target (+0.4 mN), since the divergence angle of the emitted ions
increases less due to the smaller ambipolar electric fields in the plume. Therefore a
slightly larger fraction of emitted ions hits the target debris.

Fig. 5.24 (a) and (b) show the changes with respect to the nominal case of re-
spectively the electric potential, at y = 0, and the slow Xe ion flux on the S/C front
surface.
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Figure 5.24: Electrons cooling effects: (a) electric potential change φγ=1.25 −φγ=1.15,
at y = 0, and (b) relative change in the slow Xe ions flux on the S/C front sur-
face gγ=1.25

i,CEX /gγ=1.15
i,CEX − 1. Only ions generated by CEX and ionization are taken into

account.

In general, a larger electron cooling yields a larger electric potential in both the
core and lateral plume regions (up to 6V higher inside the plasma plume wake of
the target debris). Therefore, both the target and the S/C potentials increase by
approx. 3 V with respect to the nominal case, as shown in Fig. 5.23 (a) (squares
versus filled circles). The electric potential difference between S/C and TG, on the
other hand, presents approximately the same value as in the nominal case (≈ 10V).

The lower ambipolar electric fields of the non-nominal case yield to a smaller
fraction of slow ions backscattered towards the S/C, as shown in Fig. 5.24 (b), where
the average change is clearly negative with reduction peaks of more than 50%. This
is also patent in Fig. 5.23 (b) where the S/C collected ion current clearly reduces
(black squares versus black filled circles). The effects of the electron cooling on the
TG collected ion current, on the other hand, are almost negligible.
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5.3.2.3. Effects of the ambient plasma

As shown in Fig. 5.22 (a) and (b), the S/C emitted plumes act as potential barriers
for the ambient plasma ions, so that a negligible fraction of them actually reach the
target debris. For this reason, the simulation with no ambient ions present the same
transferred force to the debris, as shown in Tab. 5.5. Referring to Fig. 5.23 (b), the
collected ion current (black diamonds) of the no-ambient plasma case is slightly
lower than that of the nominal case. In fact, approximately 0.2 mA of current are
due to ambient O+ ions, versus approx. 1.5 mA of current due to slow Xe ions (due
to CEX and ionization). This small difference in electric current yields an almost
negligible effect, however, on the S/C potential.

Finally, the electric potential change from the nominal simulation to the one
without ambient ions injection is shown in Fig. 5.25 (a). The effect of ambient ions
is small throughout the simulation domain, as expected, except for the left side of
the ITT plume, where the potential of the nominal case is slightly larger (up to 2
V). On the right side of the ITT plume, on the other hand, the oxygen ion density is
smaller (refer to Fig. 5.22 (a)) and the ITT neutralizer ions represent the dominating
species, so that the potential difference between the two simulations is smaller and
caused by statistical noise.
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Figure 5.25: CEX and ambient plasma effects on the electric potential at y = 0:
(a) electric potential change from the nominal simulation to the simulation with no
ambient ions φno amb. − φnom, and (b) electric potential change from the nominal
simulation to the simulation with no collisions φnoCEX − φnom.

To conclude, ambient ions only have a minor importance: their effect is negligible
for what concerns the S/C floating potential and the transferred force to the TG,
while their total flow to the S/C is approximately 10% of that of the CEX ions, and
is almost negligible with respect to the contamination flux of sputtered Al atoms.
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5.3.2.4. Effects of CEX and ionization collisions

The backscattered slow Xe ions, generated by CEX or ionization, represent, by
far, the most important contribution to the S/C collected ion current. In particular
their contribution is one order of magnitude larger than that of the ambient ions, as
shown in Fig. 5.23 (a) and (b), in which the simulation with no collisions is shown
by star markers. The collected ion current decreases by more than 1 mA, being
given only by the ambient plasma ions, while the S/C potential at the end of the
simulation is 1.5 V lower than in the nominal case. Among the slow Xe ions, CEX
ions represent the clearly dominant contribution, being 2-3 orders of magnitude
denser than ions from ionization.

The comparison between the electric potential of the nominal case and the case
without collisions is finally shown in Fig. 5.25 (b). Differences of up to 8 V are found
on the left side of both the ITT and ICT thrusters, while the emitted ions of the
neutralizers mitigate the differences on the right sides.

Finally, collisions don’t affect significantly the target properties, such as the trans-
ferred force, the collected ion current or the electric potential, just as expected.

5.3.2.5. Effects of the space debris position

The off-axis target simulation presents a target center of mass displaced by +0.44
m along the x direction, and −0.44 m in the y direction. Therefore, the symmetry of
the backsputtered atoms flux with respect to the z axis is lost, as shown in Fig. 5.26
(a). Nevertheless, by comparing these results with Fig. 5.19 (b), the changes are
quite small at the S/C position. This is also confirmed in Fig. 5.26 (b), which shows
the relative change in the sputtered atoms flux on the S/C front surface.
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Figure 5.26: Effects of an off-axis target debris: (a) backsputtered Al atoms vector
flux (with the direction shown by the arrows), at y = 0, and (b) relative change in the
backsputtered Al atoms flux on the S/C front face, from the nominal to the off-axis
target simulation φoff axis − φnom.
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Finally, regarding the transferred force along z to the debris, this clearly reduces
from 33.6 to 26.3 mN, since a larger fraction of plume ions misses the target. This
corresponds to a momentum transfer efficiency of 83.5%. Moreover, the transferred
force presents non-negligible components along x and y, being FTG,x = 0.358 mN
and FTG,y = −0.362 mN. Finally, the transferred torque to the target debris is no
more negligible (except around the z axis): (−2.82,−2.82,−6.73 ·10−4) mN m. This
yields to an angular momentum build-up in 1 day of approx. 250 kg m2s−1 per axis,
which corresponds, for the considered target debris mass and shape, to an angular
velocity of approx. 0.3 rad/s.

5.3.3. Conclusions

The study presented in this section is a detailed analysis of the S/C-plasma plume-
debris interaction, which has permitted evaluating the effects of some of the most
problematic phenomena affecting an IBS spacecraft. In particular the following has
been found:

The backscattering ion flux on the S/C surface is around 1015 m−2s−1 on
average, whereas on the solar arrays, this flux is around 1014 m−2s−1, and is
different on the conductive and dielectric faces. Regarding the mean ion impact
energy, this is around 20 − 30 eV, a value which should produce negligible
surface sputtering, although the confirmation of this statement is left to future
studies.

The backsputtering neutral flux on the S/C front surface is above 1016 m−2s−1,
and, depending on the mission duration, it might have non-negligible contam-
ination effects (a contamination layer of approx. 3 µm thickness forms during
the de-orbiting phase in surfaces whose normal is aligned with the TG direc-
tion). The mean kinetic energy of backsputtering atoms is between 10 and
16 eV. Obviously, this contamination flux would reduce for larger operational
distances (at the cost of a lower momentum transfer efficiency).

The stationary difference of potential that builds up between the S/C and the
target is around 10 V, with the target positive with respect to the S/C.

The electron thermodynamics affect the stationary potentials of S/C and TG,
but not their difference. Moreover, a larger polytropic coefficient yields a
slightly larger transferred force to the TG, and a lower backscattered slow ion
flux to the S/C.

Ambient plasma ions present a minor contribution to the total ion current
collected by the S/C (approx. 10%), while the ITT plume prevents most of
the ambient ions from hitting the debris.

CEX ions represent the dominant contribution to the S/C collected ion current,
and are an important factor in determining the stationary electric potential of
the S/C.
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An off-axis target position affects only slightly the backsputtered flux on the
S/C, although it also causes a significant reduction of the momentum transfer
efficiency and a non-negligible torque acting on the debris. A recent study [43]
has also shown that the lateral forces that originate due to an off-axis target
position have a destabilizing effect, to be counteracted by the relative position
GNC.

Finally, regarding future work, the following is envisaged:

Deformed meshes for non-rectangular and non-aligned objects.

Use of a re-normalization algorithm, in order to reduce the PIC noise.

Study of the effects of the Earth’s magnetic field in the plasma plume expan-
sion, requiring a more complex electron model (with a tensor conductivity).

Study of the sputtering effects on the S/C surfaces, requiring a low-energy
study of the sputtering between the Xe and Al ions/atoms and the S/C surface
material.



Chapter 6

Experimental study of the
PEGASES plasma plume

Ion thrusters based on the alternate acceleration of positive and negative ions
are receiving an increasing attention in the electric propulsion community, as they
can work in steady state with no external neutralizer, a critical element for most
ion thrusters. PEGASES (Plasma propulsion using Electronegative GASES) is one
of these thrusters and, given its low maturity level, it still requires some funda-
mental investigation of its working physical principles. This chapter describes the
results of an experimental campaign, carried out during my visit to the Laboratoire
de Physique des Plasmas, which aimed at characterizing the plasma plume, both in
space and time, thus trying to provide a better explanation of the physics behind
an alternate ions plume expansion and neutralization. My personal contributions
include, apart from the plume measurements and their post-processing and interpre-
tation, the building of the Langmuir probes and of an innovative plasma potential
sensor to study the oscillating potential inside the plume. The evolution with dis-
tance of time averaged plume parameters has been obtained and evidence of localized
travelling beam packets has been found 1

1The contents of this chapter are based on a conference paper [161]



154 CHAPTER 6. EXPERIMENTAL STUDY OF THE PEGASES PLASMA PLUME

6.1 Introduction

The alternate extraction and acceleration of positive and negative ions for propul-
sion is a new concept, proposed and validated experimentally at the Laboratoire de
Physique des Plasmas (LPP), as shown in Refs. [34, 35, 36, 37, 38]. This innovative
thruster concept is named PEGASES, acronym for Plasma propulsion using Elec-
tronegative GASES, and achieves the alternate acceleration of positive and negative
ions with the use of an ion optics system, that switches its potential in time.

As explained more in detail in the next section, a square voltage waveform with
a frequency of hundreds of kHz is applied to the screen grid, while the acceleration
grid is grounded. By controlling the duty cycle (ratio between the positive voltage
and the total wave periods), an overall neutral beam can be extracted, as shown
in Ref. [37], thus requiring no further neutralization. The resultant plasma plume
is composed only of positive and negative ion beam packets with (theoretically) no
electrons, a characteristic which makes this thruster concept interesting for several
reasons.

Firstly, since no neutralizer is needed, this thruster would not suffer from hollow
cathode lifetime limitations, which affect other, more mature thruster technologies.
Moreover, this cathode-less design allows to scale down the thruster, both in size
and power, without important propellant utilization efficiency losses (a neutralizer,
on the contrary, would require a minimum neutral gas flow to work, regardless of the
thruster size). Finally, an electron-less plasma plume presents several advantages for
the ion beam shepherd technique, treated in detail in Chapter 5, and which largely
benefits from very low divergence plasma plumes at relatively large distances from
the thruster (10 − 20 m). In fact, the absence of light electrons makes the plume
expansion almost insensitive to the Earth’s magnetic field (which might distort or
affect the expansion of a plasma plume containing electrons in non-trivial ways)
and, at the same time, the divergence growth due to the residual electron pressure
(the major source of divergence increase in electric thruster plumes, as shown in
Chapter 2), is effectively cancelled.

While the working principle of PEGASES has already been demonstrated by
testing a prototype at LPP, some phenomena still need to be further investigated.
While some advances in the modeling of an alternate ions plume have been recently
achieved, especially for what concerns the near region, as shown in Ref. [162], from
an experimental point of view, this field remains almost completely unexplored.
This chapter then describes the most recent experimental activities carried out to
characterize the PEGASES plasma plume, both in space and in time. In Sec. 6.2,
the thruster elements and its working principles are presented. In Sec. 6.3, the
experimental setups are described. In Sec. 6.4, the results of respectively the spatial
and time resolved characterization campaigns are presented and discussed, while the
conclusions are summarized in Sec. 6.5.
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6.2 PEGASES elements and working principles

Fig. 6.1 shows a vertical cross section of the PEGASES thruster. This has an
external metal housing, 12 cm long with a rectangular cross section, of dimen-
sions 8 × 12 cm. An internal metal source tube is coupled inductively to an RF
antenna through a ferrite core and a ceramic window. The plasma is generated
close to the ceramic window through an inductive discharge, by injecting propellant
through 8 injection holes, distributed axially along the thruster length. The internal
metal housing, in contact with the plasma, is electrically insulated from the external
grounded one by means of a Teflon piece.

Figure 6.1: Schematic of the PEGASES thruster.

A transversal magnetic field, generated by external permanent magnets allows
to reduce the electron temperature downstream by approximately a factor of 10, as
shown in Ref. [163]. If an electro-negative gas is used as propellant, the resulting
low energy electrons, instead of crossing the magnetic field lines through collisions,
tend to be captured by the gas atoms and form negative ions, which can traverse
easily the magnetic field barrier, together with the positive ions, thus maintaining
the plasma quasi-neutrality.

Thus, an ion-ion plasma with a very high electronegativity (ratio between negative
ion and electron number densities) can be achieved close to the screen grid. Such
plasma is electrically insulated from the electron plasma close to the RF antenna,
where the electron density is not negligible, by means of an insulating tape. In
this way, the ion-ion plasma potential can follow more freely the applied screen grid
voltage, avoiding some problems encountered in a previous thruster design, as shown
in Refs. [35] and [164].

By applying a square voltage waveform of a sufficiently high frequency (hundreds
of kHz) to the screen grid, in order to prevent the formation of an excessive space
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charge region and hence beam stalling, it is finally possible to alternatively extract
positive or negative ions, thus forming a plume made of alternated beam packets,
as shown in Fig. 6.1. For the experimental campaign described here, a frequency
of 250 kHz was considered with a duty cycle of 0.5 (negative and positive voltage
half periods are equal). These conditions are very close to the optimal frequency for
current extraction, as shown in Ref. [37].

While ideally no electrons should be extracted, in reality, some of them reach
the screen grid region and are extracted during the negative voltage half period. In
fact, as observed in Ref. [165], one lateral surface of the thruster presents a relative
geometry between the plasma sheath electric field and the transversal magnetic
field, that yields an E ×B drift towards the screen grid, as shown in Fig.6.2. For
this reason, in the following experiments, in order to minimize the amount of co-
extracted electrons, the screen grid half surface close to this lateral thruster surface
was blocked. So, the active screen grid area or the initial plume cross section is a
6× 6 cm square.

Figure 6.2: Spatial characterization campaign setup. Horizontal cross section of the
vacuum chamber and thruster.

6.3 The experimental setup

The vacuum chamber used for the experimental campaign is a cylindrical chamber
of 60 cm diameter and 80 cm length. The PEGASES thruster is connected to one
side of this chamber, through a dedicated flange, as shown in Fig.6.2. The vacuum is
achieved through a rotative primary pump and a magnetic levitated turbo-molecular
pump, which permit achieving a downstream pressure as low as 2 · 10−6 mbar, with
zero mass flow rate. With the thruster on, the downstream pressure was always
higher than 6 · 10−5 mbar, reaching a maximum value around 2 · 10−4 mbar, for the
highest tested mass flow rate.
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6.3.1. Spatial diagnostics

The spatial characterization campaign had the major goals of determining:

the amount of electrons downstream, identifying their major source,

the time-averaged profiles of ion density, electron temperature and plasma
potentials along the plume centerline, and

any evidence of downstream recombination.

The experimental setup is schematically shown in Fig. 6.2, while Fig. 6.3 shows a
photo taken inside the vacuum chamber with an active plume.

Figure 6.3: Photo of the PEGASES plume during the spatial characterization cam-
paign.

As previously mentioned, one half of the screen grid was blocked to prevent the
extraction of the electrons from the thruster lateral surface that was characterized
by the E × B drift (right side lateral surface in Fig. 6.2). The diagnostics were
then aligned with the centerline of the effective plume, of initial size 6 × 6 cm.
Such diagnostics consisted of two Langmuir probes and a Magnetic Retarding Field
Energy Analyzer (MRFEA), fully described in Ref. [166]. The Langmuir probes
consist of a tungsten wire and an insulating alumina tube. One probe is located
at the plume centerline (internal Langmuir probe or ILP), and another is located
out of the main plume at a distance higher than 10 cm from the beam centerline
(external Langmuir probe or ELP).

Regarding the MRFEA, this is a retarding field energy analyzer, with one grounded
grid, a varying voltage collector and a magnetic system generating a homogeneous
transversal magnetic field in the entrance slit. Such field prevents electrons from be-
ing collected, while letting the ions (positive and negative) flow through. As shown
in Ref. [166], the MRFEA grid transparency above ion energies of 200 eV can be
considered almost constant and equal to 30%.
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Table 6.1: Properties of the spatial characterization diagnostics.

Diagnostic properties Units Values

ILP tip length mm 81.8
ELP tip length mm 13.0

ILP and ELP diameter mm 0.5
ILP and ELP material n/a tungsten
MRFEA collector area cm2 1.0
MRFEA transparency % 30.0

The properties of the above described diagnostics are summarized in Tab. 6.1.
Referring to Fig. 6.2, the diagnostics could be moved axially by 20 cm with the use
of a translation arm.

All experimental cases were run with a constant power from the RF generator of
200 W. Four different mass flow rates were tested, as summarized in Tab. 6.2, and
corresponding to either 3 or 6 SCCMs of Ar or SF6. Argon was also considered for
cases 1 and 2, as it is the gas currently used to ignite the thruster (a direct ignition
with the electronegative SF6 cannot be achieved). For each of the 4 cases, 2 different
screen grid square voltage amplitudes were considered (250 and 350 V).

Table 6.2: Experimental cases of the spatial characterization campaign.

Case N.
Voltage

Amplitudes (V)
SF6 mass flow
rate (mg/s)

Ar mass flow
rate (mg/s)

1 250, 350 0.652 0.178
2 250, 350 0.326 0.089
3 250, 350 0.652 0.000
4 250, 350 0.326 0.000

The downstream chamber pressure and the ion mean free paths corresponding
to the above defined experimental cases, are finally reported in Tab. 6.3. The latter
have only been roughly estimated, as the real plasma is a mixture of many ionic
types (as it is typically the case for SF6) and limited collisional data is available.

Table 6.3: Plume and vacuum parameters for the 4 considered spatial characterization
cases.

Case N.
Downstream

pressure (mbar)
Downstream ion

mean free path (cm)
Ion mean free path
at thruster exit (cm)

1 2.00 · 10−4 140 37
2 1.06 · 10−4 270 75
3 1.13 · 10−4 250 57
4 6.00 · 10−5 480 114
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6.3.2. Time-resolved diagnostics

The time resolved characterization campaign had the major goals of determining:

whether the beam packets are localized in space and if this changes with the
distance from the thruster, and

the peak to peak and time averaged values of the plasma potential in the
plume.

The experimental setup, modified for this time characterization campaign, is shown
in Fig. 6.4, while Fig. 6.5 shows a photo of the plume taken during this campaign.

Figure 6.4: Time resolved campaign setup. Horizontal cross section of vacuum cham-
ber and thruster.

In order to measure the plasma potential inside the plume as a function of both
space and time, a special capacitive potential sensor was designed for this campaign,
consisting of a copper square ring of cross section 6×6 cm, equal to the initial beam
size, and with a depth of 2 cm. Such a sensor was aligned with the PEGASES
plume, as shown in Fig. 6.4, and its distance from the source could be changed with
a translation arm by as much as 20 cm. This ring was connected to the arm through
an insulating Teflon piece. In short, such a sensor should follow closely the evolution
in time of the plasma potential, provided that its coupling capacity with the plume
is sufficiently high. To better understand this concept, refer to Fig. 6.6.

The alternating ion beam packets act as a source of alternating voltage φp, coupled
to the sensor through the plasma sheath capacity Cring, which depends on the total
lateral surface of the ring and on the sheath depth (unknown a priori). Of course,
a proper modeling of the conduction current to the ring also requires adding a
parallel resistance to the model. However, at the frequencies considered here, the
contribution of the conduction current can be neglected and, in any case, by doing
so, we are considering a worst case scenario (the conduction currents have the effect
of improving the quality of the measured signal). Other important elements of the
circuit are the feedthrough capacity Cfeed and the oscilloscope equivalent circuit,
consisting of a resistance Rosc in parallel with a capacity Cosc.
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Figure 6.5: Photo of the PEGASES plume during the time characterization campaign.
Different shapes of potential sensors were tested, although the results shown here have
been obtained with the sensor to the right.

Figure 6.6: Schematic and equivalent circuit of the plasma potential sensor.

A rough estimation for the depth of the sheath forming between the sensor and
the plasma can be obtained by inverting the Child Langmuir’s space charge formula
and assuming some rough estimations for the voltage drop ∆φs and the current
density ji across the sheath, as shown in Eq. (6.1), where mi is the ion mass and ϵ0
is the dielectric constant of a vacuum:

ds =

(
4

9
ϵ0

√
2e

mi

∆φ
3/2
s

ji

)1/2

. (6.1)
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By assuming ∆φs = 10 V, and ji = csnie = 19 mA/m2, where cs is the expected
ion sound velocity (or Bohm’s velocity), ni is the expected plasma density and e is
the electronic charge, the sheath depth is approximately 3 mm, so that the coupling
capacitance can be roughly estimated as:

Cring =
2ϵ0∆Sring

ds
≈ 28pF, (6.2)

where ∆Sring is the lateral surface of the sensor in contact with the plasma. Ac-
cording to the equivalent circuit of Fig. 6.6, if we assume that the oscilloscope series
resistance is very large and that we can neglect the current flowing through it, then
the measured potential Vout is given by:

Vout = φp

(
1− Cfeed + Cosc

Cfeed + Cosc + Cring

)
. (6.3)

So, if Cring ≫ Cosc + Cfeed, the output voltage measured by the oscilloscope would
coincide with the plasma potential inside the plume. The value of the oscilloscope
input capacitance is a manufacturer provided value, 9.5 pF for the oscilloscope
probes used here, while the feed-through capacity can be generally neglected (lower
than 1 pF). By connecting in parallel to the oscilloscope a known capacity of 150 pF,
as shown in Fig. 6.6, it was then straightforward to obtain an indirect measurement
of the ring capacity. In fact, it turns out that the ratio between the output voltage
amplitude V0 measured without this capacitance and the output voltage amplitude
V1 measured with it, is a direct function of the ring-plasma mutual capacitance, as
shown by Eq. (6.4):

V0

V1

=
Cosc + Cring + 150pF

Cosc + Cring

. (6.4)

In this way, we estimated it to be 20.5 pF, a value which is not very different
from the one previously obtained. Since the oscilloscope input capacitance is 9.5
pF, the measured voltage should correspond to approx. 70% of the real plasma
potential. For the purposes of this characterization, this was considered enough to
get representative electric potential evolutions in space and time. Finally, for the
time-resolved characterization campaign, we considered only the case N.4 of Tab. 6.2:
0.326 mg/s of pure SF6, with applied voltages of either 250 or 350 V. The distance
between the sensor center and the thruster exit was initially 6.1 cm and it could be
extended, once again, up to 26.1 cm with the use of the translation arm.

6.4 Experimental results and discussion

Before, proceeding with the presentation of the results, it is paramount to say
that the observed measurements were dominated by electrons. Therefore, no ion-ion
plasma theory has been used here to post-process the measurements. Moreover, as
mentioned before, the plasma is a mixture of many different types of ions (both pos-
itive and negative), due to the use of SF6 as electronegative propellant. Therefore,
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in the following, we have assumed an average ion mass mi = 100 AMUs (atomic
mass units) as a first approximation for the considered SF6-Ar mixture.

6.4.1. Spatial characterization campaign

From the Langmuir probe measurements, it was observed that the probe current
first derivative was very noisy close to the plasma potential and that, in general,
it did not reach a saturation value. So, computing the plasma potential as the
maximum of the collected current first derivative or as the first zero (after the floating
potential point) of the second derivative, produced large errors. For this reason, we
followed a different approach. First of all, the floating potential φf was determined
as the probe voltage for which a zero current was measured, and, secondly, the
electron temperature was obtained from the portion of the I-V characteristic where
the lnTe vs lnne was rectilinear. Here ne and Te represent respectively the electron
density and temperature. Then, the plasma potential φp was computed by assuming
a Maxwellian population of electrons as:

φp = φf + Te

[
0.5 + ln

(
mi

2πme

)]
. (6.5)

This approach is also justified by the fact that the Langmuir probe characteristics
showed a positive voltage saturation region clearly dominated by electrons, either
extracted from the PEGASES or created downstream by secondary processes (ion-
izing collisions of ions against neutral gas atoms or ion bombardment secondary
emissions with the chamber walls). The evolution of the floating potential with the
distance from the thruster exit d, for an applied voltage of 250 V and 350 V, is
respectively shown in Fig. 6.7 (a) and (b).
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Figure 6.7: Time-averaged floating potential Vs distance from the thruster for (a) 250
V of grid voltage, and (b) 350 V of grid voltage. Filled markers refer to the internal
probe, empty markers to the external one. Case N.1 is shown with red upwards
triangles, case N.2 in magenta downwards triangles, case N.3 in blue squares and case
N.4 in black circles.

The time-averaged floating potential is slightly negative (as low as −10 V) close
to the thruster exit, meaning that the negative ion current density should be slightly
higher than the positive ion current density. This implies that the 50% duty cy-
cle used here, seems to favour the extraction of negative ions. As we get farther
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away from the thruster, however, the floating potential approaches 0, meaning that
the plume eventually neutralizes. Moreover, the floating potential seems to depend
weakly on both the mass flow rates and the applied voltage magnitude and it is al-
ways higher for the external Langmuir probe, by approximately 10 V. This behaviour
suggests that the main source of surface charging inside the plume is represented by
negative ions, absent for the external Langmuir probe, which thus requires a higher
voltage to draw no net current. The time-averaged electron temperature evolution
with the distance, on the other hand, is shown in Fig.6.8 (a) and (b), for respectively
the 250 and 350 V cases. The electron temperatures are generally higher inside the
main plume than outside and they are between 4 and 5 eV very close to the thruster
exit. The electron temperature inside the plume tends to decrease with the distance
from the thruster, reaching a value around 3 eV, at a distance of 25 cm. The exter-
nal probe electron temperature is less dependent on the distance from the thruster
and it varies between 3 and 3.5 eV.
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Figure 6.8: Time-averaged electron temperature Vs distance from the thruster for
(a) 250 V of grid voltage, and (b) 350 V of grid voltage. Filled markers refer to
the internal probe, empty markers to the external one. Case N.1 is shown with red
upwards triangles, case N.2 in magenta downwards triangles, case N.3 in blue squares
and case N.4 in black circles.

With the time-averaged floating potential and electron temperature evolutions,
we could then determine the plasma potential, shown in Fig. 6.9 (a) and (b).

The plasma potential behaves differently inside and outside of the main plume.
For the outside ambient plasma, the plasma potential increases slightly at the begin-
ning to reach a plateau around 25 V, for both voltage cases. The plasma potential
inside the plume, on the other hand, increases at the beginning, probably due to
some ion focusing (which makes the plasma density increase with the distance),
to later start decreasing monotonically, as for a standard diverging plasma plume.
The peak plasma potential is reached at a distance of approximately 15 cm from
the thruster exit. The fact that the plasma potential is higher outside of the main
plume is hard to explain and should be further tested and investigated in future
work. A possible explanation could be that a high negative ion density inside the
plume, bigger than the positive ions density for the considered thruster operational
point, results in an inwards ambipolar electric field, which is opposite to the one
normally found in a conventional neutral plasma plume (directed outwards).
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Figure 6.9: Time-averaged plasma potentials Vs distance from the thruster for (a) 250
V of grid voltage, and (b) 350 V of grid voltage. Filled markers refer to the internal
probe, empty markers to the external one. Case N.1 is shown with red upwards
triangles, case N.2 in magenta downwards triangles, case N.3 in blue squares and case
N.4 in black circles.

From the knowledge of the plasma potential and the Langmuir probes geometry,
we then computed the electron density inside and outside of the plume. This is
shown in Fig. 6.10 (a) and (b).
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Figure 6.10: Time-averaged electron densities Vs distance from the thruster for (a)
250 V of grid voltage, and (b) 350 V of grid voltage. Filled markers refer to the
internal probe, empty markers to the external one. Case N.1 is shown with red
upwards triangles, case N.2 in magenta downwards triangles, case N.3 in blue squares
and case N.4 in black circles.

Once again, for the external probe, the electron density does not vary much with
the distance and is around 2 · 1013 m−3 (for 250 V) and 3 · 1013 m−3 (for 350 V).
Inside the plume, on the other hand, the electron density rapidly decreases with the
distance. This means that electrons are drawn towards the center of the plume to
compensate, on average, the total space charge and this compensation is higher, the
denser the plume. In all cases, at a distance between 15 and 20 cm, the electron
density inside the plume drops below its value outside of the plume, as dictated by
the fact that the electric potential inside the plume is lower than the one outside.
Regarding the effect of the mass flow rate, the cases with the highest total mass
flow rates (cases N.1 and 3, respectively in red and blue) also present the highest
electron densities, as clearly expected.

The electron densities and temperatures can be plotted in a log-log plot to verify
if a polytropic law is applicable. This is done in Fig. 6.11, for the experimental case
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Figure 6.11: Time-averaged electron temperature Vs density in a log-log plot. Te is
in eV, while ne is in m−3. The corresponding polytropic coefficients, which are the
slopes of the linear fittings, are shown as well. Data for the 250 and 350 V cases has
been merged together.

The effective polytropic coefficients for the other experimental cases are summa-
rized in Tab. 6.4. The reported values are compatible with electropositive plume val-
ues found in literature, which are between 1 and 1.3, as shown in Refs. [16, 56, 57, 58].
Moreover, it seems that the lower the SF6 mass flow rate (cases N.2 and 4, featuring
3 SCCMs), the higher the γ for the internal electrons. This suggests that some
phenomenon strictly correlated with the mass flow rate of SF6, is taking place. The
lower this mass flow rate, the faster the electrons cool down (a higher polytropic
coefficient means faster cooling).

Table 6.4: Polytropic coefficients for the different experimental cases.

Case N.
Polytropic coefficient

for the external electrons
Polytropic coefficient

for the internal electrons

1 1.05 1.12
2 1.32 1.34
3 1.32 1.19
4 1.28 1.35

Let us now consider the results obtained with the MRFEA. Some difficulties were
encountered when trying to characterize the ion energy distribution function for the
positive ions, as some films due to SF6 deposition were constantly forming on the
collector. The positive voltage sweep of the MRFEA then induced constantly a
breakdown of this film, thus contaminating the quality of the measurements. An
example of an experimental ion energy distribution function for the case N.4 is
shown in Fig. 6.12. The ion energy distribution function can be simply computed
as the derivative of the collected MRFEA current with respect to the voltage. The
mentioned film formation/destruction effects make the positive ion energy distribu-
tion function reach much higher peaks than that of the negative ions. Given this
difficulty, we have opted to analyze only the IEDF of the negative ions.
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Figure 6.12: Normalized ion energy distribution function for the experimental case
N.4, with 250 V of grid voltage amplitude, and at a distance from the thruster exit
of 6.5 cm.

The evolution of the time-averaged negative ion energy distribution function with
the distance is shown in Fig. 6.13, for a 300 V grid voltage case with 0.326 mg/s of
pure SF6.
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Figure 6.13: Evolution with distance of the negative IEDF for a 300 eV plume with
0.326 mg/s of pure SF6.

The negative ion energy distribution function shows some interesting features.
First of all, since its peak increases between 6.5 and 8.5 cm distance, it shows some
evidence of beam focusing. Secondly, its peak tends to shift to a lower voltage
(or energies) with the distance. This can be due to an electrostatic deceleration,
instabilities (two-stream for example) or the effect of collisional processes. The
first reason seems to be unlikely (unless there is some important time averaging
effect of some strongly correlated phenomena) because the time-averaged electric
potential variations with distance are of the order of 10 V, as shown in Fig. 6.9,
while the voltage shifts identified in Fig. 6.13 are much bigger. Therefore, we do
not exclude that some inelastic processes (like recombination for example) between
fast positive and negative ions or some plume instabilities are responsible for the
observed behaviour of the ion energy distribution evolution with distance.

If the IEDF of the negative ions is integrated in voltage, the evolutions of the
time-averaged negative ion current densities can be obtained for all experimental
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cases, as shown in Fig. 6.14 (a). With the knowledge of the expected ion velocity
and the current density, an estimation of the time-averaged negative ion density
can be finally obtained and it is shown in Fig. 6.14 (b). A quick check shows that
the obtained density is quite lower (by at least one order of magnitude) than the
expected ion density, which can be obtained from the known values of mass flow rate
(3-6 SCCMs), exhaust ion velocity (≃ 20 km/s), and extraction area (6×6 cm). This
difference could be due to a quite low ionization efficiency and a misalignment of the
MRFEA center from the plume centerline (which are important at low distances).
Moreover, the time-averaged negative ion density is half the instantaneous density
inside the beam packets, given the 50% duty cycle considered here.
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Figure 6.14: Time-averaged negative ion properties Vs distance from the thruster: (a)
negative ion current densities, and (b) negative ion densities. Empty markers refer to
the 250 V case, while filled markers to the 350 V case. Regarding the experimental
cases, case N.1 is shown with red upwards triangles, case N.2 in magenta downwards
triangles, case N.3 in blue squares and case N.4 in black circles.

In any case, if we compare these density results with Fig. 6.10 (a) and (b), we see
that the time-averaged electronegativity in the plume is between 1 and 5. Inside
the instantaneous negative ion beam packets, however, this ratio could be higher.
Low values of the electronegativity are compatible with the Langmuir probe mea-
surements, which were dominated by the electron current contribution and did not
show the typical ion-ion plasma shape.

6.4.2. Time-resolved campaign

During the time resolved campaign, some thruster instabilities were clearly ob-
served. In fact, by decreasing the applied positive voltage amplitude below 150−200
V, a transition to a “dark mode” was observed, in which the plume was almost in-
visible and, in addition, hardly measurable because of the very low level of the signal
from the probes. Such a mode persisted if we then returned to the original symmet-
ric applied voltage conditions. A transition of this type is shown in Fig. 6.15, where
the normal mode of operation is referred to as “bright mode”. As it can be clearly
seen, the time-averaged voltage changes from a positive to a negative value. Further
investigation on the reasons of such a mode transition should be carried out in the
future. For what concerns this work, the dark mode was no longer analyzed.
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Figure 6.15: Transition in measured plasma potential voltage between bright (red)
and dark (blue) mode. The applied voltage is shown in black and the time is measured
from the start of the positive voltage half period.

In the normal (bright) mode, it was possible to study the evolution of the mea-
sured signal as a function of the distance from the thruster, as shown for the 250 V
case in Fig. 6.16 (a). It can be clearly observed that the plasma oscillations become
smaller as we get farther away (from an initial value of 60 V down to 20 V at dis-
tances higher than 10 cm). In addition, no clear signal shift can be observed with
the distance, indicating that there is no clear sign of ion beam packets. The fact that
all curves drop together at the start of the negative half period (at 2, 6 and 10 µs),
indicates that electrons are still being extracted from the thruster and that, given
their extremely high mobility, they smooth out the electric potential everywhere.

0 2 4 6 8 10 12
x 10

−6

−20

0

20

40

60
Plasma potential evolution in time

time (s)

E
le
ct
ri
c
p
o
te
n
ti
a
l
(V

)

10.1 cm

2.1 cm
4.1 cm
6.1 cm
8.1 cm

(a)

0 2 4 6 8 10 12
x 10

−6

−20

0

20

40

60
Plasma potential evolution in time

time (s)

E
le
ct
ri
c
p
o
te
n
ti
a
l
(V

)

2.1 cm

6.1 cm
4.1 cm

8.1 cm
10.1 cm

12.1 cm

14.1 cm

(b)

Figure 6.16: Measured voltages at different distances from the thruster with bright
mode, for the (a) 250 V case, and (b) 350 V case. Black straight lines refer to the
half periods of the applied waveform.

For the 350 V case, the results are shown in Fig. 6.16 (b). In this case, there is a
clear shift of the measurements with the distance from the thruster, indicating that
the electric potential is affected by some travelling ion beam packet. Nevertheless,
during the negative voltage half periods, any evidence of beam packets is immedi-
ately cancelled, thus confirming the fact that electrons are still being emitted by the
thruster.

An interesting picture of the electric potential as a function of the distance from
the thruster can be obtained if we consider the voltage measurements of Fig. 6.16
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(b), at specific instants of time. If we take them at 4, 4.5 and 5 µs, we obtain the
plot of Fig. 6.17.
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Figure 6.17: Measured voltage as a function of the distance at three instants of time:
4, 4.5 and 5 µs. The spatial resolution is 2 cm.

It is apparent that a travelling beam packet is displacing to the right at a constant
velocity. Since the distance between the minima in Fig. 6.17 is 2 cm and the required
time is 0.5 µs, we deduce that the travelling beam packet is roughly moving at 40
km/s, an intermediate velocity between the 20 km/s (for SF6 negative ions) and the
60 km/s (for F ions), corresponding to ions energies of 350 eV.

6.5 Conclusions and future work

The work presented in this section has permitted characterizing experimentally,
for the first time, the peculiar alternate ions plume of the PEGASES thruster. This
has been carried out through two dedicated campaigns: a spatial characterization
and a time-resolved characterization campaign.

With the first one, it has been possible to obtain the time-averaged 1-D evolu-
tions (with the distance from the thruster) of plasma potential, floating potential,
electron density and temperature, and negative ion density. It has been found that
the electronegativity inside the plume is very low, indicating that either the elec-
trons are generated outside the thruster by secondary processes or that they are
directly extracted from the thruster grids. The evolution of the negative ion dis-
tribution function has also been obtained with a dedicated magnetic retarding field
energy analyzer. This energy distribution has been found to shift to lower energies,
while becoming wider, as we get farther downstream. A possible explanation of this
behaviour is that of the collisions between the plume ions and the neutral atoms,
however, given the expected mean free paths for ions, this phenomenon alone cannot
fully explain the measurements. It is not excluded, therefore, that some recombina-
tion between positive and negative ions is taking place at distances between 5 and
25 cm from the thruster exit.

With the time-resolved characterization campaign, on the other hand, the evo-
lutions in time and space of the plasma potential inside the plume have been ob-
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tained. Measurements have shown that electrons are certainly being extracted from
the thruster during the negative voltage half period. So, the strategy of blocking
the half of the thruster grids close to the lateral surface, from which electrons are
expected to come, has proved not to be very efficient. In any case, measurements
have provided some evidence of well localized ion beam packets, during the positive
voltage half periods.

Regarding future work, the two operating modes of the PEGASES thruster, iden-
tified during the time-resolved characterization campaign, should be further inves-
tigated, as a transition from a bright to a dark mode yields an abrupt change in the
performance and should be avoided.

Moreover, the MRFEA measurements should be repeated with a new probe de-
sign, not affected by the film formation/destruction phenomenon observed during
this campaign. In this way, the evolution of the positive ion energy distribution func-
tion and density would be obtained and would help understand the overall plume
physics. Repeating the experiments with a different propellant like iodine, instead
of SF6, should be seriously considered in future experiments as it might simplify
enormously the interpretation of the experimental results.

Finally, regarding the electron extraction from the thruster grids, some alternative
measures to prevent it from happening, should be investigated and tested.



Chapter 7

Conclusions

In this chapter, the major contributions of this thesis are first summarized in
Sec. 7.1, while the future research directives are outlined in Sec. 7.2.

7.1 Summary of contributions

This work has led to the development and validation of two codes for the sim-
ulation of plasma plumes, which are complementary to each other, and have been
applied to different studies.

For what concerns the first developed code, named EASYPLUME, the major
contributions have been:

Formulation of two semi-analytic solution methods of a two-fluid plasma plume
model, that allow a fast computation of plasma properties downstream, with-
out the need of integrating the equations with complex numerical schemes.
In particular, the existing plasma plume solutions have been unified under
a common Self-Similar method (SSM) framework, and a new method, the
Asymptotic Expansion Method (AEM), has been proposed.

Physics discussion of the major factors affecting the plasma plume expansion
in the far region: the electron cooling rate γ, the ion Mach number M0, and
the initial divergence angle α0. It has been found that the closer to isothermal
the electrons, and the smaller the ion Mach number, the larger the ambipolar
electric fields, and hence the divergence growth of the plasma plume. The
electric potential at infinity depends solely on the electron cooling rate, and
diverges to −∞ when γ → 1. An equivalent divergence angle, at a given
downstream section, has then been introduced to evaluate quantitatively the
plume divergence growth. It has then been concluded that, in order to de-
crease this growth, at already low initial divergences, it is more advantageous
to increase the ion Mach number than to decrease α0. Moreover, the electron
thermal effects on the plume divergence are more efficiently contained by in-
creasing the emitted ion velocity (by applying a larger acceleration voltage)
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than by reducing the electron temperature in the plume (which requires more
challenging neutralizer designs).

Study of the applicability of the proposed fluid model with a polytropic closure
to a collisionless plume. In this regard, a comparison with a full-PIC model
(from a different research group) has permitted identifying optimal polytropic
coefficients to obtain a good match of the results of the two models. Thus, it
is possible to assert that a fluid model retains an important part of the plume
expansion physics, even when the plume is collisionless (and the fluid closures
are theoretically unjustified).

The second developed code, EP2PLUS, permits simulating the three-dimensional
plasma plume interaction with the satellite and/or other objects. This code can
be applied to a large number of plasma plume studies and represents the largest
contribution of this work. Moreover, the flexible and modular code architecture
shall enable a quick inclusion of new simulation capabilities in the future. Apart
from reaching the state-of-the-art in different algorithms (especially in what concerns
the PIC sub-model), the following modeling novelties are worth mentioning:

New electron fluid model that, while being based on a simple kinetic closure,
retains the collisional terms, and permits solving for the electric current in the
plasma plume.

An automatic division of the simulation domain into quasineutral and non-
neutral regions, depending on the local plasma properties. While in the former
the electric potential is obtained directly by solving the electron conservation
equations, in the latter these are coupled with Poisson’s equation.

Bohm’s condition forcing algorithm for quasineutral material boundaries. While
this approach is quite common for simulations of HET discharges (e.g. HP-
Hall code), the use in a plasma plume code is quite innovative, and has not
been considered in previous codes.

Sputtering interaction between macro-particles and specific sputtered surfaces.
This is not common in plasma plume codes, except for a few existing exceptions
(e.g. SPIS). In addition, the sputtering properties can be obtained using the
available software SRIM/TRIM.

Structured conical mesh as a first population control solution, in plasma plume
expansion studies.

Instead of focusing on complex simulation geometries, this work has considered
simple structured meshes (in most cases Cartesian meshes), with the goal of vali-
dating the above algorithms in the most efficient way. In particular, the automatic
subdivision of the simulation domain in quasineutral and non-neutral regions, en-
ables the use of simple meshes, without the need of changing the cell size as a function
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of the expected local Debye length (as necessary in full-PIC codes, or quasineutral
codes).

Regarding the applications of the developed codes, the following results have been
achieved:

Simulation of the interaction between a plasma thruster plume and the emit-
ting spacecraft with the use of EP2PLUS. This benchmark simulation has
demonstrated the most important simulation capabilities, and permitted the
evaluation of various phenomena such as the spacecraft electric charging, the
ion backscattering flux, and the electric currents structure in the plume. For
what regards these, the simulation has demonstrated that the plasma plume
becomes current-free very quickly, starting from distances of 30−40 cm down-
stream of the NSTAR ion thruster exit area (in which the electric current is
maximum and provided by the emitted ions alone). Moreover, the effects of
the electron thermodynamics and of the finite non-neutral regions have been
evaluated as well, finding that they both have a non-negligible role in deter-
mining the backscattered CEX ion flux and the S/C floating potential. For
what concerns the former, the closer to isothermal are the electrons, the higher
the CEX backscattered flux and the ion wall-impact energy, and the lower the
spacecraft floating potential. For what concerns the latter, a significant in-
crease (up to 30%) in the backscattered CEX ion flux has been observed,
when switching from the quasineutral to the non-neutral solver.

Optimization of the electric propulsion subsystem of an IBS spacecraft, with
the use of EASYPLUME and a simplified target interaction model. This study
has permitted identifying the optimal operational points of both the impulse
transfer thruster alone, and of the two thrusters (including the impulse com-
pensation one) operating simultaneously. It has been found that the plume
physics affects strongly the design choice: the ITT must guarantee a small
initial divergence angle, as the conical beam expansion is the major factor
that reduces the momentum transfer to the target, and hence the IBS effi-
ciency. Therefore, the optimal operational point for the beam voltage of the
impulse transfer thruster is much larger than that of the impulse compensation
thruster, which can be maintained to low values (1 kV), to contain the power
demand.

Simulation of the complex interaction between satellite, plasma plume and
debris, in an IBS mission scenario. Important physical effects that can affect
significantly the success and performance of the mission have been evaluated:
the ion backscattering flux, the backsputtering flux, and the stationary poten-
tials of the IBS satellite and of the debris.

Apart from the main topic of simulations and modeling treated above, an ex-
perimental campaign has also been carried out during this thesis activities. The
PEGASES plasma plume has been characterized experimentally for the first time.
While a spatial characterization campaign has evaluated the 1D profiles (along the
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plume axis) of plasma properties of interest, a time-resolved campaign has assessed
the time evolution of the plasma potential inside the plume, with the use of an inno-
vative plasma potential sensor (specifically built during my stay), finding also some
evidence of localized travelling beam packets. Moreover, it has been found that the
electronegativity inside the plume is very low, indicating that the current thruster
design is still affected by a direct electron emission (during the negative half-period
of the applied voltage waveform), so that future design improvements are necessary.

7.2 Future research directives

The field of plasma thruster plumes features a lot of open topics. In my opinion,
two fields are particularly appealing: the collisionless electron cooling in the plume,
and the effects of an external magnetic field on the plume expansion. The former
topic deals with the understanding of the physical mechanism behind the gradual
reduction of the electron temperature as the plume expands, and is amenable to
simulations with fully-kinetic or full-PIC models [137]. For what concerns the effects
of a magnetic field, on the other hand, these can be studied either numerically, e.g.
with an improvement of the electron fluid model of EP2PLUS, or experimentally,
with dedicated campaigns in large vacuum chambers. Regarding the latter, the
recent LEOSWEEP project did not produce a definite conclusion on this matter, so
that it remains an interesting and open investigation topic.

Coming to the research directives directly related to this thesis work, different
investigation lines can be identified, as described in the following.

The fluid model of Chapter 2 is collisionless, a condition that permits solving it
with the simplified semi-analytic methods of the SSM and AEM. While the inclusion
of collisional effects between the emitted ions and neutrals or with the background
plasma, is clearly possible, it would have the major drawback of making the proposed
solution methods inapplicable. Therefore, at least in the context of the far-region
plume modeling, the inclusion of collisional effects is not suggested. Two major
investigation lines are proposed:

The inclusion of the effect of an external magnetic field in the fluid model,
which might be amenable to some kind of Self-Similar approach, as suggested
by the work of Korsun [51, 52, 53].

The extension of the fluid model comparison with a kinetic code to a more
realistic axisymmetric plasma plume geometry.

In what regards the continued improvement and development of EP2PLUS, sev-
eral research directives can be identified:

Modeling new heavy particles collisions. Among these, of particular inter-
est are the momentum exchange collisions between ions and neutrals (MEX),
which are amenable to cross-section modeling, like the CEX collisions.
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Finer modeling of the sputtering effects, that include a generic distribution
function for the emitted neutral particles (not based on a thermal emission,
with predefined mean energy) or backscattered particles (not based on specu-
lar reflection with a deterministic energy reduction). Both distribution func-
tions (for sputtered atoms and backscattered particles) can be obtained from
the SRIM/TRIM software. Moreover, the possibility of generating clusters of
sputtered atoms, with a given residual charge, should also be investigated.

More effective population control to deal with the plume expansion effects.
This should feature, on top of the already existing control, a particle renor-
malization algorithm, or the use of expanding PIC meshes that adapt to the
local plasma density (larger cells where the macro-particles density is expected
to drop).

Extension of the electron fluid model to magnetized plasma plumes, in order to
study the distorsion effects caused by any external magnetic field (such as the
geomagnetic field) on a plasma plume expansion. This would feature the use
of a conductivity tensor, instead of a scalar conductivity, while the Bernoulli’s
function approach appears to be quite promising in this respect.

Generalization of the electron fluid model to generic kinetic closures, with
coefficients determined by dedicated kinetic studies.

Inclusion of conductive emissive surfaces, characterized by photo-emission, ion
bombardment emission, secondary electron emission. These new surface types
would not affect the PIC model, but rather the equivalent circuit and sheath
models, having a non-negligible effect in the estimation of the electric charging
of conductive objects.

More complex structured meshes for the simulation of non-rectangular objects
(sphere, cylinders, cones, etc...). The present work has not focused on this
topic, which would require dedicated algorithms that automatically adapt the
original mesh nodes to the requested object geometry.

The EP2PLUS code, with minor adjustments, then appears to be particularly
suited for the following studies, which have not been object of research in the present
work:

Study of the beamlets formation and coalescence in an ion thruster grid system.
This would require the non-neutral solver, with two independent populations
of electrons: one for the outside plasma electrons, and another for the discharge
chamber electrons (characterized by reference properties, such as the density
and temperature, at different locations).

Study of the plasma plumes produced by clusters of electric thrusters.

Study of the interaction between the ambient plasma and electromagnetic
tethers.
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Study of the expansion of an alternate ions plasma plume, like that of the
PEGASES thruster.

For what concerns the applications considered in this work, the directives for
future work have already been presented at the end of the corresponding chapters
or sections, and are summarized here for the sake of completeness:

The study of the interaction between the plasma plume and the satellite can
be improved by adding the effects of sputtering on the satellite surfaces (low
energy sputtering, quite different from the high energy sputtering on the target
debris of an IBS mission). Moreover, the inclusion of other electron emission
effects, might have a significant effect on the floating potential of the space-
craft, and needs to be further investigated.

The electric propulsion subsystem optimization study can be improved by con-
sidering additional effects in the mass budget (thrusters, PPUs mass, etc...),
different types of thrusters for ITT and ICT (a RIT type has been considered
for both here), and a mission scenario featuring the de-orbiting of more than
1 debris object.

The detailed simulation of the satellite-plasma-debris interaction, in the IBS
context, can be improved by considering the effect of the geomagnetic field,
and non-rectangular debris object geometries (the more realistic ones being
truncated cones, or cylindrical shapes).

Finally, regarding the PEGASES characterization campaign, new thruster de-
signs should be pursued to avoid both electron emission (due to the E ×B drift),
and the transition from a bright to a dark operational mode. Moreover, MRFEA
measurements should be repeated with a new probe design, that allows to obtain the
evolution of the positive ion energy distribution function and density (impossible in
the described campaign).



Conclusiones

Resumen de las contribuciones

En esta tesis se han desarrollado y validado dos códigos para la simulación de
chorros de plasma, ambos complementarios y utilizados en diferentes estudios.

En lo que respecta el primer código, llamado EASYPLUME, las contribuciones
más importantes han sido:

Formulación de dos métodos de solución semi-anaĺıtica de un modelo con dos
fluidos, que permiten el cálculo rápido de las propiedades de un chorro de
plasma aguas abajo sin la necesidad de integrar las ecuaciones exactas con
esquemas numéricos complejos. En particular, las soluciones existentes en la
literatura se han reunido bajo un marco común de métodos auto-semejantes
(SSM), y se ha desarrollado un nuevo método de expansión asintótica (AEM).

Discusión f́ısica de los factores más importantes en la expansión de un chorro de
plasma en su región lejana: el coeficiente politrópico de enfriamiento electrónico
γ, el número de Mach iónico M0 y el ángulo de divergencia inicial α0. Se ha
entendido que cuanto más isotermos son los electrones, y cuanto más pequeño
es el número de Mach, más grandes son los campos eléctricos ambipolares, y
como consecuencia el crecimiento de la divergencia del chorro. El potencial
eléctrico en el infinito depende solamente del coeficiente politrópico y diverge
a −∞ cuando γ → 1. Se ha introducido un ángulo de divergencia equivalente,
a una cierta distancia axial, para evaluar cuantitativamente el crecimiento de
la divergencia, y se ha concluido que, para reducirlo en el caso de ángulos de
divergencia iniciales ya bajos, conviene aumentar el número de Mach, en lugar
de intentar reducir α0. Además, los efectos térmicos de los electrones sobre la
divergencia pueden reducirse de manera más eficiente incrementando la veloci-
dad de emisión de los iones (aplicando un voltaje de aceleración más alto) que
reduciendo la temperatura electrónica en el chorro (que puede requerir diseños
muy complejos para el neutralizador).

Estudio de la aplicabilidad del modelo fluido con un cierre politrópico a un
chorro sin colisiones. Una comparación con un modelo PIC-PIC (para iones
y electrones) de otro grupo de investigación (University of Southern Califor-
nia) ha permitido identificar los coeficientes politrópicos más apropiados para
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obtener un buen acuerdo entre los resultados de los dos modelos. Por lo tanto,
se ha podido averiguar que un modelo fluido permite reproducir una parte im-
portante de la f́ısica de expansión, incluso en el caso de chorros no colisionales
(para los cuales los cierres fluidos no están justificados teóricamente).

El segundo código, EP2PLUS, permite simular la interacción tridimensional entre
el chorro de plasma, el satélite y otros objetos. Este código puede utilizarse para
un gran número de estudios de chorros y representa la contribución más importante
de este trabajo. Además, su arquitectura flexible y modular permite incluir, de
manera relativamente sencilla, nuevas capacidades de simulación. A parte conseguir
llegar al estado del arte en diferentes algoritmos (especialmente en lo que respecta
el sub-modelo de PIC), las siguientes novedades merecen una mención particular:

Nuevo modelo de electrones basado sobre un cierre cinético que incluye los
efectos de las colisiones y permite obtener las corrientes eléctricas en el chorro
de plasma.

División automática del dominio de simulación en regiones quasi-neutras y no
neutras, en función de las propiedades locales del plasma. En las primeras,
el potencial eléctrico se calcula resolviendo directamente las ecuaciones de
conservación de los electrones, mientras que en las segundas estas ecuaciones
se resuelven acopladas con la ecuación de Poisson.

Imposición de la condición de Bohm en las superficies materiales quasi-neutras.
Este algoritmo es bastante común en las simulaciones de descargas de motores
HET (por ejemplo en el código HP-HALL), pero su uso en un código de chorros
es innovativo, y no se ha considerado en estudios anteriores.

Modelado de la erosión generada por la interacción entre macro-part́ıculas
altamente energéticas y superficies materiales. La inclusión de dichos efectos
no es muy común en códigos de chorros, excepto por algunas excepciones (por
ejemplo SPIS). Además, las propiedades de las part́ıculas emitidas por erosión
pueden calcularse usando el software externo SRIM/TRIM.

Malla estructurada cónica como primer solución para el control de población,
en estudios de chorros de plasmas.

En lugar de centrarse en geometŕıas de simulación complejas, este trabajo ha
considerado mallas estructuradas sencillas (en el mayor de los casos cartesianas) con
el objetivo de validar los algoritmos mencionados anteriormente de la manera más
eficiente. En particular, la división automática del dominio de simulación en regiones
quasi-neutras y no neutras permite el uso de mallas sencillas, sin la necesidad de ir
adaptando el tamaño de las celdas a la longitud local de Debye (como es necesario
en códigos PIC-PIC o totalmente quasi-neutros).

En lo que respecta las aplicaciones de los códigos, se han conseguido los siguientes
resultados:
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Simulación de la interacción entre un chorro de plasma de un motor iónico y
el satélite con el uso de EP2PLUS. Esta simulación ha demostrado las capaci-
dades de simulación del código y ha permitido evaluar diferentes fenómenos
como la acumulación de carga, el retorno de iones lentos, y la estructura de
las corrientes eléctricas en el chorro cercano. En particular, se ha compro-
bado que dichas corrientes se extinguen casi por completo muy rápidamente,
en los primeros 30-40 cm de distancia desde la superficie de emisión del motor
iónico NSTAR (donde la corriente eléctrica es máxima y proporcionada sola-
mente por los iones emitidos). Además, los efectos de la termodinámica de
los electrones y de las regiones no neutras ha sido investigado, descubriendo
que ambas tienen un efecto importante en determinar el flujo de iones lentos
hacia el satélite y el potencial flotante de este último. En lo que respecta la
termodinámica de los electrones, cuanto más isotermos sean estos, más alto es
el flujo de iones lentos y su enerǵıa media de impacto en las paredes, y más
negativo es el potencial del satélite. Por otro lado, la simulación de las regiones
no neutras conlleva una subida del flujo de iones de hasta el 20− 30%.

Optimización del sistema de propulsión eléctrico de un satélite IBS con el uso
de EASYPLUME (código fluido) y de un modelo simplificado de interacción
con el objeto. Este estudio ha permitido identificar los puntos de operación
óptimos para el motor de transferencia de momento (ITT) y para ambos mo-
tores (ITT + ICT) operando simultáneamente. La f́ısica de la expansión del
chorro afecta mucho al diseño: el ITT debe garantizar un ángulo de divergen-
cia inicial bajo, siendo la expansión cónica el factor principal que reduce la
transferencia de momento. Entonces, el voltaje de aceleración óptimo del ITT
supera al voltaje del ICT, que puede ser bajo (1 kV) para contener la potencia
necesaria.

Simulación de la interacción compleja entre el satélite, el chorro y el objeto
espacial en el contexto de una misión IBS. Se han evaluado numéricamente
unos fenómenos importantes para el éxito y el rendimiento de la misión: el flujo
de iones lentos y de part́ıculas erosionadas hacia el satélite y los potenciales
eléctricos de éste y del desecho espacial.

Adicionalmente, durante este trabajo de tesis, se ha llevado a cabo una campaña
experimental de caracterización del chorro de plasma del motor PEGASES. Una
caracterización espacial ha permitido evaluar los perfiles axiales de propiedades de
interés, mientras que una campaña de caracterización temporal ha evaluado las
variaciones del potencial del plasma dentro del chorro, encontrando evidencia de la
expansión de paquetes de iones aguas abajo. Además se ha podido comprobar que la
electro-negatividad del chorro es baja, lo cual indica que el diseño actual del motor
está todav́ıa caracterizado por una emisión directa de electrones durante el periodo
de voltaje negativo de la onda de potencial aplicada en las rejillas. Por esta razón,
seŕıan necesarias futuras mejoras en el diseño del motor.
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Trabajo futuro

El campo de investigación de los chorros de plasma presenta mucho temas de
interés abiertos. En mi opinión dos de ellos son particularmente interesantes: el en-
friamiento sin colisiones de los electrones en el chorro y los efectos de un campo
magnético externo sobre la expansión. El primer tema consiste en entender el
mecanismo f́ısico detrás de la reducción gradual de la temperatura electrónica a
lo largo de la expansión, y puede estudiarse con modelos PIC-PIC o completamente
cinéticos [137]. Por lo que respecta el campo magnético, sus efectos pueden estudi-
arse numéricamente, por ejemplo mejorando el modelo electrónico de EP2PLUS,
o experimentalmente en cámaras de vaćıo suficientemente grandes. El reciente
proyecto LEOSWEEP no ha conseguido llegar a unas conclusiones definitivas so-
bre los efectos de dicho campo, por lo que este tema de investigación queda muy
abierto.

Pasando a la descripción del trabajo futuro relacionado con esta tesis, pueden
seguirse diferentes lineas de investigación.

El modelo fluido del caṕıtulo 2 desprecia los efectos de las colisiones, una hipótesis
que permite resolverlo con métodos semi-anaĺıticos como el SSM y el AEM. Aunque
sea posible incluir los efectos de las colisiones, dichos métodos de solución no podŕıan
utilizarse. Por lo tanto, en el contexto del modelado de la región lejana la inclusión
de dichos efectos no se aconseja y se proponen otras dos lineas de investigación:

Inclusión de los efectos de un campo magnético en el modelo fluido, que podŕıa
seguir un enfoque del tipo “auto-semejantes”, como sugerido por el trabajo de
Korsun et al. [51, 52, 53].

Extensión de la comparación entre el modelo fluido y PIC-PIC a un caso más
realista axial-simétrico.

En lo que respecta el desarrollo de EP2PLUS, diferentes ĺıneas de mejora del
código pueden identificarse:

Modelado de las colisiones entre especies pesadas. Entre ellas, de particular
interés son las colisiones elásticas de intercambio de momento entre iones y
neutros (MEX), que pueden modelarse con secciones eficaces, como las coli-
siones de intercambio de carga (CEX), ya consideradas en este trabajo.

Modelado más fino de los efectos de la erosión, que incluya una genérica función
de distribución para los neutros emitidos (no basada en una emisión puramente
térmica con una cierta enerǵıa media) y para las part́ıculas reflejadas (no
basada en una reflexión especular con una reducción determinista de enerǵıa).
Ambas funciones de distribución (para átomos erosionados y part́ıculas refle-
jadas) pueden obtenerse con el código SRIM/TRIM. Además también podŕıa
estudiarse la posibilidad de generar aglomeraciones de átomos con una cierta
carga residual, que estaŕıan sujetos a los campos eléctricos locales.
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Control activo de población más eficaz para reducir el ruido en la expansión del
chorro. En paralelo con el control actualmente considerado, esto puede hacerse
con un algoritmo de renormalización de los pesos de las macro-part́ıculas, o
con el uso de una malla que se adapte a la densidad de plasma local (celdas
más grandes donde la densidad de macro-part́ıculas baja).

Extensión del modelo de electrones a un chorro de plasma magnetizado para
estudiar los efectos de distorsión causados por un campo magnético externo
(como el campo geo-magnético) sobre la expansión del chorro. Esto requeriŕıa
el uso de un tensor de conductividad en lugar de una conductividad escalar,
siendo el uso de la función de Bernoulli muy prometedor.

Generalización del modelo de electrones a cierres cinéticos genéricos con coe-
ficientes determinados por estudios cinéticos dedicados.

Inclusión de superficies emisoras para electrones, caracterizadas por foto-emisión,
bombardeamiento iónico y emisión secundaria. Estos nuevos tipos de super-
ficie no afectaŕıan al modelo PIC, sino al circuito equivalente y al modelo de
vaina y tendŕıan efectos importantes en la estimación de la acumulación de
carga eléctrica de los objetos metálicos.

Mallas estructuradas más complejas para simular objetos no-rectangulares (es-
feras, cilindros, conos, etc...). Este trabajo no se ha centrado en este tema que
requeriŕıa nuevos algoritmos que adapten las coordenadas de los nodos origi-
nales a la geometŕıa requerida.

EP2PLUS, con ajustes menores, es particularmente apropiado para estudiar los
siguientes temas, no tratados aqúı:

Estudio de la formación del chorro de un motor iónico en un sistema de rejillas.
Esto requeriŕıa utilizar el cierre no neutro, con dos poblaciones independientes
de electrones: una para el plasma exterior (en el chorro), y otra para la cámara
de ionización (ambas caracterizadas por propiedades de referencia, como den-
sidad y temperatura, en puntos quasi-neutros distintos).

Estudio del chorro de múltiples motores eléctricos, operando simultáneamente.

Estudio de la interacción entre el plasma ambiente y una amarra electro-
magnética.

Estudio de la expansión de un chorro de iones alternos (positivos y negativos),
emitido por motores como el PEGASES.

Por lo que respecta las aplicaciones de este trabajo, las siguientes mejoras son las
más prometedoras:
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El estudio de la interacción entre el chorro y el satélite puede mejorarse intro-
duciendo los efectos de erosión de las superficies del satélite (de baja enerǵıa,
distinta respecto a la erosión de alta enerǵıa del desecho espacial, en el con-
texto de una misión IBS). Además, la inclusión de otros efectos de emisión
electrónica puede afectar significativamente al potencial flotante del satélite y
debeŕıa ser considerada también.

La optimización del sistema de propulsión eléctrico puede mejorarse con-
siderando efectos adicionales en el balance de masa (motores, masa de las
PPU, etc...), diferentes tipos de motores para el ITT y el ICT (en este estudio
se ha considerado un motor iónico a radio-frecuencia para ambos) y una misión
caracterizada por desorbitar más de un objeto espacial.

La simulación detallada de la interacción satélite-plasma-objeto en el contexto
del IBS puede hacerse más realista estudiando los efectos del campo magnético
terrestre y considerando formas no-rectangulares del desecho espacial (como
conos truncados o cilindros).

Finalmente, respecto a la campaña de caracterización del PEGASES, debeŕıan
estudiarse nuevos diseños para evitar la emisión directa de electrones y la transición
entre un modo operacional “luminoso” y uno “oscuro”. Además, nuevas medidas
con un nuevo diseño del MRFEA (del inglés magnetic retarding potential energy
analyzer) permitiŕıan estudiar la evolución de la función de distribución de los iones
y su densidad (imposible en la campaña aqúı descrita).



Appendix A

i-th order correction of the fluid
velocity for AEM models

The i-th order correction to velocity in the AEM solution is given by the following
equations, which are integrated in the same fashion as the first-order correction:
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(j)
ri

∂ũ
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where Tε (ñ
γ−1, εj−1) denotes the coefficient of εj−1 of the Taylor series of ñγ−1 in ε,

which results from expanding the following expression:
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Similarly, the i-th correction to density is then given by
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Appendix B

Non-linear Poisson’s solver and
electric field computation

Since the electron density is an explicit function ne = ne(φ,He), of both the
known Bernoulli’s function and the unknown potential, Eq. 3.78 becomes a non-
linear differential equation in φ. In numerical form, if φl is the unknown potential
at the lth mesh node, then the lth non-linear system equation can be written as:

fl =
∑
m

Almφm +
e

ϵ0

(
n∗
e,l − ne,l(φl, He,l)

)
= 0, (B.1)

where the summation extends to all mesh nodes, n∗
e,l is the known quasineutral elec-

tron density at node l, and Alm is the (l,m) element of the sparse coefficients matrix.
The generic coefficient Alm can be computed with the knowledge of the Jacobian
matrices of the transformation between computational and physical coordinates J
and Ji. The particular expressions here, for a structured mesh, can be consulted in
Sec. B.1.

Eq.B.1 can be solved iteratively with a Newton-Raphson method, by linearizing
it around the current solution for the electric potential φ(k), with k representing
now the iteration step. The initial estimate φ(0) is given by either the quasineutral
electric potential φ∗ (at the very first simulation step), or by the previous time step
solution (at other simulation steps). The linearization proceeds by evaluating the
Jacobian matrix of the non-linear system, at the iteration step k, as:

J
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∂φm

]
φ=φ(k)

, (B.2)

and then obtaining the electric potential correction ∆φ(k), by solving the linearized
system: ∑

m∈mesh

J
(k)
lm ∆φ(k)

m = −f
(k)
l . (B.3)

The new electric potential, for the next iteration step k + 1, is updated as φ
(k+1)
l =

φ
(k)
l + ∆φ

(k)
l and used to update the Jacobian matrix. This iterative scheme is
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COMPUTATION

repeated until a convergence criterion is met, i.e. until the maximum absolute value
of the non linear function f is below a user’s defined tolerance.

Once the electric potential has been computed, the corresponding electric field
(necessary to move ion macro-particles) is obtained as:

E = −∇φ, (B.4)

following the gradient reconstruction algorithm of Sec. B.2.

B.1 Poisson’s equation coefficients in a structured

mesh

At the inner plasma nodes (not at the boundaries), the coefficient Alm expresses
the dependency of the Laplacian at node l on the unknown electric potential of
node m. In order to obtain it, the Laplacian is first decomposed in derivatives with
respect to the computational coordinates:
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where the terms in black are constant throughout the simulation and depend on the
mesh (they can be either known analytically, or computed numerically), while the
terms in red have to be evaluated, every time step, with an appropriate 2nd order
scheme. In a structured mesh like the one considered here, the following 2nd order
scheme can be applied for the second derivatives at a generic non-boundary mesh
node with indices (i, j, k) (second derivatives are never required at boundary nodes,
where only first derivatives are imposed):

∂2φ

∂ξ2

⏐⏐⏐⏐
(i,j,k)

≈ φi−1,j,k − 2φi,j,k + φi+1,j,k (B.6)
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while the first derivatives can be evaluated numerically as (again for the ξ deriva-
tives):⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂φ

∂ξ

⏐⏐⏐⏐
(i,j,k)

≈ φi+1,j,k − φi−1,j,k

2
for inner plasma nodes,

∂φ

∂ξ

⏐⏐⏐⏐
(i,j,k)

≈ −φi+2,j,k + 4φi+1,j,k − 3φi,j,k

2
for left boundary nodes,

∂φ

∂ξ

⏐⏐⏐⏐
(i,j,k)

≈ φi−2,j,k − 4φi−1,j,k + 3φi,j,k

2
for right boundary nodes.

(B.7)

Finally, the crossed derivatives of Eq. B.5 are computed by applying two first deriva-
tive schemes, one after the other.

For what concerns the coefficients of the boundary nodes (those featuring a Neu-
mann condition) they refer to the normal derivative of the electric potential, which
can be expressed as:

∂φ

∂1⊥
=

∂φ

∂x

∂x

∂1⊥
+

∂φ

∂y

∂y

∂1⊥
+

∂φ

∂z

∂z

∂1⊥
= ...

=

(
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∂ξ
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∂x

)
∂x
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(
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∂ξ

∂ξ

∂y
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)
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+

(
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+
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)
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(B.8)

in which the direction cosines of the normal unit vector 1⊥ depend on the mesh,
and only 3 partial derivatives with respect to the computational coordinates ξ, η, ζ
need to be evaluated, again using the schemes of Eq.B.7 for the red terms in the
equation.

The generic coefficient Alm for the non-linear system is finally given by the total
coefficient that multiplies the generic mth node potential in the Laplacian or normal
derivative expressions, evaluated at the lth node, by using the 2nd order schemes of
Eqs. B.7 and B.6.

B.2 Gradient reconstruction in a structured mesh

A common operation done in field reconstruction algorithms is that of the gra-
dient reconstruction. This is needed, for example, in order to compute the electric
field vector, once the electric potential solution has been obtained with either the
quasineutral or the non-neutral solver.

The spatial gradient of any quantity, in the considered structured mesh, is ob-
tained numerically by first computing its derivatives with respect to the computa-
tional coordinates, and then applying the chain rule for multi-variable functions,
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with the use of the physical to computational transformation matrix J (providing
the partial derivatives of the computational coordinates with respect to the physical
ones). The three components of the electric potential gradient (the opposite vector
to the electric field), at the mesh node with indices (i, j, k), are then obtained as:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
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Appendix C

The EP2PLUS validation tests

The validation tests that have been considered in this work are summarized in
Tab.C.1. They can be divided in 2 categories: functional and integration tests.
While the former test a specific functionality of the code, the latter verify, for a
specific scenario, the correct functioning of integrated functions and modules.

C.1 Particle mover

In the particle mover test, the trajectory of a test ion macro-particle is computed,
assuming constant electric and magnetic fields. The position and velocity relative
errors ϵp = |r − rex| /∆rf,ex and ϵv = |v − vex| /vf,ex of the mover solution with
respect to the exact analytical one are shown in Fig. C.1(a), for the trajectory of
Fig. C.1(b) (E×B plane cross-section). The expected drift and Larmor motion can
be appreciated, while the relative errors remain small after many Larmor orbits.
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Figure C.1: Particle mover test results: (a) relative errors in the predicted ion position
(red) and velocity (black), (b) corresponding 2D trajectory in the E × B plane,
showing the initial position (red dot).
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Table C.1: Description of the EP2PLUS validation tests

Test name Test type Success criteria description

Particle mover functional
Trajectory error with respect to the exact

solution below a given tolerance

Volume weighting functional
Weighted density for given input

populations with the expected errors

Surface weighting functional
Weighted surface density for known particle

flux with the expected errors

Surface-crossing
check

functional Absorption of particles crossing test surfaces

Particle injection functional
Moments of the injected populations within

expected errors from input values

Field computation functional
Reconstructed electric field, for a known
potential distribution, within a max. error

from the analytic exact solution

CEX collisions functional Expected density of the colliding ions

Ionization
collisions

functional Expected density of the ionized neutrals

Surface
interaction

functional Mass conservation in a closed box

Population control functional
Number of macro-particles per cell within

the control interval

Sputtering functional
Sputtered/backscattered particles

from a test target, with the expected distribution

Non-linear Poisson functional Error in Poisson’s equation below threshold

Collisionless
plume expansion

integrated
Density errors with respect to the SSM fluid
solution, below a threshold, for different

fluid closures and meshes

Bohm’s condition
forcing

integrated
Achievement of ion sonic conditions, at the

simulation material boundaries

IBS-like scenario integrated
Correct functioning for an IBS-like scenario,
with quasineutral and non-neutral closures

Neutralizer-thruster
interaction scenario

integrated
Error in both non-linear Poisson’s solver

and He solver, below a threshold
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C.2 Volume weighting

In the volume weighting test, two populations of ion macro-particles are consid-
ered, as shown in Fig. C.2 (a):

1. a randomly generated population with a uniform spatial distribution,

2. a population consisting of one macro-particle per cell at a fixed off-set position
from the cell center

The dispersion in the weighted density of the first population is then compared with
an expected value, while the second population density must be exactly constant
everywhere in the simulation domain.

(a) (b)

Figure C.2: Configurations for (a) the volume weighting test (an x− y cross section
is shown), and (b) the surface weighting test (an x− z cross section is shown).

C.3 Surface weighting

In the surface weighting test, a population of ion macro-particles is injected with
a known flux, density and velocity from one side of the simulation domain, and is
surface weighted at a test surface, as shown in Fig. C.2 (b). A direct comparison
between the expected density and velocity, and the ones obtained with surface-
weighting, then permits validating these algorithms.

C.4 Surface-crossing check

In this test case, the configuration of Fig. C.3 is considered. A particle source
generates particles with a spherical velocity field (i.e. with their velocity aligned
with the radial direction from the sphere center), and these interact with 6 absorbing
walls, of a given size and at a known distance. All macro-particles whose trajectories
cross these absorbing surfaces have to be eliminated from the domain. The expected
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fraction of particles to be absorbed by the surfaces, is then compared with those
that have been actually eliminated in the simulation.

Figure C.3: Configuration for the surface-crossing check test.
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C.5 Particle injection

In the particle injection test, two populations are injected:

1. Drifting Maxwellian population, with assigned particle flux, fluid velocity and
temperature, from a given injection plane.

2. Thermal ion population (of assigned temperature, density, and with a zero
fluid velocity), injected towards the center from the lateral surfaces of a cube.

The weighted density and temperatures at the injection plane (for the first pop-
ulation), and at the center of the injection cube (for the second population) are
compared with the expected values. Moreover, for the second population, the par-
ticle distribution function at the cube center, must resemble an exact Maxwellian
distribution (with zero mean velocity). The results for the weigthed density and
temperature of the first population are shown in Fig. C.4 (a) and (b).
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Figure C.4: Injection test results: (a) density, and (b) temperature, of the first popu-
lation, at the injection plane. The expected density and temperature are respectively
1016 m−3 and 0.05 eV.

The weighted density and temperatures of the second population, at a plane that
crosses the injection cube center, are then shown in Fig. C.5 (a) and (b), while the
corresponding normalized probability distribution functions f̃(vx) and f̃(vy) at the
cube center are shown in Fig. C.5 (c) and (d).
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Figure C.5: Injection test results: (a) second population density and (b) temperature,
at a plane crossing the injection cube center, and normalized probability distribution
functions at the cube center, for (c) the x velocity and (d) the y velocity. Particles are
injected inwards from the cube sides, which are shown in the sub-figures (a) and (b),
and are transparent to particles. The expected density and temperature, at the cube
center, are respectively 1016 m−3 and 50 eV. Regarding the sub-figures (c) and (d),
the normalization velocity is the thermal velocity vth =

√
eT/m, while the expected

Maxwellian distribution is indicated by the red line.

C.6 Electric field computation

In this test case, an analytic electric potential (the one corresponding to a self-
similar plasma plume expansion) is used to compute numerically the electric field.
This is then compared with the exact electric field solution, that can be obtained by
differentiating analytically the known electric potential. The committed absolute
and relative errors, computed respectively as ϵabs = |Ecomp −Eexact| and ϵrel =
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ϵabs/ |Eexact|, are shown in Fig. C.6 (a) to (d), for two cross sections (one at the
z = 0 plume injection plane, and another at the y = 0 plane).
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Figure C.6: Field computation test results: (a) absolute and (c) relative electric field
error in the z = 0 plane, (b) absolute and (d) relative electric field error in the y = 0
plane. The plume is injected at z = 0 and features a 95% ion current streamline
radius of 1 m, with a corresponding divergence angle of 10 deg. The considered mesh
has a total of 101× 101× 121 nodes.

C.7 CEX collisions

For the CEX collisions tests, the configuration is shown in Fig. C.7 (a). Two
populations of ions with different axial velocities are injected from the z = 0 plane
and collide with 2 still populations of neutral macro-particles (with CEX). The
expected density of the injected ions, along z at the centerline, can be predicted as:
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ni,c = ni0 exp

(
− z

λc,CEX

)
, (C.1)

where the mean free path λc,CEX depends on the relative velocity between the in-
jected ions and the neutrals, and is different for the 2 populations. Fig. C.7 (b) shows
the comparison between the predicted densities and those obtained by simulating
the collisions with either DSMC or MCC sampling (for both populations).
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Figure C.7: (a) Configuration of the CEX collisions test: two populations of injected
ions with different velocities collide with two populations of neutrals, of constant
density. (b) Centerline fast ion density: the expected evolution is shown with a solid
line, the obtained values with DSMC sampling are shown with upwards triangles, and
those obtained with MCC sampling with downwards triangles. The black lines refer
to injected ions with 10 km/s velocity, while the red lines to injected ions with 20
km/s. The simulation results refer to cross section average values, at fixed z.

C.8 Ionization collisions

The ionization test is very similar to the CEX collisions test, and features an
injected neutral population that is progressively ionized by a dense plasma back-
ground (generated by ion macro-particles). The configuration is shown in Fig. C.8
(a). Once again, the expected centerline density evolution for the injected neutrals
depends on the ionization rate, and is given by:

nn,c = nn0 exp

(
−neRizf

un

)
, (C.2)

where Ri is the constant ionization rate (a constant electron temperature is as-
sumed), and un is the neutral injection velocity. The results for the neutral density
obtained with EP2PLUS is finally compared with this predicted evolution in Fig. C.8
(b).
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Figure C.8: (a) Configuration of the ionization test: a neutral population is injected
from z = 0 and is gradually ionized by a dense background plasma, with a constant
density and electron temperature across the domain. (b) Centerline neutral density:
the expected evolution is shown with a solid line, while the simulated evolution with
black circles. The simulation results refer to cross section average values, at fixed z.

C.9 Surface interaction

In this test, whose configuration is depicted in Fig. C.9, a certain number of ion
and neutral macro-particles are generated at the center of a box, with material walls.
As the ions hit such walls they recombine into neutrals, while neutrals get reflected
either specularly or diffusely. This test checks that the correct distribution function
of reflected and re-injected neutrals is achieved, and also that mass is conserved
within the domain.

Figure C.9: Configuration of the surface interaction test. The lateral walls of the box
are of material type, thus causing ions to recombine, and neutrals to reflect (either
specularly or diffusely).
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C.10 Population control

In this test, an ion population is injected from the left boundary (z = 0) with
an SSM profile. As the ions reach the material wall at the right boundary, they
recombine into neutrals and the population control algorithms dictate the generation
weights of these new neutral macro-particles. The control interval for the number
of macro-particles per cell is [45 − 55]. The configuration is shown in Fig. C.10
(a), while Fig. C.10 (b) shows the ion density at the y = 0 cross section (clearly
non-uniform at the material wall).
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Figure C.10: (a) Configuration of the population control test: an ion population is
injected from z = 0 with a SSM profile, and hits a right hand side material wall, where
it recombines. The control algorithm ensures that the recombined neutral population
at the material wall cells presents the requested number of macro-particles per cell.
(b) Impacting ion density at the y = 0 cross section.

Fig. C.11 (a) and (b) finally show the number of macro-particles per cell for the
recombined neutrals at two cross sections: the y = 0 cross section, and the material
wall plane.

C.11 Sputtering

In the sputtering test, two thermal populations of ions and neutrals are injected
at z = 0 with a large temperature of 1500 eV and collide with a sputtering target
at the right hand side of the domain. The test configuration is shown in Fig. C.12
(a), while the resulting sputtered neutral density is shown in Fig. C.12 (b).

Fig. C.13 (a) and (b) then show respectively the average sputtered atoms energy
evolution in the domain, and the parallel versus perpendicular velocities of either
sputtered or backscattered particles from the target. Regarding the former plot, the
energy is compatible with the sputtering data for the mean sputtered atoms energy
and diminishes after a first peak because the fastest sputtered atoms tend to leave
the domain earlier. Regarding the second plot, the backscattered particles only exist
with large ratios between the parallel and the perpendicular velocity, because the
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Figure C.11: (a) Number of neutral macro-particles per cell at the y = 0 plane. (b)
Number of neutral macro-particles per cell at the material wall plane.
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Figure C.12: (a) Configuration of the sputtering test: two thermal populations of ions
and neutrals with high temperature (1500 eV) are injected from z = 0 with a constant
flux, and hit a sputtering target at the right hand side. (b) Sputtered neutral density
at the y = 0 cross section.

backscattering probability is 0 for impact angles lower than approx. 50 degrees, and
reaches the highest values for grazing incidences.
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Figure C.13: (a) Evolution with time of the average kinetic energy of the sputtered
atoms in the domain. (b) Perpendicular Vs parallel velocity of sputtered (black
circles) and backscattered (red circles) particles.

C.12 Non-linear Poisson

In this test, a uniform sphere of ions is at the center of the simulation domain,
surrounded by vacuum. The non-linear Poisson solver is then run to obtain the
corresponding electric potential solution, with the boundary conditions shown in
Fig. C.14 (a). The ion density is shown in Fig. C.14 (b).
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Figure C.14: (a) Configuration of the non-linear Poisson test: a uniform sphere of
ions is at the center of the domain, surrounded by vacuum. (b) Ion density at the
y = 0 cross section.

The quasineutral and Poisson’s solution for the electric potential are compared in
Fig. C.15 (a) and (b), while the corresponding charge density and the relative error
in Poisson’s equation solution are shown respectively in Fig. C.16 (a) and (b).
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Figure C.15: Non-linear Poisson’s solver test results, shown at the y = 0 cross sec-
tion: (a) quasineutral electric potential, (b) Poisson’s solver solution for the electric
potential.
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Figure C.16: Non-linear Poisson’s solver test results, shown at the y = 0 cross sec-
tion: (a) corresponding charge density, and (b) Poisson’s equation error, evaluated
as: ϵrel =

(
∇2φ+ ρc/ϵ0

)
/(ene0/ϵ0), where ne0 is the quasineutral plasma density at

the ion sphere center.
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C.13 Collisionless plume expansion

In this test, the plasma plume solution obtained with EP2PLUS is compared
with the Parks-Katz plume solution, generalized to polytropic electrons, Eq. 2.38
(the corresponding plume injection conditions are considered). Both a Cartesian
and a conical mesh (refer to Sec. 3.2.1.1) are considered, with either a self-consistent
polytropic electrons closure (with He = 0), or with an assigned constant electric field
(as dictated by the SSM solution). The results, in terms of the centerline and 95%
ion current streamline density are shown in Fig. C.17 (a), with the corresponding
number of macro-particles per cell shown in Fig. C.17 (b). All cases show a good
match with the quasi-exact SSM solution, with the self-consistent field with conical
mesh simulation having the largest accuracy, as expected. It is noticed that the
Cartesian mesh cases feature 500 macro-particles per cell at injection, versus the
100 for the conical mesh cases.
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Figure C.17: Collisionless plume expansion tests: (a) centerline and 95% ion current
streamline densities, and (b) number of macro-particles per cell along the centerline.
The SSM solution is shown with a solid black line, triangles are used for the sim-
ulations with conical mesh, while squares for the simulations with Cartesian mesh.
Filled markers are used for the self-consistent field simulations, while empty markers
for the fixed input electric field (from SSM solution).

C.14 Bohm’s condition forcing

This test features a simulation domain with a left hand side (z = 0) used for the
purely axial injection of a uniform density ion population, an open free-loss right
hand side, and the lateral sides consisting of material walls. The test thus verifies the
formation of a pre-sheath region that accelerates the ions radially outwards towards
the material walls, until reaching sonic conditions. The configuration is shown in
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Fig. C.18 (a), while Fig. C.18 (b) shows the evolution with z of the cross-section
average of the normal ion Mach number, at the lateral walls.
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Figure C.18: (a) Configuration of the Bohm’s condition forcing test: a uniform ion
population is injected axially from the z = 0 cross section. The lateral sides of the
domain are made of material walls. (b) Axial (along z) and time evolution of the
cross section average of the normal ion Mach number, at the lateral walls. The final
time step is shown with a black solid line.

Fig. C.19 (a) and (b) finally show respectively the electric potential and the ion
Mach number along x, for the y = 0 cross section.
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Figure C.19: Bohm’s condition forcing test results at the y = 0 cross section: (a)
electric potential, and (b) ion Mach number along the x direction. The electron
temperature is constant and equal to Te = 3 eV.

Sonic conditions are achieved at the material boundaries, except for a small region
close to the injection plane (where injection conditions are dominant). Moreover, a
pre-sheath forms with potential drops of the order of Te/2, as expected (the electron
temperature in this test case is constant and equal to Te = 3.0 eV).
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C.15 IBS-like scenario

This test considers a simulation configuration which is similar to that of Sec. 5.3.1,
although featuring a smaller number of mesh nodes (to enable a quicker verification),
and no solar arrays. Both the quasineutral and the non-neutral solvers are tested.

The electric potential solutions of both solvers are compared in Fig. C.20 (a),
while Fig. C.20 (b) shows the normal Mach number at the S/C front surface (the
one facing the debris), for the quasineutral solver. As expected the ion Mach number
approaches 1 at the S/C surfaces, except for the thruster emission area, in which
Bohm’s conditions are not applied.
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Figure C.20: IBS-like scenario test results, at the y = 0 cross section: (a) differ-
ence in the electric potential between the non-neutral and quasineutral solutions, and
(b) normal Mach number at the cubic S/C surface, for the quasineutral solver (an
isothermal electron population is considered with Te = 3 eV).

Regarding the non-neutral solver solution, Fig. C.21 (a) to (d) show the number
densities of electrons, ions, neutrals and sputtered atoms.

Finally, Fig. C.22 (a) to (d) show the number of macro-particles per cell for the
slow CEX ions, the recombination neutrals, the injected ions, and the aluminium
sputtered atoms from the target debris.
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Figure C.21: IBS-like scenario test: densities at the y = 0 cross section of (a) electrons,
(b) ions (both injected and CEX), (c) neutrals (both injected and recombination), and
(d) sputtered neutrals from the target debris.
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Figure C.22: IBS-like scenario test: number of macro-particles per cell at the y = 0
cross section for (a) CEX ions, (b) recombination neutrals, (c) injected ions, and (d)
sputtered neutrals. The targeted number per cell for ions is 1000, while for neutrals
it is 50.
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C.16 Neutralizer-thruster interaction scenario

This test presents a configuration that is similar to that of Sec. 4.1, although
featuring a smaller number of mesh nodes (to enable a quicker verification). The
main objective of the test is to validate the He solver, by comparing the emitted
neutralizer electron current with the expected value (from continuity), which is given
by the sum of the following terms:

1. electron current to the material walls,

2. electron current to the external boundaries (equal to that of the ions), and

3. electron current generated inside the simulation domain (due to ionization).

The result of the test is quite satisfactory, being the relative error in the emitted
electron current of the order of 1%. This error can be further decreased by adopting
a finer mesh close to the neutralizer emission surface, or by imposing a more uniform
electron conductivity close to the neutralizer (due to the effect of the conductivity
gradient in the differential equation). The He differential equation error is then
shown in Fig. C.23 (a), while the corresponding Bernoulli’s function is shown in
Fig. C.23 (b).
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Figure C.23: Neutralizer-thruster interaction test results, at the y = 0 cross sec-
tion: (a) local error (in absolute value) in the differential equation for He, and (b)
Bernoulli’s function He.

The solutions for both the electron current density and the electric potential, at
the same cross section, are then shown in Fig. C.24 (a) and (b).

Finally, Fig. C.25 (a) and (b) show respectively the evolutions with time of the
plasma currents to the different conductive objects, and of their electric potentials.
The thruster is short-circuited with the S/C, thus showing no difference of electric
potential, while the neutralizer is set to be 13 V positive and the acceleration grid
−180 V negative, with respect to the S/C ground. This test then allows to verify
that the equivalent circuit is working as expected.
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Figure C.24: Neutralizer-thruster interaction test results, at the y = 0 cross section:
(a) electron current density (the vector direction is along the electron velocity), and
(b) electric potential.

0 1 2 3 4 5 6 7 8 9
t (ms)

−0.35

−0.30

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

I
(m

A
)

I (mA)

S/C

THR

ACC

NEU

(a)

0 1 2 3 4 5 6 7 8 9
t (ms)

−250

−200

−150

−100

−50

0

φ
(V

)

φ (V)

S/C

THR

ACC

NEU

(b)

Figure C.25: Neutralizer-thruster interaction test results: evolutions with time of
(a) the plasma currents to the different conductive objects, and (b) the conductive
objects potentials. In these figures, the S/C cubic body is shown with black lines, the
neutralizer with blue lines, the thruster case with red lines, and the acceleration grid
with magenta lines. The neutralizer and thruster currents do not include respectively
the emitted electron and ion currents, which are set to balance one another.
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