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Abstract

The objective of this paper is to propose a strategy to exploit short-run com-
monalities in the sectoral components of macroeconomic variables to obtain better
models and more accurate forecasts of the aggregate and of the components. Our
main contribution concerns cases in which the number of components is large, so
that traditional multivariate approaches are not feasible. We show analytically and
by Monte Carlo methods that subsets of components in which all the elements share
a single common cycle can be discovered by pairwise methods. As the procedure
does not rely on any kind of cross-sectional averaging strategy: it does not need to
assume pervasiveness, it can deal with highly correlated idiosyncratic components
and it does not need to assume that the size of the subsets goes to infinity. Nonethe-
less, the procedure works both with fixed N and T →∞, and with [T,N ]→∞.

Keywords: Common features, Factor Models, Disaggregation, Pairwise tests.

JEL: C01, C22, C32, C53.

1 Introduction
There is a clear tendency among statistical offices around the world to produce more

disaggregated information, both at the regional and sectoral level. The reason for this

must be that decision makers need to analyse the disaggregates to make better decisions.

However, the usual macroeconometric analyses that focus on modeling and forecasting

economic aggregates (e.g. GDP, CPI, industrial production, employment, imports and

exports, etc) do not make full use of the large amount of information contained in the

disaggregates.

∗Correspondence to Guillermo Carlomagno. E-mail: gcarlomagno@cinve.org.uy.
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The objective of this paper is to propose a strategy to exploit short-run commonalities

in the sectoral components of macroeconomic variables to model and forecast those com-

ponents. Our main contribution concerns cases in which the number of components is

large and traditional multivariate approaches are not feasible. As an important byproduct,

this approach allows constructing an indirect forecast of the aggregate that may be more

accurate than that obtained by direct procedures, as it uses more information and includes

restrictions between the components which could palliate the curse of dimensionality.

The presence of commonalities in the short-run dynamics of macroeconomic variables

has been extensively documented. Referring to the movements of macroeconomic variables

around their trends, Lucas (1977) points out: ‘Output movements across broadly defined

sectors move together,... Prices generally are pro-cyclical’. Long Jr and Plosser (1987)

develop a theoretical model to explain commovments in sectoral output and Engle and

Issler (1995) derive the reduced form of that model. Engle and Issler also state the

conditions for the existence of common cycles. After Engle and Kozicki’s (1993) seminal

article on testing for common features, several empirical studies testing for short-run

commonalities among macroeconomic series appeared in the literature. Engle and Kozicki

(1993) themselves find international commonalities in GNP data of seven OECD counties,

Vahid and Engle (1993) find common cycles among four regional per capita incomes in

the US, and Engle and Issler (1995) find common cycles for 11 sectoral outputs of the US

economy. Using techniques for detecting common cyclical features, Candelon et al. (2005)

study financial contagion during the 1997 Hong Kong stock market crises. By estimating

13 bi-variate VAR models, they find evidence of contagion. Hecq et al. (2006) find common

cyclical features among the GDP of 5 Latin American countries, and Cubadda (2007) finds

commonalities in the short run movements of four monthly indicators that The Conference

Board uses to build the composite coincident indicator of the business cycle in the US.

The study of common cyclical features in the components of macroeconomic series is

relevant not only for understanding their interrelations, but also for constructing better

empirical models and obtaining more accurate forecasts. Vahid and Issler (2002) ana-

lyze the importance of the restrictions implied by common cyclical features for forecasts,

impulse-response functions, and variance-decomposition analysis of economic time series.

As they argue, the reduction in the number of parameters of typical macroeconomic VAR

models derived from the existence of common cycles can be substantial, and much larger

than that implied by cointegration. Therefore, remarkable efficiency gains can be ob-

tained by imposing ’correct’ common cycles restrictions, from which forecasting accuracy

improvements could follow. In a Monte Carlo study, Vahid and Issler (2002) confirm that

reduced rank models can lead to significant improvements in forecasting accuracy over

those of unrestricted models.

As Espasa and Mayo-Burgos (2013) show, an important characteristic of the sectoral

components of macro variables is that they can be grouped into relatively small subsets in
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which all of the series show the same short-run dynamic behavior. The existence of those

subsets translates into relevant short-run restrictions in the parameters of econometric

models, and can be exploited to reduce estimation uncertainty and, hopefully, to obtain

more accurate forecasts. Espasa and Mayo-Burgos (2013) suggest a pairwise procedure to

construct those subsets and Carlomagno and Espasa (2014) study the asymptotic prop-

erties of a similar strategy for discovering subsets of components with common trends.

Castle and Hendry (2010) also point out the importance of including short-run common

features restrictions in the individual models for the components in line with Mayo and

Espasa (2009)1.

In the present paper we show that subsets of components that share single common cycle

restrictions can be discovered by pairwise procedures, similar to those suggested by Es-

pasa and Mayo-Burgos (2013). Our contributions concern the analysis of the procedure’s

asymptotic properties, a generalization to make it useful when the size of the subsets may

be large (what we latter call ‘relaxation procedure’) and a Monte Carlo study in which we

confirm the procedure’s large samples properties and study its behavior in short samples.

The pairwise strategy consists of testing for common cycles in all of the N(N − 1)/2

pairs that exist among the N components of an aggregate (N is larger, usually greater

than a hundred), and then, constructing subsets in which all of the pairs share a unique

common cycle. Once these subsets are discovered, the restrictions that they imply for the

short-run dynamic behavior of the components can be included in single-equation models

for them. These models can be consistently estimated by OLS.

An alternative way to try to discover common cycles between the components of an

aggregate could be the estimation of Dynamic Factor Models (DFM). However, when the

cycles are non-pervasive (i.e., they are onlyy common to a reduced group of components),

one of the assumptions required by the usual estimation procedures (see e.g., Assumption

B in Bai (2003) or Assumption A1 in Doz et al. (2012)) is violated, and therefore, these

procedures are expected to perform poorly. Though several approaches to deal with this

issue have been proposed in the DFM literature, most of them assume beforehand which

series are affected by which factor (see, e.g., Karadimitropoulou and León-Ledesma (2013),

Moench et al. (2013), Breitung and Eickmeier (2015)).

Bailey, Kapetanios, and Pesaran (2016) (BKP, hereafter), Bailey, Holly, and Pesaran

(2016) (BHP, hereafter), and Ando and Bai (2016), work with unknown non-pervasive

structures. Ando and Bai deal with stationary series with a grouped factor structure

and develop a procedure to determine the series in each group and estimate the factors.

Every series is assumed to belong to some group, the size of the groups is assumed to

go to infinity, and the usual restrictions of DFM on the cross-correlation of idiosyncratic

components (see e.g., Assumption B in Bai (2003) or Assumption A2 in Doz et al. (2012))

1This working paper was later published as Espasa and Mayo-Burgos (2013).
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are required. BKP propose a measure for the degree of non-pervasiveness of the factors,

and BHP develop a two-stage procedure for dealing with pervasive and non-pervasive

factors at the same time. Similarly to Ando and Bai (2016), these authors restrict their

attention to stationary series, the cross-sectional dimension going to infinity, and also

need the usual restrictions of DFM on the cross-correlation of idiosyncratic components.

Our procedure is more general than the previous ones in four aspects: First, we do not

assume that all series belong to some group. Second, as we do not rely on any cross-

sectional averaging method, we do not need to assume that the number of components

(N) goes to infinity. Our theory only requires T → ∞; N may be fixed or it may also

go to infinity. Not relying on cross-sectional averaging methods gives our procedure a

third advantage, namely, we do not need to restrict the cross-correlation of idiosyncratic

components. Lastly, though in this paper we focus on I(0) series, we will argue in §6 that

a generalized version of our procedure is applicable both when the series are I(0) and

when they are I(1). In the latter case we do not need to differentiate.

These advantages are relevant when dealing with the components of macro variables.

Working with the components of three different CPIs, Espasa and Mayo-Burgos (2013)

find relatively small groups of components that share single common cycles. Therefore,

the assumptions that the factors are pervasive, that every series belong to some group,

and that the size of the groups goes to infinity, do not fit this framework.

There is, however, one aspect in which our procedure is less general than the DFM

alternatives described above. While in previous procedures the subsets may have any

number of factors, our main focus is on subsets with single common cycles. Though this

data structure may be reasonable when dealing with the components of a macro variable,

which is our main objective, it might be not when working with several variables which

are not the components of the same aggregate. To palliate this issue, our approach can

be generalized to cases in which the subsets may have two common cycles: one ‘general’

and the other ‘sectorial’, in §6 we describe this generalization.

The rest of this paper is organized as follows. In §2 we give the precise definitions

of common cycles that are used throughout this paper. In §3 we state the required

assumptions and study the properties of our proposal. In §4 we describe the algorithm

for applying the procedure. §5 is devoted to the Monte Carlo experiments. Finally, in §6
we discuss some possible extensions and §7 concludes the paper.

2 Definitions
Before describing our proposal and its statistical properties in detail, in this section

we give a more precise definition of the concepts of common cycles that will be used

throughout the paper.

Engle and Kozicki (1993) is the seminal article in the literature on testing for common

cycles. The authors generalize the concept of common trends to other possible com-
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mon features (serial correlation, heteroscedasticity,, excess kurtosis, etc), and state that

a certain feature is said to be common if a non-zero linear combination of a multivari-

ate time series fails to have the feature even though each of the series individually has

it. Specifically, the authors define the presence of a serial correlation common feature

(SCCF, hereafter) to be when a linear combination of serially correlated time series is an

innovation with respect to the past of the series.

Assume that the data can be represented by a VAR:

Xt =
k∑
i=1

ΠiXt−i + εt, (1)

where Xt is an N × 1 vector and εt an iid N-dimensional process. The existence of a

SCCF requires the existence of a N × s full column rank matrix δ such that δ′Xt does not

present serial dependence on the past of Xt, which implies that δ′Πi = 0 for all 1 ≤ i ≤ k.

Therefore, we can write Πi = δ⊥ψ
′
i where δ⊥ is the orthogonal complement of δ (i.e,

δ′δ⊥ = 0), and the VAR model can be rewritten as

Xt = δ⊥Ψ′[X ′t−1, ..., X
′
t−k]

′ + εt, (2)

where Ψ′ is a full column rank matrix of dimension N − s × Nk, such that δ⊥Ψ′ =

[Π1, ...,Πk].

In this case, δ contains the serial common correlation vectors, and Ψ′[X ′t−1, ..., X
′
t−k]

′

are the common cycles. Since all the Π′is have a left null space that includes δ, the rank

of δ is the rank of the left null space of Πi. Thus, Πi has rank N − s, for 1 ≤ i ≤ k.

The test for the existence of N − s SCCF is the test for s zero canonical canonical

correlations between X ′t and [X ′t−1, ..., X
′
t−k]

′:

C(p, s) = −(T − k − 1)
s∑
i=1

ln(1− λi), (3)

where λi (i = 1, ..s) are the s smallest eigenvalues in the canonical correlation problem; T

is the sample size; and k is the number of lags in the model. Under the null (the smallest s

eigenvalues are zero), the statistic has a chi-squared distribution with (s2+sNk+sr−sN)

degrees of freedom.

Engle and Kozicki (1993) develop their method for stationary variables, thus, in most

cases, the analysis must be carried out for the differenced variables, leading to infor-

mational losses if cointegration relationships exist. Vahid and Engle (1993) extend the

framework to I(1) cointegrated systems by proposing a procedure for estimating SCCF

vectors given the existence of common trends. Interestingly, the authors show that the

presence of SCCF among the first differences of I(1) cointegrated variables is equivalent

to the existence of common cycles in the sense of Beveridge and Nelson (1981). This is
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the reason why the concepts of common cycles and common serial correlation can be used

interchangeably.

A natural extension of the notion of SCCF in cointegrated series is to allow the pos-

sibility that the SCCF vectors cancel the short-run dynamics, but are not related in any

particular way with the long-run pattern of the series. That is, there could exist a linear

combination of the differenced series that is an innovation with respect to the past, but

only after adjusting for the equilibrium deviations. This is the concept of weak form of

serial correlation common features (WF) introduced by Hecq et al. (2006). As mentioned

in the Introduction, in this paper we focus on I(0) variables, but our proposal can be

generalized to the case of I(1) with cointegration. In that case, we can deal both with

SCCF and with WF structures.

Another interesting extension of the SCCF concerns cases when the commonalities

are not contemporaneous. In a comment to Engle and Kozicki (1993), Ericsson (1993)

argues that a common correlation feature may exist in a multivariate time series, but

it does not need to be contemporaneous as the definition of SCCF requires. To deal

with this possibility, Cubadda and Hecq (2001) introduce the concept of polynomial serial

correlation common feature (PSCCF). Although all the results of the present paper can

be generalized to the case of PSCCF (see §6), in order to keep things simple, we leave

that implementation for future research.

3 Properties of the pairwise approach
The strategy of testing for common cycles between all possible pairs of components,

and then forming single-cycle subsets in which all pairs show a common cycle, relies on

the common cycles being ‘transitive’. That is, it should be the case that if series At and

Bt share the cycle, and series At and Ct also share the cycle, one can conclude that Bt and

Ct also have the same cycle. In appendix A we show that SCCF structures are transitive.

3.1 Assumptions

Our general framework can be summarized in four assumptions:

Assumption A The N components are generated by the VAR in eq. (1), which may be

generalized to include outliers and/or location shifts.

Assumption B The residuals of eq. (1) are iid and normally distributed.

Assumption C There is at least one subset containing SC components (with 2 ≤ SC ≤
N) that share a single common cycle (as will become clearer later, we will use notation

SC as the name of the subset and as its cardinality).

Assumption D Xit is serially correlated for i = 1, . . . , N .

Assumption E N × T−1/2 →≤ c, for some fixed constant c.
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Assumption B is necessary for the maximum likelihood procedures for testing for com-

mon features. Assumption C makes our objective of discovering single-cycle subsets to

be relevant, and assumption D rules out the ‘trivial’ common cycles that will appear if

some components are white noise. Lastly, as we argue below, assumption E is required to

control false discoveries when we let N to go to infinity.

Remark 1 Instead of assumption D we could require that at least SC components sat-

isfy it. This flexibilization would require testing the significance of the coefficients of the

estimated common cycles.

Remark 2 Assumption B is related to the residuals, not to the components. Although this

distinction is not relevant for the Monte Carlo experiments, it is important for empirical

applications. By allowing for outliers and location shifts in the model, it would not be

necessary to assume the normality of the processes Xit. The only requirement is that

normality can be achieved after correcting for a few outliers and location shifts which, as

Juselius (2015) argues, is a quite general assumption in macro-economic VAR models.

3.2 Statistical properties

Define SCj to be a subset in which all of the series share a SCCF (recall that we are

using SCj both as the name of the subset, and to indicate the number of series inside it).

Abusing notation, we will write ŜCj for the subset constructed by the pairwise procedure.

The properties of the pairwise procedure for discovering single-cycle subsets must be

evaluated in three dimensions: i) Potency: The proportion of correct series that are

included in ŜCj. ii) Gauge: The proportion of wrong series that are included in ŜCj.

iii) False discovery: The discovery of nonexistent single-cycle subsets2.

3.2.1 Potency

In order to include all of the correct series in ŜCj we should find a single cycle in all

of the SCj(SCj − 1)/1 pairs that exist in the true subset. This implies not rejecting the

hypothesis s > 0 vs s = 0 for each pair.

If we were testing a single hypothesis, the probability of not falsely rejecting the null

would be 1 − ϕ (with ϕ being the nominal size of the individual tests). When m tests

are performed, if they are independent, the probability of not making any false rejection

reduces to (1 − ϕ)m, and the probability of making at least one error is 1 − (1 − ϕ)m,

which rapidly increases with m.

In our case of interest, m = SCj(SCj − 1)/2 may be quite large. Thus, if tests are

independent, the probability of including all of the correct series in ŜCj will be close to

zero. Simulation results (available upon request) show that, under some circumstances,

common cycle tests between the series in SCj may be independent. This means that

2The terms ‘gauge’ and ‘potency’ are borrowed from Castle et al. (2011).
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the probability of including all of the correct series in ŜCj may be a rapidly decreasing

function of the number of series in the true subset. This is an undesirable property for

our procedure.

To mitigate this problem we exploit two facts. First, since the tests are transitive, and

each series is included in several pairs, we could infer the correct result for one pair using

the results of other ones, i.e., in the example at the beginning of this section, we could

infer the existence of a common cycle between Bt and Ct, given that it exists between At

and Bt and At and Ct. Our strategy for exploiting the transitivity consists of, instead of

requiring that each series in ŜCj passes a test for a common cycle with all of the other

series in the subset, we let one series to enter into ŜCj when it passes the test with almost

all the other series in the subset. We call this strategy a relaxation strategy (see step iii

of the algorithm in §4).

Second, since the asymptotic power of common cycle tests is 1 (the probability of finding

s > 0, when s = 0, goes to zero as T goes to infinity), for finite N , the relaxation strategy

is asymptotically costless in terms of gauge.

The relevant question now is how this relaxed procedure is expected to perform in terms

of potency. When performing the N(N − 1)/2 tests for the whole set of components, the

asymptotic probability of not rejecting the null of s > 0 for each individual pair formed

by two series of SCj is 1− ϕ. For any other pair this probability is zero. Thus a natural

way to see the problem of finding the largest single-cycle subset is in terms of the theory

of random graphs.

To put it simple, a random graph can be seen as a square symmetric matrix of zeros

and ones in which each entry has probability p of having a one and 1 − p of having a

zero, independently of the other entries. When the (i, j)th entry is a one, we say that

there is an edge between the nodes i and j and they are connected (for a detailed analysis

of random graphs see Newman (2009)). In our case, the symmetric matrix is N × N

and the (i, j)th entry corresponds to the pair formed by series ith and jth. Thus, ones

would appear in those pairs of series for which a common cycle was found. Although

when testing for common cycles the edge probabilities might not be independent, the case

of independence is the worst possible one for having high potency, so there is no risk in

keeping this assumption for analyzing the potency of our procedure.

Additionally, as the asymptotic probabilities of having an edge between pairs in which

the series do not belong to the same SCj are zero, we can focus on the sub-graphs formed

by the series in a particular SCj.

Finding the largest single-cycle subset, is equivalent to finding the largestalmost fully

connected subgraph — i.e., the largest subgraph in which almost all possible edges are

present. This is closely reltated to the maximal clique problem described in the random

graph literature. The maximal clique is defined as the largest subgraph in which all nodes
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are pairwise connected (see, inter alia, Matula (1976); Derényi et al. (2005); and Newman

(2009)).

To get an intial idea about the potency of our procedure, we use the results in Derényi

et al. (2005). The authors find the minimum edge probability for which all elements of

a graph of size SCj will be almost surely connected with, at least, k − 1 other elements.

This probability is given by

pc(k) =
1

[(k − 1)SCj]
1

k−1

(4)

Using eq. (4), we can fix a proportion ρ and choose k∗ = ρ(SCj − 1) + 1, such that

eq. (4) will give the edge probability required to find a subset of size SCj in which for

each series a common cycle will be found with at least ρ(SCj − 1) of the remaining series.

Figure 1 shows this threshold probability for different alternatives of ρ and SCj. These

probabilities can be seen as the required magnitude for (1−ϕ) for finding the almost fully

connected graph we are looking for (recall that ϕ is the nominal size of the individual

tests). For instance, for SCj = 100 and ρ = 0.9, we would need (1 − ϕ) = 0.9, meaning

that with a ϕ less than or equal to 0.1 we would find the almost fully connected subset

we are looking for almost surely.

Conversely, if we stick to the strict full connection criteria, under independence, the

probability of including all the correct series in the estimated SCj would be (1 − ϕ)4950,

which is virtually zero even for small values of ϕ 3. This implies that relaxing the require-

ment from full connection, to almost full connection may lead to a great improvement in

the probability of including all the correct series in the estimated SCj.

As already mentioned, when N is finite, the relaxation to almost full connection is

asymptotically costless in terms of the gauge. In short samples (short T ) or when N →∞,

larger values of ρ lead to higher gauges. The case of N →∞ is studied in §3.2.2 and the

short samples behavior in §5. In the former case we need assumption E for the procedure

to work properly and in the latter we get some deterioration, but the results are still good.

Note, however, that since Derényi et al. (2005) assume SCj → ∞ and k fixed, the

expression 4 is valid only asymptotically — large (SCj − k). Thus, as we are interested

in large values of ρ, the expression may be a rough measure when SCj is small. To better

understand the properties of the relaxation procedure when SCj is fixed and T →∞, we

perform a small simulation study.

In each experiment we simulate a random graph of size SCj with independent edge

probability p. This is done by generating a square symmetric matrix with zeros and

ones in which each entry has probability p of having a one and 1 − p of having a zero,

independently of the other entries. The asymptotic probability of finding a common cycle

3Equivalently we would need ϕ = 1× 10−5 in other to have a 95% probability of finding the true SC.
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Figure 1: Percolation probabilities pc(k), for k = ϕ(SC − 1) + 1

between two series that truly have it is 1 − ϕ. Hence, fixing p equal to 1 − ϕ replicates

the random graph that would be obtained when testing for common cycles between all

the pairs among SCj series that share a unique common cycle, when T → ∞, and using

a nominal size of ϕ for each test.

We consider two values of p (0.95 and 0.99) and compute the average relative size of the

estimated SC (mean(ŜC/SC)) and the probability of including all the elements in ŜC

(mean(IŜC=SC)), both when applying the strict full connection criteria and when relaxing

it.

Then, we apply the algorithm described in §4 to find the largest almost fully connected

subset (in that algorithm, the relaxation parameter λ is defined as the maximum number

of tests that a series can fail and still enter into ŜC). The results are included in Table 1.

As a general conclusion, the relaxation procedure allows reaching acceptable results even

when regular significance levels are used. For example, with a nominal significance level

ϕ = 0.05, when the true dimension of the set is 50, the expected ratio of the size of the

estimated subset to the true size of the subset is 0.99. As this result is in line with the

0.49 probability of including all the correct series, as the table shows, we have that while

in 49% of the experiments we include the 50 series, in the remaining 51% we include 49.

In summary, when T goes to infinity, our procedure is expected to have high potency,

regardless of the size of SCj.

3.2.2 Gauge and false discovery

To include wrong series in some ŜCj or to discover nonexistent subsets, common cycle

tests should lead to concluding s = 1 when the true hypothesis is s = 0, i.e., not to reject

the false null hypothesis of s > 0.

Focus first on the gauge. Let Xout be a series outside SCj and let Wi be the event of

wrongly not rejecting s > 0 with the ith series in the estimated SCj (ŜCj). As for wrongly

11



Table 1: Fully connected vs almost fully connected subsets

SC=5 SC=10 SC=20 SC=25 SC=40 SC=50

p = 0.95

Fully connected
mean(ŜC/SC) 0.92 0.83 0.73 0.69 0.61 0.56
mean(IŜC=SC) 0.62 0.10 0.00 0.00 0.00 0.00

Almost fully connected
mean(ŜC/SC) 0.99 0.95 0.96 0.98 0.97 0.99
mean(IŜC=SC) 0.94 0.56 0.40 0.56 0.28 0.49

p = 0.99

Fully connected
mean(ŜC/SC) 0.98 0.96 0.92 0.90 0.86 0.83
mean(IŜC=SC) 0.90 0.61 0.16 0.04 0.00 0.00

Almost fully connected
mean(ŜC/SC) 1.00 1.00 1.00 1.00 1.00 1.00
mean(IŜC=SC) 1.00 0.97 0.98 1.00 1.00 1.00

- The relaxation parameter (λ) is 1 for SC = 5 and SC = 10, 2 for SC = 20, and 5 for SC = 50.
- ‘mean’ denotes the mean across experiments.
- The number of experiments is 1000.
- ŜC is the number of series included in the largest (almost) fully connected subset.

- IŜC=SC denotes the indicator function that takes the value 1 if ŜC = SC and 0 otherwise.

including Xout in ŜCj we need to find a common cycle with ρŜCj other series, we need to

wrongly reject the ρŜCj hypotheses. The probability of this event is P (W1 ∩ ...∩WρŜCj
),

and can be factorized as

P (W1 ∩ ...∩WρŜCj
) = P (W1|W2, ...,WρŜCj

)× ...× P (WρŜCj−1|WρŜCj
)× P (WρŜCj

), (5)

where P (Wi) is the marginal probability of not rejecting the false hypothesis s > 0, which,

as the asymptotic power is 1, converges in probability to zero as T goes to infinity. Using

the extreme assumption that all the ρŜCj−1 conditional probabilities in eq. (5) are equal

to 1, the probability of wrongly including Xout in ŜCj would be equal to P (Wi), which

goes to zero as T goes to infinity.

Define now Zh as the random variable that takes the value one if the variable h is

wrongly included in ŜCj and zero otherwise. Then, the number of wrong inclusions is

N−SCj∑
h=1

Zh. (6)

Therefore, the expected number of wrong inclusions is

E[
∑N−SCj

h=1 Zh] =
∑N−SCj

h=1 E[Zh] = (N − SCj)E[Zh], (7)

and the expected proportion of wrong elements in the estimated single-cycle subset (ω)

is
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E[ω] =
(N − SCj)E[Zh]

ˆSCj
(8)

Under the extreme assumption that all conditional probabilities in eq. (5) are equal

to one, E[Zh] = P (Wh). Since P (Wh) goes to zero as T → ∞, using assumption D,

plimT→∞E[Zh] = 0. When N is fixed and T goes to infinity, eq. (8) goes to zero at the

same rate as P (Wh) does. When both N and T go to infinity, in order to avoid having

eq. (8) growing without limit, we need N/SCj to grow at a rate less than or equal to

that of 1/P (Wh). Since this condition includes cases in which the common cycles are not

pervasive, i.e., N/SCj →∞, we will have good gauge properties even in that case.

This argument can also be made without relying on the asymptotic power of the com-

mon cycle tests. In order to do that we need to change the extreme assumption that all

conditional probabilities in eq. (5) are equal to one, to the following assumption:

Assumption F There is a proportion γ of the ρŜCj−1 conditional probabilities in eq. (5)

that do not exceed a fixed threshold pmax, with 0 ≤ pmax < 1. The proportion γ is assumed

to satisfy the condition γmin ≤ γ ≤ 1, with γmin being some fixed value larger than zero.

With this new assumption, an upper bound for E[Zh] will be E[Zh] = p
γ(ρŜCj−1)
max P (Wh).

Thus, an upper bound for the expected proportion of wrong elements in the estimated

single-cycle subset would be

E[ω] =
(N − SCj)p

γ(ρŜCj−1)
max P (Wh)

ˆSCj
(9)

Proposition 1 Under assumption F, a sufficient condition for eq. (9) not to grow, as

N →∞, is SCj/log(N)→≥ κ, where κ is some positive constant.

Proof See appendix B

Again, we do not need pervasiveness in the sense of DFM.

Consider now the problem of false discovery. Matula (1976) shows that the size of

the maximal fully connected sub-graph (maximal clique) in a random graph with M

elements and edge probability p has a strong peak around 2log(M)/log(1/p). In our case,

M = N −
∑

j SCj, and p→ 0 as T →∞. Thus, for fixed N , the size of the largest false

fully connected subset goes to zero. When N → ∞, we need N −
∑

j SCj to grow at

a smaller rate than that of 1/p. Given that 1/p is Op(T ), this implies N −
∑

j SCj can

grow, at most, at the same rate as T does.

Since arguments based on random graph theory require independent edge probabilities,

they may not be adequate in our case. Another argument, that does not require indepen-

dence, is as follows. Define M = N−
∑

j SCj as the number of series which do not belong
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to any single cycle subset, M∗ = M(M−1)
2

as the number of pairs of those series, and Ym

as a random variable that takes the value 1 if a common cycle is wrongly found for a pair

m. Using the same reasoning as that used for expressions 7 and 8, the expected number

of false discoveries (the number of pairs for which a common cycle is wrongly found) is

M∗ × E[Ym].

Since E[Ym] = p (with p being the probability of wrongly finding a common cycle in

one of the M∗ pairs), and p → 0 as T → ∞, for finite N , the expected number of false

discoveries tends to zero. When N →∞, a sufficient condition for having a fixed expected

number of false discoveries is M∗× p→ 0, which requires N −
∑

j SCj to grow a rate less

than or equal to that of p−1/2. This implies that N −
∑

j SCj can grow, at most, at the

same rate as T 1/2 does (see assumption E).

3.3 Partial models

The pairwise strategy consists of testing for a common cycle in all possible pairs of

series, and looking for the largest subset in which almost all the pairs have the cycle. This

strategy requires estimating partial models, and this could be thought to imply a loss of

power compared to a ‘complete’ model approach (when feasible). To analyze this issue,

we performed a small simulation study to compare the ability of the pairwise with that

of the full model approach, when the latter is feasible (small N). Since our focus in this

paper is on relatively large N , we do not report the results (available upon request). The

main conclusion of these experiments is that when common cycles are pairwise detectable,

nothing is lost by proceeding in a pairwise fashion. On the contrary, important power

gains for finding the true number of common cycles in short samples can result from this

procedure, compared to the full model approach.

4 The algorithm
In order to discover subsets (SCj) in which all the series share a single cycle we proceed

in 6 steps:

i. Perform common cycle tests between all possible pairs of components, store the re-

sulting p-values, and construct an N ×N Boolean adjacency matrix, A, that contains

a 1 in the (i, j)th entry if the corresponding pair has a common cycle (the null of

s = 0 has not been rejected) and zero otherwise.

ii. Find the maximal clique in A, for example, using the Bron-Kerbosch algorithm (see

Bron and Kerbosch (1973)). Recall that the maximal clique is defined as the largest

subgraph in which all nodes are pairwise connected (see also Bollobás and Erdös

(1976)). We will refer to the maximal clique as the single cycle subset, ŜC1.

iii. Define the relaxation parameter (1 6 λ < ŜC1, with ŜC1 being the number of series

in the estimated single cycle subset) to identify the candidates for entering into the
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almost fully connected subset. A series outside the original subset is a candidate if it

satisfies two conditions:

(a) A single cycle — at the original nominal size, ϕ — is found with at least ŜC1−λ
of the series already in the subset ŜC1.

(b) When the nominal size of the test is relaxed to ϕ∗, the candidate has a common

cycle with all the series already in the subset ŜC1.

iv. Construct the set of candidates C0. If all the candidates have a common cycle between

each other (with the original nominal size, ϕ), let all of them enter into ŜC1 and go

to Step vi (because there are no more potential candidates). If not, find the maximal

clique (see Step ii) inside C0 and let into ŜC1 all the series in the maximal clique. Note

that after including these series, there could still remain some potential candidates,

so check for this possibility: construct a new set of candidates C1 using conditions a

and b above, and repeat the procedure in the present Step.

v. If, according to conditions a and b, there are no candidates that share the cycle, try

to include them sequentially, starting with the one which has a common cycle with

more of the series already in the subset. In case of a conflict (i.e., there are candidates

that share the cycle with the same number of variables already in the subset), use

the p-values stored in step i to decide. An ad hoc criterion could be, for example, to

include the series whose sum of p-values for the null s > 0 is the minimum.

vi. Repeat steps ii to v but excluding the series already included in some almost fully-

connected subset.

5 Simulations

In this section we perform some Monte Carlo experiments to fulfill two objectives:

confirm the asymptotic properties studied in §3.2, and analyze the small sample properties

of the procedure.

5.1 Design of the experiments

We consider two alternative DGPs. Both of them have the same general structure:

Xt = c+ ΠXt−1 + εt, (10)

where εt ∼ N(0,Σ), and the roots of det(I −ΠL) are all outside the unit circle. We want

to simulate situations in which only a subset SC of series share a single cycle and there

are no more common cycle restrictions in the system. In order to simplify the dynamics
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of the systems, Π will have the following structure:[
ASC×SC 0

0 DN−SC×N−SC

]
,

where A = δ∗⊥Ψ∗
′
, with δ∗⊥ and Ψ∗ being SC × 1 vectors, and D a diagonal matrix. This

does not imply that series outside SC are independent of each other, or with respect to

series inside SC, as Σ is not necessarily diagonal. Partition the vector Xt into its first SC

elements and the remaining N − SC, and write Xsc
t for the first sub-vector. Then, the

common cycle is Ψ∗
′
Xsc
t−1, and δ∗⊥ contains the coefficients of the common cycle in each of

the first SC series.

Since we want Xt in eq. (10) to be stationary, we need the roots of the characteristic

polynomial det(I−ΠL) to be outside the unit circle. Calling πij the elements of Π, it can

be shown that, after imposing the condition that |πii| < 1, ∀ i ≥ SC + 1, the stationarity

condition of eq. (10) is:

|
SC∑
i=1

diψi| < 1.

where di and ψi are the elements of δ∗⊥ and Ψ∗
′
, respectively.

There are infinitely many different possibilities for δ∗⊥ and Ψ∗ that would satisfy the

stationarity condition. Three of them that may be of interest are

DGP 0 : δ∗⊥ is filled with uniform random values between 0.7, and 1 and Ψ∗ is filled with

uniform random values between 1
1.2SC

and 1
1.1SC

.

DGP 1 : The same as DGP 0 but imposing z zeroes in Ψ∗ so that we can change the

SC in the denominator to SC − z and the non-zero entries will be larger. We set

SC− z = 2, so that the common cycles will be generated by two of the series in SC

(those whose coefficients in Ψ∗
′

are different from zero).

DGP 2 : The same as DGP 1 but allowing some negative values in δ∗⊥ (there will be some

counter-cyclical variables). This allows increasing the non-zero values in Ψ∗ with

respect to option DGP 1. We limit the number of negative coefficients to 20% of the

variables in δ∗⊥. Hence, the number of non-zero coefficients in Ψ∗ is (2 + 0.2× SC).

Note that in DGP 0 all the entries of ψ will be rather small, even for relatively small

SC. Thus, in order to statistically distinguish those values from zero, we would need quite

large samples. To avoid this issue, we focus only on DGPs 1 and 2.

Finally, the errors εt are generated by

εit = ηi,t +

Q∑
j 6=0, j=−Q

βηi−j,t, (11)
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where ηt ∼ N(0, IN).

In this way, when β 6= 0 and Q 6= 0, the residuals of each equation are cross-correlated

with another 2Q residuals. To avoid having higher cross-correlation inside SC than outside

it, positions of the insiders are randomly set, so they are not in positions 1 to SC.

For the two DGPs we consider three scenarios and three sample sizes. In all cases

N = 100. In scenario 1 we set SC = 10; in scenario 2, SC = 25; and in scenario 3,

SC = 40. The sample sizes are T = 100, T = 200, and T = 400.

For each DGP, scenario, and sample size, we performed 500 Monte Carlo replications.

In each replication we simulated a 100-dimensional model in which a subset of SC series

share a single common cycle. Our objective is to discover the series that are in SC.

To do that, we performed SCCF tests on all the 4950 bi-variate VAR sub-models that

exist among the 100 series. Thus, for a particular DGP, scenario and sample size, we

have 2.475 million sub-models (4950 for each replication). Since we have two DGPs,

three scenarios, and three sample sizes, we have (2× 3× 3)× 2.475 = 44.55 million sub-

models to estimate. Additionally, since the lag length for each of the 4950 sub-models

of a particular replication is unknown, we select it with the AIC, admitting between one

and five lags. This multiplies the number of models by 5. Furthermore, we consider 4

alternative combinations for β and Q of eq. (11), which multiplies the number of models

by 4.

Finally, a relaxation parameter λ has to be defined, i.e., we need to define the the

maximum number of tests that a series can fail and still enter in ŜC (see step iii of the

algorithm). Our baseline choice is to set λ = 0.4× SCλ=0, where SCλ=0 is the number of

series in the subset obtained using λ = 0.

5.2 Monte Carlo results

Table 2 includes the gauge and potency of the pairwise strategy for DGP 1 and λ =

0.4×SCλ=0. Results for different choices of λ included in appendix C. As the conclusions

for DGP 2 are the same, the details are omitted.

As expected from §3.2, the gauge of the pairwise procedure is close to zero for all

scenarios and sample sizes, independently of whether residuals are cross-correlated or not.

The results in terms of potency are also very good, as we get values above 0.9 in all cases

(except for the case of T = 100, SC = 40, and independent residuals).

Table C.1 in appendix C replicates the results for different choices of the relaxation

parameter, λ. The choices are λ = 0 (no relaxation), λ = min[2, 0.4 × ŜC
λ=0

], λ =

min[5, 0.4× ŜC
λ=0

] and λ = min[5, 0.4× ŜC
λ=0

], where ŜC
λ=0

stands for the number of

series included in ŜC when using λ = 0.

Two main conclusions emerge from this table. First, the relaxation leads to great im-

provements in potency. For example, in scenario 3 (sc1 = 40) with independent residuals

and no relaxation we get potencies of 70.2, 65.8 and 52.0 for T = 400, T = 200, and

17



T = 100, respectively. With λ = min[2, 0.4× ŜC
λ=0

] we already get a great improvement

— of, approximately, 15 percentage points — for all sample sizes. This improvement in

potencies continues up to the figures in table 2 which are around 25 percentage points

higher than those with λ = 0. These observations are also valid for the other scenarios

and correlation of residuals.

The second conclusion from table C.1 is that the improvements in potency derived

from the relaxation procedure are almost costless in terms of gauge. Gauges in table 2

are almost the same as those in the first block of table C.1 (λ = 0), and very close to zero

as well.

These two conclusions were expected from the theoretical analysis in §3.2.

Table 2: Gauge and potency of the pairwise procedure. DGP 1 (λ = 0.4×SCλ=0, ϕ = 5%,
ϕ∗ = 0.5%)

SC = 10 SC = 25 SC = 40
Gauge Potency Gauge Potency Gauge Potency

β = 0, Q = 0 (independent residuals)

T = 400 0.0 97.9 0.0 95.4 0.0 93.9
T = 200 0.0 97.2 0.0 94.0 0.0 92.2
T = 100 0.2 88.2 0.2 83.1 0.1 79.1

β = −0.3, Q = 10 (non zero corr. with 20 other residuals)

T = 400 0.0 97.1 0.0 96.1 0.0 94.8
T = 200 0.0 96.9 0.0 95.6 0.0 93.7
T = 100 0.1 93.3 0.1 91.6 0.0 89.3

β = −0.3, Q = 20 (non zero corr. with 40 other residuals)

T = 400 0.0 97.4 0.0 96.5 0.0 94.6
T = 200 0.0 96.3 0.0 95.6 0.0 94.2
T = 100 0.1 94.6 0.1 92.2 0.1 90.5

β = −0.3, Q = 30 (non zero corr. with 60 other residuals)

T = 400 0.0 97.2 0.0 95.2 0.0 94.6
T = 200 0.0 96.7 0.0 95.6 0.0 94.3
T = 100 0.1 95.2 0.1 93.4 0.1 91.0

- Number of experiments: 1000.
- Gauge = 100

(N−n1)Nexp

∑Nexp
i=1 Z2,i

- Pot = 100
n1Nexp

∑Nexp
i=1 Z1,i

- Z2 = number of wrong series included in ŜC
- Z1 = number of correct series included in ŜC
- Nexp = number of experiments

As discussed in the Introduction, an alternative strategy to ours could be the estimation

18



of Dynamic Factor Models. As we argued, since we are dealing with non-pervasive factors,

small sizes of the groups, and cross-correlated idiosyncrasies, DFM cannot be expected

to show a good performance. Still, as the DFM assumptions about pervasiveness, and

cross-correlation of the residuals are asymptotic, it could be of interest to compare our

approach with the DFM alternatives.

We applied the usual Principal Components strategy and the QML approach of Doz

et al. (2012), and grouped the series with statistically significant factor loadings. Results

(not reported) are comparable to those of table 2 only for cases with SC ≥ 25, T ≥ 200,

and Q = β = 0. This was to be expected as those cases might satisfy the assumptions

of pervasiveness and limited idiosyncratic cross-correlation. Small alterations of these

conditions make the DFM alternatives fail.

6 Possible extensions
In this section we describe some possible extensions of our procedure that are not

implemented in this paper.

As mentioned in §2 the pairwise approach can be generalized both to consider I(1)

variables that may have cointegration relationships, and to allow non-contemporaneous

short run commonalities. These extensions require considering WF and PSCCF (see

§2) instead of SCCF structures. Although when considered in a pairwise fashion these

structures are not transitive, simple modifications of the testing strategy make them so.

The lack of transitivity of WF tests derives from the fact that cointegration relationships

that are relevant for a series, say, Xi, and need to be considered in the WF tests that

include that series, are not detectable in all pairs that contain Xi. For example, the

cointegration relationship between Xi and Xj will not be detectable in the pair (Xi, Xh)

for h 6= j. Hence, when testing WF in the pair (Xi, Xh), this issue can be solved by

including all of the cointegration relationships that are relevant for the two series, not

only that one between Xi and Xh (a proof of this statement is available upon request).

This strategy is also valid for PSSCF, with the only modification that we should include

the lags of all relevant variables instead of the cointegration relationships.

A third extension of interest is allowing subsets with more common cycles. In this paper

we focused on the case that the data can be grouped into subsets in which the series inside

them share just one common cycle (as we argued we do not need these subsets to be large

and there can be series which do not belong to any subset). As Espasa and Mayo-Burgos

(2013) argue, this situation is a good approximation to the reality when dealing with the

components of a macro variable. In fact, they show that the pairwise procedure leads to

more accurate forecasts of different CPIs than do alternative methods, including Dynamic

Factor Models.

Nonetheless, when dealing with a large data set of macro variables (not necessarily the

components of a single one), the situation could be different. It is usual in the litterature
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to see a general factor that affects more or less all variables and sectorial factors that

affect specific groups (see, e.g., Karadimitropoulou and León-Ledesma (2013), Moench

et al. (2013), and Breitung and Eickmeier (2015)).

In this case, the pairwise procedure proposed in this paper will not be applicable. Since

the only pairs that have common cycles are those formed by series with a single common

cycle (e.g., series that have only the general factor and no sectorial one), the procedure

will be unable to discover the ‘true’ data structure.

Our approach could be adapted to this situation. For this purpose, we need a new

assumption:

Assumption G in the set of N series there is a subset of series that just have the general

cycle.

Under this assumption we can proceed with the following algorithm:

(i) Apply the pairwise procedure proposed in this paper. Under assumption G, this will

lead us to discover the subset of series that only have the general cycle — call it SC1.

(ii) Test for a common cycle in all of the triplets formed by one series inside ŜC1 and a

pair of outsiders. For the triplets in which the outsiders have the same sectorial cycle, we

will find two common cycles (s = 1). (iii) Construct an (N− ŜC1)×(N− ŜC1) symmetric

adjacency matrix for the series outside ŜC1 such that each entry of this matrix represents

a pair of the components outside ŜC1. Each of those pairs belongs to ŜC1 different

triplets: one for each element of ŜC1. Then, in each entry of the adjacency matrix, put a

1 if almost all of the corresponding ŜC1 triplets have two common cycles; otherwise, put

a 0. (iv) Look for maximal fully connected sub-graphs in the previous adjacency matrix.

This would lead us to discover the general and the sectorial cycles.

7 Concluding remarks
This paper deals with the issue of discovering common cycles, which can be pervasive or

non-pervasive, in a large set of disaggregates. We showed that, when focusing on groups in

which the series have single common cycles, the discovery can be carried out in a pairwise

fashion.

The strategy consists of testing for common cycles between all possible pairs of series

and constructing groups in which almost all pairs showed a common cycle. The statistical

properties of this procedure were studied both when N and T →∞ and when N is fixed

and T → ∞. Theoretical results indicate that the pairwise strategy has good properties

in both cases.

An interesting characteristic of our proposal is that it does not rely on any type of

cross-sectional averaging method. This explains why we can deal with pervasive and non-

pervasive common cycles, both when N is fixed and when it goes to infinity. Additionally,
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as we do not need idiosyncrasies to average out as N increases, we do not need to restrict

idiosyncratic cross-correlation.

Monte Carlo results confirmed the theoretical analysis and showed a good performance

in small samples.

Extensions of this paper include generalizations for I(1) variables which may be cointe-

grated, non-contemporaneous short run commonalities, and the consideration of general

and sectorial common cycles.
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Appendix A Transitivity of common cycles

In this appendix we show that the SCCF are transitive.

To see that SCCF is transitive let X1 and X2 be two I(0) series that share an SCCF,

and write:

X1t = c11 + ϕ1
1CC

1
t−1 + ε11,t,

X2t = c12 + ϕ1
2CC

1
t−1 + ε12,t,

(A.1)

where CC1
t−1 = ψ′[X ′t−1, ..., X

′
t−k+1]

′; [ϕ1
1, ϕ

1
2]
′ = δ⊥; ε1i,t is white noise; and Xt =

[X ′1t, X
′
2t]
′.

If X1 and X3 also share an SCCF, then

X1t = c21 + ϕ2
1CC

2
t−1 + ε21,t,

X3t = c22 + ϕ2
2CC

2
t−1 + ε22,t.

(A.2)

Equating the first lines of eq. (A.1) and eq. (A.2), solving for CC2
t−1, and plugging the

result into the second line of eq. (A.2), we get

X3t = c22 +
ϕ2
2

ϕ2
1

[(c11 − c21) + ϕ1
1CC

1
t−1 + (ε11,t − ε21,t)] + ε22,t ⇒

X3t = c3 + ϕ3CC
1
t−1 + ε3,t,

(A.3)

where c3 = c22 +
ϕ2
2

ϕ2
1

(c11 − c21); ϕ3 =
ϕ2
2ϕ

1
1

ϕ2
1

; and ε3t =
ϕ2
2

ϕ2
1

(ε11,t − ε21,t) + ε22t. Since ε3t is white

noise, X3 has the same SCCF as X1 and X2.

Another way to see the transitivity of the SCCF is to notice CC2
t−1 can be written as

a linear function of CC1
t−1 plus a constant and a white noise.
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Appendix B Proof of proposition 1

First, take logarithms in eq. (9):

log(E[ω]) = log(N − SCi) + γ(ρŜCi − 1)log(pmax) + log(P (Wh))− log( ˆSCi)

Now let SCi = cN1/λ, with λ > 1 and c > 0. Using the results from §3.2.1 we can

assume that ŜCi grows at the same rate as SCi. That is, we can assume that ŜCi = c̃N1/λ,

with c̃ not necessarily equal to c. Then:

log(E[ω]) = log(N − cN1/λ) + γ(ρc̃N1/λ − 1)log(pmax) + log(P (Wh))− log(c̃N1/λ)

Let log(E∗[ω]) = log(N)− c∗N1/λ, with

c∗ = −c̃γρlog(pmax).

Since pmax is fixed, for sufficiently large N , log(E[ω]) ≤ log(E∗[ω]). Then, having a

constant E∗[ω] is a sufficient condition for keeping E[ω] lower than a certain threshold.

To find the condition for constant log(E∗[W ]) write

log(N)− c∗N1/λ = C,

from which

λ =
log(N)

log[log(N)− C]− log(c∗)
−→ log(N)

log[log(N)]
> 1.

Noting that N log(log(N))/log(N) = log(N), completes the proof. �
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Appendix C Monte Carlo results for different relax-

ation parameters

Table C.1: Gauge and Potency of the Pairwise procedure. DGP 1 (ϕ = 5%, ϕ∗ = 0.5%)

λ = 0 (no relaxation)

sc1 = 10 sc1 = 25 sc1 = 40
Gauge Potency Gauge Potency Gauge Potency

β = 0, Q = 0 (independent residuals)

T = 400 0.0 86.3 0.0 75.7 0.0 70.2
T = 200 0.0 84.4 0.0 72.0 0.0 65.8
T = 100 0.1 73.1 0.0 59.0 0.0 52.0

β = −0.3, Q = 10 (non zero correlation with 20 other residuals)

T = 400 0.0 86.7 0.0 78.6 0.0 73.4
T = 200 0.0 86.6 0.0 76.5 0.0 70.9
T = 100 0.0 81.6 0.0 70.1 0.0 64.6

β = −0.3, Q = 20 (non zero correlation with 40 other residuals)

T = 400 0.0 87.8 0.0 80.1 0.0 73.7
T = 200 0.0 86.2 0.0 77.8 0.0 73.0
T = 100 0.0 83.5 0.0 71.5 0.0 66.6

β = −0.3, Q = 30 (non zero correlation with 60 other residuals)

T = 400 0.0 88.8 0.0 79.2 0.0 74.7
T = 200 0.0 87.6 0.0 78.2 0.0 73.1
T = 100 0.0 84.4 0.0 74.0 0.1 67.9

λ = min[2, 0.4 × ŜC
λ=0

]

sc1 = 10 sc1 = 25 sc1 = 40
Gauge Potency Gauge Potency Gauge Potency

β = 0, Q = 0 (independent residuals)

T = 400 0.0 97.0 0.0 90.2 0.0 85.6
T = 200 0.0 95.7 0.0 86.8 0.0 81.0
T = 100 0.2 85.3 0.1 72.6 0.0 65.2

β = −0.3, Q = 10 (non zero correlation with 20 other residuals)

T = 400 0.0 96.6 0.0 91.2 0.0 86.7
T = 200 0.0 96.2 0.0 89.8 0.0 84.7
T = 100 0.1 92.5 0.0 83.9 0.0 78.0

β = −0.3, Q = 20 (non zero correlation with 40 other residuals)

T = 400 0.0 96.8 0.0 92.2 0.0 87.2
T = 200 0.0 95.8 0.0 90.6 0.0 86.0
T = 100 0.1 94.0 0.1 84.7 0.0 80.2

β = −0.3, Q = 30 (non zero correlation with 60 other residuals)

T = 400 0.0 96.6 0.0 91.0 0.0 87.3
T = 200 0.0 96.1 0.0 90.4 0.0 86.5
T = 100 0.1 94.5 0.0 86.9 0.1 81.4
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Table C.1 Continued:

λ = min[5, 0.4 × ŜC
λ=0

]

sc1 = 10 sc1 = 25 sc1 = 40
Gauge Potency Gauge Potency Gauge Potency

β = 0, Q = 0 (independent residuals)

T = 400 0.0 97.9 0.0 94.9 0.0 92.3
T = 200 0.0 97.2 0.0 92.8 0.0 88.9
T = 100 0.2 88.2 0.1 80.9 0.1 73.8

β = −0.3, Q = 10 (non zero correlation with 20 other residuals)

T = 400 0.0 97.1 0.0 95.4 0.0 92.7
T = 200 0.0 96.9 0.0 95.0 0.0 91.1
T = 100 0.1 93.3 0.1 90.5 0.0 85.4

β = −0.3, Q = 20 (non zero correlation with 40 other residuals)

T = 400 0.0 97.4 0.0 95.9 0.0 92.6
T = 200 0.0 96.3 0.0 94.8 0.0 91.9
T = 100 0.1 94.6 0.1 91.2 0.0 86.9

β = −0.3, Q = 30 (non zero correlation with 60 other residuals)

T = 400 0.0 97.2 0.0 94.6 0.0 92.6
T = 200 0.0 96.7 0.0 94.9 0.0 92.1
T = 100 0.1 95.2 0.1 92.5 0.1 87.7

λ = min[10, 0.4 × ŜC
λ=0

]

sc1 = 10 sc1 = 25 sc1 = 40
Gauge Potency Gauge Potency Gauge Potency

β = 0, Q = 0 (independent residuals)

T = 400 0.0 97.9 0.0 95.4 0.0 93.8
T = 200 0.0 97.2 0.0 94.0 0.0 92.0
T = 100 0.2 88.2 0.2 83.1 0.1 78.7

β = −0.3, Q = 10 (non zero correlation with 20 other residuals)

T = 400 0.0 97.1 0.0 96.1 0.0 94.8
T = 200 0.0 96.9 0.0 95.6 0.0 93.6
T = 100 0.1 93.3 0.1 91.6 0.0 89.2

β = −0.3, Q = 20 (non zero correlation with 40 other residuals)

T = 400 0.0 97.4 0.0 96.5 0.0 94.5
T = 200 0.0 96.3 0.0 95.6 0.0 94.1
T = 100 0.1 94.6 0.1 92.2 0.1 90.4

β = −0.3, Q = 30 (non zero correlation with 60 other residuals)

T = 400 0.0 97.2 0.0 95.2 0.0 94.6
T = 200 0.0 96.7 0.0 95.6 0.0 94.2
T = 100 0.1 95.2 0.1 93.4 0.1 91.0

See notes to table 2
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