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Suppose that a closed surface S ⊆ R3 is an attractor, not ne-
cessarily global, for a discrete dynamical system. Assuming 
that its set of wild points W is totally disconnected, we prove 
that (up to an ambient homeomorphism) it has to be con-
tained in a straight line. As a corollary we show that there 
exist uncountably many different 2-spheres in R3 none of 
which can be realized as an attractor for a homeomorphism.
Our techniques hinge on a quantity r(K) that can be de-
fined for any compact set K ⊆ R3 and is related to “how 
wildly” it sits in R3. We establish the topological results that 
(i) r(W ) ≤ r(S) and (ii) any totally disconnected set having a 
finite r must be contained in a straight line (up to an ambient 
homeomorphism). The main result follows from these and the 
fact that attractors have a finite r.

✩ The author is supported by the Spanish Ministerio de Economía y Competitividad (grant MTM 
2015-63612-P).

E-mail address: JaimeJ.Sanchez@uam.es.
1



 

 
 

 
 

 
 

0. Introduction

Dynamical systems are a rich source of sets with intricate structures. An especially 
interesting case, because of its dynamical significance, is that of the so-called “strange 
attractors”. This loose term encompasses both attractors with a complicated topological 
type and attractors which, in spite of having a rather simple topological type (such as 
a periodic orbit or an invariant 2-torus), lie in phase space in a complicated way. Their 
existence prompts the somewhat vague problem of trying to understand how complicated 
attractors can look. More specifically, one can consider the following realizability problem: 
given a compact set K ⊆ Rn, does there exist a dynamical system on Rn having K as 
an attractor? The answer depends on the dimension n of the ambient space, on whether 
one considers global or local attractors, continuous or discrete dynamics, etc. There are 
several papers in the literature that deal with this question in some variant or another,
among which we may cite [7,9,11,14–18,24,26].

We may say that the realizability problem is topological in nature in the sense that 
its answer is a topological invariant of the pair (Rn, K). Indeed, if two pairs (Rn, K)
and (Rn, K ′) are homeomorphic via a map h, conjugation with h will transform any 
dynamical system that realizes K as an attractor into another one that does the same 
for K ′ (and vice versa), so that either both of K and K ′ can be realized as attractors 
or none of them can. Notice that this argument involves the pair (Rn, K), rather than 
K alone. This suggests that the way K sits in Rn may play a significant role in the 
realizability problem and invites one to consider the case of wild sets, in the sense of 
geometric topology, which have a simple structure in the abstract but are embedded in 
R

n in a pathological way. This observation motivated our present study.
Local attractors in two dimensions and attractors for flows in three dimensions are 

well understood: (i) a compact set K ⊆ R2 can be realized as an attractor if and only if 
it has finitely generated Čech cohomology; (ii) a compact set K ⊆ R3 can be realized as
an attractor for a flow if and only if R3 − K admits a manifold compactification ([24]).
Attractors for homeomorphisms in three dimensions (and higher) are, however, still fairly 
mysterious. In this paper we deal with a particular instance of this last case, concentrating 
on closed surfaces K = S ⊆ R3. The reason for this is twofold: on the one hand, the most 
natural two dimensional attractor arising in dynamics is precisely the 2-torus, a closed 
surface; on the other hand, there is an extensive literature concerning wild surfaces.

Postponing for now the formal details, let us say that a surface S ⊆ R3 is tame if it 
can be “smoothed out” within R3. A wild surface is one that is not tame. We shall see
later on (Proposition 1) that a tame surface can always be realized as an attractor for a
homeomorphism and even for a flow. However, there do exist wild surfaces in R3 and the 
question arises as to whether those can be realized as attractors. The main result of this
paper (Theorem 2) is a rather general assertion in this direction: if an attracting surface
S has a totally disconnected set W of wild points (points where S cannot be smoothed 
out within R3) then W must be rectifiable; that is, it must be possible to perform an 
ambient homeomorphism of R3 that sends W into a straight line.
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Two of the most famous examples of wild surfaces are the 2-spheres due to Antoine 
and Alexander, and in previous papers we were able to prove that none of them can be 
realized as an attractor ([25] and [21], jointly with R. Ortega). For the wild sphere of 
Antoine the set W is a rather peculiar Cantor set called “Antoine’s necklace” which is not 
rectifiable, so our main result implies directly that this sphere cannot be realized as an 
attractor. We will generalize Antoine’s construction to show that there are uncountably 
many different ways to embed any given surface in R3 in such a way that it cannot be 
realized as an attractor (Corollary 3).

Let us say now a few words about the techniques of proof used in the paper, which may 
be of independent interest. Our main tool will be certain number r(K) = 0, 1, . . . , ∞ that 
can be associated to any compact set K ⊆ R

3 and somehow measures its “crookedness”
as a subset of Euclidean space. This number is a purely topological quantity, but it 
has the property of being finite when K is an attractor and therefore establishes the 
link between topology and dynamics. The hard work will be in proving, again as purely 
topological results, that: (i) for a surface S having a totally disconnected set W of wild 
points the inequality r(S) ≥ r(W ) holds; and (ii) for a totally disconnected compact set 
T one has r(T ) < ∞ if and only if T is rectifiable. The main theorem then follows as an 
application: since S is an attractor r(S) < ∞, then by (i) one has r(W ) < ∞ too, and 
finally (ii) implies that W is rectifiable.

We would like to conclude this Introduction by expressing our warmest thanks to 
the anonymous referee of the paper for his or her thorough reading, corrections and 
suggestions.

1. Statement of results

Let f be a homeomorphism of R3. By an attractor K for f we mean a compact inva-
riant set (that is, f(K) = K) which attracts all compact subsets of some neighbourhood 
U of K. This means that for every compact set P ⊆ U and every neighbourhood V of 
K in R3 there exists n0 ∈ N such that fn(P ) ⊆ V for every n ≥ n0. In the language of
dynamics, K is stable in the sense of Lyapunov and attracts all points in U . Notice that 
no particular assumption is made about the size of U , so K is a local but not necessarily 
global attractor.

By a closed surface we mean a compact 2-manifold without boundary. A closed surface 
S ⊆ R3 is locally flat at a point p if p has a neighbourhood U in R3 such that the 
pair (U, U ∩ S) i s  homeomorphic to (R3, R2 × { 0}). This definition is standard; see for 
instance the book by Daverman and Venema [8, p. xvi]. Intuitively it means that, near p, 
the surface lies in R3 like a plane. For instance, every piecewise linear surface S ⊆ R3 is 
locally flat at every point, and the same holds true when S is a differentiable submanifold 
of R3 because of the existence of adapted charts.

Our first result is very simple:

Proposition 1. Let S ⊆ R
3 be a closed surface that is locally flat at every point. Then S

is an attractor for a homeomorphism (and actually, also for a flow) of R3.
3



 
 

The only purpose of the above proposition is to show that, since we are interested 
in finding surfaces that cannot be attractors, we need to turn our attention to surfaces 
that contain points at which the surface is not locally flat. These points, and the 
surface itself, we call wild, although this is a slight abuse of terminology.1 The set of wild 
points is clearly closed so, when nonempty, it is compact. It might be difficult at first to 
imagine how a surface could fail to be locally flat, but we shall see an example after 
stating our main theorem below.

We need a final definition: let us say that a totally disconnected compact set T ⊆ R3 

is rectifiable if there exists a homeomorphism of R3 that sends T into a straight line. 
Again, it might be difficult to imagine how a totally disconnected compact set T ⊆ R3 

may not be rectifiable. Rather than presenting an example now, we postpone this to
Section 4 where we recall the definition of “Antoine’s necklace”, which is a Cantor set
that is not rectifiable. As the reader will see, the construction is very flexible and can be 
modified to produce a great variety of Cantor sets that are not rectifiable.

The main result of the paper is the following:

Theorem 2. Let S ⊆ R
3 be a closed, connected surface that bounds a 3-manifold. Suppose

that S contains a compact, totally disconnected set T such that:

(i) S is locally flat at each p /∈ T .
(ii) T is not rectifiable.

Then S cannot be realized as an attractor for a homeomorphism of R3.

Theorem 2 is stated in the form most convenient for the construction of 
nonattracting surfaces that follows below. However, it can also be presented (as we did 
in the abstract and the Introduction) as an assertion about the set of wild points of an 
attracting surface, as follows:

Theorem 2′. Let S ⊆ R
3 be a closed surface that bounds a 3-manifold and is an attractor

for a homeomorphism. Suppose that its set of wild points W is totally disconnected. Then 
W must be rectifiable.

The condition that S bounds a 3-manifold means the following. Recall that any closed, 
connected surface S separates R3 into two connected components Ui whose closures are
Ū = Ui ∪ S. This follows from Alexander duality and the fact that S is a surface

i

i

(see for instance the argument in [20, Theorem 36.3, p. 205]). We say that S bounds a 

3-manifold if at least one of the Ū is a 3-manifold (possibly noncompact) with boundary. 
The definition for a non-connected S is similar. Although this condition is fulfilled in 

1 Formally, a wild point is one where the surface is not locally tame rather than not locally flat. However, 
in the case that concerns us now, both notions are equivalent. More on this in Section 2.
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Fig. 1. A totally disconnected set T and a couple of its neighbourhoods Nk.

many of the classical examples of wild surfaces, it is added for technical reasons and it 
would be nice if it could be removed from the theorem.

Constructing nonattracting surfaces. We now explain how to construct examples of 
surfaces that cannot be attractors. The procedure we describe is essentially the same as 
the one used by Antoine to construct a wild sphere. Let T ⊆ R

3 be a totally discon-
nected, compact set of R3. Eventually we shall take T to be non-rectifiable, but this is
not necessary for the moment. As with any compact subset of R3, we can find a sequence
(Nk)k∞=1 of compact 3-manifolds with boundary such that Nk+1 is contained in the inte-
rior of Nk for each k and T is the intersection of the Nk. Since T is totally disconnected, 
in addition we may require that (i) the diameters of the connected components of the 
Nk converge to zero as k → ∞  and (ii) every connected component of each Nk meets T , 
since those that do not can be removed. Fig. 1 shows a totally disconnected set T (sug-
gested by the cloud of dots, presumably infinite) and the two first neighbourhoods of a 
possible sequence (Nk). The first one is a single cell. The second one N2 already consists 
of three connected components N2,1, N2,2, N2,3 (a cell, a solid torus, and a solid double 
torus).

Let S0 ⊆ R3 be a closed, locally flat surface such that T lies in its exterior. For 
simplicity we shall take S0 to be the boundary of a closed, round ball B0 disjoint from T . 
We are going to modify B0, without changing its topological type, so that the resulting 
3-manifold B contains T in its boundary. In order to do this we take the Nk as a guide. 
First, we extract a solid “feeler” from B0 that connects it to the boundary of N1, meeting 
it in a disk D1. See Fig. 2.(a), where B0 and the feeler are shown in a thicker outline and
D1 is shaded grey. Then, within N1, we branch the feeler into “subfeelers”, each one
connected to a different component N2,j of N2. Again, these subfeelers should meet the
boundary of their corresponding N2,j in a disk D2,j . See Fig. 2.(b). Although Fig. 2 does
not show this for simplicity, the feelers may be knotted or entangled.

We work in the same fashion within each component N2,j of N2, splitting the subfeelers
into even thinner subfeelers connected to those components of N3 contained in N2,j ; then
at an even smaller scale within the components N3,j of N3, and so on. This gives rise to a
nested sequence of compact 3-manifolds, each larger but homeomorphic to the previous 
one. Let B be the union of this sequence and the set T , which is the limit set of the 
5



 

 
 

 

 

Fig. 2. Modifying B0 so that its boundary contains T .

feelers. It is not difficult to check that B is a compact 3-manifold homeomorphic to B0

(see for instance the arguments in [8, Chapter 2, pp. 46 ff.]). It may be convenient to
mention that B may well not be ambient homeomorphic to B0; that is, there may not 
exist a homeomorphism of all of R3 that sends B onto B0.

Let the surface S be the boundary of B. Then S is homeomorphic to the original 
S0 and bounds a 3-manifold (the manifold B itself). Also, by construction it contains T
and, if the feelers are drawn in a locally flat fashion as in Fig. 2, clearly S is locally flat at
each point except for, possibly, at those belonging to T . Therefore, choosing T to be non-
rectifiable (for instance, letting T be Antoine’s necklace, which is described in Section 4),
Theorem 2 guarantees that S cannot be realized as an attractor.

We will show in Section 6 how to refine the above construction to prove that every
closed (orientable) surface can be embedded in R3 in uncountably many different ways 
{Si : i ∈ I} none of which can be realized as an attractor. By “different” we mean that 
for any two different i 	= j there does not exist a homeomorphism of R3 that sends Si 

onto Sj . This is true even if one considers only the simplest possible surface, a 2-sphere:

Corollary 3. There exist uncountably many different 2-spheres in R3 that cannot be re-
alized as attractors.

We finish this section with some remarks about Theorem 2:

Remark 4. (1) The construction just described illustrates why Theorem 2 is more con-
venient than Theorem 2′ to establish the nonattracting nature of a given surface. To 
apply Theorem 2 we only needed to check that the surface in question was locally flat 
outside T , and that was straightforward. Had we tried to apply Theorem 2′, we would 
have needed to identify the set W of wild points precisely, which is not easy to do (in 
fact, W depends on the particular details of how the construction is performed).

(2) The conditions laid out in Theorem 2 are sufficient, but not necessary, to 
guarantee that a surface (even a surface with a totally disconnected set of wild points) 
cannot be an attractor. A suitable example is the horned sphere S of Alexander, which 
cannot be realized as an attractor (this is proved in [25, Theorem 41, p. 3620]) but 
whose set of wild points is a rectifiable Cantor set because it is contained in a straight 

line 6



Fig. 3. The sphere of Alexander.

by construction. The Alexander sphere is shown in Fig. 3 and described carefully in [8, 
Chapter 2]. One may think of S as the round sphere S2 from which infinitely many feelers 
have been extracted which, as their diameters tend to zero, converge to the Cantor set 
of wild points at the bottom of the figure. In contrast to the construction “à la Antoine” 
described earlier, where the feelers could or could not be entangled, here they must be 
entangled, for this is what ultimately lends the sphere its wild nature.

This example begs the question of whether it is possible to generalize Theorem 2 so 
that it covers both the examples of Antoine and Alexander. Heuristically, such a gener-
alization would somehow capture simultaneously the “contributions to the wildness” of 
S due to both the non-rectifiability of W itself and the entanglement of the surface as it 
approaches W .

The rest of the paper is organized as follows. Proposition 1 is proved in the very brief 
Section 2, where we also discuss succinctly the relation between wildness and tameness. 
In Section 3 we recall from [25] the definition and properties of the quantity r(K) 
mentioned earlier as being our main tool. The following two sections are devoted to two 
purely topological results. Section 4 is devoted to the study of r(T) f o r  totally 
disconnected compact sets T . The main theorem there is Theorem 14, which shows that 
r(T ) i s  either zero or infinity depending on whether T is rectifiable or not, respectively. 
In Section 5 we essentially prove the inequality r(B) ≥ r(W ), where B ⊆ R3 is a compact 
3-manifold and W is the set of wild points of its boundary ∂B. This result was 
essentially stated as (i) at the end of the Introduction, albeit in a slightly stronger form 
that is more convenient (see however Theorem 17′). The main theorem is finally 
established in Section 6 together with Corollary 3. A final section contains several open 
questions that seem interesting for further investigations.

2. Proof of Proposition 1

In Section 1 we defined a wild surface S as one having at least one wild point; that
is, a point at which the surface is not locally flat. Formally, wildness is not related to 
local flatness but to local tameness, so we shall devote a few lines to clarify the relation 
between these concepts.
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Let us begin by defining a polyhedron P as the geometric realization of a finite simpli-
cial complex in R3 (although very restrictive, this definition is enough for our purposes). 
A compact set K ⊆ R3 is tame if there exists an ambient homeomorphism h : R3 −→ R3

such that h(K) is a polyhedron. And it is locally tame at a point p ∈ K if there exist a 
(closed) neighbourhood V of p in R3 and an embedding e : V −→ R3 such that e(V ∩K) is a
polyhedron. These two definitions are classical; see for instance [19, p. 145]. Evidently a
tame set is locally tame at each point. A deep theorem of Bing, proved independently by
Moise, states that the converse is also true: a locally tame subset of R3 is tame [19,
Theorem 4, p. 254].

The above definitions are set up for any compact subset of R3, but we are interested 
in the case of closed surfaces S. The following holds true for them:

Remark 5. For a closed surface S ⊆ R
3, being locally flat at a point p is equivalent to

being locally tame at that same point p.

Proof. In this paper we shall only make use of implication (⇒), whose simple proof we 
give in detail. The converse, although conceptually easy, is rather technical and we only 
give an intuitive idea.

(⇒) By local flatness there exist a neighbourhood U of p in R3 and a homeomorphism 
h between (U, U ∩ S) and (R3, R2 × {0}). Without loss of generality we can assume
that h(p) is the origin. Let W := [−1, 1] × [−1, 1] × [−1, 1]. Clearly V := h−1(W ) is
a neighbourhood of p in R3, and the restriction e := h|V is an embedding such that
e(V ∩ S) = W ∩ (R2 × {0}), which is a square (hence a polyhedron). Therefore S is 
locally tame at p.

(⇐) Since S is locally tame at p, we may think of it (via the embedding e of the defi-
nition of local tameness) as a polyhedral surface around p. Thus p has a neighbourhood 
in S that is a polyhedral disk. Such a disk can be flattened out. Therefore S is locally 
flat around p. �

Thus for a surface S one may equivalently define a point p ∈ S to be wild whenever S
is not locally flat or not locally tame at p. The former characterization is self contained 
(it makes no reference to polyhedra), which is why we used it in the previous section. 
It is also the most convenient definition for later sections. In this section, however, the 
characterization in terms of polyhedra is more useful.

We want to prove Proposition 1, which claims that a closed surface that is locally flat 
at every point can be realized as an attractor for a homeomorphism or, in fact, for a 
flow. In order to show this we need a simple auxiliary result whose proof we omit:

Lemma 6. Let P ⊆ R
3 be a polyhedron. Then there exists a flow in R3 having P as an

attractor.

Proof. See [15, Corollary 4, p. 327] or [24, Proposition 12, p. 6169]. �
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Proof of Proposition 1. Suppose that S has no wild points, so that by definition it is 
locally flat at each p ∈ S. By Remark 5 this implies that S is locally tame at each p ∈ S 
and by the theorem of Bing and Moise mentioned earlier, S is tame. Thus, there exists a 
homeomorphism h : R3 −→ R3 such that h(S) i s  a polyhedron. In turn, by Lemma 6 
there exists a flow having h(S) as an attractor. Let f be the time-one map of this flow, 
so that h(S) is an attractor for the homeomorphism f of R3. Then S is an attractor for 
h−1fh. �
3. The number r(K)

In [25] we described how to associate, to each compact subset K ⊆ R3, a number r(K)
that provides a measure of how wildly K sits in R3. We used it to show that certain arcs, 
balls and spheres (for instance, the horned sphere of Alexander in Fig. 3.(b)) cannot be 
attractors. Since this number r(K) will also be the fundamental tool in the proof of 
Theorem 2, we devote this section to review its definition and some of its properties. We 
refer the reader to [25] for more details and proofs.

Let K ⊆ R3 be an arbitrary compact subset of R3. It is easy to see that any neigh-
bourhood of K contains a smaller one N which is a compact, polyhedral 3-manifold. For 
instance, cover K with the interiors of closed cubes contained in U ; discard all but finitely 
many of them using the compactness of K, thus obtaining a polyhedral P neighbourhood 
of K, and finally let N be a regular neighbourhood of P (in the sense of piecewise linear 
topology [22, Chapter 3, pp. 31 ff. and particularly Proposition 3.10, p. 34]). We call 
such an N a pm-neighbourhood of K (pm standing for polyhedral manifold). For r a 
nonnegative integer, consider the following property that K may or may not have:

(Pr) : K has arbitrarily small pm-neighbourhoods N with rk H1(N) ≤ r.

Here H1(N) denotes the first homology group of N with Z2 coefficients and rk denotes
its rank as an Abelian group or, equivalently, its dimension as a vector space over Z2.

Definition 7. r(K) is the smallest nonnegative integer r for which (Pr) holds, or ∞ if
(Pr) does not hold for any r.

Although the definition of r(K) does not make any reference to dynamics, it has the 
following property which justifies our interest in it:

(P1) Finiteness. If K is a local attractor for a homeomorphism then r(K) < ∞.

Proof. See [25, Theorem 13, p. 3599]. �
Essentially, the proof of Theorem 2 will consist in showing that r(S) = ∞ and applying

the finiteness property. However, computing r(K) f r o m  first principles is in general very
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difficult and we will need to do it indirectly, making use of several additional properties 
of r(K) that are, this time, geometric in nature: invariance, semicontinuity, nullity and 
subadditivity. We state them now.

(P2) Invariance. If K and K ′ are ambient homeomorphic, then r(K) = r(K ′).

Proof. See [25, Theorem 14, p. 3600]. �
(P3) Semicontinuity. Suppose (Kn)n≥1 is a decreasing sequence (that is, Kn+1 ⊆ Kn

for every n) of compact sets and denote by K its intersection. Then

r(K) ≤ lim inf
n→∞

r(Kn).

Proof. Define r := lim infn→∞ r(Kn). If r = ∞ there is nothing to prove, so assume that
r < ∞. Passing to a subsequence of the Kn we may assume that r(Kn) = r for every
n ∈ N, so that each Kn has property (Pr). Let U be a neighbourhood of K. The Kn

form a decreasing sequence and K =
⋂

Kn, so there exists n0 such that Kn ⊆ U for
every n ≥ n0. Since Kn0 has property (Pr), it has a pm-neighbourhood N ⊆ U such that
rk H1(N) ≤ r. But N is also a neighbourhood of K, so K has property (Pr) too. �
(P4) Nullity. Suppose K has Ȟ2(K) = 0. Then r(K) = 0 if, and only if, K has arbitrarily

small pm-neighbourhoods N such that each component of N is a 3-cell. By a 3-cell 
we mean a set homeomorphic to the closed unit 3-ball B3 ⊆ R

3.

Proof. This is proved in [25, Theorem 16, p. 3601] for K connected (in that case N can 

be taken to be connected too and it is itself a 3-cell). The same argument given there 
covers this slightly more general situation where K is not assumed to be connected. �

Finally, to state the subadditivity property we need to introduce some notation and 
a definition:

Notation 8. Consider the following subsets of R3, shown in Fig. 4:

Q0 is the parallelepiped [−1, 0] × [−1, 1] × [−1, 1],
Q1 is the parallelepiped [0, 1] × [−1, 1] × [−1, 1],
Q is the cube Q0 ∪Q1,
S is the square Q0 ∩Q1 = {0} × [−1, 1] × [−1, 1],
Ṡ denotes the square S minus its edges.

Suppose K is expressed as the union of two compact sets K0 and K1. We call this a
decomposition of K and introduce the following definition:
10



Fig. 4. The setup for Definition 9.

Definition 9. A decomposition K = K0 ∪K1 is tame if

(i) K ∩ S = K0 ∩K1 ⊆ Ṡ,
(ii) K0 ∩Q ⊆ Q0 and K1 ∩Q ⊆ Q1.

Definition 9 conveys the intuitive idea that S realizes geometrically the purely set-
theoretical decomposition K = K0 ∪ K1. The part of K that lies in Q is structured in 
two “halves”, K ∩Q0 and K ∩Q1. The first one sits in Q0 and, because of condition (ii), 
is comprised exclusively of points from K0. The second one sits in Q1 and is comprised 
exclusively of points from K1.

Remark 10. It is convenient to widen Definition 9 slightly and say that a decomposition 
K = K0 ∪K1 is tame if there exists an ambient homeomorphism h : R3 −→ R3 that takes 
K, K0 and K1 onto sets that satisfy (i) and (ii) above. This convenient generalization 
has no consequences as far as r(K) is concerned since r is invariant under ambient 
homeomorphisms by (P2).

A prototypical example of a tame decomposition (in the wider sense just mentioned) 
of a set K would be as follows:

Example 11. Take a plane H ⊆ R
3 (having a nonempty intersection with K) and, de-

noting H0 and H1 the two closed halfspaces determined by H, let K0 := K ∩ H0 and
K1 := K ∩H1. Then K = K0 ∪K1 is a tame decomposition.

Now we can state the subadditivity property of r:

(P5) Subadditivity. Let K = K0 ∪K1 be a tame decomposition of K and assume that
Ȟ1(K0 ∩K1) = 0. Then the inequality r(K) ≥ r(K0) + r(K1) holds.

Proof. See [25, Theorem 22, p. 3604]. �
If one thinks of r as some sort of Betti number and writes the Mayer–Vietoris sequence 

for K = K0∪K1, the necessity of requiring that Ȟ1(K0∩K1) be zero is clear. The role of
11



the tameness condition is more delicate. Roughly, it guarantees that certain geometrical 
constructions leading to the inequality r(K) ≥ r(K0) +r(K1) can be performed. Without
this assumption the subadditivity property may be false (see [25, Example 25, p. 3606]).

For our purposes in this paper it is convenient to have a more flexible way of checking 
whether a decomposition is tame. The following proposition provides this:

Proposition 12. Let K = K0 ∪K1 be a decomposition of a compact set K ⊆ R
3. Suppose

that there exists an embedding e : Q −→ R
3 such that:

(1) K ∩ e(S) = K0 ∩K1 ⊆ e(Ṡ),
(2) K0 ∩ e(Q) ⊆ e(Q0) and K1 ∩ e(Q) ⊆ e(Q1).

Then the decomposition is tame.

In the proof we will make use of the (generalized) Schönflies Theorem, so we devote 
a few lines to explain it. A 2-sphere Σ ⊆ R

2 is simply an embedded copy of the unit two 
dimensional sphere S2 ⊆ R

3. The Schönflies Conjecture states that any two 2-spheres
Σ1 and Σ2 in R3 are equivalently embedded; that is, there exists an ambient homeomor-
phism that sends one of them onto the other. As stated, this result is false due to the 
existence of wild spheres, so some additional hypothesis needs to be added. Brown gave 
a beautiful version for bicollared spheres. A 2-sphere Σ ⊆ R

3 is bicollared if there exists 
an embedding b : Σ × [−1, 1] −→ R

3 such that b(p, 0) = p for every p ∈ Σ. Brown proved
[4, Theorem 5, p. 76] that the Schönflies Conjecture is true for bicollared spheres; that 
is, if Σ1, Σ2 ⊆ R

3 are two bicollared spheres, there exists an ambient homeomorphism
that sends one of them onto the other. We shall refer to this result as the generalized 
Schönflies Theorem.

Now let B1, B2 ⊆ R
3 be two 3-cells and e : B1 −→ B2 a homeomorphism. Assume that

both ∂B1 and ∂B2 are bicollared. Then e admits an extension to a homeomorphism ê of
all R3. The reason is that the generalized Schönflies Theorem applies to the bicollared
2-spheres ∂B1 and ∂B2 and allows one to reduce this problem to the case where B1 =
B2 = B

3, where B3 denotes the closed unit ball in Euclidean space R3, and then extending
e is a simple matter (do it radially).

Proof of Proposition 12. We need to construct a homeomorphism h of R3 that sends K0

and K1 onto sets satisfying the conditions in Definition 9. Let B1 and B2 be the 3-cells Q 
and e(Q), respectively, and consider the 2-spheres ∂B1 and ∂B2. Clearly ∂B1 is
bicollared, since B1 is a polyhedral cube. As for ∂B2, the following claim shows that we
can assume it to be bicollared too:

Claim. Maybe after a suitable improvement of e, we may assume that the boundary 
of e(Q) is bicollared.
12



Proof of claim. For any number 0 < s < 1 denote by sQ the image of Q under the 
mapping (x, y, z) → (sx, sy, sz), and similarly for sQ0, sQ1 and sS. It is easy to check
that if s is very close to 1, conditions (1) and (2) in the statement of this proposition are 
still satisfied when we replace Q, Q0, Q1 and S by their scaled down versions sQ, sQ0,
sQ1 and sS. That is,

(1′) K ∩ e(sS) = K0 ∩K1 ⊆ e(sṠ),
(2′) K0 ∩ e(sQ) ⊆ e(sQ0) and K1 ∩ e(sQ) ⊆ e(sQ1).

The boundary of sQ is just a polyhedral sphere slightly smaller than the boundary 
of Q, and it is clearly bicollared in the interior of Q. Thus e(sQ) is bicollared in e(int Q), 
which is an open subset of R3, and so e(sQ) is actually bicollared in R3. Replacing the
embedding e : Q −→ R

3 by (x, y, z) −→ e(sx, sy, sz) the claim follows. �
Now using the generalized Schönflies Theorem we see that e extends to a homeomor-

phism ê  : R3 −→ R3 as explained earlier. Let h := ê−1. Applying h throughout to (1) 
and (2) in the statement of this proposition and cancelling any appearance of he (which 
is the identity by construction) it follows that the decomposition h(K) = h(K0) ∪ h(K1) 
satisfies (1) and (2) of Definition 9, as was to be proved. �
4. r(T ) when T is a totally disconnected, compact set

Throughout this section T will always denote a compact, totally disconnected sub-
set of R3. Recall that a set is totally disconnected if its connected components are just
singletons. As mentioned earlier, we shall say that T is rectifiable if there exists a home-
omorphism of R3 that sends T into a straight line L. The following remark follows easily
from this definition:

Remark 13. Let T be a compact, totally disconnected set. If T is rectifiable, then it has 
arbitrarily close neighbourhoods N which are unions of disjoint polyhedral 3-cells. As a 
consequence, R3 − T is simply connected and also r(T ) = 0.

Proof. Up to an ambient homeomorphism we may assume that T lies in a straight line L; 
say the x-axis for definiteness. Notice that this does not alter the fundamental group of 
R

3 − T or the value of r(T ), since both are invariant under ambient homeomorphisms.
Let U be a neighbourhood of T in R3, so that U ∩ L is a neighbourhood of T in L.
Since T is totally disconnected, it has a compact neighbourhood J in L which is a union 
of finitely many disjoint intervals J1, . . . , Jn and satisfies J ⊆ U ∩ L. This J can be
thickened to obtain a pm-neighbourhood N of T in R3 simply choosing ε > 0 so small
that N := J × [−ε, ε] × [−ε, ε] is still contained in U . Clearly each component of N is, 
by construction, a polyhedral 3-cell. Letting U vary we see that T has arbitrarily close 
neighbourhoods N with this property. In particular, since these satisfy H1(N) = 0, it
13



 
 
 

Fig. 5. Constructing Antoine’s necklace.

follows that r(T ) = 0. Also, the complement in R3 of any of these neighbourhoods N is
simply connected, and so the same is true of the complement of T . �

The main theorem in this section strengthens the previous remark as follows:

Theorem 14. Let T ⊆ R
3 be a compact, totally disconnected set. Then the following

alternative holds:

(i) if T is rectifiable, then r(T ) = 0,
(ii) if T is not rectifiable, then r(T ) = ∞.

Thus r(T ) cannot take any intermediate values between 0 and ∞.

Before proving the theorem it may be instructive to examine the particular example of 
Antoine’s necklace C, already mentioned in Section 1, because we can easily check that 
it is not rectifiable and also compute explicitly, exploiting its self similarity properties, 
that r(C) = ∞. A detailed exposition can be found in the original paper by Antoine [1, 
§78, p. 311 ff.] or more modern references such as [8, pp. 42 ff.] or [19, §18, pp. 127 ff.].

Antoine’s necklace is obtained as the intersection of a decreasing sequence of compact 
manifolds Nk each of which is a “necklace” comprised of several linked tori Tk,j . The 
first one, N0, consists of a single unknotted solid torus T0 ⊆ R3. The next one, N1, is 
the union of n of solid tori T1,1, T1,2, . . . ,  T1,n contained in the interior of T0 and linked as
shown in Fig. 5 for n = 5 (the drawing shows only one T1,j in full and just the cores of
remaining tori). Place a similar (but scaled down) arrangement of n linked solid tori T2,j

inside each of the T1,j . Then N2 is the union of all these second generation tori, of which
there are n2 in total. Repeating the construction inductively yields the decreasing
sequence of sets Nk and their intersection C = 

⋂
k Nk is Antoine’s necklace. Notice that

the diameter of the connected components of the Nk approaches zero as k −→ +∞. This 
implies that C is totally disconnected (in fact, it is a Cantor set).

The crucial property of C is that its complement in R3 is not simply connected. A
formal proof can be found in the book by Moise [19, Theorem 4, p. 131], but it is easy to
convince oneself intuitively as follows. Consider a meridian μ of T0 (contained in the
surface of T0). If we tried to contract it to a point we would surely run into some of
14



 

the T1,j because of how they are linked to form a closed chain. On a finer scale, and
for the same reason, we would also run into some of the T2,j, and so on. Thus μ is not
contractible in the complement of any of the Nk, and so it cannot be contractible in the
complement of C either.

It follows from the previous paragraph and Remark 13 that C is not rectifiable. Let us 
check also that r(C) = ∞, as it should be according to Theorem 14. By the very nature of 
the construction of C each T1,j contains a Cantor set Cj that is ambient homeomorphic 
to all of C; namely Cj = C ∩ T1,j . Hence r(C) = r(Cj) fo r every 1 ≤ j ≤ n. Moreover 
C is the disjoint union of the closed sets C1, C2, . . . , Cn so r(C) = 

∑
j
n
=1 r(Cj ) = nr(C).

Thus either r(C) = 0  o r r(C) = ∞. Suppose r(C) = 0  we re true. Then, by the nullity
property (P4), C would have arbitrarily small pm-neighbourhoods N that are unions of 
3-balls. The complement in R3 of any such neighbourhood is clearly simply connected, 
and therefore the same would be true of C; that is, R3 − C would be simply connected. 
Since this is not the case, we conclude that r(C) ≥ 1 and so r(C) = ∞.

In proving Theorem 14 we shall make use of two auxiliary lemmas which we state 
below as Lemmas 15 and 16. Both of them can be found in a paper by Bing [3]. 
Although he proves them for Cantor sets, the argument applies to any compact, totally 
disconnected set T . Also, we warn the reader that Bing uses the more standard 
terminology “tame” for what we call “rectifiable” (we find the latter more expressive 
and, in this paper, less prone to confusion with other usages of “tame”).

Lemma 15. Let T ⊆ R
3 be a compact, totally disconnected set. Then T is rectifiable if,

and only if, it has arbitrarily small pm-neighbourhoods N such that every component of 
N is a 3-cell.

Proof. See the steps outlined in the proof of [3, Theorem 1.1, p. 435 ff.]. �
Let us say that T is locally rectifiable at a point p ∈ T if there exist a neighbourhood 

U of p in R3 and a homeomorphism of R3 that sends U ∩ T into a straight line.

Lemma 16. Let T ⊆ R
3 be a compact, totally disconnected set. If T is locally rectifiable

at every point except for, possibly, a finite set of points F ⊆ T , then T is rectifiable.

Proof. See [3, Theorem 4.1, p. 440] and the remark following it. �
Now we can prove the main result of this section.

Proof of Theorem 14. Part (i) is already contained in Remark 13; we only need to prove 
part (ii), and we are going to establish its contrapositive. Therefore, assume that r(T ) = 
r < ∞. Choose a pm-neighbourhood basis {Nk} of T such that the following properties 
are satisfied:

(N1) Nk+1 ⊆ int Nk for each k,
(N2) each component of every Nk meets T ,
15



 
 

(N3) rk H1(Nk) = r for every k,
(N4) for every pm-neighbourhood N of T contained in N1, rk H1(N) ≥ r.

That such a pm-neighbourhood basis {Nk} exists follows easily from the definition 
of r(T ). It suffices to show that T is locally rectifiable at every point p ∈ T except for,
possibly, a finite number of them; then Lemma 16 entails that T is actually rectifiable,
proving the theorem. We begin with two auxiliary claims:

Claim 1. Let � ≥ k. Denote by C1, . . . , Cn the components of Nk, and for each 1 ≤
i ≤ n denote by Dij (for 1 ≤ j ≤ mi) the components of N� that lie in Ci. Then, for
every 1 ≤ i ≤ n,

rk H1(Ci) =
mi∑
j=1

rk H1(Dij).

Proof. First we prove the inequality rk H1(Ci) ≤
∑

j rk H1(Dij). Fix some i0. Consider
the pm-neighbourhood N of T obtained from Nk by deleting Ci0 and replacing it with
the Di0j . That is, let

N := C1 ∪ . . . ∪ Ci0−1 ∪Di01 ∪ . . . ∪Di0mi0︸ ︷︷ ︸
in place of Ci0

∪Ci0+1 ∪ . . . ∪ Cn.

Then clearly

rk H1(N) = rk H1(Nk) − rk H1(Ci0) +
mi0∑
j=1

rk H1(Di0j).

By (N3) we have rk H1(Nk) = r, and by (N4) we also have rk H1(N) ≥ r. Replacing
these above,

r ≤ rk H1(N) = r − rk H1(Ci0) +
mi0∑
j=1

rk H1(Di0j),

which implies

rk H1(Ci0) ≤
mi0∑
j=1

rk H1(Di0j). (1)

Now observe that Nk is the disjoint union of the Ci and N� is the disjoint union of
the Dij , so

rk H1(Nk) =
n∑

rk H1(Ci) and rk H1(N�) =
n∑ mi∑

rk H1(Dij).

i=1 i=1 j=1
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Since rk H1(Nk) = rk H1(N�) = r by (N3), it follows that

n∑
i=1

rk H1(Ci) =
n∑

i=1

mi∑
j=1

rk H1(Dij),

or

n∑
i=1

⎛
⎝rk H1(Ci) −

mi∑
j=1

rk H1(Dij)

⎞
⎠ = 0.

The inequality (1) established above implies that each of the terms in this sum is 
non-positive, so it follows that they must all be zero. This proves the claim. �

Claim 2. Let C be a component of some Nk0 and assume that rk H1(C) = 0. Then
C ∩ T , which is a compact and totally disconnected set, is rectifiable.

Proof. Define N ′
k := Nk ∩C for every k ≥ k0. Clearly {N ′

k} is a neighbourhood basis of 
C ∩T . Moreover, since each N ′

k is nothing but the union of those components of Nk that
lie in C, they are all polyhedral manifolds and so {N ′

k} is actually a pm-neighbourhood 
basis of C ∩ T . Also, from Claim 1 and the hypothesis rk H1(C) = 0 it follows that
rk H1(N ′

k) = 0 for every k. Therefore r(C ∩ T ) = 0 and, by the nullity property (P4), 
C ∩ T has arbitrarily small pm-neighbourhoods N such that every component of N is a 3-
ball. Thus by Lemma 15, C ∩ T is rectifiable. �

Now we can complete the proof of the theorem. For each point p in T let C(Nk; p)
be the connected component of Nk that contains p. By Claim 1 above the sequence
rk H1(C(Nk; p)) decreases as k increases, so we can define

s(p) := lim
k→∞

rk H1(C(Nk; p)).

Observe that at most r different points p ∈ T have s(p) 	= 0. Indeed, suppose that 
at least p1, . . . , pr+1 ∈ T had s(pj) ≥ 1. Choose k big enough so that all the pj lie in
different components C(Nk; pj) of Nk. Evidently

rk H1(Nk) ≥
r+1∑
j=1

rk H1(C(Nk; pj)).

However rk H1(C(Nk; pj)) ≥ s(pj) ≥ 1 for each 1 ≤ j ≤ r (by definition of s), so we
conclude that rk H1(Nk) ≥ r + 1, contradicting condition (N4) in the choice of {Nk}.

Now let p ∈ T be a point for which s(p) = 0. We have just seen that this happens 
for all but finitely many points in T . Since s(p) is the limit of a sequence of integers, 
for some k0 we have rk H1(C(Nk; p)) = s(p) = 0 for k ≥ k0. By Claim 2 we see that
C(Nk0 ; p) ∩ T , which is a neighbourhood of p in T , is rectifiable. Otherwise stated, T is
17



locally rectifiable at p. Thus T is locally rectifiable at every point except for, possibly, a 
finite number of them, as was to be shown. �
5. A topological theorem

This section is devoted to the proof of the following result, whose notation and hy-
potheses will be tacitly assumed to hold throughout:

Theorem 17. Let B ⊆ R
3 be a compact 3-manifold with a connected boundary ∂B. [Notice

that ∂B is a closed surface.] Suppose that ∂B contains a compact, totally disconnected 
set T such that ∂B is locally flat at each p /∈ T . Then r(B) ≥ r(T ).

The proof involves a somewhat delicate geometric construction. In an attempt to 
convey the intuitive ideas as clearly as possible we have divided the explanation into 
three stages which we first outline and later on expand in detail.

Stage 1 Suppose E ⊆ ∂B is a closed disk whose boundary ∂E does not meet T , so 
that ∂B is locally tame at each p ∈ ∂E. We shall show how to:

(1) Push E slightly into B while keeping its boundary fixed, obtaining a disk Ê properly 
embedded in B. This means that the interior of E is contained in the interior of B
and the boundary of E is contained in the boundary of B.

(2) The disk Ê separates B into two connected components V0 and V1 such that B =
V̄0 ∪ V̄1 and V̄0 ∩ V̄1 = Ê. We choose the labelling in such a way that V1 is the
component bounded by E and Ê.

(3) The decomposition B = V̄0 ∪ V̄1 is tame and the condition Ȟ1(V̄0 ∩ V̄1) = 0 needed
to apply the subadditivity property (P5) of r is met. Hence r(B) ≥ r(V̄0) + r(V̄1).

Part (1) relies heavily on the fact that ∂B is the boundary of B and this provides a 
natural way of pushing E into B. It is the ultimate reason why in Theorem 2 we need to 
require that S bounds a 3-manifold on one side (that would be B, and then S = ∂B). 
The assumption that ∂E is disjoint from T guarantees that ∂B is locally flat at each 

p ∈ ∂E and is used crucially in (3) to prove that the decomposition B = V̄0 ∪ V̄1 is tame.
Stage 2 This is essentially the same as before, but now instead of a single disk E ⊆ ∂B 

we consider a finite number of disjoint closed disks E1, . . . ,  En ⊆ ∂B such that none of
their boundaries ∂Ej meets T . In Fig. 6.(a) the set T is schematically shown as a 
collection of thick points in ∂B and the disks Ej as three disjoint intervals. In our actual 
application T will be contained in the union of the disks Ej , and that is how it is shown 
in Fig. 6. As before, one can:

(1) Push the disks Ej slightly into B while keeping their boundaries fixed. This yields
a family of disjoint closed disks Ê properly embedded in B. The Ê are shown in j j 

Fig. 6.(b).
18



Fig. 6. Sketch for the proof of Theorem 17.

(2) The (union of the) family of disks Êj separates B into (n +1) connected components: 
a “big” one V0 and “smaller” ones V1, V2, . . . , Vn. The latter are the ones bounded
by each Ej and its corresponding Êj (see Fig. 6.(c)). As before, B is the union of 
the closures V̄j of the Vj . Also, V̄1, . . . , V̄n are pairwise disjoint and each of them
intersects V̄0 in its corresponding disk Êj .

(3) An argument involving the subadditivity property of r proves that the inequality

r(B) ≥
n∑

j=0
r(V̄j)

holds.

Stage 3 Finally, instead of performing the above construction just once, we perform 
it for each k = 1, 2, . . . as follows. At each step k, we cover T with (the interiors of) a 
finite family of disks E(k)

1 , E(k)
2 , . . . , E(k)

nk which now depend on k. These disks should be 
chosen in such a way that each E(k+1)

j is contained in an E(k)
j′ and their diameters tend

to zero as k increases. This is always possible because T is a totally disconnected set. 
Then, parallelling the previous stages:
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(1) Push each disk E(k)
j slightly into B while keeping its boundary fixed, taking the 

precaution to push it only to “depth” 1/k. See Fig. 6.(d).
(2) For each k the family of disks E(k)

1 , E(k)
2 , . . . , E(k)

nk separates B into (nk+1) connected
components, of which we denote by V (k)

0 the “big” one and V (k)
1 , V (k)

2 , . . . , V (k)
nk the 

remaining ones.
(3) Consider the closures V̄j of the Vj . As before, the inequality

r(B) ≥
nk∑
j=0

r(V̄ (k)
j )

holds for each k. For the sake of brevity, set

B
(k)
0 := V̄

(k)
0 and B

(k)
1 := V̄

(k)
1 ∪ . . . ∪ V̄ (k)

nk
.

Since V̄ (k)
1 , . . . , V̄ (k)

nk are mutually disjoint, clearly r(B(k)
1 ) coincides with the sum∑nk

j=1 r(V̄
(k)
j ) and therefore the above inequality can be written more compactly as

r(B) ≥ r(B(k)
0 ) + r(B(k)

1 ).

(4) From the above inequality we have r(B) ≥ r(B(k)
1 ) for every k. Since each E(k+1)

j is 
contained in some E(k)

j′ and we have pushed E(k+1)
j into B to depth 1/(k+1), which 

is less than we did with E(k)
j′ , it follows that V (k+1)

j is contained in V (k)
j′ as suggested 

by Fig. 6.(d). As a consequence, B1
(k+1)⊆ B

(k)
1 . Moreover, since the diameters of

the E(k)
j and the depths 1/k of the Ê(k)

j converge to zero, T =
⋂∞

k=1 B
(k)
1 . Then,

appealing to the semicontinuity property (P3) of r and using r(B) ≥ r(B(k)
1 ), we get

r(B) ≥ lim inf
k→∞

r(B(k)
1 ) ≥ r(T )

which proves Theorem 17.

In the remaining of this section we shall fill in the details of the proof of Theorem 17
along the lines just described. We shall begin with a “Stage 0” in order to introduce 
some notation and constructions that will be useful later on. Also, we shall use without 
explanation some facts that follow from the two dimensional Schönflies Theorem. It was
mentioned earlier, just after the statement of Proposition 12, that in three dimensions
the Schönflies Conjecture is false in general; some additional condition (such as the
sphere being bicollared) is needed. However, in two dimensions the conjecture is true
without any additional assumptions: given any two 1-spheres in R2 (that is, any two
simple closed curves in the plane) there is an ambient homeomorphism that takes one
onto the other (see [19, Chapter 10, pp. 71 ff.]). As a consequence, given any two closed
disks in the plane there is always an ambient homeomorphism that sends one onto the

other. This 20



Fig. 7. The construction of D̂.

form of the result generalizes, in fact, to any connected surface: given any two closed 
disks E and E′ in a closed connected surface S, there is a homeomorphism of the surface 
that sends one onto the other. In particular, let E′ := ϕ−1(D2) where ϕ : U ⊆ S −→ R

2

is some chart of S and D2 is the closed unit disk in R2. As just mentioned, by the two
dimensional Schönflies Theorem there is a homeomorphism g of S that sends E onto E′. 
The composition ϕ ◦ g is defined on the neighbourhood g−1(U) of E and sends E onto
D

2 ⊆ R
2, allowing us to pull back any construction performed with D2 to a construction

performed with E. For instance: (i) one can clearly find arbitrarily thin annuli along 
∂D2; pulling back via ϕ ◦ g, the same is true of ∂E; (ii) one can clearly find arbitrarily
small neighbourhoods of D2 that are homeomorphic to R2 (for instance, open disks with 
radius slightly bigger than 1 but arbitrarily close to it), so the same is true of E.

5.1. Stage 0

Consider the plane {z = 0} in R3 and a closed disk D ⊆ {z = 0}. Define P :=
R

2 × [−2, 2] and P+ := R
2 × [0, 2]. Set

D̂ := ∂D × [0, 1] ∪D × 1. (2)

(To avoid ambiguities in interpreting this and subsequent expressions we adhere to the 
convention that ∂ has precedence over ×, which in turn has precedence over ∪ and −.) 
See Fig. 7. Clearly Dˆ is a 2-disk whose boundary coincides with ∂D and whose interior
is entirely contained in the upper halfspace z > 0; that is, D̂ is properly embedded in 
P +. We say that D̂ has been obtained by pushing D into P + to depth one. Notice that 
D̂ separates P+ into two connected components

U0 := R
2 × (1, 2] ∪ (R2 −D) × [0, 2] and U1 := Ḋ × [0, 1) (3)

D̂

D̂

whose intersection is precisely the disk D̂ . Here (and in the sequel) a dot over a manifold 
will denote the interior of the manifold (that is, the manifold minus its boundary). That 

separates P + as described should be clear intuitively and can be confirmed by Fig. 7. 
Although it does not really make sense to say that the decomposition P + = U0 ∪ U1

is tame because P + is not compact, the way in which the sets U0 and U1 intersect along 
is certainly characteristic of tame decompositions. This is the motivation behind the 
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Fig. 8. Sketch for Proposition 18.

following proposition, where we make use again of the sets Q, S, Q0 and Q1 introduced 
when discussing the subadditivity property, just before Fig. 4.

Proposition 18. There exists an embedding e : Q −→ R
3 such that:

(1) D̂ ⊆ e(Ṡ),
(2) U0 ∩ e(Q) ⊆ e(Q0) and U1 ∩ e(Q) ⊆ e(Q1).

Fig. 8 illustrates the content of Proposition 18 in a two dimensional (very schematic) 
picture. We have denoted S′ = e(S) and Q′ = e(Q). S′ separates Q′ into two connected 
components whose closures are precisely e(Q0) and e(Q1).

Proof. Let A be a closed annulus along the boundary of D. Consider the sets

S′ := ∂D × [−1, 1] ∪D × 1 and Q′ := A× [−1, 3/2] ∪D × [1/2, 3/2].

Q′ resembles a “thick bucket” turned upside down. Its intersection with the plane {z =
0} is precisely the annulus A. S′ is a 2-disk properly embedded in Q′. The intersection 
of S′ with the plane {z = 0} is precisely the boundary of the disk D. The disk D̂ is the 
part of S′ that lies above the {z = 0} plane; that is, the intersection S′ ∩ {z ≥ 0}. In 
particular D̂ is contained in the interior of S′.

Simple case. First consider the particular case when D is a square and A is the annulus 
comprised between two homothetic copies of D, one slightly bigger and the other slightly
smaller than D itself. Fig. 9 shows how Q′ and S′ would look in this case. S′ separates Q′

into two connected components, the closures of which we denote by Q′
0 and Q′

1.
Specifically, we let Q′

0 denote the closure of the “outer” component and Q′
1 the closure 

of the “inner” one.
It is easy to see that there exists a homeomorphism e from Q onto Q′ that sends S 

onto S′. We specify e as follows. Label the vertices of the bottom, annular face of Q′ with
the letters A1, . . . ,  A4 and B1, . . . ,  B4 as suggested in Fig. 9.(a) (not all the labels are
shown in the drawing to avoid cluttering). Then, referring to Figs. 4 and 9.(a), the 
22



Fig. 9. Sketch for the proof of Proposition 18 (simple case).

homeomorphism e may be described by saying that it is piecewise linear and has the 
following properties:

(i) The vertices of the left face of Q are mapped onto the Ai while the face itself is
mapped onto the outer surface of Q′; that is, onto the lateral outer walls and the 
top outer face.

(ii) The vertices of the right face of Q are mapped onto the Bi; the face itself is mapped
onto the inner surface of Q′.

(iii) A thin annular neighbourhood along ∂S in ∂Q is mapped onto the bottom annular 
face of Q′.

Evidently e sends Q0 onto Q′
0 and Q1 onto Q′

1. Hence U0 ∩ e(Q) = U0 ∩ Q′ ⊆ e(Q0) 
and similarly U1 ∩e(Q) = U1 ∩Q′ ⊆ e(Q1) (the Ui were defined in Equation (3)), showing 
that e satisfies condition (2). Also, e(Ṡ ) is the interior of e(S) = S′, so condition (1) is 
also satisfied because D̂ ⊆ Ṡ′ by construction.

General case. When D is an arbitrary disk we can appeal to the two dimensional 
Schönflies Theorem to reduce the problem to the previous case. Indeed, the Schönflies 
Theorem guarantees that there exists a homeomorphism s : {z = 0} −→ {z = 0}
that sends D onto a square D0 for which we already know an embedding e0 exists
with the required properties, as constructed in the previous case. Clearly s extends to a 
homeomorphism ŝ of all R3 simply letting ŝ(x, y, z) := (s(x, y), z), and it is then easy to 
check that the embedding e := ŝ ◦ e0 satisfies all the required conditions. �

Later on we shall need the explicit form of Q′ = e(Q) used in the proof of the 
proposition. Hence, for future reference, we record it here:

Q′ := A× [−1, 3/2] ∪D × [1/2, 3/2], (4)

where A is a closed annulus along the boundary of D.
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5.2. Stage 1

We need to recall some standard definitions (see for instance [5]) which expand on the 
notion of bicollared spheres discussed after the statement of Proposition 12. Suppose Y is 
a subspace of X. We say that Y is collared in X if there exists a homeomorphism c from Y 
× [0, 1] onto a neighbourhood of Y in X and such that c(p, 0) = p for every p ∈ Y , and 
locally collared at some point p ∈ Y if p has a neighbourhood in Y which is collared in X. 
We shall make use of two important theorems of Brown:

(B1) If Y is locally collared in X at each p ∈ Y , then Y is collared in X [5, Theorem 1, 
p. 337].

(B2) As a consequence, the boundary ∂X of a manifold with boundary X is collared in 
the manifold [5, Theorem 2, p. 339].

Suppose S is a closed surface contained in R3. A bicollar of S is a homeomorphism b
from S × [−1, 1] onto a neighbourhood of S in R3 such that b(p, 0) = p for every p ∈ S

(this is a trivial extension of the definition given earlier for 2-spheres). The existence 
of a bicollar is equivalent to the existence of a collar of S both in Ū and V̄ , where U
and V are the two connected components into which S separates R3. When S bounds a
3-manifold, as with ∂B in our context, then at least one of the complementary domains 
of S (say Ū) is a 3-manifold whose boundary is precisely S, so S is already collared “on 
the U -side” and consequently it is bicollared if and only if it is collared also “on the 
V -side”.

Given a point p ∈ S one defines the notion of S being locally bicollared at p mimicking 
the definition of locally collared given earlier. It is not difficult to check that if S is locally 
flat at some point p, then it is locally bicollared at that same point (the converse is also 
true, but we shall not need it).

Let E be a closed disk contained in the boundary of B and such that ∂E is disjoint 
from T so, in particular, ∂B is locally flat at each point of ∂E.

First let us show how to push E into B, essentially mimicking the model laid out in
Section 5.1. Since ∂B is collared in B by (B2), there exists an embedding c+ of ∂B×[0, 2]
into B such that c+(p, 0) = p for every p ∈ ∂B. (Notice that we take ∂B × [0, 2] rather 
than ∂B × [0, 1] as the domain of the collar c+; this is just for notational convenience.) 
Denote by C the image of c+, which is a closed neighbourhood of ∂B in B. Set

Ê := c+(∂E × [0, 1] ∪ E × 1). (5)

Ê

By construction Eˆ is a 2-disk properly embedded in B; also, ∂Eˆ = ∂E. At this point it
may be convenient to refer back to Fig. 6.(b), which shows a two dimensional sketch of 
the situation. The disk E appears as an interval contained in the boundary of B, and 
can be thought of as the result of pushing E into B along the lines of the collar c+.
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Proposition 19. Suppose B is connected. Then Ê separates B into two connected com-
ponents V0 and V1 such that E ∩ V0 = ∅, Ė ⊆ V1 and V̄0 ∩ V̄1 = Ê.

Proof. Let C/2 denote “half the collar C”; that is, C/2 := c+(∂B× [0, 1]). Consider the
sets

V0 := (B − C/2) ∪ c+((∂B −E) × [0, 2]) and V1 := c+(Ė × [0, 1)).

Both are open in B, and both are connected: V1 clearly so, and V0 because it is the union
of two connected sets having a nonempty intersection. Indeed, B−C/2 is homeomorphic 
to the interior of B, which is connected because B is connected (in R3, the assumption 
that ∂B is connected entails that B is connected too), and ∂B−E is connected because 
removing a disk from a (by assumption) connected surface does not disconnect the 
surface. Also, V0 and V1 are disjoint and their union is B − Ê, so they are actually the
two connected components into which Ê separates B. A straightforward computation 
shows that V̄0 = V0 ∪ Ê and V̄1 = V1 ∪ Ê, so V̄0 ∩ V̄1 = Ê. By construction clearly V0
does not meet E whereas Ė ⊆ V1. �

Now we want to show that the decomposition B = V̄0 ∪ V̄1 is tame. To this end we
need to construct some sort of “partial bicollar” of E in R3 as described below.

The “inner half” of the bicollar (that is, the part contained in B) presents no difficulty 
since ∂B itself (hence E) is collared in B. In fact, we already made use of it when 
constructing the disk Ê. We therefore keep our previous notation: c+ : ∂B× [0, 2] −→ B

is an embedding such that c+(p, 0) = p for every p ∈ ∂B.
Denote by B′ the complement (in R3) of the interior of B; that is, B′ := R

3 − Ḃ. The
“outer half” of the bicollar (the part contained in B′) can be constructed along ∂E, since 
it contains no wild points of ∂B by assumption. More precisely, we proceed as follows. 
At each p ∈ ∂E the surface ∂B is locally flat, hence locally bicollared and in particular 
locally collared in B′. Thus, every p ∈ ∂E has a neighbourhood Wp in ∂B over which
it is possible to find a local collar c−p : Wp × [−1, 0] −→ B′. Since ∂E is compact, we
may cover it with a finite family of these Wp and paste all the collars together using the
result of Brown cited above (B1) to obtain a collar c− : W × [−1, 0] −→ B′, where W is 
a neighbourhood of ∂E in ∂B.

Notice that ∂E is a simple closed curve and so it has arbitrarily close neighbourhoods 
A that are closed annuli along the curve ∂E. Finding such an A so thin that it is contained 
in W we can assume that the collar c− is defined on all of A. The union b := c+ ∪ c−

thus provides an embedding

b : A× [−1, 2] ∪ E × [0, 2] −→ R
3.

Proposition 20. The decomposition B = V̄0 ∪ V̄1 is tame. Thus, the inequality r(B) ≥
r(V̄0) + r(V̄1) holds.
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Proof. We are going to use the criterion of Proposition 12 (thus Q, S, Q0 and Q1 have 
the meaning given there).

By the two dimensional Schönflies Theorem, there exists a homeomorphism g0 of the
plane {z = 0} onto an open neighbourhood of E ∪ A in ∂B. Let D and A0 be the
pullbacks of E and A via g0; that is, D := g−1

0 (E) and A0 := g−1
0 (A). These are a closed

disk in {z = 0} and an annulus along its boundary, respectively.
As in Stage 0, push D into P + to depth 1 obtaining Dˆ := ∂D × [0, 1] ∪ D × 1. Also,

consider the cube Q′ := A0 × [−1, 2] ∪ D × [0, 2] (compare with Equation (4)). The map
g0 can be extended to an embedding g of all of Q′ into R3 using the partial bicollar b, 
letting g(x, y, z) := b(g0(x, y), z). Notice that, by construction:

(i) g takes D̂ onto Ê,
(ii) g(U0∩Q′) ⊆ V0 and g(U1∩Q′) = V1, where V0 and V1 are the connected components

of B − Ê.

According to Proposition 18 and the form of Q′ = e(Q) g i v e n  in Equation (4) 
there exists a homeomorphism e : Q −→ Q′ such that:

(1) D̂ ⊆ e(Ṡ),
(2) U0 ∩ e(Q) ⊆ e(Q0) and U1 ∩ e(Q) ⊆ e(Q1).

Consider the embedding e′ := g ◦ e : Q −→ R3. Applying g to both sides of (1) 
and using (i) we see that Eˆ ⊆ e′(S˙). Doing the same with (2) and (ii) it follows that
V0∩e′(Q) ⊆ e′(Q0) a n d  V1∩e′(Q) ⊆ e′(Q1). This establishes (1) and (2) of Proposition
12, proving that the decomposition B = V¯0 ∪ V¯1 is tame. �
Remark 21. Notice that in constructing Ê there is nothing special in pushing E into B
to “depth 1”; that is, we could set

Ê := c+(∂D × [0, ε] ∪E × ε)

for any 0 < ε < 1 and everything would work just as well (with the appropriate modifi-
cations to the definitions of D, S′ and Q′). For later reference we shall call this “pushing 
E into B down to depth ε”. Also, observe that the collar c+ can be fixed once and for
all; it does not depend on the disk E being considered. The same is not true of c−, since 
it was constructed pasting local collars along ∂E.

5.3. Stage 2

Let now E1, E2, . . . , En be disjoint closed disks in ∂B whose boundaries do not meet T . 
Push each Ej into B while leaving its boundary untouched. This is done exactly as 
described in 5.2 for a single disk: having chosen a collar c+ : ∂B × [0, 2] −→ B, we consider
the family of disjoint disks
26



 

Êj := c+(∂Ej × [0, 1] ∪ Ej × 1);

all of them properly embedded in B. Arguing as in Proposition 19 one sees that the (union 
of the) disks Ê1, Ê2, . . . , Ên separate B into n + 1 connected components V0, V1, . . . , Vn.
We label them in such a way that V0 does not meet any of the Ej whereas Ėj ⊆ Vj for
each 1 ≤ j ≤ n. More explicitly

V0 := (B−C/2)∪c+((∂B−∪jEj)×[0, 2]) and Vj := c+(Ėj×[0, 1)) for j = 1, 2, . . . , n;

here C/2 i s  the “half collar” introduced in the proof of Proposition 19. The Vj 

satisfy the following properties:

(V1) Ėj ⊆ Vj for each j = 1, . . . , n
(V2) V̄i ∩ V̄j = ∅ for 1 ≤ i 	= j ≤ n

(V3) V̄0 ∩ V̄j = Êj for each j = 1, . . . , n.

Proposition 22. The inequality r(B) ≥
∑n

j=0 r(V̄j) holds.

Proof. Consider the ascending sequence of compact sets

Kj := V̄0 ∪ V̄1 ∪ . . . ∪ V̄j

for 0 ≤ j ≤ n. Notice that Kj+1 := Kj ∪ V¯
j+1 and Kj ∩ V¯

j+1 = V¯0 ∩ V¯
j+1 = Eˆ

j+1 by
(V2) and (V3). The same argument of Proposition 20 (enlarging the disk Eˆ

j+1 using the
fact that its boundary does not contain any wild points) shows that the decomposition 

Kj+1 = Kj ∪ V̄j+1 is tame, and so entails that r(Kj+1) ≥ r(Kj ) + r(V̄j+1). Inductively,
this gives

r(Kn) ≥ r(K0) +
n∑

j=1
r(V̄j).

It only remains to observe that K0 = V̄0 (this is clear) and Kn = V̄0 ∪ V̄1 ∪ . . .∪ V̄n is
the whole B: indeed, by definition the union of the Vj is B−∪Êj ; since (V3) guarantees 
that V̄0 contains all the Êj , it follows that the union of the V̄j is all of B. �
5.4. Stage 3

We are finally ready to put all the pieces together and prove Theorem 17:

Proof of Theorem 17. From the fact that T is totally disconnected it is easy to prove (or
see [19, Theorem 6, p. 72 and Theorem 5, p. 93]) that it has arbitrarily small neighbour-
hoods in ∂B that are unions of a finite number of disjoint disks. Thus for k = 0, 1, 2, . . .  
we may construct a sequence of neighbourhoods E(k) of T in ∂B such that
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(E1) each E(k) is a union of disjoint disks E(k)
1 , E(k)

2 , . . . , E(k)
nk ,

(E2) E(k+1) is contained in the interior of E(k) for every k,
(E3) the intersection 

⋂
k E

(k) is precisely T .

For each k apply the construction described in 5.3 to the family of disks E1
(k)

, E
(k)
2 , . . . ,

E
(k)
nk . This involved a choice of a collar c+ of ∂B in B; this is to be made once and used 

for every k as mentioned in Remark 21. Also (again, refer to Remark 21) we can push 
the disks E(k)

j into B only to depth ε = 1/k. The resulting disks Ê(k)
1 , Ê(k)

2 , . . . , Ê(k)
nk

separate B into nk + 1 connected components V (k)
0 , V (k)

1 , . . . , V (k)
nk of which the ones of 

interest to us are

V
(k)
j = c+(Ė(k)

j × [0, 1/k)) j = 1, 2, . . . , nk.

Condition (E2) on the E(k) implies that each disk E(k+1)
j is contained in some disk E(k)

j′ . 
Since c+ is independent of k, this entails that each V (k+1)

j is contained in some V (k)
j′ . 

Set

B
(k)
0 := V̄

(k)
0 and B

(k)
1 :=

nk⋃
j=1

V̄
(k)
j .

From what we just said, B(k+1)
1 ⊆ B

(k)
1 for each k. Also, (E3) and the condition that the

disks Ê(k)
j are obtained by pushing E(k)

j only to depth 1/k implies that 
⋂

k B
(k)
1 = T .

Finally, Proposition 22 shows that

r(B) ≥
nk∑
j=0

r(V̄ (k)
j ) ≥

nk∑
j=1

r(V̄ (k)
j ) = r(B(k)

1 )

where in the last step we have used the trivial fact that r of a disjoint union of finitely 
many compact sets is the sum of their r numbers. Now from the semicontinuity of r and 
the fact that the B(k)

1 decrease and have T as their intersection it follows that

r(B) ≥ lim inf
k→∞

r(B(k)
1 ) ≥ r(T ).

This concludes the proof of Theorem 17. �
6. The proof of Theorem 2 and Corollary 3

All the work done so far makes the proof of the following result very short:

Theorem 23. Let B ⊆ R
3 be a compact 3-manifold with a connected boundary ∂B. Sup-

pose that ∂B contains a compact, totally disconnected set T such that:
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(i) T is not rectifiable.
(ii) ∂B is locally flat at each p /∈ T .

Then B cannot be realized as an attractor for a homeomorphism of R3.

Proof. By Theorems 17 and 14 we have r(B) ≥ r(T ) = ∞, so r(B) = ∞. Then the 

finiteness property (P1) of r (see p. 254) shows that B cannot be an attractor for a 
homeomorphism. �

From this,

Proof of Theorem 2. Suppose that the closed and connected surface S were an attractor 
for a homeomorphism f of R3. Think of S3 as R3 together with the point at infinity ∞ 
and extend f to all of S3 letting f(∞) := ∞. Viewing S as a subset of S3, it is still an 
attractor for f with the same basin of attraction.

Let U1 and U2 be the connected components of S3 − S. Since S bounds a 3-manifold
by hypothesis, the closure (in R3 and also in S3) of at least one of the Ū is a 3-manifold.i

Call it B. Since S is invariant under f , so is S3 − S and therefore f either leaves each Ui

invariant or interchanges them. However, only one of the Ui contains ∞, which is fixed 
by f , so it must be the case that f(Ui) = Ui. As a consequence f(B) = B, so that B is 
also invariant under f . It is straightforward to check that B is an attractor for f . Also, 
by definition B is a compact 3-manifold whose boundary is precisely ∂B = S. Applying 
Theorem 23 to B we see that T has to be rectifiable, and so Theorem 2 follows. �

The alternative form of Theorem 2′ is an immediate consequence of this:

Proof of Theorem 2′. Being a compact manifold, S has finitely many connected compo-
nents Si each of which is a closed surface. Also, all the Si bound a 3-manifold on one side 
because S does. Since each Si is open in S, the surface S is locally flat at some p ∈ Si

if and only if Si is locally flat at p. Therefore the set of wild points W of S is the union of
the sets Wi of wild points of the Si. Finally, it is proved in [23] that each component of
an attractor in Rn is an attractor itself. Thus all the Si are attractors, and applying the
contrapositive of Theorem 2 to them (with T = Wi in each case) it follows that each Wi

must be rectifiable. Since the Wi are open in W and cover it, W is locally rectifiable and,
by Lemma 16, rectifiable. �

We saw in Remark 13 that a rectifiable totally disconnected set has a simply 
connected complement in R3. Thus we may state the following, more computational 
consequence of Theorem 2:

Corollary 24. Let S ⊆ R
3 be a closed surface that bounds a 3-manifold. Suppose that

S contains a closed, totally disconnected set T such that (i) S is locally flat at each 
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Fig. 10. Patterning a feeler after a Fox–Artin arc.

p /∈ T and (ii) the complement of T in R3 is not simply connected. Then S cannot be an
attractor.

We finish by proving that there are uncountably many non-equivalent ways of em-
bedding a 2-sphere in R3 in such a way that it cannot be an attractor (Corollary 3). It
will be evident from the proof that the corollary is true for (orientable) surfaces of any
genus. However, for surfaces of higher genus (think, for instance, of a torus) one can
obtain trivially nonequivalent embeddings by knotting the surface differently in R3.
Concentrating on spheres we avoid this degree of freedom, which is not interesting in the 
present context.

Let us review the construction of nonattracting surfaces described in Section 1. We
start with a compact 3-manifold B0, which in our present case is going to be the unit 
closed 3-ball, and extract feelers that branch in such a way as to (in the limit) reach a 
prescribed non-rectifiable, compact, totally disconnected set T . The branching process 
is guided by a sequence of neighbourhoods Nk of T chosen in advance. The resulting 
compact 3-manifold B is still homeomorphic to the original B0, and its boundary S
(which is, accordingly, homeomorphic to S0) is locally flat at each p ∈/ T . Then
Theorem 2 immediately implies that S cannot be an attractor.

Although for our purposes in Section 1 we did not need to fully identify the set W of 
wild points of S (it was enough to know that W ⊆ T ), now we need to be a little more 
precise and guarantee that W = T . In general this equality does not need to hold: for 
instance, if T has an isolated point p and its corresponding feeler converges “straight” 
towards p (think of a cone having p at its tip) then p is not a wild point.

There are several ways to refine the above construction in order to guarantee that 
W = T . One of them is to require that T be homogeneous; that is, for any two p, q ∈ T 
there exists a homeomorphism of R3 that sends p onto q. It is not difficult to prove that: 
(i) if S is locally flat at some p ∈ T , then T is locally rectifiable at p (essentially because
every compact, totally disconnected set in the plane is rectifiable; see Chapter 13 in [19]);
(ii) due to the homogeneity of T , if it is locally rectifiable at a single point then it is
locally rectifiable at every point. Since T is non-rectifiable, (i), (ii) and Lemma 16 entail
that W = T .

A less simple but perhaps more illustrative way of achieving the equality W = T 
consists in patterning the feelers that are used to enlarge B0 after the wild arc α shown in
Fig. 10.(a), due to Fox and Artin. By “patterning the feeler along α” we mean that the
feeler is obtained by thickening α to a solid tube whose diameter tapers towards 
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Fig. 11. Branching a Fox–Artin feeler.

zero as it approaches p, as shown in Fig. 10.(b). An arc is tame if it can be sent into a 
straight line segment by an ambient homeomorphism, or wild otherwise. That α is wild 
was established by Fox and Artin [10, Example 1.2, pp. 983 ff.] performing a local analysis 
of the fundamental group of R3 − α near p. More specifically, they showed that α is not
1-LCC at p, which it would be if it were tame (see [8, Section 2.8, pp. 75 ff.] for more 
details). We remark, because it will play a role later on, that an arc β ⊆ R3 that is 
actually contained in a plane within R3 is 1-LCC at each of its points because there are 
no wild arcs in two dimensions ([19, Chapter 10, pp. 59 ff.]).

In the actual construction of S we need to branch feelers into smaller subfeelers, of 
course, but we want to preserve their “Fox–Artin nature”. Fig. 11 suggests how this is 
done. As illustrated in Fig. 11.(a) suppose that, just after crossing the boundary of some 
Nk (recall that these are the neighbourhoods of T that are used to guide the branching
process), we need to split the incoming feeler into, say (for simplicity), two subfeelers 
that will eventually converge to two different points p and p′ of T . We continue as in Fig. 
11.(b), simply patterning each subfeeler after the Fox–Artin arc α. However, this is not all: 
we insist that the subfeelers are tangled with the original feeler in the characteristic 
fashion of α, as shown for the lower subfeeler in Fig. 11.(c). The upper subfeeler (the one 
leading to p′) should also be tangled with its parent feeler in the same way, although this 
is not shown in the drawing to avoid cluttering it.

This last step guarantees that, for each p ∈ T , there is a Fox–Artin arc αp which
looks exactly like α (in particular, it is also a wild arc) that starts at any prescribed 
point in B0 and ends at p, running along the boundary of B (that is, along the surface
S) and choosing at each branching point the appropriate subfeeler to reach p. In turn,
this entails that S cannot be locally flat at p. For, suppose it were. Then locally near p
the surface S would look like a plane in R3, and αp (again, near p) would be contained
in that plane. But we mentioned earlier that there are no wild curves in two dimensions 
and, in particular, αp would be 1-LCC at p, which it is not. Thus, summing up, we have
proved the following:

Remark 25. If the construction of Section 1 is performed using Fox–Artin feelers as just 
described, the set of wild points of the resulting surface is all of T .

(Incidentally, maybe after seeing this argument Remark 4.(1) becomes more convinc-
ing.) With Remark 25 and a result of Sher we can now easily prove Corollary 3; that is, 
we can show that there exist uncountably many 2-spheres Si in R3 such that: (i) none
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of the Si can be realized as an attractor and (ii) for i 	= j the spheres Si and Sj are not
ambient homeomorphic.

Proof of Corollary 3. Sher proved [27, Corollary 1, p. 1199] that there exists an uncount-
able family {Ti}i∈I of Cantor sets in R3 that are all inequivalently embedded; that is, for 
any two different i, j ∈ I there is no ambient homeomorphism sending Ti onto Tj . Notice 
that, since any two rectifiable Cantor sets in R3 are equivalently embedded (because 

both can be sent into a straight line, and they are certainly equivalently embedded there 
by a homeomorphism that can evidently be extended to all of R3), all the Ti but at most 
one are non-rectifiable. Discarding the latter we may assume without loss of generality 
that all the Ti are non-rectifiable.

For each Ti follow the construction of Section 1 to obtain a nonattracting 2-sphere Si, 
but now using Fox–Artin feelers as described above. This guarantees that the set Wi of
wild points of Si is precisely Ti (Remark 25). Since the Ti are not rectifiable, an 
application of Theorem 2 shows that no Si can be an attractor.

Now suppose that there exists an ambient homeomorphism h that sends Si onto Sj ,
with i 	= j. It follows immediately from the definition of local flatness that if Si is locally
flat at p then Sj is locally flat at h(p) and conversely or, equivalently stated in terms
of wild points, h(Wi) = Wj . However, the surfaces were constructed in such a way that
Wi = Ti and Wj = Tj , so we would have a homeomorphism of R3 that sends Ti onto Tj ,
thus contradicting the fact that the Ti are all inequivalently embedded. �
Remark 26. Garity, Repovš and Željko [12, Theorem 2, p. 294] strengthened the result of
Sher by showing that there exists an uncountable family of Cantor sets {Ti : i ∈ I} that,
in addition to being inequivalently embedded, are all homogeneous. Using this and the
argument sketched earlier that the homogeneity of Ti is enough to guarantee that Wi =
Ti it is possible to give an alternative, shorter proof of Corollary 3. We prefer the
approach taken above because it avoids the homogeneity condition which, as we have
seen, is not essential for the validity of Corollary 3.

7. Concluding remarks and open questions

In this last section we include some remarks and questions that are prompted by 
the results obtained in this paper. In addition to properties (P1) to (P5) of r already 
introduced in Section 3 we shall also make use of the following ones:

(P6) If two compact sets K1, K2 ⊆ S
3 have homeomorphic complements, then r(K1) =

r(K2).
(P7) If S is a connected surface in S3 and U1, U2 denote its two complementary domains

in S3, then r(S) = r(Ū1) + r(Ū2).
32



(P8) For every K the inequality β1(K) ≤ r(K) holds. If K is a polyhedron, then β1(K) =
r(K). The same holds true when K is tame, because of the invariance property 
of r.

(These are Theorem 15, p. 3600; Proposition 39, p. 3619; Theorem 42 and Propo-
sition 44, p. 3620ff., respectively, from [25].) Here βi(K) denotes the ith Betti number 
βi(K) := rk Ȟ i(K; Z2). Since we will always use Z2 coefficients we will suppress them 
from the notation and switch freely between homology and cohomology as convenient.

7.1. We begin with a word of caution about the adequacy of r(K) as an indicator 
of tameness. For simplicity let us restrict ourselves to the case of a 2-sphere S ⊆ R

3.
If S is tame then r(S) = β1(S) = 0 according to (P8). But does the equality r(S) = 0
characterize tame spheres? Consider the following two examples:

(i) Suppose that S is locally tame except at a single point and denote by U1 and U2 the
two complementary domains of S in S3. A result of Cantrell [6, Theorem 1, p. 250] 
implies that both U1 and U2 are open 3-cells. Consequently S3 − S is homeomorphic to 
S3 − S2 and so by property (P6) of r we conclude that r(S) = r(S2) = 0.

(ii) Gillman [13, Theorem 5, p. 253] constructs a 2-sphere S ⊆ R3 such that every 
point of S is wild and both complementary domains of S in S3 are open 3-cells. The 
same argument as before then implies that r(S) = 0.

These two examples illustrate that one may well have r(S) = 0 for wild spheres S; even 
for spheres that are everywhere wild. By contrast, the wild sphere of Antoine has only 
a Cantor set of wild points but nevertheless has r = ∞, so r is not even “monotonically 
increasing with the amount of wildness” as one may have hoped for. We may conclude, 
at least heuristically, that r does not generally perform well as a measure of wildness.

A beautiful result of Bing can be used to gain some insight into the facts observed 
above. We first need the following remark:

Remark 27. If a 2-sphere S ⊆ R
3 has r(S) = 0 then for every ε > 0 there exist 2-spheres

S1 and S2 (which can even be taken to be polyhedral) lying on opposite sides of S and
contained in an ε-neighbourhood of S.

Proof. Consider the two complementary domains U1 and U2 of S in S3. The equality
0 = r(S) = r(Ū1) + r(Ū2) given by (P7) implies that r(Ū1) = r(Ū2) = 0. Also, by
Alexander duality

Ȟ2(Ū1) = H̃0(S3 − Ū1) = H̃0(U2) = 0

and similarly for Ū2. By the nullity property (P4) of r we conclude that both Ūi are 
cellular; that is, both have a neighbourhood basis comprised of (polyhedral) 3-cells. Hence 
for i = 1, 2 we can find 3-cells Bi containing Ūi and contained in an ε-neighbourhood 
of Ūi, and evidently their boundaries S1 = ∂B1 and S2 = ∂B2 are (polyhedral) 2-spheres
satisfying the required conditions. �
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Following Bing [2], for any two subsets A, B ⊆ R3 we write H(A, B) ≤ ε if there exists
a homeomorphism h : A −→ B that moves points no more than ε; that is, dist(h(x), x) ≤
ε for every x ∈ A (notice that h is not an ambient homeomorphism). Consider the
following result [2, Theorem 2.2, p. 109]:

Theorem. (Bing) A 2-sphere S ⊆ R
3 is tame if, and only if, for every ε > 0 there exist

spheres S1 and S2 on opposite sides of S and such that H(S, S1) ≤ ε and H(S, S2) ≤ ε.

It is now clear why r(S) = 0  i s  too coarse a condition to guarantee that S is tame:
although (by Remark 27) it does imply the existence of spheres S1 and S2 on opposite
sides of S that are metrically close to S, in the sense that they are contained in any 
prescribed ε-neighbourhood of S, there is no control on whether the Si are also homeo-
morphically close to S, in the sense that H(S, S1) ≤ ε and H(S, S2) ≤ ε, but according 
to the theorem of Bing it is only this last condition what guarantees that S is tame.

7.2. Trying to understand how an attractor sits in phase space may seem initially as 
a problem of mainly topological interest, but it also has dynamical implications because 
the way an attractor lies in phase space places constraints on the dynamics on the 
attractor and its region of attraction. Let us illustrate this with a couple of examples.

First consider a surface S that is invariant under an ambient homeomorphism f. 
Arguing as in the last paragraph of the proof of Corollary 3 we see that the set W of wild 
points of S is also invariant under f. In particular, if S is minimal then either W = ∅ 
(that is, S is tame) or W = S (that is, S is everywhere wild). This is the case, for 
instance, of an attracting 2-torus S that carries a quasiperiodic motion (a common case 
when these attractors exist).

For our next example we need to recall a definition. Given a point p in phase space, 
its prolongational limit set J+(p) is the set of all points q for which there exist sequences 
(pn) −→ p and (tn) −→ +∞ such that (pn · tn) −→ q. Here time is either discrete 
or continuous and pn · tn denotes the position occupied by pn at time tn. For a stable 
attractor K and any point p of its region of attraction one has that J+(p) i s  an
invariant nonempty continuum contained in K. The contrapositive of [24, Proposition
49, p. 6181] states that if a wild closed surface S is an attractor for a flow, then there
exists a point p in the basin of attraction of S such that the prolongational set J+(p) i s
a nondegenerate continuum. Intuitively, this means that the future trajectory of any
neighbourhood of p is asymptotically “smeared out” over an extended region of the
attractor, as opposed to shrinked down and carried to a definite point in the attractor.
Thus the wildness condi-tion on S has consequences on how the trajectories of the
dynamical system approach the attractor.

The flavour of the result just mentioned together with the considerations of Subsec-
tion 7.1 suggest the following heuristic picture. Let a 2-sphere S ⊆ R3 be an attractor for
a homeomorphism f. Assume that S is wild but nevertheless has r(S) = 0 .  By Re-mark 
27 it is possible to find two spheres S1 and S2 contained in the basin of attraction
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of S and lying on opposite sides of it. Letting them evolve under the dynamics, the Si

will transform into spheres Si · k = fk(Si) still lying on opposite sides of S and getting
increasingly closer to it. In general the original spheres Si will be greatly stretched and
deformed as k → ∞, so even if we chose the initial Si to be homeomorphically close
to S, their transformed Si · k do not need to be homeomorphically close to S any more.
In fact, because of the result of Bing stated above and our assumption that S is wild, 
we know that the latter has to be the case regardless of the particular details of the 
homeomorphism f . This picture is only intuitive but, since some of the ideas it involves 
have formal counterparts in the realm of dynamics (for instance, the amount of stretch-
ing of the spheres Si may be related to the Lyapunov exponents of f |S), one may ask
the following rather vague question:

Question 1. Let the 2-sphere S ⊆ R
3 be an attractor for a homeomorphism f . Suppose S

is wild but, nevertheless, has r(S) = 0. What are the consequences of these assumptions 
for the dynamics of f?

7.3. Now we turn our attention to Theorem 17, because it is the one that effects the 
crucial transition from a global property of S (namely, that r(S) < ∞ because S is an 
attractor) to a local property that involves only a subset T of S (namely, that r(T ) < ∞ 
too). We begin by casting it into a form that is more inspiring for our present purposes:

Theorem 17′. If S ⊆ R
3 is a closed connected surface that bounds a 3-manifold and is

locally flat outside a totally disconnected set T , then r(S) ≥ r(T ).

Proof. Let U1 and U2 denote the two complementary domains of S in S3. By assumption 
S bounds a 3-manifold, so that either U¯1 or U¯2 is a compact 3-manifold B; say it is U¯1.
Using (P7) and Theorem 17 we have r(S) = r(U¯1) + r(U¯2) = r(B) + r(U¯2) ≥ r(B) ≥
r(T ). �

Even though this form of the theorem is weaker than the original one, it is still good 
enough for the dynamical application in this paper: for an attracting surface we obtain 
r(T ) ≤ r(S) < ∞, so T must be rectifiable.

Revisiting the proof of Theorem 17 given in Section 5 one sees that the assumption 
that T is totally disconnected is only used at the beginning of Stage 3 to choose a 
neighbourhood basis E(1), E(2), . . .  of T in ∂B (which is S in our present formulation)
such that: (i) each E(k) is a finite union of disks E(k)

1 , E(k)
2 , . . . , E(k)

nk and (ii) the basis
is decreasing; that is, E(k+1) ⊆ int E(k) for every k. However, the existence of such a 
neighbourhood basis is guaranteed not only for a totally disconnected set T but, more 

generally, for any proper compact subset T of S satisfying Ȟ 1(T ; Z2) = 0. Admitting 
this fact (the proof is not difficult, but it is somewhat long so we cannot include it here) 
we obtain the following generalization of Theorem 17′:
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Theorem 17′′. Let S ⊆ R
3 be a closed connected surface that bounds a 3-manifold. Sup-

pose that S contains a compact subset T such that Ȟ1(T ; Z2) = 0 and S is locally flat
outside T . Then r(S) ≥ r(T ).

Continuing this line of thought, one may ask the following question:

Question 2. Is it possible to obtain “local to global” theorems for families of sets S and T 
other than those of Theorem 17′′?

In a previous paper [25, Theorem 41, p. 3620] it was proved that the sphere of 
Alexan-der shown in Fig. 3 also has infinite r. Unlike the surfaces considered in this 
paper, its set of wild points is a rectifiable Cantor set and the reason that r ends up 
being infinite in this case is that the “tentacles” that emanate from the sphere are 
entangled, even though the Cantor set of wild points itself is not. One may then ask:

Question 3. Suppose S ⊆ R3 is a surface having a totally disconnected set of wild 
points W . Is it meaningful to isolate the contributions to r(S) due to the entangle-
ment of the surface near W (à la Alexander) and the wildness of W itself (à la Antoine)
as measured by r(W )? Is there a lower bound on r(S) similar to that of Theorem 17′′ that
takes both contributions into account?

7.4. Since r(K) = β1(K) when K is a polyhedron, relations valid for Betti numbers
suggest relations that may be true, under suitable hypotheses, for r numbers. Let the 
compact set K be the union of two compacta K0 and K1. Looking at the Mayer–Vietoris
sequence

. . . ←− Ȟ1(K0 ∩K1) ←− Ȟ1(K0) ⊕ Ȟ1(K1) ←− Ȟ1(K) ←− Ȟ0(K0 ∩K1) ←− . . .

we see that, if Ȟ1(K0 ∩K1) = 0, the middle arrow is a surjection and therefore β1(K) ≥
β1(K0) +β1(K1). The subadditivity property states that the corresponding inequality for
r numbers is true under the additional assumption that the decomposition K = K0∪K1

be tame. If we do not require Ȟ1(K0 ∩K1) to be zero then the Mayer–Vietoris sequence
yields then inequality β1(K) +β1(K0∩K1) ≥ β1(K0) +β1(K1), which involves the extra
term β1(K0 ∩K1). Heuristically it then seems reasonable to ask the following:

Question 4. Let K = K0 ∪K1 be a tame decomposition. Does the inequality

r(K) + r(K0 ∩K1) ≥ r(K0) + r(K1) (6)

hold? (Maybe under some additional hypothesis concerning the decomposition K =
K0 ∪K1.)
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7.5. Our interest in the generalized subadditivity property is motivated both by cu-
riosity and also because it would allow us to obtain a neat generalization of Theorem 17′′

with a relatively small effort:

Theorem 28. Assume that a suitable form of the generalized subadditivity property (6) is 
true. Let S ⊆ R3 be a closed connected surface and let T be a compact subset of S such 
that S is locally flat outside T . Then

r(S) + β0(S − T ) ≥ r(T ).

[Notice that two of the hypotheses of Theorem 17′′ have been removed: S is not required to 

bound a 3-manifold anymore and no condition is placed on Hˇ 1(T ; Z2).]

β0(S − T ) is precisely the number of connected components into which T separates 
the surface S, and for the above inequality to be informative we need it to be finite. 
When T is totally disconnected this is certainly the case because S −T is connected, and 
the above reads r(S) +1  ≥ r(T ). This is slightly weaker than the conclusion r(S) ≥ r(T ) 
of Theorem 17′, but still good enough to prove Theorem 2 (using the same argument).

Proof of Theorem 28. Let N be a neighbourhood of T in S that is a compact 2-manifold 
with boundary (any compact subset of a surface has a basis of neighbourhoods like 
these). Consider the decomposition of S into the two compact sets K0 := S − int N 
and K1 := N . Their intersection is ∂N , which is contained in the locally flat part of S. 
Since S is bicollared there, each component of ∂N (which is a simple closed curve) can 
be extruded to a tame annulus “transverse” to S, and the union of these separates K0
and K1 in the fashion of a tame decomposition. Therefore, assuming a suitable form of 
generalized subadditivity holds, r(S) +r(∂N) ≥ r(S − int N) +r(N). Furthermore, since 
S − int N and ∂N are contained in the locally flat part of S, it is easy to show that 
r(S − int N) = β1(S − int N) and r(∂N) = β1(∂N). Substituting in the generalized 
subadditivity inequality we get

r(S) ≥ β1(S − int N) − β1(∂N) + r(N). (7)

Consider the following portion of the long exact sequence in homology for the pair 
(S − int N, ∂N):

. . . −→ H2(S − int N) −→ H2(S − int N, ∂N) δ−→ H1(∂N) −→ H1(S − int N) −→ . . .

Observe that S − int N is a compact 2-manifold each of whose connected components 
has at least one boundary component. Therefore H2(S−int N) = 0, so the arrow labelled 
δ in the exact sequence above is injective. This implies that β1(∂N) −β2(S−int N, ∂N)
≤ β1(S − int N), and substituting in (7) yields r(S) ≥ − β2(S − int N, ∂N) + r(N).

Finally, 37



using excision and Alexander duality there are isomorphisms H∗(S − int N, ∂N) =
H∗(S, N) = H2−∗(S −N), so we can rewrite our inequality as

r(S) ≥ −β0(S −N) + r(N).

One can always choose N in such a way that different components of S − N lie in 
different components of S−T (see the proof of the frame theorem [19, Theorem 6, p. 72]), 
so that β0(S −N) ≤ β0(S − T ). For this choice of N , then,

r(S) ≥ −β0(S −N) + r(N) ≥ −β0(S − T ) + r(N).

Letting these N run in a neighbourhood basis (Nk) of T and taking the limit inferior as
k → ∞ we conclude that

r(S) + β0(S − T ) ≥ lim inf
k→∞

r(Nk) ≥ r(T ),

where the last inequality follows from the semicontinuity property of r. �
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