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ARCS, BALLS AND SPHERES

THAT CANNOT BE ATTRACTORS IN R3

J. J. SÁNCHEZ-GABITES

Abstract. For any compact set K ⊆ R3 we define a number r(K) that is
either a nonnegative integer or ∞. Intuitively, r(K) provides some information
on how wildly K sits in R3. We show that attractors for discrete or continuous
dynamical systems have finite r and then prove that certain arcs, balls and
spheres cannot be attractors by showing that their r is infinite.

1. Introduction

Many dynamical systems have an attractor, which is a compact invariant set
K such that every initial condition sufficiently close to K approaches it as the
system evolves (see Definition 1). Eventually the dynamics of the system will be
indistinguishable from the dynamics on the attractor, and in this sense we may say
that the attractor captures the long-term behaviour of the system (at least for a
certain range of initial conditions).

The structure of attractors as subsets of the phase space M is frequently very
intricate, and this leads naturally to the following characterization problem:

“Characterize topologically what compact sets K ⊆ M can be attractors for
dynamical systems on M”.

Notice that no conditions are placed on the dynamics on the attractor: this is
a very interesting variant of the problem (for instance, it arises in some questions
related to partial differential equations; see Section 10.1), but almost intractable by
our present knowledge. Also, the characterization will generally depend on M and
whether one is interested in discrete or continuous dynamical systems. The latter
are well understood [11, 27], so we shall restrict ourselves to discrete dynamical
systems.

Heuristically, solving the characterization problem requires that we identify the
obstructions that prevent a set from being an attractor. For example, attractors
have finitely generated Čech cohomology with Z2 coefficients [24,25], which proves
that the sets shown in Figure 1 cannot be attractors. We could say that this is an
intrinsic obstruction, in the sense that it depends only on the set K.

In fact, when M = R2, the obstruction just mentioned is the only one. If a
compact set K ⊆ R2 has finitely generated Čech cohomology with Z2 coefficients,
then an argument of Günther and Segal [11, Corollary 3, p. 326] shows that it
is an attractor for a suitable flow, and consequently also for a homeomorphism
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Figure 1. Sets that cannot be attractors

(namely, the time-one map of the flow). This solves the characterization problem
for M = R2: a compact set K ⊆ R2 is an attractor for a homeomorphism if, and
only if, it has finitely generated Čech cohomology with Z2 coefficients.

Let us move on to M = R3, which will be our framework from now on. With the
increase in dimension a new phenomenon arises, related to the fact that attractors
need to sit in phase space in a suitable way. For instance, consider a straight
segment A joining two points in R3. It is easy to prove that A is an attractor for a
homeomorphism (Example 3), but we will show in Theorem 6 that it is possible to
embed A in some wild fashion so that the resulting arc A∗ cannot be an attractor
anymore (a picture of A∗ can be seen in Figure 3). Note that A∗ is homeomorphic
to A, so it still has the “correct” intrinsic topological properties to be an attractor,
but the way it sits in R3 prevents this from happening. In this sense we may say
that there are also extrinsic obstructions involved in the characterization problem
in R3, standing in contrast with the case of R2.

Our aim in this paper is not to solve the characterization problem (we are far
from being able to do this) but to gain some understanding about it by exploring the
phenomenon just described, showing that there are not only arcs A∗ that cannot be
attractors, but also balls B∗ and spheres S∗ (Theorems 37 and 41). The interesting
point about these results is the technique used in proving them, which can be
roughly described as follows. We associate to every compact set K ⊆ R3 a number
r(K) ∈ {0, 1, 2, . . . ,∞} that, on intuitive grounds, measures the “crookedness” ofK
as a subset of R3 (Section 3). Attractors have finite r, so we only need to show that
there are arcs, balls, and spheres with r = ∞. However, r is notoriously difficult
to compute, and some powerful tools (the nullity and subadditivity properties of r)
will be needed in order to complete our plan (Sections 4 to 7).

Requirements. Care has been taken in making the paper as self-contained as pos-
sible, although some knowledge of singular or simplicial homology and cohomology
is required, including the duality theorems of Alexander and Lefschetz. The books
by Hatcher [13] and Munkres [19] contain everything that is needed for our pur-
poses. Throughout the paper we tacitly use Z2 coefficients as a convenient choice
to make some arguments simpler and to be able to switch between homology and
cohomology, but any other coefficient field would work just as well.

For an abelian group G the notation rk G means the rank of G. In our context
G will usually be a homology or cohomology group with Z2 coefficients (hence a
vector space over the field Z2), and then rk G agrees with the perhaps more familiar
dimension of G as a vector space.
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2. An arc that cannot be an attractor

In order to provide the reader with some familiarity with attractors and the
computation of r we prove in this section that there exist arcs that cannot be
attractors. We begin with some basic definitions.

Let U ⊆ R3 be open. A discrete dynamical system on U is an injective and
continuous mapping f : U −→ U . A compact set K ⊆ U is called invariant
if f(K) = K. A compact set P ⊆ U is said to be attracted by K if for every
neighbourhood V of K there exists n0 ∈ N such that fn(P ) ⊂ V whenever n ≥ n0.

Definition 1. Let f : U −→ U be a discrete dynamical system on an open set
U ⊆ R

3. A set K ⊆ U is an attractor for f if:

(i) K is compact and invariant,
(ii) K has a neighbourhood A ⊆ U such that every compact set P ⊆ A is

attracted by K.

The biggest set A for which condition (ii) is satisfied is called the basin of
attraction of K and denoted A(K). It is always an open invariant subset of U and
can be alternatively characterized as

A(K) = {p ∈ U : fn(p) −→ K as n −→ ∞},
where the condition fn(p) −→ K should be understood in the sense that fn(p)
eventually enters (and never leaves again) any prescribed neighbourhood of K. An
attractor is called global if its basin of attraction coincides with all of U .

Definition 1 is pretty standard [12, 16], although some authors consider only
global attractors or minimal attractors. Both restrictions are unnecesary in our
context.

Example 2. The unit sphere S2 ⊆ R3 is an attractor for the homeomorphism
f : R3 −→ R3 defined as f(p) := p

√
‖p‖, its basin of attraction being A(S2) =

R
3 − {0}. A very similar construction proves that the closed unit ball B3 ⊆ R

3 is
a global attractor.

Example 3. Any straight line segment L ⊆ R
3 is an attractor. To prove this,

first let h : R3 −→ R3 be a homeomorphism that takes L onto the straight line
segment L′ having endpoints (−1, 0, 0) and (1, 0, 0). Consider the homeomorphism
ϕ : R −→ R given by

ϕ(x) :=

{
sgn(x)

√
|x| if |x| ≥ 1,

x if |x| ≤ 1.

It is easy to see that [−1, 1] is a global attractor for ϕ. Then the homeomorphism
f ′ : R3 −→ R3 defined by f ′(x, y, z) := (ϕ(x), y/2, z/2) has L′ as a global attractor,
and f := h−1 ◦ f ′ ◦ h has L as a global attractor.

A ball is a set homeomorphic to B
3, a sphere is a set homeomorphic to S2, and

an arc is a set homeomorphic to a straight line segment in R
3. Examples 2 and 3

imply that whatever intrinsic obstructions there may be for a set to be an attractor,
they are not present for balls, spheres, and arcs.

As mentioned earlier, our goal in this section is to construct an arc that cannot
be an attractor. We shall approach this by first constructing an arc that cannot be
a global attractor, which is a much easier task. The concept of cellularity [6, p. 35]
will play an important role in the sequel.
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Definition 4. A compact set K ⊆ R3 is cellular if it has a neighbourhood basis
comprised of balls.

Consider the arc F shown in Figure 2. This arc was introduced in a classical
paper by Fox and Artin [8, Example 1.3 and Figure 8, p. 985], where it is also
shown that F is not cellular.

p1 p2

F

Figure 2. The Fox–Artin arc F

Example 5. The arc F shown in Figure 2 cannot be a global attractor in R3.

Proof. We argue by contradiction. Suppose F is an attractor for a continuous and
injective map f : R3 −→ R3. Let B be a ball big enough so that F is contained in
its interior and set Nk := fk(B) for k ∈ N.

The theorem on invariance of domain [19, Theorem 36.5, p. 207] guarantees that
f is an open map, which implies that each Nk is a neighbourhood of fk(F ) = F
(recall that an attractor is required to be invariant). Moreover, since B is a compact
subset of the basin of attraction of F because F was assumed to be a global attractor
and F attracts compact sets, the Nk get arbitrarily close to F as k increases, so
{Nk} is a neighbourhood basis of F .

Each map fk is continuous and injective so, again because of the compactness
of B, the restrictions fk|B : B −→ fk(B) = Nk are all homeomorphisms. Conse-
quently all the Nk are balls and therefore F should be cellular, which it is not as
mentioned earlier. This contradiction finishes the proof. �

This very same argument proves that a global attractor in R3 must be cellular.
The converse is also true: a cellular subset of R3 is an attractor for some discrete
dynamical system; in fact, it is an attractor for a flow [9, Theorem 2.7, p. 152].
This solves the characterization problem for global attractors both for continuous
and discrete dynamical systems.

Let us now elaborate on the Fox–Artin arc F to construct another arc A∗ that
cannot be an attractor whatsoever; that is, we do not assume now that A∗ is a
global attractor. The argument of Example 5 is no longer useful in this situation
because there may not exist a ball B contained in the region of attraction of A∗.
At this point we need to turn to the invariant r mentioned in the introduction.
The precise definition is postponed to the following section, and for now we just
enumerate some of its properties (in a slightly informal fashion) which enable us to
make some computations and prove that A∗ cannot be an attractor.

The first one provides the link between r(K) and dynamics:

• the finiteness property : if K is an attractor for some dynamical system,
then r(K) < ∞.

Thus to prove that a given compact set K cannot be an attractor it is enough
to show that r(K) = ∞. This is not easy to do directly, and we need to use some
“geometric” properties of r(K) as an aid in this task. They are not subtle enough
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to allow us to compute r(K) exactly, but they suffice to show that r(K) = ∞ for
certain compacta K. These geometric properties are the following:

• the invariance property : if K and K ′ are ambient homeomorphic, then
r(K) = r(K ′);

• the nullity property : if K is an arc or a ball, then r(K) = 0 if and only if
K is cellular;

• the subadditivity property : under suitable hypotheses, if K is expressed as
the union of two compact sets K1 and K2, then r(K) ≥ r(K1) + r(K2).

Recall that two subsets K and K ′ of R3 are said to be ambient homeomorphic
if there exists a homeomorphism h : R3 −→ R3 such that h(K) = K ′. This
notion captures the intuitive idea that K and K ′ sit in R

3 in equivalent ways.
Ambient homeomorphic sets are also frequently said to be topologically equivalently
embedded, topologically equivalent, or simply equivalent.

Now we can construct an arc A∗ and show that it cannot be an attractor.

Theorem 6. There is an arc A∗ ⊆ R3 that cannot be an attractor.

Proof. Let F1 := F , the Fox–Artin arc considered earlier, with endpoints p1 and
p2. Place another copy of F , scaled down by a factor of 1

2 , next to F1. Its left
endpoint coincides with p2; its right endpoint is denoted p3. Denote this copy F2

and continue in the same fashion adding more copies F3, F4, . . . as in Figure 3. The
right endpoints of these arcs accumulate at a point p∞. Let A∗ :=

⋃∞
n=1 Fn ∪ p∞.

It is clear that A∗ is an arc with endpoints p1 and p∞.

p1 p2 p3 p4 · · · p∞

F1
F2

Figure 3. The arc A∗

By the finiteness property, in order to prove that A∗ cannot be an attractor it is
enough to show that r(A∗) = ∞. Express A∗ as the union A∗ = F1 ∪ p2p∞, where
p2p∞ denotes the subarc of A∗ comprised between p2 and p∞. The subadditivity
property implies that r(A∗) ≥ r(F1) + r(p2p∞). Repeating the same process with
p2p∞, p3p∞, . . . we see inductively that

r(A∗) ≥ r(F1) + r(F2) + . . .+ r(Fs) + r(ps+1p∞)

for any s ≥ 0. Since r always takes nonnegative values,

r(A∗) ≥ r(F1) + r(F2) + . . .+ r(Fs).

Each of the arcs Fi is a scaled-down copy of F ; hence they are all ambient
homeomorphic to each other and therefore r(Fi) = r(F ) by the invariance property.
We mentioned earlier that F is not cellular, so by the nullity property we have
r(F ) ≥ 1; consequently r(Fi) ≥ 1 for every i too. Thus r(A∗) ≥ s. Since s was
arbitrary, we conclude that r(A∗) = ∞. �

There is nothing special about using copies of the same arc F in the construction
of A∗ in Theorem 6; it is just the simplest choice. Placing whatever arcs Ai with
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endpoints pi and pi+1 in each of the diamond shaped regions of Figure 3 we see
from the subadditivity property that

r(A∗) ≥
∞∑
i=1

r(Ai);

and so if infinitely many of the Ai are noncellular (thus they satisfy r(Ai) ≥ 1),
then r(A∗) = ∞, which implies that A∗ cannot be an attractor. It is not difficult to
see that this construction can be used to produce uncountably many nonambient
homeomorphic arcs (so they are all “different”), none of which can be an attractor.

3. The definition of r(K)

Our definition of r(K) is suggested by the argument of Example 5. The key idea
there was that if the Fox–Artin arc F were an attractor, then by picking a ball B
that is a neighbourhood of F contained in its region of attraction and iterating B
with the map f , we would obtain a neighbourhood basis of the arc comprised of
balls, and we know that such a basis does not exist because the arc is not cellular.
We also mentioned that in general this argument breaks down because the existence
of the ball B is not guaranteed if the basin of attraction of the presumed attractor
is not assumed to be all of R3.

Let us now deal informally (details will be given throughout this section) with
the general case, where no assumption is placed on A(K). If K is an attractor for f ,
then since A(K) is an open neighbourhood of K, we can find some neighbourhood
ofK that is a compact 3–manifold (with boundary) N contained in A(K). Iterating
N we obtain a neighbourhood basis {Nk} of K comprised of compact manifolds,
all homeomorphic to each other. So in order to find a compact set K that cannot
be an attractor we need to find a set that does not have such a neighbourhood
basis. For the sake of brevity we call a neighbourhood basis of K whose members
are compact manifolds an m–neighbourhood basis.

The simplest way to tell that not all the members of an m–neighbourhood basis
{Nk} are homeomorphic is by comparing their homology groups. For instance,
we may compare the ranks of their first homology groups with coefficients in Z2.
These ranks are finite because the Nk are compact manifolds. Thus, given an
m–neighbourhood basis {Nk} of K, we can consider the limit inferior

lim inf
k→∞

rk H1(Nk;Z2);

and if this limit is ∞, then not all the {Nk} are homeomorphic (otherwise their
first homology groups would all have the same finite rank r and the limit inferior
would be precisely this number r).

Finally, if we want to show that K cannot be an attractor, then the limit inferior
described above has to be infinite for every m–neighbourhood basis {Nk}, so we
define

r(K) := inf

{
lim inf
k→∞

rk H1(Nk;Z2) : {Nk} is an m–neighbourhood basis of K

}

and conclude that if r(K) = ∞, then K cannot be an attractor whatsoever. The
reader may recognize this as an equivalent statement of the finiteness property that
was introduced in the previous section.

The computation of r(K) is usually very difficult. Because it is an infimum of
a set of numbers it is generally easy to bound from above but hard to bound from
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below. In this paper we are interested in showing that certain sets have infinite
r, which corresponds exactly to the hard lower bounds problem that we just men-
tioned. This is why we need the nullity and subadditivity properties (notice that
both bound r(K) from below). These follow from some “woodworking” construc-
tions with neighbourhoods of K, which requires us to work with polyhedra.

3.1. Polyhedra in R
3. We include here a very quick review of some piecewise

linear topology in R3, loosely following the books by Hudson [15] and Moise [17]
but tailoring everything to our fairly modest needs.

A d–dimensional simplex (0 ≤ d ≤ 3) in R3 is the convex hull σ of d+1 affinely
independent points in R

3, called the vertices of σ. A proper face of σ is a simplex
spanned by some, but not all, of the vertices of σ. According to this, a 0–simplex
is just a point (with no proper faces). A 1–simplex is a segment whose proper faces
are its endpoints. A 2–simplex is a triangle whose proper faces are its vertices and
edges. And a 3–simplex is a tetrahedron whose proper faces are its vertices, edges
and faces (in the elementary geometry sense of the word).

Although very restrictive, the following definition will be enough for our pur-
poses: a polyhedron P ⊆ R3 is the union of a finite collection of simplices, not
necessarily all of the same dimension. Therefore, for us, polyhedra are compact. It
is important to distinguish between a polyhedron, which is a subset of R3, and its
expression as a finite union of simplices. The latter is clearly not unique and may
be very complicated. However, one can prove that any polyhedron admits espe-
cially neat expressions as finite unions of simplices, called triangulations: a finite
collection of simplices {σi : i ∈ I} is called a triangulation of the polyhedron P if
P =

⋃
i∈I σi and any two different σi and σj are either disjoint or meet in a proper

face. For instance, any two triangles (2–simplices) in a triangulation have to be
either disjoint, meet in a single vertex or meet along a single edge.

Because of the way they are constructed, polyhedra sit nicely (piecewise linearly)
in Euclidean space, making them especially suitable for geometric arguments. They
also have the following useful properties, which are immediate consequences of the
definition or the existence of triangulations:

• finite intersections and unions of polyhedra are, again, polyhedra;
• polyhedra have finitely generated homology and cohomology groups.

An extremely useful tool in piecewise linear topology is the theory of regular
neighbourhoods [15, p. 57ff.]. If P is a polyhedron in R3, then it has arbitrarily small
neighbourhoods N , called regular neighbourhoods, with the following properties: (i)
N is a polyhedron, (ii) N is a 3–manifold with boundary, (iii) the inclusion P ⊆ N
is a homotopy equivalence.

The following result is very easy to prove and probably well known to the reader.

Lemma 7. Let K ⊆ R
3 be compact. Then K has arbitrarily small neighbourhoods

N that are polyhedral 3–manifolds.

Terminology. In the sequel we use the expressions p–neighbourhood, m–neigh-
bourhood and pm–neighbourhood to denote neighbourhoods that are polyhedra,
manifolds, or polyhedral manifolds respectively. The terms p–neighbourhood basis,
m–neighbourhood basis and pm–neighbourhood basis have an analogous meaning
which should be clear for the reader.
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3.2. The definition of r(K). Although we started with a problem in dynamics,
the definition of r(K) is purely topological. From this point of view, r(K) somehow
measures the “crookedness” of the embedding of K in R

3: we approximate K with
nice neighbourhoods Nk and keep track of how complicated these neighbourhoods
have to become in order to trace K ever more closely. This is the idea that we
intended to highlight in the actual definition of r(K) given below (Definition 8),
which is different from the one obtained above but equivalent to it, as shown at the
end of this section.

For r a nonnegative integer, consider the following property that K may or may
not have:

(Pr) : K has arbitrarily small p–neighbourhoods N with rk H1(N) ≤ r.

Definition 8. r(K) is the smallest nonnegative integer r for which (Pr) holds, or
∞ if (Pr) does not hold for any r.

Instead of defining r(K) in terms of p–neighbourhoods ofK we could have chosen
m–neighbourhoods or even pm–neighbourhoods. It is a remarkable fact that all
three choices lead to the same result:

Proposition 9. Let K ⊆ R3 be compact. Then, for any nonnegative integer r the
following are equivalent:

(i) K has arbitrarily small p–neighbourhoods N with rk H1(N) ≤ r,
(ii) K has arbitrarily small m–neighbourhoods N with rk H1(N) ≤ r,
(iii) K has arbitrarily small pm–neighbourhoods N with rk H1(N) ≤ r.

Consequently r(K) can be characterized as the least nonnegative integer (possibly
∞) for which any one of (i), (ii) or (iii) holds.

Proof. Implications (iii) ⇒ (i) and (iii) ⇒ (ii) are trivial. If we prove their con-
verses the equivalence of all three will be established.

(i) ⇒ (iii) Let U be a neighbourhood of K and choose a p–neighbourhood N of
K contained in U with rk H1(N) ≤ r. Now let N ′ be a regular neighbourhood of N
small enough to be still contained in U . We know that N is a polyhedral manifold;
moreover, since the inclusion N ⊆ N ′ is a homotopy equivalence it follows that
H1(N) = H1(N

′) and therefore rk H1(N
′) ≤ r. Thus we see that (iii) holds.

(ii) ⇒ (iii) Let U be a neighbourhood of K and choose an m–neighbourhood N
of K contained in U with rk H1(N) ≤ r. Now we invoke a very deep theorem of
Moise [17, Theorem 1, p. 253]:

Theorem (Moise). Let N ⊆ R
3 be a compact 3–manifold. Let ε > 0 be given.

There is an embedding h : N −→ R3 that moves points less than ε (that is, the
distance from p to h(p) is less than ε for every p ∈ N) and such that h(N) is a
polyhedron.

Let h : N −→ R
3 be the embedding provided by the theorem of Moise and let

N ′ := h(N), which is a polyhedron. Choosing ε small enough guarantees that N ′

is still a neighbourhood of K contained in U . Since N ′ is homeomorphic to N , it
is a manifold and, moreover, H1(N

′) = H1(N) so that rk H1(N
′) ≤ r. Therefore

(iii) holds. �

In the sequel we will use p–neighbourhoods, m–neighbourhoods and pm–neigh-
bourhoods interchangeably to compute r(K).
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Example 10. If K is cellular, then it has arbitrarily small neighbourhoods B that
are balls. Thus (ii) in Proposition 9 holds with r = 0, and so r(K) = 0.

To close this section we find an expression of r(K) in terms of neighbourhoods
bases of K. This will be useful later on, when we establish the subadditivity
property.

Proposition 11. Let K ⊆ R3 be compact. Then:

(i) for every pm–neighbourhood basis {Nk} of K,

r(K) ≤ lim inf
k→∞

rk H1(Nk),

(ii) if r(K) < ∞, then K has a pm–neighbourhood basis {Nk} such that

rk H1(Nk) = r(K) for every k.

As a consequence, r admits the expression

r(K) = inf
{
lim inf
k→∞

rk H1(Nk) : {Nk} is a pm–neighbourhood basis of K
}
.

Proof. (i) Denote r := lim infk−→∞ rk H1(Nk). If r = ∞ there is nothing to prove,
so we assume r < ∞. Since r is the limit inferior of a sequence of nonnegative
integers, there exists a subsequence Nk�

of Nk such that rk H1(Nk�
) = r for every

�. Now, clearly {Nk�
} is still a pm–neighbourhood basis ofK, and soK has property

(Pr). Therefore r(K) ≤ r.
(ii) Let r = r(K). K has property (Pr), so from Proposition 9 we see that K

has a pm–neighbourhood basis {Nk} with rk H1(Nk) ≤ r for every k. However,
K does not have property (Pr−1), and consequently every sufficiently small pm–
neighbourhood N of K must satisfy rk H1(N) ≥ r. Thus for k big enough we have
rk H1(Nk) = r and the claim is proved. �

4. The finiteness property

The following lemma is almost trivial but important, because it contains the
observation that provides the link between dynamics and the invariant r(K).

Lemma 12. Let K be an attractor for a discrete dynamical system f : U −→ U ,
where U is an open subset of R3. Then K has an m–neighbourhood basis {Nk} with
all the Nk homeomorphic to each other.

Proof. Since A(K) is open in U and U is open in R
3, it follows that A(K) is open

in R3. By Lemma 7 there exists an m–neighbourhood N of K contained in A(K).
Since K attracts compact subsets of A(K), it follows that {Nk := fk(N) : k ∈ N}
is a neighbourhood basis of K in R

3. Since N is compact and f is continuous and
injective, each restriction fk|N : N −→ Nk is a homeomorphism onto, so every Nk

is homeomorphic to N . Thus all the Nk are compact 3–manifolds homeomorphic
to N and therefore to each other. �
Theorem 13 (Finiteness). Let K ⊆ R3 be a compact subset of R3 and assume that
it is an attractor for a dynamical system. Then r(K) < ∞.

Proof. By Lemma 12 K has an m–neighbourhood basis {Nk} comprised of compact
3–manifolds, all homeomorphic to each other. Thus their first homology groups
H1(Nk) all have the same rank r which is finite because compact manifolds have
finitely generated homology groups [13, Corollaries A.8 and A.9, p. 527]. From
Proposition 9 we conclude that r(K) ≤ r < ∞. �
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Notice that the argument of Lemma 12 cannot be used to produce a p–neigh-
bourhood basis ofK, because even if N is chosen to be polyhedral, its images fk(N)
do not need to be polyhedral. This illustrates the usefulness of the equivalences
established in Proposition 9.

5. The invariance property

The precise statement of the invariance property and its proof are as follows:

Theorem 14 (Invariance). Let K,K ′ ⊆ R3 be compact sets and assume that there
is a homeomorphism h : R3 −→ R

3 such that h(K) = K ′. Then r(K) = r(K ′).

Proof. It will be enough to show that if K has property (Pr) for some r, then
so does K ′. Let V ′ be a neighbourhood of K ′ and set V := h−1(V ′), which is
also a neighbourhood of K. Since K has property (Pr), it has an m–neigbourhood
N ⊆ h−1(V ′) with rkH1(N) ≤ r. LetN ′ := h(N), which is clearly a neighbourhood
of K ′ contained in V ′. Since N ′ is homeomorphic to N , it is a manifold (hence
an m–neighbourhood of K ′) with rk H1(N

′) = rk H1(N) ≤ r. Thus K ′ also has
property (Pr). �

Although Theorem 14 is enough for our purposes of showing that certain sets
cannot be attractors, the invariance property is in fact stronger: if the complements
of K and K ′ are homeomorphic, then r(K) = r(K ′). We now prove this version
of the invariance property. For technical reasons it is convenient to consider the
complements of K and K ′ in S3 rather than R3:

Theorem 15. Let K,K ′ ⊆ R3 ⊆ S3 be compact sets and assume that there is a
homeomorphism h : S3 −K −→ S3 −K ′. Then r(K) = r(K ′).

Proof. As in the proof of Theorem 14 it will be enough to show that if K has
property (Pr) for some r, then so does K ′.

Let V ′ be an open neighbourhood of K ′ and set V := K ∪ h−1(V ′ − K ′),
which is an open neighbourhood of K. Since K has property (Pr), it has an
m–neighbourhood N ⊆ V such that rk H1(N) ≤ r. Denote N ′ := K ′ ∪ h(N −K).
It is easy to check that N ′ is an m–neighbourhood of K ′ contained in U , and we
have

rk H1(N
′) = rk H1(S

3 −N ′) = rk H1(S
3 −N) = rk H1(N) ≤ r,

where the first and third equalities follow from Alexander duality and the middle
one from the fact that S3 − N and S3 − N ′ are homeomorphic via h (Alexander
duality is recalled below, after Definition 18). We conclude that K ′ has property
(Pr), as was to be proved. �

Theorem 15 can be alternatively stated by saying that r(K) is a topological
invariant of S3 −K.

6. The nullity property

We now turn to the nullity property, which is the first of our results that actually
proves that r(K) is nonzero for some compact set K, laying the basis for more
elaborate constructions as in Theorem 6. Its statement is more general than the
one given in the introduction.
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Theorem 16 (Nullity). Let K ⊆ R3 be a continuum with Ȟ2(K) = 0. Then

r(K) = 0 ⇔ K is cellular.

The condition Ȟ2(K) = 0 guarantees that K has no “spherical holes”, and it will
seem very natural after Lemma 19 below. Here Ȟ2(K) denotes the second Čech
cohomology group of K with coefficients in Z2. Čech cohomology agrees with the
usual (singular or simplicial) cohomology theory on polyhedra [19, Theorem 73.2,
p. 437] but provides more information when applied to compacta with a “bad” local
structure. There are several definitions of Čech cohomology, of which the readers
could choose their favourite. For our purposes it will be enough to be aware of
the following particular instance of the continuity property of Čech cohomology
[19, Theorem 73.4, p. 440]: if K ⊆ R

3 is a compact set and {Nk} is a decreasing
p–neighbourhood basis of K, then Ȟd(K) is (isomorphic to) the direct limit of the
direct sequence

Hd(N1)
ϕ1−→ Hd(N2)

ϕ2−→ Hd(N3)
ϕ3−→ . . . ,

where ϕk is the homomorphism induced in cohomology by the inclusion Nk+1 ⊆ Nk.
We already know, by Example 10, that if K is cellular, then r(K) = 0. The

interesting content of Theorem 16 is the converse implication. If K is a continuum
with r(K) = 0, then Proposition 11 implies that K has a neighbourhood basis {Nk}
comprised of polyhedral manifolds with rk H1(Nk) = 0, or equivalently H1(Nk) = 0
for every k (recall that we are taking coefficients in Z2). Since K is connected, we
can discard those components of the Nk that do not meet K, obtaining smaller
neighbourhoods which we again call Nk. These are still a neighbourhood basis of
K with H1(Nk) = 0 for every k, but they are now connected. Summing up, we
have proved the following result:

Proposition 17. If K ⊆ R
3 is a continuum with r(K) = 0, then K has a neigh-

bourhood basis {Nk} comprised of connected polyhedral manifolds with H1(Nk) = 0
for every k.

The proof of Theorem 16 consists of showing that the Nk mentioned in Proposi-
tion 17 are “balls with holes” (an idea that we formalize below under the name of
perforated balls) and then using the condition that Ȟ2(K) = 0 to prove that these

balls with holes can be “filled in” to obtain a new neighbourhood basis {N̂k} of K
comprised of actual balls, thus showing that K is cellular.

Definition 18. Suppose B ⊆ R
3 is a polyhedral 3–ball whose interior contains

a finite number of disjoint polyhedral 3–balls B1, . . . , Bm. Then we call N :=
B −

⋃m
i=1 int Bi a perforated ball. We denote N̂ := B and say that N̂ is obtained

from B by filling its holes.

The proofs in this section make use of certain duality relations in homology and
cohomology combined with the universal coefficient theorem. Namely, we will use
the following:

(1) Lefschetz duality: if N is a compact 3–manifold, then

Hd(N, ∂N) = H3−d(N).

(2) Alexander duality: if L is a compact subset of S3, then

H̃d(S
3 − L) = Ȟ2−d(L).

11



When L is a polyhedron or a manifold its Čech cohomology agrees with its
singular cohomology, so using the universal coefficient theorem it follows
that

H̃d(S
3 − L) = H2−d(L).

(3) Alexander duality in manifolds with boundary: if N is a compact 3–
manifold, possibly with boundary, and L ⊆ int N is compact, then

Ȟd(N,L) = H3−d(N − L, ∂N).

As in (2), if L is a polyhedron or a manifold, then

Hd(N,L) = H3−d(N − L, ∂N).

The first two are standard and well known, but maybe this is not the case for the
third. Thus we have included a proof in an appendix. Alexander duality (2) holds
more generally for compact subsets of any Sn, with 2− d replaced by (n− 1)− d.

We will also use the polyhedral Schönflies theorem in R3, due to Alexander [17,
Theorem 12, p. 122]. A sphere is a set homeomorphic to the standard sphere
S
2 := {p ∈ R

3 : ‖p‖ = 1}.

Theorem (Alexander). Let S ⊆ R
3 ⊆ S3 be a polyhedral sphere. Then S3 − S has

exactly two components U and V , both of which have the following properties: (i)
their topological frontiers fr U and fr V coincide with S, (ii) their closures U and
V are homeomorphic to a ball.

This theorem has a long history and great significance in the development of
topology. We shall say some words about it in Section 8, but, for the moment, we
will just carry on with the proof of the nullity property.

Lemma 19. Let N be a compact, connected, polyhedral 3–manifold in R3.

(i) If H1(N) = 0 and H2(N) = 0, then N is a ball.
(ii) If H1(N) = 0, then N is a perforated ball.

Proof. It is best to think of N as a subset of S3, and this is what we will do for the
proof. Also, we consider S3 as R3 together with a point at infinity, denoted ∞.

(i) From the long exact sequence in reduced homology for the pair (N, ∂N) and
Lefschetz duality it follows that

H̃d(∂N) = Hd+1(N, ∂N) = H2−d(N) =

⎧⎨
⎩

0 if d = 0,
0 if d = 1,
Z2 if d = 2,

and therefore ∂N is a connected compact surface (without boundary) with the
homology of the 2–sphere. Hence ∂N is a 2–sphere.

By the polyhedral Schönflies theorem in S3, S3 − ∂N has exactly two connected
components U and V , the closure of each of them being homeomorphic to a 3–ball.
Now observe that S3 − ∂N is the disjoint union of the open sets int N and S3 −N .
Since int N is connected because N was assumed to be connected, it follows that
int N is one of the components of S3−∂N . Thus int N = U (say) and consequently
N = int N = U is homeomorphic to a 3–ball.

(ii) By Alexander duality H̃d(S
3 − N) = H2−d(N) = 0 for d = 1, 2, which

shows that each component of the compact polyhedral 3–manifold S
3 − int N has

trivial reduced homology. This implies, by part (i) of this lemma, that they are all
polyhedral balls. Since N is a compact subset of R3, it follows that ∞ must belong
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to the interior of one of those balls, say B∞, and the remaining balls B1, . . . , Bm

are subsets of R3. Therefore

N = (S3 − int B∞)−
m⋃
i=1

int Bi,

and denoting B := S3 − int B∞, which is a polyhedral ball in R3, we have

N = B −
m⋃
i=1

int Bi,

where the Bi are disjoint balls in the interior of B. Hence N is a perforated ball. �

It follows from Proposition 17 and Lemma 19 that if K ⊆ R3 is a continuum
with r(K) = 0, then it has a neighbourhood basis {Nk} comprised of perforated
balls. Under the additional hypothesis that Ȟ2(K) = 0 we will show that the
holes of the Nk can be filled in and, although this enlarges the Nk, we still obtain a
neighbourhood basis {N̂k} of K. Now {N̂k} is comprised of balls, thus proving that
K is cellular. Lemma 20 provides the geometric basis for performing this operation.

We need to recall a definition. A closed connected surface S has H2(S) = Z2

by Poincaré duality, and a generator for H2(S) is called a fundamental class of
S. We denote it by [S]. If one is willing to think in terms of simplicial homology
and imagines S as a triangulated surface, [S] is nothing but the sum of all the
2–simplices of S.

Lemma 20. Let N be a compact polyhedral 3–manifold in R3. Assume that N
is connected and S ⊆ int N is a polyhedral 2–sphere such that [S] = 0 in H2(N).
Then the ball bounded by S in R

3 is contained in N .

Proof. From the exact sequence

H3(N) = 0 −→ H3(N,S) −→ H2(S) = Z2
0−→ H2(N)

it follows that H3(N,S) = Z2. By Alexander duality in manifolds with boundary
this implies that

Z2 = H3(N,S) = H0(N − S, ∂N),

which shows that N − S has exactly one connected component disjoint from ∂N .
Denote this component U . On the one hand, U is closed in N − S so it is also
closed in R3 − S. On the other hand, since U is open in N − S and does not meet
∂N , it is open in int N − S and consequently also in R3 − S. Therefore U must be
a component of R3 − S and, being contained in N (which is compact), it has to be
the bounded one; hence by the Schönflies theorem it is the ball bounded by S in
R3. �

Let

G1
ϕ1−→ G2

ϕ2−→ . . .
ϕk−1−→ Gk

ϕk−→ . . .

be a direct sequence of abelian groups and let G be its direct limit (see any algebra
book or [19, pp. 434ff.] for a definition of these concepts). We denote ϕk� :=
ϕ�−1 ◦ . . .◦ϕk+1 ◦ϕk for k ≤ � and ψk : Gk −→ G for the canonical maps from each
of the Gk to the direct limit G. It is an immediate consequence of the definition
of G that for an element gk ∈ Gk, the image ψk(gk) = 0 ∈ G if and only if there
exists � ≥ k such that ϕk�(gk) = 0 ∈ G�. This generalizes to the following lemma.
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Lemma 21. Let
G1

ϕ1−→ G2
ϕ2−→ . . .

ϕk−1−→ Gk
ϕk−→ . . .

be a direct sequence whose direct limit G is the trivial group. If Gk is finitely
generated, then there exists � ≥ k such that ϕk� = 0.

We omit its very simple proof and proceed with the proof of Theorem 16.

Proof of Theorem 16. By Proposition 17 and Lemma 19(ii) we see that K has
a neighbourhood basis {Nk} comprised of perforated balls. After passing to a
subsequence if needed we may assume that Nk+1 ⊆ int Nk for every k.

The Čech cohomology group Ȟ2(K) is the direct limit of the sequence

H2(N1) −→ H2(N2) −→ H2(N3) −→ . . . ,

where the arrows are the inclusion induced homomorphisms. The assumption that
Ȟ2(K) = 0 together with the fact thatH2(Nk) is finitely generated for each k imply
by Lemma 21 that for every k there exists � ≥ k such that the inclusion N� ⊆ Nk

induces the zero homomorphism 0 : H2(Nk) −→ H2(N�). Thus by passing to a
subsequence of the Nk we may assume that

H2(N1)
0−→ H2(N2)

0−→ H2(N3)
0−→ . . .

and so by duality each inclusion Nk+1 ⊆ Nk induces the zero homomorphism 0 :
H2(Nk+1) −→ H2(Nk).

Consider N̂k+1, the ball obtained from the perforated ball Nk+1 by capping its

holes. The sphere ∂N̂k+1 is clearly one of the boundary components of Nk+1, and

therefore its fundamental class [∂N̂k+1] is taken to zero in H2(Nk) by the inclusion

Nk+1 ⊆ Nk. Thus by Lemma 20 it follows that N̂k+1 ⊆ Nk. Consequently {N̂k}
is a neighbourhood basis of K comprised of balls, and we conclude that K is
cellular. �

7. The subadditivity property

Suppose K ⊆ R
3 is a compact set expressed as the union of two compact sets

K1 and K2. We call such an expression a decomposition of K. The subadditivity
property reads as follows:

Theorem 22 (Subadditivity). Assume that K = K1∪K2 is a tame decomposition
of K and suppose that Ȟ1(K1 ∩K2) = 0. Then

r(K1) + r(K2) ≤ r(K).

The tameness condition on the decomposition K = K1 ∪K2 is described in the
next subsection. Roughly, it guarantees that the decomposition K = K1 ∪K2 can
be realized geometrically, which is necessary to perform the splitting construction
that is the basis of the subadditivity property. Given a pm–neighbourhood N of
K, the splitting construction produces two pm–neighbourhoods N1 and N2 of K1

and K2 respectively such that rk H1(N1) + rk H1(N2) ≤ rk H1(N). We describe
this construction informally in the second subsection and then more carefully in
the third subsection.

The inequality in Theorem 22 may be strict. For instance, denote by F1 and F2

each of the two symmetric halves of the Fox–Artin arc F shown in Figure 2. Both
F1 and F2 are cellular [8, Example 1.2, p. 983], so r(F1) = r(F2) = 0. However F
is not cellular, and we have the strict inequality r(F ) ≥ 1 > 0 + 0 = r(F1) + r(F2).
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7.1. Tame decompositions. We need to introduce some notation:

Q1 is the parallelepiped [−1, 1]× [−1, 1]× [−1, 0],
Q2 is the parallelepiped [−1, 1]× [−1, 1]× [0, 1],
Q is the cube Q1 ∪Q2,
S is the square Q1 ∩Q2 = [−1, 1]× [−1, 1]× {0},
Ṡ denotes the square S minus its edges.

A schematic view of all these items is shown in Figure 4. The z-axis has been
chosen to be horizontal and contained in the plane of the paper for notational
convenience.

S

Q1 Q2 z

x

y

Figure 4. The setup for Definition 23

Definition 23. A decomposition K = K1 ∪K2 is tame if:

(i) K ∩ S = K1 ∩K2 ⊆ Ṡ,
(ii) K1 ∩Q ⊆ Q1 and K2 ∩Q ⊆ Q2.

For the sake of convenience we shall widen our definition slightly and say that a
decomposition K = K1 ∪ K2 is tame if there exists an ambient homeomorphism
h : R3 −→ R3 that takes K, K1 and K2 onto sets that satisfy (i) and (ii) above.

The intuitive content of Definition 23 is, loosely speaking, that S realizes geo-
metrically the purely set-theoretical decomposition K = K1 ∪K2. The part of K
that lies in Q is structured in two “halves”, K ∩Q1 and K ∩Q2. The first one sits
in Q1 and, because of condition (ii), is comprised exclusively of points from K1.
The second one sits in Q2 and is comprised exclusively of points from K2.

Example 24. The prototypical example of a tame decomposition is as follows. Let
H ⊆ R

3 be the hyperplane

H := {(x, y, z) ∈ R
3 : z = 0}

and denote by H1 and H2 the two closed halfspaces into which H separates R
3.

For definiteness say

H1 := {(x, y, z) ∈ R
3 : z ≤ 0} and H2 := {(x, y, z) ∈ R

3 : z ≥ 0}.
Let K ⊆ R3 be a compact set that meets H and let K1 := K ∩H1 and K2 :=

K ∩ H2. Then K = K1 ∪ K2 is a tame decomposition. Indeed, after scaling K
down with an ambient homeomorphism we may assume that K1 ∩K2 ⊆ Ṡ. Then
conditions (i) and (ii) in Definition 23 are trivially fulfilled.
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Example 24 provides a good picture to have in mind and is enough for simple si-
tuations such as the decompositions considered in the proof of Theorem 6. However,
a useful definition of tameness should be of a local nature. For instance, consider
the decomposition B∗ = B∗

1 ∪ B∗
2 shown in Figure 12. B∗

1 and B∗
2 meet neatly

along a disk, and locally (near that disk) the situation is just as the one described
in Example 24, so we want to say that this decomposition is tame. But far away
from the disk the sets B∗

1 and B∗
2 become entangled, so it is not possible (not even

after performing an ambient homeomorphism) to have B∗
1 contained in H1 and B∗

2

contained in H2. This is why a local version of Example 24 is needed, and that
is exactly what motivates Definition 23. Notice that according to this definition
B∗ = B∗

1 ∪B∗
2 is indeed a tame decomposition.

A decomposition may not be tame either because K1 ∩K2 cannot be included
in a square or because any cut along K1 ∩K2 does not separate K locally into K1

and K2 lying on different sides of K1 ∩K2. The first possibility will be illustrated
later in Example 38. The second one is easier and we give an example now.

Example 25. Consider the continuum K shown in Figure 5. It is the union of two
continua K1 and K2, shown respectively in dark and light gray, whose intersection
is the black square at the back of the figure, barely visible.

K2

K1

K1 ∩K2

Figure 5. A decomposition that is not tame

It is clearly possible to find a homeomorphism that takes K1∩K2 into the square
S in such a way that the first condition of Definition 23 is fulfilled. We leave it
to the reader to show that it is not possible to achieve the second condition of
Definition 23.

Notice that the subadditivity property holds in Example 25 (clearly r(K1) =
r(K2) = r(K) = 0) even though the decomposition K = K1 ∪ K2 is not tame.
Later on, in Example 38, we will present a decomposition that is not tame and
where the subadditivity property does not hold.

7.2. The splitting construction (informal version). This is the geometric ba-
sis for the subadditivity property. It may be summarized as follows.
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Theorem 26 (Notation and hypotheses as in Theorem 22). Given V1 and V2 open
neighbourhoods of K1 and K2, there exists an open neighbourhood V of K such
that any pm–neighbourhood N of K contained in V can be used to construct two
pm–neighbourhoods N1 and N2 of K1 and K2 with the following properties:

(S1) rk H1(N1) + rk H1(N2) ≤ rk H1(N),
(S2) N1 ⊆ V1 and N2 ⊆ V2.

Proof of Theorem 22 from Theorem 26. If r(K) = ∞ there is nothing to prove, for
the inequality r(K1) + r(K2) ≤ r(K) holds automatically. So assume r(K) < ∞
and choose a pm–neighbourhood basis {Nk} of K such that rk H1(Nk) = r(K) for
every k. This exists by Proposition 11(ii).

Using Theorem 26 each Nk gives rise to two pm–neighbourhoods Nk,1 and Nk,2

of K1 and K2 such that

rk H1(Nk,1) + rk H1(Nk,2) ≤ r(K)

for every k. Moreover, by property (S2) we may assume that {Nk,1} and {Nk,2}
are neighbourhood bases of K1 and K2 respectively. Hence by Proposition 11(i),

r(K1) ≤ lim inf
k→∞

rk H1(Nk,1) and r(K2) ≤ lim inf
k→∞

rk H1(Nk,2).

Thus

r(K1) + r(K2) ≤ lim inf
k→∞

rk H1(Nk,1) + lim inf
k→∞

rk H1(Nk,2)

≤ lim inf
k→∞

(rk H1(Nk,1) + rk H1(Nk,2)) ≤ r(K),

which proves Theorem 22. �

The splitting process behind Theorem 26 has some delicate points. In order to
make the essential ideas easier to grasp we first describe it informally here and
postpone the details to the next section.

For simplicity let us set ourselves in the situation of Example 24. Thus the
compact set K is split into two halves, K1 = K ∩ H1 and K2 = K ∩ H2, by the
vertical hyperplane H : z = 0. Let N be a small pm–neighbourhood of K. We are
going to show how to construct N1 and N2 from N .

Step 1. We split N along H letting M1 := N ∩ H1 and M2 := N ∩ H2. Clearly
K1 ⊆ M1 and K2 ⊆ M2, but notice M1 and M2 are not neighbourhoods of K1 and
K2 because the points of K1 ∩K2 do not belong to the interior of M1 or M2. For
technical reasons it is convenient that N ∩ H be a 2–manifold, which can always
be achieved (this will be proved later). See Figure 6(a).

Notation. It is a well known consequence of the Jordan–Schönflies theorem that a
compact connected 2–manifold C contained in the plane is a disk with holes. More
precisely, there exist a disk Ĉ and mutually disjoint disks D1, . . . , Dr ⊆ int Ĉ such
that C = Ĉ −

⋃r
i=1 int Di. Observe that Ĉ is the smallest disk that contains C.

We call the set C∗ :=
⋃r

i=1 Di the capping set for C; by its very definition it is a

disjoint union of disks with the property that C ∪ C∗ = Ĉ. Notice that C ∩ C∗

is the union of all the boundary components of C except for the outermost one.
The process of recovering the disk Ĉ from C by taking its union with C∗ is usually
called capping the holes of C.
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Step 2. Consider the intersection N ∩ H. Because it is a compact 2–manifold
contained in a plane (namely H), each of its connected components C1, C2, . . . , Cr

is a disk with holes. For illustrative purposes let us assume that N ∩H has exactly
four connected components: two disks C1 and C2, an annulus C3, and a disk with
two holes C4 (see Figure 6(b)). The labelling of the components is not entirely
arbitrary and requires some care (details will be given later).

C1

C2

C3

C4

M1

H(a) (b)

Figure 6. Cutting N along H

Notice how the components Ci may well be nested. This is precisely what makes
the construction somewhat delicate.

Notation. Suppose a < b are real numbers and A is a subset of H. We shall allow
ourselves some freedom and denote

A× [a, b] = {(x, y, z) : (x, y, 0) ∈ A and a ≤ z ≤ b}.

If the reader thinks of H as the xy-plane and R3 as H × R, the above notation
is self-explanatory. Geometrically, A is a 2–dimensional object and A × [a, b] is a
3–dimensional object that results from extruding A along the z-axis.

Step 3. We are going to construct N1 by suitably enlarging M1 in a two-stage
process. The construction of N2 from M2 is entirely analogous and it will not be
described explicitly.

First stage. The intersection M1∩H is the same as N ∩H, so it consists of the four
components C1, C2, C3 and C4 described in the previous step. At this first stage
we simply extrude each Ci along the z-axis an amount i/4. Namely, we enlarge M1

to M̂1 defined as

M̂1 := M1 ∪ (C1 × [0, 1/4]) ∪ (C2 × [0, 2/4]) ∪ (C3 × [0, 3/4]) ∪ (C4 × [0, 1]).

Figure 7(a) shows the extrusion of just the first three components. The final result
can be seen in Figure 7(b).
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C1 × [0, 1/4]

C2 × [0, 2/4]

C3 × [0, 3/4]

(a) (b)

Figure 7. The extrusion process

C3 × [0, 3/4]

C∗
3 × [3/4 − 1/8, 3/4]

(a)

(b)

Figure 8. Capping the end of the extruded C3
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Second stage. Formally we should start with C1 and C2, but, because they have
no holes, the construction we are about to describe is trivial for them. Hence we
consider the annulus C3 and its capping set C∗

3 , which is a single disk. We attach
a thickened copy of C∗

3 at the right end of C3 × [0, 3/4], as a plug at the end of a
pipe. Figure 8 shows the set

M̂1 ∪ (C∗
3 × [3/4 − 1/8, 3/4]),

which in panel (a) has been pictured out of its position for clarity and in panel (b)
has been drawn at its definitive location, neatly fitting at the end of C3 × [0, 3/4].

Notice that C∗
3 × [3/4 − 1/8, 3/4] is indeed a thickened copy of C∗

3 aligned flush
with the right end of C3 × [0, 3/4] because both extend up to the plane z = 3/4. For
the sake of brevity we will sometimes refer to these sets as the thickened C∗

3 and
the extruded C3, respectively.

The same process has to be done now with C4, whose capping set C∗
4 consists of

two disks. Figure 9 shows the set

N1 := M̂1 ∪ (C∗
3 × [3/4 − 1/8, 3/4]) ∪ (C∗

4 × [1− 1/8, 1]),

which is precisely the manifold N1 that we were looking for. This finishes the
splitting construction.

C4 × [0, 1]

C∗
4 × [1− 1/8, 1]

(a)

(b)

Figure 9. Capping the holes in the extruded C4
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Observe that the amount of extrusion of the Ci is smaller for the innermost
components and bigger for the outermost ones. This is important to guarantee that,
as is the case in our example, the thickened C∗

4 intersects neither the extruded C1

and C2 nor the extruded and capped C3 (it is instructive to think what would have
happened if C3 had been extruded farther to the right than C4). This geometric
fact is required to prove the inequality

rk H1(N1) + rk H1(N2) ≤ rk H1(N),

which is where the subadditivity property ultimately stems from.

7.3. The splitting construction (formal version). We now abandon the simple
situation just considered and set ourselves in the case of a completely general tame
decomposition K = K1 ∪K2.

Step 1. Recall that a subset X of Y is collared in Y if there exists an embedding
c : X×[0, 1) −→ Y onto an open neighbourhood ofX in Y and such that c(x, 0) = x
for every x ∈ X (see for instance the paper by Brown [4, p. 332]).

Lemma 27. Let N ⊆ R3 be a compact polyhedral 3–manifold such that N ∩S ⊆ Ṡ.
Assume that N has no vertices in S. Then N ∩ S is a compact 2–manifold that is
collared both in N ∩Q1 and in N ∩Q2.

Proof. ∂N is a union of triangles that are pairwise disjoint or meet in a single
common edge or a single common vertex. Since ∂N has no vertices in S, each of its
triangles meets S in a straight segment; thus ∂N ∩S is a union of straight segments
any two of which are either disjoint or meet in a single common endpoint. Each
edge in ∂N belongs to exactly two triangles because ∂N has no boundary, so each
vertex in ∂N∩S belongs to exactly two segments. Consequently ∂N∩S is a disjoint
union of polygonal simple closed curves. Since ∂N ∩ S is precisely the topological
frontier of N ∩ S in S, we conclude that the latter is a compact 2–manifold with
boundary.

We now prove that N ∩ S is collared in N ∩Q1 (the argument for N ∩Q2 being
entirely analogous). By a theorem of Brown [4, Theorem 1, p. 337], which was given
a simpler proof by Connelly [5], it is enough to show that N ∩ S is locally collared
in N ∩Q1. That is, we need to show that every p ∈ N ∩ S has a neighbourhood U
in N ∩ S that is collared in N ∩ Q1. But this is a straightforward consequence of
the fact that each simplex in the triangulation of N meets S transversally. �

Proposition 28. Suppose K = K1 ∪ K2 is a tame decomposition. Then K has
arbitrarily small pm–neighbourhoods N such that:

(i) N ∩ S is a compact 2–manifold,
(ii) N ∩ S is collared in N ∩Q1 and in N ∩Q2.

Furthermore, if r(K) < ∞, then one can achieve

(iii) rk H1(N) = r(K).

Proof. Let U be a neighbourhood of K and pick a pm–neighbourhood N of K
contained in U . Since K ∩ S ⊆ Ṡ because of tameness, we can take N so small
that N ∩ S ⊆ Ṡ. If r(K) < ∞, by Proposition 9 we are entitled to assume that
rk H1(N) = r(K).

To obtain (i) and (ii) we only need to show that we can choose N satisfying the
hypothesis of Lemma 27, namely, that N does not have any vertices in S. Since
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N has only finitely many vertices, there are arbitrarily small values of δ ≥ 0 such
that δ is different from the z–coordinates of all the vertices of N . If tδ : R3 −→ R3

denotes the translation tδ(x, y, z) := (x, y, z−δ), then tδ(N) is a polyhedral manifold
that has no vertices in S, so by Lemma 27 conditions (i) and (ii) are satisfied.
A judicious choice of sufficiently small δ will also guarantee that tδ(N) is still a
neighbourhood of K contained in U . Clearly tδ(N) is homeomorphic to N and so
rk H1(tδ(N)) = rk H1(N) = r(K), which shows that (iii) is also satisfied. �

Proposition 29. Suppose K = K1 ∪ K2 is a tame decomposition. Let U1 and
U2 be neighbourhoods of K1 and K2 respectively. Then K has arbitrarily small
pm–neighbourhoods N that can be written as N = M1 ∪M2, where:

(i) K1 ⊆ M1 ⊆ U1 and K2 ⊆ M2 ⊆ U2,

(ii) M1 ∩M2 = N ∩ S ⊆ Ṡ,
(iii) M1 ∩Q ⊆ Q1 and M2 ∩Q ⊆ Q2,
(iv) M1 and M2 are compact polyhedral 3–manifolds,
(v) N ∩ S is a 2–manifold that is collared in M1 and M2.

Furthermore, if r(K) < ∞, then one can achieve

(vi) rk H1(N) = r(K).

Proof. Possibly after reducing U1 and U2 we may assume that they are polyhedral
and so small that U1 ∩ U2 ⊆ int Q, U1 ∩ ∂Q ⊆ Q1 and U2 ∩ ∂Q ⊆ Q2.

Let V := (U1 − int Q2) ∪ (U2 − int Q1). We claim that V is a neighbourhood
of K. Pick a point p ∈ K, and assume first that p ∈ K1 −K2. Then p �∈ Q2 and
so it has an open neighbourhood W contained in U1 and disjoint from Q2; hence
W ⊆ V . The same holds true for p ∈ K2 − K1. Finally, let p ∈ K1 ∩ K2. Then
p ∈ S and it has an open neighbourhood W contained in U1 ∩ U2. Since

W = (W − int Q2) ∪ (W − int Q1)

it follows that

W ⊆ (U1 − int Q2) ∪ (U2 − int Q1) = V.

Let N be a pm–neighbourhood of K contained in V and so small that N ∩ S ⊆
U1 ∩ U2. We can assume that N satisfies conditions (i), (ii) and (if r(K) < ∞)
(iii) of Proposition 28. Let M1 := (N ∩U1)− int Q2 and M2 := (N ∩U2)− int Q1.

(i) Since K1∩ int Q2 = ∅, we see that K1 ⊆ M1. Also M1 ⊆ U1 by construction.
Similarly one proves that K2 ⊆ M2 ⊆ U2.

(ii) Clearly M1 ∩ M2 = (N ∩ U1 ∩ U2) − (int Q1 ∪ int Q2). Notice that since
U1 ∩ U2 ⊆ int Q, it follows that M1 ∩M2 ⊆ N ∩ S. To prove the reverse inclusion,
recall that we assumed N ∩ S ⊆ U1 ∩ U2. Since N ∩ S is disjoint from int Q1 and
int Q2, it follows that N ∩ S ⊆ M1 ∩M2.

(iii) Observe that M1 ∩ Q = (N ∩ U1) ∩ (Q1 ∪ ∂Q). The assumption that
U1 ∩ ∂Q ⊆ Q1 then implies that M1 ∩ Q = (N ∩ U1) ∩ Q1 ⊆ Q1. Similarly one
proves M2 ∩Q ⊆ Q2.

(iv)M1 andM2 are polyhedra because they are the intersection of the polyhedron
N with the polyhedra U1 − int Q2 and U2 − int Q1. It remains to show that they
are also 3–manifolds. Observe that M1 ∩ S = N ∩ S. Since N ∩ S is collared
in N ∩ Q1, there is a neighbourhood V1 of N ∩ S in N ∩ Q1 homeomorphic to
(N ∩ S) × (−1, 0]. Also N ∩ S is a 2–manifold, and so it follows that V1 is a
3–manifold (with boundary). M1 − S is a 3–manifold because it coincides with
N −M2, which is open in the 3–manifold N . As M1 is covered by the interiors of
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V1 and M1 − S, we conclude that M1 is a 3–manifold. The same argument works
for M2. �
Step 2. Suppose that C1, . . . , Cr are the connected components of a compact 2–
manifold contained in R

2. For i �= j we have ∂Ĉi ∩ ∂Ĉj ⊆ Ci ∩Cj = ∅, so the disks

Ĉi and Ĉj have to satisfy precisely one of the following three alternatives: either

Ĉi ⊆ int Ĉj or Ĉj ⊆ int Ĉi or Ĉi ∩ Ĉj = ∅. In the first case we shall say that Ci is
interior to Cj , in the second one that Cj is interior to Ci and in the third one that
Ci and Cj are indifferent. The following result is very easy to prove by induction:

Lemma 30. The connected components of a compact 2–manifold contained in R2

may be labeled C1, . . . , Cr in such a way that if Ci is interior to Cj, then i < j.

Step 3. Now we are ready to define N1 and N2. Denote by C1, . . . , Cr the com-
ponents of N ∩ S and by C∗

i their capping sets, as usual. By Lemma 30 we can
assume that the Ci are ordered in such a way that if Ci is interior to Cj , then i < j.
Fix 0 < ε < 1, which later we will need to adjust.

First stage. Let

M̂1 := M1 ∪
r⋃

i=1

(
Ci ×

[
0, ε

i

r

])
.

As explained earlier, M̂1 results from the extrusion of the Ci along the z axis. The
innermost components of N ∩ S (those with smaller i) are extended only a little,
whereas the outermost components are extended farther.

Remark 31. There exist homeomorphisms h1 : M1 −→ M̂1 and h2 : M2 −→ M̂2

such that h1(p, 0) =
(
p, i

r

)
for p ∈ Ci and similarly h2(p, 0) =

(
p,− i

r

)
for p ∈ Ci.

Remark 31 is a fairly standard exercise in using the collar of N ∩ S in M1 and
M2, which we omit. The interested reader can find the detailed argument for a
similar situation in a paper by Sikkema [28, Theorem 2, p. 400].

Second stage. Let

P1 :=

r⋃
i=1

(
C∗

i ×
[
ε

(
i

r
− 1

2r

)
, ε

i

r

])

and, finally, define
N1 := M̂1 ∪ P1.

As before, we call Ci ×
[
0, ε i

r

]
the extruded Ci and C∗

i ×
[
ε
(
i
r − 1

2r

)
, ε i

r

]
the

thickened C∗
i .

Remark 32. The thickened C∗
i meet M̂1 in a disjoint union of annuli, precisely one

for each of the thickened disks in C∗
i .

Remark 32 should be geometrically clear, but nevertheless we prove it formally.
Obviously the thickened C∗

i are disjoint from M1, so it is enough to study their
intersection with the extruded C∗

j . Assume that

∅ �=
(
C∗

i ×
[
ε

(
i

r
− 1

2r

)
, ε

i

r

])
∩
(
Cj ×

[
0, ε

j

r

])

or, equivalently,

∅ �= (C∗
i ∩ Cj)×

([
ε

(
i

r
− 1

2r

)
, ε

i

r

]
∩
[
0, ε

j

r

])
.
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Each of the factors of the product has to be nonempty; in particular C∗
i ∩Cj �= ∅.

Suppose i �= j. Then ∂C∗
i ∩ ∂Cj ⊆ ∂Ci ∩ ∂Cj = ∅ and, since Cj is connected, it

must be wholly contained in one of the disks whose union is C∗
i . As Ĉj is the

smallest disk that contains Cj , we conclude that Ĉj ⊆ C∗
i ⊆ int Ĉi, so that Cj is

interior to Ci and thus j < i because of the choice of the ordering C1, . . . , Cr. Then
j ≤ i− 1, which implies that the intervals

[
ε
(
i
r − 1

2r

)
, ε i

r

]
and

[
0, ε j

r

]
are disjoint.

Hence the above intersection is empty, a contradiction, and we conclude that if the
thickened C∗

i meets the extruded Cj , then i = j. In that case their intersection is(
C∗

i ×
[
ε

(
i

r
− 1

2r

)
, ε

i

r

])
∩
(
Ci ×

[
0, ε

i

r

])
= ∂C∗

i ×
[
ε

(
i

r
− 1

2r

)
, ε

i

r

]
,

which is just a disjoint union of annuli, one for each component of C∗
i . The claim

of Remark 32 follows.

An analogous process has to be performed on M2. Thus we let

M̂2 := M2 ∪
r⋃

i=1

(
Ci ×

[
−ε

i

r
, 0

])
,

P2 :=

r⋃
i=1

(
C∗

i ×
[
−ε

i

r
,−ε

(
i

r
+

1

2r

)])
,

and

N2 := M̂2 ∪ P2.

7.4. The proof of Theorem 26. To finish this section we put all the pieces
together. First we show that N1 and N2 satisfy property (S1) of Theorem 26.

Proposition 33. N1 and N2 have property (S1),

rk H1(N1) + rk H1(N2) ≤ rk H1(N).

Proof. Consider the compact 3–manifold N ′ obtained from the disjoint union
N1

∐
N2 by identifying each

(
p, i

r

)
∈ Ĉi ×

{
i
r

}
⊆ N1 with its corresponding(

p,− i
r

)
∈ Ĉi ×

{
− i

r

}
⊆ N2 via an equivalence relation ∼. This process cannot

generally be performed in R
3, but of course it can be done in an abstract way.

Identifying N1, N2 and all of their subsets with their images in N ′ we may
write N ′ = N1 ∪ N2, where N1 ∩ N2 is a disjoint union of disks. In particular
H1(N1 ∩N2) = 0, and then from the Mayer–Vietoris exact sequence

H1(N1 ∩N2) −→ H1(N1)⊕H1(N2) −→ H1(N
′)

we see that the arrow connecting the last two terms in the sequence is injective, so
rk H1(N1) + rk H1(N2) ≤ rk H1(N

′).

Recall that N1 = M̂1 ∪ P1 and N2 = M̂2 ∪ P2. Let us denote by M̂ and P
the result of performing on M̂1

∐
M̂2 and P1

∐
P2, respectively, the identifications

prescribed by ∼. Clearly N ′ = M̂ ∪ P .
Each component of P is a 3–ball, so H1(P ) = 0. It follows from Remark 32 that

each component of M̂ ∩P is an annulus that is contained in one of the components
of P , and no component of P contains more than one of these annuli. Hence the
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inclusion induced map H0(M̂ ∩ P ) −→ H0(P ) is injective. Thus in the Mayer–
Vietoris exact sequence

H1(M̂)⊕H1(P ) = H1(M̂) −→ H1(N
′) −→ H0(M̂ ∩ P ) −→ H0(M̂)⊕H0(P )

we see that the rightmost arrow is injective, so the leftmost one is surjective and
consequently rk H1(N

′) ≤ rk H1(M̂).
The two homeomorphisms h1 and h2 mentioned in Remark 31 can be pasted

together to produce a homeomorphism h : N −→ M̂ . In particular, rk H1(N) =

rk H1(M̂). Together with the two other inequalities obtained earlier, we have that

rk H1(N1) + rk H1(N2) ≤ rk H1(N
′) ≤ rk H1(M̂) = rk H1(N),

as was to be proved. �

There is a hypothesis for the subadditivity theorem that we have not used yet,
namely that Ȟ1(K1 ∩ K2) = 0. It is only now, to show that N1 and N2 satisfy
the smallness condition (S2) of Theorem 26, that this hypothesis comes into play.
We want to restate it in a more convenient fashion that follows immediately from
Alexander duality in S2.

Remark 34. K1 ∩K2 does not separate the square S.

Lemma 35. Let L be a nonseparating compact subset of R2. Then L has arbitrarily
small neighbourhoods that are finite unions of disjoint compact disks.

Proof. By the frame theorem [17, Theorem 6, p. 72] L has arbitrarily small m–
neighbourhoods E with the property that different components of R2 − E lie in
different components of R2 − L. Since R2 − L is connected by hypothesis, R2 − E
is connected too. The components of E are disks with holes, but since E does not
disconnect R2, it follows that they are actually disks. �

Proposition 36. Property (S2) holds: given V1 and V2 open neighbourhoods of K1

and K2, there exists a V open neighbourhood of K such that if N ⊆ V one can
achieve, by choosing ε > 0 sufficiently small at Step 3, that N1 ⊆ V1 and N2 ⊆ V2.

Proof. This will follow rather easily once we establish the following.

Claim. If W is a neighbourhood of N ∩ S, an appropriate choice of ε > 0 in Step
3 yields

N1 ⊆ M1 ∪W and N2 ⊆ M2 ∪W.

Proof. By Lemma 35 there is a finite union of disjoint compact disks E that is a
neighbourhood of K ∩ S and is contained in N ∩ S, and consequently also in W .
Choose 0 < ε < 1 such that E × [−ε, ε] ⊆ W .

Pick any Ci. Since Ĉi contains both Ci and C∗
i (actually, it is the union of both

sets), we have
r⋃

i=1

(
Ci ×

[
0, ε

i

r

])
⊆ Ĉi × [0, ε]

and

P1 =

r⋃
i=1

(
C∗

i ×
[
ε

(
i

r
− 1

2r

)
, ε

i

r

])
⊆ Ĉi × [0, ε].

25



Consequently N1 ⊆ M1 ∪ (Ĉi × [0, ε]). Now, Ci is a connected subset of E, which

is a union of disks; hence Ci is contained in a disk D ⊆ E. Since Ĉi is the smallest
disk that contains Ci, it follows that Ĉi ⊆ D ⊆ E. Hence

N1 ⊆ M1 ∪ (Ĉi × [0, ε]) ⊆ M1 ∪ (E × [0, ε]) ⊆ M1 ∪W.

An analogous argument works for N2.

We can now finish the proof of the proposition. Clearly there exists an open
neighbourhood V of K such that if N ⊆ V , then M1 ⊆ V1 and M2 ⊆ V2. Letting
W := V1 ∩ V2, which is a neighbourhood of M1 ∩M2 = N ∩ S, and applying the
claim above there exists ε > 0 such that N1 ⊆ M1 ∪W and N2 ⊆ M2 ∪W . Thus

N1 ⊆ M1 ∪W ⊆ V1 ∪W = V1 and N2 ⊆ M2 ∪W ⊆ V2 ∪W = V2.

�

8. Balls and spheres that cannot be attractors

The classical Jordan curve theorem states that a simple closed curve γ in the
sphere S2 separates it into exactly two connected components U1 and U2, called the
complementary domains of γ, whose topological boundaries coincide with γ. This
turns out to be much more general: a connected, compact n–manifold M ⊆ Sn+1

separates Sn+1 into exactly two complementary domains whose topological bounda-
ries coincide with M . The proof is homological in nature and depends on Alexander
duality (see the argument before Proposition 39 and the proof of Lemma 40).

The Schönflies theorem improves on the Jordan curve theorem by being more
precise about the nature of U1 and U2. Namely, in two dimensions it states that
the closures of the two complementary domains of a simple closed curve γ ⊆ S2 are
disks. Alexander tried to generalize this result to higher dimensions and proved
it for polyhedral spheres S in S

3 (we have used this result in proving Lemma 19
earlier). However, he also discovered that there exist nonpolyhedral spheres for
which the Schönflies theorem is not true. In a beautiful paper [1] he described
an embedding S∗ of the sphere in S3 (the horned sphere of Alexander) such that
one of its complementary domains is not simply connected, so its closure cannot be
homeomorphic to a ball. This shows that the Schönflies theorem is false, in general,
in S3. The closure B∗ of the other complementary domain is homeomorphic to a
ball, which we call the Alexander ball (see Figure 11). In this section we shall prove
that neither S∗ nor B∗ can be attractors.

8.1. The ball of Alexander cannot be an attractor. We briefly recall how B∗

is defined. Start with a graph Γ as shown in Figure 10(a). It is a dyadic tree that
keeps branching towards its set of limit points, which is a Cantor set C. Consider
now this very same tree, but embedded differently in R3, like Γ∗ in Figure 10(b).
At each branching stage every pair of innermost branches gets tangled.

Finally, let B∗ be a sort of tubular neighbourhood of Γ∗ whose diameter keeps
decreasing as we approach the limit points of Γ∗, that is, the Cantor set C. The
diameter of B∗ at those points is zero; B∗ has pointy tips at C. A schematic picture
of B∗ is shown in Figure 11. One can prove that B∗ is homeomorphic to a ball
so that in particular ∂B∗ is homeomorphic to a sphere, but R3 −B∗ is not simply
connected because it is homeomorphic to R3 − Γ∗, which is not simply connected
[2, §1, pp. 619 and 620]. In particular, B∗ is not cellular.
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(a) (b)

Γ Γ∗

︸ ︷︷ ︸
C

︸ ︷︷ ︸
C

Figure 10. The construction of Alexander’s ball B∗ ⊆ R3 (first stages)

Figure 11. The ball of Alexander B∗ (final stage)

Theorem 37. The ball of Alexander B∗ cannot be an attractor.

Proof. It is enough to show that r(B∗) = ∞. Begin by writing B∗ as the union
B∗ = B∗

1 ∪ B∗
2 as shown in Figure 12. This decomposition is clearly tame. Figure

13 suggests how to prove that both B∗
1 and B∗

2 are ambient homeomorphic to B∗.
We have r(B∗) = r(B∗

1) = r(B∗
2) by invariance, and also r(B∗

1)+ r(B∗
2) ≤ r(B∗)

by subadditivity. Therefore

2r(B∗) ≤ r(B∗),

which implies that either r(B∗) = 0 or r(B∗) = ∞. Since B∗ is not cellular, by
nullity we have r(B∗) �= 0. Hence r(B∗) = ∞ and we are finished. �
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B∗
1 B∗

2

Figure 12. A tame decomposition of B∗

Figure 13. Showing that B∗
2 is ambient homeomorphic to B∗

Theorem 37 illustrates again how a perfectly acceptable set, such as a ball, can
be embedded in R

3 in such a way that it cannot be an attractor.
We stated earlier, while dealing with the subadditivity property, that it does not

generally hold for decompositions that are not tame. Now we are in a position to
prove this by example.

Example 38. There is a decomposition of the standard unit ball K into two
continua K1 and K2 that meet in a disk and such that r(K1) + r(K2) �≤ r(K).
Thus the subadditivity property does not hold for this decomposition.
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Proof. Start with the unit ball K. To define K1, refer to Figure 14 and dig a hole
in K following the pattern of the ball of Alexander. K2 is the part of K that is
dug out in this process, that is, K2 := K −K1. Although K1 and K2 are shown
separately in Figure 14 for clarity purposes, we remark that K2 actually fills in the
hole in K1. Notice that K2 is ambient homeomorphic to the ball of Alexander.

=
⋃

K K1 K2

Figure 14. A decomposition of K that is not tame

The intersection K1∩K2 is precisely fr K2 (the topological frontier of K2) minus
the interior of the disk that lies at its top. It is a consequence of the theorem on
invariance of domain that fr K2 agrees with the boundary of the manifold K2, so
fr K2 is a 2–sphere and consequently K1 ∩K2 is a 2–sphere minus a disk, which is
again a disk (this follows from the Schönflies’ theorem in the plane).

We have r(K1) ≥ 0 by definition, r(K) = 0 (this is trivial) and r(K2) = ∞ by
Theorem 37. Therefore

∞ = r(K1) + r(K2) �≤ r(K) = 0,

and so the subadditivity property does not hold for this decomposition. �
8.2. The sphere of Alexander cannot be an attractor. The boundary of the
ball of Alexander B∗ is the sphere of Alexander S∗. We want to show that S∗

cannot be an attractor by proving that r(S∗) = ∞.
All the work done so far translates verbatim to compact subsets of S3 rather

than R3. Moreover, if K ⊆ R3, then r(K) is the same regardless of whether we
consider K as a subset of R3 or S3. Changing our ambient space from R3 to S3 is
the most natural setting for what follows.

By a surface we understand a compact 2–manifold without boundary. When
S ⊆ S3 is a connected surface, using Alexander duality and Poincaré duality we
have

H̃0(S
3 − S) = H2(S) = H0(S) = Z2,

so S separates S3 into two complementary domains U1 and U2. The closures U1, U2

are compact subsets of S3, so r(U1) and r(U2) are defined. It turns out that there
is a very simple relation among these numbers and r(S):

Proposition 39. Let S ⊆ S
3 be a connected surface and U1, U2 its complementary

domains. Then
r(S) = r(U1) + r(U2).

Before proving this result we need Lemma 40 below. Its proof is an adaptation
of an argument contained in the book by Munkres [19, Theorem 36.3, p. 205].
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Lemma 40. Let U1 and U2 be the complementary domains of a connected surface
S ⊆ S3. Then their topological frontiers fr U1 and fr U2 coincide with S.

Proof. The only nontrivial part is to show that fr U1 and fr U2 are not only subsets
of S, but that they are all of S. To prove this, observe first that the compact set
C := fr U1 separates S3, for no point p ∈ U1 can be joined to a point q ∈ U2

with a path that does not meet C. Thus by Spanier’s version of Alexander duality
[29, Theorem 17, p. 296] in S3 we see that Ȟ2(C) �= 0. Again by Alexander duality,
but now in the surface S, it follows that H0(S, S − C) = Ȟ2(C) �= 0. Since S is
connected, this requires that S − C = ∅, so C = S as we wanted to prove. An
analogous argument shows that fr U2 = C. �

Proof of Proposition 39. We prove both inequalities.
(≤) It will be enough to show that for every neighbourhood V of S there is an

m–neighbourhood N of S contained in V such that rk H1(N) ≤ r(U1) + r(U2).
We assume r(U1), r(U2) < ∞, for otherwise there is nothing to prove. Since

fr U1 ⊆ S is contained in int V , the setW1 := U1∪V is a neighbourhood of U1. Thus
there is an m–neighbourhood N1 of U1 such that N1 ⊆ W1 and rk H1(N1) = r(U1).
Similarly, there is an m–neighbourhood N2 of U2 such that N2 ⊆ W2 := U2 ∪ V
and rk H1(N2) = r(U2).

Let N := N1∩N2, which is an m–neighbourhood of S contained in W1∩W2 = V .
Since S3 = N1 ∪N2, there is a Mayer–Vietoris exact sequence

H2(S
3) = 0 −→ H1(N) −→ H1(N1)⊕H1(N2),

whence rk H1(N) ≤ rk H1(N1) + rk H1(N2) = r(U1) + r(U2).
(≥) We assume r(S) < ∞, for otherwise there is nothing to prove.
Let V1 and V2 be neighbourhoods of U1 and U2 respectively. U1 and U2 both

contain S by Lemma 40, so V1 ∩ V2 is a neighbourhood of S. Thus there exists an
m–neighbourhood N of S such that N ⊆ V1 ∩ V2 and rk H1(N) = r(S). Denote
N1 := U1 ∪ N and N2 := U2 ∪ N . These are m–neighbourhoods of U1 and U2

respectively. Observe that N1 ∩ N2 = N and N1 ∪ N2 = S3, so from the Mayer–
Vietoris sequence

H1(N) −→ H1(N1)⊕H1(N2) −→ H1(S
3) = 0

we see that rk H1(N1) + rk H1(N2) ≤ rk H1(N). Since N1 ⊆ V1 and N2 ⊆ V2, we
conclude that r(U1) + r(U2) ≤ r(S). �

Theorem 41. The sphere of Alexander S∗ cannot be an attractor.

Proof. The closure of one of the complementary domains of S∗ is precisely the ball
of Alexander B∗. From Theorem 37 we know r(B∗) = ∞, and then Proposition 39
implies r(S∗) ≥ r(B∗) = ∞. �

9. Comparing r(K) and Čech cohomology

The definition of r(K) suggests that r(K) encodes two different pieces of infor-
mation about K: it captures its “intrinsic complexity” as measured by rk Ȟ1(K),
and, in addition, it includes an extra term that accounts for the “crookedness” of
K as a subset of R3. On these intuitive grounds we may expect the inequality
r(K) ≥ rk Ȟ1(K) to hold true, and this is actually the case:

Theorem 42. Let K be a compact subset of R3. Then r(K) ≥ rk Ȟ1(K).
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The proof of this inequality depends on Lemma 43, which is an easy algebraic
result. However, it should be noted that it makes essential use (for the only time
in this paper) of the fact that we are computing homologies and cohomologies
with coefficients in a field and therefore the homology and cohomology groups are
actually vector spaces. Recall that the dimension of a vector space V agrees with
its rank when viewed as an abelian additive group.

Lemma 43. Let

V1
ϕ1−→ V2

ϕ2−→ . . .
ϕk−1−→ Vk

ϕk−→ . . .

be a direct sequence of vector spaces and let V be its direct limit. If dim Vk ≤ r < ∞
for every k, then dim V ≤ r.

Proof. By the definition of direct limit, each v ∈ V is of the form ψk(uk) for suitable
k and uk ∈ Vk. It is an easy exercise to see that this holds more generally: if S ⊆ V
is finite, then S = ψk(U) for suitable k and U ⊆ Vk.

Now suppose that dim V > r, so there exists a linearly independent set S ⊆ V
with r+1 elements. Then S = ψk(U) for suitable k and U ⊆ Vk, and U must contain
at least r + 1 linearly independent elements. This contradicts the hypothesis that
dim Vk ≤ r. �

Proof of Theorem 42. If r(K) = ∞ there is nothing to prove, so we assume that
r(K) = r < ∞. By Proposition 11(ii) K has a pm–neighbourhood basis {Nk} such
that rk H1(Nk) = r for every k, which implies rk H1(Nk) = r by the universal
coefficient theorem. We may as well assume that Nk+1 ⊆ Nk for each k, and then
by the continuity property of Čech cohomology Ȟ1(K) is the direct limit of the
sequence

H1(N1) −→ H1(N2) −→ H1(N2) −→ . . .

where the bonding maps are induced by inclusions. Then Lemma 43 implies that
rk Ȟ1(K) ≤ r = r(K). �

Of course, the inequality in Theorem 42 may be strict: the nonattracting arcs,
balls and spheres constructed earlier all have trivial Ȟ1 and infinite r. When
rk Ȟ1(K) < ∞ it will be convenient to denote by c(K) the nonnegative integer,
possibly ∞, such that

r(K) = rk Ȟ1(K) + c(K).

We shall accept that c(K) quantifies the “crookedness” of K as a subset of R3

much in the same way as r(K) does, but having factored out the contribution due
to the “intrinsic complexity” of K. Clearly c inherits from r both the invariance
and the finiteness properties.

It is natural to expect that polyhedra should have c = 0. This turns out to be
true:

Proposition 44. Let K ⊆ R3 be a polyhedron. Then c(K) = 0.

Proof. It is well known that rk Ȟ1(K) = rk H1(K) < ∞ for a polyhedron, so c(K)
is defined. Let {Nk} be a pm–neighbourhood basis of K whose members are all
regular neighbourhoods of K. Each inclusion K ⊆ Nk is a homotopy equivalence
so rk Ȟ1(Nk) = rk Ȟ1(K) for every k, which easily implies r(K) ≤ rk Ȟ1(K).
Together with Theorem 42 this shows that r(K) = rk Ȟ1(K) and c(K) = 0. �

Another interesting class of sets for which c = 0 is that of attractors for flows.
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Proposition 45. Let K ⊆ R3 be an attractor for a flow. Then c(K) = 0.

Proof. SinceK is also an attractor for the time-one map of the flow, by the finiteness
property r(K) < ∞ so c(K) is defined. K has arbitrarily small m–neighbourhoods
P such that the inclusion K ⊆ P induces isomorphisms in Čech cohomology [27,
Proposition 6 and Remark 9, p. 6168], which implies r(K) ≤ rk Ȟ1(K). Together
with Theorem 42 this proves that c(K) = 0. �

Proposition 45 can be used to show that certain sets which are attractors for
homeomorphisms cannot be attractors for flows. This is the case of the dyadic
solenoid and the Whitehead continuum, as we now describe.

The dyadic solenoid. Let T ⊆ R3 be a solid torus, and let f : R3 −→ R3 be a
homeomorphism such that f(T ) winds twice inside T as shown in Figure 15. The
set K :=

⋂
k f

k(T ) is known as the dyadic solenoid, and it is an attractor for f by
its very construction.

T

f(T )

Figure 15. Constructing the dyadic solenoid

Example 46. The dyadic solenoid K has c(K) = 1. Thus by Proposition 45 it
cannot be an attractor for a flow, although it is an attractor for a homeomorphism.

Proof. For each k let Nk be the solid torus fk(T ). Clearly {Nk} is an m–neighbour-
hood basis of K, so r(K) ≤ 1 because rk H1(Nk) = 1 for every k. Using the
continuity property of Čech cohomology it is very easy to see that Ȟd(K;Z2) = 0
for every d ≥ 1 but Ȟ1(K;Z) �= 0. The latter implies that K is not cellular, and
then by the nullity property r(K) ≥ 1. It follows that r(K) = 1 and c(K) = 1
too. �

The Whitehead continuum. Let T ⊆ R3 be a solid torus, and let f : R3 −→ R3

be a homeomorphism such that f(T ) lies inside T as shown in Figure 16. The set
K :=

⋂
k f

k(T ) is known as the Whitehead continuum, and it is an attractor for f
by its very construction.

Example 47. The Whitehead continuum K has c(K) = 1. Thus by Proposition 45
it cannot be an attractor for a flow, although it is an attractor for a homeomorphism.

Proof. As in Example 46, r(K) ≤ 1. Each torus fk+1(T ) is nullhomotopic inside the
previous one fk(T ), so Ȟd(K;Z) = 0 for every d ≥ 1. The Whitehead continuum
is not cellular [14, p. 156], so by the nullity property r(K) = 1. Thus c(K) = 1. �

If the reader is familiar with shape theory [3] he may want to consider the
following remark. There is a result of Günther and Segal [11, Corollary 1, p. 324]
which states that every attractor for a flow on a manifold has the shape of a (finite)
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T

f(T )

Figure 16. Constructing the Whitehead continuum

polyhedron, so in particular it has finitely generated Čech cohomology in every
dimension and for every coefficient group (this holds true even if attractors are
allowed to be mildly unstable [18, 26]). Since the dyadic solenoid has nonfinitely
generated Ȟ1(K;Z), it follows that it cannot be an attractor for a flow [11, Example
3, p. 325] which agrees with Example 46. Conversely, Günther and Segal also show
that a (finite-dimensional, metrizable) compact set having the shape of a finite
polyhedron can be embedded in some Euclidean space in such a way that it is an
attractor for a suitable flow [11, Theorem 2, p. 327]. The Whitehead continuum does
have the shape of a finite polyhedron (it has the shape of a point), but according
to Example 47 it cannot be an attractor in R3. However, if K is thought of as a
subset of R4 (identifying R

3 with R
3 × {0} ⊆ R

4), then it becomes cellular and
it is an attractor for a suitable flow in R4. This shows how shape theory, which
is a topological invariant and cannot discriminate between K ⊆ R3 and K ⊆ R4,
cannot be used to analyze Example 47.

10. Final remarks and open questions

We finish this paper by stating some open questions.

10.1. Of course,

Question 1. Solve the characterization problem for M = R3.

Or even more ambitiously, solve the characterization problem when the dynamics
on the attractor is given:

Question 2. Assume K ⊆ R
3 is a compact set on which a homeomorphism

h : K −→ K is defined. Characterize when it is possible to extend h to a homeo-

morphism ĥ : R3 −→ R3 having K as an attractor.

There is a very interesting situation, related to the theory of partial differential
equations (PDEs), in which this question arises naturally. A PDE generates a flow
or semiflow on an infinite-dimensional phase space, but many of them (especially
those with a physical motivation) have finite-dimensional attractors. A copy K
of such an attractor can be embedded together with its dynamics in some finite-
dimensional Euclidean space E, and the question arises whether there exists a flow
in E havingK as an attractor and reproducing its dynamics. This can be considered
a “parametric version” of the extension problem posed above (with R3 replaced by
E). Heuristically, if such a flow exists, then a finite number of variables suffice
to describe completely the long-term behaviour of the original system modelled by
the PDE. The question was first studied by Eden, Foias, Nicolaenko and Temam
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[7] as well as Romanov [23], but only later [20–22] it was noticed that the way
K is embedded in E needs to be carefully controlled; it also became clear that
the mathematical language needed to describe how K should sit in E is still to
be developed. We hope that the ideas introduced in the present paper provide a
starting point for this task.

10.2. Suppose K is an attractor for f . Let N ⊆ A(K) be an m–neighbourhood of
K. Since K attracts N , there exists n0 ∈ N such that fn0(N) ⊆ int N . Letting
Nk := fkn0(N) we obtain (as in Lemma 12) a decreasing m–neighbourhood basis of
K all of whose members are homeomorphic to each other, but with the additional
property that fk provides a homeomorphism from the pair (N0, N1) onto the pair
(Nk, Nk+1). Less technically stated, {Nk} has the property that each Nk+1 lies in
Nk in the same way as N1 lies in N0.

Question 3. Is it possible to refine the definition of r(K) in such a way that it
accounts for the above observation?

Let us include a specific example to illustrate this question. Denote νk the
sequence of prime numbers 2, 3, 5, 7, 11, 13, . . .. Consider a solid torus T0 ⊆ R3.
Place in its interior another solid torus T1 that winds ν1 = 2 times around T0.
Then place in the interior of T1 another solid torus T2 that winds ν2 = 3 times
around T1, and so on. Repeating this construction one obtains a nested sequence
of tori {Tk}, each winding νk times around the previous one, whose intersection is
a compact set K. Clearly r(K) ≤ 1 < ∞, so r does not rule out the possibility
that K is an attractor, but our intuition tells us that it cannot because there is no
repeating pattern for how each Tk+1 lies in the previous Tk. A beautiful result of
Günther [10, Theorem 1, p. 653] confirms this intuition by an ingenious examination
of the structure of Ȟ1(K;Z).

10.3. Throughout the paper we have concentrated on discrete dynamical systems,
but the characterization problem makes perfect sense also in the context of contin-
uous dynamical systems: “Characterize topologically what compact sets K ⊆ R3

can be attractors for flows on R3”. Being an attractor for a flow is much more
restrictive than being an attractor for a homeomorphism (Examples 46 and 47 il-
lustrate this), which makes this version of the characterization problem easier to
deal with. It can be answered in the following terms:

Theorem ([27, Theorem 11, p. 6169]). A compactum K ⊆ R3 is an attractor
for a flow if and only if there exists a polyhedron P ⊆ R

3 such that S
3 − K is

homeomorphic to S3 − P .

The interesting point to be observed here is that whether K is an attractor for
a flow depends only on S3 −K.

Question 4. Suppose K,K ′ ⊆ R
3 are compacta such that S3−K and S

3−K ′ are
homeomorphic. Is it true that if K is an attractor for a homeomorphism, then so
must K ′?

If the answer to this question is negative (that is, if there exist compacta with
homeomorphic complements in S

3, one being an attractor and the other one not),
then the characterization problem cannot be solved in terms of invariants such as
r(K), for we saw earlier that these depend only on S3 −K (Theorem 15).
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10.4. If the reader is acquainted with the notions of wild and tame sets from geo-
metric topology he might have been reminded of them by the overall flavour of the
paper. Recall that a compact set K ⊆ R

3 is called tame if there exist a polyhedron
P ⊆ R3 and a homeomorphism h : R3 −→ R3 such that h(K) = P ; otherwise K is
said to be wild. It is almost unavoidable to wonder whether there is some relation
between these concepts and the characterization problem. One has the following
result:

Proposition ([27, Proposition 12, p. 6169]). Every tame set is an attractor for a
flow, hence also for a homeomorphism (namely, the time-one map of the flow).

This was essentially proved by Günther and Segal [11, Corollary 4, p. 327]. It
explains why all our examples of nonattracting sets are wild, although one should
not be misled to think that no wild set can be an attractor: for instance, the dyadic
solenoid is wild but it is an attractor, and it is even possible to construct wild arcs
that are attractors [27, Example 38, p. 6177].

The notions of tameness and wildness have local versions when applied to arcs
or spheres. An arc A ⊆ R3 is locally tame at a point p ∈ A if there exist a
neighbourhood U of p in R

3 and a homeomorphism h : R
3 −→ R

3 such that
h(U ∩ A) is contained in the x–axis. Similarly, a sphere S ⊆ R3 is locally tame at
a point p ∈ S if there exist a neighbourhood U of p in R3 and a homeomorphism
h : R3 −→ R3 such that h(U∩S) is contained in the xy–plane. In both cases, the set
of points at which the given set K is tame is an open subset of K; its complement
is a compact subset of K called the wild set of K.

Question 5. Is it possible to characterize when an arc or a sphere is an attractor
in terms of properties of their wild sets?

10.5. We used the Fox–Artin arc F shown in Figure 2 as a basis for our construction
of an arc that cannot be an attractor. It is fairly easy to construct a neighbourhood
basis of F comprised of double tori, so r(F ) ≤ 2. We also know that r(F ) ≥ 1
because F is not cellular.

Question 6. What is r(F )? Can F be an attractor?

Appendix: Alexander duality for manifolds with boundary

Lemma 48. Let N be a compact 3–manifold and S ⊆ int N a compact set. Then
Hd(N,S) = H3−d(N − S, ∂N).

Proof. ∂N is collared in N [5]. This means that there exists an embedding c :
∂N × [0, 1] −→ N such that c(p, 0) = p for every p ∈ ∂N . Since S is a compact
subset of int N , there exists ε > 0 such that c(∂N × [0, ε]) is disjoint from S.
The theorem on invariance of domain guarantees that U := c(∂N × [0, ε)) is an
open subset of N , and it is not difficult to check that N∗ := N − U is a compact
3–manifold contained in int N and containing S in its interior. The inclusions
N∗ ⊆ N and ∂N ⊆ N −N∗ are both homotopy equivalences.

The cohomology exact sequence for the triple (N,N∗, S) and the fact that
Ȟ∗(N,N∗) = 0 imply that Ȟd(N,S) = Ȟd(N∗, S). Using Spanier’s version of
Alexander duality [29, Theorem 17, p. 296] for the compact pair (N∗, S) in the
interior of the boundaryless manifold int N we have

Ȟd(N∗, S) = H3−d((int N)− S, (int N)−N∗).
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An easy exercise involving the collar c shows that H3−d((int N)−S, (int N)−N∗) =
H3−d(N − S,N −N∗) so

Ȟd(N∗, S) = H3−d(N − S,N −N∗),

which readily implies that

Ȟd(N,S) = H3−d(N − S, ∂N).

�
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