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todos los trámites que necesitaba. No me queda más que agradecerles muchı́simo por todo.

Al Consejo Nacional de Ciencia y Tecnologı́a de México (CONACYT) y al Instituto de
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Abstract

This dissertation focuses on studying two topics of large non-stationary Dynamic Factor

Models (DFMs). A very common practice when extracting factors from non-stationary

multivariate time series is to differentiate each variable in the system. As a consequence, the ratio

between variances and the dynamic dependence of the common and idiosyncratic differentiated

components may change with respect to the original components. In the first step, we analyze

the effects of these changes on the finite sample properties of several procedures to determine

the number of factors. In particular, we consider the information criteria of Bai and Ng (2002),

the edge distribution of Onatski (2010) and the ratios of eigenvalues proposed by Ahn and

Horenstein (2013). The performance of these procedures when implemented to differentiated

variables depends on both the ratios between variances and dependencies of the differentiated

factor and idiosyncratic noises. Furthermore, we also analyze the role of the number of factors

in the original non-stationary system as well as of its temporal and cross-sectional dimensions.

Finally, we implement the different procedures to determine the number of common factors in a

system of inflation rates in 15 euro area countries.

In the second step, we analyze and compare the finite sample properties of alternative factor

extraction procedures in the context of non-stationary DFMs. On top of considering procedures

already available in the literature, we extend the hybrid method based on the combination of

Principal Components and Kalman filter and smoothing algorithms to non-stationary models.

We show that, unless the idiosyncratic noise is non-stationary, procedures based on extracting

the factors using the non-stationary original series work better than those based on differenced

variables. The results are illustrated in an empirical application fitting non-stationary DFM to
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aggregate GDP and consumption of the set of 21 OECD industrialized countries. The goal is to

check international risk sharing is a short or long-run issue.
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Resumen

Esta tesis se centra en estudiar dos tópicos de Modelos de Factores Dinámicos (DFMs) cuando

el número de series de tiempo y su temporalidad es grande. Una práctica común cuando se

extraen factores en un sistema no estacionario, es diferenciar cada una de sus variables. Como

consecuencia, la relación entre las varianzas y la dinámica de dependencias tanto la parte común

como la del componente idiosincrático, ambos diferenciados, puede cambiar respecto a la de los

componentes originales. Primero, se analizarán los efectos muestrales que tiene esta práctica para

algunos procedimientos de determinación del número de factores. En particular, nos centramos

en analizar el funcionamiento de los criterios de información de Bai and Ng (2002), la diferencia

de valores propios de Onatski (2010) y las razones de valores propios propuesta por Ahn and

Horenstein (2013). Podemos concluir que cuando diferenciamos las variables, el funcionamiento

de estos procedimientos depende de las razones de varianza y de las dependencias de los

factores y errores idiosincráticos diferenciados. También analizamos el funcionamiento de los

procedimientos cuando se usan las observaciones originalmente no estacionarias. Finalmente,

implementamos estos procedimientos para determinar el número de factores en un sistema de

tasas de inflación de 15 paı́ses de la zona euro.

Posteriormente analizamos y comparamos el funcionamiento en muestras finitas de algunas

alternativas disponibles en la literatura para extraer factores comunes dentro del contexto de

DFMs no estacionarios. Adicionalmente, extendemos el método hı́brido basado en combinar

Componentes Principales y el suavizamiento de Kalman en modelos no estacionarios. Mostramos

que, al menos que los errores idiosincráticos sean no estacionarios, los procedimientos basados en

extraer los factores comunes usando series originalmente no estacionarias, funcionan mejor que
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los métodos que extraen los factores usando variables diferenciadas. Los resultados obtenidos

anteriormente son ilustrados para estimar un DFM no estacionario usando las variables del PIB

y consumo agregado de 21 paı́ses industrializados de la OCDE. El objetivo es determinar si el

riesgo internacional compartido es un fenómeno de corto o de largo plazo.
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Chapter 1

Introduction

1.1. Motivation

Dynamic Factor Models (DFMs) are useful for representing the dynamics of a group of N

correlated time series through a small number of underlying common factors. Nowadays in

economics, the availability of large amount of information collected during extended periods,

T , grants the opportunity to understand several economic phenomena in a better way. Hence,

researchers have the econometric tools which allow for the adequately modelling of large

amounts of data, while taking into account several features of that modelling, for instance:

the objectives, the economic theory which supports the inclusion of certain time series into a

multivariate system, the stochastic nature of the observations, the dimensionality, etc. Since a

large amount of time series data is presently available through statistical agencies, and over an

increasingly long timespan, we focus on factor models in which the number of time series and the

time dimension are large.

In economics, large DFMs have been mainly used with one of the following two objectives: i)

estimating the few underlying factors for macroeconomic policy making (for example: obtaining

the business cycle, lagging, coincident and leading indicators, instrumental variables, among

many other applications) and ii) forecasting macroeconomic variables. For instance, the goal
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2 CHAPTER 1. INTRODUCTION

of estimation is pursued in Bernanke and Boivin (2003), Artis et al. (2004), Lahiri and Yao (2004),

Bernanke et al. (2005), Favero et al. (2005) and Stock and Watson (2005) whereas forecasting is

explored by Stock and Watson (2002a,b), Marcellino et al. (2003), Schumacher (2005) and Boivin

and Ng (2006). Applications in other areas are given by Alonso et al. (2011), Garcı́a-Martos et al.

(2011), Mestekemper et al. (2013), Alonso et al. (2016), among many others.

A distinctive feature of macroeconomic time series, as is well known and documented in,

for example, Engle and Granger (1987), Kunst and Neusser (1997) and Johansen (1988, 1991), is

non-stationarity which entails the possibility of cointegration in multidimensional systems. Now,

cointegration may be regarded as a representation in terms of common factors as is done in Stock

and Watson (1988), Vahid and Engle (1993), Escribano and Peña (1994) and Gonzalo and Granger

(1995). This analogy suggests that the use of DFMs is, at least conceptually, not restricted to

stationary time series, and that it may prove fruitful when dealing with non-stationary vector

time series. However, the most popular way of dealing with large systems of non-stationary

macroeconomic time series is by differencing the variables in a univariate fashion. For some

recent references, see Breitung and Eickmeier (2011), Stock and Watson (2012a,b), Barhoumi et al.

(2013), Costantini (2013), Moench et al. (2013), Bräuning and Koopman (2014), Buch et al. (2014),

Poncela et al. (2014), Jungbacker and Koopman (2015) and Lahiri et al. (2015).

The main reason for this extended practice is that the factors are most commonly estimated

by Principal Components (PC), a technique which yields a robust asymptotic theory for this case.

Bai (2003) develops the inferential theory for large factor models, considering the PC estimator,

deriving the rate of convergence and the limiting distributions of the estimated factors, factor

loadings and common components. He shows that the factor estimates extracted using PC are

asymptotically equivalent to the maximum likelihood estimator. The results are consistent under

heteroscedasticity, and under weak serial and cross-sectional correlation in the idiosyncratic

errors. This allows us to carry out the corresponding and appropriate inference including

confidence intervals, hypothesis tests, etc.

In this dissertation, we study the effects of differencing non-stationary DFMs when



1.1. MOTIVATION 3

determining the number of common factors and estimating the factor space.

Modelling the levels of non-stationary time series through DFM representation, would involve

a model in which

Yt = PFt + εt,

Ft = ΦFt−1 + ηt,

εt = Γεt−1 + at.

where Yt = (y1t, . . . , yNt)
′
, εt = (ε1t, . . . , εNt)

′
and at = (a1t, . . . , aNt)

′
are N × 1 vectors, P =

(p1, . . . , pN )
′
is anN×rmatrix, Ft = (F1t, . . . , Frt)

′
and ηt = (η1t, . . . , ηrt)

′
, are r×1 vectors. Finally

Φ = diag(φ1, . . . , φr) and Γ = diag(γ1, . . . , γr) are r × r and N × N matrices respectively. In our

case, we focus on the case in which the main diagonals of Φ and/or Γ can contain 1’s, i.e., when the

common factors and/or the idiosyncratic components may be non-stationary. Note that the DFM

given by the previous equations is not identified because for any r × r non-singular matrix H ,

the series Yt can be expressed in terms of a new loading matrix and a new set of common factors,

Yt = P ∗F ∗t + εt, where P ∗ = PH and F ∗t = H−1Ft. Then, the DFM with factor loading matrix P ∗

and factors F ∗t is observationally equivalent to the original model. To solve this indentification

problem, a normalization is necessary to uniquely define the factors. For the restrictions used to

solve this identification problem see Bai (2004), Bai and Ng (2013) and Bai and Wang (2014).

It is interesting to observe that differencing a non-stationary system can introduce a trade-off

between the variance of the common component, PFt, and the variance of the idiosyncratic

component. This fact can affect the identification of the number of common factors. Furthermore,

differencing a cointegrated system may distort the inference and we can lose information by

removing the long-run relationship (Sims, 2012), which is crucial to understand the comovements

among variables.

In this context, the main objectives of this dissertation are the following:

1. Analyze the effects of stationary univariate transformations when determining the number
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of common factors

2. Analyze the finite sample performance of the non-stationary common factors estimation

approaches

3. Implement empirical applications for non-stationary systems

For the first objective, we analytically derive the eigenvalues of the covariance matrix,

analyzing the effects of the stationary univariate transformations. Furthermore, for the first

two objectives, we carry out Monte Carlo experiments considering several designs selected to

represent different situations that can potentially be encountered when dealing with the empirical

analysis of real macroeconomic variables. We consider different sample sizes and structure

dependence on Φ, Γ, Ση, Σa, where Ση and Σa are the covariance matrix of the disturbances

of the common factors and the idiosyncratic components respectively.

For the third objective, the empirical applications are based on a system of prices of 15

countries from the euro area with the goal of determining the number of common factors

and how these results can be affected by the treatment applied (differencing or not) to the

data. Furthermore, we study the risk sharing for a dataset from the Organisation for Economic

Co-operation and Development (OECD) for industrialized countries. We focus on income and

consumption variables. The goal of this exercise is to conclude whether international risk sharing

is a short or long-run phenomenon. This is a novel application given that risk sharing is frequently

studied as a short-run issue.

1.2. Determining the number of factors after stationary univariate

transformations

The appropriate determination of the number of factors, r, is crucial to obtain a consistent

estimation of the space spanned by the factors. In the context of large DFMs, there are several

alternative procedures designed to determine r. Bai and Ng (2008), Stock and Watson (2011),
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Breitung and Choi (2013), Bai and Wang (2016), among many others, give a review of procedures

for determining the number of factors, which basically consist in visual diagnostics and formal

tests based on the behavior of eigenvalues from the sample covariance matrix.

The most popular procedures for determining r are the criteria proposed by Bai and Ng (2002);

see Andersen et al. (2015), Everaert et al. (2015) and Panopoulou and Vrontos (2015) for some

recent applications. The Bai and Ng (2002) criteria are based on modifications of the Akaike (AIC)

and Bayesian (BIC) information criteria, taking into account the cross-sectional and temporal

dimensions of the dataset as arguments of the function penalizing overparametrization. Alessi

et al. (2010) propose a refinement of these criteria based on multiplying the penalty function

by a constant that tunes the penalizing power of the function itself. Furthermore, they suggest

estimating the number of factors using different subsamples. These criteria are linked to the

eigenvalues of the sample covariance matrix from the variables in the system. In particular, the

number of factors is selected as the number of eigenvalues larger than a threshold specified by

a penalty function. Alternative criteria based on random matrix theory and the behavior of the

eigenvalues of the sample data covariance matrix have been proposed by Kapetanios (2010) and

Onatski (2010). In this last paper he proposes an alternative estimator based on using differenced

adjacent eigenvalues arranged in descending order. More recently, Ahn and Horenstein (2013)

propose two alternative estimators based on ratios of adjacent eigenvalues. Other procedures to

detect the number of common factors are given by Harding (2013), who proposes a consistent

procedure by imposing restrictions on the time and spatial correlation patterns of the error terms

with improved finite sample properties when it is compared with Bai and Ng (2002) and Onatski

(2010) in the presence of weak factors. Also Caner and Han (2014) propose a procedure based on

a group bridge estimator while Han and Caner (2016) put forward a modification of the penalty

function of Bai and Ng (2002) which is data dependent.

These procedures tend to perform very well under the traditional assumptions of PC factor

extraction such as: pervasive factor loadings, strong common factors, weak dependences in

the idiosyncratic errors, large sample sizes, etc. Consequently, the finite sample performance
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depends on the data generating process (DGP). Differentiating a non-stationary DFM may affect

the original relation between the variances of the common component and the idiosyncratic

terms. When differencing in a univariate fashion and increase the variance of the idiosyncratic

component with respect to the variance of the common component, distortions may be introduced

in the determination of the number of factors.

Focusing on non-stationary DFMs, there are some studies that analyze the determination of

the number of non-stationary common factors. Bai (2004) proposes a new criteria for data in

levels and studies the performance of Bai and Ng (2002) information criteria for first differenced

data. The author implements a Monte Carlo analysis with contemporaneously uncorrelated

idiosyncratic noises following an ARMA model and two and four random walk factors. The study

concludes that the static common factors are correctly determined for both criteria. Furthermore,

Bai and Ng (2004) disentangle the non-stationarity of the common factors, once determined by

Bai and Ng (2002) information criteria allowing non-stationary idiosyncratic errors. However, as

far as we know, there is not a complete study over whether differencing in a univariate fashion

affects the correct determination of the number of factors.

In this dissertation, we contribute by studying the effects of univariate stationary

transformations of non-stationary systems when determining the number of factors using the

procedures proposed by Bai and Ng (2002); Onatski (2010) and Ahn and Horenstein (2013), which

are frequently used in empirical applications. We focus on the case known in the literature as

static factors given that, the statistical properties are very well known and this approach is the

most popular in empirical applications. When r = 1 and the idiosyncratic noises are mutually

uncorrelated and homoscedastic, we analytically derive the eigenvalues of the covariance matrix

examining how the procedures are affected by univariate differentiation. We carry out Monte

Carlo experiments considering several designs selected to represent different situations that can

be potentially encountered when dealing with the empirical analysis of real macroeconomic

variables. Finally, we apply the methodology implemented in the Monte Carlo analysis for a

system of prices from the euro area.
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We conclude that when differencing in a univariate fashion a cointegrated DFM, a trade-off

may be introduced between the variance of the idiosyncratic component with respect to the

variance of the common component, affecting the determination of the number of factors.

Furthermore, it is important to consider the variance and the dependence structure of the

differenced idiosyncratic noises. When r = 1, the ratios of adjacent eigenvalues of Ahn and

Horenstein (2013) tend to perform well under several specifications. However, the performance

of all procedures tend to decrease when r = 2. In this case, Onatski (2010) performs better. The Bai

and Ng (2002) information criteria only perform well under traditional assumptions of PC factor

extraction. In the empirical application, we determine between 1 and 3 common factors. The

first common factor is the common inflation in the euro area while the second and third common

factors can be attributed to Ireland and Greece respectively.

1.3. Estimating non-stationary common factors: Implications for risk

sharing

In the context of large DFMs, the estimation of their components is mainly determined

by applying PC. This fact can be attributed to the fact that PC extraction allows a consistent

estimation of the factor space without assuming any particular error distribution or specifications

of the factors and idiosyncratic noises. The traditional assumptions are that the variability

of common component are not small and the idiosyncratic component has weak serial

and cross-correlation. Furthermore, the latter allows for heteroscedasticity. PC factor

extraction separates the common component from the idiosyncratic noises through cross-sectional

averaging of the observations. In large sample sizes, only the effects of the common component

are pervasive over the observations, such that the weighted averages of the idiosyncratic terms

converge to zero. Under stationarity, Bai (2003) derives the rate of convergence and the limiting

distributions of the estimated factors, factor loadings and the common component when N and

T tend to infinity.
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Under non-stationarity in large DMFs, Bai (2004) proposes a PC factor extraction procedure

using data in levels, deriving the rates of convergence and the limiting distributions for the

estimated common trends, the estimated loading weights and the common component. To obtain

consistent estimations, we require stationarity in idiosyncratic noises. Furthermore, Bai and

Ng (2004) put forward PC to first differenced data, using the “differencing and recumulating”

method to obtain a consistent estimation for the non-stationary common factors. Their results are

consistent even if the idiosyncratic components are I(1). Additionally, Choi (2016) extends the

Generalized PC Estimator (GPCE) under similar assumptions from Bai (2004). In his work, the

author derives the corresponding asymptotic theory, showing that the GPCE is more efficient than

the PC estimator. Also, Barigozzi et al. (2016) propose to project the original observations in the

factor loadings estimated using first-differenced data. Furthermore, they study the cointegrated

DFM and develop the asymptotic theory for non-stationary DFMs, proving that its estimator is

consistent even if the idiosyncratic errors are non-stationary.

In this dissertation, we contribute in analyzing the finite sample performance of these

procedures under several specifications in the DGP, which summarize situations presented in

empirical applications. We consider different sample sizes, serial and cross-sectional correlations,

and heteroscedasticity in idiosyncratic noises. Moreover, we take into account different variance

sizes in the disturbances of the idiosyncratic term and systems with one and two non-stationary

factors. We also consider the situation where one factor is stationary and the other is

non-stationary.

As it is well known in stationary DFMs, Doz et al. (2011, 2012) prove that incorporating

the factor and idiosyncratic dynamics in the model by combining PC and Kalman Smoothing

(2SKS), we obtain consistent estimates of the common factors. Additionally, we achieve an

outperformance in the precision of the factor estimates with respect to PC factor extraction, see the

Monte Carlo analysis given by Poncela and Ruiz (2016). In this dissertation we extend the 2SKS

procedure by allowing non-stationary common factors. Furthermore, we apply this approach

to first-differenced data, using the “differencing and recumulating” estimator. For these two
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procedures, we also analyze the finite sample performance.

Another contribution is the empirical application. As far as we know, risk sharing has been

analyzed as a short-run issue. In this study, we apply the procedures to extract non-stationary

common factors and disentangling whether risk sharing is a short or long-run issue.

We conclude that the procedures that extract non-stationary common factors using data in

levels perform better when the idiosyncratic noises are stationary, even when this component

has large variance and/or the serial correlation is drastically negative. In any case, these last

procedures are more robust to the presence of heterocedasticity, cross-sectional correlation and

different sample sizes with respect to the approaches that use first differenced data. On the other

hand, when the idiosyncratic component is non-stationary, the procedures which estimate the

non-stationary common factors using first differenced data, perform better. Regardless of the

approach, when the system has one non-stationary common factor and the other is stationary,

the first common factor is better extracted. In the empirical application we obtain that at

least four common factors are non-stationary. Applying Panel Analysis of Non-stationarity in

Idiosyncratic and Common components (PANIC) to the idiosyncratic component extracted by PC

to first-differenced data, we conclude that the idiosyncratic noises are I(1). The non-stationary

factor model point outs the lack of risk sharing both in the short and long-run.

1.4. Organization

The rest of this dissertation is organized as follows. In Chapter 2 we analyze the

performance of three of the most popular criteria to determine the number of factors under

the univariate stationary transformations frequently implemented in empirical applications.

Second, we analytically derive the eigenvalues of the covariance matrix to investigate the

effects of transforming non-stationary systems by univariate stationary transformations on these

procedures. Third, we carry out the Monte Carlo analysis to study the finite sample performance

of the approaches when determining the number of factors under several DGP. Fourth, we
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implement an empirical application to a system of prices from euro area countries. Finally, we

summarize the main results and conclusions. In Chapter 3 we describe the procedures to extract

non-stationary common factors in large DFMs and extend the hybrid procedure based on PC and

Kalman Smoothing to non-stationary systems. The finite sample performance of these procedures

is studied in the Monte Carlo analysis and we carry out an empirical application to determine

whether international risk sharing is a short or long-run phenomenon. Finally, in Chapter 4 we

conclude and provide directions for future research.



Chapter 2

Determining the number of factors after

stationary univariate transformations

2.1. Introduction

In recent years, due to the availability of data on a vast number of macroeconomic and

financial variables, there has been an increasing interest in modeling large systems of economic

time series. In order to reduce the dimensionality and extract the underlying factors, one can

use Dynamic Factor Models (DFMs), originally introduced in economics by Geweke (1977)

and Sargent and Sims (1977). The aim of DFMs is to represent the dynamics of the system

through a small number of hidden common factors which are mainly used for forecasting and

macroeconomic policy-making; see Stock and Watson (2011) and Breitung and Choi (2013), for

recent reviews of the existing literature. Kajal Lahiri has contributed to the DFMs literature with

several empirical works. For example, Lahiri and Yao (2004) implement a DFM to analyze the

business cycle features of the transportation sector and Lahiri and Sheng (2010) to measure the

forecast uncertainty by disagreement. Lahiri et al. (2015) also implement a DFM to a real-time

jagged-edge data set of over 160 explanatory variables to re-examine the role of consumer

confidence surveys in forecasting personal consumption expenditure. The properties of many

11
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popular factor extraction procedures rely on the number of factors in the system being known.

However, in practice, the number of factors is unknown and needs to be determined. Among

the most popular procedures proposed with this purpose are the criteria proposed by Bai and Ng

(2002), which are now standard in the literature. These criteria are based on modifications of the

Akaike (AIC) and Bayesian (BIC) information criteria taking into account the cross-sectional and

temporal dimensions of the dataset as arguments of the function penalizing overparametrization.

Alternatively, Onatski (2010) proposes an estimator of the number of factors based on using

differences between adjacent eigenvalues of the sample covariance matrix of the variables

contained in the system, arranged in descending order while Ahn and Horenstein (2013) propose

two alternative estimators based on ratios of adjacent eigenvalues.

It is well known that macroeconomic time series are frequently non-stationary and possibly

cointegrated. Within the context of Principal Components (PC) factor extraction, and following

Stock and Watson (2002a), the most popular way of dealing with large systems of non-stationary

macroeconomic variables is by differencing the variables in a univariate fashion; see, for example,

Breitung and Eickmeier (2011), Stock and Watson (2012a,b), Barhoumi et al. (2013), Moench et al.

(2013), Bräuning and Koopman (2014), Buch et al. (2014), Poncela et al. (2014) and Jungbacker

and Koopman (2015) for recent references. The theoretical justification of this extended practice

is analyzed in Bai and Ng (2004) who show that applying PC to first-differenced data and

recovering the original factors by “recumulating” is consistent regardless of whether the factors

and/or idiosyncratic errors are I(0) or I(1).1 However, their theory proceeds assuming that

the number of common factors in the system is known. On the other hand, as mentioned

above, macroeconomic variables are not only non-stationary but can also be cointegrated.

Differencing a cointegrated system may distort the determination of the number of factors due

to the introduction of non-invertible moving average (MA) components and/or the trade-off

introduced between the variances of the common and idiosyncratic components. Surprisingly,

there has been little discussion in the literature on whether differencing in a univariate fashion

1Bai (2004) also has asymptotic results for the factors estimated from the original non-stationary data.
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affects the correct determination of the number of factors. As far as we know, only Bai (2004)

analyzes the performance of the information criteria proposed by Bai and Ng (2002) when

implemented to differenced data. In his Monte Carlo experiments, carried out for a unique DFM

with contemporaneously uncorrelated idiosyncratic noises following an ARMA model and two

random walk factors, he shows that the number of factors is correctly determined.

The main objective of this paper is to fill this gap by analyzing the effects of univariate

stationary transformations of cointegrated systems when determining the number of factors using

the approaches proposed by Bai and Ng (2002), Onatski (2010) and Ahn and Horenstein (2013).

In the context of a DFM with mutually uncorrelated and homoscedastic idiosyncratic noises, we

first derive analytically the eigenvalues of the covariance matrix and show how they are affected

by univariate differentiation. We also carry out Monte Carlo experiments considering several

designs selected to represent different situations that can be potentially encountered when dealing

with the empirical analysis of real macroeconomic variables. Finally, we illustrate the results

determining the number of factors in a system of prices of the euro area. It is important to note

that the procedures for determining the number of factors considered in this paper are designed

for what is known in the literature as static factors. Alternatively, several factor determination

procedures have been proposed in the context of dynamic factors; see, for example Amengual

and Watson (2007), Bai and Ng (2007), Hallin and Liska (2007), Jacobs and Otter (2008) and

Breitung and Pigorsch (2013). The difference between static and dynamic factors is described

by, for example, Bai and Ng (2008). They argue that, although dynamic factors can be useful to

establishing the number of primitive shocks in the economy, the properties of estimated static

factors are better understood from a theoretical point of view. Furthermore, we focus the analysis

on procedures to detect the number of static factors as they are more popular in empirical

economics.

The rest of this paper is structured as follows. In section 2.2, we briefly describe the stationary

DFM and the factor determination approaches considered. In section 2.3, we analyze the

effects of transforming non-stationary systems by univariate stationary transformations on these
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procedures. In section 2.4, we report the results of the Monte Carlo experiments carried out to

illustrate their finite sample performance. In section 2.5, we carry out an empirical application.

Finally, we conclude in section 2.6.

2.2. The stationary Dynamic Factor Model

In this section, we introduce notation and the stationary DFM and describe the factor

determination procedures considered.

2.2.1. The model

We consider a DFM with cross-sectional dimension N , where the unobserved r < N common

factors, Ft = (F1t, . . . , Frt)
′
, and the idiosyncratic noises, εt = (ε1t, . . . , εNt)

′
, follow VAR(1)

processes. The factors explain the common evolution of a vector of time series, Yt = (y1t, . . . , yNt)
′

observed from t = 1, . . . , T . The basic DFM considered is given by

Yt = PFt + εt, (2.1)

Ft = ΦFt−1 + ηt, (2.2)

εt = Γεt−1 + at, (2.3)

where the factor disturbances, ηt = (η1t, . . . , ηrt)
′
, are r × 1 vectors, distributed independently

from the idiosyncratic noises for all leads and lags. Furthermore, ηt and at, are Gaussian white

noises with positive definite covariance matrices Ση and Σa, respectively, and P = (p
′
1, . . . , p

′
N )
′
,

is the N × r matrix of factor loadings, where, pi = (pi1, . . . , pir). Finally, Φ = diag(φ1, . . . , φr)

and Γ are r × r and N × N matrices containing the autoregressive parameters of the factors

and the idiosyncratic components, respectively. These autoregressive matrices satisfy the usual

stationarity assumptions. Furthermore, we assume that the structure of the idiosyncratic noises

is such that they are weakly correlated. Following Bai and Ng (2002), Onatski (2012, 2015) and
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Ahn and Horenstein (2013), we consider the entries in P, Φ, Ση, Γ and Σa as fixed parameters.

Jungbacker and Koopman (2015) and Alvarez et al. (2016) implement the DFM in equations (2.1)

to (2.3) to the data set of Stock and Watson (2005).

The DFM in equations (2.1) to (2.3) is not identified because, for any r × r nonsingular matrix

H , the system can be expressed in terms of a new loading matrix and a new set of common factors.

A normalization is necessary to solve this identification problem and uniquely define the factors.

In the context of PC factor extraction, it is common to impose the restriction P
′
P/N = Ir and

FF ′ being diagonal, where F = (F1, . . . , FT ) is a r × T matrix of common factors; see Stock and

Watson (2002a), Bai and Ng (2002, 2008, 2013), Connor and Korajczyk (2010) and Bai and Wang

(2014) for papers dealing with identification issues. Note that these are normalization restrictions,

and they may not have an economic interpretation.

2.2.2. Determining the number of factors

The DFM described above assumes that the number of factors, r, is known. However, in

practice, it needs to be estimated. Obtaining the correct value of r is crucial for an adequate

estimation of the space spanned by the factors. There are several alternative procedures designed

to determine r in DFMs. In this paper, we consider the information criteria proposed by Bai and

Ng (2002) and the estimators proposed by Onatski (2010) and Ahn and Horenstein (2013).2

The Bai and Ng (2002) information criteria

The most popular information criteria to select the number of factors in DFMs, proposed by

Bai and Ng (2002), are based on a consistent PC estimator of P and Ft which is given by the

solution to the following least squares problem

min
F1,...,FT ,P

Vr(P, F ) (2.4)

2Alternatively, based on the estimator proposed by Hallin and Liska (2007), Alessi et al. (2010) propose a refinement
of Bai and Ng (2002) criteria based on multiplying the penalty function by a constant that tunes the penalizing power of
the function itself and estimating the number of factors using different subsamples. Also, Kapetanios (2010) proposes
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subject to P
′
P/N = Ir and FF

′
being diagonal, where

Vr(P, F ) =
1

NT

T∑
t=1

(Yt − PFt)
′
(Yt − PFt) =

1

NT

T∑
t=1

N∑
i=1

ε2
it =

1

NT
tr(εε′), (2.5)

where ε = (ε1, . . . , εT ) has dimension N × T . The solution to (2.4) is obtained by setting P̂

equal to
√
N times the eigenvectors corresponding to the r largest eigenvalues of Y Y

′
where

Y = (Y1, . . . , YT ). The corresponding PC estimator of F is given by F̂ = N−1P̂
′
Y.

PC factor extraction separates the common component, PFt, from the idiosyncratic noises by

averaging cross-sectionally the variables within Yt such that when N and T tend simultaneously

to infinity, the weighted averages of the idiosyncratic noises converge to zero, remaining only

the linear combinations of the factors. Therefore, it requires that the cumulative effects of the

common component increase proportionally with N , while the eigenvalues of Σε = E(εtε
′
t)

remain bounded; see the review of Breitung and Choi (2013) for a description of these conditions.3

Bai (2003) proves that the PC estimators of factors, factor loadings and common components are

asymptotically equivalent to the maximum likelihood estimators and, consequently, consistent.

Also, he derives the rate of convergence and their corresponding limiting distributions when N

and T tend simultaneously to infinity.

In order to determine r, Bai and Ng (2002) propose minimizing the following functions with

determining the number of factors using resampling to choose the normalizing constants to be used in order to have
an asymptotic distribution for the eigenvalues of the sample covariance matrix of Y . Given that these procedures are
very intensive computationally, we do not consider them further in this paper. Recently, Harding (2013) proposes a
consistent procedure with improved finite sample properties when compared with Bai and Ng (2002) and Onatski
(2010) in the presence of weak factors. Also Caner and Han (2014) propose a procedure based on a group bridge
estimator while Han and Caner (2016) propose a modification of the penalty function of Bai and Ng (2002) which is
data dependent.

3Onatski (2012) considers a DFM in which the explanatory power of the factors does not strongly dominate the
explanatory power of the idiosyncratic noises.
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respect to k, for k = 0, . . . , rmax,

IC1(k) = lnVk(P̂ , F̂ ) + k
N + T

NT
ln

NT

N + T
, (2.6a)

IC2(k) = lnVk(P̂ , F̂ ) + k
N + T

NT
lnm, (2.6b)

IC3(k) = lnVk(P̂ , F̂ ) + k
lnm

m
, (2.6c)

where Vk(P̂ , F̂ ) is defined as in expression (2.5) with P and Ft substituted by their respective

PC estimates, m = min 〈N,T 〉 and rmax is a bounded integer such that r ≤ rmax. The criteria in

(2.6) are quite sensitive to the choice of rmax; see the Monte Carlo results in Ahn and Horenstein

(2013). Bai and Ng (2002) use rmax = 8 in their Monte Carlo experiments. On the other hand,

in the context of first-differenced data, Bai and Ng (2004) use IC1(k), with rmax = 6. Under

appropriate assumptions, Bai and Ng (2002) prove the consistency of the information criteria

above to determine the number of common factors.

If ε̂t = Yt − P̂ F̂t are the residuals of the regression of the variables in Y on the r first

principal components of 1
NT Y Y

′, then tr(ε̂ε̂′) = tr(Y Y ′)−tr(P̂ F̂ F̂ ′P̂ ′) = T
∑m

i=1 λ̂i−T
∑r

i=1 λ̂i =

T
∑m

i=r+1 λ̂i, where λ̂i, i = 1, . . . ,m are the eigenvalues of Σ̂Y = 1
T Y Y

′, arranged in descending

order. Therefore,

Vr(P̂ , F̂ ) =
1

N

m∑
i=r+1

λ̂i. (2.7)

Using the expression of Vk(P̂ , F̂ ) in (2.7), the functions in (2.6) can be written as

ICj(k) = ln(
1

N

m∑
i=k+1

λ̂i) + kgj(N,T ), (2.8)

where gj(N,T ) is defined accordingly to the criteria in (2.6) for j = 1, 2 and 3.

Differenced eigenvalues

Onatski (2010) proposes an alternative procedure to select r, called edge distribution (ED),
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and shows that it outperforms the criteria proposed by Bai and Ng (2002) when the proportion

of the variance attributed to the factors is small relative to the variance due to the idiosyncratic

noises or when these are substantially correlated. Furthermore, computationally, the procedure

proposed by Onatski (2010) allows the determination of the number of factors without previous

estimation of the common component. Finally, it relaxes the standard assumption of PC factor

extraction about the r eigenvalues of Σ̂Y growing proportionally to N . Instead of requiring

that the cumulative effect of factors grow as fast as N , Onatski (2010) imposes a structure on

the idiosyncratic noises. Under the assumption of Normality, both cross-sectional and temporal

dependence are allowed. This procedure is based on determining a sharp threshold, δ, which

consistently separates the bounded and diverging eigenvalues of Σ̂Y . For any j > r, the

differences λ̂j − λ̂j+1 converge to 0 while the difference λ̂r − λ̂r+1 diverges to infinity when both

N and T tend to infinity. Assuming that rmax/N → 0, Onatski (2010) proposes the following

algorithm in order to calibrate δ and determine the number of factors:

1. Obtain λ̂i, i = 1, ..., N and set j = rmax + 1.

2. Obtain β̂ as the ordinary least squares (OLS) estimator of the slope of a simple

linear regression with constant, where the observations of the dependent variable are{
λ̂j , . . . , λ̂j+4

}
and the observations of the regressor variable are

{
(j − 1)2/3, . . . (j + 3)2/3

}
.

Set δ̂= 2|β̂|.

3. Estimate r̂ = max{k ≤ rmax|λ̂k − λ̂k+1 ≥ δ̂} or r̂ = 0 if λ̂k − λ̂k+1 < δ̂.

4. Set j = r̂ + 1. Repeat steps 2 and 3 until r̂ converges.

Under suitable conditions, Onatski (2010) proves the consistency of r̂ for any fixed δ > 0. He

sets the number of iterations to four although the convergence of the above algorithm is often

achieved at the second iteration. Additionally, he sets rmax = 8 when r = 1, 2, 5 and rmax = 20

when r = 15.
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Ratios of eigenvalues

Recently, Ahn and Horenstein (2013) propose two further estimators of the number of factors

based on the fact that the r largest eigenvalues of Σ̂Y grow unbounded as N increases, while

the other eigenvalues remain bounded. They show that these estimators are less sensitive to the

choice of rmax than those based on the Bai and Ng (2002) information criteria. The two new

estimators are defined as the value of k, for k = 0, . . . , rmax, that maximizes the following ratios

ER(k) =
λ̂k

λ̂k+1

, (2.9)

GR(k) =
ln
[
Vk−1(P̂ , F̂ )/Vk(P̂ , F̂ )

]
ln
[
Vk(P̂ , F̂ )/Vk+1(P̂ , F̂ )

] =
ln(1 + λ̂∗k)

ln(1 + λ̂∗k+1)
, (2.10)

where λ̂0 = 1
m

∑m
k=1 λ̂k/ ln(m) and λ̂∗k = λ̂k/

∑m
j=k+1 λ̂j . The value of λ̂0 has been chosen

following the definition of Ahn and Horenstein (2013) according to which λ̂0 → 0 and mλ̂0 →∞

as m→∞.4

Note that both the numerator and denominator of GR(k) are the growth rates of sums of

residual variances computed with j and j + 1 factors. Ahn and Horenstein (2013) show that,

contrary to the estimator proposed by Bai and Ng (2002), their estimators are not dependent

on rmax and suggest to chose it as min(r∗max, 0.1m) where r∗max = #
{
k | N−1λ̂k ≥ V0/m, k ≥ 1

}
.

Under the same assumptions of Bai and Ng (2006) and Onatski (2010), and allowing for some

variables in Y to be perfectly multicollinear or with zero idiosyncratic variances, they establish

consistency of the ER(k) and GR(k) estimators. The results obtained in their Monte Carlo

analysis show that the two estimators outperform the Bai and Ng (2002) information criteria

and Onatski (2010) estimator mainly when the idiosyncratic components are simultaneously

cross-sectionally and serially correlated. However, the estimator proposed by Onatski (2010)

4Ideas similar to the ER estimator have also been considered by Luo et al. (2009) and Wang (2012). Furthermore,
Lam and Yao (2012) study the properties of ratio of eigenvalues of M =

∑i0
i=1 Σ̂Y (i)Σ̂

′
Y (i) where Σ̂Y (i) is the sample

covariance matrix of Yt−i. The estimator of the number of factors is given by r̂ = min {k ≤ rmax ‖ µ̂k+1/µ̂k}, where µ̂k
is the k-th eigenvalue ofM . They show that its estimator performs well even if when the factors are weak butN is large.
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outperforms the ER(k) and GR(k) ratios when the variance of the idiosyncratic component is

larger than that of the common component (weak factors).

2.2.3. A note on the convergence of eigenvalues

The procedures to determine the number of common factors described above are based on

the eigenvalues of the sample covariance matrix, Σ̂Y . One of the main contributions of Bai

and Ng (2002) is to show that the convergence of the eigenvalues of 1
TN Y Y

′ depends on m.

Later, Kapetanios (2010) reviews the available literature about the topic pointing out that the

distribution of the largest eigenvalue depends in complicated ways on the parameters of the

model. It seems that serial correlation affects both the parameters of the asymptotic limits and

their functional form. Furthermore, he shows that the first r eigenvalues of ΣY increase at rate N

which follows from the fact that the r largest eigenvalues of F ′F will grow at rate N as long as

the loading matrix P is not sparse and suggests that it is reasonable to expect a similar behavior

from the eigenvalues of the sample covariance matrix.

More recently, Onatski (2012, 2015) develops new asymptotics for the eigenvalues of the

sample covariance matrix by considering that both the weights and the factors are fixed

parameters.

2.3. Determining the number of factors after differencing

As mentioned in the Introduction, macroeconomic systems are often non-stationary. In

this section, we analyze the effects on the performance of the number of factors determination

procedures described above of transforming the data in a univariate fashion in order to achieve

stationarity. Note that differencing affects the ratio between the variances of the factors and

idiosyncratic components, the temporal dependence structure and the cross-correlations among

the idiosyncratic noises.

Consider the DFM given in equations (2.1) to (2.3) in which Φ and Γ are diagonal matrices
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which may have 1’s in the main diagonal. Consequently, both the factors and the idiosyncratic

noises can be either stationary or non-stationary random walks. Under this specification, the

system of first-differenced data satisfies all conditions of Bai and Ng (2002), Onatski (2010) and

Ahn and Horenstein (2013). After differencing the data in a univariate fashion, the DFM takes the

following form

∆Yt = P∆Ft + ∆εt, (2.11)

∆Ft = (Φ− I)Ft−1 + ηt, (2.12)

∆εt = (Γ− I)εt−1 + at. (2.13)

Denote by φi the i-th element in the main diagonal of Φ. If |φi| < 1, then the variance of the

corresponding differenced factor is given by σ2
fi

= 2σ2
ηi/(1 + φi) where σ2

ηi is the variance of ηi.

When φi = 0.5, the difference between the variances of Ft and ∆Ft is zero. Therefore, in this case,

the variance of the factor is not changed after differencing the data. However, if φi < 0.5, the

variance of ∆Ft is larger than that of Ft while if φi > 0.5, it is smaller. The same relation can be

established for the variances of the elements in εt and ∆εt with respect to γi, the i-th element in

the main diagonal of Γ. Note that if εt is stationary, with autoregressive parameters smaller than

0.5 while Ft is non-stationary, then overdifferencing the idiosyncratic components may introduce

distortions on the determination of the number of factors given that the relation between the

variances of the common and idiosyncratic components is modified with the variances of ∆Ft

being smaller and the variances of ∆εt being larger. The dynamic dependence of the idiosyncratic

noises of the differenced model are given by

Corr(∆εit,∆εit−h) = 0.5γh−1
i (γi − 1).

Finally, note that differencing also affects the cross-correlations of the idiosyncratic noises.

Consider, for example, that the correlation between εit and εjt is given by ρ. If the idiosyncratic
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noises are stationary, then

Corr(∆εit,∆εjt) = σ−1
∆εi

σ−1
∆εj

(2− γi − γj) ρσεiσεj =
0.5 (2− γi − γj) ρ√

(1− γi)(1− γj)
.

In order to simplify the analysis of the effects of univariate differentiation on the determination

of r, we consider Γ = γI and Σa = σ2
aI , so that the idiosyncratic noises are homoscedastic and

mutually uncorrelated and all of them are governed by the same autoregressive parameter. Given

that there is no correlation between the factors and the idiosyncratic components, the covariance

matrix of the first-differenced data is given by Σ∆Y = PΣfP
′
+ σ2

eI , where Σf is the covariance

matrix of ∆Ft and σ2
e = 2σ2

a/(1+γ) is the variance of each element in ∆εt. The ordered eigenvalues

of Σ∆Y are equal to σ2
e + µi for i = 1, . . . , N , where µi is the i-th largest eigenvalue of PΣfP

′
.

Furthermore, tr
(
PΣfP

′
)

= tr
(
P
′
PΣf

)
=
∑r

j=1 σ
2
fj

∑N
i=1 p

2
ij =

∑r
j=1 µj . Therefore, the sum of

the r largest eigenvalues of Σ∆Y is given by
∑r

i=1 λi = rσ2
e +

∑r
j=1 σ

2
fj

∑N
i=1 p

2
ij , while the rest

N − r eigenvalues are given by λi = σ2
e .

Consider the particular case of a unique random walk factor, i.e. r = 1 and φ1 = 1. In this case,

λ1 = σ2
η

∑N
i=1 p

2
i1 + σ2

e and λi = σ2
e , for i = 2, . . . , N. Consequently, the function to be minimized

according to the Bai and Ng (2002) information criteria, is given by

IC(k) =

 ln
(
N−1σ2

η

∑N
i=1 p

2
i1 + σ2

e

)
, k = 0

ln(N − k)− ln(N) + ln(σ2
e) + kg(N,T ), k ≥ 1.

The procedure proposed by Onatski (2010) is based on the differences between adjacent

eigenvalues. Note that for j = 2, . . . , N , λj−λj+1 = 0. Therefore, the procedure should work as far

as the difference between λ1 and λ2 is large. This difference is given by λ1− λ2 = σ2
η

∑N
i=1 p

2
i1 and

does not depend on the value of σ2
e . Therefore, for given weights and cross-sectional dimension,

the procedure should work better when σ2
η is large. Also, for a given value of σ2

η, the procedure

should work better asN increases. Note that in the first step of the algorithm proposed by Onatski

(2010), δ̂ = 0 because for j = rmax + 1 eigenvalues λj are always σ2
e .



2.4. FINITE SAMPLE PERFORMANCE 23

Consider the ER(k) criterion of Ahn and Horenstein (2013) given in (2.9) which looks for a

large difference between the ratio of λ1 and λ2 with respect to the ratios between other adjacent

eigenvalues. Note that, in the particular case we are considering, if N < T , the mock eigenvalue

is given by λ0 = ln(N)−1
(
σ2
e +N−1σ2

η

∑N
i=1 p

2
i1

)
, and, consequently,

ER(k) =


1+N−1q

∑N
i=1 p

2
i1

ln(N)(1+q
∑N
i=1 p

2
i1)
, k = 0

1 + q
∑N

i=1 p
2
i1, k = 1

1, k ≥ 2,

where q =
σ2
η(1+γ)

2σ2
a

.Note that ifN is large enough, ER(0) should be close to 0. Therefore, for given

weights, the criteria should work better when q is larger.

Finally, consider the GR(k) criterion of Ahn and Horenstein (2013). In this case, note that

λ∗i =


(N ln(N))−1, i = 0

(N − 1)−1(q
∑N

i=1 p
2
i1 + 1), i = 1

(N − i)−1, i ≥ 2.

Therefore,

ln(1 + λ∗k)

ln(1 + λ∗k+1)
=


ln(N lnN+1)−ln(N lnN)

ln(N+
∑N
i=1 p

2
i1)−ln(N−1)

, k = 0

ln(N+
∑N
i=1 p

2
i1)−ln(N−1)

ln(N−1)−ln(N−2) , k = 1

ln(N+1−k)−ln(N−k)
ln(N−k)−ln(N−k−1) , k ≥ 2.

2.4. Finite sample performance

The results in the previous section are based on population covariance matrices and their

corresponding eigenvalues. However, in practice, when determining the number of common

factors in empirical applications, one should estimate the covariance matrix by its sample version

and obtain the corresponding estimated eigenvalues. As mentioned above, the asymptotic

distribution of estimated eigenvalues is complicated and not always known. The finite sample
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properties of the estimated eigenvalues depend on the temporal sample size used for their

estimation, T , the cross-sectional dimension, N , the ratio between the variances of the common

and idiosyncratic components and the structure of the temporal and cross-sectional dependencies

of the idiosyncratic noises. In this section, we carry out Monte Carlo experiments in order to

analyze how the determination of the number of factors is affected by univariate differentiation

of non-stationary data when implemented in finite samples. We should note that the procedures

considered have been developed for N and T going to infinity. However, when the procedures

are implemented in practice, both N and T are finite. Our interest in this paper is to study

the performance of the criteria under different combinations of N and T similar to those often

encountered when dealing with systems of macroeconomic and financial variables. Furthermore,

we want to investigate how smallN and T can be for the procedures to be reliable under different

structures of the factors and idiosyncratic noises. In this way, our results can be of interest for

practitioners in empirical applications.

The experiments are based on R = 500 replications generated by the DFM in equations (2.1)

to (2.3) with N = (12, 50, 100, 200) and T = (100, 500).5 Our simulations are categorized into

two parts. The first part is designed to investigate how the alternative estimators considered

behave when detecting a unique random walk factor under different temporal and cross-sectional

structures of the idiosyncratic noises. The second part is designed to analyze models with more

than one factor.

Consider first a DFM defined as in equations (2.1) to (2.3) with r = 1, Φ = 1 and σ2
η = 1.

The factor loadings are generated by pi1 ∼ U [0, 1] with
∑N

i=1 p
2
i1 = 5.59, 18.70, 34.63 and 65.56

for N = 12, 50, 100 and 200, respectively; Bai and Ng (2006) and Poncela and Ruiz (2016) also

generate the factor loadings by the same distribution. We consider several structures for the

idiosyncratic noises. First, the idiosyncratic noises are mutually uncorrelated and homoscedastic.

In particular, the autoregressive coefficient matrix of the idiosyncratic components is diagonal,

Γ = γI, with γ = (−0.8, 1) and Σa = σ2
aI with σ2

a = 1 so that σ2
e = 10 and 1 for the values of

5The time dimension of the multivariate system is generated with T ∗ = T+100 observations. The factor extraction
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γ considered. Note that, differently from simulations carried out in related works, we consider

both positive and negative values for the autoregressive parameter of the idiosyncratic noises;

see, Pinheiro et al. (2013) who estimate correlations for ∆εt between -0.6 and 0.9 when dealing

with the U.S. monthly macroeconomic data set of Stock and Watson (2005). In order to separate

the effects of the temporal dependence and the variance of the differenced idiosyncratic noises on

the results, we also consider the combinations γ = −0.8 and σ2
a = 0.1 (σ2

e = 1) and γ = 1 and

σ2
a = 10 (σ2

e = 10). We introduce contemporaneous correlations among the idiosyncratic noises.

Σa is generated with σ2
a = 0.1, 1 and 10 in the main diagonal and, following Onatski (2012),

a Toeplitz structure with parameter b = 0.5. Finally, we consider models with heteroscedastic

idiosyncratic noises. The variances are generated by σ2
ai ∼ U [0.5, 1.5] , σ2

ai ∼ U [0.05, 0.15] and

σ2
ai ∼ U [5, 15]; see Bai and Ng (2006) and Breitung and Eickmeier (2011) for the same design to

simulate heteroscedastic idiosyncratic noises. In these two latter cases, we consider γ = −0.8 and

1.

For each replica, we generate observations Yt and differentiate the data in a univariate fashion.

Then, the eigenvalues of the sample covariance matrix of 1
T−1(∆Y )(∆Y )′ are computed and r is

determined using each of the procedures described above with rmax = 4, 7 and 13 when N = 12,

50 and 200, respectively.6 The number of factors determined using the three criteria proposed

by Bai and Ng (2002) are denoted by r̂IC1 , r̂IC2 , r̂IC3 , while the number of factors determined

implementing the procedure due to Onatski (2010) is denoted by r̂ED. Finally, the number of

factors estimated using the two ratios proposed by Ahn and Horenstein (2013) are denoted by

r̂ER and r̂GR.

Figure 2.1 plots, for N = 12 and T = 100, the Monte Carlo averages and 95% confidence

intervals, for homoscedastic and contemporaneously uncorrelated idiosyncratic noises,7 of i)

is carried out after removing the first 100 observations.
6It is important to note that Ahn and Horenstein (2013) recomend double demeaned the data for their estimators

to have a better behaviour. However, in our Monte Carlo experiments, we observe a deterioration of the performance
of all criteria to determine the number of factors. Consequently, we compute the covariance matrix using the original
differenced observations.

7The effect of heteroscedasticity and weak cross-correlation on the estimated eigenvalues is negligible. The results
are available upon request.
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the sample ordered eigenvalues; ii) their differences; and iii) their ratios, together with the

corresponding population quantities, when γ = −0.8 and σ2
a = 0.1, γ = 1 and σ2

a = 1, γ = −0.8

and σ2
a = 1 and γ = 1 and σ2

a = 10. When the idiosyncratic noises are homoscedastic and

white noise, according to the results in previous section, the largest eigenvalue of the population

covariance matrix of ∆Y is given by λ1 = σ2
e +

∑N
i=1 p

2
i1 while all other eigenvalues are given

by σ2
e . Note that in the first two cases, σ2

e = 1 and the population eigenvalues are equal. In the

two latter cases, σ2
e = 10. Figure 2.1 shows that, regardless of the value of σ2

e , the eigenvalues are

better estimated when γ = 1 than when γ = −0.8, with smaller biases and standard deviations.

Obviously, given γ, the eigenvalues are better estimated when σ2
a is smaller. Therefore, in order

to estimate the eigenvalues of the covariance matrix of ∆Y, it is important not only the relative

variance of the differenced idiosyncratic noises but also their temporal dependence.

In order to analyze the separate effect of the cross-sectional and temporal dimensions of the

system on the estimation of the eigenvalues, Figure 2.2 plots the same quantities as in Figure 2.1

for γ = −0.8 and σ2
a = 1, when N = 12, 50 and 200, and T = 100 and 500. Note that when N

increases, the first eigenvalue of the population covariance matrix is different and is estimated

with larger biases and standard deviations. All other eigenvalues are also estimated with larger

biases and standard deviations. Therefore, given T , increasing N could lead to an even worse

estimation of the sample eigenvalues. However, as expected, given N , an increase in T leads to

smaller biases and standard deviations of the estimated eigenvalues.

The finite sample properties of the estimated eigenvalues have effects on the properties of

the procedures to detect the number of factors. Figure 2.3 plots, for each of the procedures

considered, the percentage of replicates in which the estimated number of common factors is:

i) r̂ = 0; ii) r̂ = r; iii) r̂ = rmax; and iv) r̂ > r, when γ = −0.8 and σ2
a = 0.1 (σ2

e = 1), when

N = 12, 50 and 200 and T = 100 and 500. We consider idiosyncratic noises being homoscedastic

and uncorrelated; heteroscedastic and uncorrelated; and homoscedastic and cross-sectionally

correlated. We can observe that, regardless of the structure of the idiosyncratic noises and the

cross-sectional dimension, when T = 100, the three information estimators tend to overestimate
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r and in most of the replicates r̂IC = rmax. However, when T = 500, the percentage of r̂IC = r

is close to 100% if the idiosyncratic errors are homoscedastic and cross-sectionally uncorrelated

even if N = 12. However, if there is cross-sectional correlation r̂IC = rmax. On the other hand,

increasing N leads to a larger percentage of r̂IC > r. The performance of the two estimators

based on ratios of eigenvalues, r̂ER and r̂GR, is very similar and always better than that of the

estimator based on differenced eigenvalues, r̂ED. The percentages of correct estimation of r when

implementing the r̂ER and r̂GR estimators are close to 90% whenN = 12 and T = 100 and increase

to 100% when increasing either N or T . The results for heteroscedastic and cross-correlated

idiosyncratic noises are very similar.

Figure 2.4 plots the same quantities as in Figure 2.3 when γ = 1 and σ2
a = 1.Note that this case

is comparable to that in Figure 2.3 in the sense that the variance of the differenced idiosyncratic

noises is the same, σ2
e = 1, but the differentiated idiosyncratic noises are cross-sectionally

uncorrelated white noises. We can observe that the performance of the alternative procedures

to estimate r is rather different to that in Figure 2.3. All procedures have correct estimations

close to 100% except the information criteria when N = 12 and the idiosyncratic errors are

cross-correlated. In this latter case, r̂IC = rmax. Consequently, not only the variance of the

differenced idiosyncratic noises but also its dependence structure have effects on the procedures

to detect the number of factors. Only the r̂ER and r̂GR estimators seem to be robust to them.

Finally, Figure 2.5 considers the case when γ = −0.8 and σ2
a = 1 with σ2

e = 10. In this case,

the information criteria behave very similarly than when σ2
a = 0.1 and T = 100 with r̂IC =

rmax. However, when N = (12, 50) and T = 500, the information criteria procedures estimate

r̂IC = 0. Therefore, it seems that they are more affected by the temporal dependence of the

differenced idiosyncratic noises than by their variance. On the other hand, when looking at the

performance of r̂ER and r̂GR, we can observe that it clearly deteriorates when σ2
e = 10. Therefore,

their performance clearly depends on σ2
e . The behavior of r̂ED depends both on γ and σ2

e with a

rather large percentage of cases in which r̂IC = 0.

In the second part of the Monte Carlo experiments, we consider models in which r = 2.
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First, we consider a second non-stationary common factor, i.e. Φ = I and Ση = I . Second, the

covariance matrix of the factor disturbances is given by Ση = diag(1, 5). Finally, the last model

considered has a second stationary factor with Ση = I and Φ = diag(1, 0.5).

For each of the three Data Generating Process (DGP) above, Figure 2.6 plots the percentages

of i) r̂ = 0; ii) r̂ = 1; iii) r̂ = r; iv) r̂ = rmax; and v) r̂ > r, when γ = −0.8 and σ2
a = 0.1 (σ2

e = 1)

and for N = 12 with T = 100 and N = 200 with T = 500.8 First of all, observe that when N = 12

and T = 100, the information criteria chose r̂ = rmax in all cases. Increasing the dimensions of the

system helps for r̂IC1 and r̂IC2 but not for r̂IC3. When looking at the ED, ER and GR criteria, we

can observe that, regardless of the structure of the two factors, when N = 200 and T = 500, all

of them have percentages of determination of the true number of factors close to 100%. However,

when N = 12 and T = 100, there is a large percentage of replicates in which r̂ = 1. In this

case, the ED procedure is better than the two procedures based on ratios. When the two common

random walks in the original data have different variances, the ED procedure has an acceptable

proportion of cases in which r̂ = r.

2.5. Empirical analysis

In this section, we implement the procedures considered in this paper to determine the

number of common factors in a system of inflation rates in 15 euro area countries, namely, Austria

(AUT), Belgium (BEL), Denmark (DEN), Finland (FIN), France (FRA), Germany (GER), Greece

(GRE), Ireland (IRL), Italy (ITA), Luxemburg (LUX), Netherlands (NED), Portugal (POR), Spain

(SPA), Sweden (SWE) and United Kingdom (UK). Prices, observed monthly from January 1996

to November 2015,9 Pit, have been obtained from the OCDE data base10 and transformed into

annual inflation as yit = 100×Δ12 log(Pit). When needed, the inflation rates have been corrected

8Monte Carlo results on the estimated eigenvalues are available upon request. They are not included to save space.
9Note that the sample period includes the global financial crisis of 2008-2009. Stock and Watson (2011) point out

that the factor space can be consistently estimated by PC even with certain types of breaks or time variation in the
factor loadings. Intuitively, if under weak assumptions F̂ consistently estimates a rotation of F , then, the factors can
break or evolve in some limited fashion and the PC estimator will remain consistent.

10http://stats.oecd.org/index.aspx?queryid=221

http://stats.oecd.org/index.aspx?queryid=221
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by outliers using the software developed by the United States Census Bureau.11 Following

Stock and Watson (2005), outliers are substituted by the median of the 5 previous observations.

Furthermore, the inflation series have been deseasonalized when appropriate.12

Then, as in Reis and Watson (2010) and Altissimo et al. (2009), we carry out the determination

of the number of factors using both the inflation data in levels and after differencing. All

procedures are implemented with rmax = 5. Regardless of whether the procedures are

implemented using the original or differenced inflation rates, the information criteria estimate

r̂ = 5 and r̂ER = r̂GR = 1. However, after differencing, the ED procedure detects just one factor

while r̂ED = 3 in the original inflation series. According to our Monte Carlo experiments, if the

number of true factors is r ≥ 2, then the ED, ER and GR procedures tend to detect r̂ < r when

implemented to differentiated data. Therefore, we could expect the true number of factors to be

larger than one. Consequently, we extract the factors assuming that r = 3 both from the original

and differenced inflation series. In the latter case, the extracted factors are reaccumulated as

proposed by Bai and Ng (2004). The extracted factors and their corresponding weights are plotted

in Figure 2.7; compare with the factor extracted by Delle Monache et al. (2016) using quarterly

inflation for a panel of 12 inflation rates from a sample of EMU countries. In Figure 2.7, there

are not significant differences between the factors estimated using the original and differenced

inflation rates but for the centering of the latter. This result could be expected since the variances

of all the idiosyncratic noises are rather small with values between 0.03 and 0.1. Consequently,

the differenced idiosyncratic noises are white noises with small variances.

Finally, we should point out that the main difference between extracting factors assuming that

r = 1 or r = 3 is the interpretability. Recall that PC consistently estimates the space spanned by

the factors. Therefore, assuming that r = 3 we can obtain rotations that are not allowed when

assuming that r = 1.

11https://cran.r-project.org/web/packages/seasonal.pdf
12Camacho et al. (2015) show that the performance of deseasonalized data is comparable to using non-seasonally

adjusted data in the context of estimating factors with forecasting purposes. Previous deseasonalizing apparently
provides the best of two worlds: not working with incorrect assumptions about common seasonality while keeping a
limited number of parameters to be estimated.

https://cran.r-project.org/web/packages/seasonal.pdf
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2.6. Conclusions

Differencing non-stationary cointegrated systems have effects on the properties of factor

determination procedures. We show that both the variance and the dependence structure of the

differenced idiosyncratic noises are important when measuring these effects. If r = 1, the ER and

GR procedures work well even in relatively small sizes under all the structures of the idiosyncratic

noises considered in this paper. Only when the variance of the differenced idiosyncratic noises is

very large with respect to the variance of the differenced factor, the performance is worse although

better than the alternatives. However, the performance of all procedures deteriorates when r = 2.

In this case, the ED procedure seems to work better.



2.6. CONCLUSIONS 31

Figures

Figure 2.1: Eigenvalues of DFM with N = 12, T = 100, r = 1, φ = 1, with γ = −0.8 and σ2
a = 0.1 (first row), γ = 1

and σ2
a = 1 (second row), γ = −0.8 and σ2

a = 1 (third row) and γ = 1 and σ2
a = 10 (fourth row). The first column

plots the eigenvalues while the second and third columns plot their differences and ratios respectively. The population
eigenvalues are plotted in red, the Monte Carlo averages in black and the corresponding 95% intervals in blue.
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Figure 2.2: Eigenvalues of DFM with r = 1, φ = 1 and σ2
η = 1 when the idiosyncratic noises are AR(1) process

with γ = −0.8 and σ2
a = 1. The first column plots the eigenvalues while the second and third column plot their

differences and ratios respectively. The population eigenvalues are plotted in red, the Monte Carlo averages in black
and the corresponding 95% intervals in blue. First row N = 12, T = 100; second row N = 12, T = 500; third row
N = 50, T = 100; fourth row N = 50, T = 500; fifth row N = 200, T = 100 and sixth row N = 200, T = 500.
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Figure 2.3: Percentage of r̂ = rmax (blue), rmax > r̂ > r (green), r̂ = 1 (red) and r̂ = 0 (black) in a DFM with r = 1,
φ = 1, σ2

η = 1, γ = −0.8 and σ2
a = 0.1. First row N = 12, T = 100; second row N = 12, T = 500; third row

N = 50, T = 100; fourth row N = 50, T = 500; fifth row N = 200, T = 100 and sixth row N = 200, T = 500. The
first column has homoscedastic and uncorrelated idiosyncratic noise; the second column the noises are heteroscedastic
while in the third column they are cross-sectionally correlated.



34 CHAPTER 2. DETERMINING THE NUMBER OF FACTORS

Figure 2.4: Percentage of r̂ = rmax (blue), rmax > r̂ > r (green), r̂ = 1 (red) and r̂ = 0 (black) in a DFM with r = 1,
φ = 1, σ2

η = 1, γ = 1 and σ2
a = 1. First rowN = 12, T = 100; second rowN = 12, T = 500; third rowN = 50, T = 100;

fourth row N = 50, T = 500; fifth row N = 200, T = 100 and sixth row N = 200, T = 500. The first column has
homoscedastic and uncorrelated idiosyncratic noise; the second column the noises are heteroscedastic while in the
third column they are cross-sectionally correlated.
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Figure 2.5: Percentage of r̂ = rmax (blue), rmax > r̂ > r (green), r̂ = 1 (red) and r̂ = 0 (black) in a DFM with
r = 1, φ = 1, σ2

η = 1, γ = −0.8 and σ2
a = 1. First row N = 12, T = 100; second row N = 12, T = 500; third row

N = 50, T = 100; fourth row N = 50, T = 500; fifth row N = 200, T = 100 and sixth row N = 200, T = 500. The
first column has homoscedastic and uncorrelated idiosyncratic noise; the second column the noises are heteroscedastic
while in the third column they are cross-sectionally correlated.
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Figure 2.6: Percentage of r̂ = rmax (blue), rmax > r̂ > r (green), r̂ = 2 (red), r̂ = 1 (gold) and r̂ = 0 (black) in a DFM
with r = 2, γ = −0.8 and σ2

a = 0.1. System dimensions N = 12, T = 100 (first column); N = 200, T = 500 (second
column). The factors are two random walks with variance σ2

η = 1 (first row); two random walks with variances σ2
η1 = 1

and σ2
η2 = 5 (second row) and a random walk with variance σ2

η1 = 1 and a stationary factor with σ2
η2 = 1.
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Figure 2.7: PC estimated factors (first row) and corresponding factor weights (second row) obtained assuming r = 3
and using original inflation rates (first column) and differenced rates (second column).
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Chapter 3

Estimating non-stationary common

factors: Implications for risk sharing

3.1. Introduction

Dynamic Factor Models (DFMs) were first introduced in economics by Geweke (1977) and

Sargent and Sims (1977) with the aim of extracting the underlying common factors in a system of

time series. In macroeconomics, these common factors are useful for building indicators and to

predict key variables of the economy, among many other applications. Recently, econometricians

have to deal with data sets consisting of hundreds of series, making the use of large dimensional

DFMs very attractive in practice; see Breitung and Eickmeier (2006), Bai and Ng (2008), Stock

and Watson (2011), Breitung and Choi (2013) and Bai and Wang (2016) for reviews of the existing

literature.

It is well known that macroeconomic time series are frequently non-stationary and

cointegrated. The connection between cointegration and common factors is analyzed by Stock

and Watson (1988), Johansen (1991), Vahid and Engle (1993), Escribano and Peña (1994),

Gonzalo and Granger (1995), Bai (2004), Bai and Ng (2004), Moon and Perron (2004), Banerjee

et al. (2014a,b) and Barigozzi et al. (2016, 2017), among others. Although differencing has

39
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advantages in univariate time series to deal with non-stationarity, it should be made with

great care when dealing with multivariate systems; see Box and Tiao (1977). It is well known

that when differencing a cointegrated system, the long-run information, crucial to understand

co-movements between the variables, is lost. Canova (1998) qualifies the detrending issue as

“delicate and controversial” and compares the properties of the cyclical components of a system

of seven real macroeconomic series obtained using seven univariate and three multivariate

techniques. He concludes that the properties of the extracted business cycles vary widely

across detrending methods. Sims (2012) claims that “when cointegration may be present,

simply getting rid of the non-stationarity by differencing individual series so that they are all

stationary throws away vast amounts of information and may distort inference”. Consequently,

the number of works dealing with non-stationary and possibly cointegrated DFMs is increasing.

In the context of non-stationary systems, Bai (2004) proposes factor extraction implementing

Principal Components (PC) to data in levels and derives the rates of convergence and limiting

distributions of the estimated common trends, loading weights and the common component

when the idiosyncratic components are stationary; see Engel et al. (2015) for an application

to exchange rates. However, Barigozzi et al. (2016, 2017) point out that stationarity of the

idiosyncratic components would produce an amount of cointegration for the observed system

that it is not observed in the systems that are standard in the DFMs literature as, for example,

those of Stock and Watson (2012a) and Forni et al. (2009). The idiosyncratic component in those

datasets is likely to be non-stationary and, consequently, an estimation strategy robust to the

assumption that some of the idiosyncratic components are non-stationary should be preferred.

Alternatively, PC can be implemented to first difference data. Then, the estimated factors can be

either obtained by integration of their estimated first differences as proposed by Bai and Ng (2004)

or by projecting the original system onto the space spanned by the estimated loading as proposed

by Barigozzi et al. (2016).1 Bai and Ng (2004) prove the consistency of PC factor estimates

when they are obtained from first differenced data using the “differencing and recumulating”

1In this paper we focus on DFMs without deterministic components. In this case, both approaches are equivalent.
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method; see Greenway-McGrevy et al. (2016) who obtain recumulated factors in the context

of exchange rates. Additionally, in their Monte Carlo analysis, they evaluate and compare

the finite sample properties of both PC procedures and show that the non-stationary common

factors can be properly recovered by both approaches when the idiosyncratic components are

stationary. However, when the idiosyncratic components are non-stationary, PC cannot be

directly implemented to the original data as proposed by Bai (2004) and it is convenient to use

the “differencing and recumulating” method proposed by Bai and Ng (2004). Finally, Choi (2016)

extends the Generalized PC estimator (GPCE) to the case of unit roots in the common factors,

deriving the asymptotic distribution of the common factors and factor loadings. He shows that

the GPCE is more efficient than the traditional PC estimator. Although consistent, PC based

approaches have a major limitation in that they are not exploiting in any way the dynamic

nature of the factors, nor the serial and cross-sectional dependence, or the heterocedasticity of

the idiosyncratic components. Consequently, they are not efficient.2

Instead of implementing PC procedures, factor extraction can be carried out using two-step

Kalman Smoothing (2SKS) techniques based on combining PC factor extraction and a Kalman

Smoother. The main advantage of the 2SKS comes from the flexibility of the Kalman filter to

explicitly model the factor and idiosyncratic dynamics. In the stationary case, Doz et al. (2011,

2012) show that 2SKS outperforms PC in terms of the precision of the factor estimates and derive

its asymptotic properties; see also Poncela and Ruiz (2016). 2SKS has been implemented to

non-stationary systems by Seong et al. (2013) in a low-dimensional setting and in Quah and

Sargent (1993) in a large but finite cross-sectional dimension case with orthogonal idiosyncratic

components.

The contributions of this paper are twofold. First, we extend the analysis of Bai and Ng (2004)

comparing the factors extracted using PC implemented to the original non-stationary system with

those obtained by “differencing and recumulating”. In the case of a single factor, we consider a

2Other authors dealing with non-stationary DFMs are Eickmeier (2009), who analyzes the comovements and
heterogeneity in the euro area by fitting a non-stationary DFM similar to Bai and Ng (2004), augmented with a
structural factor setup from Forni and Reichlin (1998). Also, Bai and Ng (2010) extend the results of Bai and Ng (2004),
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wide range of structures of the idiosyncratic noises, including heteroscedasticity and temporal

and/or cross-sectional dependences. We also consider systems with two factors with the factors

being either both non-stationary or one stationary and another non-stationary. With respect to

the idiosyncratic components, we consider cases in which all of them are either stationary or

non-stationary and cases in which some of them are stationary and others are not. We also include

in the comparison the GPCE proposed by Choi (2016). Finally, we compare PC and 2SKS factor

extraction. We analyze the performance of the 2SKS procedure when extracting factors using

the first differenced data and estimating the original factors by recumulating. Furthermore, we

propose a new 2SKS procedure which can be implemented to the original non-stationary system.3

The second contribution of this paper is an empirical application in which all factor extraction

procedures are implemented to a non-stationary system of aggregate output and consumption

variables of 21 OECD industrialized countries. International risk sharing focus on cross-border

mechanisms to smooth consumption when a country is hit by a negative output shock. The

goal is to check international risk sharing is a short or long-run issue. This is helpful to

check if GDP fluctuations are directly passed to consumption on the contrary, can be at least

partially cross-border smoothed (and therefore not totally passed to consumption). The use of

possible non-stationary DFMs allows us to distinguish between long-run and short-run issues in

consumption smoothing through international risk sharing. As far as we know, this is the first

time that non-stationary DFMs are used in this context.

The rest of this paper is structured as follows. Section 3.2 describes the DFM and the factor

extraction procedures considered. Section 3.3 presents the results of Monte Carlo experiments.

Section 3.4 contains the empirical application to measure risk sharing. Finally, Section 3.5

concludes.

and Forni et al. (2014) who evaluate the role of news shocks in generating the business cycle. In this paper, we focus on
non-stationary DFMs based on time domain. For non-stationary DFMs based on frequency domain, see Eichler et al.
(2011).

3In independent work, Barigozzi and Luciani (2017) also propose a generalization of Doz et al. (2011, 2012) to the
non-stationary case. They show empirically that the 2SKS extraction is more efficient than integrating the PC estimator
of the first differences of the factors. However, they do not consider the comparison with recumulating the 2SKS.
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3.2. Factor extraction algorithms

In this section we introduce notation and describe the DFM considered. Furthermore, the PC

and 2SKS factor extraction procedures are described.

3.2.1. Dynamic Factor Model

We consider the following static DFM where the unobserved common factors, Ft, and the

idiosyncratic noises, εt, follow potentially non-stationary VAR(1) processes:

Yt = PFt + εt, (3.1)

Ft = ΦFt−1 + ηt, (3.2)

εt = Γεt−1 + at, (3.3)

where Yt = (y1t, . . . , yNt)
′ and εt = (ε1t, . . . , εNt)

′ are N × 1 vectors of the variables observed

at time t and idiosyncratic noises respectively. The common factors, Ft = (F1t, . . . , Frt)
′ and

the factor disturbances, ηt = (η1t, . . . , ηrt)
′, are r × 1 vectors, with r (r < N) being the number of

common factors which is assumed to be known. TheN×1 vector of idiosyncratic disturbances, at,

is distributed independently from the factor disturbances, ηt, for all leads and lags. Furthermore,

ηt and at, are assumed to be Gaussian white noises with positive definite covariance matrices Ση =

diag(σ2
η1
, ..., σ2

ηr) and Σa, respectively. P = (p1, . . . , pN )′, is the N × r matrix of factor loadings,

where, pi = (pi1, . . . , pir)
′ is an r × 1 vector. For identification, we assume that P ′P/N = Ir.

Finally, Φ = diag(φ1, . . . , φr) and Γ = diag(γ1, ..., γN ) are r× r and N ×N matrices containing the

autoregressive parameters of the factors and idiosyncratic components, respectively, which can be

equal to one; see, for example, Stock and Watson (1989) and Barigozzi and Luciani (2017) for static

DFMs for non-stationary data. Note that according to economic theory, there is full aggrement

that some factors (related with, for example, technology shocks) have permanent effects while
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others (such as monetary policy shocks) have only transitory effects. Furthermore, there is also

arguments to assume non-stationary idiosyncratic components. Barigozzi et al. (2016, 2017) point

out that stationarity of the idiosyncratic components would produce an amount of cointegration

for the observed system that it is not consistent with that observed in the systems that are standard

in the DFMs literature as, for example, those of Stock and Watson (2002a) and Forni et al. (2009).

The idiosyncratic component in those datasets is likely to be non-stationary. The implausibility of

a stationary idiosyncratic component is also confirmed empirically by Barigozzi et al. (2016) in a

large macroeconomic system of quarterly series describing the US economy with about half of the

estimated idiosyncratic components found to be non-stationary according to the test proposed by

Bai and Ng (2004).

The DFM in equations (3.1) to (3.3) is not identified. To solve the identification problem and

uniquely define the factors, a normalization is necessary. In the context of PC factor extraction, it

is common to impose the restriction P ′P/N = Ir and F ′F being diagonal, where F = (F1, . . . , FT )

is the r × T matrix of common factors; see, for example, Bai and Wang (2014) and Barigozzi et al.

(2016).

3.2.2. PC factor extraction

The most popular procedures for factor extraction in large datasets are based on the PC

procedure. The distinctive feature of PC is that it allows a consistent factor extraction without

assuming any particular error distribution and specifications of the factors and idiosyncratic

noises further than the cross-correlation of the latter being weak and the variability of the common

factors being not too small.4 Furthermore, PC is computationally simple which explains its

wide implementation among practitioners when dealing with very large systems of economic

variables.

PC factor extraction separates the common component, PFt, from the idiosyncratic

component, εt, through cross-sectional averages of Yt in such a way that when N and T tend

4Onatski (2012) considers a DFM in which the explanatory power of the factors does not strongly dominate the
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to infinity, the effect of the idiosyncratic component converges to zero remaining only the effects

associated to the common factors. The PC estimators of P and Ft, are obtained as the solution to

the following least squares problem

min
F1,...,FT ,P

Vr(P, F ) (3.4)

subject to P ′P/N = Ir and F ′F being diagonal where Vr(P, F ) = 1
NT

∑T
t=1(Yt − PFt)

′(Yt −

PFt). The solution to (3.4) is obtained by setting P̂PCL equal to
√
N times the eigenvectors

corresponding to the r largest eigenvalues of Y Y
′

where Y = (Y1, . . . , YT ) is a N × T matrix

of observable. The corresponding PC estimator of F using data in levels is given by

F̂PCL = N−1P̂PCL
′
Y. (3.5)

Alternatively, when the common factors are I(0), Bai and Ng (2002) give the restriction

FF ′/T = Ir with P ′P being diagonal, such that, the estimator of the matrix of common factors,

F̂PCL, is the
√
T times the eigenvectors corresponding to the r largest eigenvalues of the T × T

matrix Y ′Y , with estimated factor loadings, P̂PCL = Y F̂PCL
′
/T . When the common factors are

I(1), Bai (2004) proposes to use the restriction FF ′/T 2 = Ir with P ′P being diagonal. In this

case, F̂PCL, is the T times the eigenvectors corresponding to the r largest eigenvalues of the

T × T matrix Y ′Y and P̂PCL = Y F̂PCL
′
/T 2. The difference is only computational, these latest

restrictions are less costly when N > T , while that P ′P/N = Ir with FF ′ being diagonal are less

costly when N < T .

In the context of stationary systems, if the common factors are pervasive and the serial

and cross-sectional correlation of the idiosyncratic components is weak, Bai (2003) proves the

consistency of F̂PCL, P̂PCL and the common component, deriving their asymptotic distributions

when N and T tend simultaneously to infinity, allowing for heteroscedasticity in both the

temporal and cross-sectional dimensions; see also Bai and Ng (2002) and Stock and Watson

explanatory power of the idiosyncratic noises.



46 CHAPTER 3. ESTIMATING NON-STATIONARY COMMON FACTORS

(2002a). Additionally, Bai (2004) extends the asymptotic results when Ft is I(1) and εt is I(0).

When the idiosyncratic components are I(1), Bai and Ng (2008) show that PC factor extraction

implemented to data in levels yields inconsistent estimates of the common factors.

In order to obtain more efficient estimates of Ft and P relative to the PC factor extraction,

Choi (2016) proposes a GPCE implemented to the original non-stationary system. Using the

standardization FF ′/T 2 = Ir, the feasible estimator of the factor space spanned by Ft, denoted

by F̂GPCEt , is T times the eigenvectors corresponding to the r largest eigenvalues of the T × T

matrix Y ′Σ̂−1
ε Y where Σ̂

−1/2
ε = diag(σ̂1, . . . , σ̂N ) with σ̂2

i =
∑T

t=1 ε̂
2
it/T , and ε̂2

it are obtained

after implementing the PC estimator of Ft proposed by Bai (2004) as in equation (3.5). The

corresponding weights are given by P̂GPCE = T−2Y F̂GPCE
′
; see Choi and Hwang (2012) for

an application to forecasting the Korean inflation. Choi (2016) shows that the GLS version of the

PC estimator is asymptotically equivalent to the original PC estimator.

Alternatively, instead of extracting the factors implementing PC to the original data, Bai and

Ng (2004) propose differencing the data in a univariate fashion and extract the factors from the

following differenced model

∆Yt = P∆Ft + ∆εt, (3.6)

∆Ft = Φ∆Ft−1 + ∆ηt, (3.7)

∆εt = (Γ− I)εt−1 + at, (3.8)

where ∆ = (1−L) with L being the lag operator such that LYt = Yt−1. The weights are estimated

as
√
N times the first r normalized eigenvectors of the N × N sample covariance matrix of ∆Yt

and denoted by P̂PCD. The corresponding estimated factors are given by

f̂t = N−1P̂PCD
′
∆Yt, t = 2, . . . , T. (3.9)

Once the factors are extracted from the first differenced variables, the estimated factors can be

obtained either by integration of their estimated first differences as proposed by Bai and Ng (2004)
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or by projecting the original system onto the space spanned by the estimated loading as proposed

by Barigozzi et al. (2016). The “differencing and recumulating” estimated factor is given by

F̂PCDt =

t∑
s=2

f̂s, t = 2, . . . , T. (3.10)

Note that assuming Y0 = 0, the estimated differenced factor at time 1 is given by f̂1 =

N−1P̂PCD
′
Y1 and, consequently, the estimated recumulated factor coincides with the projected

factor which is given by

F̂BLLt = N−1P̂PCD
′
Yt t = 1, . . . , T. (3.11)

Bai and Ng (2004) and Barigozzi et al. (2016) show that, respectively, F̂PCDt and F̂BLLt are a

consistent estimator for a rotation of Ft up to a level shift regardless of whether the idiosyncratic

component, εt, is I(0) or I(1). Note that the factor estimators proposed by Bai and Ng (2004) and

Barigozzi et al. (2016) are asymptotically equivalent with some finite sample differences when

there are deterministic trends in the DFMs.

3.2.3. Two-step Kalman Smoother

The 2SKS procedure was proposed by Doz et al. (2011) for stationary DFMs. Therefore, 2SKS

can be implemented to ∆Yt. The 2SKS factor extraction procedure is based on combining PC and

Kalman Smoother techniques. First, the common factors and factor loadings are estimated using

PC obtaining P̂PCD and f̂t and the corresponding idiosyncratic and factor residuals, ∆ε̂ = ∆Y −

P̂PCDf̂ and ut = f̂t−Φ̂f̂t−1 where Φ̂ is the ordinary least squares (OLS) estimator of the regression

of f̂t on f̂t−1. These residuals are used to estimate the covariance matrices Ψ̂ = diag
(

Σ̂∆ε

)
where

Σ̂∆ε = ∆ε̂∆ε̂′/(T − 1) with ∆ε̂ = (∆ε̂2, . . . ,∆ε̂T ) is an N × T − 1 matrix and Σ̂η = uu′/(T − 1)

where u = (u2, . . . , uT ) is an r × T − 1 matrix. Assuming that f0 ∼ N(0,Σf ), the unconditional

covariance of the factors can be estimated as vec
(

Σ̂f

)
=
(
Ir2 − Φ̂⊗ Φ̂

)−1
vec
(

Σ̂η

)
.After writting
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the DFM in equations (3.6) to (3.8) in state-space form, with the system matrices substituted by

P̂PCD, Ψ̂, Φ̂, Σ̂η and Σ̂f , the Kalman smoother is run to obtain an updated estimation of the factors

denoted by f̂KSt . Finally, estimates of the common factors, F̂KSDt , are obtained by recumulating

analogously to equation (3.10).

Doz et al. (2011) prove the consistency of f̂KSt when N and T are large considering

assumptions slightly different than those in Bai and Ng (2002), Stock and Watson (2002a) and Bai

(2003) but with a similar role. The 2SKS works well in finite samples obtaining more accurate

factor estimates of ft = ∆Ft even in the presence of cross-sectional heteroscedasticity in the

idiosyncratic noises, see Doz et al. (2011). Finally, Doz et al. (2012) propose iterating the 2SKS

procedure until convergence is achieved in terms of two consecutive log-likelihood values.

Considering the possibility of non-stationary common factors, we propose to extend the 2SKS

algorithm as follows5

1. Obtain PC estimates of P and Ft with data in levels given by expression (3.5). Compute the

idiosyncratic residuals ε̂ = Y − P̂PCLF̂PCL and the covariance matrix of the idiosyncratic

residuals, Ψ̂ = diag
(

Σ̂ε

)
.

2. For each estimated factor, F̂PCLjt , j = 1, . . . , r, carry out the Augmented Dickey Fuller (ADF)

test.

a) If the null hypothesis of a unit root is rejected, obtain the OLS estimate of the

autoregressive coefficient, φ̂j , the residuals ujt = F̂PCLjt − φ̂F̂PCLjt−1 and the sample

variance of the factor disturbance, σ̂2
ηj =

∑T
t=1 u

2
jt/T . The initial state of the factor

is assumed to have zero mean and variance estimated by σ̂2
Fj

= σ̂2
ηj/(1− φ̂

2
j ).

b) If the null hypothesis is not rejected, then φ̂j = 1 and the residuals are computed as

ujt = ∆F̂PCLjt . Calculate the variance of the factor residuals, σ̂2
ηj =

∑T
t=2 ∆F̂PCL

2

jt /(T −

5Barigozzi and Luciani (2017) propose an alternative extension in which, in order to isolate common trends and
stationary factors, they use a nonparametric approach which identifies the common trends as those linear combinations
of the factors obtained by the leading eigenvectors of a transformation of the long-run covariance matrix as proposed
by Peña and Poncela (2006), Pan and Yao (2008), Lam et al. (2011) and Zhang et al. (2016).
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1). Assume a diffuse prior for the initial factor with mean zero and variance σ̂2
Fj

= κ,

where κ is a large constant that empirically performs well (for instance κ = 107); see

Harvey and Phillips (1979), Burridge and Wallis (1985) and Harvey (1989).6

3. Obtain Φ̂ = diag(φ̂1, . . . , φ̂r), Σ̂η = diag(σ̂2
η1
, . . . , σ̂2

ηr), Σ̂F = diag(σ̂2
F1
, . . . , σ̂2

Fr
) and use them

together with P̂PCL and Ψ̂ in the KS to obtain the estimated common factors F̂KSL.

3.3. Finite sample performance

In this section, we carry out Monte Carlo experiments in order to study the performance

of the factor extraction procedures described in the previous section. The experiments are

based on R = 500 replicas generated by the DFM in equations (3.1)-(3.3) with sample sizes

T = (100, 500) and N = (12, 50, 200). The factor loadings are generated once as P ∼ U [0, 1]

and the autoregressive matrix of the idiosyncratic components is diagonal, Γ = γI, with

γ = (−0.8, 0, 0.7, 1).7 We consider three specifications of dependence of the idiosyncratic noises:

a) homoscedastic and cross-sectionally uncorrelated, with Σa = σ2
aI where σ2

a = (0.1, 1, 10);

b) heteroscedastic and cross-sectionally uncorrelated with the variances generated by σ2
ai ∼

U [0.05, 0.15] , σ2
ai ∼ U [0.5, 1.5] and σ2

ai ∼ U [5, 15]; c) homoscedastic and cross-sectionally

correlated with weak cross-correlation generated following Kapetanios (2010) as Σ1/2εt where

Σ = [σi,j ], σi,j = σj,i ∼ U(−0.1, 0.1) for |i − j| ≤ 5 for i, j = 1, . . . N . Finally, with respect to the

unobserved factors, we consider four different data generating processes (DGPs). The first DGP,

denoted as model 1 (M1), has r = 1, Φ = 1 and σ2
η = 1 so that the factor is given by a random

walk. The second and third models (M2 and M3) introduce a second random walk with r = 2

and Φ = I while Ση = I (M2) and Ση = diag(1, 5) (M3). Finally, the fourth model considered

6Koopman (1997) gives an exact solution for the initialization of the Kalman filter and smoothing for state space
models with diffuse initial conditions.

7Alternatively, we generate artificial systems by model M1 where the temporal dependence of the idiosyncratic
errors is γ = diag(−0.8IN/2, 1IN/2) and γ = diag(0IN/2, 0.7IN/2). The results are very similar to those when all
idiosyncratic errors have the same dependence with γ = −0.8 and γ = 0, respectively. It seems that the results are
driven by the smallest temporal dependence among the idiosyncratic noises. These results are available upon request.
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(M4) also has two factors but one is stationary while the other is not. In particular, in model M4,

Ση = I and Φ = diag(1, 0.5).

For each DGP considered, the common factors are estimated using the procedures described

in Section 3.2 obtaining F̂PCDt and F̂KSDt , based on “differencing and recumulating”, and F̂PCLt ,

F̂GPCEt and F̂KSLt , based on data in levels.8 Following Bai (2004), the performance of the factor

extraction procedures is evaluated by computing the sample correlation between the true factor,

Ft, and a rotation of the estimated factors, δ̂′jF̂
(j)
t , estimated by the following regression

Fjt = δ̂′jF̂
(j)
t + ν̂t.

Figure 3.1 plots the Box-plots of the sample correlations between the true and rotated

estimated factors obtained through the Monte Carlo replicates when the systems are generated

by the M1 model with homoscedastic idiosyncratic errors with σ2
a = 10 when the temporal

and cross-sectional dimensions are (N,T ) = (12, 50), (12, 100), (50, 100), (200, 100) and (200, 500).

Several conclusions can be obtained from Figure 3.1. First, all procedures based on differencing

and recumulating are similar among them. The same can be said about the procedures based on

extracting factors directly from the data in levels. Second, regardless of N and T , the correlations

of the “differencing and recumulating” PC procedure can be rather low when the temporal

dependence of the idiosyncratic component is negative. Furthermore, using the “differencing

and recumulating” estimator implemented with the 2SKS procedure generates even smaller

correlations, mainly when γ = −0.8. Note that, when the serial dependence of the idiosyncratic

components is such that γ < 0.5, the variance of the differenced idiosyncratic component, σ2
∆ε, is

larger than the corresponding variance of the original component, σ2
ε ; see, for example, Corona

et al. (2016). Consequently, the performance of the procedures using data in first differences

deteriorates in this case. However, if γ ≥ 0.5, then σ2
∆ε < σ2

ε and, consequently, the procedures

based on “differencing and recumulating” may have an advantage. Third, if the idiosyncratic

8Note that, in the context of the DFM considered in this paper, the Monte Carlo results for the procedure proposed
by Barigozzi et al. (2016) (BLL) are almost identical to those obtained by the procedure proposed by Bai and Ng (2004).
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noises are white noise, the 2SKS procedures implemented to raw data generate correlations

which are always close to 1. Note that the two-step procedure proposed in this paper does a

remarkably good job. Only when the cross-sectional and temporal dimensions are very large, the

procedures based on first differences estimate factors with correlations close to one. Fourth, if

the dependence of the idiosyncratic noises is positive, differencing or extracting the factors using

the original non-stationary system yields similar correlations. Only when N and T are relatively

small, differencing performs worse. Finally, when the idiosyncratic errors are non-stationary,

i.e. γ = 1, extracting the factors using differenced or original data yields similar moderate

correlations. Only when N is very large, we observe the result established by the asymptotic

theory with the procedures based on “differencing and recumulating” having correlations close

to one while the non-consistent procedures based on original non-stationary data having smaller

correlations.

The Box-plots plotted in Figure 3.1, help to understand the role of the dynamic dependence

of the idiosyncratic noises on the performance of the alternative factor extraction procedures

considered. In order to evaluate the effect of the variance of the disturbance of the idiosyncratic

noises, Figure 3.2 plots the Box-plots of the correlations of the common factor estimates and

the simulated ones for model M1 with γ = −0.8 and the same dimensions considered above

and σ2
a = 0.1, 1 and 10. Note that if σ2

a is small, then all procedures have correlations close

to 1 regardless of the cross-sectional and temporal dimensions and whether they are based on

first differences or original data. The deterioration of the procedures based on “differencing and

recumulating” is already observed for σ2
a = 1 with the exception of very large N and T. Finally, in

Figure 3.3, we study the role of the variance of the idiosyncratic noises when γ = 1. In this case, it

is clearly better to take first differences to the original series. The performance of the procedures

based on extracting factors from the original data is only reasonable when σ2
a = 0.1.

To evaluate the precision of the factor estimates and summarizing the results, we carry out a

response surface analysis by regressing the sample correlation averages on the cross-sectional and

temporal dimensions, N and T , and the temporal dependence and variance of the idiosyncratic



52 CHAPTER 3. ESTIMATING NON-STATIONARY COMMON FACTORS

noises, γ and σ2
a, for model M1 with homoscedastic, heteroscedastic and cross-correlated

idiosyncratic noises. In the case of heteroscedastic idiosyncratic errors, the value of σ2
a considered

as regressor is the expected value of the variances for each idiosyncratic noise. The regression

parameter estimates together with the corresponding standard errors and adjusted R2 are

reported in Table 3.1. First, we can observe that the average correlation of the procedures based

on “differencing and recumulating” is clearly smaller than that of the procedures implemented to

original data. As above, we also observe that the correlations are similar among methods based

on first differences and among methods based on original systems. Second, it is also clear that

the correlations between the true factors and the rotated estimates obtained using procedures

based on differenced data increase with γ, the temporal dependence of the idiosyncratic noise.

This result could be expected given that, as explained above, when γ < 0.5, the variance of

the differenced idiosyncratic component, σ2
∆ε, is larger than the corresponding original variance,

σ2
ε , and, consequently, the recovery of the common factors is less precise. Furthermore, note

that the increase in the correlations between true and rotated extracted factors is larger for KSL

than for the PCL procedure, as expected given the flexibility of the Kalman filter to explicitly

model the idiosyncratic dynamics. However, the correlations decrease with γ when the factor

extraction procedures are implemented to original data. Third, increasing σ2
a negatively affects

factor extraction for all procedures. However, for the same reasons explained above, the effect

of σ2
a is less important if the factors are extracted using original non-stationary observations than

when they are extracted using first-differenced data. Finally, Table 3.1 shows that the results are

almost the same regardless of the particular specifications of the idiosyncratic components. It is

remarkable that, for the particular specifications of the heteroscedasticity considered in this paper,

the correlations between the true and rotated estimated factors obtained when the PCL and GPCE

procedures are implemented are very similar.

Finally, we consider the three models with two factors. Figure 3.4 plots the Box-plots of the

correlations across the Monte Carlo experiments between the true and rotated estimated common

factors through the Monte Carlo experiments for models M2, M3 and M4 (by rows) with σ2
a = 10
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and γ = −0.8. In each case, we consider homoscedastic, heteroscedastic and cross-correlated

idiosyncratic errors (by columns) The cross-sectional and temporal dimensions are N = 50 and

T = 100. First of all, as far as the two factors are non-stationary, models M2 and M3, we can

observe the same patterns as those described for the case of one single factor. However, when one

factor is a random walk and the second factor is stationary, model M4, none of the procedures

estimate this factor adequately. The results are drastically deteriorated when extracting the

stationary common factor.9 Finally, Figure 3.5 plots the Box-plots of the correlations across Monte

Carlo replicates when the idiosyncratic noise is I(1) and σ2
a = 1. As expected, we can observe that

the common factors are better extracted when we use first-differenced data.

In the context of determination of the number of factors, Corona et al. (2016) conclude that if

εt is stationary, with autoregressive parameters smaller than 0.5 while Ft is non-stationary, then

overdifferencing the idiosyncratic components may introduce distortions on the determination

of the number of factors given that the relation between the variances of the common and

idiosyncratic components is modified with the variances of ∆Ft decreasing and the variances

of ∆εt increasing in relation to the variance of Ft and εt, respectively. Recall as well, that some

procedures do not yield consistent estimates when the idiosyncratic noises are I(1).

3.4. Empirical analysis

International or cross-border risk sharing focuses on the smoothing of consumption when a

country is hit by a negative output shock. In an ideal world of perfect risk sharing, consumption

should be insured. However, in practice, risk sharing is far from being full or complete and a

percentage of GDP shocks are passed into consumption and are not smoothed. In a time series

context, risk sharing has been traditionally addressed in the literature as a short-run issue and,

consequently, analyzed within the context of stationary models. Nevertheless, more recently,

some authors question this view and bring in the long-run perspective to the problem, although

9The results are similar even if the cross-sectional and temporal dimensions are increased.
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the results are not conclusive. For instance, Becker and Hoffmann (2006) and Pierucci and

Ventura (2010) analyse risk sharing within a cointegration context. Artis and Hoffmann (2008,

2012) argue that risk sharing has increased at lower frequencies and relate their results to the

permanent income hypothesis. On the contrary, Leibrecht and Scharler (2008) using cointegration

techniques and vector error correction models found that while consumption risk sharing in the

short-run was around 30%, only accounts for a 10% in the long-run. As regards factor models,

Del Negro (2002) implement a stationary DFM to disentangle movements in US state output

and consumption due to national, regional or state-specific factors. Very recently, for capital

flows, Byrne and Fiess (2016) apply non-stationary factor models to analyze the common and

idiosyncratic elements in emerging markets’ capital inflows.

The economic interpretation of the common factor analysis in our model should be as

follows. If there is full risk sharing, idiosyncratic consumption and output cannot share a

common factor since these two variables should be orthogonal in an ideal case of complete risk

sharing where, under certain assumptions, domestic consumption should be a constant fraction

of the aggregate world output. Hence, lack of complete full risk sharing should be detected

through commonalities between domestic output and consumption. If we can find non-stationary

common factors among the series of output and GDP we could conclude that there is no risk

sharing in the long-run.

Our sample covers the following 21 industrialized OECD countries: Australia (AUS), Austria

(AUT), Belgium (BEL), Canada (CAN), Denmark (DEN), Finland (FIN), France (FRA), Germany

(DEU), Greece (GRC), Ireland (IRL), Italy (ITA), Japan (JPN), Netherlands (NLD), New Zealand

(NZL), Norway (NOR), Portugal (PRT), Spain (ESP), Sweden (SWE), Switzerland (CHE), United

Kingdom (GBR) and United States (USA). The data are annual observations of Gross Domestic

Product (GDP) and Consumption (C) from National Accounts and cover the time span 1960-2014

with N = 42 and T = 55. The main source of data is AMECO, the annual macro-economic

database of the European Commission’s Directorate General for Economic and Financial Affairs

(DG ECFIN), which provides harmonized statistics on all of the variables required to perform
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the analysis. The nominal GDP and C have been transformed in Purchasing Power Standard

(PPS) units by dividing the nominal aggregates by the appropriate PPS exchange rate reported

by AMECO. To compute per-capita variables, the real aggregates expressed in PPS are divided

by the population taken from the OECD Statistics. We build the aggregate GDP and C for the set

of countries included in the analysis. To build the aggregates, we use weighted averages in order

to reflect the importance of each country in the group of economies. Then, starting from the real

indicators computed for each country in PPS, we followed the weighting procedure described in

Beyer et al. (2001), where the aggregation is performed directly on growth rates (first difference of

logs) but using time-varying weights of countries that are given by their relative share in real GDP,

in levels. The aggregate GDP and consumption growth rates are integrated to get the log of the

aggregate variables. As initial condition for the aggregated GDP (consumption), we aggregate the

levels of real GDP (consumption) and take logs. To define the idiosyncratic variables or gaps in log

levels we subtract the log of the aggregate from the log level of a specific country. The resulting

gap could be interpret as the log of the percentage of a particular country GDP (consumption)

over the aggregate variable (see Giannone and Reichlin, 2006, for the same interpretation).

Unit root tests are performed for the GDP and consumption gaps for all countries and, overall,

we can consider that the series are I(1). In order to determine the number of common factors, we

implement the procedure proposed by Onatski (2010) and choose r = 5 regardless whether it is

implemented to data in levels or first differences; see Corona et al. (2016) for a comparison on

alternative procedures to determine the number of common factors in non-stationary DFMs.

Since, we do not know if the idiosyncratic errors are stationary or not, we differentiate the data

and extract 5 common factors using PCD. Then, we recumulate the extracted common factors and

the specific components. We use PANIC to check if the idiosyncratic errors are non-stationary. We

performed individual tests for each idiosyncratic error and the pooled test proposed by Bai and

Ng (2004) where the pooled statistic of the log of the pvalues (pi) of the individual tests follows a

standard normal distribution

P =
−2
∑N

i=1 log pi − 2N√
4N

. (3.12)
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Pooled tests could not be used in the original data because of strong cross correlation due

to the common factors but they can be used in the specific components since this strong cross

correlation has been removed after extracting the common factors. Both the individual tests

over the idiosyncratic components as well as the pooled test (the p statistic was 0.19) indicate the

idiosyncratic components are non-stationary. In this case, we have to choose any of the methods

to extract the common factors that work with the data in first differences, since if the errors

are non-stationary the procedures that work with the data in levels do not yield to consistent

estimates. This was reflected in our simulations by the low correlations between the generated

common factors and the estimated ones.

The rationale for finding that the idiosyncratic errors are non-stationary should be as follows.

A large part of the commonality has been removed when generating the data as the variables

that enter into the model are already deviations from the aggregate. This aggregate might proxy

world comovements. Nevertheless, there are still strong correlations in the data that we remove

through the common factors. If what it is left is non-stationary, as it might seem the case, it means

that there are persistent movements that are generated internally and not shared among countries

or due to interactions with third countries, as it might happen with the U.S. and Mexico. Another

way of looking at this result is as follows: if after removing r1 non-stationary common factors,

what is left is stationary, it means that we should find 2N − r1 cointegrating relations among the

data. This is not the case and, therefore, we conclude that in our model after removing r common

factors (r1 being non-stationary), what is left is non-stationary as well.

We proceed using PCD to recover the common factors and the factor loadings.10 As mentioned

before, we applied the “differencing and recumulating” method suggested by Bai and Ng (2004),

although any method that works with the data in first differences could be used as well. We

test how many of the common factors are non-stationary. The extracted sample factors in first

differences are orthogonal as this condition is imposed for identifcation purposes, however the

recumulated common factors do not need to be orthogonal. Therefore, we test how many of the

10The factor extraction results using the other procedures are available upon request.
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common factors are non-stationary using the variant of the test for common trends of Stock and

Watson (1988) proposed by Bai and Ng (2004). Basically, the test consist of deciding how many

of the eigenvalues of the first order autoregressive matrix, after correcting for serial correlation in

the residuals are close enough to 1. The estimated eigenvalues are 0.66, 0.83, 0.90, 0.91 and 1.02.

We cannot reject the null hypothesis of 5 common trends, even though the fifth eigenvalue is only

0.66. Since T is not so large, we can conclude that there are 5 common factors in the data and, at

least, 4 of them are non-stationary factors.

The next step is to decide if the factor loadings are different from zero and if we find a loadings

different from zero associated to GDP and consumption for the same country. Since the factor

loading matrix is the same for the model in first differences than for the model in levels, and in

the model in levels the idiosyncratic errors are I(1), we perform inference about the factor loadings

using the factor model in first differences (the asymptotic distribution of the loadings is given in

Bai, 2003).

We analyze the factor loadings for the first common factor (see Figure 3.6) related to GDP

series. The factor loadings could be considered different from zero for all countries but Australia,

Canada, Denmark, UK and Switzerland. It gives positive weight to the Anglo-Saxon countries

(USA, CAN, GBR, NZL and AUS) although it can be only considered different from zero for US

and New Zealand while the weights have the opposite sign for the rest of European countries

(other than the United Kingdom) and Japan. Within the last set, the highest, in absolute value,

are given to Greece, Portugal, Spain followed by Japan. Curious enough, Greece, Portugal, Spain

(jointly with Ireland and Italy that also have significant factor loadings of the same sign) constitute

the so called PIIGS group, peripheral European countries where risk sharing has collapsed during

the last recession and subsequent sovereign debt crisis faced. Kalemli-Ozcan et al. (2014) point

out that the governments of these countries did not save during the expansionary phases of the

business cycle and were not able to borrow on the international markets during the crisis due

to the high levels of outstanding public debt. Ireland is also included in this set although its

case is slightly different, with government deficits related to banking failures (see Kalemli-Ozcan
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et al., 2014). This might be the reason why Ireland is included in this group instead of within

the Anglo-Saxon countries. Japan has experienced a long lasting recession and sluggish output

growth since the early 1990s. We check the results through other estimation methods. No

matter the estimation method, the factor loadings in domestic or idiosyncratic consumption

seem to follow very closely those of idiosyncratic output, indicating lack of risk sharing. This

interpretation should be in accordance with Becker and Hoffmann (2006) and Pierucci and

Ventura (2010).

The second common factor gives the highest positive weight to New Zealand. On the negative

side appears Japan. The next 2 common factors are devoted to separate Greece from other

countries. Basically, the 3rd common factor separates Greece from Portugal and the 4th one to

separates Greece from Ireland and Norway. The fifth common factor loads on several countries

and has a difficult interpretation.

There are 21×5=105 loadings associated to each country for GDP and the same quantity

associated to consumption. Only in 27 out of the 105 possible cases, factor loadings were

significant for one of the variables (GDP or consumption) and not for the other (which could

be an indication of risk sharing). However, we find that when a loading is significant for GDP for

one country, it is usually significant and of the same sign for consumption for the same country.

3.5. Conclusions

In this study we examine the finite sample performance of alternative factor extraction

procedures to estimate non-stationary common factors in the context of large DMFs. Furthermore,

we extend the hybrid method from Doz et al. (2011) based on combining PC and Kalman

smoothing, applying the technique to original non-stationary observations. We show that, when

the idiosyncratic errors are non-stationary, the approaches based on estimating the common

factors using non-stationary time series in levels do not perform well and that the procedures

based on first differences should be used. This fact was pointed out by Bai and Ng (2008) for
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the basic PC estimator and we have checked that the same holds for the remaining methods that

use data in levels. The empirical application shows that for a non-stationary system of 21 OECD

industrialized economies, at least four common factors are non-stationary, such that, consumption

and GDP share common trends. Furthermore, we apply PANIC to the estimated idiosyncratic

errors, concluding that this component is non-stationary. Hence, these facts suggest the lack of

full risk sharing both in the short and long-run.
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Tables and Figures

Table 3.1: Response surface analysis by regressing sample correlations averages on the sample size, serial correlation
and the variance of the idiosyncratic disturbance. Standard errors between parenthesis.

Dependent variable: Sample correlation averages

M1 with homoscedastic idiosyncratic errors

Regressor PCD KSD PCL BLL GPCE KSL

Constant 0.8517 0.7901 0.9548 0.8523 0.9437 0.9611

(0.0445) (0.0591) (0.0316) (0.0444) (0.0328) (0.0315)

N 0.0002 0.0004 0.0001 0.0002 0.0001 0.0001

(0.0002) (0.0003) (0.0002) (0.0002) (0.0002) (0.0002)

T 0.0003 0.0003 0.0000 0.0003 0.0001 0.0000

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

γ 0.1331 0.2145 -0.1009 0.1329 -0.1093 -0.1062

(0.0281) (0.0374) (0.0200) (0.0281) (0.0207) (0.0199)

σ2
a -0.0296 -0.0353 -0.0100 -0.0102 -0.0296 -0.0090

(0.0044) (0.0058) (0.0031) (0.0044) (0.0032) (0.0031)

R̄2 0.5035 0.5026 0.3175 0.5031 0.3266 0.3215

M1 with heteresocedastic idiosyncratic errors

PCD KSD PCL BLL GPCE KSL

Constant 0.8454 0.7879 0.9542 0.8459 0.9372 0.9618

(0.0440) (0.0580) (0.0317) (0.0440) (0.0333) (0.0314)

N 0.0003 0.0004 0.0001 0.0003 0.0001 0.0001

(0.0002) (0.0003) (0.0002) (0.0002) (0.0002) (0.0002)

T 0.0003 0.0003 0.0000 0.0003 0.0001 0.0000

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

γ 0.1309 0.2150 -0.0993 0.1306 -0.1086 -0.1043

(0.0278) (0.0367) (0.0200) (0.0278) (0.0211) (0.0198)

σ2
a -0.0322 -0.0367 -0.0108 -0.0103 -0.0321 -0.0091

(0.0043) (0.0057) (0.0031) (0.0043) (0.0033) (0.0031)

R̄2 0.5362 0.5236 0.3139 0.5358 0.3291 0.3162

M1 with cross-correlated idiosyncratic errors

PCD KSD PCL BLL GPCE KSL

Constant 0.8537 0.7929 0.9538 0.8543 0.9453 0.9599

(0.0439) (0.0583) (0.0316) (0.0439) (0.0327) (0.0313)

N 0.0002 0.0003 0.0001 0.0002 0.0001 0.0001

(0.0002) (0.0003) (0.0002) (0.0002) (0.0002) (0.0002)

T 0.0003 0.0003 0.0001 0.0003 0.0001 0.0000

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

γ 0.1296 0.2116 -0.0986 0.1293 -0.1075 -0.1040

(0.0278) (0.0369) (0.0199) (0.0277) (0.0206) (0.0198)

σ2
a -0.0299 -0.0358 -0.0105 -0.0299 -0.0102 -0.0093

(0.0043) (0.0057) (0.0031) (0.0043) (0.0032) (0.0031)

R̄2 0.5097 0.5098 0.3166 0.5094 0.3260 0.3205
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Figure 3.1: Box-plots of the sample correlations between {δ̂′jF̂PCDt }, {δ̂′jF̂KSDt }, {δ̂′jF̂PCLt }, {δ̂′jF̂BLLt }, {δ̂′jF̂GPCEt }
and {δ̂′jF̂KSLt }with {Ft}. We consider the M1 model with homoscedasticity in idiosyncratic errors with σ2

a = 10. First
row indicates N = 12 and T = 50; second row N = 12 and T = 100; third row N = 50 and T = 100; fourth row
N = 200 and T = 100 and fifth row N = 200 and T = 500. The first column plots γ = −0.8, second column γ = 0,
third column γ = 0.7 and fourth column γ = 1.
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Figure 3.2: Box-plots of the sample correlations between {δ̂′jF̂PCDt }, {δ̂′jF̂KSDt }, {δ̂′jF̂PCLt }, {δ̂′jF̂BLLt }, {δ̂′jF̂GPCEt }
and {δ̂′jF̂KSLt } with {Ft}. We consider the M1 model with homoscedasticity in idiosyncratic errors with γ = −0.8.
First row indicates N = 12 and T = 50; second row N = 12 and T = 100; third row N = 50 and T = 100; fourth row
N = 200 and T = 100 and fifth row N = 200 and T = 500. The first column plots σ2

a = 0.1, second column σ2
a = 1,

and third column σ2
a = 10.
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Figure 3.3: Box-plots of the sample correlations between {δ̂′jF̂PCDt }, {δ̂′jF̂KSDt }, {δ̂′jF̂PCLt }, {δ̂′jF̂BLLt }, {δ̂′jF̂GPCEt }
and {δ̂′jF̂KSLt } with {Ft}. We consider the M1 model with homoscedasticity in idiosyncratic errors with γ = 1. First
row indicates N = 12 and T = 50; second row N = 12 and T = 100; third row N = 50 and T = 100; fourth row
N = 200 and T = 100 and fifth row N = 200 and T = 500. First column plots σ2

a = 0.1, second column σ2
a = 1 and

third column σ2
a = 10.
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Figure 3.4: Box-plots of the sample correlations between {δ̂′jF̂PCDt }, {δ̂′jF̂KSDt }, {δ̂′jF̂PCLt }, {δ̂′jF̂BLLt }, {δ̂′jF̂GPCEt }
and {δ̂′jF̂KSLt } with {Ft}. We consider the N = 50 and T = 100 with σ2

a = 10 and γ = −0.8. First row plots M2
model, second row M3 model and third row M4 model. First column indicates the homoscedasticity, second column
heteroscedasticity and third column cross-sectionally correlated idiosyncratic errors.
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Figure 3.5: Box-plots of the sample correlations between {δ̂′jF̂PCDt }, {δ̂′jF̂KSDt }, {δ̂′jF̂PCLt }, {δ̂′jF̂BLLt }, {δ̂′jF̂GPCEt }
and {δ̂′jF̂KSLt } with {Ft}. We consider the N = 50 and T = 100 with σ2

a = 1 and γ = 1. First row plots M2
model, second row M3 model and third row M4 model. First column indicates the homoscedasticity, second column
heteroscedasticity and third column cross-sectionally correlated idiosyncratic errors.
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Figure 3.6: Top panel F̂jt, middle panel p̂ij for GDP (i = 1, . . . 21) and bottom panel p̂ij for C (i = 22, . . . 42) for
j = 1, . . . , 5.. We plot the corresponding 95% confidence intervals for P̂ (middle and bottom panels). All estimations
are obtained using PCD.



Chapter 4

Summary and Future Research

This dissertation analyzes topics about large Non-stationary Dynamic Factor Models (DFMs).

In Chapter 2, we focus on studying the effects of stationary univariate transformations when

determining the number of factors. We consider the Bai and Ng (2002) information criteria, the

edge distribution given by Onatski (2010) and the ratios of adjacent eigenvalues of the sample

covariance matrix proposed by Ahn and Horenstein (2013). These are three of the most popular

procedures to determine the number of factors frequently implemented in empirical analysis.

Bai and Ng (2002) propose minimizing a penalized likelihood or log sum of squares, where the

penalty functions increase linearly in the number of factors. These criteria is the most popular

in the context of PC factor extraction and are based on a consistent estimation of the factor

space. Onatski (2010) proposes an alternative procedure to select the number of factors and

shows that it outperforms the criteria proposed by Bai and Ng (2002) when the proportion

of the variance due to the idiosyncratic component is large relative to the variance atributted

to the common component. Furthermore, this procedure performs well when the noises are

substantially correlated. Ahn and Horenstein (2013) carry out two ratios of adjacent eigenvalues

of the sample covariance matrix under the assumption that the eigenvalues r largest eigenvalues

of Σ̂Y grow unbounded as N increases, while the other eigenvalues remain bounded. For a DFM

with r = 1 and uncorrelated and homocesdastic idiosyncratic errors, we first analytically derive

67
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the eigenvalues of the covariance matrix and show how the procedures considered are affected

when the system is differenced. We implement a Monte Carlo analysis considering DGP which

can often occur in empirical applications. We conclude that that the Ahn and Horenstein (2013)

procedure performs well when r = 1 even if when the sample size is small and under several

dynamics and structure dependence in the idiosyncratic noises. When r = 2, the performance

from these approaches deteriorates, being the Onatski (2010) procedure the one that outperforms.

The Bai and Ng (2002) information criteria perform well when the common component variance

is large with respect to the variance of the idiosyncratic term. In the empirical application, when

we use first-differenced data, all approaches detect one common factor. When differencing the

system, Bai and Ng (2002) information criteria tend to rmax, Onatski (2010) procedure identifies

3 common factors and the ratios of adjacent eigenvalues of Ahn and Horenstein (2013) remain

determining one common factor. Considering three factors, the first is associated to the common

inflation of the euro area, while the second and the third are directly determined by Ireland

and Greece respectively. The main conclusion is that, if the idiosyncratic error is stationary

(cointegrated DFM), with autoregressive parameters smaller than 0.5 while the common factor

is non-stationary, then overdifferencing the idiosyncratic components may introduce distortions

on the determination of the number of factors. This occurs given that the relation between the

variances of the common and idiosyncratic components is modified with the variances from the

differenced common factor being smaller and the variances from the differenced idiosyncratic

term being larger.

In Chapter 3, we analyze the finite sample performance of the approaches existing in literature

to extract consistently non-stationary common factors. Additionally, we extend the Doz et al.

(2011) procedure to extract common factors to the non-stationary case, which are based on PC

and Kalman smoothing. Furthermore, we estimate factor loadings and non-stationary common

factors for a set of OECD countries, with the goal of disentangling whether risk sharing is a short

or long-run phenomenon. We take into account the Bai and Ng (2004) procedure which extracts

the non-stationary common factors applying PC to first-differeced data, using the “differencing
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and recumulating” estimator regardless of whether the idiosyncratic noises are non-stationary. In

a similar way, we consider the hybrid procedure of Doz et al. (2011). Furthermore, we analyze

procedures which extract non-statioanary common factors using data in levels. In this context,

Bai (2004) proposes to use PC in data in levels when the idiosyncratic errors are stationary.

Barigozzi et al. (2016) project the original observations in the factor loadings estimated as in

Bai and Ng (2004) allowing non-stationary idiosyncratic errors. Choi (2016) uses GPCE under

similar assumptions to Bai (2004). Finally, we consider the hybrid technique for data in levels,

allowing non-stationary common factors in the DFM. In the Monte Carlo analysis, we study the

finite sample performance of the approaches considered. The main goal is to determine whether

we can obtain close estimations of the simulated common factors considering several DGP that

can be encountered in empirical applications. The main conclusion is that, the procedures that

perform with data in levels, tend to recover better the simulated common factors when the

idiosyncratic component is stationary. On the other hand, the procedures that use first-differenced

data and the Barigozzi et al. (2016) approach have an outperformance. In the empirical analysis,

we apply the Onatski (2010) procedure to determine the number of common factors. We obtain

r̂ = 5 and extract the common factors using the procedure given by Bai and Ng (2004) to

extract non-stationary common factors. To disentangle the non-stationarity in the system, we

apply PANIC. We conclude that the idiosyncratic errors are non-stationary and at least four

common factors are non-stationary. The fact that the idiosyncratic errors are non-stationary can be

attributed to persistent movements that are generated internal and not shared among countries

or due to interactions with third countries, as it might happen with the U.S. and Mexico. The

non-stationary factor model points out the lack of risk sharing both in the short and long-run.

Further research should focus on extending the finite sample performance of the procedures to

determine the number of factors in the context of dynamic factors, see for example Amengual and

Watson (2007), Bai and Ng (2007), Hallin and Liska (2007), Jacobs and Otter (2008) and Breitung

and Pigorsch (2013). It is well known that in presence of break points the null hypothesis tends

to be rejected by the usual ADF and PP tests. Hence, we can implement, for example, the Busetti
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and Harvey (2001) unit root test in order to improve the performance of the 2SKS procedure

to extract stationary or non-stationary common factors. Also, it is interesting to study the

statistical properties of the hybrid procedure when the common factors are non-stationary, which

is proposed in this dissertation, initially considering stationary idiosyncratic errors. Furthermore,

we can extend the algorithm allowing non-stationary idiosyncratic errors following the ideas

given by Barigozzi and Luciani (2017).
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Appendix to Chapter 2

Figure A.1: Eigenvalues of DFM with r = 1, φ = 1 and σ2
η = 1 when the idiosyncratic noises are AR(1) process

with γ = −0.8 and σ2
a = 0.1. The first column plots the eigenvalues while the second and third column plot their

differences and ratios respectively. The population eigenvalues are plotted in red, the Monte Carlo averages in black
and the corresponding 95% intervals in blue. First row N = 12, T = 100; second row N = 12, T = 500; third row
N = 50, T = 100; fourth row N = 50, T = 500; fifth row N = 200, T = 100 and sixth row N = 200, T = 500.
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Figure A.2: Eigenvalues of DFM with r = 1, φ = 1 and σ2
η = 1 when the idiosyncratic noises are AR(1) process with

γ = 1 and σ2
a = 1. The first column plots the eigenvalues while the second and third column plot their differences

and ratios respectively. The population eigenvalues are plotted in red, the Monte Carlo averages in black and the
corresponding 95% intervals in blue. First row N = 12, T = 100; second row N = 12, T = 500; third row N = 50, T =
100; fourth row N = 50, T = 500; fifth row N = 200, T = 100 and sixth row N = 200, T = 500.



85

Figure A.3: Percentage of r̂ = rmax (blue), rmax > r̂ > r (green), r̂ = 2 (red), r̂ = 1 (gold) and r̂ = 0 (black) in a DFM
with r = 2, γ = −0.8 and σ2

a = 1. System dimensions N = 12, T = 100 (first column); N = 200, T = 500 (second
column). The factors are two random walks with variance σ2

η = 1 (first row); two random walks with variances σ2
η1 = 1

and σ2
η2 = 5 (second row) and a random walk with variance σ2

η1 = 1 and a stationary factor with σ2
η2 = 1.
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Figure A.4: Percentage of r̂ = rmax (blue), rmax > r̂ > r (green), r̂ = 2 (red), r̂ = 1 (gold) and r̂ = 0 (black) in a DFM
with r = 2, γ = 1 and σ2

a = 1. System dimensionsN = 12, T = 100 (first column); N = 200, T = 500 (second column).
The factors are two random walks with variance σ2

η = 1 (first row); two random walks with variances σ2
η1 = 1 and

σ2
η2 = 5 (second row) and a random walk with variance σ2

η1 = 1 and a stationary factor with σ2
η2 = 1.
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Figure A.5: Percentage of r̂ = rmax (blue), rmax > r̂ > r (green), r̂ = 2 (red), r̂ = 1 (gold) and r̂ = 0 (black) in a
DFM with r = 2, γ = 1 and σ2

a = 10. System dimensions N = 12, T = 100 (first column); N = 200, T = 500 (second
column). The factors are two random walks with variance σ2

η = 1 (first row); two random walks with variances σ2
η1 = 1

and σ2
η2 = 5 (second row) and a random walk with variance σ2

η1 = 1 and a stationary factor with σ2
η2 = 1.
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Figure A.6: Eigenvalues (first row), difference of eigenvalues (second row) and ratio of eigenvalues (third row) from
Σ̂Y (left column) and Σ̂∆Y (right column) in empirical application for i = 1, . . . , rmax.

Figure A.7: Determination of number of factor for each considered procedure. Red color is using data in levels and
wine color using first-differenced data.



Appendix B

Appendix to Chapter 3

Figure B.1: Box-plots of the sample correlations between {δ̂′jF̂PCDt }, {δ̂′jF̂KSDt }, {δ̂′jF̂PCLt }, {δ̂′jF̂BLLt }, {δ̂′jF̂GPCEt }
and {δ̂′jF̂KSLt } with {Ft}. We consider the M1 model with homoscedasticity in idiosyncratic errors with γ =
diag(−0.8IN/2, 1IN/2). First row indicates N = 12 and T = 50; second row N = 12 and T = 100; third row N = 50
and T = 100; fourth row N = 200 and T = 100 and fifth row N = 200 and T = 500. The first column plots σ2

a = 0.1,
second column σ2

a = 1, and third column σ2
a = 10.
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Figure B.2: Box-plots of the sample correlations between {δ̂′jF̂PCDt }, {δ̂′jF̂KSDt }, {δ̂′jF̂PCLt }, {δ̂′jF̂BLLt }, {δ̂′jF̂GPCEt }
and {δ̂′jF̂KSLt } with {Ft}. We consider the M1 model with homoscedasticity in idiosyncratic errors with γ =
diag(0IN/2, 0.7IN/2). First row indicates N = 12 and T = 50; second row N = 12 and T = 100; third row N = 50
and T = 100; fourth row N = 200 and T = 100 and fifth row N = 200 and T = 500. The first column plots σ2

a = 0.1,
second column σ2

a = 1, and third column σ2
a = 10.
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Figure B.3:
∑i
s=1 λ̂s from Σ̂Y for i = 1, . . . , rmax.
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Figure B.4: Factor extraction for each considered procedure (first factor). Top panel F̂1t, middle panel p̂i1 for GDP
(i = 1, . . . 21) and bottom panel p̂i1 for C (i = 22, . . . 42).
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Figure B.5: Factor extraction for each considered procedure (second factor). Top panel F̂2t, middle panel p̂i2 for GDP
(i = 1, . . . 21) and bottom panel p̂i2 for C (i = 22, . . . 42).
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Figure B.6: Factor extraction for each considered procedure (third factor). Top panel F̂3t, middle panel p̂i3 for GDP
(i = 1, . . . 21) and bottom panel p̂i3 for C (i = 22, . . . 42).
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Figure B.7: Factor extraction for each considered procedure (fourth factor). Top panel F̂4t, middle panel p̂i4 for GDP
(i = 1, . . . 21) and bottom panel p̂i4 for C (i = 22, . . . 42).
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Figure B.8: Factor extraction for each considered procedure (fifth factor). Top panel F̂5t, middle panel p̂i5 for GDP
(i = 1, . . . 21) and bottom panel p̂i5 for C (i = 22, . . . 42).
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