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Abstract

Statistical arbitrage, as a quantitative method of speculation, has been increasingly preva-

lent along with the evolution of computational �nance. One of the most popular statistical

arbitrage strategies is called pairs trading, which is widely used by hedge funds and invest-

ment banks since the mid-1980s. Pairs trading strategy exploits price spread between paired

assets by taking long-short positions. If price spread is temporary according to past price

information, a trading opportunity arises and pro�ts can be made from price correction

process. To capture these opportunities, we focus on assets sharing cointegration relations.

This long-term relationship implies that paired assets are exposed to common fundamentals,

and hence it guarantees price convergence to the equilibrium level. Therefore, this thesis

applies cointegration technique to capture short-term market anomalies and exploits these

ine�ciencies using pairs trading in order to build optimal portfolio strategies.

The thesis consists of three chapters. The �rst chapter presents an equilibrium framework

based on equity commonality explicitly adapted to describe the dynamics of pairs trading.

Our methodology, built on the price discovery model of Figuerola-Ferretti and Gonzalo

(Journal of Econometrics 2010) exploits price leadership for portfolio replication purposes

and shows how pairs trading pro�tability is linked to the speed of equilibrium reversion.

A persistence-dependent trading trigger is introduced to impose higher thresholds on pairs

with slower mean reversion. Our model demonstrates that equilibrium price convergence

guarantees positive abnormal pro�tability. Applied to STOXX Europe 600 traded equities

our strategy delivers Sharpe ratios that outperform benchmark rules used in the literature.

Portfolio performance is enhanced after �rm fundamental factor restrictions are imposed.

vii



viii

The second chapter proposes a VECM representation for cointegrated assets in the con-

tinuous time framework. This model implies a simple method to check for cointegration

based on the speed of equilibrium reversion. A pair of cointegrated assets is then identi�ed

to derive a dynamically optimal pairs trading portfolio with a risk-free bond. This involves

maximizing the portfolio value at terminal time without the requirement of a functional

form for investor´s preferences. To this end, we connect the derived optimal portfolio with

European-type spread options and in consequence the optimal investment policies can be

modeled using the spread option's resulting delta hedging strategies. Our framework is

tested empirically using pairs identi�ed from the Dow Jones Industrial Average. This anal-

ysis requires maximum likelihood estimates on continuous VECM parameters, compared to

the benchmark Johansen methodology. We �nd that the proposed optimal strategy delivers

consistent pro�tability in terms of Sharpe ratio and cumulative returns. This supports the

usefulness of introducing spread option's deltas as the optimal investment policies for pairs

portfolio construction. In addition, our model-implied selection algorithm outperforms the

Johansen (1991) methodology commonly applied in the previous literature.

Finally, the third chapter examines the performance of pair trading portfolios when sorted

by the level of cointegration of their constituents. The supercointegrated portfolio, that is

formed by pairs at 1% con�dence level of cointegration tests, exhibits a superior out-of-

sample performance than simple buy-and-hold and passive investments in terms of Sharpe

ratio. We �nd that the degree of performance of pairs strategy is positively related to the

level of cointegration among pairs. These evidence are also documented in an international

context, from the analysis on the European stock market. The time-varying risk of the pairs

strategy is linked to aggregate market volatility. A positive risk-return relationship of the

strategy is also found.



Chapter 1

Pairs Trading and Spread Persistence in

the European Stock Market

1.1 Introduction

Short-term price discrepancies are common across assets that are imperfectly integrated.

Pairs trading strategies are designed to earn pro�ts from relative mispricing of closely related

assets. This paper extends the results from an equilibrium demand and supply framework to

show how pairs trading can be used to exploit the mean reversion property of cointegration

errors. Pairs trading belongs to the family of convergence trade strategies. It relies on a

well-known trading rule for cointegrated price series based on simultaneous long-short po-

sitions that are closed when prices revert to long run equilibrium. When an investor opens

a position he shorts the out-performer and longs the under-performer, until the mispric-

ing is eliminated. We extend the Figuerola-Ferretti and Gonzalo (2010) (FFG thereafter)

demand and supply equilibrium framework to describe price dynamics in two distinct but

cointegrated assets and show how market participants exploit temporary mispricings per-

forming pairs trading strategies. The setup requires a �nite elasticity of arbitrage services

and equilibrium error persistence. It evolves around the speed by which arbitrageurs restore

equilibrium allowing measurement of price discovery for portfolio replication purposes and

1



Chapter 1. Pairs Trading and Spread Persistence 2

arbitrage pro�t determination. A market is regarded as dominant in this framework if it

concentrates a higher number of participants. Cointegration therefore guarantees equilib-

rium price convergence that is represented in terms of a stationary error correction term.

The trading trigger in this context linked to the degree of persistence of the cointegration

error so that higher stationarity requires a lower trading trigger.

This paper is related to Gatev et al. (2006) (GGR thereafter), which examines the per-

formance of pairs trading using daily U.S. stock return data. GGR perform pairs selection

using the minimum distance algorithm. They �nd economically and statistically signi�cant

excess returns of around 11% per annum. Following GGR, Andrade et al. (2005), Broussard

and Vaihekoski (2012) and Bowen and Hutchinson (2014) apply the algorithm to Asian and

European equity markets. A common drawback from these studies is that they essentially

apply an ad hoc trading trigger. Vidyamurthy (2004) sheds light to this problem by search-

ing for trading trigger optimality by maximizing a pro�t function under the assumption of

Gaussian errors.

Another strand of the literature models the cointegration spread under dynamic settings.

Elliott et al. (2005) and Avellaneda and Lee (2008) consider an Ornstain-Uhlenbeck process

to model the cointegration error allowing spread estimation and setting the framework for

determination of the threshold value. While Avellaneda and Lee (2008) empirically determine

cuto� values based on the process assumed for the cointegration error, Elliott et al. (2005)

link the trading trigger to the degree of mean reversion. This paper contributes to the

literature by proposing a trading trigger that is determined by the speed of convergence to

equilibrium arising from VECM estimates. Our model-based trading rule is therefore related

to Elliott et al. (2005) in that the trading trigger is de�ned as a function of the speed of

mean reversion.

Our empirical application is based on an out-of-sample analysis and uses STOXX Europe

600 traded equities whose prices are quoted in the euro currency to identify cointegration

relationships with a sample ranging from 2000 to 2017. Common factor and industry re-

strictions are imposed to illustrate the existence of the long-run equilibrium. This justi�es
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the use of a model with equity shared fundamentals that drive prices to parity. We analyze

the pro�tability of pairs strategies at the portfolio level and compare their performance with

benchmark pairs trading methodologies used in the literature. We �nd that the proposed

pairs strategies outperform the seminal strategy of Gatev et al. (2006), as evidenced by

signi�cant abnormal returns and higher Sharpe ratios. The documented outperformance is

enhanced once we control for common �rm fundamentals as well as the industry e�ect.

The rest of the paper proceeds as follows. In Section 2 we relate the VECM dynamics

to the construction of pairs trading strategies. This requires a description of preliminaries

and main results of the FFG model applied to two distinct but cointegrated assets. Section

3 presents the data sample and empirical results on cointegration and price discovery. In

section 4 we conduct the pairs trading performance analysis with a number of robustness

tests. Section 5 provides conclusions.

1.2 The theoretical model

1.2.1 Model set-up

The aim of this section is to introduce pairs trading strategies in a demand and supply

equilibrium framework. In this context, arbitrage takes place through pairs trading strategies

that exploit mean reversion of the pricing error. The model is built on the presumption that

price correction of two cointegrated assets departing from equilibrium relationships depends

on the average speed of convergence in each market. This determines the degree of persistence

of the cointegration error and becomes an important factor for designing the trading trigger.

In this section we present the joint dynamics between two cointegrated assets within a

demand and supply equilibrium framework. Investors either take single asset positions or

trade two assets that share common fundamentals simultaneously via the use of pairs trading

strategies. Mean reversion of the spread is of critical importance to arbitrageurs who, will

exploit short-lived deviations from equilibrium in search of bene�ts from pairs strategies.
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Under imperfect integration, there is a �nite elasticity of demand for pairs trading strategies

(H),1 and relative prices may di�er between markets for short intervals of time by more than

transaction costs. The speed by which such price discrepancies are eliminated depends on

the degree of persistence in the error term zt. The speed of mean reversion is determined by

market imperfections that represent impediments to arbitrage such as liquidity or potential

funding constraints.2

In what follows, we extend the FFG model to describe an equilibrium framework for

imperfectly integrated markets. Let yt and xt be the price of paired assets in time t, respec-

tively. In order to �nd the non-arbitrage equilibrium condition, the following set of standard

assumptions applies in this section:

1. No limitations on borrowing.

2. No cost other than arbitrage transaction cost.

3. No limitations on short-sale.

4. Arbitrage opportunities that generate a random price di�erence between paired assets

are determined by the stationary process zt. These arise as a result of market im-

perfections that impede arbitrage opportunities between markets and lead to a �nite

elasticity of demand for pairs trading strategies (H > 0) and a stationary cointegra-

tion error. Higher market imperfections are translated into more persistent errors and

lower elasticity of demand for pairs trading. In the limit, when arbitrage opportunities

are exploited instantaneously there is an in�nite elasticity of demand for pairs trading

strategies (H →∞). This leads to immediate price adjustments to divergences be-

tween the two cointegrated markets implying that market frictions are eliminated and

temporary mispricings disappear and zt = 0. Under these circumstances there is no

cointegration and potential pro�ts from pairs strategies become zero.3

1This elasticity measures the proportional change in demand for arbitrage strategies in the form of �pairs trading� for a given
change in the quantity of arbitrage services.

2See for instance Shleifer and Vishny (1997), Xiong (2001), Gromb and Vayanos (2002) and Kondor (2009) for a detailed
discussion on the limits to arbitrage.

3Market imperfections lead to stationary cointegration errors and �nite elasticity of arbitrage services. This di�ers from
other frameworks in the literature that have considered non linearities in the cointegration error to identify the presence of non
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5. The equity price series yt and xt are I(1), implying that their mean and auto-covariance

are di�erent for every realization of t.

By the above assumptions 1-5, long-run equilibrium conditions imply:

yt = γ0 + γ1xt + zt (1.1)

where γ0 is the (constant) cash amount invested (or borrowed) to buy γ1 units of asset xt

(required to replicate prices of asset yt). Therefore γ1 is the hedge ratio as it re�ects the

size of position that has to be taken in the portfolio with asset xt to replicate the prices

of asset yt. Equation (1.1), implies that yt and xt are cointegrated suggesting (imperfect)

market integration. Pairs trading strategies are triggered when temporary mispricings arise

from the long-run cointegration relationship. When the spread between yt and xt widens

by an amount higher than a given threshold, there is a positive pro�t potential that can be

exploited by an arbitrageur who shorts the winner and buys the loser. If the long and short

components measure common fundamentals, the prices will restore equilibrium providing

positive average (and cumulative) pro�ts. This framework is consistent with Brennan et al.

(1993) in that it is market imperfections that give rise to the arbitrage opportunity.

The model developed in Appendix A describes the dynamics of agents who trade single

securities and agents who trade two cointegrated assets. Market imperfections are in this

context translated into a �nite elasticity of demand for pursuing pairs strategies. In this

framework the demand schedule for each traded asset has two components: (a) the own asset

demand and (b) the speculative demand based on the long-term relationship between the two

traded assets. Market clearing conditions are de�ned by equating aggregate market demand

and aggregate supply schedules in a context where new information arrival is re�ected in

the di�erence between lagged market clearing prices and current bid prices. The resulting

bivariate dynamics between yt and xt are represented by the following VECM:

linearities within the basis term arising under the presence of transaction costs, or interaction between sentiment and trading
behavior. See McMillan and Ülkü (2009).
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 ∆yt

∆xt

 =
H

d

 −Nx

Ny

( 1 −γ1 −γ0

)


yt−1

xt−1

1

+

 uyt

uxt

 (1.2)

with

d = (H + ANy)Nx + γ1HNy (1.3)

where there are Ny participants in the market for asset yt and Nx participants in the market

for asset xt and, as previously speci�ed, the elasticity of demand for pursuing pairs strategies

is noted by H. We rewrite the theoretical result in (1.2) as:

∆P =

 ∆yt

∆xt

 =

 α1

α2

 zt−1 + ut (1.4)

where ut is a vector white noise with i.i.d shocks.4

In order to de�ne the VECM well and ensure that �pairs strategies� can be applied, the

following conditions need to be satis�ed:

1. If α1 and a2 are both statistically signi�cant, they must have opposite signs, as pre-

dicted by the theoretical result in Equation (1.2). This implies that, if there is a change

in the equilibrium error, so that for instance yt is greater than its replicating portfolio

(γ0 + γ1xt) by a given threshold value (TV ), i.e. (zt > TV ), in order to restore equilib-

rium yt is required to fall in the next period while xt is expected to increase. In this case,

α1 will be negative, Hd (−Nx), and α2 positive, Hd (Ny), so pairs strategists will short yt

(outperformer) and buy xt (underperformer) to exploit price divergences. This allows

positive pro�ts until temporary mispricing vanishes. Conversely when (zt < −TV ) ,

asset xt is overpriced in t , which implies that α2 will be negative H
d

(−Ny) and α1

4Note that in the empirical part lags of ∆P are chosen in order to obtain white noise errors.
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will be positive H
d

(Nx) to guarantee mean reversion of the error term. Note that the

determination of the TV is described in Section 2.2 below.

2. If zt > 0 and the asset yt was contributing signi�cantly to price discovery, α2 will be

positive and statistically signi�cant as the asset xt adjusts to incorporate new informa-

tion. Similarly, if the market trading xt is an important venue for price discovery and

liquidity then α1 would be negative and statistically signi�cant. If both coe�cients are

signi�cant then both markets contribute to price discovery. The existence of cointe-

gration means that at least one market has to restore long-run equilibrium, indicating

that the given market is under (over) priced and is short-term ine�cient. Pro�ts from

pairs strategies can therefore be achieved. If the adjustment of both prices is immediate

and independent of the cointegration error (α1 = α2 = 0), the elasticity of demand for

pairs strategies is in�nite (H →∞),5 and there is no VECM, no price discovery, and

no pro�t from pairs strategies.

3. In the VECM framework, the paired assets are modeled to converge to each other to

restore equilibrium. The coe�cients α1 and a2 are the adjustment coe�cients, and

measure the speed by which both assets adjust to long-run equilibrium. This is slow

when the parameter is close to 0, and fast when it is close to 1. In the case where α1 6= 0

and α2 = 0, asset xt does not adjust to asset yt as it is essentially the common factor

or e�cient price. (The reverse is true when α1 = 0 and α2 6= 0).

4. Pairs trading strategies require stationarity of the error term. The error correction

mechanism links directly the adjustment speed of paired series to the cointegration

error, which follows an autoregressive (mean reverting) process speci�ed as:

zt = (1− (−α1 + γ1α2))zt−1 + uyt − γ1u
x
t (1.5)

zt = ρzt−1 + uyt − γ1u
x
t (1.6)

5In this case both markets are perfect substitutes and prices are �discovered� in both markets simultaneously. The model is
not sustainable for this case.
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In this context, the sum of the absolute values of α1 and α2 determines the persistence

of the cointegration error. In the limit, when α1 = α2 = 0, zt is I(1), there is no

cointegration and it is not possible to bene�t from trading paired assets6. When α1

and/or α2 are statistically di�erent from zero and correctly signed (see point 1), the error

term will be mean reverting and pairs trading will be pro�table. Note that incorrect

estimated signs for α1 and α2 signals explosive behavior in the error term (ρ > 1).

In order to describe pro�ts from pairs strategies we de�ne the cointegration error as:

zt = yt − γ0 − γ1xt (1.7)

Whenever the cointegration error reaches the model trigger so that yt on the previous period

is above its equilibrium level, there will be an arbitrage opportunity which requires that the

investor shorts yt in the same amount as the replicating portfolio (constructed with asset xt)

in order to pro�t from pairs strategies. Pro�ts from this strategy may be de�ned as:

Πt = M (−∆yt + γ1∆xt) = −M∆zt (1.8)

where Πt are measured in ¿, yt and xt represent equity prices in ¿, and M is the amount

invested (in ¿). Portfolio replication is de�ned in terms of price levels (and not returns)

and the delta or hedge ratio for a short position in asset yt will be γ1 implying that γ1

units of asset xt are acquired to replicate the value of asset yt. Portfolio allocations are

therefore determined according to the regression coe�cients of the cointegration relationship.

Substituting the result in Equation (1.4), we get :

∆yt =α1zt−1

∆xt =α2zt−1

Πt =M (−α1 + γ1α2) zt−1

(1.9)

6The absolute value of the estimated adjustment coe�cients has to lie between 0 and 1. A proof of this statement can be
provided upon request
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From Equation (1.6) we can write :

Πt = M (1− ρ) zt−1 (1.10)

Pro�ts are therefore negatively related to error persistency so that the more stationary

is the error term, the higher is pairs trading pro�tability. When ρ > 1, the cointegration

spread is explosive and pro�ts become negative. Pro�ts are therefore increasing in the degree

of stationarity and the size of arbitrage opportunities as re�ected in the cointegration error.

When zt−1 > 0, asset yt is overpriced in period t − 1. This indicates that in time t as

previously speci�ed, under VECM dynamics, α1 must be negative, and α2 positive as they

move to restore equilibrium.

1.2.2 Threshold design for the cointegration error

The trading algorithm dictates that arbitrage opportunities will be exploited when zt exceeds

a given threshold value TV . Under these circumstances the general principle is applied. This

requires placing a new trade when the error deviates from equilibrium and unwinding the

trade when equilibrium is restored. In order to optimally design the trading trigger, one has

to specify what would qualify as a su�cient divergence of the cointegration error from its

long-term equilibrium. The literature does not o�er a closed form solution to this question.

Instead, it demonstrates that the actual implementation of the trading algorithm is wide

and varied (see Park and Switzer (1996), Avellaneda and Lee (2008), Elliott et al. (2005)

and Vidyamurthy (2004) for description of threshold possibilities). Park and Switzer (1996)

perform basis trading in the �xed-income market and de�ne the trading trigger in terms

of a combination of a moving average and a standard deviation calibrated with a tolerance

parameter. Avellaneda and Lee (2008) estimate trading cuto�s based on mean reversion of a

dimensionless variable while Vidyamurthy (2004) proposes various band designs for di�erent

assumptions regarding the spread process. Our approach is consistent with Vidyamurthy

(2004) and Elliott et al. (2005) in that we de�ne the threshold value in terms of the amount

of volatility away from the mean. However we exploit the model-based result relating lower
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persistency to higher pro�tability as outlined in Equation (1.10) to de�ne the calibrating

parameter of the trading trigger. Using the results underlying Equation (1.5) we propose

ρσ = (1 + α1 − γ1α2)σ standard deviations of zt as the model threshold. In this way we

link the model threshold to the persistence of the error term so that more persistent errors

require a higher threshold. Note that this is in line with Elliott et al. (2005), who inversely

relate the trigger level to the speed of mean reversion in the spread. In our framework a

trade will be triggered when ‖zt‖ >ρσ and unwound when long-run equilibrium is restored

so that ‖zt‖ ≤ρσ.

The threshold is also linked to pairs trading pro�tability as underlined in Equation (1.10).

Higher pro�tablity requires lower thresholds.

1.2.3 Portfolio replication

Portfolio replication requires determination of price leadership in the context of price discov-

ery. In this framework the dominant price is used to replicate the value of the follower. Price

discovery measures the contribution of cointegrated assets to reveal information regarding

a common factor that measures fundamentals.7 It can be shown from VECM in Equations

(1.2)-(1.4), that the contribution of assets yt and xt to price discovery is:

PDy =
α2

α2 − α1

=
Ny

Ny +Nx

(1.11)

PDx =
−α1

α2 − α1

=
Nx

Ny +Nx

(1.12)

If new information from both markets is incorporated into the common e�cient price,

0 ≤ PDi ≤ 1 for i = y, x. Under the extreme case where α1 = 0, the price discovery metrics

become PDy = 1 and PDx = 0 then there is a predominance of asset yt in the price discovery

process.8 If α2 = 0 then we have PDx = 1 and PDy = 0 so that there is a predominance of

asset xt in terms of price discovery. Price discovery is exploited so that the price is used in
7See Hasbrouck (1995), Gonzalo and Granger (1995), and Lehmann (2002).
8Predominance in this context implies that the common fundamental factor is driven solely from the dominant price.
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this model to replicate the value of the follower. Equations (1.11) and (1.12) demonstrate

that price discovery relies on the relative number of agents in both markets which de�nes

the relative speed of mean reversion.

1.3 Cointegration and price discovery

In this paper we focus on the European equity market in order to identify potential pro�table

opportunities underlying pairs trading strategies. We consider companies included in the

STOXX Europe 600 index, restricting the analysis to those corporates that are located in

the Eurozone such that their prices are quoted in euro currency. The selected sample consists

of 292 companies across ten countries of the European common currency area. Daily closing

price data are collected over the period dating from January 1st, 2000 to February 6th, 2017.

This comprises an average of 4461 trading observations9. The data source is Datastream.

Our sample period covers the pre-crisis period as well as the post Lehman era, therefore it

allows us to analyze pairs trading under the existence of cointegration in di�erent market

states.

The presence of cointegration in this context indicates that two non-stationary I(1) vari-

ables have a linear combination that is stationary, I(0). In what follows, we identify a

matching partner for each stock with the restriction that both stocks should belong to

the same industry. According to the Industry Classi�cation Benchmark used by STOXX

indices10, the 292 companies are categorized into ten industries, namely, Financials (63),

Industrials (58), Consumer Goods (42), Consumer Services (33), Basic Materials (23), Utili-

ties (20), Health Care (16), Technology (15), Telecommunications (11), and Oil & Gas (11).

The model presented in Section 2 demonstrates that the mechanism behind cointegration

lies on the existence of an underlying common e�cient price. Therefore in addition to the

statistical sense, assets are linked into the equilibrium underlined in Equation (1.1) due to

the existence of shared fundamentals. To account for common fundamentals we impose two

restrictions: (i) the industry restriction; (ii) the �rm fundamental factor restriction. The
9Note that not all companies have the same starting date.
10This classi�cation is based on the companies´ primary revenue source.
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industry restriction is expected to convey shared supply and demand conditions as well as

common regulation exposures. Given that the sample is restricted to the same currency

area, we expect the underlined commonalities to drive prices to parity. In what follows, the

industry restriction is taken as the baseline restriction. The �rm fundamental restriction is

considered jointly with the sector restriction in Section 4.5.

Our empirical analysis is based on the VECM speci�ed in Equation (1.4). Econometric

details of the estimation and inference of (1.4) can be found in Johansen (1995) and Juselius

(2006).

We start by performing an Augmented Dickey-Fuller test as unit roots are a necessary

condition for cointegration. We fail to reject the null hypothesis of a unit root for all price

series analyzed. We perform the Johansen cointegration test using a rolling-window approach

within a given industry at the 5% signi�cant level. Speci�cally, we use a three-year window

from t to t+ 3 (estimation period) to identify cointegrated pairs and, for each selected pair,

estimates of the cointegration vector in the VECM are obtained. The selected pairs and

resulting estimates are then applied to trading implementation (see the detailed description

in Section 4) for the next six-month window from t + 3 to t + 3.5 (trading period). This

procedure is repeated through the remaining sample period. This leaves us, for instance,

with the second estimation window from t+ 0.5 to t+ 3.5, which is followed by the trading

window from t+3.5 to t+4. Given that not all companies have been listed at the �rst sample

date, January 1st, 2000, the starting date of a possible pair is chosen so that transactions are

available on both corporates considered. The resulting paired equities are tied via a long-run

arbitrage relationship under the imposed restriction that the error term is stationary. In the

sense that paired equities are close substitutes, they tend to move in synchrony.

Once cointegration relationships are estimated, we investigate the lead-lag relationship

for each pair to determine which asset dominates the price discovery process. Table 1 re-

ports VECM estimates across industries. Because there are thirty di�erent rolling samples,

reported results represent an average value computed from a series of estimates for each

percentile. We �nd from Panel A that the adjustment coe�cient α1 is signi�cantly negative
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for all industry percentiles11, suggesting that the price of the follower (yt) is expected to drop

by α1 units in response to one unit increase in the error correction term. The corresponding

estimate of α2 is positive under all percentiles. Results of α2 also suggest that it is not

signi�cantly di�erent from zero in 80% of the estimations. This implies that there is an

asymmetric lead-lag relation in 80% of the paired corporates. For the remaining 20%, both

assets contribute to price discovery. However, the general result is that there is a dominant

asset (xt) relative to its matching partner (yt) in terms of price discovery, and thus the fol-

lower (yt) does all the adjustment to restore long-term equilibrium. Note that this result

comes by construction given that the leading asset (xt) is used to replicate the follower (yt).

E�ectively Johansen cointegration estimates are obtained in a context in which the follower

(or the dependent variable) is set to be explained by the leader which acts as the independent

variable. The existence of cointegration allows using Maximum Likelihood estimators of the

cointegrating relation to build our portfolio strategy, instead of OLS regressions as widely

used in the statistical arbitrage literature12. The (constant) cash amount, γ0, is required

to be positive13. The positive sign of γ0 suggests that long cash positions should be held

to replicate the follower with γ1 units of the leading asset, and thus interest expenses are

omitted from the construction of arbitrage pro�ts. Then we look at the estimated values

of γ1 reported in Panel B. The values are varied as di�erent units of the leader asset are

required to replicate the follower. Note that the largest range for γ1 is for Financials and In-

dustrials, the two sectors with highest number of paired companies. This coe�cient re�ects

the sensitivity of one asset to its matching partner and is in essence the hedge ratio in our

pairs trading strategy.

11Average standard errors by industry can be provided upon request.
12see for instance Schaefer and Strebulaev (2008) and Kapadia and Pu (2012).
13Estimated values of γ0 can be provided upon request.
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Table 1.1: Estimation of VECM parameters

Sample 5th Percentile 25th Percentile Median 75th Percentile 95th Percentile

Panel A: Estimated values of α1 and α2

Financials α1 -0.013 -0.036 -0.076 -0.150 -0.302

α2 0.001 0.005 0.012 0.029 0.076

Industrials α1 -0.020 -0.038 -0.066 -0.112 -0.323

α2 0.001 0.007 0.015 0.028 0.058

Consumer Goods α1 -0.021 -0.052 -0.090 -0.136 -0.201

α2 0.002 0.008 0.018 0.036 0.077

Consumer Services α1 -0.017 -0.036 -0.063 -0.115 -0.254

α2 0.002 0.006 0.013 0.024 0.052

Basic Materials α1 -0.040 -0.059 -0.082 -0.112 -0.170

α2 0.004 0.012 0.024 0.041 0.064

Utilities α1 -0.009 -0.014 -0.028 -0.048 -0.089

α2 0.001 0.002 0.005 0.009 0.023

Health Care α1 -0.046 -0.060 -0.087 -0.125 -0.200

α2 0.004 0.010 0.018 0.032 0.052

Technology α1 -0.035 -0.046 -0.067 -0.092 -0.147

α2 0.005 0.010 0.020 0.032 0.052

Telecommunications α1 -0.011 -0.017 -0.028 -0.038 -0.059

α2 0.002 0.004 0.008 0.015 0.023

Oil & Gas α1 -0.026 -0.038 -0.053 -0.070 -0.090

α2 0.002 0.004 0.011 0.020 0.031

Panel B: Estimated values of γ1

Financials 0.14 0.45 1.43 7.06 11.64

Industrials 0.14 0.42 0.94 2.76 10.65

Consumer Goods 0.26 0.58 1.30 2.88 7.99

Consumer Services 0.28 0.49 0.88 1.95 4.96

Basic Materials 0.32 0.46 0.96 1.83 3.33

Utilities 0.23 0.45 0.93 3.34 9.86

Health Care 1.07 1.27 1.79 2.76 4.07

Technology 0.54 0.76 1.15 1.99 5.15

Telecommunications 2.17 2.25 2.62 4.25 6.60

Oil & Gas 0.64 0.80 1.10 2.49 3.99

This table presents the values of α1 and α2 obtained using the Johansen cointegration methodology in Panel A. The
percentiles for α1 are computed using the absolute values. Summary statistics of estimated values of γ1 are reported
in Panel B. As the Johansen test is conducted on a rolling-window basis, these reported values are an average value
computed from a series of estimates of each percentile. The sample period is January 2000 to February 6th 2017.
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1.4 Pro�tability of pairs trading

1.4.1 Model-based pairs trading strategies

In this section, we illustrate the proposed pairs trading mechanism presented in Section 2,

based on the existence of cointegration. The trading mechanism is described as follows:

An arbitrageur opens a long-short position on the day following departure, when the price

spread hits the model-derived threshold, denoted as (1+α1−γ1α2) units of standard deviation

calculated from historical spreads. The initial position is then unwound one day later when

price reversion eventually occurs, or is forced to close at the end of a 6-month trading

period if no convergence takes place. In other words, we trade according to the rule that

delays the opening/close of a position by one day, and the maximum trading horizon is six

months. After a pair has completed a round-trip trade, it will be subject to the identical

trading rule again. As previously discussed, this paper applies three-year rolling-window

approach. This results in a series of cointegration coe�cients and speed of mean reversion

estimates. These estimates are used to determine pricing errors to design the following six-

month out-of-sample trading strategies. The implementation of trading requires construction

of replicating portfolios and trading triggers immediately following the three-year estimation

period. Since most data are available from January 1st, 2000, their �rst valid trading day is

the �rst business day in January 2003.

This trading mechanism, which longs the underpriced asset and shorts the overpriced

one simultaneously, is implemented according to the sign of the estimated alpha coe�cients.

Theoretical pro�ts are always positive and de�ned by return di�erentials as speci�ed in

Equations (1.8) and (1.9). Our pairs selection algorithm is driven by cointegration, which

implies that pro�ts generated by the proposed strategy are expected to be stationary. As

stated in the model, cointegration guarantees that short-lived price deviations revert towards

equilibrium, such that the slow adjustment process can be exploited to make pro�ts. With

this trading rule Figure 1 illustrates how to perform the strategy using the cointegrated pair,

Air Liquide and BASF, as an example. The �uctuating line in blue represents price spread zt
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Figure 1.1: Price spreads between Air Liquide and BASF and pairs trading establishment

This �gure illustrates how to perform pairs trading strategy using the cointegrated pair, Air Liquide and BASF,
during the period 2000-2009.

, while the two straight lines in green indicate the border of model-derived threshold (either

positive or negative). The line in grey, near to the x-axis, re�ects the opening and close of

pairs trades on a daily basis. We see that a position is initiated when the price spread moves

beyond the border and then closed when price deviation lies between two border lines.

1.4.2 The baseline results

We analyze the performance of pairs trading strategies for each industry, under the �persis-

tence calibrated� standard deviation trigger. Risk and return characteristics are examined

at the portfolio level. In addition to forming equal-weighted portfolios, we calculate buy-
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Table 1.2: Model-derived trading trigger 1 + α1 − γ1α2

Sample 5th Percentile 25th Percentile Median 75th Percentile 95th Percentile

Financials 0.65 0.80 0.89 0.93 0.97

Industrials 0.80 0.87 0.91 0.93 0.98

Consumer Goods 0.79 0.84 0.89 0.93 0.97

Consumer Services 0.81 0.86 0.91 0.94 0.96

Basic Materials 0.83 0.85 0.88 0.90 0.92

Utilities 0.90 0.91 0.94 0.95 0.96

Health Care 0.83 0.84 0.86 0.88 0.90

Technology 0.84 0.87 0.90 0.92 0.97

Telecommunications 0.89 0.93 0.94 0.97 0.98

Oil & Gas 0.88 0.90 0.91 0.93 0.94

This table presents the values of model-derived trading trigger 1+α1−γ1α2, which is computed using VECM estimates
obtained from the Johansen cointegration methodology. As the trading strategy is conducted on a rolling-window
basis, these reported values are an average value computed from a series of threshold numbers of each percentile. The
sample period is January 2000 to February 6th 2017.

and-hold portfolio returns, following Gatev et al. (2006). This approach takes into account

compounded returns, known as value-weighted portfolio return. The return computation is

thus based on daily marked-to-market returns of individual pairs.

Table 2 reports estimated percentiles of trading trigger for each of the industry groups

aggregated over the set of 30 rolling samples. Reported results demonstrate that there

is error persistence delivering average trading triggers ranging from 0.65 to 0.98. Table

3 reports the excess return distribution by industry group and for the all-pair portfolio,

representing all tradable targets, over the whole out-of-sample period since 2003.14 Panel A

shows results from the equal-weighted portfolio, while Panel B presents pro�t estimates from

the value-weighted portfolio. The general observation is that pairs portfolios gain statistically

signi�cant positive excess returns. We can see in Panel A that the equal-weighted portfolio

generates an annualized average return of at least 4.33%. Moreover only two portfolios
14Our strategy's pro�tability is induced from two positions. In this context the payo� is interpreted as excess return since

trading pro�ts or losses are earned from one euro investment in simultaneous long-short positions.
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Table 1.3: Summary statistics of excess returns to pairs portfolios

Sample Mean Median Stdev Skew Kurtosis Max. Min. Sharpe

Panel A: Equal-weighted portfolios

Financials 0.0746 0.0000 0.1467 0.57 14.44 0.07 -0.07 0.51

Industrials 0.0433 0.0000 0.1318 0.15 10.76 0.07 -0.07 0.33

Consumer Goods 0.0514 0.0000 0.0943 0.69 17.45 0.06 -0.05 0.54

Consumer Services 0.0772 0.0000 0.1235 0.48 14.17 0.09 -0.06 0.63

Basic Materials 0.0662 0.0000 0.1642 0.08 18.54 0.09 -0.14 0.40

Utilities 0.0553 0.0000 0.1585 1.40 29.37 0.14 -0.10 0.35

Health Care 0.0644 0.0000 0.1163 -1.60 43.23 0.05 -0.14 0.55

Technology 0.0587 0.0000 0.1728 0.67 13.63 0.12 -0.07 0.34

Telecommunications 0.0470 0.0000 0.1735 1.08 22.32 0.14 -0.08 0.27

Oil & Gas 0.0579 0.0000 0.1034 0.94 18.12 0.07 -0.05 0.56

All-Pair Portfolio 0.0576 0.0154 0.0681 0.89 14.25 0.04 -0.03 0.85

Panel B: Value-weighted portfolios

Financials 0.0506 0.0000 0.0700 0.62 16.38 0.03 -0.04 0.72

Industrials 0.0246 0.0000 0.0639 0.26 10.47 0.03 -0.03 0.38

Consumer Goods 0.0272 0.0000 0.0454 0.73 15.61 0.03 -0.02 0.60

Consumer Services 0.0467 0.0000 0.0613 0.56 16.20 0.04 -0.03 0.76

Basic Materials 0.0346 0.0000 0.0808 0.26 18.06 0.05 -0.06 0.43

Utilities 0.0292 0.0000 0.0796 1.88 38.70 0.08 -0.05 0.37

Health Care 0.0455 0.0000 0.0960 -0.12 11.83 0.05 -0.06 0.48

Technology 0.0303 0.0000 0.0849 0.62 13.17 0.06 -0.03 0.36

Telecommunications 0.0313 0.0000 0.0967 1.06 23.31 0.06 -0.06 0.32

Oil & Gas 0.0309 0.0000 0.0504 1.03 18.11 0.03 -0.02 0.61

All-Pair Portfolio 0.0335 0.0051 0.0326 0.90 12.78 0.02 -0.01 1.03

This table presents descriptive statistics of excess returns for each industry group and the all-pair portfolio. We trade
according to the rule that opens a position in a pair one day after price spread diverges more than (1+α1−γ1α2) units
of historical standard deviation. Reported are the mean and median excess return (annualized), the (annualized)
standard deviation, skew, kurtosis, the maximum and minimum daily excess return and (annualized) Sharpe ratio.
The sample period is January 2000 to February 6th 2017.
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earn mean returns lower than 5%. Among the ten industries, pairs from Consumer Services

deliver the highest average return equal to 7.72% per annum, followed by 7.46% earned in the

Financials industry. Results therefore show clear positive performance which is consistent

across di�erent industries. We next look at the risk pro�le, measured by volatility. We

can see that the �rst four industry portfolios (Financials, Industrials, Consumer Goods,

Consumer Services) show lower volatility and maximum return values than the remaining

portfolios (Basic Materials, Utilities, Health Care, Technology, Telecommunications and Oil

& Gas). This overall evidence indicates diversi�cation bene�ts created from combining a

larger number of pairs in a portfolio. This can be explained by the fact that the �rst four

industries include more companies within the group. For this reason, they exhibit similar

statistical properties. Reported results also demonstrate that the return distributions of

industry portfolios are positively skewed, only with the exception of Health Care.15 This

implies that reported Sharpe ratio estimates may exhibit a downward bias. The �nding of

right-skewed distribution is consistent with Gatev et al. (2006) and Jurek and Yang (2007).

However it is not supported by the work of Kondor (2009) who argues that arbitrageurs'

total return is negatively skewed. Sharpe ratios are reported in the last column to evaluate

the risk-adjusted portfolio performance.16 We �nd that half of these industry portfolios

deliver a Sharpe ratio higher than 0.50. We contend that such impressive performance is

clearly associated with the sector that gathers a larger number of companies. Our results

therefore demonstrate that the proposed strategy is pro�table for every industry categorized

under STOXX Europe 600, and therefore the existence of positive pro�ts is not industry

dependent. The last row of Panel A (Table 3), examines the overall pairs trading performance

taking together all pairs selected within industries, thus allowing investment on all tradable

opportunities. The average annual return is 6.0% for this all-pair portfolio. More impressive

is the annualized Sharpe ratio of 0.85. This arises due to the large gains arising from

diversi�cation across pairs that trade in di�erent industries as can be seen in the reported
15The negative skew in the Health Care industry may be due to the high downside risk arising from high investment in R&D.
16Simpli�ed Sharpe ratios assume zero returns on the risk-free asset exploiting the fact that interest rates have been at

historical minimum levels over our sample period. All Sharpe ratios reported in the paper are simpli�ed under this assumption.
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volatility of 6.81%. In line with our �ndings from industry portfolios, cointegration delivers

positive skewed portfolio returns.

To unfold the economic signi�cance from arbitrageurs' perspective, we consider the cumu-

lative portfolio returns over our sample period. Figure 2 plots the cumulative pro�ts on the

equally weighted industry portfolios and the all-pair portfolio. These reinvested payo�s de-

pict the evolution of an investor´s wealth. It is observed that these portfolios earn cumulative

pro�ts of di�erent magnitudes and, more interestingly, their returns exhibit various patterns.

For instance, the industry portfolios, Consumer Goods and Consumer Services, accumulate

wealth in a steady manner without considerable losses. Other sectors such as Financials or

Utilities exhibit clearly pronounced rises over the 2008-2009 period. This evidence indicates

that pairs belonging to distinct industries exhibit di�erent response to market conditions

leading to unresembling paths of return cumulation. However the common pattern across

all portfolios is that there is a signi�cant increase in pro�tability with the unfolding of the

global �nancial crisis. This therefore suggests that our model-based pairs strategies can be

used to hedge away market shocks and simultaneously yield signi�cant pro�ts under abnor-

mal periods. This is consistent with the literature (see for example Alexander et al. (2002)

and Do and Fa� (2010)). The evolutionary path of wealth underlying the all-pair portfolio

suggests that there is persistent pro�tability without the requirement of stop-loss criterion,

over a 14-year period. This portfolio produces a total return of 0.86 at the end of sample.

We report in Panel B of Table 3 the results of value-weighted portfolios. Reported results

show positive excess returns. However the resulting pro�ts are lower than those from equal-

weighted portfolios. The decrease in pro�tability can also be found in Chen et al. (2012).

Risk-adjusted returns are however improved with respect to the equally weighted cases.

The improvement in Sharpe ratio estimates is documented for most of industry portfolios

as well as the all-pair portfolio. This arises as a consequence of lower return volatility.

Value-weighted portfolios, are by construction less volatile than equal-weighted portfolios as

weights in time t are de�ned according to lagged returns. The all-pair portfolio earns on

average an annual excess return of 3.35%, and a Sharpe ratio of 1.03. The latter represents
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Figure 1.2: Cumulative returns for industry pairs portfolios and the all-pair portfolio

This �gure plots the cumulative excess returns of equal-weighted pairs portfolios over the period January 2000 to
February 6th 2017.
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Table 1.4: Summary statistics of excess returns to pairs portfolios after transaction costs

Sample Mean Median Stdev Skew Kurtosis Max. Min. Sharpe

Equal-weighted portfolios

Financials 0.0325 0.0000 0.0901 0.83 20.76 0.06 -0.05 0.36

Industrials 0.0157 0.0000 0.0834 0.80 22.25 0.07 -0.05 0.19

Consumer Goods 0.0314 0.0000 0.0942 0.69 17.56 0.06 -0.05 0.33

Consumer Services 0.0618 0.0000 0.1228 0.48 14.48 0.09 -0.06 0.50

Basic Materials 0.0470 0.0000 0.1643 0.07 18.49 0.09 -0.14 0.29

Utilities 0.0395 0.0000 0.1532 1.09 22.86 0.08 -0.05 0.27

Health Care 0.0428 0.0000 0.1163 -1.60 43.24 0.05 -0.14 0.37

Technology 0.0472 0.0000 0.1727 0.68 13.68 0.12 -0.07 0.27

Telecommunications 0.0282 0.0000 0.1299 1.35 26.32 0.10 -0.06 0.22

Oil & Gas 0.0487 0.0000 0.1054 0.62 19.31 0.07 -0.06 0.46

All-Pair Portfolio 0.0356 0.0000 0.0674 0.94 14.77 0.04 -0.03 0.53

This table presents descriptive statistics of excess returns net of transaction costs, for each industry group and the
all-pair portfolio. Transaction costs are estimated as one-half of the sum of the bid-ask spreads on both assets.
Reported are the mean and median excess return (annualized), the (annualized) standard deviation, skew, kurtosis,
the maximum and minimum daily excess return and (annualized) Sharpe ratio. The sample period is January 2000
to February 6th 2017.

an improvement of 21% when compared to the equal-weighted all-pair portfolio.

The baseline analysis above concludes that our pairs trading strategy is pro�table. The

solid performance con�rms price convergence after the onset of a pricing anomaly, demon-

strating that pricing errors are stationary.

The next step is to introduce transaction costs and assess the impact on strategy returns.

Given that closing price data are used to compute abnormal returns, there is an identical

probability of being at bid or ask. We impose corrections of these pro�ts to re�ect that, in

practice, we long at the ask and sell at the bid prices. In other words, we have to subtract

trading costs to get an estimate of pro�ts net of transaction costs. To this end, we collect

bid and ask prices for each equity pair. Because we long the loser and short the winner asset,

transaction costs will reduce pro�ts by one-half of the sum of the bid-ask spreads on both
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assets every time there is a change in position in the pair. Results reported in Table 4 reveal

that, after accounting for transaction costs, Sharpe ratios and mean returns remain positive

in all cases.

1.4.3 Price discovery, relative turnover and portfolio replication

Equations (1.11) and (1.12) show that price discovery is de�ned in terms of the relative

number of participants in paired markets. Proxies for the relative number of participants

can be found on relative liquidity measures. Another approach in the literature has been

to address the relative number of analyst or informed traders following a given �rm (see

Brennan et al. (1993)). In this paper we follow FFG and use liquidity measures for this

purpose. The relationship between price leadership and trading volume has been extensively

addressed in the price discovery literature (see Hasbrouck (1995) and references therein). It

has also been discussed in the asset pricing literature. Chordia and Swaminathan (2000)

and Llorente et al. (2002) show that trading volumes deliver valuable information about

future price movements and exerts impact on the speed of adjustment of individual stocks

(see also Admati and P�eiderer (1988)). The underlying presumption is that stocks that

trade with higher liquidity respond faster to common information and become information

leaders. Stocks that trade with low liquidity are therefore followers as they exhibit lower

speed of price adjustment to common information. Variations in relative liquidity in both

markets are therefore re�ected on the changes in price discovery.

In what follows we check whether the result of price discovery in the theoretical model

is con�rmed empirically. We use for this purpose turnover as a proxy for market liquidity.

Turnover is de�ned as the ratio of the number of shares traded in a day to the number of

shares outstanding at the end of the day. Our interest is to see whether price leadership is

associated with higher turnover. Speci�cally, we check for every pair screened out over each

trading period, and calculate the percentage of them meeting the condition that the leader's

average turnover is higher than the follower. Figure 3 shows the results. We can see that price
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Figure 1.3: The association of price leadership with trading volume of individual stocks

This �gure shows, for each industry group, the percentage of leading assets in the price discovery process whose
average trading volume is higher than the follower, over the sample period January 2000 to February 6th 2017.

leadership is associated with higher turnover for more than half of the pairs. This ratio is

even higher for Financials (63%), Industrials (64%), Health Care (61%), Telecommunications

(61%), and Oil & Gas (64%).

We now proceed to demonstrate the importance of price leadership determination for

portfolio replication design. For this purpose, we repeat the trading exercise in Section 4.2

using the follower to replicate the leader. We denote these portfolios as �follower� portfolios.

For comparison, Table 5 summarizes the excess returns for pairs portfolios which are present

in Table 3. From Panel A we �nd that average returns of industry portfolios are lower com-

pared to the baseline results. The same observation is applied to the performance metrics

of Sharpe ratio. Comparing the all-pair portfolio return estimates under the equal-weighted

method, the baseline portfolio yields a mean return which is 1.42% higher. It also outper-

forms the follower portfolio in terms of Sharpe ratio, increasing from 0.74 (follower portfolio)

to 0.85 (baseline portfolio). These �ndings are held for the case of value-weighted portfolios.

Results therefore con�rm that the theoretical implications on price leadership of the model

exposed in Section 2 are important to maximize pairs trading pro�tability.
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Table 1.5: Excess returns to alternative pairs trading: the switch of leadership

Sample Mean Median Stdev Skew Kurtosis Max. Min. Sharpe

Panel A: Equal-weighted portfolios

Financials 0.0533 0.0000 0.1395 1.09 19.12 0.09 -0.08 0.38

Industrials 0.0404 0.0000 0.1530 -0.36 18.89 0.08 -0.11 0.26

Consumer Goods 0.0443 0.0287 0.1182 -0.90 22.70 0.06 -0.11 0.37

Consumer Services 0.0575 0.0000 0.1055 0.46 10.28 0.05 -0.05 0.55

Basic Materials 0.0288 0.0000 0.1618 -0.28 19.74 0.09 -0.14 0.18

Utilities 0.0466 0.0000 0.1137 0.60 19.90 0.08 -0.07 0.41

Health Care 0.0511 0.0000 0.1306 0.07 20.70 0.08 -0.11 0.39

Technology 0.0276 0.0000 0.1509 0.40 12.91 0.07 -0.07 0.18

Telecommunications 0.0331 0.0000 0.1440 0.66 20.82 0.09 -0.07 0.23

Oil & Gas 0.0405 0.0000 0.1579 -0.25 14.72 0.09 -0.08 0.26

All-Pair Portfolio 0.0435 0.0000 0.0585 0.40 12.00 0.03 -0.02 0.74

Panel B: Value-weighted portfolios

Financials 0.0401 0.0000 0.0635 1.30 17.28 0.04 -0.03 0.63

Industrials 0.0230 0.0000 0.0737 -0.12 16.66 0.04 -0.05 0.31

Consumer Goods 0.0333 0.0117 0.0579 -0.41 18.23 0.03 -0.05 0.58

Consumer Services 0.0332 0.0000 0.0509 0.64 9.44 0.03 -0.02 0.65

Basic Materials 0.0141 0.0000 0.0809 -0.13 18.06 0.05 -0.07 0.17

Utilities 0.0264 0.0000 0.0574 0.83 21.64 0.04 -0.03 0.46

Health Care 0.0244 0.0000 0.0655 0.24 16.95 0.04 -0.05 0.37

Technology 0.0209 0.0000 0.0781 0.62 14.87 0.04 -0.03 0.27

Telecommunications 0.0211 0.0000 0.0719 0.73 19.90 0.04 -0.04 0.29

Oil & Gas 0.0200 0.0000 0.0787 -0.32 14.47 0.04 -0.04 0.25

All-Pair Portfolio 0.0253 0.0013 0.0278 0.79 9.24 0.01 -0.01 0.91

This table presents descriptive statistics of excess returns for each industry group and the all-pair portfolio. We trade
according to the rule that opens a position in a pair one day after price spread diverges more than (1+α1−γ1α2) units
of historical standard deviation. Contrary to portfolios in Table 3, the leadership is switched when establishing pairs
portfolios. That is, we use the price of follower to replicate the leader in this alternative trading rule. Reported are
the mean and median excess return (annualized), the (annualized) standard deviation, skew, kurtosis, the maximum
and minimum daily excess return and (annualized) Sharpe ratio. The sample period is January 2000 to February 6th
2017.
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1.4.4 A comparison of performance: Model-based trading algorithm versus

GGR (2006)

The purpose of this section is to compare the results of the proposed strategy with the results

arising from application of the methodology introduced by Gatev et al. (2006), acknowledged

as the benchmark work in the pairs trading literature. GGR identify pairs by minimizing the

sum of squared spreads between two normalized price series in a 1-year period. Although

both GGR and our trading strategy exploit mean reversion in search of pro�tability, the

seminal work of GGR is based on non-parametric past return correlation. Our strategy

instead follows a model-based trading algorithm. To derive results under GGR methodology,

we identify pairs within each of the ten industries and rank them by distance. In order to

make the two trading algorithms comparable, we set the number of pairs included in an

industry portfolio to be the same as the number of cointegrated pairs under our method, for

every trading period. In other words, we guarantee that the portfolio size is identical under

two di�erent selection methods. The objective is to remove diversi�cation e�ect caused by

sample size.

Following GGR, a trade is initiated if the prices diverge by more than two standard

deviations. In Panel A of Table 6, we summarize the return performance delivered by

GGR´s equally weighted portfolios. Compared to the baseline results in Table 3, the mean

portfolio return associated with our strategy is larger in all cases than that associated with

GGR. The magnitude of return gap is between 1% and 3% per annum. On the basis of

volatility, both strategies perform closely. In terms of the risk-return tradeo�, we �nd that

our model-based industry portfolios yield Sharpe ratios that exceed GGR portfolios in seven

out of ten cases. The magnitude of outperformance from our methodology is also signi�cant.

Furthermore, our all-pair portfolio, gains an annualized mean return which is 2.4% higher

than that reported for GGR, and generates a Sharpe ratio of 0.85, ten units higher than

0.75 achieved under GGR. Similar conclusions are reached when we compare on the basis of

value-weighted portfolios (Panel B of Table 6).
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Table 1.6: Summary statistics of excess returns to GGR portfolios

Sample Mean Median Stdev Skew Kurtosis Max. Min. Sharpe

Panel A: Equal-weighted portfolios

Financials 0.0685 0.0000 0.1854 0.43 11.14 0.12 -0.12 0.37

Industrials 0.0324 0.0000 0.0870 0.80 45.21 0.06 -0.05 0.37

Consumer Goods 0.0313 0.0000 0.0533 1.59 25.52 0.04 -0.02 0.59

Consumer Services 0.0688 0.0000 0.1430 2.22 40.89 0.22 -0.14 0.48

Basic Materials 0.0167 0.0000 0.0837 -0.82 28.88 0.09 -0.17 0.20

Utilities 0.0326 0.0000 0.0872 1.84 31.66 0.06 -0.04 0.37

Health Care 0.0461 0.0000 0.1017 0.21 54.89 0.09 -0.09 0.45

Technology 0.0403 0.0000 0.1797 1.79 27.40 0.13 -0.09 0.22

Telecommunications 0.0359 0.0000 0.1941 1.23 26.63 0.13 -0.12 0.19

Oil & Gas 0.0262 0.0000 0.0971 1.35 34.28 0.11 -0.07 0.27

All-Pair Portfolio 0.0335 0.0000 0.0445 1.83 27.95 0.03 -0.02 0.75

Panel B: Value-weighted portfolios

Financials 0.0415 0.0000 0.1021 0.06 29.57 0.10 -0.11 0.33

Industrials 0.0188 0.0000 0.0402 0.81 47.47 0.03 -0.02 0.62

Consumer Goods 0.0151 0.0000 0.0286 1.50 24.06 0.02 -0.01 0.81

Consumer Services 0.0387 0.0000 0.0790 2.25 37.90 0.11 -0.06 0.35

Basic Materials 0.0061 0.0000 0.0828 -0.87 28.83 0.04 -0.08 0.07

Utilities 0.0194 0.0000 0.0434 2.11 33.87 0.03 -0.02 0.45

Health Care 0.0567 0.0000 0.0805 0.57 22.22 0.06 -0.06 0.71

Technology 0.0158 0.0000 0.0918 1.84 29.36 0.07 -0.05 0.17

Telecommunications 0.0264 0.0000 0.1037 1.99 32.23 0.08 -0.05 0.25

Oil & Gas 0.0128 0.0000 0.0513 1.24 34.24 0.06 -0.04 0.20

All-Pair Portfolio 0.0206 0.0000 0.0249 1.69 21.80 0.01 -0.01 0.83

Panel C: Equal-weighted all-pair portfolios at two di�erent thresholds

1.5 standard deviations 0.0313 0.0000 0.0463 1.71 25.50 0.03 -0.02 0.68

3 standard deviations 0.0173 0.0000 0.0386 1.54 38.96 0.03 -0.02 0.45

This table presents statistics of excess returns for industry groups and the all-pair portfolio under GGR. We trade
based on the rule that opens a position in a pair one day after price spread diverges over 2 standard deviations in
Panel A and B, while the same rule is applied but subject to 1.5 and 3 standard deviations in Panel C. Reported are
the mean and median excess return (annualized), the (annualized) standard deviation, skew, kurtosis, the maximum
and minimum daily excess return and (annualized) Sharpe ratio. The sample period is Jan. 2000 to Feb. 6th 2017.
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Panel C of Table 6 shows results under GGR for alternative trading thresholds. Speci�-

cally we look at the pro�tability of the 1.5 and 3 standard deviations thresholds. It is clear

that the alternative thresholds underperform the commonly used 2 standard deviations and

therefore our model-based algorithm.

Reported results therefore demonstrate that the combination of cointegration and a

persistence-linked trading trigger proposed in this framework superceeds the benchmark

methodology proposed in the literature.

1.4.5 Commonality within industry groups: Fundamental factors analysis

The theoretical framework presented in Section 2 shows that two �rms that share common

fundamentals are linked via a long-run cointegration relationship. In our baseline empirical

application, shared fundamentals arise due to common shocks at the industry and geograph-

ical level. In this section we look at pairs trading performance imposing �rm-speci�c funda-

mentals (or factor) restrictions. Common �rm fundamentals are expected to result in stable

equilibrium relationships. Furthermore we test to which extent �rm-level commonalities

improve the performance of pairs trading strategies.

We follow the asset pricing literature (see Fama and French (1993), Fama and French

(1996), and Asness et al. (2013)) to consider a value factor measuring the long-run (or book)

value relative to its current market value (BV/MV). We additionally control for the size

e�ect using market capitalization and trading volume as proxy measures. In particular we

sort �rms within a given industry, based on each of the factors (market cap, book-to-market

ratio, and trading volume), and classify them into tercile portfolios. Then within each tercile,

we identify a matching partner for every �rm. Note that under this restriction, the number

of selected pairs is much lower than under the baseline study in Section 4.2. Given that

�rms are ranked into three groups, we are restricted to do this analysis on four industries

for which the number of �rms is more than 30: Financials, Industrials, Consumer Goods,

and Consumer Services. Tables 7 and 8 present percentiles for coe�cient estimations and
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Table 1.7: VECM estimates and the model-derived trading trigger for pairs controlling book-to-market ratio

Sample 5th Percentile 25th Percentile Median 75th Percentile 95th Percentile

Panel A: Estimated values of α1 and α2

Financials α1 -0.013 -0.041 -0.079 -0.146 -0.306

α2 0.001 0.005 0.014 0.030 0.076

Industrials α1 -0.023 -0.039 -0.067 -0.120 -0.312

α2 0.002 0.008 0.016 0.029 0.064

Consumer Goods α1 -0.023 -0.047 -0.090 -0.142 -0.200

α2 0.003 0.009 0.017 0.034 0.067

Consumer Services α1 -0.037 -0.052 -0.077 -0.122 -0.260

α2 0.006 0.009 0.016 0.026 0.052

Panel B: Estimated values of γ1

Financials 0.18 0.45 1.35 4.58 7.92

Industrials 0.19 0.45 0.94 2.68 10.08

Consumer Goods 0.40 0.74 1.54 2.96 7.03

Consumer Services 0.55 0.70 0.98 1.66 3.19

Panel C: Model-derived trading trigger 1 + α1 − γ1α2

Financials 0.63 0.80 0.88 0.93 0.96

Industrials 0.79 0.86 0.91 0.94 0.96

Consumer Goods 0.80 0.83 0.88 0.94 0.98

Consumer Services 0.80 0.86 0.91 0.93 0.96

This table presents the values of α1 and α2 obtained using the Johansen cointegration methodology in Panel A. The
percentiles for α1 are computed using the absolute values. Summary statistics of estimated values of γ1 are reported
in Panel B. Panel C presents the values of model-derived trading trigger 1 + α1 − γ1α2, which is computed using
the resulting VECM estimates. As the Johansen estimation and the following trading activities is conducted on a
rolling-window basis, these reported values are an average value computed from a series of numbers of each percentile.
The sample period is January 2000 to February 6th 2017.
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pairs trading triggers. While coe�cient estimations are highly consistent with the baseline

estimation, the results suggest lower dispersion in the cointegration coe�cient and higher

speed of equilibrium reversion due to the gain in commonality arising from �rm-speci�c factor

restrictions (note that simultaneous multi-factor restriction is not possible due to resulting

low observations in each tercile portfolio).

Table 9 displays the strategy performance for each of the factor restrictions. Results

show that while the restriction on size does not provide a clear improvement with respect

to the baseline case, the book-to-market and volume restrictions clearly outperform the

baseline. Speci�cally, Panel B shows that in all industry groups the mean portfolio return

is substantially larger under the book-to-market restriction. Such increase in magnitude

counteracts with the resulting increase of volatility level. Accordingly, Sharpe ratios are

superior to the baseline results. Finally Panel C reports the e�ect of trading volume on

performance. Except from Consumer Services industry case, all analyzed portfolios deliver

stronger performance in terms of mean return. They also yield higher Sharpe ratios relative

to the baseline cases. The results of each tercile are available upon request.

The overall result suggests that the imposed additional restriction based on fundamental

factors, for the search of tradable pairs, is likely to boost mean reversion equilibrium and

pairs trading performance. In our analysis, the superior results are delivered under the book-

to-market ratio and trading volume restrictions. This evidence can be attributed to the

increased commonality shared between paired assets. Our evidence therefore demonstrates

that the imposed common factor restrictions strengthen cointegration and contributes to

the performance of pairs trading strategies. Factor (as well as industry) commonality drives

investors to exploit arbitrage between paired assets.
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Table 1.8: VECM estimates and the model-derived trading trigger for pairs controlling trading volume

Sample 5th Percentile 25th Percentile Median 75th Percentile 95th Percentile

Panel A: Estimated values of α1 and α2

Financials α1 -0.012 -0.036 -0.078 -0.152 -0.294

α2 0.001 0.004 0.012 0.029 0.077

Industrials α1 -0.021 -0.037 -0.063 -0.121 -0.252

α2 0.002 0.007 0.014 0.026 0.054

Consumer Goods α1 -0.030 -0.061 -0.091 -0.134 -0.189

α2 0.005 0.009 0.020 0.038 0.068

Consumer Services α1 -0.027 -0.039 -0.066 -0.090 -0.136

α2 0.006 0.008 0.015 0.022 0.036

Panel B: Estimated values of γ1

Financials 0.14 0.48 1.48 6.84 9.84

Industrials 0.20 0.43 0.89 2.92 10.67

Consumer Goods 0.37 0.82 1.69 3.27 7.87

Consumer Services 0.35 0.48 0.82 1.64 3.06

Panel C: Model-derived trading trigger 1 + α1 − γ1α2

Financials 0.65 0.80 0.89 0.93 0.97

Industrials 0.81 0.87 0.91 0.93 0.96

Consumer Goods 0.79 0.83 0.88 0.92 0.95

Consumer Services 0.81 0.87 0.91 0.94 0.96

This table presents the values of α1 and α2 obtained using the Johansen cointegration methodology in Panel A. The
percentiles for α1 are computed using the absolute values. Summary statistics of estimated values of γ1 are reported
in Panel B. Panel C presents the values of model-derived trading trigger 1 + α1 − γ1α2, which is computed using
the resulting VECM estimates. As the Johansen estimation and the following trading activities is conducted on a
rolling-window basis, these reported values are an average value computed from a series of numbers of each percentile.
The sample period is January 2000 to February 6th 2017.
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Table 1.9: Summary statistics of excess returns to pairs portfolios controlling common factors

Sample Mean Median Stdev Skew Kurtosis Max. Min. Sharpe

Panel A: Market capitalization

Financials 0.04 0.00 0.16 0.46 14.39 0.09 -0.06 0.26

Industrials 0.03 0.00 0.17 -0.16 11.66 0.07 -0.11 0.15

Consumer Goods 0.03 0.00 0.18 0.24 18.54 0.12 -0.13 0.18

Consumer Services 0.14 0.00 0.24 0.83 17.38 0.16 -0.13 0.56

Panel B: Book-to-market ratio

Financials 0.11 0.00 0.17 0.70 13.07 0.09 -0.08 0.65

Industrials 0.08 0.00 0.19 0.68 16.11 0.12 -0.09 0.40

Consumer Goods 0.09 0.01 0.13 0.27 8.76 0.07 -0.07 0.69

Consumer Services 0.12 0.00 0.19 0.33 12.54 0.11 -0.09 0.63

Panel C: Trading volume

Financials 0.10 0.00 0.17 0.68 14.58 0.09 -0.09 0.59

Industrials 0.06 0.00 0.17 0.30 11.10 0.09 -0.08 0.33

Consumer Goods 0.09 0.00 0.17 0.26 14.00 0.10 -0.10 0.55

Consumer Services 0.07 0.00 0.19 0.19 7.64 0.09 -0.06 0.40

This table presents descriptive statistics of excess returns for four industry groups, controlling three di�erent funda-
mental factors. We trade according to the rule that opens a position in a pair one day after price spread diverges
more than (1 + α1 − γ1α2) units of historical standard deviation. Reported are the mean and median excess return
(annualized), the (annualized) standard deviation, skew, kurtosis, the maximum and minimum daily excess return
and (annualized) Sharpe ratio. The sample period is January 2000 to February 6th 2017.
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1.5 Conclusion

In this paper we adapt the demand and supply framework introduced by FFG to show

how equities that share common fundamentals can be combined to exploit pairs trading op-

portunities. Market clearing conditions are derived under a demand schedule including an

arbitrage component and persistent cointegration errors. Equilibrium dynamics are repre-

sented via a VECM framework where long-run equilibrium convergence allows pro�ts from

pairs trading. Our model exploits price discovery so that the leading asset can be used to

replicate the follower and shows how pairs trading pro�tability is linked to the speed of equi-

librium reversion. Based on this presumption, our model derives a persistence dependent

trading threshold used to trigger pairs trading strategies. In an out-of-sample exercise ap-

plied to STOXX Europe 600 equity price daily data, we show that: (a) price leadership is an

important determinant of pairs trading pro�tability; (b) model-based pairs trading strategies

yield positive Sharpe ratios that are higher than those obtained from competing pairs trad-

ing methodologies. Portfolio outperformance is enhanced under imposed �rm fundamental

factor as well as industry restrictions.



Chapter 2

A Matket Approach for Convergence

Trades

2.1 Introduction

Traditional portfolio building needs to pick stocks from the cloud of possible alternatives in

the market. Cointegration, has been used to identify closely related assets because it is be-

lieved that trading those assets will produce higher pro�ts ceteris paribus. The cointegration-

based portfolio literature establishes that portfolios of cointegrated assets are formed subject

to some optimal investment weights, in order to maximize the expected portfolio value over

a period of time, the investment horizon. This paper answers the following open questions

in the literature: (a) What are the dynamics of such portfolios? (b) What positions need

to be taken to maximize portfolio value? (c) How should the portfolio be managed? This

paper addresses these questions by solving the dynamic maximization problem faced by an

arbitrageur. We show that the maximum expected spread portfolio value over the time span

(t, T ) is equivalent to the price of call option on the spread of the two stocks.

Speci�cally we present a simple analytical model to describe the stationary convergence

of the two non-stationary stocks. The underlying presumption is that if at least one of

the mean-reversion parameters exists, and they have opposite signs, then the two stocks

34
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will be cointegrated, as their deviation will be stationary and of reduced rank. This is

consistent with the discrete vector error correction model. In this sense, the model implies

a simple framework to test for spread convergence, and therefore provides a straightforward

mechanism to construct pairs. As the individual stocks deviate from the implied equilibrium

level an arbitrageur will bet on the joint convergence by going short the overvalued asset and

long the undervalued one. The long-short positions will eliminate the price discrepancy of the

two assets from their joint equilibrium level. In the absence of a cointegration relation, the

two asset prices in our model follow independent geometric Brownian motions that allow for

di�erent expected returns. In short, an arbitrageur chooses between two risky and possibly

cointegrated stocks and a risk-free asset and allocates his wealth optimally. This guarantees

a self-�nancing portfolio with zero initial value.

The model makes several empirical predictions. First it expects that cointegration-based

portfolios yield higher returns compared to randomly selected portfolios. Second the model

suggests that cointegration leads to bounded risk in the selected portfolios. While volatility

exhibits time decay in cointegrated portfolios, non-cointegrated pairs will feature increasing

volatility with the square root of time and are therefore expected to underperform. Third,

the model suggests that when the speed of convergence of two paired assets is zero, the assets

are not cointegrated. Using this parameter restriction we propose a simple pairs selection

mechanism which demonstrates to outperform alternative pairs selection methodologies.

We associate the optimal asset allocation problem with option valuation. We �nd that the

expected maximum value of the portfolio from t to T is equivalent to the value of a spread

option with strike price equal to zero (see Margrabe (1978)). In consequence the optimal

investment size is the corresponding delta hedging strategy. This paper therefore provides a

market approach for valuing and managing portfolio strategies. Moreover this formulation

allows for the extension of optimal strategy derivation to a multi-variable spread framework.

Daily dynamic management and complete hedging is then possible using the Black�Scholes

Greeks.
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This article is related to studies that examine two risky but cointegrated assets and their

impact on option pricing, e.g., Lo and Wang (1995), and Duan and Pliska (2004).1 This

literature focuses on the e�ect of cointegration on pricing arising from comovements in the

asset prices. It starts from discrete cointegrated processes with GARCH(1,1) to construct

the continuous counterparts. This involves pricing options on two assets and calculating

sensitivities in a Black-Scholes fashion. We contribute to this literature by linking option

pricing with the expected optimization of a portfolio on two cointegrated assets including

an alternative asset, the risk-free bond. By linking portfolio optimization to option theory

we extend the understanding of long-term comovement on two assets and the binding role

of stationarity in portfolio optimization.

Our framework is also associated with the pairs trading literature of statistical arbitrage

where the equilibrium notion of cointegration is exploited for trading purposes, as Gatev

et al. (2006) and Figuerola-Ferretti et al. (2016). The former work selects pairs according to

a canonical measure while the latter determines pairs according to Johansen (1991) in a price

discovery model explicitly adapted to pairs trading. In this literature trading is typically

triggered when price spread reaches a given level (see also Elliott et al. (2005) and Do et al.

(2006)).2 In a continuous setting, Jurek and Yang (2007) and Liu and Timmermann (2013)

consider continuous processes to describe how an investor maximizes his wealth subject

to preferences. Jurek and Yang (2007) employ an Ornstein-Uhlenbeck (O-U)3 framework to

account for horizon and divergence risks. Liu and Timmermann (2013) describe cointegrated

pairs with a mean-reverting error and provide closed-form solutions under recurring arbitrage

opportunities for stopped cointegrated processes.4 The work of Lei and Xu (2015) is built

on Liu and Timmermann (2013) to incorporate transaction costs.
1See also Stulz (1982) for the consideration of two related but not cointegrated assets.
2Another strand of the literature focuses on relative value trading based on technical analysis and on the company funda-

mentals, e.g. Brock et al. (1992), Chhaochharia and Grinstein (2007), Cumming et al. (2011). Mean-variance and uninformed
investors, e.g. Marquering and Verbeek (2004), Campbell and Thompson (2008), also relate to this. They target the predic-
tion of expected returns and use that knowledge to make pro�ts. The literature is long and divided, but they agree that the
out-of-sample performance of these prediction models is poor. In the longer term there is no stable relationship between the
explanatory variables and the level of returns.

3Uhlenbeck and Ornstein (1930)
4Under stopped cointegration processes asset prices are cointegrated before the di�erence reaches zero. These processes can

also be used to model strategies of convergence traders who close out their positions when prices converge.
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Our framework presents cointegrated assets that are traded continuously, combined with

a risk-free bond to set up a stationary portfolio. This implementation is in the spirit of

Ankirchner et al. (2012) who point out that cross-hedging can be optimally achieved when

the spread is stationary. We therefore construct a hedging portfolio5 that minimizes risk,

without sacri�cing return following the spirit of Black and Scholes (1973). Our optimal

strategy is employed in a hedging framework to pursue positive excess returns. In this

context, optimal portfolio holdings are derived as closed-form solutions to the general form of

value functions. These solutions re�ect risk-return tradeo�s as underlined in the benchmark

literature of mean-variance portfolio (see for example Marquering and Verbeek (2004)).

Our empirical application uses Dow Jones Industrial Average (DJIA thereafter) daily

stock price data for the 1997-2015 period to test the proposed optimal trading strategy.

This involves the use of portfolios weights that correspond to the deltas of the mapping

spread option. We document remarkably consistent pro�ts and impressive Sharpe ratios

over the sample period. Our results also suggest that the proposed pairs selection algorithm

supersedes the selection method based on Johansen (1991) methodology. In agreement with

the literature, see Figuerola-Ferretti et al. (2016), we �nd that portfolio performance is

stronger during the recent �nancial crisis. Moreover, portfolio pro�tability increases with

the level of pairs' spread volatility and the return distribution is less dispersed when pairs

with a high speed of convergence are considered. This can be explained by the error correction

term λizt (i = 1, 2) interpreted as the excess return in the model. The intuition is that a

pair candidate should include two well-matched assets, not only moving towards each other

under stronger reverting force, measured by the speed, but also exhibiting an ample room

of deviation in a volatile context, measured by the pricing error.

The remainder of the paper proceeds as follows. In Section 2 we introduce the investor's

portfolio choice problem. Section 3 shows the connection between the derived optimal pairs

portfolio and the spread option. In section 4 we conduct an empirical application of the

optimal strategy to the constituents of DJIA. Section 5 concludes.
5Statistical arbitrage pro�ts are subject to limiting arbitrage critique, but our portfolio is hedged, see Kondor (2009).
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2.2 The continuous-time error correction

2.2.1 The setup

We assume there are three securities in the market, a risk-free bond and two risky assets,

which can be traded in a friction-less continuous-time setting. The price of the risk-free bond

is denoted by Bt, which provides a constant rate of return r. Its price dynamics are de�ned

by:

dBt = rBtdt (2.1)

The two risky assets are also tradable in the market. Their prices, yt and xt, follow the

dynamic process:

dyt
yt

= µydt+ λ1ztdt+ σydWy,t (2.2)

dxt
xt

= µxdt− λ2ztdt+ σxdWx,t (2.3)

zt = lnyt − lnxt (2.4)

where µy, µx, λ1, λ2, σy, and σx are constant parameters. Wy,t and Wx,t are standard

Brownian motions with zero drift rate and unit variance rate. The above stochastic pro-

cesses are speci�ed under the physical measure P . We de�ne zt as price spread between the

logarithms of the two asset prices, which displays the temporary mispricing. We refer to λ1

and λ2 as the speed of convergence of yt and xt, respectively. The higher the mean-reverting

speed, the greater is the force that drives asset prices back to equilibrium. λ1zt and −λ2zt

represent the error correction terms under the continuous VECM framework. This setup

therefore includes two cointegrated variables with a unit cointegrating vector.

The above framework models price dynamics of two price series with mean-reverting

characteristics. First, µy and µx are used to specify the expected rate of return per unit time

in Equations (2.2) and (2.3). These are not de�ned to be equal, so they exhibit di�erent

market premiums arising from di�erent portfolio betas. In this framework cointegration
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does not imply perfect comovement of paired assets, and thus no restriction on the beta is

imposed. Our model incorporates the error correction term to describe a mean-reverting

process that delivers abnormal returns via adjustment dynamics through convergence trade.

Consistent with Lei and Xu (2015), the restriction on positive mean-reverting speed im-

plies stationarity of the error term. A model-implied test for cointegration therefore requires

formally testing for this restriction. When λ1 = λ2 = 0 there is no equilibrium reversion and

therefore no evidence of cointegration.

Additionally our model shows that speed of reversion parameters also a�ect pairs trading

pro�tability. When λ1 = λ2 = 0 asset prices follow a geometric Brownian motion and thus

price convergence cannot be exploited to gain arbitrage pro�ts. By contrast, if λ1 and λ2

are non-zero, our model includes error correction terms that capture relative mispricing and

produce mean reversion. Extra risk premium processes are incorporated for yt and xt in

the drifts. As a result, the instantaneous expected rate of return can be explicitly de�ned

as µy + λ1zt and µx − λ2zt, respectively. The model therefore implies that positive return

premium is created by stationary mispricings as Brennan and Wang (2010).

Based on the analysis above, we derive Proposition 1.

Proposition 1. Equations (2.2)-(2.4) specify a dynamic VECM in continuous time with a

stationary price spread zt = lnyt − lnxt, which can be represented under the measure P by

the following process, under the assumption that the correlation between the two asset-return

processes is constant and given by E[dWy,tdWx,t] = ρxydt, ρxy ∈ (−1, 1).

dzt = α(µz − zt)dt+ σzdWz,t (2.5)

with α = −(λ1+λ2) is the mean-reverting speed of zt and satisfy α > 0; σz =
√
σ2
y − 2ρxyσyσx + σ2

x,

and Wz,t is a Brownian motion de�ned by Wz,t = (σyWy,t − σxWx,t)/σz; µz = 1
α

(µy − 1
2
σ2
y −

µx + 1
2
σ2
x) is the long-term equilibrium level.
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The dynamics of yt and xt determine the movement of price spread.6 The process zt is

therefore a Gaussian process with mean-reverting force. The error correction terms, λ1zt

and −λ2zt, play an important role in determining the drift of price spread. It is the error

correction term that drives mean reversion in yt and xt in order to ensure the stationarity of

zt.

When α > 0 the process is strictly stationary7 and the variance has a time decay. That is

as for big t, the process converges to σ2
z/2α, unlike the Geometric Brownian motion that has

an unbounded variance (it grows in�nitely). The O-U process has a normal density function:

p (zt = z; t; zt0 = z0, t0) =
1√

2πs2 (t)
e
− (z−m(t))2

2s2(t) (2.6)

where m (t) = µz + (z0 − µz) e−α(t−t0) is the mean of the process, and the variance is

s2 (t) = σ2
z

2α

[
1− e−2α(t−t0)

]
.

2.2.2 The optimal portfolio

Suppose there is an investor who maximizes the value of his portfolio, composed by three

securities in the economy. Let ϕ1, ϕ2 and ϕ3 be, respectively, the number of shares held on

risky assets yt and xt, and the number of risk-free bond in the portfolio. The value of that

portfolio, Πt, is then represented by:

Πt = ϕ1yt + ϕ2xt + ϕ3Bt (2.7)

We suppose that the investor maximizes the expected portfolio value. Then the value

function that solves this maximization problem, V (t,Π, y, x), is de�ned as:

V (t,Π, y, x) = max
ϕ1,ϕ2

Et [ΠT ] where t ∈ [0, T ] (2.8)

where ΠT is the wealth at time T , corresponding to the optimal trading strategy with the

initial wealth Πt = Π, and asset prices yt = y and xt = x at time t.
6Note that this speci�cation excludes negative prices so that the lognormality assumption is satis�ed.
7If α > 0 then also, t→∞ or T − t→∞.
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The optimal investment policies are obtained and summarized as Proposition 2. The

proof of this proposition is left for the Appendix B.

Proposition 2. When two asset-return processes are correlated and their correlation is

given by E[dWydWx] = ρxydt, ρxy ∈ (−1, 1)8, the optimal investment policies, (ϕ∗1, ϕ
∗
2), on

the individual risky assets following a continuous VECM (2.2)-(2.4), under the physical

measure P , and for every t are given by :

ϕ∗1 = − VΠ

VΠΠ

· θy − ρxyθx
σyy(1− ρ2

xy)
− VΠy

VΠΠ

(2.9)

ϕ∗2 = − VΠ

VΠΠ

· θx − ρxyθy
σxx(1− ρ2

xy)
− VΠx

VΠΠ

(2.10)

where θy = (µy−r)+λ1zt
σy

and θx = (µx−r)−λ2zt
σx

are the excess returns for yt and xt, respectively.

The optimal portfolio holdings, given by Equations (2.9)-(2.10), have a simple structure

and can be decomposed into two components, as speci�ed in the literature applying utility-

based objective functions (see for instance Jurek and Yang (2007), Basak and Chabakauri

(2010) and Kondor and Vayanos (2014)). The �rst component comes from the myopic

demand, whereas the second one represents the intertemporal hedging demand. It can be seen

that the optimal investment size is jointly determined by both assets' risk premiums θy and

θx, which are linked through the correlation parameter ρxy. An increase in correlation leads

to greater investment size suggesting a positive link between them. If we ignore the existence

of correlated BMs the solution leads to underinvestment on paired assets (in absolute terms).

In this sense the importance of return correlation is highlighted. Moreover, impacts of asset

volatility or interest rate are conveyed through the risk premium and exerted on the investor's

behavior. The higher the asset volatility or bond interest rate treated as funding cost, the

lower the investment allocation that the investor will assign to a given asset.
8The correlation parameter ρxy is either positive or negative, given that imperfectly integrated markets are considered in

this study. Perfect correlation are thus excluded, in which special cases suggest that two paired assets provide identical risk
premium in absolute term.
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We solved a more general portfolio choice problem allowing for di�erent asset allocations

for each asset and thus improve on the studies with equal weight setups, [−1, 1], see Liu and

Longsta� (2004), Gatev et al. (2006), and Jurek and Yang (2007). Our weights are required

to be of opposite signs if stationarity is to be guaranteed. Optimal portfolio allocations

incorporate the funding cost and are of di�erent sizes, in line with the mean-variance portfolio

literature (see Marquering and Verbeek (2004) and Basak and Chabakauri (2010)).

Given the proposed solution to the dynamic asset allocation problem, Corollary 1 follow-

ing Proposition 2 is derived to determine expected abnormal returns.

Corollary 1. Using the optimal investment policies ϕ∗1 and ϕ∗2 derived in Proposition 2, we

obtain the following process ft representing the expected abnormal returns under the measure

P :

f(yt, xt, t) = ϕ∗1yt (µy − r + λ1zt) + ϕ∗2xt (µx − r − λ2zt)

= ϕ∗1ytσyθy + ϕ∗2xtσxθx (2.11)

Consequently, abnormal returns from pairs trading are expected to be higher when paired

assets are linked through cointegration.

Corollary 1 demonstrates that pairs trading deliver higher excess returns under the ex-

istence of cointegration relationship. Note that, in addition to the expected return µ − r

implied by asset pricing models, an extra excess return would be earned by exploiting price

convergence driven by cointegration, until relative mispricing is eliminated. This is possible

when price deviation exists between cointegrated assets, such that λ1 and λ2 are nonzero.

When λ1zt > 0, yt will be relatively underpriced and an upward movement is expected to

restore equilibrium. In this case, λ2zt < 0 is expected as xt is overpriced, implying that a

downward movement is expected in response to spread mean reversion. These mean-reverting

activities can be exploited via pairs trading. Therefore λ1zt and −λ2zt in Equation (2.11),
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represent extra risk premiums originated from relative mispricing between two paired assets.

This is consistent with Brennan and Wang (2010), showing that return premium induced

by the mispricing can be expected to be positive if the pricing error zt follows a stationary

process. Conversely, if price adjustment occurs immediately, there is no mispricing in either

asset. In this sense λ1 = λ2 = 0 and there is no cointegration. Therefore, as is presented in

the proposed framework, additional pro�ts are gained if relative mispricing exists and prices

eventually revert back to the long-term level.

2.3 Optimal portfolio selection and exercise strategy of spread op-

tions

In what follows we solve the dynamic asset allocation problem under a well-de�ned functional

form of V . This involves deriving the candidate value function and obtaining the optimal in-

vestment strategies. Prior portfolio optimization literature derives the arbitrageur´s optimal

dynamic investment strategy for a set of preference speci�cations. A commonly used form is

the constant-relative-risk-aversion (CRRA) utility function (see for instance Merton (1971),

Kim and Omberg (1996), Brennan and Xia (2002), and Liu (2007) etc.). This preference

allows for well-de�ned tractable solutions but does also have important limitations. Suen

(2009) argue that this function is not bounded, implying that the di�culties may be faced

when applying the standard tools of dynamic programming. In this paper we aim to identify

an appropriate value function not associated with utility preference. To do so, we �rst prove

that our portfolio is a martingale (see Appendix C). We then link the optimal portfolio with

spread options, as both the proposed portfolio and the underlying asset of spread options are

designed to be stationary. The optimization problem is solved by identifying a spread option

written on underlying cointegrated assets, which serves as the replicating instrument of the

proposed portfolio. This allows the use of market data and compute the optimal investment

allocations.
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2.3.1 The interpretation of portfolio strategy using spread options

A spread option in this framework is written on paired assets which are linked in the long

run via cointegration. In this section we link the wealth process Πt under the optimal

policies with European-type spread options. In what follows, we show that the optimal

investment holdings can be associated with the spread option deltas of the involved indi-

vidual assets. This departs from the previous literature which considers general portfolio

choice problems with cointegrated assets (see for example Liu and Timmermann (2013)) by

introducing forward-looking information embedded in option prices. We o�er simple and

tractable solutions using information from the OTC option market.

The portfolio Πt is self-�nancing if

dΠt = ϕ1dyt + ϕ2dxt + r(Πt − ϕ1yt − ϕ2xt)dt

Let C(yt, xt, t) be the option value. We use Ito to produce the option´s dynamics as:

dC(yt, xt, t) =

[
∂C

∂t
+

1

2
σ2
yy

2
t

∂2C

∂y2
+ ρσyytσxxt

∂2C

∂y∂x
+

1

2
σ2
xx

2
t

∂2C

∂x2

]
dt+

∂C

∂y
dyt +

∂C

∂x
dxt

(2.12)

We now build a stationary portfolio, Πt using the hedging condition which requires that

we go short on the spread portfolio and long the option written on the spread, C(yt, xt, t).

Di�erentiating with respect to the two underlying assets we obtain ϕ1t = ∂
∂y
C(yt, xt, t) and

ϕ2t = ∂
∂x
C(yt, xt, t). Then we have a risk-free portfolio:

d(C(yt, xt, t)− Πt) (2.13)

d(C(yt, xt, t)−Πt) =

[
∂C

∂t
+

1

2
σ2
yy

2
t

∂2C

∂y2
+ ρxyσyytσxxt

∂2C

∂y∂x
+

1

2
σ2
xx

2
t

∂2C

∂x2
− r(Πt − ϕ1tyt − ϕ2txt)

]
dt

(2.14)

Then under perfect replication, the hedging condition will earn the risk-free rate of return:
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d(C(yt, xt, t)− Πt) = r(C(yt, xt, t)− Πt)dt (2.15)

With the dynamics of the option and the self-�nancing portfolio, we then derive the

Black-Scholes PDE

∂C

∂t
+

1

2
σ2
yy

2
t

∂2C

∂y2
+ ρσyytσxxt

∂2C

∂y∂x
+

1

2
σ2
xx

2
t

∂2C

∂x2
+
∂C

∂y
ryt +

∂C

∂x
rxt − rC = 0 (2.16)

where C(yT , xT , T ) = ψ(yT , xT ). ψ(yT , xT ) represents the payo� function for a general

European option.

If Π = C(y, x, 0), then d(C(yt, xt, t)−Πt) = 0. And thus ΠT = C(yT , xT , T ) = ψ(yT , xT ).

Setting up a convergence trade requiring a long position in one asset and short in another

asset, will provide an equivalent payo� to that o�ered by spread options.

Suppose we have an option written on yt− xt. This option can be considered as a spread

option that gives the holder the right to exchange one asset for another. In this framework

we take spread option with zero strike.

The payo� function for this option at maturity T is ψ(yT , xT ) = max(yT − xT , 0), so the

spread option can be de�ned as (see Appendix D):

C(yt, xt, t) = ytΦ(d1)− xtΦ(d2) (2.17)

where

d1 =
ln( yt

xt
) + 1

2
σ2
z(T − t)

σz
√
T − t

, d2 = d1 − σz
√
T − t

σz =
√
σ2
y − 2ρσyσx + σ2

x

This is the Margrabe (1978)´s result. In order to hedge the option position, the writer

needs to pursue delta hedging. This requires holding ∆t shares of the underlying asset at
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time t. It is simple to demonstrate that the hedging strategy for the two-asset spread option

is:

∆y,t =
∂C

∂y
= Φ(d1) +

(
φ(d1)− xt

yt
φ(d2)

)
1

σz
√
T − t

= Φ(d1) (2.18)

∆x,t =
∂C

∂x
= −Φ(d2)− yt

xt

(
φ(d1)− xt

yt
φ(d2)

)
1

σz
√
T − t

= −Φ(d2) (2.19)

In this way we transform the optimization problem of the investment strategy under P ,

to the risk-neutral measure Q by doing valuation of spread options and its resulting delta

hedging strategies. This requires spread option valuation and the use of market data on this

derivative. The analysis above is summarized in Proposition 3.

Proposition 3. Consider an investor who invests in a portfolio with initial value Πt,

containing two cointegrated assets yt and xt and a risk-free bond with constant return r. The

investor tries to maximize the portfolio value at terminal time T . According to the principle

of perfect replication, the portfolio value is equivalent to purchasing a spread option on yt−xt

with zero strike price. Consequently, the optimal investment policies are equivalent to the

hedging strategies of the spread option, namely,

ϕ∗1 = ∆y, ϕ∗2 = ∆x (2.20)

2.3.2 The optimal value function

In the Appendix B we show that the value function V satis�es the Hamilton-Jacobi-Bellman

(HJB) equations of stochastic control theory. The next step is to obtain an appropriate func-

tional form of V . In the previous section, we show that the portfolio value is equivalent to

the payo� function of a spread option written on two cointegrated assets. The Black-Scholes
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price is the maximum discounted payo� under no arbitrage, the option formula accordingly

serves as an appropriate candidate function which optimizes the portfolio value.

Proposition 4. For 0 ≤ t ≤ T , let V (t,Π, y, x) = maxEt [ΠT ≥ 0] we have the optimal

value function written as:

V (t,Π, y, x) = ytΦ(d1)− xtΦ(d2)

= ∆y,t · yt + ∆x,t · xt (2.21)

Consequently, it can be a�rmed that for this function V (t,Π, y, x), we get

VΠ = ∆y,t + ∆x,t = Φ(d1)− Φ(d2)

VΠΠ = Γy − Γx =
φ(d1)

ytσz
√
T − t

− φ(d2)

xtσz
√
T − t

VΠy =
φ(d1)− φ(d2)

ytσz
√
T − t

, VΠx =
−φ(d1) + φ(d2)

xtσz
√
T − t

The implication of Proposition 3 and 4 is that we associate the value of the investor´s

portfolio, made of two cointegrated assets and a risk-free bond, with the spread option.

This allows us to determine the optimal investment policies in terms of option deltas. We

therefore contribute to the portfolio selection literature by introducing forward-looking in-

formation from option markets to solve the portfolio optimization problem. Previous studies

in the literature use in-sample observations to determine optimal weights. However a more

recent line of work (see Bailey and Lopez de Prado (2014), Bailey et al. (2014) and Harvey

and Liu (2014)) demonstrates that calibrating trading practice via backtest delivers over-

�tting estimates, and thereby underperformance. We shed light to this problem by using

market data to calibrate portfolio solutions. We therefore provide a market-based approach

to the portfolio selection problem that can be extended to sophisticated portfolio composi-

tion beyond the spread trading. As opposed to the extant literature our proposed optimal

investment strategies arise from a generic value function solution that does not require as-

sumptions regarding investor´s preferences. Under our framework, the Black-Scholes spread

option speci�cation is considered as an appropriate value function.
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2.4 Empirical study

2.4.1 Data and methodology for performance evaluation

In what follows we test our model using data on U.S. equity market. We collect from

Datastream daily data on prices for the companies included in the DJIA during the period

January 1997 to December 2015. This index aims to track 30 leading blue-chip companies

based in the US, hence summarizing the performance of the industrial sector.9

Our options data are collected from IvyDB (OptionMetrics), which provides data on all

index and stock options listed in the U.S. market. The data on options ends on August

31st, 2015. We use the volatility surface �le, which delivers a smoothed volatility surface

for a variety of standard maturities and option deltas re�ecting a set of strike prices. We

choose the at-the-money implied volatilities for calls and puts written on all individual stocks

included in the DJIA for a 6-month maturity. Then the at-the-money Black-Scholes volatility

is calculated as the average volatility for a call and a put with absolute delta level equal to

0.5.10

The �rst step towards implementing the proposed trading strategy is to estimate the pa-

rameters under the continuous cointegration model (2.2)-(2.3), Θ = (µ̂y, µ̂x, λ̂1, λ̂2, σ̂y, σ̂x, ρ̂xy).

These are estimated applying maximum likelihood methods (ML thereafter) following the

spirit of Lei and Xu (2015). The derivation procedure is present in detail in Appendix E.

Our analysis depends on a rolling-sample approach. We choose an estimation window of

t = 10 years length and then the next 6-month window as the trading period (this ranges

from T = t to T = t+ 0.5). A 10-year data frame is therefore used to predict the parameters

needed for the implementation of our trading strategy. This process is moved forward by

adding price data for the following 6 months and dropping the earliest 126 observations.

The process is repeated until the end of the dataset is reached. Point estimates are used for

portfolio construction for every sequence of 6-month windows. The �rst estimation window

is from January 1997 to December 2006, which is followed by the �rst trading period from
9The company, Visa Inc., has been excluded from the sample because of a shorter period of price data which are only

available since March 19th, 2008.
10Data on stock options are available until August 31st, 2015, such that the empirical study is terminated on that date.
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Figure 2.1: Number of cointegrated pairs: Model-implied selection criteria vs. Johansen (1991) method

This �gure plots, in the left panel, the number of cointegrated pairs for each trading period, identi�ed according to
the model-implied criteria and the Johansen (1991) test over the period January 1st, 2007-August 31st, 2015. The
right panel is the boxplot of these number showing their distributions.

January 2007 to June 2007. We therefore have nineteen trading periods for the out-of-sample

exercise, over the period January 1st, 2007-August 31st, 2015.

We evaluate the performance of portfolio strategies under three criteria: (1) average excess

return; (2) return volatility (standard deviation); (3) portfolio Sharpe ratio. The latter is

used to assess the risk-adjusted performance.

2.4.2 Pairs formation and comparison

Next step would be picking pairs that will constitute the trading portfolios. There are 406

possible combinations among 29 targeted �rms. The pair identi�cation employs the model-

implied criteria, based on the restriction of convergent speed α > 0, that renders stationary

zt. Every pair in the portfolio is mean-reverting.11 To be robust, we compare the performance

of the model-implied method with the Johansen (1991) cointegration method in both pairs

selection and trading pro�tability.

Figure 1 plots the number of cointegrated pairs (left panel) identi�ed under the Johansen

and the model-implied methods for each 6-month trading period between January 2007

and August 2015. We see that while the number is time-varying, the number of pairs
11It implies that λ1 and λ2, exhibit opposite signs (see Equations (2.2)-(2.3)).
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Figure 2.2: Spread volatility comparison at the level of individual pairs

This �gure plots, in the left panel, the time series of the di�erence in the average of spread volatility between the
model-implied pairs and Johansen (1991)'s pairs. The right panel shows, at di�erent percentiles, the proportion of
the model-implied pairs with higher spread volatility, relative to Johansen (1991)'s pairs, over the period January
1st, 2007-August 31st, 2015.

selected under the continuous model is not as volatile as the number selected by Johansen

methodology.12 The boxplot (right panel) supports this observation. Both methods screen

out, on average, around 150 pairs of assets over the entire trading period. However the

distribution of number of pairs expands under the Johansen method, as re�ected by a lower

�rst quartile and a higher third quartile. This evidence is also observed in terms of the

minimum and maximum values. This is an extra risk in the portfolio selected with the

traditional statistical approach that a�ects performance and possibly explains why Kondor

(2009) claims that those portfolios couldn't survive many equilibriums. In the perspective

of practitioners, a stable number of tradable pairs is favorable given no wide adjustment of

portfolio components period by period.

Considering the fact that di�erent pairs are traded under the two methods, it is of great

interest to analyze the di�erence between them by focusing on spread volatility. We examine

the volatility gap at the individual level. The left panel of Figure 2 shows that the mean

volatility of all tradable pairs is higher under the model-implied method in most of the

time. The value of mean di�erence peaks in crisis times, and then drops to a low level and

even becomes zero. Overall, the magnitude of volatility gap is limited to a small range.
12We apply Johansen (1991) cointegration test to the natural logarithm of price series in search of pairs at the 10% signi�cant

level over a 10-year period. The 10-year window moves forward for 6-month so as to conduct a rolling-sample test, until the
end of the dataset.
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The right panel shows the proportion of pairs exhibiting relatively higher spread volatility

under our selection method. The �nding is consistent at �ve di�erent percentiles, revealing

a proportion of over 70%.

2.4.3 Pairs portfolio strategies using option deltas as investment policies

In this section we look into the trading process. Trading will exploit the joint convergence by

going long the underpriced asset and shorting the overpriced one in the pair, according to the

deltas of the corresponding option on the spread. These options are traded in OTC markets

where we get the individual implied volatilities. Correlation is estimated using maximum

likelihood. The implied volatility of the spread is then calculated using Equation (2.17).

All these are applied to pairs under both model-implied and Johansen methods. Then two

equally weighted portfolios are constructed.

Figure 3 shows the periodic performance out of sample. We observe that both portfolios

deliver synchronous performance. In fact the correlation coe�cients of average return, return

volatility and Sharpe ratio for both portfolios are 0.89, 0.93, and 0.90, respectively. More

importantly, while both portfolios deliver positive abnormal pro�ts and Sharpe ratios, our

portfolio performs better in most of periods. In agreement with previous literature (see

Figuerola-Ferretti et al. (2016)) portfolio outperformance is maximized over the recent crisis,

June 2008-June 2009. An increase of portfolio volatility is accompanied as expected, reaching

values of 10% per annum before falling back to pre-crisis mean volatility level. This is implied

by the high level of volatility embedded on option prices. Our portfolio also experiences

fewer losses when the market conditions are less favorable for the use of pairs strategy.13We

therefore o�er a novel approach for pairs selection that is closely linked but outperforms the

Johansen selection method.

To understand the economic signi�cance, Figure 4 plots the cumulative pro�ts by sum-
13The negative returns are small, and documented in �ve out of nineteen trading periods. At the beginning of global �nancial

crisis, the �rst half of 2008, occurs the �rst one, while the rest are distributed in after-crisis period.
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Figure 2.3: The evolution of performance: Model-implied portfolio vs. Johansen's portfolio

This �gure describes the performance of two pairs portfolios in terms of three criterias, for each trading period, over
the period January 1st, 2007-August 31st, 2015. It is shown that both portfolios deliver very close performance,
whose correlation coe�cients are 0.89, 0.93 and 0.90 based on the mean return, volatility and Sharpe ratio.
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Figure 2.4: Cumulative excess returns of pairs portfolios

This �gure plots cumulative excess return of our model-implied and Johansen's portfolios over the period January
1st, 2007-August 31st, 2015.

ming up the gains on an equal-weighted portfolio of all open positions. Both portfolios

accumulate returns in a similar evolution path. Two portfolios earn cumulative returns of

similar magnitudes over the �rst two years, but then outstanding performance is observed

from our portfolio during the latest crisis, particularly in 2009. After that this performance

disparity is maintained and cumulative pro�ts of both portfolios increase consistently until

the end of sample. Our portfolio accumulates pro�ts of 0.41 against 0.32 earned by the

benchmark Johansen (1991) portfolio. In addition to the outperformance, the evidence so

far supports the choice of spread option deltas as optimal weights in the cointegrated assets.

Table 1 reports descriptive statistics for both out-of-sample portfolios. In particular, our

portfolio earns an average excess return of 4.54% per year from January 2007 until August

2015. This is about 1% more per annum for the period, relative to the benchmark Johansen

(1991) portfolio. Big variation in the number of constituents included in Johansen's portfolio

impacts on the pro�t & loss statement (PnL), thus increasing its return volatility resulting in

a Sharpe ratio 0.23 lower than our portfolio. The reported average return and Sharpe ratio

suggest the outperformance of our model-based selection criteria. Moreover, we consider

a passive strategy giving equal weights to a pair of assets, as another relevant benchmark

for our portfolio subject to daily rebalancing. This is commonly applied to the studies of
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Table 2.1: Out-of-sample performance of pairs portfolios

Pairs portfolios Mean Median Stdev Skew Kurtosis Max Min Sharpe Cumulative

returns

Model-implied portfolio 0.0454 0.0000 0.0522 0.41 9.42 0.03 -0.03 0.87 0.41

Johansen's portfolio 0.0353 0.0000 0.0552 0.72 11.41 0.03 -0.02 0.64 0.32

Delta-neutral portfolio 0.0287 0.0000 0.0360 0.35 8.98 0.02 -0.02 0.80 0.26

This table reports the performance of our portfolio formed with selected pairs under the model-implied method, and
a portfolio formed with pairs under the Johansen (1991) test. A delta-neutral portfolio is also constructed using pairs
chosen by the model-implied method. Reported are the mean and median excess return (annualized), the (annualized)
standard deviation, skew, kurtosis, the maximum and minimum daily excess return, the (annualized) Sharpe ratio,
and cumulative returns. The sample period is January 1st, 2007-August 31st, 2015.

convergence trades and is thought to be delta neutral, for instance Liu and Longsta� (2004),

Gatev et al. (2006), Jurek and Yang (2007). This seems intuitively reasonable but may not

be optimal. Note that this exercise is conducted on pairs identi�ed by our model-implied

selection method. The results of this delta-neutral strategy are reported in the last row of

Table 1. By comparison, we �nd that both pairs portfolios produce a higher average return,

particularly the mean return of our model-implied portfolio exceeding by about 1.7% per

annum. Not surprisingly the delta-neutral strategy delivers a lower return volatility given no

requirement of rebalancing; however our proposed model-implied portfolio yields the highest

Sharpe ratio. In sum, conventional delta-neutral strategy seems suboptimal relative to our

dynamic portfolio holdings modeled by spread option´s deltas.

2.4.4 Information �ow and portfolio performance

Our portfolio strategy exploits forward-looking information that are implied by current op-

tion prices. From the perspective of an investor, it is critical to understand the relation

between the degree of information �ow and the performance of an option-based portfolio.

The informational role of options is supported by a large body of literature given nonpublic

information brought to the option market by informed traders. As has been also found, the

adjustment of stock prices is not achieved immediately to re�ect information embedded in

the option prices, indicating the existence of information asymmetry. One can expect the

level of information asymmetry is higher in times of crisis compared to tranquil times. This

would make option prices more informative, indicating a pronounced advantage of option-
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Table 2.2: Out-of-sample performance of pairs portfolios in periods of crisis and no crisis

Pairs portfolios Mean Median Stdev Skew Kurtosis Max Min Sharpe Cumulative

returns

Panel A: January 1st, 2007-December 31st, 2009

Model-implied portfolio 0.0820 0.0000 0.0697 0.47 7.56 0.03 -0.03 1.18 0.26

Johansen's portfolio 0.0535 0.0000 0.0709 0.87 9.59 0.03 -0.02 0.75 0.17

Delta-neutral portfolio 0.0521 0.0000 0.0481 0.37 7.16 0.02 -0.02 1.08 0.16

Panel B: January 1st, 2010-August 31st, 2015

Model-implied portfolio 0.0259 0.0000 0.0399 -0.12 4.59 0.01 -0.01 0.65 0.15

Johansen's portfolio 0.0256 0.0000 0.0447 0.17 8.28 0.02 -0.02 0.57 0.15

Delta-neutral portfolio 0.0162 0.0000 0.0275 -0.03 4.63 0.01 -0.01 0.59 0.09

This table shows the out-of-sample performance for the three di�erent pairs portfolios as present in Table 1. The
crisis period is from January 2007 to December 2009, while the non-crisis period is between January 2010 and August
2015.

based portfolio relying on current market data. Therefore, it is reasonable to conceive our

option-based strategy to perform remarkably well in the latest crisis (2007-2009).

Our �ndings support this expectation. Panel A of Table 2 shows that our portfolio yields,

on average, an excess return of 8.20% per annum during the global �nancial crisis, more than

three times higher than the return earned over the post-crisis period 2010-August 2015. This

�nding suggests that pairs portfolio is a low-beta portfolio given its long-short position on

two close-related assets. The boost of return volatility is accompanied as expected, but the

magnitude is not as large as the increase of pro�tability achieved under distressed conditions.

We therefore �nd a superior Sharpe ratio for the turbulent period, and the di�erence is

substantial which is 1.18 relative to 0.65. Then we look into the performance of delta-neutral

portfolio, which is formed with identical pairs as our model-implied portfolio. It produces,

on average, an annualized return of 5.2% during crisis in contrast to 1.6% in tranquil times.

The same observation is documented in terms of Sharpe ratio, which is 1.08 against 0.59.

Moreover, the comparison between our portfolio and the delta-neutral portfolio is interesting.

We �nd that the magnitude of return disparity is larger in the crisis period, whose value is

up to 3% per annum against 1% in the non-crisis era. The substantial di�erence should be
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attributed to the portfolio compositions based on option prices including richer information

in crisis times.

The superior performance in crisis is also achieved under the Johansen (1991) method,

although the performance gap is not so large. Some interesting evidence are found after

comparing Johansen´s portfolio with ours. Our portfolio is found to produce stronger per-

formance in the bear market while both portfolios' performance is close in the post-2009

sample period. The resulting outperformance mainly results from the pro�t-generation abil-

ity, represented by the mean return. This non-trivial �nding uncover that our pairs strategy

may be more able to screen out pairs embedded with strong mean-reverting characteristics

so as to discover and capture trading opportunities.

2.4.5 The sensitivity of portfolio performance

In this section we explore the sensitivity of portfolio performance with respect to two key

parameters. We concentrate on spread volatility, as a measure of idiosyncratic risks, and the

speed of equilibrium convergence, as a condition of eliminating deviations.

As spread volatility is a time-series, we take the average volatility of each selected pair

for every trading period as the proxy of volatility level. These pairs are then sorted on the

mean spread volatility and divided into three groups corresponding to the low, middle, and

high terciles of volatility. Pairs in each tercile are used to form an equally weighted portfolio.

The left panel of Figure 5 shows that the high-volatility group, whose �nal return reaches

at 0.60, apparently dominates the other two portfolios providing respective total return of

0.42 and 0.21. This is in line with the principle, more risk, more return. Speci�cally, the

summary statistics for the three portfolios reveals that, the resulting high return volatility for

the top tercile (8.26%), relative to the middle tercile (6.97%) and bottom tercile (5.33%), is

su�ciently compensated by the resulting mean return, thus leading to a better Sharpe ratio

of 0.82 (compared to 0.67 and 0.44, respectively). In addition, the top tercile portfolio also

delivers greater maximum and minimum returns. These evidence thus indicates a greater

pro�tability of pairs with a high level of spread volatility.

Further, we explore how the portfolio return varies as the evolution of spread volatility.
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Figure 2.5: The sensitivity of portfolio performance to spread volatility

The left panel of the �gure describes the cumulative return for three portfolios with pairs corresponding to the high,
middle, and low terciles of spread volatility. The right panel displays the mean return of top tercile portfolio against
the evolution of mean spread volatility. The sample period is January 1st, 2007-August 31st, 2015.

We take the top tercile portfolio for example. The right panel of Figure 5 displays a strong

comovement between the average spread volatility and the portfolio' mean return. In times of

high volatility, such as the recent global �nancial crises, the mean return reach the maximum

level while in low-volatility conditions the portfolio exhibits less impressive performance. One

possible explanation for this evidence is the existence of higher pricing errors during abnormal

market conditions.

Then we look into the speed of convergence. Figure 6 displays boxplots of the mean

returns and Sharpe ratios conditioning on the low, middle, and high terciles of convergent

speed. It is observed that not only the median, but also the �rst and third quartiles are higher

for the top tercile of pairs, in terms of both evaluation metrics. The distribution of mean

return and Sharpe ratio shrinks as pairs with a higher speed are considered, indicating a less

dispersed return distribution avoiding jumps/drops in pro�tability. In contrast, pairs at the

bottom tercile are more likely to induce extreme returns in the slow reversion process, and

thereby possibly lead to a big tail risk. It seems that the speed of convergence is associated

with the portfolio´s performance stability.
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Figure 2.6: Performance distribution of pairs portfolios at terciles of convergent speed

This �gure describes mean return (left panel) and Sharpe ratio (right panel) distributions for the high, middle, and
low terciles of convergent speed at the portfolio level, over the period January 1st, 2007-August 31st, 2015.

2.5 Concluding remarks

In this paper we propose a simple analytical model to describe the stationary convergent

process in the continuous setting. This model implies a simple method to check for coin-

tegration based on the speed of equilibrium reversion. This novel application is useful for

pairs selection. The model also suggests that cointegration-based portfolio generates higher

returns and bounded risk relative to a portfolio formed with randomly selected assets. Our

paper contributes to the pairs portfolio and spread option literature by exploiting a continu-

ous model of cointegration to derive optimal portfolio solutions. In doing this, we formulate

optimal weights that correspond to the delta strategies of spread options. We depart from

the current literature by deriving closed-form solutions without the assumption of a utility

function for the portfolio optimization problem. The proposed strategy can easily be imple-

mented retrieving forward-looking option market information. In this sense, we extend the

understanding of long-term comovement on two assets and the binding role of stationarity

in portfolio optimization.

Our model is tested empirically out of sample using daily DJIA data between 1997 and

2015. Maximum likelihood estimations are conducted on continuous VECM parameters

for strategy implementation. Our empirical �ndings are summarized as follows: (a) The

proposed strategy o�ers consistent pro�tability over the analyzed period in terms of Sharpe

ratios and cumulative pro�ts. This supports the e�cacy of introducing spread option's
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deltas into the portfolio choice problem. (b) Our pairs selection algorithm outperforms the

benchmark Johansen methodology commonly used in the pairs trading literature.



Chapter 3

Supercointegrated

3.1 Introduction

Statistical arbitrage, as a quantitative method of speculation, has been increasingly prevalent

along with the evolution of computational �nance. One of the most popular statistical

arbitrage strategies is pairs trading, which is widely used by hedge funds and investment

banks since the mid-1980s. Pairs trading strategies exploit temporary mispricing between

paired assets by taking long-short positions. If there is price discrepancy, which is short-

lived according to past price information, a trading opportunity arises and can be pro�ted

from price adjustment process. In other words, pairs trading is a convergence trade strategy

identifying a pair of assets whose prices historically move together. Then, arbitrage pro�ts

are generated by unwinding the position in the case that prices converge to the long-run

equilibrium over time. Conversely, arbitrageurs su�er losses if by any chance price spreads

widen further.

This article shows the performance of pairs trading portfolios when sorted by the level of

cointegration of their constituents. We focus on supercointegrated portfolios, that are formed

by pairs which do not reject standard cointegration tests at 1% level of con�dence. From an

out-of-sample exercise, we show that this elite group outperforms our benchmark, the market

portfolio, for the period under study: an initial investment of $1.00 in the market index in

November 2000 yields $1.60 in July 2016. When invested in our supercointegrated portfolio,

60
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the initial investment results in $2.00 at the period end. In terms of realized returns, the

supercointegrated portfolio yields an annual return of 6.18%, in contrast to the 3.33% for

the market index. This superior performance of the supercointegrated portfolio is related to

the volatility level that is much lower than the market portfolio. Notably, our pair strategy

leads to an impressive Sharpe ratio of 0.60, against 0.17 for the benchmark during the same

time period.

Interested on the sources of risk of the supercointegrated portfolio, they seem to be linked

to aggregate market volatility. A regression of the returns of the supercointegrated portfolio

against the 3-factor Fama and French (1992) model shows that the market is a statistically

signi�cant source of covariance with the returns of the pairs strategy. Momentum and

book-to-market ratios do not exhibit covariance with the strategy. The maximum-likelihood

estimates of an autoregressive AR(1) model on the realized variance series show that the

square root of the unconditional variance is two times lower in the case of pairs portfolio.

Surprisingly enough, the autoregressive parameter is similar for the pairs portfolio and the

market portfolio. As shown throughout the article, this issue can be employed to obtain a

superior performance in terms of Sharpe ratio to index-based strategies.

Whether the superior performance is exclusive of the supercointegrated portfolio is an ad-

ditional contribution of this article. Remarkably, we also �nd that the degree of performance

of the pairs strategy is positively related to the level of cointegration among pairs. A sorted

collection of pairs in terms of their degree of cointegration reveals interesting results. For

the portfolio consisting of higher cointegrated pairs in the �rst quintile, the average excess

return of 6.2% is earned per annum which is 2.3% higher than the portfolio with pairs in the

second quintile. The similar �nding is documented in terms of the Sharpe ratio, which is 0.6

versus 0.5. These results strongly suggest that the performance of pairs portfolio stresses

when the cointegration relationship ties up.

A possible explanation to our results relies on the interesting risk-return relationship of

the pairs strategy. A projection of contemporaneous returns onto the lagged realized variance

exhibits a statistically signi�cant and positive beta coe�cient. The source of value seems to
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be linked to increments of aggregate market volatility. When market volatility rises, a higher

level of cointegration among pairs is found, triggering a virtuous circle for our strategy: the

number of cointegrated pairs increases --more pairs--, and their quality improves --assets

are tied-up under a more intense relationship--. This situation results in the outstanding

performance of the supercointegrated portfolio.

In parallel to our �ndings, this article conducts several exercises to assess the robustness of

its main results. The most critical point is the threshold of the pairs strategy. In the history

of pairs-trading, a constant threshold, which is determined as the unconditional standard

deviation, is commonly applied to trigger trades. To capture the time-varying nature of

price spreads, we employ another criteria built on the constant threshold method. This

new trigger, named dynamic threshold, is determined as the conditional standard deviation

calculated using a 1-year moving window. As shown later, the superior performance of the

supercointegrated portfolio to index-based strategies is robust to di�erent threshold criteria.

Additional checks on di�erent aspects of the sample as data frequency or transaction costs

indicate that the strength of the supercointegrated portfolio is not sample dependent.

Thus, this article studies the performance of supercointegrated portfolios, examining their

sources of time-varying risk. The rest of the paper proceeds as follows. Section 2 stresses our

contribution to the existing literature. Section 3 details the data and portfolio construction,

and Section 4 analyzes the supercointegrated portfolio in an out-of-sample exercise. Section 5

provides international evidence. Section 6 conducts some robustness checks, and conclusions

are left to Section 7.

3.2 Contribution to existing literature

The main contribution of this article stresses the importance of the cointegration level on the

performance of pairs trading strategies. We adopt a novel perspective for the analysis moving

from individual to aggregate sides of the question: instead of the traditional approach, where

pairs trading strategies are studied as individual investments, we examine the behaviour of a
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portfolio, the so-called supercointegrated portfolio, composed by several highly cointegrated

pairs. The major result is that the level of cointegration matters.

This paper is related to the area of relative asset pricing which is concerned potential

price di�erentials of two substituted assets that should be priced identically. When price

spread appears, relative-value arbitrage involving a long-short position, i.e. pairs trading,

exploits the violation of the law of one price and makes pro�ts from expected restoration of

price equilibrium. In this way, the principal innovations on the literature could be gathered

in two main streams: the improvement of trigger indicators, and the design of alternative

methods for selecting the pairs.

With regard to the trigger indicators, the work of Gatev et al. (2006) examining a large

sample of liquid U.S. equities has received a remarkable attention in the pairs trading domain.

Their trading algorithm is simply implemented based on the historical standard deviation

of the spread: trades are opened when price divergence exceeds two standard deviations,

and liquidated upon the spread converges under the threshold value. The strategy delivers

economically and statistically signi�cant excess returns of around 11% per annum over the

period 1962-2002. Following Gatev et al. (2006), Papadakis and Wysocki (2007) and Engel-

berg et al. (2009) implement similar empirical analysis relying on di�erent samples of U.S.

equity market to evaluate and explain the pro�tability of pairs-trading.1 The wide usage

of this strategy can be attributed to its fairly clear merit: the method based on constant

trading trigger is easy to use and, given the nonparametric nature, it is not subject to model

misspeci�cations. Nevertheless, the constant threshold method is selected somehow arbi-

trarily, ignoring the possibility of dramatic price swing as time passes, and thus whether the

�xed threshold is sensible to trigger trading signals is suspicious.

Moving beyond the standard deviation, Elliott et al. (2005) explicitly models the spread

using a mean reverting Gaussian Markov chain, observed in Gaussian noise. In continuous

time, the application of well-known Ornstein-Uhlenbeck (OU) process allows spread estima-
1The popularity of Gatev et al. (2006)'s trading rule is re�ected on the empirical tests on many international markets. For

instance, Andrade et al. (2005), Broussard and Vaihekoski (2012), and Bowen and Hutchinson (2014) replicate the strategy in
Taiwan, Finland and U.K. equity markets, respectively.
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tion, which serves as the base of this trading rule. When the observed spread exceeds the

estimated value, an investor opens a position in the spread upon the elimination of deviation.

As such, this stochastic approach bases the determination of trade decisions on the model's

prediction. This approach has two primary strengths. First, the evolution of price spread

is described with an OU process, capturing the mean reverting property which is the key

to pairs trading. Second, this stochastic model allows parameter forecasting. Parameter

estimates is straightforward to obtain given the known distribution of OU process in closed

form. Built on the spirit of Elliott et al. (2005), Do et al. (2006) propose a general approach

of stochastic residual spread that describes mispricing at the return level. It means that

the spread is de�ned as the return di�erence of a pair of assets. They suggest taking a

position whenever the accumulated spread is larger than certain threshold values. However,

no guidance is given on how to further specify the threshold.

Concerning the selection pairs criteria, a common critique to Gatev et al. (2006) is so-

called cointegration relationship of selected pairs without resorting to formal testing. As a

consequence, the relationship implied from price comovement may be spurious since high

correlation does not necessarily indicate mean-reversion properties. This potential drawback

is unveiled by Do and Fa� (2010). Extending the original sample used by Gatev et al. (2006),

the authors illustrate the ine�ciency of the method with the �nding that 32 percent of all

identi�ed pairs do not converge.

In order to better exploit mean reversion properties, Vidyamurthy (2004) also employs

a cointegration method for pairs-trading based on the cointegration theory proposed by

Engle and Granger (1987). But the spirit of his trading rule is still in similar fashion to the

constant threshold method in Gatev et al. (2006), suggesting a open/close position according

to the magnitude of price divergence relative to a threshold value. Under the assumption

that price spread is a Gaussian white noise, Vidyamurthy (2004) derives the threshold value

maximizing pro�t function for each particular pair, in contrast of �xing the threshold level to

be two standard deviations as Gatev et al. (2006). Despite this progress, the kernel of both

methods is the same and relies on a constant trigger level. Similarly, cointegration approach
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is also applied to develop pairs trading strategies for achieving the minimum required pro�t

per trade given a selected trading threshold, i.e. Lin et al. (2006) and Puspaningrum et al.

(2010). Undoubtedly the constant threshold method occupies an important position in the

development of pairs trading.

The most recent contributions to pairs-trading research fall into the domain of stochastic

control and continuous-time cointegration; see Jurek and Yang (2007) and Liu and Tim-

mermann (2013), respectively. Both models require daily rebalancing. In this sense, their

dynamic feature leads to heavy transaction costs so that a comparison with less dynamic

threshold methods would shed light on their e�ectiveness in face of market frictions. Simi-

larly, Cartea et al. (2015) also provides an interesting discussion of pairs trading within the

context of algorithmic trading using continuous-time cointegration.

3.3 Data, pairs selection and portfolio construction

This analysis focuses on the U.S. equity market, and particularly investigates traded equities

of the S&P100 index. This index comprises 100 leading, large cap companies across multiple

industries. This provides a blue-chip representation of sector leaders in the U.S. market,

regarded as a proxy of the overall US stock market. The constituents of S&P100 index are

large-cap stocks that can be traded in stock exchanges with complete access to market par-

ticipants. The dataset comprises daily closing prices for S&P100 constituents from January

1st, 1998 to June 24th, 2016, leading to 4822 observations for most of these stocks.2 Once

excluded the series with missing values or data shortness, our sample of stocks results in

3486 possible combinations of equity pairs. Data has been collected from Datastream.

To identify the matching partners, we proceed in a two-step procedure. Roughly speak-

ing, this two-step selection procedure combines Johansen (1991) method and Engle and

Granger (1987) method. Johansen (1991) method is applied to con�rm a pair of assets shar-
2Exceptions are found on the following sixteen companies whose price data are available for a shorter period: Accenture,

Alphabet, Facebook, General Motors, Goldman Sachs, Kinder Morgan, Mastercard, Metlife, Mondelez International, Monsanto,
P�zer, Philip Morris International, Priceline Group, Twenty-First Century Fox, United Parcel, and Visa. These companies have
been excluded from the sample.
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ing long-run equilibrium, while Engle and Granger (1987) method is used to determine the

cointegration error zt given that the cointegration regression estimated using OLS is practi-

cally easy for portfolio construction. In this way, we �rstly test the existence of cointegration

among each possible pair by conducting the Johansen (1991) cointegration test at the 1%

con�dence level.

In a second step, we re�ne our selection of pairs by running the OLS regression,

yt = α + βxt + zt (3.1)

where yt and xt are Asset 1 and Asset 2 constituents of a possible pair, and zt is a normally

distributed error term. The idea is that the cash amount of α̂ and β̂ units of xt are invested

to replicate the prices of yt. We then claim that yt is equivalent to the replicating portfolio

(α̂ + β̂xt) under the existence of cointegration relationship. Considering that the essence

of pairs trading is an arbitrage strategy with simultaneous long-short positions on paired

assets, a positive value of β̂ is required. Otherwise, positions in the same direction would be

taken, long-long or short-short, which is the case violating the mechanism of pairs trading.

In addition, α̂ is also required to be positive so as to rule out the possibility of borrowing

money, for the purpose of constructing self-�nancing portfolios. In other words, we exclude

those pairs with negative OLS estimates α̂ and β̂.

The trading mechanism is described as follows. First, we set a threshold to trigger the

strategy. When price spread exceeds the threshold, we open a long-short position one day

after the appearance of the trading signal, particularly longing the underpriced asset and

shorting the overpriced one. Similarly, the initial positions will be liquidated one day later

when prices converge to a level that is within the border of threshold values. In other words,

the opening/close of pairs positions is delayed by one day. After a round-trip trade has been

completed, a pair will be subject to the same trading rule again.

The prior literature commonly uses a constant threshold as the trading trigger; see, among

others Gatev et al. (2006) and Do and Fa� (2010). This constant threshold uses to be the

unconditional standard deviation from historical spreads, and it keeps constant across the



Chapter 3. Supercointegrated 67

entire trading period. Instead of the constant threshold, this article proposes a dynamic

criteria which takes advantage of the most recent information in the time series of the

price spreads. This dynamic threshold is determined as the standard deviation calculated

using a 1-year rolling-window --the 252 previous observations-- of the price spread. Given a

particular trading day, we compare the estimated 1-year rolling-window volatility with the

realized price deviation of the pair in that day. If the realized deviation is higher than one

standard deviation of the volatility estimate, the pairs strategy is opened. The dynamic

threshold introduces the dynamics into the traditional pairs strategy, as the strategy is now

conditional to the most recent price information.3

Finally, we construct an equal-weighted portfolio constituted by our selection of super-

cointegrated pairs. This procedure bene�ts from the risk of diversi�cation, and it has been

widely employed in the asset pricing literature; see, for instance, Goetzmann and Kumar

(2008), DeMiguel et al. (2009), and Tu and Zhou (2011). The excess return of the port-

folio is measured as the return on committed capital. In other words, the mark-to-market

portfolio payo�s are scaled by the number of selected pairs during a trading interval.4 The

payo� is interpreted as excess return since the trading pro�ts or losses are earned from one

dollar investment in simultaneous long-short positions. In parallel to the supercointegrated

portfolio, we construct as a control an additional naive strategy holding the S&P100 index

under a simple buy-and-hold trading rule.

3.4 Supercointegrated portfolio

This section examines the performance of the supercointegrated portfolio. We evaluate the

strategy in an out-of-sample scenario, a most demanding framework. Some complementary

analysis are left to the robustness section.
3The pairs strategy is also tested for the constant threshold in Section 6. The main conclusion is that results are robust to

the choice of the threshold.
4This measure is obviously conservative, since it considers the opportunity cost of capital if a pair does not trade for some

days of the trading interval. This scenario takes place commonly, as it is rare all selected pairs meet the trading criteria in a
given day. As such, the obtained return in our study would not be the upper bound of trading pro�ts and, in this sense, its
superior performance is more convincing if this is the case.
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3.4.1 Anatomy of supercointegrated pairs returns

To endorse the competence of the proposed strategies, we examine the performance out of

sample. The procedure is as follows: we select a three-year window (formation period) to

identify cointegrated pairs via Johansen (1991) method and, for these chosen pairs, estimate

the cointegration relationship by OLS. Then, the resulting estimates are applied to trades

during a six-month forward-ahead period. This procedure is repeated through the remaining

sample period.5 It can be argued that this procedure can be improved by increasing the

frequency of re-estimation of the portfolio pairs, and many other alternatives for the out-

of-sample exercise could be implemented. In this way, we have adopted a conservative

perspective on presenting here the out-of-sample strategy, and other di�erent variations to

our strategy design have been left to the robustness check section.

To measure the performance of the portfolio we have considered the Sharpe ratio and

the performance measure proposed by Goetzmann et al. (2007) (PMG henceforth). Given

the portfolio returns, rt, and the corresponding returns of the risk-free asset, rf,t, PMG is

calculated as

PMG =
1

(1− γ) ∆t
ln

(
1

T

T∑
i=1

(
1 + rt

1 + rf,t

)1−γ
)

, (3.2)

where T is the length of the return series and γ is the risk-aversion coe�cient. The PMG

measure has been widely used to study the performance of alternative investments, such as

hedge funds, generating robust ratings; see, among others, Brown et al. (2008), Bali et al.

(2013) and Jackwerth and Slavutskaya (2016).

Once settled the strategy, we study the e�ect of the cointegration degree on the perfor-

mance. To this end, we sort the pairs, screened out at the 1% level, in ascending order

according to their p-value of Johansen (1991) test. Then, we divide the cross-section into

quintiles; Quintile 1 (Q1) is the set of pairs with lowest p-value, and Quintile 5 (Q5) is the
5A detailed explanation of our procedure is provided here. In an initial step, we estimate a �rst set of cointegration parameters

(α̂(1), β̂(1)) using data from January 1998 to December 2000. These parameters are employed to implement the strategy during
period January 2001 to June 2001, which is left for trading. Then, we move six-month ahead our window, and re-estimate a
new set of cointegration parameters (α̂(2), β̂(2)) from July 1998 to June 2001, and the period July 2001 to December 2001 is
now left for trading. This procedure is repeated in thirty-two non-overlapping six-month trading periods. Note that the last
trading period is a bit less than six months since the sample ends June 24th, 2016.
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Figure 3.1: Cumulative excess returns of quintile portfolios: Q1 and Q5
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This �gure displays the cumulative excess returns for two equally-weighted portfolios constructed by the same number
of pairs. These pairs are sorted in ascending order according to the p-value of Johansen (1991) test, and then divided
into quintiles. Q1 (Q5) corresponds to the portfolio of most (lowest) cointegrated pairs. Results are obtained using
the dynamic threshold method over the out-of-sample period. Data spans from November 24th, 2000 to June 24th,
2016.

one with the highest p-value.6 Figure 1 displays the cumulative excess returns of the Q1

and Q5 portfolios. The most interesting result is that a higher level of cointegration exerts

positive impacts on the strategy performance. The Q1 portfolio, whose �nal return reaches

its highest level at 1.0, apparently dominates Q5, which is formed with less cointegrated

pairs. Q5 represents the most relaxing relation of cointegration, and it performs weakly all

the time. The di�erence in cumulative return re�ects straightforwardly the strength of Q1,

exhibiting a return gap up to around 0.70 between Q1 and Q5. Interestingly enough, this

gap enlarges during the �nancial distress period in September 2008.

Table 1 also provides a di�erent perspective on the results. This table reports the main

statistics for the �ve sorted portfolios (Panel A), and the aggregate portfolio that contains all

pairs (Panel B). Again, the main �nding is that the portfolio at a higher level of cointegration

(Q1) is likely to achieve more attractive excess returns, with a similar risk than the remainder

portfolios. For instance, the Q1 portfolio yields an average return of 6.2% per annum, which
6Pairs in each quintile are used to form an equally weighted portfolio such that performance comparison is still proceeded

at the portfolio level.
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Table 3.1: Performance of �ve equal-weighted pairs portfolios

Portfolio Mean Median Stdev Skew Kurtosis Max. Min. Sharpe PMG

(γ = 2)

PMG

(γ = 3)

Panel A: Quintile portfolios

Q1 0.0618 0.0000 0.1033 1.67 57.32 0.10 -0.10 0.60 0.0368 0.0315

Q2 0.0386 0.0000 0.0757 0.32 15.38 0.04 -0.04 0.51 0.0184 0.0155

Q3 0.0278 0.0000 0.0976 -1.47 65.84 0.08 -0.11 0.29 0.0038 -0.0011

Q4 0.0329 0.0000 0.1109 1.91 101.99 0.13 -0.13 0.30 0.0062 0.0002

Q5 0.0181 0.0000 0.0878 0.02 19.67 0.05 -0.05 0.21 -0.0040 -0.0079

Panel B: All-pairs portfolio

All-pairs 0.0348 0.0000 0.0731 1.12 63.52 0.07 -0.08 0.48 0.0151 0.0125

This table reports the main statistics for �ve independent portfolios (Panel A) ranked according to the p-value of
Johansen (1991) test, and the portfolio containing all pairs (Panel B). Portfolios in Panel A are constructed using
the same number of pairs, and then sorted by quintiles. Reported statistics are the mean and median excess return
(annualized), the (annualized) standard deviation, skew, kurtosis, the maximum and minimum daily excess return, the
(annualized) Sharpe ratio and the performance measure of PMG. Results are obtained using the dynamic threshold
method over the out-of-sample period. Data spans from November 24th, 2000 to June 24th, 2016.

represents 2.3% more than Q2, the second best portfolio. This signi�cant return of Q1,

joint with a comparable volatility to the remaining portfolios, pushes up the Sharpe ratio of

the top quintile. As shown in Panel A, the Sharpe ratio improves in a positive, monotonic

pattern, increasing from 0.2 to 0.6. Such evident enhancement is de�nitely worthy of close

attention, and provides investors an important practical implication: pairs of assets should

be selected at the 1% signi�cant level, in order to focus on the top quintile.

From Table 1, we also �nd that the Q1 also improves the performance of the portfolio that

aggregates all pairs under a risk-adjusted basis. Q1 exhibits a melioration of the Sharpe ratio

of 0.12 points when compared to the baseline result of the all-pairs portfolio. In contrast, the

performance of the rest portfolios drops dramatically in terms of Sharpe ratio. In line with

these previous results, the PMG measure reveals that most cointegrated portfolio (Q1) still

exhibit a better performance than the rest. Lastly, we �nd a positively skewed distribution

of excess returns which is common to four quintiles and the all-pairs portfolio. Combined
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Figure 3.2: Cumulative excess returns of the portfolio Quintile 1 and the market benchmark
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This �gure displays the cumulative excess returns for the highest cointegrated portfolio Q1 (blue line) against the
cumulative returns of the S&P 100 index (green line). Results for Q1 portfolio are obtained using the dynamic
threshold method over the out-of-sample period. Data spans from November 24th, 2000 to June 24th, 2016.

with the large values of kurtosis, a high level of tail risk is suggested as plenty of hedge fund

strategies.

The cumulative excess returns for the Q1 portfolio and the S&P100, our market bench-

mark, are depicted in Figure 2. Some interesting conclusions arise from the inspection of

this �gure. First, the Q1 portfolio yields a superior return than the naive strategy. The

departure of cumulative returns between two portfolios is specially remarkable during the

periods from December 2000 to January 2002, and June 2008 to December 2009, where

the Q1 portfolio performed exceptionally well. In contrast to these dramatic increments of

pro�tability in Q1, the market benchmark su�ered a dramatic decline due to the dot-com

crash in 2000, and the global �nancial crisis in 2008. Second, from observation of Figure

2, the volatility of Q1 seems to be signi�cantly lower than the market. In statistics not

provided here, but available upon request, the annual volatility of the S&P100 is 19.34% for

the period under analysis, against a 10.33% of the Q1 portfolio. This results in a Sharpe

ratio of 0.17 for the market benchmark, distant from the 0.60 coe�cient of the Q1 portfolio.
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Table 3.2: OLS regressions of returns on Fama and French (1992) factors

Model Intercept MktRF SMB HML

Q1 0.0021** 0.0006* 0.0000 0.0005

(0.0009) (0.0002) (0.0005) (0.0006)

S&P100 0.0047 0.0055*** -0.0011 0.0009

(0.0037) (0.0009) (0.00014) (0.0014)

OLS regressions of supercointegrated portfolio (Q1) and market benchmark (S&P100). The three factors are the
excess market return, SMB, and HML. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

These two previous observations allude to an interesting (and positive) risk-return balance

in pairs trading strategies, where increments in the aggregate market volatility are related

to a higher pro�tability of the cointegrated portfolio.7

Interested on possible explanations to the performance of pairs portfolios, we project the

returns of the supercointegrated portfolio and the market benchmark onto the three factor

model of Fama and French (1992). Table 2 reports the robust OLS estimates. The estimates

show that, while market beta is positive and statistically signi�cant for the pairs portfolio,

the documented �gure is extremely small. This indicates that the performance of pairs

strategies is not closely linked to the dynamics of the market, i.e. these strategies are close

to market-neutral, which has been shown in the prior literature, e.g. Gatev et al. (2006), Liu

and Timmermann (2013), and Rad et al. (2016).8 In the view of asset allocation, the feature of

market neutrality brings about diversi�cation bene�ts to a portfolio holder whose positions

are strongly correlated with the market. Moreover, "high-minus-low" and size factors are

not statistically signi�cant at standard con�dence levels, and their betas are close to zero.
7This result is similar to that found by Barroso and Santa-Clara (2015) and Daniel and Moskowitz (2016) within the context

of momentum portfolios.
8Market neutrality means small/insigni�cant exposures to the market. This outcome is achieved in pairs strategies due to

the simultaneous long-short positions on two close-substituted assets. Given this, Liu and Timmermann (2013) ex ante assume
that a pair of assets have identical market betas.
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Figure 3.3: The monthly realized volatility of portfolios
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This �gure shows the realized volatilities of the Q1 portfolio (most cointegrated pairs, blue line) and the S&P 100
index. The monthly realized volatility is obtained from daily returns.

3.4.2 The time-varying risk of pairs trading portfolio

It is always interesting to look at the other side of a coin. We thus analyze the time-varying

risk of pair trading strategies. Inspired in Barroso and Santa-Clara (2015), we compute the

realized variance estimate from the past 21 observations of daily return,

RVi,t =
20∑
j=0

r2
i,t−j (3.3)

where i stands for the S&P 100 and Q1 portfolio, and ri,t−j represents the daily returns of

each strategy.

Figure 3 displays the time series of the realized volatility for the market index and the Q1

portfolio (most cointegrated pairs). As expected, the realized volatility of the Q1 portfolio

is lower than for the market index. At the limit, the beta of the pair trading portfolio

should converge to zero since it involves long and short weights, therefore the systematic

risk of the pair trading portfolio should be negligible. In our case, the Q1 portfolio only

incorporates the most cointegrated pairs, thus the market risk is reduced but not completely

erased. Therefore, we can also appreciate a similar up-down pattern between both series,

suggesting a link between the market and Q1 realized volatilities. The correlation between
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Table 3.3: AR(1) estimates of realized variance

Model Q1 S&P100

c 0.00065 0.00095

(0.00054) (0.00071)

φ 0.2718*** 0.6913***

(0.0591) (0.0382)

σ2 8.0×10−6*** 1.58×10−5***

(1.2×10−7) (3.9×10−7)

LogLk -858.67 -793.14

Obs. 193 193

OLS regressions of supercointegrated portfolio (Q1) and market benchmark (S&P100). The three factors are the
excess market return, SMB, and HML. Robust standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

both realized variance series is equal to 0.56. This �nding suggests that our strategy is not

a pure market-neutral portfolio. Another important aspect of the realized variance series is

their persistence. To evaluate this parameter, we estimate an autoregressive AR(1) model,

RVi,t = c+ φRVi,t−1 + εt (3.4)

where RVi,t is the realized variance observation at time t, c is a constant, and φ the

autoregressive coe�cient. The error term εt is normally distributed with zero mean and

variance σ2. The results from the estimated AR(1) model are provided in Table 3. First, we

verify that the realized variance of the Q1 portfolio exhibits autocorrelation; the estimate of

φ is strongly signi�cant and close to 0.27. Notably, the di�erences in scale are also relevant:

pairs trading strategies exhibit a much lower variance on average compared to the market

benchmark, as it is inferred from the σ2 estimate, which is 2 times lower for realized variance

of the Q1 portfolio than for the S&P 100 one.

Despite the similarities with the market realized variance (see Figure 3 and Table 3) a

second factor may a�ect the portfolio risk: the number of highly cointegrated pairs. The pairs
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Figure 3.4: The rolling 3-year realized volatility of S&P 100 vs. number of cointegrated pairs
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This �gure displays the evolution of the number of cointegrated pairs, against the rolling realized volatility of S&P
100. The calculation is done by implementing a rolling 3-year window over the entire sample period.

trading strategy is implemented in a moving window, so the number of cointegrated pairs

may vary: as time moves on, the latest price is included in the formation period searching for

cointegration relationship within a pair of assets. The new arrival of information, re�ecting

the aggregate market sentiment, a�ects price movements and further the existing relationship

among assets. The variation in the number of pairs is expected to be substantial as the degree

of closeness is distinct under diverse market conditions. The number of cointegrated pairs

is connected to the evolution of the realized variance of S&P 100. Figure 4 shows a high

correlation between these two series, with a coe�cient up to 0.53. We then may conclude

that the pool of cointegrated pairs gets larger as the market volatility goes up, such relation

even evident for the case of 1% level cointegration. This indeed supports our focus on pairs

accepted at 1% level in this article, given a reliable conjecture that high sensitivity to the

market may result in large pro�tability potentials.

Given the persistent pattern of the realized volatility it becomes interesting to analyze the

risk-return relationship for the supercointegrated portfolio in order to establish a relationship

between past realized volatility and contemporaneous returns. For this purpose we estimate

by OLS the following model,
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Table 3.4: Risk-return relationship

η0 η1

estimate 0.000153* 0.10421***

s.e. (7.9× 10−5) (0.02572)

N 192

R2 0.0795

This table displays the OLS estimation of the monthly returns of the Q1 portfolio against the one month lagged
realized volatility.

Rt = η0 + η1RVt−1 + ξt , ξt ∼ N(0, 1) (3.5)

where Rt stands for the tmonth realized return of Q1 portfolio, RVt−1 is the corresponding

one month lagged realized volatility (depicted in Figure 3), ξt is the error term and (η0 , η1)

are the coe�cients of the linear �t. Table 4 exhibits the results of the OLS estimation. This

results show a positive relationship between last month realized variance and one month

ahead future return. This �nding is interesting because as volatility increases, stock markets

use to fall, but the pair trading portfolio increases its expected return. Therefore, the hedging

properties of the pair trading portfolio seem relevant.

3.5 International evidence

We now examine whether our results are also extensible to other markets. The international

evidence of pairs trading has already been tested in an international context; see, for instance,

Dunis and Lequeux (2000), Broussard and Vaihekoski (2012), Bowen and Hutchinson (2014)

and Dunis and Ho (2016). We then analyze the behaviour of the supercointegrated portfolio

using the companies included in the STOXX Europe 600 index. Our analysis is restricted

to those �rms located in the Eurozone whose stock prices are quoted in euro. The selected

sample comprises 292 companies across ten countries of the European common currency

area. Data frequency is daily, and it spans from January 1st, 2000 to February 6th, 2017,
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Figure 3.5: Cumulative excess returns of quintile portfolios for European stocks
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This �gure displays the cumulative excess returns for �ve equal-weighted portfolios constructed by the same number
of pairs. These pairs are sorted in ascending order according to the p-value of Johansen (1991) test, and then divided
into quintiles. Q1 (Q5) corresponds to the portfolio of most (lowest) cointegrated pairs. Results are obtained using
the dynamic threshold method over the out-of-sample period. Data spans from January 1st, 2000 to February 6th,
2017.

resulting in 4,461 trading observations on average. The data source is Datastream.

The cumulative returns of pairs portfolios sorted by their level of cointegration are de-

picted in Figure 5. Once again, these results exhibit a monotonic behaviour of cumulative

returns according to their level of cointegration. As shown, the cumulative returns of the

Q1 portfolio are higher than others. For instance, the Q1 portfolio yields almost three times

more return than the Q5 portfolio. This outstanding performance of Q1 improves during

periods of high volatility, as the concerns about the Greek sovereign debt during 2010, and

the incertitude in Italian and Spanish debt during August 2011.

Table 5 provides a complementary perspective on the results of Figure 5. This table

shows the annual excess returns for the �ve quintiles. We observe that the average return

of the strategy decreases as the degree of cointegration does. The volatility of the strategy

is quite similar among portfolios, resulting in an improvement of the Sharpe ratio of the Q1

portfolio. Interestingly, the kurtosis of the supercointegrated portfolio is lower than the rest.
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Table 3.5: Annual excess returns for European stock portfolios

Portfolio Mean Median Stdev Skew Kurtosis Max. Min. Sharpe

Q1 0.0811 0.0093 0.1198 0.78 12.36 0.07 -0.05 0.68

Q2 0.0673 0.0125 0.1231 1.10 20.53 0.08 -0.05 0.55

Q3 0.0539 0.0039 0.1101 0.44 19.39 0.07 -0.07 0.49

Q4 0.0308 0.0021 0.1007 0.74 13.45 0.07 -0.04 0.31

Q5 0.0286 0.0013 0.0894 0.47 13.47 0.05 -0.04 0.32

This table reports the main statistics for �ve independent portfolios of European stocks ranked according to the
p-value of Johansen (1991) test. Portfolios in are constructed using the same number of pairs, and then sorted
by quintiles. Reported statistics are the mean and median excess return (annualized), the (annualized) standard
deviation, skew, kurtosis, the maximum and minimum daily excess return, the (annualized) Sharpe ratio. Results
are obtained using the dynamic threshold method over the out-of-sample period. Data spans from January 1st, 2000
to February 6th, 2017.

Thus, these results show evidence of the performance of the supercointegrated portfolio

in an international context. The existence of a close relationship between the cointegration

degree and the performance of pairs portfolios are detected in other markets.

3.6 Robustness check

This section performs some additional analysis to check the robustness of our results to

di�erent speci�cations of the trading model. The main conclusion of this section is that

results are robust to di�erent speci�cations of the trigger, the design of out-of-sample exercise,

and some microstructure issues as sampling frequencies and transaction costs, among others.

3.6.1 Alternative triggers

The trigger plays a critical role in pairs strategies. In this paper, the trigger consists of

a dynamic threshold computed as the standard deviation using a 1-year rolling-window of

price spreads. Taking advantage of the predictability of variances, we wonder whether a

re�nement of the trigger leads to an improvement of the portfolio performance. To this end,

we forecast the standard deviation of the spread series using a GARCH model Bollerslev

(1986), using this predicted standard deviation as the dynamic threshold value.9

9The most widely used GARCH(1,1) model is applied to our analysis. Let the standard deviation of the spread series to be
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Table 3.6: The baseline dynamic method vs. GARCH (1,1)

Portfolio Mean Median Stdev Skew Kurtosis Max. Min. Sharpe

Panel A: All pairs

Dynamic method 0.0348 0.0000 0.0731 1.12 63.52 0.07 -0.08 0.48

Dynamic method_GARCH 0.0335 0.0000 0.0661 0.98 65.68 0.06 -0.07 0.50

Panel B: Pairs portfolios under GARCH (1, 1)

Q1 0.0546 0.0000 0.0877 1.65 71.63 0.09 -0.10 0.62

Q5 0.0146 0.0000 0.0808 -0.02 20.49 0.06 -0.05 0.18

Top 20 0.0420 0.0000 0.0840 1.51 72.48 0.09 -0.09 0.50

This table reports in Panel A the performance of the original dynamic strategy using 1-year rolling standard deviation
as the threshold, relative to the dynamic trading rule based on estimated volatility from GARCH (1, 1) model. The
selected pairs are divided into quintiles according to their p-value of the Johansen test. Panel B shows results of three
di�erent pairs portfolios with sorted pairs under the GARCH (1, 1)-based dynamic method. The "Top 20" portfolio
includes the 20 pairs with the lowest p-value in each non-overlapping trading period. These results are obtained
between November 24th, 2000 and June 24th, 2016.

The question whether this re�nement enhances the performance of the strategy is an-

swered in Table 6. Results in Panel A shows that both methods deliver similar performance

in terms of Sharpe ratio. Our strategy generates a higher mean return, while the predictabil-

ity ability of GARCH (1, 1) results in a lower return volatility. Results in Panel B are again in

favor of the portfolio including higher cointegrated pairs. Then we move further to compare

the performance between two methods across three independent portfolios. The evidence is

the same as what we �nd above, both methods expressing comparable pro�tability. Figure

6 reveals the superiority of our dynamic method in generating absolute returns, while the

lower return volatility under the e�ect of GARCH (1,1) boosts the Sharpe ratio slightly.

In sum, the sophisticated GARCH (1,1) model seems not able to signi�cantly improve

the trading performance, which may enhance con�dence about the pro�tability of our simple

σt, where σt is a nonnegative process. The GARCH (1,1) model is given by

σ2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1 (3.6)

where α0 > 0, α1 > 0, and β1 > 0; α0 is the constant, α1 is the �rst order of the ARCH term, and β1 is the �rst order of
the GARCH term. The procedure for the out-of-sample analysis is as follows: we estimate a GARCH (1,1) model for each
spread serieas, using a 3-year estimation window of data that includes 756 observations. Therefore, the conditional standard
deviations, σt, for each nonoverlapping trading period, are calculated recursively using the forecasted variance equation. For
each day, there is a particular predicted standard deviation serving as the threshold.
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Figure 3.6: Mean excess returns and Sharpe ratios: Baseline vs. GARCH
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This �gure displays the performance of the baseline dynamic method and the dynamic trading rule based on estimated
volatility from GARCH (1, 1) model, in terms of annualized mean excess return and Sharpe ratio. The selected pairs
are divided into quintiles according to their p-value. The performance results are shown for three di�erent pairs
portfolios, Quintile 1, Quintile 5, and "Top 20". The "Top 20" portfolio includes the 20 pairs with the lowest p-value
in each non-overlapping trading period. These results are from November 24th, 2000 to June 24th, 2016.

trading method.

3.6.2 The design of out-of-sample exercise

A potential critique to our results might rely on the arbitrary choice of some features of the

out-of-sample exercise. For instance, the baseline trading model used throughout the article

employs a 3-year window to estimate the cointegration vector, applying the resulting point

estimates to trade during the subsequent 6-month window. In other words, the parameters of

the model are constant during the 6-month trading period, but the trigger is still conditional

to past volatility.

To improve this procedure, we enhance the dynamics of the strategy by estimating the

OLS coe�cients using a 3-year window which moves forward every day. Then, the model

parameters are updated on a daily basis. We call this strategy as advanced dynamic method.

Table 7 summarizes the excess returns (Panel A) for the advanced dynamic strategy. For
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the ease of explanation, we also introduce in Panel A the baseline dynamic strategy which

has been shown to be superior. We see that this upgraded method achieves a substantial

improvement in the excess return by 25 percent, increasing from 3.48% to 4.36% per annum.

Also importantly, the boost of return is not at the expense of a dramatic rise of volatility,

only upward by 13 percent. The Sharpe ratio of the advanced dynamic strategy is 0.53

and accordingly gets enhanced. Panel B in Table 7 explores the performance of di�erent

pairs portfolios under the advanced dynamic method. We sort pairs in ascending order

according to their p-value from Johansen (1991) test, and partition them in quintiles like in

the previous section to form independent portfolios of equal size. Panel B shows that, the

Q1 portfolio, with higher cointegrated pairs, yields the best performance among the three

portfolios, o�ering an average excess return of 6.04% and the Sharpe ratio up to 0.66. The

dominance of Q1 over Q5, including the least cointegrated pairs, is apparent given about

two times increment in mean return and Sharpe ratio. This evidence is consistent with our

previous results about level of cointegration and strategy performance. We also follow the

literature to form a portfolio of the top 20 pairs. It is observed that the "Top 20" portfolio

provides a similar performance as the Q1, which in turn supports the positive role of p-value

in strategy performance.

Figure 7 further compares the mean excess return and Sharpe ratio at di�erent levels

of cointegration for the advanced (blue bars) and baseline (green bars) dynamic methods,

respectively. We clearly observe the improvement incurred from the advanced strategy in

both criteria, at least maintaining a high performance. Some insights are as follows. The

Sharpe ratio of Q1 achieves a moderate increase by 10.0%. The improvement is more evident

for the Q5 and the "Top 20" portfolios. In speci�c, the mean return and Sharpe ratio of

the "Top 20" portfolio grows from 4.28% to 5.18%, and from 0.47 to 0.60.10 This suggests

a strong e�ect of the advanced method on the top ranking pairs. Figure 8 depicts the

cumulative returns earned from investment on portfolios under two dynamic strategies. The
10The "Top 20" portfolio under the baseline dynamic method achieves the annualized mean return of 4.28%, the volatility of

9.17%, and the Sharpe ratio of 0.47.



Chapter 3. Supercointegrated 82

Table 3.7: The baseline dynamic method vs. the advanced method

Portfolio Mean Median Stdev Skew Kurtosis Max. Min. Sharpe

Panel A: All pairs

Dynamic method_Adv 0.0436 0.0000 0.0827 2.88 69.98 0.10 -0.05 0.53

Dynamic method 0.0348 0.0000 0.0731 1.12 63.52 0.07 -0.08 0.48

Panel B: Pairs portfolios under the advanced dynamic method

Q1 0.0604 0.0000 0.0921 1.72 44.96 0.10 -0.07 0.66

Q5 0.0318 0.0000 0.0971 0.03 96.52 0.12 -0.11 0.33

Top 20 0.0518 0.0000 0.0868 2.97 75.56 0.10 -0.05 0.60

This table reports in Panel A the performance of the advanced and baseline dynamic threshold methods applied to
pairs strategies. The advanced dynamic pairs strategy refers to a threshold method of rolling standard deviations
relative to dynamic price spreads based on rolling OLS estimates. The selected pairs are divided into quintiles
according to their p-value of the Johansen test. Panel B shows results of three di�erent pairs portfolios with sorted
pairs under the advanced dynamic method. The "Top 20" portfolio includes the 20 pairs with the lowest p-value in
each non-overlapping trading period. These results are obtained between November 24th, 2000 and June 24th, 2016.

cumulative returns are 0.70 for the advanced dynamic method with all pairs. While Q1

generates the highest cumulative return of about 0.97, the relevant portfolio "Top 20" also

o�ers a decent outcome of 0.84.

We conclude from this analysis that the advanced dynamic strategy leads to a signi�cant

improvement in the out-of-sample performance as a consequence of the introduction of rolling

estimates for all relevant parameters in the trading process.

3.6.3 Out-of-sample analysis using open prices

A common concern about the performance of pairs portfolio strategies is that its implemen-

tation is not realistic: closing prices are used for liquidating trading positions, and some

risks related to the strategy are, for instance, close positions with next day prices, used to

be ignored.

To examine the impact of this question in our strategy, we explore the out-of-sample

performance using daily open prices for trades. This new dataset is applied to the dynamic
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Figure 3.7: Mean excess returns and Sharpe ratios: Baseline vs. Advanced method
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This �gure displays the performance of the advanced and baseline dynamic threshold methods, in terms of annualized
mean excess return and Sharpe ratio. The advanced dynamic pairs strategy refers to a threshold method of rolling
standard deviations relative to dynamic price spreads based on rolling OLS estimates. The selected pairs are divided
into quintiles according to their p-value. The performance results are shown for three di�erent pairs portfolios,
Quintile 1, Quintile 5, and "Top 20". The "Top 20" portfolio includes the 20 pairs with the lowest p-value in each
non-overlapping trading period. These results are from November 24th, 2000 to June 24th, 2016.

Figure 3.8: Cumulative returns: Baseline vs. Advanced method

24/11/00 18/10/04 09/09/08 02/08/12 24/06/16
−0.2

0

0.2

0.4

0.6

0.8

C
um

ul
at

iv
e 

re
tu

rn
s

 

 
All pairs_Advanced
All pairs

24/11/00 18/10/04 09/09/08 02/08/12 24/06/16
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

C
um

ul
at

iv
e 

re
tu

rn
s

 

 
Quintile 1_Advanced
Quintile 1

24/11/00 18/10/04 09/09/08 02/08/12 24/06/16
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

C
um

ul
at

iv
e 

re
tu

rn
s

 

 
Quintile 5_Advanced
Quintile 5

24/11/00 18/10/04 09/09/08 02/08/12 24/06/16
0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e 

re
tu

rn
s

 

 
Top 20_Advanced
Top 20

This �gure describes the cumulative returns of four di�erent pairs portfolios. The graph in top left corner refers to the
portfolio including all selected pairs, while the rest of graphs represents portfolios including a set of pairs which are
sorted. These results are obtained from the advanced and baseline dynamic threshold methods between November
24th, 2000 and June 24th, 2016.
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Table 3.8: The performance of pairs portfolios using open prices

Portfolio Mean Median Stdev Skew Kurtosis Max. Min. Sharpe

Panel A: All pairs

Dynamic method 0.0312 0.0000 0.0706 1.98 44.29 0.06 -0.06 0.44

Constant method 0.0268 0.0000 0.0695 1.97 45.14 0.06 -0.06 0.38

Panel B: Pairs portfolios under the dynamic method

Q1 0.0619 0.0000 0.1024 2.32 35.04 0.10 -0.07 0.60

Q5 0.0223 0.0000 0.0867 0.51 14.65 0.05 -0.04 0.26

Top 20 0.0371 0.0000 0.0876 2.07 45.28 0.08 -0.07 0.42

This table reports in Panel A the performance of dynamic and constant threshold methods applied to pairs strategies
using open prices. The selected pairs are divided into quintiles according to their p-value of the Johansen test. Panel
B shows results of three di�erent pairs portfolios with sorted pairs. The "Top 20" portfolio includes the 20 pairs with
the lowest p-value in each non-overlapping trading period. These results are obtained between November 24th, 2000
and June 24th, 2016.

and constant methods.11 Table 8 summarizes the results obtained under open prices. As

shown in Panel A, both pairs strategies experience a slight drop in the average excess return

compared to closing prices. Although this decline drags down the performance of Sharpe ratio

for the dynamic method, its outperformance maintains as we have shown. Panel B of Table

8 exhibits the performance of sorted portfolios by cointegration degree. The �rst quintile

of cointegrated pairs, Quintile 1, provides almost the same outcomes in the mean return

and Sharpe ratio, as documented under the usage of closing prices. Again, the superiority

of Quintile 1 is obvious to the rest portfolios. In this context, the positive association

holds between the degree of performance and the closeness of paired equities measured by

cointegration.

In summary, the main conclusions about pairs strategy with closing prices also extend to

the usage of open prices.

3.6.4 Performance analysis at di�erent frequencies

Table 9 summarizes the excess return distribution of two particular trading rules in Panel
11The prior literature commonly uses a constant threshold as the trading trigger; see, among others Gatev et al. (2006) and

Do and Fa� (2010). This constant threshold uses to be the unconditional standard deviation from historical spreads, and it
keeps constant across the entire trading period.
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Table 3.9: The performance of pairs portfolios at di�erent frequencies

Portfolio Mean Median Stdev Skew Kurtosis Max. Min. Sharpe

Panel A: Daily data, 6-month dynamic threshold

Dynamic method 0.0332 0.0000 0.0748 1.12 63.84 0.07 -0.08 0.44

Constant method 0.0279 0.0000 0.0734 1.08 72.85 0.07 -0.08 0.38

Panel B: Weekly data, 1-year dynamic threshold

Dynamic method 0.0125 0.0000 0.0899 4.03 125.17 0.12 -0.14 0.14

Constant method 0.0079 0.0000 0.0915 3.99 123.53 0.12 -0.14 0.09

This table reports the performance of dynamic and constant threshold methods. Pairs trading with daily prices using
6-month dynamic threshold are present in Panel A, while Panel B shows results of both pairs strategies obtained
under the use of weekly price data. These results are obtained from November 24th, 2000 to June 24th, 2016.

A and B, respectively. We see from Panel A that pairs trading triggered by the 6-month

dynamic threshold performs well persistently, although getting a little less impressive, com-

pared to the baseline results in Panel B of Table 1. Shortening the interval in determining a

dynamic threshold doesn't bring about substantial improvement out of sample, may unveiling

the usage of 1-year dynamic threshold is appropriate.

Then we look at the performance induced from weekly prices, the low-frequency data, in

Panel B. We observe a substantial decline of mean return for both pairs strategies, dropping

from 3.48% to 1.25% and from 2.79% to 0.79%. The downward pressure in performance is

also fueled by an increase of volatility. The accompanying deterioration is unavoidable in the

Sharpe ratio. This unfavorable result is to some extent within the expectation. The use of

weekly prices de�nitely lowers the trading frequency such that much of trading opportunities

cannot be detected. This would be a severe strike for pairs trading strategies dependent on

a dynamic trigger to search for trading possibilities, in contrast to a buy-and-hold strategy.

Low-frequency trading also leads to the rise of volatility since portfolio positions cannot be

adjusted in a short time. This is supported by Figure 9 showing that cumulative returns have

experienced a deep fall and bottomed in March 2009. This drop coincides with the market

collapse during the �nancial crisis since 2008. A possible explanation is that a pair of assets
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Figure 3.9: Cumulative excess returns of pairs portfolios using weekly prices
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This �gure displays the cumulative excess returns for the dynamic (blue line) and the constant (green line) threshold
methods using weekly price data over the entire out-of-sample period.

moving along with the market requires immediate position adjustment but not allowed due

to the frequency of data.

The above �ndings suggest that our dynamic pairs strategy works well as before, under

the dynamic threshold conditional on a shorter interval. It is also worth emphasizing that

the low-frequency data is not �t to pairs trading strategies.

3.6.5 Transaction costs

Previous analysis ignores transaction costs. This cost e�ect is the common concern on

trading strategies. Pairs trading is expected to be triggered more frequently under the

dynamic method than the constant one. Not only may a higher frequency on trading lead to

larger returns but also transaction costs. To explore this issue, we evaluate the cost impact

on trading pro�ts following the procedure adopted in Gatev et al. (2006).

Basically, Gatev et al. (2006) compares trading pro�ts of two trading rules, that is,

open/close a position on the day of divergence/convergence versus open/close a position

one day after divergence/convergence. The decrease in the excess return indicates an esti-
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mate of transaction costs incurred from trading activities. This estimation stems from the

following logic. Assume the extreme case where, at opening a position, the winner trades at

ask price and the loser trades at bid price. If next day prices have an identical probability

of being at bid or ask, then postponing trades by one day will lower the excess returns by

one-half of the sum of the bid-ask spreads of both assets. If at liquidating a position, the

price of the winner is bid price and the loser is ask price, the returns will be reduced again

by half of the sum of the bid-ask spreads of both assets due to one day delay of trading. In

this way we estimate the transaction costs.

Table 10 exhibits the out-of-sample returns in two scenarios in Panels A and B, no waiting

versus one-day delay.12 Comparing these results, we see that the mean excess return falls

from 5.09% to 3.48% for the dynamic method, whereas from 4.36% to 2.79% for the constant

method. The di�erence in the return implies an annualized transaction cost of 1.61% for the

dynamic method and 1.57% for the constant method. Then we assess if the strategy returns

survive in the presence of transaction costs. If the prices, when delaying trades by one day,

used to calculate the mean return of 3.48% (Panel B) have the identical probability of being

at bid or ask, we have to adjust these returns to re�ect that in practice we long at the ask

and sell at the bid prices. To do so, we subtract trading costs of 1.61% from 3.48%, for the

dynamic method, to get an estimate of returns net of transaction costs. Clearly the returns

reported in Panel B cover the estimate of transaction costs, which is still higher than the

constant method's return after trading costs.

In addition, we use bid and ask prices to compute bid-ask spreads as an alternative method

measuring transaction costs. Data are collected from WRDS. Because we long the loser and

short the winner asset, transaction costs will reduce returns by one-half of the sum of the

bid-ask spreads on both assets every time there is a change in position in the pair. Panel C

in Table 10 reveals that, after accounting for transaction costs, the average return goes down

from 3.48% to 1.93% and from 2.79% to 1.53%, for two respective methods. The return
12Note that the rest of the paper reports results of pairs strategies that delay trading activities by one day.
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Table 3.10: The performance of pairs portfolios considering transaction costs

Portfolio Mean Median Stdev Skew Kurtosis Max. Min. Sharpe

Panel A: Trade on day of trigger

Dynamic method 0.0509 0.0000 0.0753 1.64 65.39 0.07 -0.08 0.68

Constant method 0.0436 0.0000 0.0748 1.63 75.70 0.07 -0.08 0.58

Panel B: Trade one day after trigger

Dynamic method 0.0348 0.0000 0.0731 1.12 63.52 0.07 -0.08 0.48

Constant method 0.0279 0.0000 0.0734 1.08 72.85 0.07 -0.08 0.38

Panel C: Trade one day after trigger, net of bid-ask spreads

Dynamic method 0.0193 0.0000 0.0724 1.13 67.58 0.07 -0.08 0.27

Constant method 0.0153 0.0000 0.0722 1.12 79.55 0.07 -0.08 0.21

This table reports the performance of dynamic and constant threshold methods. We trade according to the rule that
positions are opened at the end of the day that the threshold criteria is triggered (Panel A). The results in Panel B
correspond to a trading rule that delays the opening of positions by one day. Panel C reports results obtained by
subtracting returns in Panel B by one-half of the sum of the bid-ask spreads computed with real data, on a pair of
assets. These results are from November 24th, 2000 to June 24th, 2016.

gap is thus the transaction cost embedded in the trading activities, shown to be 1.55% and

1.26% per annum under the dynamic and constant methods. These recorded costs are close

to the ones estimated above. This alternative analysis provides evidence supporting again

the survival of pairs strategies after adjusting for trading costs.

Therefore, transaction costs would not be a major factor explaining the di�erences in

strategy performance documented.

3.7 Conclusion

This paper examines how temporary deviations between two assets sharing cointegration

relation can be exploited using pairs trading strategy. We concentrate on the supercointe-

grated portfolio that is established by pairs at 1% con�dence level of Johansen (1991) test.

The out-of-sample analysis shows the superiority of this high-quality group of pairs relative

to the benchmark market index, in terms of Sharpe ratio from a portfolio perspective. We

also �nd a positive relationship between the performance of pairs portfolio and the level of
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cointegration among pairs. It means that the performance of pairs portfolio improves in a

monotonic pattern as the cointegration relationship gets closer. These evidence are also doc-

umented in an international context, by analyzing listed companies in the European stock

market. With respect to the risk pro�le, we �nd a close connection of the time-varying risk of

pairs strategy to aggregate market volatility, which are shown to be persistent. In addition,

a positive risk-return relationship of the strategy is also found.
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Appendix A

A Theoretical Supply and Demand

Model for Pairs Trading Dynamics

Assume that a trader has identi�ed two �nancial instruments whose prices yt and xt are

cointegrated. The underlying long term equilibrium between both markets can be speci�ed

as:

yt = γ0 + γ1xt + zt (A.1)

This implies that the value of asset yt can be replicated by a portfolio using asset xt.

Portfolio replication will be established on the basis of price leadership. zt represents the

stationary arbitrage opportunities in two cointegrated markets arising from market imperfec-

tions. A trader exploits temporary mispricings from equilibrium by pursuing pairs trading

strategies that short sell the outperforming asset and buy the underperformer. We con-

sider now the aggregate market demand function for all agents who perform pairs trading

strategies taking simultaneous positions in yt and xt in period t. This is represented by:

H ((γ1xt + γ0)− yt) , H � 0

= H (zt) , H � 0
(A.2)
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where H is the elasticity of demand for pairs trading strategies. It increases when trans-

action costs are negligible, and other market imperfections decrease as vehicles for cross-

market trading improve. In the limit, markets become perfectly integrated and the elasticity

H tends to in�nity. When transaction costs are signi�cant and there are market restrictions

that impede inter-market trading, the elasticity of demand for pairs strategies is �nite.

We assume that there are Ny agents in the market for asset yt and Nx agents in the

market for asset xt. These investors will take positions in asset yt and asset xt as well as

pursue pairs trading in the two markets:

Let Qi,t be the number of shares owned by the ith participant in period t and Bi,t the bid

price at which that agent is willing to hold quantity Qi,t. Then the demand function of the

ith agent in the market for stock yt in period t is

Qi,t − A (yt −Bi,t) (A.3)

with i = 1, ..., Ny where A � 0, is the demand elasticity, assumed to be the same for all

market agents.

The demand function for agent j in the market for stock xt is

Qj,t − A (xt −Bj,t) , A � 0, j = 1, ..., Nx (A.4)

The market for stock yt will clear at the value of yt that solves,

Ny∑
i=1

Qi,t =

Ny∑
i=1

(Qi,t − A (yt −Bi,t)) +H ((γ1xt + γ0)− yt) (A.5)

with H � 0.

The market for stock xt will clear at the value of xt such that:

Nx∑
j=1

Qj,t =
Nx∑
j=1

(Qj,t − A (xt −Bj,t)) +H ((γ1xt + γ0)− yt) (A.6)
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Solving Equations (A.5) and (A.6) for yt and xt as a function of the mean bid price set by

market agents in yt
(
By
t = N−1

y

∑Ny

i=1 Bi,t

)
and the mean bid price

(
Bx
t = N−1

x

∑Nx

j=1Bj,t

)
for market agents in xt, we obtain:

yt =
(ANx+Hγ1)NyB

y
t +HNxγ1Bx

t +HNxγ0
(H+ANy)Nx+HNyγ1

xt =
HNyB

y
t +(ANy+H)NxBx

t −HNyγ0
(H+ANy)Nx+HNyγ1

(A.7)

In what follows we derive the dynamic price relationships. This requires characterizing

the model in Equation (A.7) with a description of the evolution of bid prices. It is assumed

that immediately after the market clearing period t−1 the ith agent in yt was willing to hold

a position of Qi,t at a price yt−1. Following FFG, this implies that yt−1 was his bid price

after that clearing. We assume that this bid price changes to Bi,t according to the equation

Bi,t = yt−1 + et + wi,t

Bj,t = xt−1 + et + wj,t

(A.8)

cov (et, wi,t) = 0,∀i

cov (wi,t, wj,t) = 0,∀i 6= j

with i = 1, ..., Ny and j = 1, ..., Nx. Where the vector
(
et, wi,t, wj,t

)
is vector white

noise with �nite variance.

The price change Bi,t − yt−1 re�ects the arrival of new information between period t− 1

and period t which changes the price at which the ith participant is willing to hold a position

of Qi,t in the market yt. This price change has a component common to all market agents

(et) and a component idiosyncratic to the ith agent (wi,t).

The Equations in (A.8) imply that the mean bid price in each market in period t will be

By
t = yt−1 + et + wyt

Bx
t = xt−1 + et + wxt

(A.9)
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where wyt =
∑Ny

i=1 w
y
i,t

Ny
and wxt =

∑Nx
j=1 w

x
j,t

Nx
. Substituting expressions (A.9) into (A.7) yields

the following vector model:

 yt

xt

 =
Hγ0

d

 Nx

−Ny

+M

 yt−1

xt−1

+

 uyt

uxt

 (A.10)

where

 uyt

uxt

 = M

 et + wyt

et + wxt

 (A.11)

M =
1

d

 Ny (γ1H + ANx) γ1HNx

HNy (H + ANy)Nx

 (A.12)

And

d = (H + ANy)Nx + γ1HNy (A.13)

We next convert Equation (A.10) into a Vector Error Correction Model (VECM) by sub-

tracting (yt−1, xt−1)´ from both sides, with

 ∆yt

∆xt

 =
Hγ0

d

 Nx

−Ny

+ (M − I)

 yt−1

xt−1

+

 uyt

uxt

 (A.14)

M − I =
1

d

 −HNx γ1HNx

HNy −HNyγ1

 (A.15)

Rearranging terms,

 ∆yt

∆xt

 =
H

d

 −Nx

Ny

( 1 −γ1 −γ0

)


yt−1

xt−1

1

+

 uyt

uxt

 (A.16)



Appendix B

Optimal Portfolio Holdings in

Continuous Time

Suppose the portfolio consists of two risky assets and a risk-free asset. We denote ϕ1 and

ϕ2, as the number of shares held respectively by the investor in the risky assets yt and xt at

time t, while the number of the risk-free asset is given by ϕ3. Let Πt be the portfolio value,

represented by:

Πt = ϕ1yt + ϕ2xt + ϕ3Bt (B.1)

Portfolio dynamics are therefore given by:

dΠt = ϕ1dyt + ϕ2dxt + ϕ3dBt

= [rΠt + ϕ1yt(µy − r + λ1zt) + ϕ2xt(µx − r − λ2zt)] dt+ ϕ1σyytdWy + ϕ2σxxtdWx

(B.2)

We suppose that the investor maximizes the expected portfolio value. Then the value func-

tion that solves this maximization problem, V (t,Π, y, x), is de�ned as:

V (t,Π, y, x) = max
ϕ1,ϕ2

Et [ΠT ]

where t ∈ [0, T ]. By Ito's Lemma, we get:
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dV = VΠdΠ+Vydy+Vxdx+
1

2
VΠΠdΠ2+

1

2
Vyydy

2+
1

2
Vxxdx

2+VΠydΠdy+VΠxdΠdx+Vyxdydx−Vtdt

Suppose correlation exists between two Brownian motions, which is given by

E[dWydWx] = ρxydt where ρxy ∈ (−1, 1) (B.3)

The Hamilton�Jacobi�Bellman (HJB) equation for the problem, Et[dV (·)] = A, therefore

becomes:

A = max
ϕ1,ϕ2

VΠ[rΠt + ϕ1y(µy − r + λ1zt) + ϕ2x(µx − r − λ2zt)]

+Vy[µyy + λ1yzt] + Vx[µxx− λ2xzt]

+
1

2
VΠΠ(ϕ2

1σ
2
yy

2 + ϕ2
2σ

2
xx

2 + 2ϕ1ϕ2σyyσxxρxy)

+
1

2
Vyyσ

2
yy

2 +
1

2
Vxxσ

2
xx

2 + VΠy(ϕ1σ
2
yy

2 + ϕ2σyyσxxρxy)

+VΠx(ϕ2σ
2
xx

2 + ϕ1σyyσxxρxy) + Vyxσyyσxxρxy − rBVτ

The �rst-order conditions for ϕ1 and ϕ2 are:

∂A

∂ϕ1

= VΠ[y(µy − r + λ1zt)] + VΠΠ(ϕ1σ
2
yy

2 + ϕ2σyyσxxρxy) + VΠyσ
2
yy

2 + VΠxσyyσxxρxy = 0

∂A

∂ϕ2

= VΠ[x(µx − r − λ2zt)] + VΠΠ(ϕ2σ
2
xx

2 + ϕ1σyyσxxρxy) + VΠyσyyσxxρxy + VΠxσ
2
xx

2 = 0

Solving the two equations above, we get the optimal portfolio holdings ϕ∗1 and ϕ
∗
2, under the
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condition that correlation is imposed:

ϕ∗1 = − VΠ

VΠΠ

· 1

σyy(1− ρ2
xy)
· [ (µy − r) + λ1zt

σy
− (µx − r)− λ2zt

σx
ρxy]−

VΠy

VΠΠ

= − VΠ

VΠΠ

· θy − θxρxy
σyy(1− ρ2

xy)
− VΠy

VΠΠ

(B.4)

ϕ∗2 = − VΠ

VΠΠ

· 1

σxx(1− ρ2
xy)
· [ (µx − r)− λ2zt

σx
− (µy − r) + λ1zt

σy
ρxy]−

VΠx

VΠΠ

= − VΠ

VΠΠ

· θx − θyρxy
σxx(1− ρ2

xy)
− VΠx

VΠΠ

(B.5)

where θy = (µy−r)+λ1zt
σy

and θx = (µx−r)−λ2zt
σx

are the excess returns for yt and xt, respectively.



Appendix C

The Martingale Argument

We prove that the portfolio Πt made of two cointegrated equities and a risk-free bond, is a

martingale.

As de�ned above, the dynamic of portfolio value can be written as:

dΠt = ϕ1tdyt + ϕ2tdxt + ϕ3tdB

so that

d(e−rtΠt) = ϕ1td(e−rtyt) + ϕ2td(e−rtxt) + ϕ3td(e−rtB)

= ϕ1te
−rtσyyt(θ

p
y,tdt+ dWy,t) + ϕ2te

−rtσxxt(θ
p
x,tdt+ dWx,t)

According to the probability measure Q de�ned under the Girsanov theorem,

∼
Wt = Wt +

∫ t

0

θpudu (C.1)

therefore,

d(e−rtΠt) = ϕ1te
−rtσyytd

∼
Wy,t + ϕ2te

−rtσxxtd
∼
Wx,t (C.2)

We call Q the risk-neutral measure because it renders the discounted stock price e−rtΠt

into a martingale. Therefore,

e−rtΠt = ϕ1t(y0 +

∫ t

0

e−rtσyyud
∼

Wy,u) + ϕ2t(x0 +

∫ t

0

e−rtσxxud
∼

Wx,u)

where under Q the process
∫ t

0
e−rtσyyud

∼
Wy,u and

∫ t
0
e−rtσxxud

∼
Wx,u are a martingale.

We substitute dWy,t = −θpy,tdt + d
∼
Wy,t back to dyt and dWx,t = −θpx,tdt + d

∼
Wx,t back to

dxt, and thus obtain:
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dΠt = rΠtdt+ ϕ1tσyytd
∼
Wy,t + ϕ2tσxxtd

∼
Wx,t (C.3)

Under this speci�cation, the undiscounted portfolio value Πt has mean rate of return

equal to the interest rate under the measure Q.
It is clearly underlined that the investor has two asset categories: (1) a risk-free bond

with rate of return r, and (2) two risky assets with mean rate of return r under Q. The

mean rate of return for the formed portfolio will be the risk-free rate r under Q, and thus

the discounted value of the portfolio, e−rtΠt, will be a martingale. This is true regardless

how investor allocates money to these investment options.



Appendix D

An Option to Exchange One Asset for

Another

The payo� function for this option at maturity T is ψ(yT , xT ) = max(yT − xT , 0), so the

spread option can be de�ned as

C(y, x, t) = e=r(T=t)EQ [Max(yT − xT , 0)|yt = y, xt = x]

= EQ
[
xt(

yt
xt
− 1)+|yt = y, xt = x

]
= EQ [xtS(ζ, t) | yt = y, xt = x] (D.1)

where ζ = yt
xt
.

Then it follows

∂C

∂y
= xt

∂S

∂ζ

1

xt
=
∂S

∂ζ
,
∂2C

∂y2
=
∂2S

∂ζ2

1

xt

∂C

∂x
= S + xt

∂S

∂ζ

(
− yt
x2
t

)
= (S − ζ ∂S

∂ζ
)

∂2C

∂x2
=

(
∂S

∂ζ

(
− yt
x2
t

)
+

(
yt
x2
t

)
∂S

∂ζ
− ζ ∂

2S

∂ζ2

(
− yt
x2
t

))
=

1

xt
ζ2∂

2S

∂ζ2

∂2C

∂y∂x
= − yt

x2
t

∂2S

∂ζ2
,
∂C

∂t
= xt

∂S

∂t

The partial di�erential equation (2.16) becomes
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∂S

∂t
+

1

2
σ2
zζ

2∂
2S

∂ζ2
= 0 (D.2)

This equation is just the Black-Scholes equation for a single asset with r = 0 and with a

volatility of σz. Note that

S(ζ, T ) = (ζ − 1)+ (D.3)

which follows that

C(yt, xt, t) = xt [ζΦ(d1)− Φ(d2)] = ytΦ(d1)− xtΦ(d2) (D.4)

where

d1 =
ln( yt

xt
) + 1

2
σ2
z(T − t)

σz
√
T − t

, d2 = d1 − σz
√
T − t

σz =
√
σ2
y − 2ρσyσx + σ2

x

This is the Margrabe (1978)´s result.



Appendix E

Maximum Likelihood Estimation of

Continuous VECM

As we have de�ned, the prices of yt and xt follow the dynamic process:

dyt
yt

= µydt+ λ1ztdt+ σydWy,t (E.1)

dxt
xt

= µxdt− λ2ztdt+ σxdWx,t (E.2)

Let Yt = lnyt and Xt = lnxt. We de�ne the spread as the di�erence between the log of the

two asset prices, zt = ln yt − lnxt = Yt −Xt. Ito's lemma implies that

dYt =

(
µy + λ1zt −

1

2
σ2
y

)
dt+ σydWy,t (E.3)

dXt =

(
µx − λ2zt −

1

2
σ2
x

)
dt+ σxdWy,t (E.4)

If observations are spaced ∆t apart, the Euler approximation of (E.3) and (E.4) are given

by

Y (ti)− Y (ti−1) =

(
µy + λ1(Y (ti−1)−X(ti−1))− 1

2
σ2
y

)
∆t+ σy

√
∆tZy (E.5)
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X(ti)−X(ti−1) =

(
µx − λ2(Y (ti−1)−X(ti−1))− 1

2
σ2
x

)
∆t+ σx

√
∆tZx (E.6)

where Zy and Zx are two standard normal random variables with correlation ρxy.

Thus, the transition density to (Y (ti), X(ti)) = (ln y(ti), lnx(ti)) given previous observations

(Y (ti−1), X(ti−1)) is written as

f (Y (ti), X(ti) | Y (ti−1), X(ti−1); µy, µx, λ1, λ2, σy, σx, ρxy)

= f (Y (ti), X(ti) | Y (ti−1), X(ti−1); Θ)

= | det(Ji) | ·φ(Zy, Zx; Σ) (E.7)

where

Zy =
Y (ti)− Y (ti−1)−

(
µy + λ1(Y (ti−1)−X(ti−1))− 1

2
σ2
y

)
∆t

σy
√

∆t
∼ N(0, 1) (E.8)

Zx =
X(ti)−X(ti−1)−

(
µx − λ2(Y (ti−1)−X(ti−1))− 1

2
σ2
x

)
∆t

σx
√

∆t
∼ N(0, 1) (E.9)

Σ =

 1 ρxy

ρxy 1

 (E.10)

φ(Zy, Zx; Σ) is the probability density function of bivariate normal distribution with zero

mean and covariance matrix Σ, and det(J) is the Jacobian determinant.

Next we calculate the Jacobian,

det(J) = det

 ∂Zy

∂Y (ti)

∂Zy

∂X(ti)

∂Zx

∂Y (ti)
∂Zx

∂X(ti)

 =
1

σyσx∆t
(E.11)

The joint density of Zy and Zx is given by

φ(Zy, Zx; Σ) =
1

2π
(det Σ)−1/2 exp

−1

2
(Zy, Zx) Σ−1

 Zy

Zx
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where

det Σ = 1− ρ2
xy, Σ−1 = 1

1−ρ2xy

 1 −ρxy

−ρxy 1

.
Therefore we obtain

φ(Zy, Zx; Σ) =
1

2π
√

1− ρ2
xy

exp

[
− 1

2(1− ρ2
xy)

(
Z2
y + Z2

x − 2ρxyZyZx
)]

(E.12)

Then put the expressions (E.11) and (E.12) into the transition density (E.7), we have

f (Y (ti), X(ti) | Y (ti−1), X(ti−1); Θ) =
1

2πσyσx∆t
√

1− ρ2
xy

exp

[
− 1

2(1− ρ2
xy)

(
Z2
y + Z2

x − 2ρxyZyZx
)]

(E.13)

Therefore, the parameters can be estimated by using the method of maximum likelihood

Θ∗ = argmax

{
n∏
i=1

f (Y (ti), X(ti) | Y (ti−1), X(ti−1); Θ)

}
(E.14)

where the joint likelihood is

L(Θ) =
n∏
i=1

f (Y (ti), X(ti) | Y (ti−1), X(ti−1); Θ)

= (2πσyσx∆t)
−n · (1− ρ2

xy)
−n/2 · exp

[
− 1

2(1− ρ2
xy)

n∑
i=1

(
Z2
y + Z2

x − 2ρxyZyZx
)]

In this case, the natural logarithm of the likelihood function is

lnL(Θ) = −n ln(2πσyσx∆t)−
n

2
ln(1−ρ2

xy)−
1

2(1− ρ2
xy)

n∑
i=1

(
Z2
y + Z2

x − 2ρxyZyZx
)
(E.15)
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therefore we get

µ̂y =
1

n

n∑
i=1

(
Y (ti)− Y (ti−1)

∆t
− λ̂1(Y (ti−1)−X(ti−1)) +

1

2
σ̂2
y

)
(E.16)

µ̂x =
1

n

n∑
i=1

(
X(ti)−X(ti−1)

∆t
+ λ̂2(Y (ti−1)−X(ti−1)) +

1

2
σ̂2
x

)
(E.17)

λ̂1 =
2
∑n

i=1

(
A(ti)− 1

n

∑n
i=1A(ti)

) (
z(ti−1)− 1

n

∑n
i=1 z(ti−1)

)
∆t ·

∑n
i=1

(
z(ti−1)− 1

n

∑n
i=1 z(ti−1)

)2 (E.18)

λ̂2 =
2
∑n

i=1

(
B(ti)− 1

n

∑n
i=1B(ti)

) (
z(ti−1)− 1

n

∑n
i=1 z(ti−1)

)
∆t ·

∑n
i=1

(
z(ti−1)− 1

n

∑n
i=1 z(ti−1)

)2 (E.19)

σ̂y =

√√√√ 1

n∆t
·

n∑
i=1

((
A(ti)−

1

n

n∑
i=1

A(ti)

)
− λ̂1∆t

(
z(ti−1)− 1

n

n∑
i=1

z(ti−1)

))2

(E.20)

σ̂x =

√√√√ 1

n∆t
·

n∑
i=1

((
B(ti)−

1

n

n∑
i=1

B(ti)

)
− λ̂2∆t

(
z(ti−1)− 1

n

n∑
i=1

z(ti−1)

))2

(E.21)

ρ̂xy =
1

n

n∑
i=1

(ZyZx) (E.22)

where A(ti) = Y (ti)− Y (ti−1), B(ti) = X(ti)−X(ti−1), z(ti−1) = Y (ti−1)−X(ti−1).
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