
1 
 

 
 

 

TRABAJO FIN DE GRADO 

 

 

 

 

Título: Implementación de un sistema SDN para la 
movilidad en redes OMNIRAN. 

Autor: Darío Juan Cerón Bergantiños 

Titulación: Grado en ingeniería telemática 

Profesor: Antonio de la Oliva Delgado 

Fecha:23/02/2014 



2 
 

 

  



3 
 

SUMMARY 

 

This document details all the information needed to understand and test distributed mobility 
management using the SDN paradigm. 

This project stars by an analysis of the mobility problem in dense networks. Traditionally 
mobility has been managed with hierarchical approaches extending the current mobility 
protocols. But thinking in the future evolution of the network into dense environments some 
scalability problems appear. The traditional centralized elements may not be able to handle all 
the traffic in the network and bottlenecks appear at the Mobility Anchors. Nowadays, the 
problems related to scalability are mostly resolved with hardware upgrades, but in dense 
environments this couldn’t be enough and surely it would be quite expensive. To find a 
solution to this problem the IETF has chartered the Distributed Mobility Management (DMM) 
Group.This project focus on implementing a DMM-based mobility solution designed within the 
EU FP7 CROWD project. 

Once the analysis of the problem ended and the requirements of the theoretical solution were 
defined, we developed all the necessary elements to physically build a distributed network 
using SDN to manage layer 2 and layer 3.The entities of the network are defined by the 
CROWD projectin its related publications[9][10]. These districts were run using an SDN 
implementation called OpenFlow. With all the elements developed we proceed to perform the 
necessary tests in order to evaluate the distributed mobility management as a solution. This 
document explains the full design, execution and validationprocesses. 

Finally all the measurements and statistical data are detailed in order to have an 
approximation of the services that could achieve the developed network. 

 

 

  



4 
 

1. INDEX 
 

 
1. INDEX ..................................................................................................................................... 4 

LIST OF FIGURES ........................................................................................................................ 6 

ANNEX 1: Measurements .......................................................................................................... 6 

LIST OF ACRONYMS ................................................................................................................... 7 

2. INTRODUCTION ......................................................................................................................... 9 

3. MOTIVATIONS ......................................................................................................................... 10 

3.1. DENSE NETWORKS ........................................................................................................... 10 

3.2. SDN ................................................................................................................................... 12 

4. STATE OF THE ART ................................................................................................................... 15 

4.1. MIPv6 ............................................................................................................................... 15 

4.2. PMIPv6 ............................................................................................................................. 16 

4.3. DMM ................................................................................................................................ 18 

4.4. OPENFLOW ....................................................................................................................... 19 

4.4.1. The OpenFlow protocol ............................................................................................. 20 

4.4.2. The switches .............................................................................................................. 20 

4.4.3. Controller .................................................................................................................. 22 

5. EXPERIMENTAL DEVELOPMENTS ............................................................................................ 24 

5.1. SOFTWARE........................................................................................................................ 24 

5.1.1. Controller: Ryu .......................................................................................................... 25 

5.1.2. Pantou OpenFlow implementation for OpenWRT .................................................... 26 

5.2. PROCESS DESIGN .............................................................................................................. 26 

5.2.1. The mobility process ................................................................................................. 29 

5.3. IMPLEMENTATION ........................................................................................................... 37 

5.1.2. Actors ........................................................................................................................ 40 

5.4. HOW TO INSTALL .............................................................................................................. 41 

5.4.1. RYU ............................................................................................................................ 41 

5.4.2. PANTOU ..................................................................................................................... 42 

5.4.3. ADDITIONAL CONFIGURATIONS: ............................................................................... 48 

5.4.4. LAUNCH THE SYSTEM: ............................................................................................... 49 

5.5. SOFTWARE DEVELOPED ................................................................................................... 51 



5 
 

5.5.1. THE LOCAL CONTROLLER ........................................................................................... 51 

5.5.2. THE REGIONAL CONTROLLER: ................................................................................... 56 

6. EXECUTION .............................................................................................................................. 59 

6.1. PERFORMANCE ANALYSIS: ............................................................................................... 59 

6.1. MEASUREMENTS .............................................................................................................. 59 

Attachment ......................................................................................................................... 59 

Intra-district handover ........................................................................................................ 60 

Inter-district handover ........................................................................................................ 61 

Throughput .......................................................................................................................... 62 

7. PROBLEMS ............................................................................................................................... 64 

8. PROJECT PLANNIG ................................................................................................................... 66 

9. CONCLUSIONS AND ASSESSMENT ........................................................................................... 69 

9.1. SKILLS DEVELOPED ........................................................................................................... 69 

10. ANNEX 1: Measurements ...................................................................................................... 70 

11. REFERENCES .......................................................................................................................... 74 

 

  



6 
 

LIST OF FIGURES 
 

Figure 1: MIPv6 Mobility ............................................................................................................. 16 
Figure 2: PMIPv6 scenario ........................................................................................................... 17 
Figure 3: OSI stack Vs. OpenFlow stack ....................................................................................... 19 
Figure 4: OpenFlow message matching values ........................................................................... 21 
Figure 5: OpenFlow Switch Flow operation ................................................................................ 22 
Figure 6: OpenFlow routing and forwarding ............................................................................... 23 
Figure 7: CROWD network .......................................................................................................... 28 
Figure 8: District attachment ...................................................................................................... 30 
Figure 9: District handover .......................................................................................................... 32 
Figure 10: Region attachment ..................................................................................................... 34 
Figure 11: Region handover ........................................................................................................ 36 
Figure 12: Project design - stage 1 .............................................................................................. 37 
Figure 13: Project design - stage 2 .............................................................................................. 38 
Figure 14: Project design - stage 3 .............................................................................................. 39 
Figure 15: CLC OF listener's flow diagram ................................................................................... 53 
Figure 16: CLC UDP listener's flow diagram ................................................................................ 55 
Figure 17: CRC's flow diagram ..................................................................................................... 58 
Figure 18: Attachment measures CDF ......................................................................................... 59 
Figure 19: Intra-district measures CDF ........................................................................................ 60 
Figure 20: Inter-district measures CDF ........................................................................................ 61 
Figure 21: Throughput without IPv6 tunnel CDF ........................................................................ 62 
Figure 22: Throughput with IPv6 tunnel CDF .............................................................................. 63 
Figure 23: Project's Gantt diagram ............................................................................................. 68 
Figure 24: Project’s accounting breakdown ................................................................................ 68 
 

 

ANNEX 1: Measurements 
 

Table 1: Attachment measures ................................................................................................... 70 
Table 2: Intra-district measures .................................................................................................. 71 
Table 3: Inter-district measures .................................................................................................. 72 
Table 4: Network throughput (Mbits/s) ...................................................................................... 73 
  



7 
 

LIST OF ACRONYMS 
 

AAN: Anchor Access Nodes 

ADA: Asymmetric Double Agents 

AP: Access Point 

API: Application Programming Interface 

ATM: Asynchronous Transfer Mode 

BCE: Binding Cache Entry 

BGP: Border Gateway Protocol 

CAM: Content-Addressable Memory 

CLC: CROWD Local Controller 

CN: Correspondent Node 

CoA: Care of Address 

CRC: CROWD Regional Controller 

CROWD:Connectivity management for eneRgy Optimized WirelessDense networks 

DHCP: Dynamic Host Configuration Protocol 

DMM: Distributed Mobility Management 

eNB: Evolved NodeB 

FIB: Forwarding Information Base 

HA: Home Agent 

HoA: Home Address 

ICMPv6: Internet Control Message Protocol Version 6 

IETF: Internet Engineering Task Force 

IPv4: Internet Protocol Version 4 

IPv6: Internet Protocol Version 6 

LLC: Logical Link Control 

LMA: Local Mobility Anchor 

LMD: Local Mobility Domain 



8 
 

LTE: Long Term Evolution 

MAG: Mobile Access Gateway 

MIPv6: Mobile IPv6 

MN: Mobile Node 

ONF:Open Networking Foundation 

OSI: Open System Interconnection 

P2P: Peer to peer 

PBA: Proxy Binding Acknowledge 

PBU: Proxy Binding Update 

PMIPv6: Proxy Mobility Internet Protocol v6 

QoS: Quality of Service 

RA: Router Advertisement 

RIB: Routing Information Base 

RS: Router Solicitation 

SDN: Software Defined Networking 

TCAM: Ternary Content-Addressable Memory 

VAN: Visited Access Nodes 

Wi-Fi: Wireless Fidelity 

 

  



9 
 

2. INTRODUCTION 
 

The main goal of this project is to implement an SDN-based DMM (Distributed Mobility 
Management [8]) approach within the context of the CROWD EU FP7 project[10]. This 
document explores different solutions for the issues resulting of mobility in dense network 
environments. The main idea of the implemented solution is to take an approach to flatten the 
network, swapping the hierarchical approaches used currently in production networks (such as 
MIP or PMIP) and distribute the functionality of its centralized entities. 

This distributed mobility management will be possible through a Software Defined Networking 
(SDN) architecture. To have a global understanding of how works a SDN network, the analysis 
has been separated into two points: The first one is the SDN paradigm, based on the 
separation of control and data planes. The second one is the practical application of that 
theory in the OpenFlow protocol. Once the possibilities given by OpenFlow are studied, we will 
proceed to define the requisites and functionalities for a DMM network in order to study 
various OpenFlow controllers and choose one fitting those requisites. Following the CROWD 
designwe will define new concepts such as the Local Controller, the Regional Controller and 
the network districts for our implementation. The last step is to implement the OpenFlow 
network on affordable devices. First of all we will develop the necessary software to run over 
the OpenFlow controller. This software will manage all the connections and traffic through this 
network (Local Controllers and Regional Controllers). After thiswe will design a small testbed 
implementing the elements mentioned before. It will include allthe necessary entities of a 
CROWD wireless networksuch as Access Points, DMM Gateways, CROWD Regional Controllers 
and CROWD Local Controllers. In this environment a Mobile Node will perform different 
mobility handovers focused on assessing the viability of the DMM solution. 

Finally the full system’s performance will be analyzed to validate it as a solution for mobility in 
dense environments. This analysis will be composedof statistical measures, cost calculations 
and infrastructure analysis. 

 

  



10 
 

3. MOTIVATIONS 
 

As the Internet communications are growing exponentially to provide connection to the also 
growing number of Internet devices, the network has been forced to evolve. This has been 
more evident with the appearance of smartphones, tablets and other devices needing a 
wireless access to the network. This raising number of elements has started to generate 
questions about how the actual network protocols will handle this massive increase of hosts 
and nodes in the network. These speculations have introduced the concept of "Dense 
networks". 

 

3.1. DENSE NETWORKS 
 

Dense networks[8] are the result of the necessity of providing Access to a growing number of 
users (network hosts), which is translated into more traffic and wider physical areas to cover 
and a necessity of faster connections. 

 

As dense networks have high numbers of connections, routing through them requires more 
complexity on routing algorithms and since the connection is wireless some extra issues 
appear.When the number of network nodes increases, it causes more complexity in routing 
through them. As an example: within an scenario of an IPv6 wireless network managed with 
PMIPv6, the local mobility anchor has the function of managing all the new attachments and 
also,handle all the handovers performed in the network. With the huge number of access 
points and mobile nodes of a dense network, all thatmanagement process can become an 
excessive overload to be handled by only one device. 

When wireless connection appeared, a few protocols were standardized to provide the 
wireless access to the networks.Those protocols are based on an anchor point, which provides 
the mobile device with global reachability to the network.  This allows the network to forward 
packets between the MN and its peers even if the MN has moved from its home domain to 
another one. These protocols need extensions to improve handovers in terms of delay. The 
extensions usually involve difficulties on deployment due to the extra-complexity required by 
the new protocols. All of that has leaded to suboptimal choices.In those centralized modes of 
operation, various points of failure have been detected such as security issues (with a 

Dense networks definition: 

The concept of dense network used in this project is associated to the future 
massive-grown networks of the future. So from now, dense network means 
networks that will be bigger than the current ones in a scale of one hundred. That 
means one hundred more nodes, one hundred more access points, one hundred 
more hosts and one hundred more traffic. 

 



11 
 

centralized anchor there is one point where to focus the attacks), routing issues due to the 
network traffic being redirected through the anchor (which usually is not the shortest path). 
And finally the main one:these centralized networks are not scalable at all. The problems of 
handling the traffic of several million users associated to single device managing all their 
connections will become impossible to solvewith current approaches.All these issues get 
critical when the networks turn into dense network. 

In order to face this traffic explosion, the Internet Engineering Task Force IETF1 has started its 
researching of standardizable solutions. One of the groups investigating is the 
[DMM2](Distributed Mobility Management) Group, which has beenstudying the mobility 
problems in centralized architectures since 2012. Their work areaembraces the idea of defining 
DMM schemes compatible with the current IP mobility protocols that can be deployed causing 
a minimum impact. Its definition of a DMM environment is a scenario in which the network-
access, routing and mobility management tasks are distributed between various elements 
substituting the current centralized way. 

One of the keys of the DMM concept is to distribute these functions as closer to the Mobile 
Nodes as possible. There are technologies that already provide mechanisms for distributing 
the binding information such as Peer-to-Peer (P2P). The DMM Group is studying generic 
solutions for mobility management based on the MIPv6[4] and PMIPv6[6] concepts. One of the 
approaches[24] is to split the Anchor points of these protocols into Anchor Access nodes (AAN) 
and Visited Access Nodes (VAN). The AAN maintain the mobility state of the node. The VANs 
tunnel the traffic between them when the node is roaming. This structure distributes the 
Anchor functions between various elements. Another solution is the Asymmetric Double 
Agents (ADA[23]), an extension of MIPv6 that transforms the Home Agent (HA) into a Local 
Mobile Proxy (LMP) and a Correspondent Mobile Proxy (CMP), the first one takes the most 
part of an HA and the second provides route optimization3. 

This solutionhas been developed as an instance of an SDN-driven approach to the network 
design. Despite SDN already having some implementations such as OpenFlow, it still hasn’t 
been introduced in production networks. However it has been proven to work with mobility 
protocols as WiMAX(Wi-Fi and Worldwide Interoperability for Microwave Access[22]) was 
implemented using OpenFlow, and demonstrated its compatibility with handovers. 

Following all these efforts, in this project we have decided to develop the CROWD approach 
for Distributed Mobility Management using SDN. 

 

  

                                                           
1http://www.ietf.org/February 21 2014 
2http://datatracker.ietf.org/wg/dmm/charter/February 21 2014 
3 http://www.ict-crowd.eu/ February 21 2014 



12 
 

3.2. SDN 
 

SDN[1][3] is an acronym for Software Defined Networking. It is an approach to computer 
networking that aims at redefining the networkwith data and control plane separation instead 
of the current architectures.It appeared when the needs of the networks became more and 
more expensive. The SDN proposers started researching when they noticed that network 
device vendors were not meeting their needs, particularly regarding the flexibility in the 
feature development and innovation spaces. Routing devices were getting overpriced due to 
their complex control plane components. At the same time, they saw that a much more 
powerful computer was proportionally cheaper. So they decided to create a network with a 
centralized control plane. That translatedin only one expensive device and much cheaper 
switches. That resulted in SDN. 

This architectural approach optimizes and simplifies network operations by more closely 
binding the interaction among applications and network services and devices.The main tenet is 
to separate control and data plane so the second one can be centralized in one device called 
the "Controller". This element takes all the layer 2 control functionalities so the switches of the 
network can act just like data forwarding elements. This separation is a concept, so it can be 
interpreted at will. This wide spectrum covers from the traditional fully distributed control 
plane to a strictly centralized one. 

A fully distributed architecture means one complete instance of control plane and at least one 
data plane instance per device. It is an architecture approach with high resistance to failures 
because every element is mostly independent from the others. As a conit has convergence 
failures due to the fact that there is one control instance to configure per device. As a result, 
this architecture is non-profitable for horizontal scaling. The current network architectures are 
defined in a fully distributed way as they were built based on the notion of Autonomous 
Systems. 

Semi-centralized are actually the most used architecture on SDN networks. It consists on one 
centralized control entity, and an instance of that control plane on each node. The instances 
and the centralize entity has communication and together conform the control plane of the 
network apart from the data plane which is fully distributed. This is the architecture with more 
ease for horizontal scaling, as it only needs to deploy a device with a control plane instance. 
This is the architecture used by the expanded OpenFlow protocol. 

The strictly centralized architecture is mostly experimental. As it is the canonical approach of 
SDN it has the full control plane centralized on one device. The switches are dumb switching 
devices remotely controlled by the centralized control plane. That implicates only one point of 
failure, which makes the architectureprone to errors in the centralize entity. 

 

To have a more accurate understanding of the implications derivate of the separation of the 
control and data plane, first, the control and data planesfunctions must be defined: 
Traditionally, routing and forwarding process is performed using two cache tables, the RIB and 



13 
 

the FIB. They are not associated to any protocol, they are simply necessary for the routing and 
forwarding process in traditional devices. The Routing Information Base (RIB) is the table 
where the IP routing information is stored. When a routing protocol is running on a device, it 
uses message exchanges to learn new routes and then it adds them to the RIB. It also contains 
directly connected networks and static routes. The device uses this protocol to guess the 
output interface for the traffic received. The other table is the Forwarding Information Base 
(FIB).  It is used to make IP switching based on network prefixes. It contains the next hop for 
each reachable destination network prefix. The process of filling the FIB and distribute the 
forwarding information can take minutes while the device figures about which is the best path 
for each prefix. The control plane can be associated to the routing process; this part is the one 
in charge of deciding the path through a network and is carried out by all the devices forming 
the network. The data plane can be associated to the forwarding process. Its function is to put 
packets from an input interface to an output interface; each device is in charge of its own 
forwarding process. 

The concept of control and data planes separation is not new. In fact, most modern network 
devices have different dedicated resources for their control plane and for their data plane. The 
innovation here is to remove all (or all the possible) control plane from the switching devices 
and to group it at one only element call the controller. The main advantage of this is that the 
controller has full knowledge of the network topology, which simplifies all the routing process 
and removes overload in the network due to state exchange messages. During large 
modifications on the network, the controller just interacts with the control entity of the 
implied devices.But the applications are not limited to this. We can analyze all the areas 
affected on an SDN network. 

Scalability:The service card generation's evolution is slow if we compare it with the evolution 
taken in each processor's generation. So usually the limitation on subscribers, flows or services 
states on a device is imposed by the service card specifications. Usually the ways of solving 
these limitations takes considerable time and high costs. In SDN networks these specifications 
are taken to only one device for the network, so they are much more suitable to adapt and 
scalable cheaper. 

Evolution:Usually the network operators had to follow continuous hardware upgrades on its 
devices to follow the normal evolution of the needs in growing networks. The problem comes 
when the needs on the control plane doesn't grow in parallel with the needs of the data plane. 
When both planes are shared in the same device this upgrade must be in both planes even if 
only one of them needs it. In SDN networks, upgrades on the data plane and control plane can 
be done separately. In dense networks we have an example of a separate upgrade; while the 
data plane remains the same, the control plane needs an evolution in order to serve the 
increasing number of hosts and traffic. 

Complexity: The modifications in the topology of a network affect only to the control plane, 
which is in charge of knowing all the elements of the network. When there is one control plane 
entity in each device the result is a lot of network-state message exchanging. This produces an 
undesired overload in the network due to control messages. When the control plane is 



14 
 

centralized there is only one device that needs to know the network topology and there is no 
need of having a network-state protocol always running. 

As an oppositeofthese advantages, SDN networks obviously have weakness when they are 
compared to distributed control plane architectures. The issues derived of having only one 
network control entity come as that entity becoming a single point of failure. The first point to 
know is that the controller will support a control session with each managed device. As the 
scale of the network increases the traffic destined to that point can become excessive to 
handle, so the device chosen as controller must have strong specifications. The second point is 
that a failure on the controller means a failure on the entire network. The third point is the 
distance between the controller and its managed elements. As the controller must be directly 
connected with any device under its management, geography can be a problem if some link is 
longer than desired and generates delays in the communication with the controller. 

Considering this, the SDN proponents argue that SDN is an alternative to the increasing costs 
of the devices derived from the evolution of the network. The reality is that a fully centralized 
control plane hasn't been proven yet as a true possibility. Instead, a partial centralization of 
the network has demonstrated to be as efficient as distributed networks. Some protocols like 
OpenFlow actually work with partial centralization of the network and havealready been 
successfully deployed.  



15 
 

4. STATE OF THE ART 
 

This section describes the current state of mobility and SDN. It starts with a description of 
MIPv6 (Mobile IPv6) as the first mobility oriented protocol developed, and PMIPv6 (Proxy 
Mobile IPv6) as the MIPv6 evolution that is being used actually. As these protocols have shown 
some issues when applying them to the future networks, the DMM group has been 
researching and proposing solutions to replace them. One of those solutions is the 
development of distributed mobility networks using SDN. One of the existing protocols 
developed under the umbrella of SDN technologies is OpenFlow, which is referred at the end. 

 

4.1. MIPv6 

Mobile IP (MIPv6 - RFC 6275[4][5]) provides the mobile nodes with global reachability and 
session continuitywhile moving among IPv6 networks. That is done by introducing the Home 
Agent (HA), an entity which anchors the permanent IP address used by the MN. That address is 
called Home Address (HoA).When the MN moves to another network and changes its IP, that 
IP is stored in the HA’s Binding Cache Entry (BCE) as the MN’s Care-off Address (CoA). The HA 
now can tunnel to the CoA all the traffic destined to the HoA. From the look of the 
Correspondent Node (CN) which is the MN’s communication peer, the MN is alwaysreachable 
on its HoA and remains outside of all the mobility process. 

The operation of MIPv6 starts when the mobile node attaches to the MIP network (the home 
network). Then the Home Address is assigned to it based on a sub-network prefix on its home 
link. When the node moves to a foreign network, it receives its care-of address (CoA). This 
address is assigned in the foreign network via standard processes such as Stateless Auto-
configuration or DHCP. While the node is in the foreign network, the packets destined to it (to 
its HoA) will be forwarded to the foreign network and addressed to the CoA. This association 
between HA and CoA is called binding. The traffic re-direction is explained in the [Figure 1: MIP 
Mobility]. First of all (Purple arrows) the traffic destined to the MN’s HoA is sent to the Home 
Agent. Then the Home Agent creates an IP over IP tunnel between him and the Foreign Agent 
(Green arrows). Then the Home Agent forwards the traffic destined to the MN through the 
tunnel. Finally (Blue arrow) the Foreign Agent forwards the traffic to the MN where is received 
at the CoA. 



16 
 

 

Figure 1: MIPv6 Mobility4 

 

4.2. PMIPv6 

Proxy Mobile IPv6 (PMIPv6 - RFC 5213[6][7]) is a mobility protocol based on MIPv6.It’s an 
extension of IPv6 whose main feature is that the mobility is now network-based. A PMIPv6 
Local Mobility Domain (LMD) like the one shown in [Figure 2:PMIPv6 scenario]. The support of 
host mobility is possible without the mobile node involvement by the use of signaling 
messages between the network nodes and the anchor point, called Local Mobility Anchor 
(LMA).The nodes in charge of performing all mobility related signaling in behalf of the MN are 
called Mobile Access Gateway (MAG) and are collocated with the default gateway of the node. 
The signaling is performed between the MAG and the LMA. They establish a tunnel between 
them through which the traffic is redirected to the MN so the MN can be always reachable. 

The operation of PMIPv6 is the following: When a MN attaches at first to one of the LMD’s AP; 
it sends a Router Solicitation (RS) message requesting an IPv6 prefix to the MAG (Proxy Binding 
Update (PBU) message). The MAG forwards the message to the LMA which answers with a 
network prefix (Proxy Binding Acknowledge (PBA) message) and stores the MN’s mapping on 
its Binding Cache (BC). The MAG sends the prefix to the MN via a Router Advertisement (RA) 
message. Finally the LMA forwards all the traffic between the MN and the network to an IPv6 
over IPv6 tunnel between the MAG and itself. When the MN moves to an AP under the 
coverage of another MAG and sends the RS, the LMA will find the MN on its BC and will answer 

                                                           
4 www.uc3m.es February 21 2014 



17 
 

with the already stored prefix and change the traffic forwarding to another tunnel between 
the new MAG and itself. This process means no IPv6 changes for the MN in the entire LMD.  

 

Figure 2:PMIPv6 scenario5 

 

 

  

                                                           
5 www.uc3m.es February 21 2014 



18 
 

4.3. DMM 
 

As the current networks are deployed in a hierarchical centralized manner, all the data traffic 
passes through the Mobility Anchor (HA or LMA), which presents security performance, and 
scalability issues like bottlenecks and a centralized point of failure. Also, the current networks 
are always activated. That is a non-optimal solution due to the fact that the mobile node is not 
performing handovers all the time during the connection. 

To solve these problems, the DMM working group has been working in alternatives to MIPv6 
and PMIPv6. A feature always present in the DMM schemes is the idea of distributing the 
mobility anchoring at the AR level. When the MN performs mobility, its session at the old 
anchor is terminated and the data traffic is routed optimally without tunneling. The 
approaches to the distributed mobility management function can be divided in four categories: 

 

1- Routing-based approaches: The main idea is to use routing updates between 
routers to manage the mobility within the mobility domain.The process is to detect 
the node's assigned prefix by the use of DNS lookups and then the exchange of 
Border Gateway Protocol (BGP) update messages to actualize the routing 
information. This proposal still lacks of deepness performance calculations. 

2- Architecture-dependent solutions: The idea of this proposal is to find solutions 
focused on providing enhanced mechanisms for local breakout and offloading to 
improve mobility reducing the traffic through the operator core network. These 
proposals detect non-optimal paths. 

3- Peer-to-peer approaches: The concept is to distribute mobility management 
functionality in various entities and to do it as much closer to the mobile node as 
possible. 

4- Solutions based on extending existing IETF protocols: There are solutions designed 
based on the mobility behavior of MIPv6 and PMIPv6. The ones adapting 
MIPv6encompass the use of Anchor Access Nodes (AAN) and Visited Access Nodes 
(VAN). The first keep global reachability while the Mobile Node is roaming from the 
first to the second. This has been extended to support prefix relocation so the MN 
can maintain its prefix when it is moving. That makes mobility absolutely transparent 
to the MN. There are another solutions based on PMIPv6 that includes a new 
element between the LMA and the MN. This element adopts certain LMA functions 
such as route optimization and establishing tunnels between MAGs. 

 

The proposed SDN-based solution falls within the fourth category since it is a way of 
implementing a PMIP-based DMM approach. The background of SDN is to separate control 
and data planes and manage them separately without changing any hardware. As it is been 
explained at the SDN (section 3.2 - Complexity), one of the advantages of a centralized control 



19 
 

plane is that it can be adapted much easier to network changes. Studying the concept of dense 
networks, it can be seen that it mainly impacts on the control plane as the problems come only 
on routing and traffic management and not on forwarding at all. In an SDN environment, the 
dense network problem can be removed from the forwarding devices and isolated in a unique 
element: the controller. In that scenario a solution could be developed with a minimum impact 
on the previously developed elements. That means minimum costs and turns any possible 
solution in a suitable one. Another advantage of SDN is the flexibility of software. Software can 
be adapted much faster and cheaper than hardware. The network controller while keeping its 
managing functions can be easily adapted to be any customized network manager device. With 
these points in mind, the DMM Group is working to develop a DMM network over the 
concepts developed by the CROWD Group using SDN to manage the traffic. The SDN protocol 
chosen to perform in that scenario is OpenFlow. 

 

4.4. OPENFLOW 
 

OpenFlow[12] protocol was designed by the Stanford University. It came from the idea of 
creating a network for experimental researching, and that ended in an array of protocols 
whose functionality could replace link and network layers (OSI layers 2 and 3) in commercial 
switches and were grouped under the name of OpenFlow [Figure 3: OSI stack Vs. OpenFlow 
stack].The goal was to create a protocol for devices containing only the data plane to respond 
to commands received from a centralized controller that gathered all control plane. Later in 
2011 the Open Networking Foundation (ONF) was founded with the goal of standardize, 
commercialize and promote OpenFlow[2]. 

 

 

Figure 3: OSI stack Vs. OpenFlow stack 

 

OpenFlow, as an SDN protocol,separates data and control planes. While the first remains 
distributed as it is done traditionally, the control plane gets centralized. That introduces a new 
element called the "Controller". The controller is the brain core of the network, so it relies all 
the layer 2 and layer 3 of the network on itself. The controller and the switches communicate 
using a wire protocol so the controller can take all the routing and forwarding decisions of 
each switch of the network[19]. So summarizing: OpenFlow consists in a Controller managing 

Traditional OSI stack OpenFlow Stack
Application Application

Presentation Presentation
Session Sesion

Transport Transport
Network

Link
Phisical Phisical

OpenFlow



20 
 

the network switches behavior, the switches with their flow tables and its control interface, 
and a communication protocol between the controller and the switches. 

 

4.4.1. The OpenFlow protocol 
The protocol is a bidirectional language between the Network Controller and the switches.The 
OpenFlow protocol works by installing matches and actions on forwarding tables. When a 
message is received at a switch and a match to handle it is not installed, the messages are 
destined to the Controllerby encapsulating them into an OpenFlow message and sending them 
to the Controller via its control interface. In the other direction (From the Controller to one or 
various switches) the messages contains orders to add to the Flow Tables. These orders can be 
divided in CLASSIFIER and ACTION. The classifier is the matching that the switch will perform 
on its incoming packets. The different types of matching depend on the OpenFlow version, on 
1.0 the match can be done on MAC address, IP address, TCP/UDP/SCTP port, VLAN id, 
input/output port, any combination of these or a wildcard. The action applied to the matching 
can be to forward, modify, enqueue or drop. One of the features of OpenFlow is the allowing 
of pipeline forwarding, which consists on have an associated action in the Flow Table 
consisting on forward the packet to another Flow Table and continue the matching in that 
table. 

 

4.4.2. The switches 
The OpenFlow switches are built on the idea of re-using the flow-tables of a commercial 
switch. These switches used to have this flow tables from TCAMs,and OpenFlow protocol turns 
these tables into OpenFlow flow tables. TCAMs are a kind of Content-addressable memory 
that allows third state matching. That means a "don't care value" or "X" in the comparison. For 
example, a 1X1 matching can be 101 or 111. This is very useful in routing to route using 
wildcards. An example of this in OpenFlow is a match of a header with a determinate input 
MAC and any value (a wildcard) of output MAC. OpenFlow takes those TCAMs and turn them 
into Flow Tables. The datapath of an OpenFlow switch is a Flow Table and an action associated 
with each flow entry. 

A basic OpenFlow switch is a dumb datapath whose functionality is just to forward input 
packets at an input port to an output port basing its decisions on orders provided by a remote 
process (the controller). It consists of at least these three elements: 

1. The Flow Table 
The Flow Tables are a modification from the original use of the switch’s tables. The 
entries now are conformed by a match header entry, and an action associated. When 
an incoming data flow matches with an entry of the table [Figure 4: OpenFlow 
message matching values], the switch performs the action associated to it. This 
forwarding process equals to the traditional layer 1 of the OSI stack. 
 



21 
 

 

Figure 4: OpenFlow message matching values 

 
 

2. The secure channel 
This channel is physically located at one of the switch’s interface, which is designed as 
“Controller port”. That interface is linked to the network controller (who has 
functionality of layers 2 and 3) and allows a bidirectional communication between the 
two elements. This communication is made using the OpenFlow Protocol, which is the 
third basic element of an OpenFlow switch. 
 

3. The OpenFlow Protocol 
This protocol defines the structures of the messages exchanged between the 
OpenFlow switches and the controller. These messages are for establishing control 
session, exchange the orders of Flow Table modifications and collecting statistics. In 
versions higher than 1.0 pipeline processing is supported. 
 

Despite of a switch can be used partially as an OpenFlow switch, in this project switches are 
used as fully dedicated OpenFlow switches. Their functionality is the following: 

When there is an incoming data flow the switch takes the first packet and catchesits header to 
perform matching with it on its first Flow Table. If there is no match(no forwarding instructions 
settled) the switch sends that first packetto the controller via its control port (the secure 
channel) so the controller can manage routing and forwarding for that flow. That packet will 
be forwarded encapsulated as another OpenFlow message. A basic OpenFlow switch only 
forwards the first packet of any incoming flow to the controller, but this can be settled to 
forward all the unmatched packets what results in the forwarding of the full flow to the 
controller. In the case that the packet matches with any entry of the flow table, the switch will 
perform the action associated to that entry. Those actions can be forward, modify, enqueue, 
drop or forward to another Flow Table [Figure 5: OpenFlow Switch Flow operation]. 

SA DA Type ID Priority SA DA Proto TOS src dst
Ingress Port

Ethernet VLAN IP TCP/UDP



22 
 

 

Figure 5: OpenFlow Switch Flow operation 

For this operation, the Flow Table must be populated with information. That happens when 
the OpenFlow switch receives a message at the controller port.That message contains one or 
more modifications for the Flow Tables that will be added by the switch. Then when here is an 
incoming data flow that matches to one of the flow entries of the entry table, the switch 
forwards the flow on the output port settled on the flow table. 

 

4.4.3. Controller 
The Controller is the device that centralizes the entire control plane as SDN defines. It is a 
device that communicates with each switch of the network to manage all the traffic through it. 
That is done by designing one of the physical ports of the switch as a controller port where this 
communication happens. The full process of packet routing is performed in the controller. 
Once the path through the network is decided, the controller communicates with the 
implicated switches to configure them in order to forward the traffic through the network 
[Figure 6: OpenFlow routing and forwarding]. 

 



23 
 

 

Figure 6: OpenFlow routing and forwarding 

  



24 
 

5.EXPERIMENTAL DEVELOPMENTS 
 

The Experimental development of the project include the necessary software development 
and the physical network implementation where test the software. 

 

5.1. SOFTWARE 
 

As OpenFlow is an open standard, there are various open source controllers, each one 
developed with its own goals and characteristics. In the following brief an analysis of the most 
relevant controllers is presented. 

NOX: Nox is a C++ controller developed by Nicira Networks specifically as a platform for 
building network control applications. It was created side by side with the OpenFlow 
foundation so it provides full OpenFlow support. It provides a well-defined OpenFlow 1.0 API. 
This API includes host tracking, routing and topology-discover, learning switches, network wide 
switches and fast asynchronous IO. Some popular applications developed over NOX are SANE 
and Ethane, with proven SDN efficiency. The first one is an approach to representing the 
network as a filesystem. The second one is a research application for centralized network 
security at the level of an access control list. With both of them, researches have 
demonstrated MPLS-like applications over a NOX core. 

POX: It is a Python (Python 2.7) version of Nicira´s NOX controller. Despite its graphic interface 
looks the same as NOX, it claims some advantages over it: It is specially targeted for Linux, Mac 
OS and Windows. It also brings an install-free PyPy runtime for easy deployment. PyPy 
applications perform better over POX than over NOX. 

TREMA: It is a Ruby/C framework for OpenFlow developed by NEC with later contributions of 
GPLv2. It provides a unique interface to handle all OpenFlow messages, something important 
in the pursuit of simplicity. It also provides a network-simulation framework, very useful to test 
developed controllers. A controller running over Trema can interoperate with any OpenFlow 
element without needing a specific agent. 

FLOODLIGHT: It is a Java controller created by Big Switch Networks based on Stanford's 
Beacon. Some of itsfunctionalities are topology discover, device management (MAC and IP 
tracking) and web management. Its operation is to translateOpenFlow messages from switches 
into Floodlight events. 

OpenDaylight Project: "The OpenDaylight Project[16][17] is a community-led, open, industry-
supported framework, for accelerating adoption, fostering new innovation, reducing risk and 
creating a more transparent approach to Software-Defined Networking. 



25 
 

As a collaborative project under The Linux Foundation, OpenDaylight is structured using open 
source development best practices, and is comprised of the leading organizations in the 
technology industry." [Quoted from6] 

It is a project which aim is to deliver a common Open Source SDN framework across the 
industry for customers, partners and developers. Its first version called Hydrogen was released 
on February 4, 2014 and can be downloaded from its website7. This version allows vendors and 
customers alike the ability to utilize standard-based SDN-solutions. 

RYU: Ryu is a controller developed by the OSRG. As it is the controller chosen for the software 
developments of this project, it will be fully described at the next topic. 

 

5.1.1. Controller: Ryu 
 

Ryu[13] is the key name for a component-based SDN framework. In Japanese Ryu means 
"flow" and it’s the name given to a water god dragon. It is developed by the OSRG group in the 
NTT laboratories. It provides an API for developers to create network control applications over 
protocols like Netconf, OF-config and OpenFlow (1.0 + Nicira Extensions, 1.2 and 1.3).Ryu has 
been chosen as the software to develop the DMM elements CROWD Local Controller (CLC) and 
CROWD Regional Controller (CRC). The reasons that make Ryu be the fittest are described 
next: 

 

Supports several versions of OpenFlow: 
Ryu gives support as an OpenFlow controller. It can run various versions of the 
protocol from 1.0 to 1.3.Despite the CLC and CRC have been implemented over version 
1.0, the 1.3 allows better performance using ipv6 matching in the flow tables. In this 
project, the OpenFlow network has been deployed using the 1.0 version and Ethernet 
matching, but in future changes this version could be switched to 1.3 and the Ethernet 
matching to IPv6 matching in order to improve performance in the network and code 
efficiency in the controller. 
 
Open: 
As Ryu is open source, it can be freely downloaded, built on, or be modified without 
any restriction or license needed. That is a very important point to consider if we think 
that the applications derived from this research could be implemented over current 
networks by a small price. 
 
Built in python: 
As today there are many expanded protocols (mainly Java or C++) and the most part of 
the network controllers have been developed in those languages, we have thought 

                                                           
6 www.opendaylight.org/project February 21 2014 
7 www.opendaylight.org/software/downloads February 21 2014 



26 
 

that Python presents some advantages over them. It is a powerful programming 
language whose main advantage is to be an interpreted one. That means it is 
independent from any platform, which gives flexibility to choose the hardware support 
to the controller. Thinking again in future applications of this research, this platform 
independence becomes an important point to take care of. 
 
Another thing that turned the balance to the python side is the libraries already 
developed for python. Mainly [Scapy8], which fitted at perfection with some of the 
project’s needs in order to ease the development of the controller elements. Scapy is a 
Python package for network packet manipulation. It can be used to create, 
encapsulate, send or capture customized packets from a wide array of protocols. It 
allows the programmer to work with any element of the packet in an almost unlimited 
way. It runs natively in Linux using Python interpreter. As its library is very well 
defined, it can be easily adapted to the use of the OpenFlow controller. In the CROWD 
Local Controllers some packet manipulation is needed to analyze and respond the 
incoming packets. Scapy can build exactly the packet desired. Even if it has no sense, 
like an inexistent stack order. Any value can be putted on any field, and that provides 
us as developers with almost unlimited possibilities in the controllers. 

 
Easy to develop: 

We found the Ryu API [14]very well defined and the tutorials on the Ryu website very 
easy to follow with the step-to-step guide of how to create a Ryu application. 

 

5.1.2. Pantou OpenFlow implementation for OpenWRT 
Pantou[15] is the key name for the OpenFlow software available for the OpenWRT operating 
system. It turns a commercial wireless router (running OpenWRT) to an OpenFlow-enabled 
switch running version 1.09. 

 

5.2. PROCESS DESIGN 
 

The theoretical design of this project is to develop a network following the CROWD10 
architecture [Figure 6: CROWD network]. This architecture defines the concepts of district and 
region. A CROWD district is a tier with a limited but fine grain scope for short time scales 
composed by base stations (LTE, Wi-Fi, APs or eNBs). A CROWD Region is another tier with a 
broader but coarser grain scope for long time scales. So with the goal of testing the 
performance of a distributed mobility managed network system, this project has designed a 
network environment where the DMM mobility proposals can be studied. The main idea here 

                                                           
8 http://www.secdev.org/projects/scapy/ February 21 2014 
9 https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-
specifications/openflow/openflow-spec-v1.0.0.pdf February 21 2014 
10 http://www.ict-crowd.eu/downloads/ali-ahmad13crowd.pdf February 21 2014 



27 
 

is to take the theoretical concepts to design a physical network and apply the solution in order 
to check its viability. The first requirement for the network is to be formed by at least two 
CROWD districts to test mobility between districts. Each district will have a different gateway 
to access Internet and one Local Controller under the hierarchical domain of a Regional 
controller to manage all the districts of its region. Following the CROWD definitions these 
controllers are the following: A CROWD Local Controller (CLC) can take fast, short time scale 
decisions on a limited but fine grain scope. A CROWD Regional Controller (CRC) can take 
slower, long time scale decision with a broader but coarser grain scope.  

The controller will be developed in Python11, and its functions defined are oriented to routing 
the traffic through the network, even though the competences of a CLC include resources 
management and QoS, Network Discovery, Topology detection, etc. Those are out of the 
scope. So the controller will implement all the control plane of the network. A device running 
OpenFlow controller software will fill the Flow Tables of the network's node in order to 
provide it with IPv6 internet connection. 

The switches of the OpenFlow network will be Linksys WRT54GL [25], a Linux-based router on 
which we will run Pantou [14]. 

                                                           
11http://www.python.org/ February 21 2014 



28 
 

 

Figure 7: CROWD network12 

  

                                                           
12http://www.ict-crowd.eu/ February 21 2014 



29 
 

5.2.1. The mobility process 
 

District attachment 
Once the different elements of the DMM network[10] are defined, it's time to do the same 
with all the processes of all the message exchange between these elements when a Mobile 
Node is connected through the network. The first attachment to the network will happen in 
the following way [Figure 7: District attachment]: 

 1. The Mobile Node attaches to one of the Access Points sending an LLC message to it. 

 2. The AP performs matching on its Flow Tables with the header fields. As there is no 
entry with a successful matching, it notifies (forwards the message) to its Local Controller. The 
Local Controller checks if the host is allowed and if it is stored in the BCE. As it is the first 
attachment the mobile node will not be registered in the BCE so the controller adds it and 
configures a network prefix on the DMM Gateway. 

 3. The Mobile Node once attached starts the IPv6 neighbor discovery sending a Router 
Advertisement to the Access Point. The Access Point still doesn’t have any entry in its flow 
table referring to the MN, so when it performs matching again it will forward the Neighbor 
discovery message to the controller. 

 4. The Access Point forwards the Router Advertisement to the Local Controller who 
answers with it with the appropriate network prefix configured at the DMM Gateway and 
performs two more tasks: calculate the shortest path from the access point to the Gateway 
and send the necessary OpenFlow messages to all the nodes involved in the path with the 
entries to their Flow Tables. 

 5. The neighbor discovery continues as the Mobile Node sends a Neighbor Solicitation, 
but as the path through the network is established the communication will happen directly 
with the DMM Gateway that answers with a Neighbor Advertisement.At the end of the 
ICMPv6 process the Mobile Node has connection with the Internet through the DMM 
Gateway. 



30 
 

 

Figure 8: District attachment13 

 

 

 

                                                           
13http://www.ict-crowd.eu/ February 21 2014 



31 
 

 

District handover 
With the connection established the next test is intra-districtmobility. That happens when an 
MN once attached to the network changes its attachment to another Access Point of the same 
district. The handover develops like this [Figure 8: District handover]: 

1. The Mobile Node sends an LLC message to the new attachment Access Point. 

2. The AP performs matching on its Flow Tables with the header fields. As there is no 
entry with a successful matching, it notifies (forwards the message) to its Local 
Controller. The Local Controller checks if the host is allowed and if it is stored in the 
BCE. This time the Mobile Node is already at the BCE and that is where the controller 
detects the change of attachment. Then it obtains the prefix assigned previously to 
the MN and recalculates the path through the OpenFlow network. After that it sends 
messages to create the new path and delete the old one. When this is done the 
Mobile Node has connection with the Internet through the DMM Gateway following 
the new path. 



32 
 

 

Figure 9: District handover14 

  

                                                           
14http://www.ict-crowd.eu/ February 21 2014 



33 
 

Region attachment 
The next step in the study is the mobility between different districts. The process is defined as 
handover inter-district and happens when a Mobile Node once attached to a DMM network 
changes its attachment to another Access Point of a different district. For this event the 
environment must be expanded with another district to include a CROWD Regional Controller. 
The first attachment in the CROWD network develops like this [Figure 9: Region attachment]: 

1. The Mobile Node changes its attachment sending an LLC message to theAccess 
Point. 

2. The AP performs matching on its Flow Tables with the header fields. As there is no 
entry with a successful matching, it notifies (forwards the message) to its Local 
Controller. The Local Controller checks if the host is allowed and if it is stored in the 
BCE. As it is the first attachment the mobile node will not be registered in the BCE so 
the Local Controller asks to the Regional Controller about the Mobile node. 

3. The Regional Controller checks if the Mobile Node is in its own BCE. As it is not, it 
answers to the Local Controller with a negative answer. 

4. The Local Controller adds the Mobile Node to its BCE and configures a network 
prefix on the DMM Gateway. After that it notifies to the Regional Controller about 
the new attachment to the network. The Regional Controller will add the MN to its 
BCE with the prefix and Gateway assigned. 

5. The Mobile Node once attached starts the IPv6 neighbor discovery sending a 
Router Advertisement to the Access Point. The Access Point still doesn’t have any 
entry in its flow table referring to the MN, so when it performs matching again it will 
forward the Neighbor discovery to the controller. 

6. The Access Point forwards the Router Advertisement to the Local Controller who 
answers with it with the appropriate network prefix configured at the DMM Gateway 
and performs two more tasks: calculate the shortest path from the access point to 
the Gateway and send the necessary OpenFlow messages to all the nodes involved in 
the path with the entries to their Flow Tables. 

7. The neighbor discovery continues as the Mobile Node sends a Neighbor 
Solicitation, but as the path through the network is established the communication 
will happen directly with the DMM Gateway that answers with a Neighbor 
Advertisement. At the end of this process the Mobile Node has connection with the 
Internet through the DMM Gateway. 

 

 



34 
 

 

Figure 10: Region attachment15 

                                                           
15http://www.ict-crowd.eu/ February 21 2014 



35 
 

Region handover 
With the connection established it is time to perform inter-district mobility. That happens 
when an MN once attached to the network changes its attachment to another Access Point of 
another district. This process also involves the Regional controller. The handover develops like 
this [Figure 10: Region handover]: 

1. The Mobile Node sends an LLC message to an Access Point of a different district of 
its attachment. 

2. The AP performs matching on its Flow Tables with the header fields. As there is no 
entry with a successful matching, it notifies (forwards the message) to its Local 
Controller. The Local Controller checks if the host is allowed and if it is stored in the 
BCE. As it is the first attachment in this district the mobile node will not be registered 
in the BCE so the Local Controller asks to the Regional Controller about the Mobile 
node. 

3. The Regional Controller checks if the Mobile Node is in its own BCE. As it is since its 
previous attachment in the other district, it will answer to the Local Controller with 
the information of assigned prefix and previous DMM Gateway assigned in an 
affirmative answer. 

4. The Local Controller adds the Mobile Node to its BCE and configures a network 
prefix on the DMM Gateway. After that, it notifies to the Regional Controller about 
the new attachment to the network. The Regional Controller will add the MN to its 
BCE with the prefix and Gateway assigned. 

5. The Local Controller configures its assigned DMM Gateway with the prefix received 
from the Regional Controller and sends an update to the Regional Controller 
notifying about the same prefix and the new DMM Gateway.  

6. The Local Controller will establish an IPv6 tunnel between its Gateway and the one 
of the old district (information retrieved from the CRC) to use it for redirecting all the 
traffic destined to the mobile node to its. As the tunnel must be established in both 
Gateways, the old Local Controller must configure its own one too. 

7. The Mobile Node once attached starts the IPv6 neighbor discovery sending a 
Router Advertisement to the Access Point. The Access Point still doesn’t have any 
entry in its flow table referring to the MN, so when it performs matching again it will 
forward the Neighbor discovery to the new controller. 

8. The Access Point forwards the Router Advertisement to the Local Controller who 
answers with it with the appropriate network prefix configured at the DMM Gateway 
and performs two more tasks: calculate the shortest path from the access point to 
the Gateway and send the necessary OpenFlow messages to all the nodes involved in 
the path with the entries to their Flow Tables. 

9. The neighbor discovery continues as the Mobile Node sends a Neighbor 
Solicitation, but as the path through the network is established the communication 



36 
 

will happen directly with the DMM Gateway that answers with a Neighbor 
Advertisement. At the end of the ICMPv6 process the Mobile Node has connection 
with the Internet through the OpenFlow network and the IPv6 tunnel between the 
two DMM Gateways. 

 

Figure 11: Region handover16 

 

                                                           
16http://www.ict-crowd.eu/ February 21 2014 



37 
 

5.3. IMPLEMENTATION 
 

The environment designed to test the distributed mobility management is a small sample of 
what could be a real DMM network.  The network will have two districts, each one with its 
own CLC and DMM Gateway. Both are part of a region with a CRC managing them. With this 
scenario mobility can be tested in intra-district and inter-districts handovers. The full test 
process has been divided into three stages: 

 

Stage 1: Intra-district mobility on IPv4 

A small network has been built in order to test the controller performance on mobility. The 
network consists of two access points, one node and a gateway [Figure 7: Project design - 
stage 1]. The goal of this stage is to check how the controller manages OpenFlow signaling. For 
this we developed the CLC with ARP and IPv4 management functionalities. For the tests we 
only performed intra-district handovers due to the fact that we only want to check how 
OpenFlow operates with Ryu, and to figure how to adapt it to our further developments. 

 

Figure 12: Project design - stage 1 

 

  



38 
 

Stage 2: Intra-district mobility on IPv6 

The second is an extension of the controller adding IPv6 packet handling. The OpenFlow 
network is the same designed in the first stage, the difference is only at the controller, which 
now has been extended with IPv6 handling functionality.The ARP and IPv4 code has been 
replaced by ICMPv6 and IPv6. The ICMPv6 handler listens from packets received at the AP 
only, and it will use the BCE to guess if the MN is performing an attachment or a handover. The 
CLC will answer the RS of the MN. The IPv6 handler will accept packets from the MN or from 
the DMM Gateway.  [Figure 8: Project design - stage 2]. 

 

 

Figure 13: Project design - stage 2 

  



39 
 

Stage 3: Inter-district mobility on IPv6 

The final stage is a complete DMM network. The OpenFlow network built for the first two 
stages has been now replicated into a second one and the gateways are considered now as 
DMM gateways [Figure 9: Project design - stage 3]. One Regional controller has been added in 
order to handle the intra-district handovers (handovers between the two OpenFlow networks). 
This CRC is just a python program, it doesn’t run over Ryu. The CLCs has been quite 

 

Figure 14: Project design - stage 3 



40 
 

modified to be able now to handle a TCP connection with the CRC and an UDP connection with 
the DMM Gateway to configure them. During the inter-district mobility, the CLCs uses that 
connection to set up an IPv6 over IPv6 tunnel between the DMM Gateways to forward the 
traffic through it. 

 

5.1.2. Actors 
 

The following elements will take part in the experiments: 

CROWD Regional Controller: Manages mobility intra-district on its regional network. For that, 
it has a cache containing tuples of: Mobile Nodes attached to the network –DMM Gateway of 
the district they are attached to. For this element we have chosen to use a computer running 
python. 

CROWD Local Controller: Manages its local district. For this element we have chosen to use 
another computer running Ubuntu for each one of the two CLC of the testbed and the Ryu 
OpenFlow controller. 

Mobile Node: It is the host of the OpenFlow network. It doesn’t have any kind of OpenFlow 
knowledge; its only requirement is to have wireless connection and an IPv6 neighbor discovery 
(ICMPv6) protocol running. For this element we have chosen a laptop computer. 

Access Point: An OpenFlow switch with the traditional behavior of a wireless access point. 
Provides connection to the Mobile Node. We will use two switches as access point per each 
district and they will be Linksys WRT54GL running OpenFlow Pantou. 

Node: An OpenFlow switch with its wireless connection disabled. It has the same behavior of 
the Access points, with the only difference of the wireless connection. When a Node is directly 
connected to a Gateway/DMM Gateway is considered as an OpenFlow Edge node. There is one 
per district, and it will also be a Linksys WRT54GL running OpenFlow Pantou. 

DMM Gateway: It’s a non OpenFlow device. It is a normal router providingthe OpenFlow 
network of internet connection. It is linked to the Local Controller to be remotely configured. 
There is one per district, and it will be a Linksys OpenWRT54GL device running the WRT 
Backfire version. 

IPv6 tunnel: An IPv6 over IPv6 tunnel established between the districts’s DMM Gateways 
when an inter-district mobility happens. It is used to forward all the traffic destined to the MN 
during the roaming. 

  



41 
 

5.4. HOW TO INSTALL 
 

The following pointcontains a step-to-step guide of how to download, install, configure and set 
up all the necessary elements of the OpenFlow Network test bed. 

 

5.4.1. RYU 
 

INSTALLATION: 

Ryu can be installed in any device running Linux. This installation has been done in a Linux 
machine running Ubuntu. It is very easy just a python interpreter is needed. To download it 
just execute the following commands on the terminal: 

% sudo apt-get update 

% sudo apt-get install python 

Now the interpreter is downloaded and installed. To get the python packages needed, it is 
recommended to download de python package installer PIP (Python Package Index). 

% apt-get install python-pip 

Now, Ryu can be downloaded with pip using the following command: 

% pip install ryu 

Or it can be downloaded from the source code using the version controller GIT using the 
following commands: 

% git clone git://github.com/osrg/ryu.git  
% cd ryu; python ./setup.py install  

 

The Ryu controller built in this project also needs some extra python packages installed. To get 
them just execute these commands: 

TCP:If this package is not included in your python version by default just download it with 
python pip: 

% pip install python-handler-socket 
 
Subprocess: This package is already included in the python main installation as a python 
standard library. 

Billiard/multiprocessing/multithreading: This library changes its name between python 
versions, but is always included as a python standard library. 



42 
 

Scapy: For the Scapy package download just follow the next steps: 

% cd /tmp 

% wget scapy.net 

% unzip scapy-latest.zip 

% cd scapy-2-.* 

% sudo python setup.py install 

 

Now the device has all the required software installed, and it is ready to configure and run. 

 

CONFIGURATION: 

The device designed as OpenFlow controller just uses one Ethernet interface to communicate 
with the OpenFlow network. This interface must be configured with the appropriate IPv4 
address. 

% sudo ip addr add 192.168.20.1/24 dev eth1 

% sudo ifconfig eth1 up 

The resulting configuration in the controller for that interface can be checked using 

user@controller:~$ sudo ifconfig 
 

Andmust look like:  

 
eth1      Link encap:Ethernet  direcciónHW 00:13:f7:ff:08:ef   
          Direc. inet:192.168.20.1  Difus.:0.0.0.0  Másc:255.255.255.0 
          Dirección inet6: fe80::213:f7ff:feff:8ef/64 Alcance:Enlace 
          ACTIVO DIFUSIÓN FUNCIONANDO MULTICAST  MTU:1500  Métrica:1 
          Paquetes RX:30814 errores:0 perdidos:0 overruns:0 frame:0 
          Paquetes TX:33095 errores:0 perdidos:0 overruns:0 carrier:0 
          colisiones:0 long.colaTX:1000  
          Bytes RX:3055990 (3.0 MB)  TX bytes:2251107 (2.2 MB) 
          Interrupción:19 Dirección base: 0xd000  
 
 

The Ryu controller device is now configured. 

 

5.4.2. PANTOU 
INSTALLATION: 

Pantou[15] will be the software installed in the routers to turn them into OpenFlow switches 
following the Stanford reference. It is based on OpenWRT Backfire version (Linux 2.6.32). 



43 
 

Pantou works for these devices: 

- Linksys WRT54GL 
- TP-LINKTL-WR1043ND 
- Generic routers with chipset Broadcom BCM47XX 

The chosen device for the testbed is the Linksys WRT54GL. To turn it into an OpenFlow switch 
the following steps must to be followed: 

- Download the appropriate Pantou image 
- Load the image on the router 
- Check the functionality 

1. Download the Pantou image. 

The image can be downloaded from the Pantou web in the following URL: 

http://archive.openflow.org/wk/index.php/Pantou_:_OpenFlow_1.0_for_OpenWRT 

The images are in the “supported devices” point. Clicking on the selected device (Linksys 
WRT54GL) will start the download. 

 

2. Uploading the image to the router 

Once the download has ended there are various ways of uploading the image to the router. 
The chosen here is to set the router on failsafe mode and then transfer the image using the 
tftp command (Trivial File Transfer Protocol). Setting the router on failsafe mode is not 
mandatory, but prevents future incompatibility problems installing Pantou. The generic way to 
do this requires the following steps starting with the router being power fed: 

1. Press and hold the Reset button located on the back of the WRT54GL. 
2. While holding the reset button, unplug the power cord and plug it again. The POWER 

and DMZ LEDs on the front will start blinking. 
3. Wait until DMZ led stops blinking, when this happen release the Reset button, after a 

few seconds the device will reboot into failsafe mode. 

Now that the router is on failsafe mode, it can be accessed by an Ethernet connection to one 
of its interfaces, it doesn’t matter which one is chosen because the router on failsafe mode is 
configured as a bridge by default. 

To communicate with the router, the computer must have its interface configured with an IPv4 
of the same subnet. As the router has the default IPv4 192.168.1.1/24 by default on all of its 
interfaces, the computer must be configured for example with the 192.168.1.2/24. Using the 
following command: 

% sudo ip addr add 192.168.1.2/24 dev interface_name 

http://archive.openflow.org/wk/index.php/Pantou_:_OpenFlow_1.0_for_OpenWRT


44 
 

Once this is done, the router can be accessed if it has ended with its reboot on failsafe mode. 
One way of checking that it is ready is sending ping messages to it. 

% ping 192.168.1.1 

If the correct echoes are received the router is ready to receive de image. To use tftp just 
execute the following commands (located in the directory of the previously downloaded 
image): 

% tftp 192.168.1.1 

tftp> Binary 

tftp> trace 

tftp> rexmt1 

tftp> timeout 90 

tftp> put nombre_imagen_pantou.bin 

In this moment, the image will start to be sent unsuccessfully. While this is happening the 
failsafe mode steps must be repeated in order to make the router accept the image sent. 

1. Press and hold the Reset button located on the back of the WRT54GL. 
2. While holding the reset button, unplug the power cord and plug it again. The POWER 

and DMZ LEDs on the front will start blinking. 
3. Wait until DMZ led stops blinking, when this happen release the Reset button, after a 

few seconds the device will accept the image. 

Now the connection with the router may be lost because Pantou is not configured as a bridge 
by default, and the interface configuration is the following: 

Interface Internet: 192.168.1.1/24 

Interface 0: No IP 

Interface 1: No IP 

Interface 2: No IP 

Interface 3: No IP 

 

To recover the connection, the Ethernet wire must be connected to the port labeled as 
“internet”. Then the router can be accessed using the IPv4 address configured on the 
computer. (To check the rooter has ended its reboot process ping 192.168.1.1). 

 

 



45 
 

To check the Pantou installation on the router and the right working of OpenFlow, just access 
to the router via Telnet 

% telnet 192.168.X.1  

And execute these commands: 

% ps aux | grep ofprotocol 
% ps aux | grep ofdatapath 

 

 

CONFIGURATION: 

To configure the OpenFlow switch with the designed network configuration, three 
configuration files must be edited (using vim command for example). 

 

1. Wireless file: 

Location: /etc/config/wireless 

By default this file has the wireless connection disabled. On the switches designed as Access 
Points this must be enabled. To do that, just comment the line that disables wireless tipping an 
“#” at the beginning.  

The file must look like this: 

 
root@OpenWrt:/# cat etc/config/wireless 
 
config wifi-device  radio0 
        option type     mac80211 
        option channel  5 
        option macaddr  00:1c:10:88:98:37 
        option hwmode   11g 
 
        # REMOVE THIS LINE TO ENABLE WIFI: 
        #option disabled 1 
 
config wifi-iface 
        option device   radio0 
        option network  lan 
        option mode     ap 
        option ssid     OpenWrt 
        option encryption none 
 
 

 

 

 



46 
 

2. Network file: 

Location: /etc/config/network 

This file will set the OpenFlow interface’s IPv4 address to establish connection between the 
Ryu Controller and each switch. In this project, the interface labeled as “internet” is the chosen 
as control interface. That interface will be the only one configured with an IPv4 address, and it 
must belong to the same subnet of the Controller’s one. The following text shows the final 
configuration of a switch with a control port with the IPv4 settled to 192.168.20.2. 

 
root@OpenWrt:/# cat etc/config/network  
#### VLAN configuration  
config switch eth0 
        option enable   1 
 
config switch_vlan eth0_0 
        option device   "eth0" 
        option vlan     0 
        option ports    "0 5" 
 
config switch_vlan eth0_1 
        option device   "eth0" 
        option vlan     1 
        option ports    "1 5" 
 
config switch_vlan eth0_2 
        option device   "eth0" 
        option vlan     2 
        option ports    "2 5" 
 
config switch_vlan eth0_3 
        option device   "eth0" 
        option vlan     3 
        option ports    "3 5" 
 
config switch_vlan eth0_4 
        option device   "eth0" 
        option vlan     4 
        option ports    "4 5" 
 
 
#### Loopback configuration 
config interface loopback 
        option ifname   "lo" 
        option proto    static 
        option ipaddr   127.0.0.1 
        option netmask  255.0.0.0 
 
 
#### LAN configuration 
config interface 
        option ifname   "eth0.0" 
        option proto    static 
 
config interface 
        option ifname   "eth0.1" 
        option proto    static 



47 
 

 
config interface 
        option ifname   "eth0.2" 
        option proto    static 
 
config interface 
        option ifname   "eth0.3" 
        option proto    static 
 
config interface 
        option ifname   "eth0.4" 
        option proto    static 
        option ipaddr   192.168.20.2 
 
 

As showed, the ports have been splitted up, but they have none address assigned. Only the 
controller interface has one. 

 

3. OpenFlow configuration file: 

Location /etc/config/openflow 

This file configures the OpenFlow functionality of the switch. It has just 4 options described like 
this: 

- dp: names the OpenFlow datapath 
- ofports: sets which ports will act as OpenFlow ports 
- ofctl: sets the controller’s ipv4 and port 
- mode: defines the switch functionality as inband or outofband (the second one 

separates the control and data planes) 

This file once configured for an AP must look like this: 

 
root@OpenWrt:/# cat etc/config/openflow  
 
config 'ofswitch' 
        option 'dp' 'dp0' 
        option 'ofports' 'wlan0 eth0.0 eth0.1 eth0.2 eth0.3' 
        option 'ofctl' 'tcp: 192.168.20.1:6633’ 
        option 'mode'  'outofband' 
 
 

If the switch is a normal node instead of an Access Point, the “wlan0” port must be removed 
from the ofports. 

Now that the switch is fully configured, it must be network rebooted in order to commit the 
changes. That can be done executing the following process: 

root@OpenWrt:./etc/init.d/network restart 



48 
 

Now the connection with the switch is lost again because of the new configuration of the 
router is taking effect erasing the IPv4 that was being used (The 192.168.1.1 is now a 
192.168.20.X). The telnet process will hang out, so it should be closed and open a new one. 

To connect now with the switch, a new IPv4 must be assigned to the Controller, one belonging 
to the 192.168.20.0/24 network an access the switch via its “internet” port. 

 

5.4.3. ADDITIONAL CONFIGURATIONS: 
 

DMM Gateways: 

As the MN always has the same interface address as default gateway, All the DMM Gateway 
must have the same MAC address (so they have the same link local ipv6 address). This is done 
using the following command: 

root@OpenWrt:/# ifconfig eth0.3 down 

root@OpenWrt:/# ifconfig eth0.3 hw ether aa:bb:cc:dd:ee:ff 

root@OpenWrt:/# ifconfig eth0.3 up 

By default, the Backfire17 version installed in the DMM Gateway has not the IPv6 forwarding 
enabled. To enable it we just have to modify the sysctl file of the switch. That is done 
executing the following commands: 

% sysctl –a | grep forwarding 

So we can check if in fact these options are deactivated. 

 
net.ipv6.conf.all.forwarding = 0 
net.ipv6.conf.all.mc_forwarding = 0 
net.ipv6.conf.default.forwarding = 0 
net.ipv6.conf.default.mc_forwarding = 0 
net.ipv6.conf.lo.forwarding = 2 
net.ipv6.conf.lo.mc_forwarding = 0 
net.ipv6.conf.eth0.forwarding = 0 
net.ipv6.conf.eth0.mc_forwarding = 0 
net.ipv6.conf.eth0.0.forwarding = 2 
net.ipv6.conf.eth0.0.mc_forwarding = 0 
net.ipv6.conf.eth0.1.forwarding = 0 
net.ipv6.conf.eth0.1.mc_forwarding = 0 
net.ipv6.conf.eth0.2.forwarding = 0 
net.ipv6.conf.eth0.2.mc_forwarding = 0 
net.ipv6.conf.eth0.3.forwarding = 2 
net.ipv6.conf.eth0.3.mc_forwarding = 0 
net.ipv6.conf.eth0.4.forwarding = 0 
sysctl: error reading key 'net.ipv6.route.flush': Permission denied 
net.ipv6.conf.eth0.4.mc_forwarding = 0 
net.ipv6.conf.ip6tnl0.forwarding = 0 
net.ipv6.conf.ip6tnl0.mc_forwarding = 0 
 
 

                                                           
17http://downloads.openwrt.org/backfire/10.03.1/brcm47xx/ February 21 2014 



49 
 

To change this we have to tip the following: 

% sysctl –w net.ipv6.conf.all.forwarding=1 

And now we can check that forwarding is now enabled in our device. 

 
net.ipv6.conf.all.forwarding = 1 
net.ipv6.conf.all.mc_forwarding = 0 
net.ipv6.conf.default.forwarding = 1 
net.ipv6.conf.default.mc_forwarding = 0 
net.ipv6.conf.lo.forwarding = 1 
net.ipv6.conf.lo.mc_forwarding = 0 
net.ipv6.conf.eth0.forwarding = 1 
net.ipv6.conf.eth0.mc_forwarding = 0 
net.ipv6.conf.eth0.0.forwarding = 1 
net.ipv6.conf.eth0.0.mc_forwarding = 0 
net.ipv6.conf.eth0.1.forwarding = 1 
net.ipv6.conf.eth0.1.mc_forwarding = 0 
net.ipv6.conf.eth0.2.forwarding = 1 
net.ipv6.conf.eth0.2.mc_forwarding = 0 
net.ipv6.conf.eth0.3.forwarding = 1 
net.ipv6.conf.eth0.3.mc_forwarding = 0 
net.ipv6.conf.eth0.4.forwarding = 1 
sysctl: error reading key 'net.ipv6.route.flush': Permission denied 
net.ipv6.conf.eth0.4.mc_forwarding = 0 
net.ipv6.conf.ip6tnl0.forwarding = 1 
net.ipv6.conf.ip6tnl0.mc_forwarding = 0 
 
 

5.4.4. LAUNCH THE SYSTEM: 
 

1. Launching the Controller: 

The controller must be launched over the python path and it requires two arguments. The first 
one is the ryu_manager of the Ryu controller. The second one is the python controller, Ryu 
has some controllers included by default on its download that can be used for testing, 
overwrite or simply as a controller with default performance. The following line shows an 
example of the controller launching: 

% PYTHONPATH=. ./ryu’s_path/bin/ryu_manager 
./controller’s_path/controlador.py 

Or if we want the verbose detailed output we can add “–verbose” at the end. 

% PYTHONPATH=. ./ryu’s_path/bin/ryu_manager 
./controller’s_path/controlador.py –verbose 

Once this is done, the controller is running and its output will be displayed on the window. 

 

2. Launching the nodes: 

 



50 
 

To run OpenFlow on the switches, just access to the switch using Telnet or ssh commands on 
its Control IPv4 and execute the following command: 

% ./etc/init.d/openflow start 

To reset Openflow (erase the FlowTables and reset the system): 

% ./etc/init.d/openflow restart 

To stop OpenFlow (erase the FlowTables and stop the system): 

% ./etc/init.d/openflow stop 

3. Launching the DMM Gateways: 

The DMM Gateways must launch its listener: 

 % ./../usr/udp_server  



51 
 

5.5. SOFTWARE DEVELOPED 

5.5.1. THE LOCAL CONTROLLER 
 

The OpenFlow controller (CLC) developed has to handle all the traffic through the district 
under its management and also communicate with the CRC to notify the attachment updates 
performed by it.To fulfill this, the execution has been divided in two threads. The main 
thread's function is to be the OpenFlow message listener and also has the active part of the 
communication with the CRC. That is when the communication is started by the CLC. The 
second thread only has the passive communication function. It waits listening to the CRC on an 
UDP port and acts only when it receives some orders. With those orders, it configures the 
Gateways to redirect the traffic during inter-district handovers. In [Figure 15: CLC OF listener's 
flow diagram] and [Figure 16: CLC UDP listener's flow diagram] the “Start” and “Define 
variables” are common, the two threads split in the “Start thread” box. 

 

The OpenFlow listener: 

The listener process is launched when the Controller is started. It will handle four network 
protocols: IPv6 and ICMPv6. Any packet received of a different protocol will be discarded. The 
first task done on a packet is to check its origin (if it is an incoming packet from the Internet or 
from an access point).If it comes from a host it checks if it is authorized or not. If it is not, the 
user will be blocked. Then it distinguishes between the two protocols admitted. When the 
message is ICMPv6 it means a new attachment, so it checks if that attachment comes from a 
handover (if that is the case, it removes the old path) and then installs the new path and 
answers the ICMPv6 message with the information necessary to continue the communication 
directly with the DMM Gateway. If it is an IPv6 message, it checks if the message comes from 
the gateway, if that is the case it installs the new path through the network to the Mobile 
Node. 

The operation described in [Figure 15: CLC OF listener's flow diagram]: 

1. The global variables of the CLC are defined such as the ACL, CLC, Gateway parameters or 
dictionaries. 

2. The second thread is launched. 

3. The CLC gets into listening mode waiting for incoming OpenFlow messages from the 
switches until one arrives. 

4. When a message arrives the CLC checks if the MAC is authorized in the network. 

5. If the MN's MAC is not authorized, that user is blocked and the packet is discarded. 

6. The CLC checks if the message is an IPv6 packet or ICMPv6 (RS). 



52 
 

7. If it is an RS first checks if the MN’s MAC address is registered in the BCE in order to 
determine if this is a new attachment to the network or an intra-district handover. 

8. If the MN is not in the BCE, the CLC asks the CRC if the MN is in its cache in order to 
determine if it is a first attachment to the region o an inter-district handover. For that it 
creates a TCP message containing an “ask” identifier, the MN’s MAC address and the IPv6 of 
the district’s DMM Gateway. 

9. The MN waits to the answer of the CRC, when it receives it checks if it is a “known MN” or 
“unknowns MN”. 

10. If the answer is “unknowns MN” means that it is a first attachment to the region so the CLC 
adds the MN to its BCE. In order to make the memory access atomicity, the CLC listener will 
lock a thread before modifying the BCE and release it after doing it. 

11. The CLC answers with RA filled using the prefix given by the CRC if the message received 
was a “known MN” or generate a new one if the message was “unknown MN”. 

12. If the answer is “known MN” means that the MN is roaming from another district so the 
CLC creates an IPv6 over IPv6 tunnel end. The traffic redirection is done by source routing, that 
implies 3 steps: create the tunnel, add a default rule for all the traffic coming from the MN on 
a customized routing table, and an order in that table of forwarding all the MN’s traffic 
through the tunnel. 

13. The CLC calculates the shortest path through its district using Djikstra algorithm. 

14. The CLC notifies the CRC with the prefix assigned to the MN and the IPv6 address of the 
district’s DMM Gateway. 

15. If the MN is already stored in the BCE it means it is moving (repeated RS in different AP). So 
the CLC calculates the path to delete and sends the appropriate OpenFlow messages to 
remove Flow Entries on those switches. 

16. The CLC calculates the new path and sends the appropriate OpenFlow messages to add 
Flow Entries on those switches. 

17. If the message is IPv6 the CLC checks if it comes from the DMM Gateway or from the MN. 

18. If it comes from the DMM Gateway the CLC obtains from its BCE the AP where the MN is 
attached. 

19. The CLC calculates the path from the DMM Gateway to the AP and installs the appropriate 
Flow Entries on those switches. 



53 
 

 

Figure 15: CLC OF listener's flow diagram 

 

 



54 
 

The UDP listener: 

This thread is launched at the beginning of the OpenFlow listener execution. Its function is to 
create and destroy IPv6 tunnels between different districts when an inter-district handover 
happens. Its operation is tobe in a continuous wait state for an incoming message from the 
CRC. These messages contain parameters to modify the Gateways configuration. It can be an 
“Add” message containing the values of a remote Gateway so the CLC can create an IPv6 
tunnel between the remote Gateway and its own one, or a delete message with the values to 
delete a tunnel. 

The operation described in [Figure 16: CLC UDP listener's flow diagram]: 

1. The global variables of the CLC are defined such as the ACL, CLC, Gateway parameters or 
dictionaries. 

2. The second thread is launched. 

3. The CLC binds a TCP connection with the CRC. 

4.The CLC gets into listening mode waiting for incoming TCP messages from the CRC until one 
arrives. 

5. When a TCP message arrives the CLC unpacks it and checks if the order is to "add" or 
"delete" an IPv6 tunnel. 

6. If the order is to "delete" the CLC checks now if it has to delete it as the origin or the destiny 
of the tunnel. The difference lies in the source routing process, in where the route can be 
“from” or “to”. 

7. If the order is to "delete origin" the CLC generates an UDP message with the orders to delete 
the IPv6 over IPv6 tunnel from its origin. 

8. If the order is to "delete destiny" the CLC generates an UDP message with the orders to 
delete the IPv6 over IPv6 tunnel from its destiny. 

9. As the MN is not attached now to the network the CLC deletes it from the BCE. In order to 
make the memory access atomicity, the CLC listener will lock a thread before modifying the 
BCE and release it after doing it. 

10. The CLC sends the UDP message to the DMM Gateway. 

11. If the message is to create a tunnel the CLC removes the current MN's path through its 
district. For that it sends a message to those switches with the order “Delete Flow” associated 
to the MN’s MAC address and a wildcard. 

12. The CLC creates an UDP message with a string containing the necessary orders to create an 
IPv6 over IPv6 origin tunnel at the DMM gateway. The traffic redirection is done by source 
routing, that implies 3 steps: create the tunnel, add a default rule for all the traffic coming 
from the MN on a customized routing table, and an order in that table of forwarding all the 
MN’s traffic through the tunnel. 



55 
 

13.As the MN is not attached now to the network the CLC deletes it from the BCE. In order to 
make the memory access atomicity, the CLC listener will lock a thread before modifying the 
BCE and release it after doing it. 

14. The CLC sends the UDP message created in boxes 7 or 8 to the DMM Gateway. 

 

Figure 16: CLC UDP listener's flow diagram 



56 
 

5.5.2. THE REGIONAL CONTROLLER: 
 

The regional controller is a TCP listener that reacts to two different notifications. The first one 
is the ask message. It happens when a CLC asks the CRC if an incoming MN comes from a 
handover or not. If it is not, the CRC adds it to its BCE and notifies the CLC with an “unknown 
MN” answer. If the MN comes from a handover, it modifies its BCE and sends the appropriate 
messages to the two CLC involved so they can create the IPv6 Tunnel between them and 
redirect the traffic. The other kind of message is the notification. It comes when a CLC has 
ended the attachment process with a MN. The CLC sends this message to the CRC in order to 
notify the new connection parameters. 

 

The operation described in [Figure 17: CRC's flow diagram]: 

1. The global variables of the CRC are defined: TheCLC's TCP and UDP connection parameters, 
the MN's Cache and the IPv6-tunnel cache. It also starts listening on a TCP port connection. 

2.The CLC gets into listening mode waiting for incoming OpenFlow messages from the switches 
until one arrives, when that happens it unpacks the message. 

3. When a message arrives the CRC checks if the message is type "ask" or type "notify". The ask 
message indicates an unknown attachment at a district and is a request for the MN 
information (prefix, gateway) stored by the CRC. The notify message indicates the end of an 
attachment and reports the MN’s assigned values to the CRC. 

4. If the message is a "notify" (an update), the CRC corrects the attachment of the MN’s new 
district on its MN cache and also the Gateway when it is necessary. 

5. If the message is an "ask", the CRC checks if the MN is already on its MN cache or if the 
cache is empty. 

6. If the cache is empty or the MN is not in it, the CRC creates with an "unknown MN" type 
message, which contains only the “unknown MN” identifier character and empty data in all the 
other fields. 

7. If the MN is already in the cache an inter-district handover is happening. So the CRC checks 
in the tunnel cache if there exists a tunnel for that MN whose origin (a gateway) matches with 
the gateway reported in the ask message. If it doesn’t it means that the MN is moving from its 
home district to another (Roaming). In the other hand, if the gateways match, it means that 
the MN is coming back from its home district (Regression). 

8.If there is no regression, the CLC sends the appropriate messages to both (the old one and 
the new one) CLC's UDP listeners with the information necessary to create the IPv6 over IPv6 
tunnel between the DMM Gateways of the two districts (remote gateway, tunnel label and MN 
IPv6 address). After that it adds the IPv6 tunnel to its cache. 



57 
 

9.Once the tunnel is created, the CRC creates the CLC with a "known MN" type message 
containing the information necessary to answer the Router solicitation. That is, the prefix of 
the old district to keep global reachability without any change of IPv6. 

10. The CRC updates its cache with the new attachment of the MN. 

11.If the MN is performing regression, the CRC sends the appropriate messages to both (the 
old one and the new one) CLC's UDP listeners with the information necessary to delete the 
IPv6 over IPv6 tunnel between the DMM Gateways of the two districts (remote gateway, 
tunnel label and MN IPv6 address). 

12. The CRC pops the tunnel from its IPv6 tunnel cache. 

13. The CRC creates the answer message to the CLC with a "known MN" type message 
containing the information necessary to answer the Router solicitation with the prefix of the 
old district to keep global reachability without any change of IPv6. 

14.The CRC sends the answer message created in steps 6,9 or 13 to the CLCs via TCP protocol. 

 



58 
 

 

Figure 17: CRC's flow diagram 



59 
 

6. EXECUTION 
 

6.1. PERFORMANCE ANALYSIS: 
 

We successfully developed the test bed and performed normal PMIPv6 connections with the 
Internet through the OpenFlow network. We proceed now to measure and evaluate the 
results. 

 

6.1. MEASUREMENTS 
 

In order to test the efficiency of the solution we have measured some of the performance 
parameters. These measuresare taken to assess the solution and are focused to the three 
goals developed. The results are detailed in the following way: 

 

Attachment 
We had to measure the attachment timing to the network in order to evaluate the Controller’s 
ability to attach a host to the network and establish the routing path through it. The measures 
were obtained clocking the time taken at the MN between the Authentication Request sent 
and the Router Advertisement received. The breakout is detailed in the Annex section [Annex 
1: Attachment measures]. The statistical results are the following[Figure 15: Attachment 
measures CDF]: 

 

Figure 18: Attachment measures CDF 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65 0,7 0,75 0,8 0,85 0,9

Cu
m

ul
at

iv
e 

Di
st

rib
ut

io
n

Attachment Delay (s)



60 
 

 

Mean of the process (s) 0,349353033 
Variance 0,032268278 

 

 

Intra-district handover 

To measure the timing taken during an intra-district handover we have send a flow of echo 
packets through the OpenFlow network (from a district’s AP to its DMM Gateway), then we 
performed an intra-district handover and counted the packets lost. With that number and the 
timing between packets we can estimate how much time takes the system to recover 
connection during a handover. The breakout is detailed in the Annex section [Annex 1: Intra-
district measures]. The statistical results are the following [Figure 16: Intra-district measures 
CDF]: 

 

 

Figure 19: Intra-district measuresCDF 

 

Mean of the process (s) 0,64466667 
Variance 0,00526023 

 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,5 0,55 0,6 0,65 0,7 0,75 0,8 0,85 0,9

Cu
m

ul
at

iv
e 

Di
st

rib
ut

io
n

Handover delay (s)



61 
 

Inter-district handover 
To measure the timing taken during an inter-district handover we have send a flow of echo 
packets through the OpenFlow network (from a district’s AP to its DMM Gateway), then we 
performed an inter-district handover and counted the packets lost. With that number and the 
timing between packets we can estimate how much time takes the system to recover 
connection during a handover. The breakout is detailed in the Annex section [Annex 2: Inter-
district measures]. The timing is expected to be higher than the taken by the intra-district 
handovers due to the delay imposed by the IPv6 tunnel and the TCP communications between 
the CLCs and CRC. The statistical results are the following [Figure 17: Inter-district measures 
CDF]: 

 

Figure 20: Inter-district measures CDF 

 

Mean of the process (s) 1,328666667 
Variance 0,195977471 

  

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2 2,1 2,2

Cu
m

ul
at

iv
e 

Di
st

rib
ut

io
n

Handover delay (s)



62 
 

Throughput 
We have measured the throughput offered by the OpenFlow network using Iperf command. 
We started a connection between the MN attached to the OpenFlow network and the other 
host through the internet. We launched the Iperf server at the host and the client at the MN. 
The test was performed on TCP and UDP. In the following graphic [Annex 2: Throughput CPF] 
the statistical results are the following [Figure 18: Throughput without IPv6 tunnel CDF] 
contains the CDF when the measures were taken without the IPv6 tunnel and [Figure 19: 
Throughput with IPv6 tunnel CDF] contains the CDF of TCP (Blue) and (UDP) when there was an 
IPv6 tunnel: 

Without the IPv6 tunnel 

 

Figure 21: Throughput without IPv6 tunnel CDF 

 

TCP 
Mean of the process(Mbps) 5,946 

Variance 0,000804211 
 

UDP 
Mean of the process(Mbps) 6,1185 

Variance 0,000602895 
 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

5,85 5,9 5,95 6 6,05 6,1 6,15 6,2 6,25

Cu
m

ul
at

iv
e 

Di
st

rib
ut

io
n

Throughput (Mbps)



63 
 

With the TCP tunnel 

 

 

Figure 22: Throughput with IPv6 tunnel CDF 

 

 

TCP 
Mean of the process(Mbps) 5,7685 

Variance 0,004097632 
 

UDP 
Mean of the process(Mbps) 5,987 

Variance 0,000190526 
 

  

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

5,6 5,65 5,7 5,75 5,8 5,85 5,9 5,95 6 6,05

Cu
m

ul
at

iv
e 

Di
st

rib
ut

io
n

Throughput (Mbps)



64 
 

7. PROBLEMS 
In this section we list the different problems identified while implementing the solution: 

1. Memory space of the WRT54GL: As we chose Linksys WRT54GL as the device to turn into an 
OpenFlow switch, we found its specifications quite short for the tests. For example: A DMM 
Gateway with the Backfire image and all the necessary packagesinstalled (IPv6, IP-tunnel etc.) 
has no available memory to install the TCPDUMP package. This package is not mandatory for 
the network, but it is very useful to monitoring the traffic through that device. Some time we 
have been forced to add some additional devices to perform packet sniffing and guest what 
was happening in the network when it didn't work as expected. 

2. Ryu's Ofproto version: The first idea of this project was to develop an OpenFlow network 
whose switches perform IPv6 matching. That can be done with an OpenFlow 1.3 version or 
higher. Ryu provides support for this 1.3 version, but we didn't manage to run it at all. So, as 
we couldn't perform IPv4 matching, we decided to use 1.0 and modify the code to obtain MAC 
addresses from IPv6 link locals and perform a combination of MAC matching and input port 
Matching. On the switches, the original idea was to create a customized WRT54-GL image with 
OpenFlow 1.3 version but when we couldn't run it on the controller we decided to use the 1.0 
image provided by OpenFlow to the WRT54GL, the Pantou. 

3. TCP: We first tried to establish communications between the CRC and CLC using a secure 
TCP protocol. When the two programs were created, we tried to reduce the timing of any 
message exchange so we decided to switch TCP for UDP to reduce message exchanging. 

3. UDP listener: As the network was developed and tested modularly, a problem appeared 
when the communication between the CLC and the CRC was added to the code. This 
communication was planned to happen by an exchange of UDP messages. The problem 
appeared when we tried to listen to these UDP message in the CLC listener method. When the 
CLC sends a message that must be answered by the CRC it stopped its execution until the 
answer arrived. This was unacceptable. So we first developed a second program with the 
function of listening to the UDP messages from the CRC and perform the necessary actions on 
the Gateway and that solved the problem. But then another issue appeared. When a Mobile 
Node leaves a district, it must be removed from the BCE of that district's CLC's. The BCE is part 
of the code of the CLC so the second program was unable to access to that element. The final 
solution was to unify both programs in one. This was done by launching a second thread at the 
beginning of the execution of the controller. The problem was solved. 

4. SSH timing: The original idea of the DMM Gateway dynamic configuration by the CLCs was 
to perform it via SSH. The Controller performed SSH connections to the DMM Gateway and 
then launched the appropriate Unix commands to configure it. To achieve this we had to install 
open keys on the DMM Gateway in order to make the full process automatic. The problem 
appeared when we performed the first intra-district handover of all. The process takes from 
eight to nine seconds, but almost all of this time was expended on the SSH authentication 
performed on the DMM Gateway. The solution adopted for this was to change the SSH 
connection for an UDP listener on the DMM Gateway, always open to messages from the CLC. 
For this we only had to remove the SSH command from the subprocess (python package) and 
let the other commands in the same way. For the DMM Gateway we had to cross-compile a C 



65 
 

program and upload it. This program is a listener on an UDP port, when it receives a message it 
just executes it as a UNIX command. 

  



66 
 

8. PROJECT PLANNIG 
 

The project makes use of two main resources: a developer engineer and the director of the 
project. The engineer is in charge of the full development of the project and the Director is in 
charge of supervising and draws the lines of action. The time has been assigned to the 
engineer dividing the project’s development in these twelvephases: 

1. Study: We took the problem of mobility in dense networks and study the solutions proposed 
by the DMM Group and the definitions provided by CROWD. Then we studied SDN as a 
proposition to apply in the CROWD districts. 

2. Analysis: We analyzed OpenFlow as a valid and tested SDN implementation. We studied 
various SDN controllers with OpenFlow support and chose Ryu. 

3. Building: We build the first phase network with the four Linksys, the controller and the 
mobile node. 

4. Phase 1: We developed a python IPv4 CROWD Local Controller to be run over Ryu. 

5. Phase 1 test: We tested the IPv4 controller mobility in de district built (IPv4 intra-district 
mobility). 

6. Phase 2: We extend the controller with IPv6 management. 

7. Phase 2 test: We tested the IPv6 implementation and intra-district IPv6 mobility. 

8. Extension: We expanded the network duplicating the district and adding an element to have 
the function of a CROWD Regional Controller. 

9. Phase 3: We developed the software of the CROWD regional controller and adapted de 
CROWD Local Controllers with TCP communication with the CRC. 

10. Phase 3 test:We tested the full implementation and we performed handovers inter and 
intra-district to until we validate the operation of all the elements. 

11. Problem solutions: We found some performance problems. 

12. Validations: We evaluated the solution. 

 

The critic tasks are: Phase 1 due to the importance of adaptation to the OpenFlow operation, 
Phase 2 due to the complications derived of the IPv6 adaptation and Test 3 due to the bigger 
dimension of the network and the possible complications of the communication between the 
CLCs and CRC. These phases may be extended if they aren’t surpassed in time so we have 
assigned them some extra time. 



67 
 

 

St
ud

y

An
al

ys
is

Bu
ild

Ph
as

e 
1

Te
st

 1

Ph
as

e 
2

Te
st

 2

Ex
te

ns
io

n

Ph
as

e 
3

Te
st

 3

Pr
ob

le
m

s

Va
lid

at
io

n

1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4

SEPTEMBER

Month/Week

MAY

JUN

JULY

AUGUST

OCTOBER

NOVEMBER

DECEMBER

JANUARY

FEBRUARY



68 
 

Figure 23: Project's Gantt diagram 

The costs of the project have been expressed in hardware resources and human resources. 
The hardware resources prices are founded at amazon18, for the Engineer and Director’s cost 
per hour we have averaged market values from the telecommunications sector. The cost 
breakdown of the project is the following: 

 

 

Figure 24: Project’s accounting breakdown 

We have researched about the cost that an SDN development may have in order to place the 
costs of ours in the within a framework. We found some information at an article[23] about 
commercial SDN developments in 2013. The article describes a full SDN building but as we only 
developed the software we won’t consider services, security or training. In that framework the 
article places the SDN development between 7280 and 36340 euros (10000-50000 $). In that 
spectrum we can consider our project one of the cheapest extreme because our project didn’t 
reached the 10000 euros including the hardware resources and the overhead.  

                                                           
18www.amazon.com 

COST(€) UNITS/HOURS COST(€)

Linksys WRT54GL 51 8 408
Computers 499 2 998
Ethernet wire - Cat 5 (m) 0,55 15 8,25
Hubs 6,3 2 12,6
Laptop (Packet sniffer) 335 1 335
Laptop (Mobile Node) 110 1 110

1871,85
Number of hours

Engineer
Planification 9,25 90 832,5
Development 9,25 240 2220
Validation 9,25 10 92,5

Director
Planification 20 90 1800
Development 20 10 200
Validation 20 2 40

5185

Overhead 2678,61
9735,46

EXPENDITURE
Hardware resources

Human resources

Overhead

TOTAL

Cost per hour

TOTAL:

TOTAL:



69 
 

9. CONCLUSIONS AND ASSESSMENT 
 

We have studied which is the dense network mobility problem and what solutions are being 
proposed. We have analyzed the current protocols and what alternatives are being 
developed.We have chosen one of the DMM working group solutions which consist on 
developing a network with control plane distribution reusing the existing IPv6 extension such 
as MIPv6 and PMIPv6. We have developed a full implementation of an SDN network system: 
the hardware and the software, all in the framework of the dense network problem. That is 
traduced in two network elements (the CLC and the CRC) and a network test bed. With all that 
we have evaluated the ease and flexibility of an SDN implementation. 

The results were not as high as expected and we have analyzed the reasons for this. The code 
can be rewritten in a more efficient way by saving some timing switching some TCP 
communications for UDP ones and improving the message exchange between the network 
elements. Moreover, the full architecture showed very hardware-dependent and some 
elements showed bottlenecks when they had to handle big data flows. Also, the OpenFlow 
version used was the 1.0 and the 1.3 has been released now and it may produce faster and 
better performance than 1.0. So there is still much room for improvement and a wide space to 
optimize the software developed. 

The results of this project will help the CROWD Project as feedback, and it also will contribute 
to the development of the 802.1cf IEEE standard. 

 

9.1. SKILLS DEVELOPED 
From the beginning of the project to its end, we have developed some new skills as engineer 
and reinforced concepts on others acquired during the past few years. We have researched 
and learned about some of the most innovative trends in telecommunications such as SDN or 
DMM, and we also had to develop the software in python so we learned some notions of 
python programming. Moreover, we have applied some technologies that we already knew 
such as MIPv6, PMIPv6, UDP and TCP communication and system threads. In addition, the 
entire project has been developed over Linux so we increased our knowledge in Shell. 
Considering all this, we think has been a big addition to the knowledge acquired during the 
degree. 

  



70 
 

10. ANNEX 1: Measurements 
 

Table 1: Attachment measures 

 

 

 

Test Authentication Request Router Advertisement Blackout (s)
1 Feb 20, 2014 17:13:43.506166000 Feb 20, 2014 17:13:43.986924000 0,480758
2 Feb 20, 2014 17:24:29.449168000 Feb 20, 2014 17:24:29.536321000 0,087153
3 Feb 20, 2014 17:27:04.485332000 Feb 20, 2014 17:27:04.878686000 0,393354
4 Feb 20, 2014 17:28:05.520791000 Feb 20, 2014 17:28:05.888961000 0,36817
5 Feb 20, 2014 17:29:51.503938000 Feb 20, 2014 17:29:51.738390000 0,234452
6 Feb 20, 2014 17:31:19.768288000 Feb 20, 2014 17:31:20.062959000 0,294671
7 Feb 20, 2014 17:32:12.709318000 Feb 20, 2014 17:32:12.899180000 0,189862
8 Feb 20, 2014 17:33:11.693106000 Feb 20, 2014 17:33:11.829800000 0,136694
9 Feb 20, 2014 17:34:09.241664000 Feb 20, 2014 17:34:09.390708000 0,149044

10 Feb 20, 2014 17:34:56.857417000 Feb 20, 2014 17:34:57.059815000 0,202398
11 Feb 20, 2014 17:37:23.495038000 Feb 20, 2014 17:37:23.707556000 0,212518
12 Feb 20, 2014 17:38:51.149910000 Feb 20, 2014 17:38:51.410630000 0,26072
13 Feb 20, 2014 17:39:41.223944000 Feb 20, 2014 17:39:41.810565000 0,586621
14 Feb 20, 2014 17:40:35.496079000 Feb 20, 2014 17:40:36.072315000 0,576236
15 Feb 20, 2014 17:41:28.540749000 Feb 20, 2014 17:41:28.925769000 0,38502
16 Feb 20, 2014 17:42:04.379887000 Feb 20, 2014 17:42:04.590902000 0,211015
17 Feb 20, 2014 17:43:15.445765000 Feb 20, 2014 17:43:15.979206000 0,533441
18 Feb 20, 2014 17:46:05.635654000 Feb 20, 2014 17:46:06.383687000 0,748033
19 Feb 20, 2014 17:47:06.666244000 Feb 20, 2014 17:47:06.928884000 0,26264
20 Feb 20, 2014 17:47:40.663142000 Feb 20, 2014 17:47:40.966639000 0,303497
21 Feb 20, 2014 17:48:59.409150000 Feb 20, 2014 17:49:00.294848000 0,885698
22 Feb 20, 2014 17:49:46.923173000 Feb 20, 2014 17:49:47.350388000 0,427215
23 Feb 20, 2014 17:50:34.847925000 Feb 20, 2014 17:50:35.154106000 0,306181
24 Feb 20, 2014 17:51:59.122170000 Feb 20, 2014 17:51:59.511316000 0,389146
25 Feb 20, 2014 17:52:31.890312000 Feb 20, 2014 17:52:32.216312000 0,326
26 Feb 20, 2014 17:53:22.373949000 Feb 20, 2014 17:53:22.759154000 0,385205
27 Feb 20, 2014 17:53:58.009260000 Feb 20, 2014 17:53:58.316898000 0,307638
28 Feb 20, 2014 17:55:18.291389000 Feb 20, 2014 17:55:18.574335000 0,282946
29 Feb 20, 2014 17:56:59.053440000 Feb 20, 2014 17:56:59.216346000 0,162906
30 Feb 20, 2014 17:57:39.501702000 Feb 20, 2014 17:57:39.893061000 0,391359



71 
 

Table 2: Intra-district measures 

 

 

Test Timing (s) Packets missed Blackout time (s)
1 0,01 53 0,53
2 0,01 59 0,59
3 0,01 58 0,58
4 0,01 60 0,6
5 0,01 65 0,65
6 0,01 65 0,65
7 0,01 75 0,75
8 0,01 61 0,61
9 0,01 75 0,75

10 0,01 85 0,85
11 0,01 65 0,65
12 0,01 63 0,63
13 0,01 58 0,58
14 0,01 65 0,65
15 0,01 60 0,6
16 0,01 63 0,63
17 0,01 59 0,59
18 0,01 64 0,64
19 0,01 59 0,59
20 0,01 59 0,59
21 0,01 59 0,59
22 0,01 72 0,72
23 0,01 60 0,6
24 0,01 65 0,65
25 0,01 80 0,8
26 0,01 64 0,64
27 0,01 59 0,59
28 0,01 65 0,65
29 0,01 64 0,64
30 0,01 75 0,75



72 
 

Table 3: Inter-district measures 

 

 

Test Timing (s) Packets missed Blackout time (s)
1 0,01 67 0,67
2 0,01 94 0,94
3 0,01 198 1,98
4 0,01 77 0,77
5 0,01 177 1,77
6 0,01 60 0,6
7 0,01 119 1,19
8 0,01 162 1,62
9 0,01 90 0,9

10 0,01 67 0,67
11 0,01 87 0,87
12 0,01 188 1,88
13 0,01 189 1,89
14 0,01 197 1,97
15 0,01 130 1,3
16 0,01 160 1,6
17 0,01 168 1,68
18 0,01 212 2,12
19 0,01 163 1,63
20 0,01 129 1,29
21 0,01 188 1,88
22 0,01 114 1,14
23 0,01 160 1,6
24 0,01 100 1
25 0,01 113 1,13
26 0,01 122 1,22
27 0,01 126 1,26
28 0,01 99 0,99
29 0,01 118 1,18
30 0,01 112 1,12



73 
 

Table 4: Network throughput (Mbits/s) 

 

 

  

UDP (Mbps) TCP (Mbps) UDP (Mbps) TCP (Mbps)
1 6,12 5,95 5,98 5,83
2 6,19 5,9 6 5,72
3 6,18 5,93 6 5,79
4 6,11 5,91 5,97 5,79
5 6,12 5,96 5,98 5,85
6 6,13 5,96 6 5,75
7 6,12 5,95 5,99 5,81
8 6,11 5,9 6 5,76
9 6,12 5,92 5,98 5,75

10 6,11 5,96 5,98 5,82
11 6,1 5,96 5,98 5,75
12 6,11 6,01 6 5,64
13 6,1 5,96 5,99 5,83
14 6,11 5,98 6 5,79
15 6,09 5,95 5,98 5,72
16 6,1 5,95 6 5,88
17 6,11 5,94 6 5,79
18 6,11 5,98 5,97 5,64
19 6,12 5,91 5,99 5,77
20 6,11 5,94 5,95 5,69

Without IPv6 tunnel With IPv6 tunnel
Test



74 
 

11. REFERENCES 
 

[1] Thomas D. Nadeau, Ken Gray, “SDN: Software Defined Networks”, O’Reilly Media - 
August 2013. 

[2] “OpenFlow (Wikipedia): http://en.wikipedia.org/wiki/OpenFlow” 21 February 2014. 
[3] “Software-Defined Networking (Wikipedia): http://en.wikipedia.org/wiki/Software-

defined_networking” 21 February 2014. 
[4] C. Perkins, Ed. Tellabs, Inc. D. Johnson, J. Arkko “Mobility Support in IPv6”, IETF RFC 

6275 – July 2011: http://tools.ietf.org/html/rfc6275 
[5] “Mobile IP (Wikipedia): http://en.wikipedia.org/wiki/Mobile_IP”February 21, 2014. 
[6] S. Gundavelli, Ed. K. Leung, V. Devarapalli, K. Chowdhury, B. Patil “Proxy Mobile IPv6”, 

IETF RFC 5213 – August 2008: http://tools.ietf.org/search/rfc5213 
[7] “Proxy Mobile IP (Wikipedia): 

http://en.wikipedia.org/wiki/Proxy_Mobile_IPv”February 21, 2014 
[8] H. Chan “Requirements of distributed mobility management draft-ietf-dmm-

requirements-01”, IETF Internet-Draft – January 13, 2013 
[9] Hassan Ali-Ahmad, Claudio Cicconetti, Antonio de la Oliva, Martin Dräxler, Rohit 

Gupta, Vincenzo Mancuso, Laurent Roullet, Vincenzo Sciancalepore, “CROWD: An SDN 
Approach for DenseNets”http://www.ict-crowd.eu/ 

[10] Hassan Ali-Ahmad, Claudio Cicconetti, Antonio de la Oliva, Vincenzo Mancuso, Malla 
Reddy Sama, Pierrick Seite, Sivasothy Shanmugalingam “An SDN-based Network 
Architecture for Extremely Dense Wireless Networks: http://www.ict-
crowd.eu/downloads/ali-ahmad13sdn.pdf” February 21  2014 

[11] “OpenFlow: http://archive.openflow.org/” February 21 2014 
[12] “Ryu component-based software defined networking framework: 

http://osrg.github.io/ryu/” February 21 2014 
[13] “Ryu application API: http://ryu.readthedocs.org/en/latest/ryu_app_api.html” 

February 21 2014 
[14] “Pantou: OpenFlow 1.0 for OpenWRT: 

http://archive.openflow.org/wk/index.php/Pantou_:_OpenFlow_1.0_for_OpenWRT” 
February 21 2014 

[15] “OpenDaylight: http://www.opendaylight.org/” February 21 2014 
[16] “Open Daylight Project (Wikipedia): 

http://en.wikipedia.org/wiki/Open_Dailight_Project” February 21 2014 
[17]  “Getting involved in OmniRAN EC Study Group: 

http://www.ieee802.org/OmniRANsg/” February 21 2014 
[18] “OpenFlow Whitepaper: http://archive.openflow.org/documents/openflow-wp-

latest.pdf” February 21 2014 
[19]  "TCAM (Wikipedia): http://en.wikipedia.org/wiki/Content-

addressable_memory#Ternary_CAMs " February 21 2014 
[20]  "CAM (Wikipedia): http://en.wikipedia.org/wiki/Content-addressable_memory " 

February 21 2014 
[21] “Wireless MANs-WiMax: http://standards.ieee.org/about/get/802/802.16.html” 

February 21 2014 



75 
 

[22] “Top 5 items for your 2013 SDN budget: http://www.sdncentral.com/market/top-5-
items-for-your-2013-sdn-budget/2012/08/” February 21 2014 

[23] “Asymmetric Double-Agents Architecture for Fast Handoff and Efficient Routing: 
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5501871&url=http%3A%2F%2
Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5501871” February 21 
2014 

[24] P. Bertin, Servane Bonjour, and J.-M. Bonnin. A distributed dynamic mobility 
management scheme designed for flat ip architectures. In New Technologies, Mobility 
and security, 2008. NTMS ’08, pages 1-5, nov. 2008. February 21 2014 

[25] “Linksys WRT54G, WRT54GL, WRT54GS: http://wiki.openwrt.org/toh/linksys/wrt54g”. 
February 21 2014 


	INDEX
	LIST OF FIGURES
	ANNEX 1: Measurements
	LIST OF ACRONYMS

	2. INTRODUCTION
	3. MOTIVATIONS
	3.1. DENSE NETWORKS
	3.2. SDN

	4. STATE OF THE ART
	4.3. DMM
	4.4. OPENFLOW
	4.4.1. The OpenFlow protocol
	4.4.2. The switches
	4.4.3. Controller


	5.EXPERIMENTAL DEVELOPMENTS
	5.1. SOFTWARE
	5.1.1. Controller: Ryu
	5.1.2. Pantou OpenFlow implementation for OpenWRT

	5.2. PROCESS DESIGN
	5.2.1. The mobility process
	District attachment
	District handover
	Region attachment
	Region handover


	5.3. IMPLEMENTATION
	5.1.2. Actors

	5.4. HOW TO INSTALL
	5.4.1. RYU
	5.4.2. PANTOU
	5.4.3. ADDITIONAL CONFIGURATIONS:
	5.4.4. LAUNCH THE SYSTEM:

	5.5. SOFTWARE DEVELOPED
	5.5.1. THE LOCAL CONTROLLER
	5.5.2. THE REGIONAL CONTROLLER:


	6. EXECUTION
	6.1. PERFORMANCE ANALYSIS:
	6.1. MEASUREMENTS
	Attachment
	Intra-district handover
	Inter-district handover
	Throughput


	7. PROBLEMS
	8. PROJECT PLANNIG
	9. CONCLUSIONS AND ASSESSMENT
	9.1. SKILLS DEVELOPED

	10. ANNEX 1: Measurements
	11. REFERENCES

