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Abstract

The objective of this dissertation is to develop a comprehensive theoretical approach
to the role of the constitutive model on the dynamic radial deformations of nonlinear
elastic structures. Using 1D and 2D models, cylindrical and spherical thick-walled
shells are considered. These geometries are representative of man-made and natural
structures that can be found in a wide variety of engineering applications and biological
systems. Lead-rubber bearings, vibration isolators, peristaltic pumps, rubber bushings,
saccular aneurysms or arteries are examples of nonlinear elastic structures with spherical
and cylindrical geometries that are constantly subjected to all kinds of vibrational and
dynamic loads. The research, which starts by considering isotropic, incompressible
and rate independent constitutive models, is based on the systematic incorporation of
compressibility, viscosity and anisotropy in the description of the mechanical response
of the material. We investigate free and forced vibrations using different initial and
boundary conditions: (1) ab initio elastic stored and kinetic energies, (2) constant radial
pressures, (3) linearly time dependent radial pressures and (4) harmonic time dependent
radial pressures. While the isotropic and incompressible 1D elastic structures subjected
to constant pressure admit an analytical closed-form solution, all the other cases need to
be solved numerically. To this end, we have developed in this work a number of specific
numerical schemes. The overall outcome of this dissertation is to make it plain that
the constitutive model used to describe the mechanical behavior of thick-walled shells
plays a fundamental role in the nonlinear dynamics of such structures. In particular, we
have demonstrated the influence of the constitutive model on: (1) the loss of oscillatory
behavior of the structure, (2) the transition from periodic motions to quasi-periodic and
chaotic motions, (3) the nonlinear resonances of the shells, (4) the propagation of shock
waves within the structure and (5) the onset and development of cavitation instabilities.
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1 Introduction

This doctoral research aims to provide a comprehensive analysis of the dynamic behavior
of nonlinear elastic cylindrical and spherical structures subjected to dynamic loading. In
particular, this dissertation develops a rigorous theoretical approach on the influence of
the constitutive model in the large amplitude vibrations of these kind of structures when
subjected to a wide variety of loading conditions.

1.1 Research background and motivation

From natural rubber to synthetic elastomers, highly deformable elastic polymers have
become widely used in modern industry. All kinds of components such as: tires, shock
mounts, seals, couplings, bridge and building bearings, footwear, hoses, conveyor belts,
gloves, medical devices, adhesives, thread, tire curing bladders, caulking and sealants,
cable insulation, vibration isolators, pond liners, roofing membranes or lip seals of
ball-bearings, among others, are common applications of these materials. Most of
the aforementioned components and parts are subjected to vibrational or dynamic
deformations during their service life.

For instance, extreme dynamic loads are found in classical civil engineering appli-
cations: the so-called lead-rubber bearings (LRBs) are used for seismic isolation of
building bases (Datta, 2010). These devices, as the one presented in Fig. 1.1a, consist of
thin cylindrical layers of synthetic or natural rubber inserted between reinforced steel
plates with a metallic central lead core. During an earthquake the base of the LRB, which
is in contact with the ground, shakes laterally. The rubber layers combined with the steel
plates provide lateral flexibility to the bearing, helping to isolate the building foundations
from the ground movement. In addition, the lead plug dissipates the earthquake energy
by deforming plastically. Despite its lateral flexibility, provided by the rubber, these
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Introduction

devices remain very rigid in the vertical direction being able to support the weight of the
building or the bridge with very small axial deformations. Nowadays LBRs are one of
the most popular solutions to isolate structures from earthquake forces. Several buildings
located in areas with an increased risk of seismic activity such as the National Museum
and the Parliament of New Zealand, or the Civil Protection Center in Foligno, Italy
(see Fig. 1.1b), have been protected with this technology. The analysis of the dynamic
behavior of these devices is a complex task due to the nonlinearity of the problem arising
from both the mechanical response of the rubber (and from the lead core) and the large
deformations potentially reached during an earthquake. While great efforts have been
made in this direction (Hwang and Chiou, 1996; Hwang and Sheng, 1994; Mohan and
Krishnankutty, 2017; Robinson, 1982), modeling LBRs still remains as an open topic of
great interest in the field of Solids Mechanics.

(a) (b)

Fig. 1.1 (a) Schematic of a Lead-Rubber Bearing. Source: http://www.bridgestone.com
(b) Centro Operativo Emergenza e Formazione of the Civil Protection Center in Foligno
(Italy). The building is protected by 10 high-damping rubber bearings with a 1 m diameter.
Source: http://old.enea.it

Rubber bushings usually employed in vehicle suspension systems are also commonly
subjected to dynamic and vibrational loads (see Fig. 1.2). These devices, often made of
synthetic rubber or polyurethane, separates the faces of two metal parts while allowing
a certain amount of movement. Their main purpose is to add an extra damping effect
in the joint helping to isolate the chassis of the vehicle from the vibrations. Several
researchers have studied the nonlinear dynamics of these bushings in order to improve
their design (Coja and Kari, 2007; Kari, 2003; Karlsson and Persson, 2003; Sjöberg, 2002).

Another problem directly related to the dynamic response of elastomers is the
cavitation process that occurs in rubber under high triaxiality loading conditions. This
phenomenon is the main concern for tire manufacturers that see in cavitation a potential
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1.1 Research background and motivation

(a)

Rubber
bushings

(b)

Fig. 1.2 (a) Rubber bushings of a Porsche 993. Image source:
http://www.elephantracing.com. (b) Schematic representation of the position of
rubber bushings in a car. Image source: http://dsportmag.com

problem for the reliability of their products. Large hydrostatic stress states may lead
to the growth of inherent defects, which are present in most types of rubbers. In broad
terms, when rubber is subjected to critically large mechanical forces, these underlying
defects may suddenly grow elastically up to the point at which the surrounding polymeric
chains reach their maximum elongation. Beyond this point, defects may continue to grow
inelastically through a fracture process, i.e., by the irreversible creation of new surfaces.
Such defects can be of various natures (e.g., weak regions of the polymer network, actual
holes, dust particles) and of various geometries ranging from submicron to supramicron
in length scale (Gent, 1990). In their experiments, Yamabe et al. (2011) pressurized
cylindrical specimens of ethylene-propylene-diene-methylene (EPDM) transparent rubber
with hydrogen gas up to 10 MPa during 24 hours. During this time the gas diffused inside
the rubber defects. When they decompressed the specimens to 0.1 MPa, the defects in
the rubber were enlarged, becoming visible to an optical microscope (see Fig. 1.3). The
phenomenon of cavitation has drawn the attention of several researches mainly due to its
role as the initiator of internal damage in the material. The work of Gent and Lindley
(1959) provided the first explanation of the phenomenon of cavitation. The authors
carried out tensile tests on poker chip specimens of 20 mm diameter and thicknesses
ranging from 0.6 to 9.8 mm, made up of natural rubber, carbon-black filled natural
rubber, and a polybutadiene synthetic rubber. At smaller thicknesses, a clear kink in
the nominal macroscopic stress versus extension plot was observed On a post-mortem
examination of the rubber, they found that below the critical value of the stress, there was
no visible internal damage, while above this value, cracks were found. These experiments
have been repeated more recently by Bayraktar et al. (2008) who registered the damage
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.
Fig. 1.3 Optical microscope images of internal cracks of a specimen exposed to hydrogen
gas at 10 MPa: (a) during pressurization, (b) during decompression, (c)0 min after
decompression, (d) 1 min (e) 2 min (f) 3 min, (g) 4 min, (h) 5 min. Image source: Yamabe
et al. (2011)

evolution in NR (natural rubber) vulcanized and reinforced with carbon black and in
SBR (styrene-butadiene-rubber) specimens by using X-ray computed tomography (CT)
(see Figures 1.4 and 1.5). In an attempt to explain their experimental findings, Gent and
Lindley (1959) proposed to consider the cavitation as an elastic instability. In particular,
based on the analysis of Green and Zerna (1954) for thick spherical shells, Gent and
Lindley (1959) considered the elastostatic problem of the radially symmetric deformation
of a single vacuous spherical cavity of infinitesimal size embedded in the center of a
Neo-Hookean rubber ball and subjected to uniform hydrostatic pressure in its outer
face. They found that, as the applied pressure approaches the critical value, P = 5

2µ

where µ denotes the initial shear modulus of the rubber at zero strain, the size of the
cavity suddenly becomes finite. Given that this theoretical result agrees reasonably well
with some of their experimental observations, the pioneering work of Gent and Lindley
(1959) prompted a plethora of further experimental, theoretical, and computational
investigations (see, e.g., Ball (1982); Cho et al. (1987); Cristiano et al. (2010); Gent and
Park (1984); Hang-Sheng and Abeyaratne (1992); Kabaria et al. (2015); Kumar et al.
(2016); Lefevre et al. (2014); Lian and Li (2012); Lopez-Pamies (2008); Lopez-Pamies
et al. (2011a,b); Nakamura and Lopez-Pamies (2012); Oberth and Bruenner (1965);
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1.1 Research background and motivation

Poulain et al. (2017); Stringfellow and Abeyaratne (1989); Xu and Henao (2011) clearly
following their view of cavitation as an elastic phenomenon.

Furthermore, through direct comparisons with experiments, Lefevre et al. (2014) have
recently confirmed the prevailing belief that the nonlinear elastic properties of rubber
play a significant role in the phenomenon of cavitation. These comparisons have also
suggested that cavitation in rubber may possibly depend, in addition to the nonlinear
elastic properties of the rubber, on inertial effects and/or on the viscous dissipation innate
to rubber. The reason behind this claim is that the growth of defects into large cavities
takes place locally in time through an extremely fast process. Note that in Chapter 7 we
provide new insights into the relevance of inertial and viscous dissipation effects on the
onset of cavitation in rubber.

Rubber disk

Rigid plate

(a) (b)
.

Fig. 1.4 (a)Loading conditions in the Gent and Lindley (1959) poker chip experiments (b)
Post-mortem specimen of Natural Rubber. Image source: Bayraktar et al. (2008)

0% 5% 20% 50% 100%
.

Fig. 1.5 CT evolution of cavitation in Natural Rubber as a function of deformation. Image
source: Bayraktar et al. (2008)

Another promising technology attracting nowadays the attention of the scientific
community are the so-called electro-active polymers (EAPs). These materials present
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some activity (usually large changes in shape or size) when they are stimulated with
an electric field. The principal application of EAPs are as actuators, such as artificial
muscles (Bar-Cohen, 2000), tactile and haptic interfaces (Keplinger et al., 2010), energy
generation and harvesting (Chiba et al., 2009) or several types of sensors (Wang et al.,
2016). Numerous investigations have focused on quasi-static applications of EAPs.
However, one of the strengths of this technology is that the electric input provides a
precise control on the dynamic deformation of the structure, which makes it possible
to couple the movement of the EAP to any other sensor. Some applications involving
dynamic (oscillatory) behavior of these materials have arisen due to the latter. For
instance, an interesting idea is to use these devices to perform active vibration control
(AVC) of structures (Preumont, 2011). AVC is the active application of force in an
equal and opposite fashion to the forces imposed by external vibrations with the aim of
maintaining the structure virtually free of vibrations due to the cancellation of forces.
Many precision industrial processes cannot take place if the machinery is being affected
by vibrations. For example, the high level of accuracy required in the production
of semiconductor wafers, frequently used in the fabrication of integrated circuits and
solar cells, necessitate of a vibration-free environment (Wang et al., 2015). Since AVC
applications have only recently been considered for EAPs actuators, few studies have
been published in this regard (Kaal and Herold, 2011; Papaspiridis and Antoniadis, 2008;
Sarban et al., 2011; Sarban and Jones, 2010; Sarban et al., 2010; Zhao et al., 2016). These
seminal works are focused on the analysis of the non-linear dynamic response of these
devices. The inherent nonlinear effects in EAPs, coming from the nonlinear geometric
and constitutive responses of the polymer, demand a detailed study of the dynamical
behavior of these devices and the development of new concepts in control theory.

Moreover, a large amount of dynamic applications for nonlinear elastic materials
have arisen in the biomedical engineering field. Mechatronic systems with peristaltic-like
actuation capabilities, i.e., successive contractions that propagate in a wave down a tube
forcing the contents onward, are being developed for a variety of applications: spanning
from infusion pumps, microfluidic devices, and other biomedical systems (Dario et al.,
2000; Hu et al., 2002; Jaffrin and Shapiro, 1971). It should be highlighted the application
of these materials in external left-ventricular assist systems (LVAS). Classical
left-ventricular assist devices consist of a pump with one end attached to the left ventricle
of the heart and the other end to the aorta. Blood flows from the ventricle into the
LVAS and then it is pumped out into the aorta, where it then flows to the rest of the
body. This system helps a weak heart to prevent the congestive heart failure, which is
one of the deadliest diseases all over the world. Several patented designs such as the
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1.1 Research background and motivation

Thoratec’s HeartMater, the Baxter’sNovacorr, the Arrow Internationalr or the Inc.’s
LionHeartr are already available in the market. However, implanting an LVAS is a
dangerous operation that involves open heart surgery. Furthermore, there may exist
some problems related to the direct contact of blood with the machinery of the pump
(known as hemolysis). In order to solve these problems, and based on the pioneering
work of Shahinpoor (Carpi and Smela, 2009, Chapter 7), the idea of helping a weak
heart by compressing it from the outside with a soft and intelligent polymer has gained
acceptance in the medical community. Several geometries such as cylindrical peristaltic
pumps (see Fig. 1.6a) or a four-fingered device (see Fig. 1.6b) have been proposed by
different research groups. To increase the range of deformations that EAPs can withstand
under an electric field, conductive particles are added to these polymers; see e.g., Intanoo
et al. (2012). The constitutive modeling of these composite materials is a challenge
for the scientific community and many theories are currently being developed for the
homogenization and electro-mechanical coupling of these new polymers; see e.g., Lefèvre
and Lopez-Pamies (2017); Lefèvre and Lopez-Pamies (2017).

(a)

Heart muscle
Compression
fingers

Compression 
assemblyChest

Base
support

Stem

(b)
.

Fig. 1.6 (a)Three-ring peristaltic pump prototipe developed at the Integrated Actuators Labo-
ratory of the École Polytechnique Fédérale de Lausanne. Image source: https://actu.epfl.ch.
(b) Schematic of the four-fingered LVAS developed by Shahinpoor (2002). Image source:
Shahinpoor (2002)

To find the origins of the constitutive modeling of nonlinear elastic materials one must
go back in time several decades. The fundamental elasticity concepts were established in
the celebrated work of Green and Zerna (1954), which was extended in the decade of the
1980s to the field of biomechanics; see e.g., the pioneering work of Fung (1993). Since
then, the mechanical modeling of living (soft) tissues has been a subject of great interest
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Introduction

to the scientific community and remains one of the most active research topics in our days
(Holzapfel and Ogden, 2003; Li and Qian, 2013; Mollica et al., 2007; Payan, 2012). As an
example, let us comment here the nonlinear visco-elastic and anisotropic constitutive
model developed by Gasser et al. (2006) for the mechanical response of a human artery.
This constitutive model is based in the histology of a healthy elastic artery, such as the
one schematically illustrated in Fig. 1.7. With this model, Gasser et al. (2006) were able
to take into account, among other features, the statistic dispersion of the collagen fibers
orientations in the artery wall. This model has been proved to reproduce reasonably
well the mechanics of the human arteries under a variety of realistic loading conditions.
Note that arteries are subjected to dynamic (cyclic) loading conditions, governed by

collagen fibres
elastic lamina externa

collagen fibril
smooth muscle cell

elastic fibril
elastic lamina interna

endothelial cell

helically arranged fibre-
reinforced adventitial layer

transversely isotropic fibre-
reinforced medial unit

helically arranged fibre-
reinforced intimal layer

I M A

.
Fig. 1.7 Diagrammatic model of the major components of a healthy elastic artery composed
of three layers: intima (I), media (M), adventitia (A). Source: Gasser et al. (2006)

the heart rate, throughout our life. Thus, the analysis of their vibrational response has
aroused the attention of the scientific community. For instance, several publications
have discussed whether the dynamic loading induced by the pulsatile blood flow may
influence the enlargement and development of aneurysmal lesions. Aneurysms are
abnormal dilatations of vessels in the vascular system. They exist in two major forms
attending to their shapes: fusiform and saccular (see Fig. 1.8a). Fusiform aneurysms are
found mainly in the human abdominal aorta and saccular aneurysms are found mostly
in cerebral blood vessels. The Circle of Willis (see Fig. 1.8b) is the junction of the
four main arteries, two carotid arteries and two vertebral arteries, that supply the brain
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1.1 Research background and motivation

TYPES OF ANEURYSMS ATTENDING TO THEIR SHAPE

FUSIFORM ANEURYSM SACCULAR ANEURYSM

(a)

(b)

Fig. 1.8 (a) Types of aneurysms attending to their shape, adapted from
http://www.mountsinai.org. (b) Schematic representation of the Circle of Willis.
Source: http://www.joeniekrofoundation.com

with nutrition (especially oxygen and glucose). This loop of arteries is located at the
base of the brain and sends out smaller branch arteries to all the different parts of the
brain. The junctions where these arteries come together may develop weak spots. These
weak spots can balloon out and be filled with blood, creating the outpouchings of blood
vessels known as aneurysms. These sac-like areas may leak or rupture, spilling blood into
surrounding brain tissue. The Brain Aneurysm Foundation reports that 2 in 100 people
in the US have an unruptured brain aneurysm and the annual rate of rupture is about
8-10 per 100, 000 people. There is a brain aneurysm rupture every 18 minutes. Ruptured
brain aneurysms are fatal in about 40% of cases. Of those who survive, about 66%
suffer some permanent neurological deficit. Angiography or arteriography is a medical
imaging technique used to visualize the inside, or lumen, of blood vessels and organs of
the body, with particular interest in the arteries, veins, and the heart chambers. This
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is traditionally done by injecting a radio-opaque contrast agent into the blood vessel
and imaging using X-ray based techniques such as fluoroscopy. Fig. 1.9 presents an
angiography of ∼ 14mm saccular aneurysm located in the trunk of the basilar artery
reported by Buckle and Rabadi (2006).

Fig. 1.9 Angiography of ∼ 14mm saccular aneurysm located in the trunk of the basilar
artery. Source: Buckle and Rabadi (2006).

The question of whether mechanical instabilities, both static and dynamic, may cause
the enlargement and rupture of saccular aneurysms has been debated by the scientific
community during the last 40 years. Several researchers, such as Akkas (1990) and Austin
et al. (1989), pointed out that the existence of limit point instabilities (i.e. mathematical
bifurcations in the quasi-static response of the aneurysm) could be a reason for the
growth and rupture of this type of lesions. Alternatively, other authors like Jain (1963),
Sekhar and Heros (1981) and Sekhar et al. (1988) suggested that the pulsatile blood flow
could excite the natural frequency of the aneurysm making it dynamically unstable. This
hypothesis was supported by the results of Simkins and Stehbens (1973) and nan Hung
and Botwin (1975), who studied the elastodynamics of berry aneurysms and showed that
the natural frequency of this type of lesions may lie within the range of bruit frequencies
registered during surgery. Note that in Chapter 4 we analyze the occurrence of dynamic
instabilities in idealized intracranial saccular aneurysms subjected to pulsatile blood
flow and surrounded by cerebral spinal fluid. Moreover, other organs (e.g. brain, liver,
kidneys, etc) can also be subjected to dynamic loads under special circumstances such as
falls or traffic accidents. A great interest has recently arisen in the scientific community
to study and analyze the dynamic behavior of different biological structures (Chen
and Ostoja-Starzewski, 2010; David and Humphrey, 2003; Garcia-Gonzalez et al., 2017;
Haslach and Humphrey, 2004; Humphrey and Canham, 2000; Humphrey and Haslach,
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1.2 General objective and structure of the dissertation

2003; Sahoo et al., 2016; Wright et al., 2013). A better understanding of the mechanical
behavior of living tissue can be helpful in several applications such as the design of
bulletproof vests, helmets, prosthesis, or even the diagnosis and prevention of certain
diseases.

This introduction has brought to light the extensive use of elastomers in the production
of parts, components and devices, with application in many different industrial fields,
which have to face dynamic and vibrational loads during their daily operation. In
addition, we have described some examples in which (soft) biological tissues and organs
are also subjected to this type of loading conditions. So far, the dynamic behavior of
structures made of rubber-like and soft biological materials has not been studied in
sufficiently depth. As we have previously mentioned in this introduction, the analysis of
the dynamic behavior of these structures is especially complicated due to the geometrical
and material nonlinearities involved. Therefore, the objective of this dissertation, as it is
described in the next section, is to analyze the dynamics of nonlinear elastic structures
paying particular attention to the role played by the constitutive model used to describe
the mechanical response of the material.

1.2 General objective and structure of the disserta-
tion

The objective of this research is to present a systematic analysis of the nonlinear dynamics
of canonical structures, such as cylindrical and spherical thick-walled shells1, modeled with
different nonlinear elastic constitutive equations. Starting from a simple incompressible
and hyperelastic material, different sensitivities such as compressibility, viscosity, or
anisotropy are sequentially introduced in the constitutive behavior of the material. In
each case, the effect of the constitutive model on the dynamic response of the problem
at hand is analyzed. The cylindrical and spherical geometries, although simple, are the
canonical representation of most of the structures previously presented (see Figures 1.1,
1.2, 1.6a, 1.7 and 1.8a). The research conducted through this doctoral thesis is organized
as follows:

Part II of this document, which is constituted by chapters 3, 4 and 5, is focused on
incompressible and compressible isotropic hyperelastic constitutive models.

1Note that, although these structures are referred to as thick-walled shells, no two-dimensional
simplification of the balance equations has been used. The problem is formulated in a three-dimensional
way in all cases analyzed.
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In Chapter 3, the nonlinear vibrations of thick-walled cylindrical shells subjected to
radially symmetric dynamic inflation are analyzed. The shell material is taken to be
isotropic and incompressible within the framework of finite nonlinear elasticity. In
particular, Mooney-Rivlin and Yeoh constitutive models have been chosen to describe
the mechanical behavior of the cylinder. We have carried out a systematic comparison of
the results for both models when the cylinder is subjected to: (1) a constant pressure
and (2) a harmonic time-dependent pressure. In Chapter 4, the non-linear dynamics
of thick-walled spherical shells is analyzed. Specifically, the formulation is adapted
to analyze the occurrence of dynamic instabilities in idealized intracranial saccular
aneurysms subjected to pulsatile blood flow and surrounded by cerebral spinal fluid.
Finally, in Chapter 5 we investigate the role played by the material compressibility in
the oscillatory behavior of hyperelastic spherical shells subjected to dynamic inflation.
For this purpose, we carried out a comprehensive nondimensional numerical analysis
using: (1) a finite differences MacCormack’s scheme implemented in MATLAB and (2) a
finite elements model developed in ABAQUS/Explicit (ABAQUS/Explicit, 2014).

Part III of this dissertation is focused on incompressible, isotropic and viscous
hyperelastic constitutive models. In Chapter 6 the nonlinear vibrations of thick-
walled cylindrical shells subjected to radially symmetric dynamic inflation are analyzed.
Some specific dynamical features directly related to the viscosity of the constitutive
formulation, such as nonlinear resonance frequencies or the existence of scape bands in
the frequency diagrams of the structure are addressed. In Chapter 7 we provide insights
into the relevance of inertial and viscous effects on the onset of cavitation in rubber. To
this end, we consider the basic problem of the radially symmetric dynamic deformation of
spherical defects embedded in the center of spheres made up of an isotropic incompressible
nonlinear viscoelastic solid that is subjected to external hydrostatic loading. Based on this
simplified calculation, the limits of the loading rate from which the viscous and inertial
effects begin to play an important role in the problem of cavitation are determined.

Part IV of this document, composed only by Chapter 8, is devoted to the analysis
of the nonlinear bi-dimensional vibrations of a cylindrical shell structure subjected to ab
initio elastic stored and kinetic energies. Following Rubin and Jabareen (2007, 2010), we
use an anisotropic incompressible hyperelastic constitutive model to describe
the material behavior. We have shown that, depending on the geometry of the shell and
the material parameters, the response of the structure can be periodic, quasi-periodic or
chaotic.

14
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Finally, the fundamental concepts of Nonlinear solid Mechanics, required to conduct
the research described in the chapters above, are thoroughly defined in Chapter 2 (also
included in Part I). Moreover, Chapter 9 (included in Part V), presents the main
conclusions of this work, along with some research proposals for future works. The
references used to build this research are also given in Part V of this document.

1.3 Originality and quality of the research

The originality of this doctoral research derive from the thorough analysis, with unprece-
dented magnitude in literature, performed on the influence of the constitutive model in
the dynamic behavior of cylindrical and spherical (canonical) nonlinear elastic structures
subjected to a wide variety of loading conditions. Several constitutive formulations have
been investigated and the specific roles of compressibility, viscosity and anisotropy have
been identified. In particular, we have demonstrated the influence of the constitutive
model on: (1) the loss of oscillatory behavior of the structure, (2) the transition from
periodic motion to quasi-periodic and chaotic, (3) the nonlinear resonances diagrams of
the shells, (4) the propagation of shock waves within the structure and (5) the onset and
development of cavitation instabilities. The quality of this doctoral thesis is demonstrated
by the seven publications that shall come out from this research:

• Aranda-Iglesias D., Vadillo G., Rodríguez-Martínez J. A. Constitutive sensitivity
of the oscillatory behavior of hyperelastic cylindrical shells. Journal of Sound and
Vibration. 2015; 358: 199–216.

• Kumar A., Aranda-Iglesias D., López-Pamies O. Some remarks on the effects of
inertia and viscous dissipation in the onset of cavitation in rubber. Journal of
Elasticity. 2017; 126: 201–213.

• Aranda-Iglesias D., Vadillo G., Rodríguez-Martínez J. A., Volokh K. Y. Modeling
deformation and failure of elastomers at high strain rates. Mechanics of Materials.
2017; 104: 85–92.

• Aranda-Iglesias D., Vadillo G., Rodríguez-Martínez J. A. Oscillatory behavior of
compressible hyperelastic shells subjected to dynamic inflation: a numerical study.
Acta Mechanica. 2017; In press.

• Aranda-Iglesias D., Ramón-Lozano C., Rodríguez-Martínez J. A. Nonlinear reso-
nances of an idealized saccular aneurysm. Submitted for publication.
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• Aranda-Iglesias D., Rubin M. B., Rodríguez-Martínez J. A. Nonlinear axisymmetric
vibrations of a circular hyperelastic orthotropic plate. Submitted for publication.

• Aranda-Iglesias D., Rodríguez-Martínez J. A. Periodic, quasi-periodic and chaotic
motion of hyperelastic spherical shells subjected to time dependent inflation. In
preparation.

Note also that three of these papers are joint works with renowned scientists within
the field of Solid Mechanics who belong to prestigious research Universities: M. B. Rubin
and K. Y. Volokh from the TECHNION (Israel) and O. López-Pamies from the University
of Illinois at Urbana-Champaign (USA).
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2 Nonlinear solid mechanics

This chapter is devoted to introduce the fundamental principles of nonlinear solid
mechanics necessary for the further development of this dissertation. For the sake of
clarity, most of the demonstrations have been omitted and only the equations that will be
needed in further chapters are presented. For a more elaborative and inclusive discussion,
the reader is referred to Bergstrom (2015), Holzapfel (2000) and Ogden (1997), from
where this chapter has been adapted. The structure of the chapter is as follows: in
Section 2.1 we discuss the kinematic aspects of motion and deformation of a continuum
body both in Lagrangian and Eulerian descriptions. In Section 2.2 we introduce the
fundamental concept of stress. In Section 2.3 we provide the classical balance principles
and finally in Section 2.4 we introduce the general features of hyperelastic constitutive
models.

2.1 Kinematics

Let a deformable continuum body B consists of infinitely many material points P ∈ B
in the Euclidean space R3 at time t. During its motion the body changes its position
from the reference configuration Ω0 to the current configuration Ω, both named as space
regions occupied by the body B at different times. We agree subsequently that the
reference or undeformed configuration Ω0 coincides with the initial configuration at
time t = 0. As time evolves, a material point that occupies a position given by the vector
X in the reference configuration Ω0 moves to a new position given by the vector x in
the current configuration Ω. These two locations are related by the bijective and twice
continuously differentiable mapping χ such that

x = χ(X, t). (2.1)
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Material and spatial descriptions The material or Lagrangian description
is the representation of the main variables of the deformation process with respect to
the material coordinates (X1, X2, X3) and time t, which is given by Eq. (2.1). In this
description, we focus on the behavior of a particle while moving. On the other hand, the
spatial or Eulerian description is the characterization of the motion (or any other
quantity) in terms of the spatial coordinates (x1, x2, x3) and time t, which is given by
X = χ−1(x, t). In the Eulerian description, attention is focused on a fixed point in space,
analyzing its evolution as time evolves.

Following the definition of motion stated above, material velocity and material
acceleration of a body are introduced as follows

V (X, t) = ∂χ (X, t)
∂t

, A (X, t) = ∂V (X, t)
∂t

= ∂2χ (X, t)
∂t2

, (2.2)

while spatial velocity and spatial acceleration are given by

v (x, t) = V
[
χ−1 (x, t) , t

]
; a (x, t) = A

[
χ−1 (x, t) , t

]
. (2.3)

Remark. Throughout the different problems studied in this dissertation we found more
convenient to work with the material description rather than the spatial description.

2.1.1 Deformation gradient

Let us focus on the variations of size and shape of a body under a deformation from
the reference configuration Ω0 to the current configuration Ω. The relation between the
current infinitesimal line element dx to the initial infinitesimal line element dX is given
by

dx = F (X, t) dX, (2.4)

where the quantity F, referred to as the deformation gradient, is defined as follows

F (X, t) = ∂x
∂X

= ∂χ (X, t)
∂X

= Grad x (X, t) . (2.5)

The deformation gradient is the primary measure of deformation, and it establishes a
linear transformation that generates a vector dx in the spatial description by the action
of the tensor F on the vector dX. Similarly, the current and the reference infinitesimal
volume elements dv and dV respectively, formed by the infinitesimal line elements dx
and dX are related by

dv = J (X, t) dV, (2.6)
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where J is the determinant of the deformation gradient F, known as the volume ratio.

J (X, t) = detF (X, t) > 0. (2.7)

2.1.2 Strain tensors

The deformation gradient introduced in the previous section is the fundamental kinematic
(second-order) tensor that describes the evolution of material elements during motion
in finite deformation kinematics. However, unlike displacements which are measurable
quantities, strain is an non-measurable concept introduced to simplify the analysis.
Therefore, different definitions and names of strain tensors have been proposed in the
literature over time. Throughout this section we briefly present the most commonly used,
namely: the right Cauchy-Green strain tensor C, the Green-Lagrange strain tensor E
and the left Cauchy-Green strain tensor b.

The length of the material line element dX at point X and time t = 0 changes from
dε to λdε at time t (see Fig.2.1). The quantity λ is called the stretch ratio or stretch,
and it can be defined as the length λ =|| λa0 || of the stretch vector λa0 in the direction
of the unit vector a0

λa0 (X, t) = F (X, t) a0. (2.8)

The stretch λ is a quantitative measure of the magnitude of vector λa0 and its value
provides information about the nature of the stretching, considering that it has been
extended, unstretched or compressed if λ > 1, λ = 1 or λ < 1, respectively. Taking the
square of λ and using definition (2.8) we have that

λ2 = λa0 · λa0 = Fa0 · Fa0 = a0 · FT Fa0 = a0 · Ca0, (2.9)

where
C = FT F. (2.10)

Tensor C is the right Cauchy-Green tensor, which is a strain measure in material
coordinates. This will be the strain measure mainly employed in the development of this
dissertation.

The change in vectors’ squared lengths is an alternative strain measure known as
tensor E or Green-Lagrange strain tensor

1
2
[
(λdε)2 − dε2

]
= dX · EdX, (2.11)
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Fig. 2.1 Deformation of a material line element in material description, adapted from
Holzapfel (2000).

where
E = 1

2
(
FT F − I

)
= 1

2 (C − I) . (2.12)

Alternatively, all these strain tensors can be defined in the spatial description if all
quantities are referred to the current configuration. In that case, the stretch vector λa in
the direction of the unit vector a is

λ−1
a (x, t) = F−1 (x, t) a, (2.13)

where the length of the inverse stretch vector λ−1
a is the inverse stretch ratio λ−1.

Following the same procedure as in the material description, the square of the inverse
stretch ratio is

λ−2 = λ−1
a · λ−1

a = F−1a · F−1a = a · F−T F−1a = a · b−1a, (2.14)
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where b−1 = F−T F−1 is the inverse of the left Cauchy-Green tensor b defined by

b = FFT . (2.15)

2.1.3 The rate of deformation tensors

In this section we briefly introduce the spatial and material velocity gradients and their
decompositions. To that end, let us take the gradient of the spatial velocity field v (x, t)
in the spatial description

l (x, t) = ∂v (x, t)
∂x

= gradv (x, t) , (2.16)

where the second-order and non-symmetric tensor l is called spatial velocity gradient.
Now the operation can be repeated in the material description to obtain the material
velocity gradient. If we take the material time derivative of the deformation gradient
F, we have that

Ḟ (X, t) = ∂

∂t

(
∂χ (X, t)
∂X

)
= ∂

∂X

(
∂χ (X, t)

∂t

)
=

= ∂V (X, t)
∂X

= GradV (X, t) . (2.17)

Using equations (2.2), (2.3) and (2.16), the spatial velocity gradient l can be rewritten
in the following useful form

l = ∂v
∂x

= ∂χ̇ (X, t)
∂X

∂X
∂x

= ḞF−1. (2.18)

Furthermore, the spatial velocity gradient can be decomposed into a symmetric and
skew symmetric part as

l (x, t) = d (x, t) + w (x, t) , (2.19)

where
d = 1

2
(
l + lT

)
= 1

2
(
gradv + gradT v

)
= dT , (2.20)

w = 1
2
(
l − lT

)
= 1

2
(
gradv − gradT v

)
= −wT . (2.21)

The symmetric part of the spatial velocity gradient l is the covariant second-order rate of
deformation tensor d and the skew symmetric part of l is the covariant second-order
spin tensor w.
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2.2 The concept of stress

Consider a deformable continuum body B occupying a space region Ω with boundary
surface ∂Ω at time t, as the one presented in Fig. 2.2. Let us assume some arbitrary
forces (external forces) acting on the boundary surface ∂Ω and a plane π dividing the
body B in two parts. Associated at each point x belonging to the (internal) separation
surface, we define a unitary outward normal vector n and an infinitesimal surface element
da. As a result of the interaction of both portions, forces are transmitted through the
(internal) plane surface generating a traction vector t at x. Here, t represents the Cauchy
(or true) traction vector (i.e., a force measured per unit of surface area defined in the
current configuration) exerted on da with outward normal n.

This configuration has its counterpart in the initial (undeformed) configuration
where the body B occupies a space region Ω0 with boundary ∂Ω0. In the undeformed
configuration, the position vector, normal vector and surface element are denoted by X, N
and dA, respectively. The traction vector T in the reference configuration represents the
first Piola-Kirchhoff (or nominal) traction vector (i.e., a force measured per unit surface
area defined in the reference configuration). Assumed the Cauchy’s fundamental
postulate, the stress vectors t and T depend on the surfaces π and π0 only though the
(unit) normals n and N to the considered surfaces, as indicated in Fig. 2.2

We now state Cauchy’s theorem: provided it is continuous in x, the stress vector
t(x,n) depends linearly on n; i.e., there exist a second order tensor field σ independent
of n such that

t(x, t,n) = σ(x, t)n, (2.22)

where σ denotes a symmetric spatial tensor field called the Cauchy (or true) stress
tensor (the symmetry proof can be found in Holzapfel (2000)). Equivalently, in the
reference configuration

T(X, t,N) = S(X, t)N, (2.23)

where S characterizes the non-symmetric first Piola-Kirchhoff (or nominal) stress
tensor. The relation between these stress tensors is given by (the proof is omitted).

σ = J−1SFT. (2.24)
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Fig. 2.2 Traction vectors acting on infinitesimal surface elements with outward unit normals,
adapted from Holzapfel (2000).

2.3 Balance principles

In this section we introduce the mass, linear momentum and angular momentum principles
that will be used in the problems analyzed in following chapters. Furthermore, we briefly
introduce the first law of thermodynamics in its simplified version where only mechanical
energy is considered.

2.3.1 Conservation of mass

From a non-relativistic point of view, mass cannot be produced or destroyed. So, if there
are neither mass sources nor mass sinks, the mass m of a body is a conserved quantity.
Considering a closed system, the previous statement can be mathematically expressed as

m =
∫

Ω0
ρ0(X)dV =

∫
Ω
ρ(x, t)dv = const > 0, (2.25)
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where ρ0 = ρ0(X) > 0 and ρ = ρ(x, t) > 0 are the reference and the spatial mass density
respectively. The previous expression can be stated in local form as

ρ0(X)dV = ρ(x, t)dv > 0. (2.26)

Continuity mass equation . Using the definition of the volume ratio dv =
J(X, t)dV and changing the independent space variable from x = χ(X, t) to X, the mass
balance Eq. (2.25) can be rewritten as∫

Ω0
[ρ0(X) − ρ(χ(X, t), t)J(X, t)] dV = 0. (2.27)

Taking into account that V is a generic volume of the solid, the previous equation must
be met at all material points, leading to the so-called continuity mass equation in the
material or Lagrangian description

ρ0(X) = ρ(χ(X, t), t)J(X, t). (2.28)

2.3.2 Balance of linear momentum

Consider a body B occupying a region Ω with boundary surface ∂Ω at time t. With the
motion defined by x = χ (X, t), the mass density by ρ = ρ (x, t) and the spatial velocity
by v = v (x, t), the total linear momentum L is defined as follows

L(t) =
∫

Ω
ρ(x, t)v(x, t)dv =

∫
Ω0
ρ0 (X) V (X, t) dV, (2.29)

in which the vector-valued function has been also expressed in the reference configuration
ρ0, V and dV .

Let us assume a structure of forces acting on the continuum body B consisting of:
(1) a Cauchy vector field t(x, t,n) acting on ∂Ω, as introduced in Section 2.2, and (2) a
spatial vector field b = b(x, t) called the body force1 acting on Ω. Then, the balance
of linear momentum for deformable bodies can be stated as: the sum of the surface
and volumetric forces acting on a body are equal to the time derivative of the linear
momentum of the body. So the global form of the balance of linear momentum in the
spatial description is

D

Dt

∫
Ω
ρvdv =

∫
∂Ω

tds +
∫

Ω
bdv. (2.30)

1Note that the symbol b should not be confused with the left Cauchy-Green strain tensor introduced
in Eq. (2.15)
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In the Lagrangian description the equivalent process leads to the following equation

D
Dt

∫
Ω0
ρ0VdV =

∫
∂Ω0

TdS +
∫

Ω0
BdV, (2.31)

where B = B (X, t) is the reference body force and T = T (X, t,N) is the Piola-Kirchhoff
traction vector introduced in Section 2.2.

Cauchy’s first equation of motion . Applying the integral form of the Cauchy’s
stress theorem, stated in equations (2.22) and (2.23), and the divergence theorem, which
converts the surface integral into a volume integral, we find that∫

∂Ω
t(x, t,n)ds =

∫
∂Ω

σ(x, t)nds =
∫

Ω
divσ(x, t)dv, (2.32)

where σ is the Cauchy stress tensor as introduced in Section 2.2. Substituting this result
into the balance of linear momentum equation (2.30), we find the so-called Cauchy’s first
equation of motion in global form∫

Ω
(divσ + b − ρv̇) dv = 0. (2.33)

Since this relation holds for any volume, it can be rewritten in local form as

divσ + b = ρv̇. (2.34)

Moreover, the previous expression has its counterpart in the material description

DivS + B = ρ0V̇, (2.35)

where S is the first Piola-Kirchhoff stress tensor in material coordinates as introduced in
Section 2.2.

2.3.3 Balance of angular momentum

Consider a body B occupying a region Ω with boundary surface ∂Ω at time t. The total
angular momentum J relative to a fixed point x0 is defined as

J(t) =
∫

Ω
[r × ρ(x, t)v(x, t)] dv =

∫
Ω0

[r × ρ0 (X) V (X, t)] dV, (2.36)
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where the position vector r is given by r(x) = x − x0 = χ (X, t) − x0 and the vector-
valued function has been also expressed in the reference configuration ρ0, V and dV .
Furthermore, the resultant moment M (t) in the spatial description corresponding to the
Cauchy vector field t(x, t,n) and the body forces b = b(x, t) introduced in the previous
section can be computed as

M(t) =
∫

∂Ω
(r × t) ds +

∫
Ω

(r × b) dv. (2.37)

Based on these definitions, the balance of angular momentum for deformable bodies can
be stated as: the sum of moments from surface and volumetric forces acting on a body
is equal to the time derivative of the angular momentum of the body. Therefore, in its
global form and spatial description, the balance of angular momentum is given by

D
Dt

∫
Ω

(r × ρv) dv =
∫

∂Ω
(r × t) ds +

∫
Ω

(r × b) dv. (2.38)

The equivalent form of the previous expression in the material description is given by

D
Dt

∫
Ω0

(r × ρ0V) dV =
∫

∂Ω0
(r × T) dS +

∫
Ω0

(r × B) dV. (2.39)

2.3.4 First law of thermodynamics

Consider a body B occupying a region Ω with boundary surface ∂Ω at time t. Let us
assume that the body has an internal heat generation per unit of current volume r, and
a heat flux q streaming through the body’s boundary to the surroundings. Furthermore,
the body is also subjected to the surface tractions t and body forces b introduced in
previous sections.

We now state the first law of thermodynamics (Bergstrom, 2015; IV and V, 2008):
the rate at which the energy increases in a system is equal to the sum of the rate of
heat supplied to the system and the rate of work done by the external forces. Previous
statement can be written as the following balance law in the current configuration

D
Dt

∫
Ω

(1
2ρv

2 + e
)

dv =
∫

∂Ω
(t · v − q · n) ds+

∫
Ω

(b · v + r) dv, (2.40)

or in material description as

D
Dt

∫
Ω0

(1
2ρ0V2 + e0

)
dV =

∫
∂Ω0

(T · V − Q · N) dS +
∫

Ω0
(B · V +R) dV, (2.41)
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where e and e0 are the internal energy per unit of current and reference volume, respec-
tively. Furthermore, the surface heat flux and volumetric heat generation in the reference
configuration have been denoted as Q and R, respectively.

By using Eq. (2.6) and provided that D/Dt(ρ J) = 0 (see Eq. (2.28)) we can transform
the left hand side of Eq. (2.40) as

D
Dt

∫
Ω

(1
2ρv

2 + e
)

dv = D
Dt

∫
Ω0

(1
2ρv

2J + eJ
)

dV =∫
Ω0

(
ėJ + eJ̇ + 1

2
D
Dt(ρ+ J)v2 + v̇ · vJρ

)
dV =∫

Ω
(ė+ e div v + ρ v̇ · v) dv.

(2.42)

Applying the divergence theorem, the rate of heat supply to the system and the rate of
work produced by the external surface forces can be rewritten as∫

∂Ω
−q · nds+

∫
Ω
r dv =

∫
Ω

(−div q + r) dv, (2.43)

∫
∂Ω

t · vds+
∫

Ω
b · v dv =

∫
Ω

(div σ · v + σ : d) dv. (2.44)

Introducing equations (2.42), (2.43) and (2.44) into Eq. (2.40) we obtain the following
expression∫

Ω
(σ : d − div q + r − [div σ + b − ρv̇] · v − ė− e div v) dv = 0, (2.45)

where, from the Cauchy’s first equation of motion (2.34), the quantity in brackets is
equal to zero. As the previous relation holds for any volume, it can be rewritten in the
local form

σ : d − div q + r = ė+ e div v. (2.46)

The previous expression can be deduced similarly in the reference configuration as

S : Ḟ − Div Q +R = ė0. (2.47)

Balance of Mechanical Energy . Throughout the problems presented in this
dissertation we will consider only mechanical energy; i.e, other forms of energy, such as
thermal energy, will be neglected. Under these conditions, the balance of energy is not
an additional statement to be satisfied, it is conversely a consequence of the Cauchy’s
first equation of motion stated in Eq. (2.34) and Eq. (2.35). However, due to its scalar
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character we have used the balance of mechanical energy in several occasions during this
dissertation, obtaining interesting results and conclusions, and therefore it is introduced
here.

Let us start defining the rate of external mechanical work Pext as the power
produced in the system by the surface tractions t and the body forces b

Pext (t) =
∫

∂Ω
(t · v) ds+

∫
Ω

(b · v) dv. (2.48)

By using the Cauchy’s stress theorem (Eq. 2.22) and the divergence theorem, the previous
equation can be rewritten as

Pext (t) =
∫

Ω
(div(σv) + b · v) dv =

∫
Ω

(σ : l + (divσ) · v + b · v) dv

=
∫

Ω
σ : d dv +

∫
Ω
ρv̇ · v dv =

∫
Ω

σ : d dv + D
Dt

∫
Ω

1
2ρv

2 dv

= Pint (t) + D
DtK (t) ,

(2.49)

where Pint is the stress power or the rate of internal mechanical work and K is
the kinetic energy of the body

K (t) =
∫

Ω

(1
2ρv · v

)
dv. (2.50)

Each term in the previous equation can be described in a reference or material
configuration. Therefore, the rate of internal mechanical work (stress-power) can be
rewritten as

Pint (t) =
∫

Ω0

(
S : Ḟ

)
dV =

∫
Ω0

tr
(
ST Ḟ

)
dV (2.51)

the external mechanical power as

Pext (t) =
∫

∂Ω0
(T · V) dS +

∫
Ω0

(B · V) dV (2.52)

and the kinetic energy as
K (t) =

∫
Ω0

(1
2ρ0V · V

)
dV (2.53)

where the stress power has been formulated using the conjugated pair: first Piola-Kirhchoff
stress tensor S and the rate of deformation gradient Ḟ.

Conservative systems . Let us consider a simplified case of the balance of
mechanical energy that will be of great interest in some of the problems analyzed
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throughout this dissertation. Let us define two scalar-valued functions called the total
strain energy (or internal potential energy) Uint and the potential energy of
the external loading (or external potential energy) Uext. A mechanical system is
called conservative if these functions satisfy

Pint (t) = D Uint (t)
Dt , Pext (t) = −D Uext (t)

Dt (2.54)

Under these conditions the balance of mechanical energy (2.49) implies that the sum of
the total potential energy Uint + Uext and the kinetic energy K remain constant during
the dynamical deformation process (χ)

Uint + Uext + K = const. (2.55)

2.3.5 Second law of thermodynamics

Following Bergstrom (2015) and IV and V (2008), we can state the second law of
thermodynamics2 as: the total production of entropy per unit of time of a thermally
isolated macroscopic system never decreases. Where, the total production of entropy per
unit of time Γ(t) can be computed as the rate of entropy accumulation in the system
minus the rate of entropy input through heat transfer minus the rate of entropy input
through volumetric heat generation, as indicated below.

Γ(t) = D
Dt

∫
Ω
η(x, t)dv +

∫
∂Ω

q
T

· nds−
∫

Ω

r

T
dv ≥ 0, (2.56)

Γ(t) = D
Dt

∫
Ω0
η0(X, t)dV +

∫
∂Ω0

Q
T0

· NdS −
∫

Ω

R

T0
dV ≥ 0, (2.57)

where η and η0 are the entropy of the system per unit current and reference volume,
respectively, and T , T0 are the temperature of the system in current and reference
configurations, respectively. The previous two equations are often referred to as the
Clausius-Duhem equation.

By using the divergence theorem, the local forms of the Clausius-Duhem equations
are given by

η̇ + η div v ≥ −div
(q
T

)
+ r

T
, (2.58)

η̇0 ≥ −Div
(Q
T0

)
+ R

T0
. (2.59)

2While the second law of thermodynamics is not a balance principle, we introduce it into this section
for the sake of brevity
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Clausius-Planck inequality and heat conduction . Let us rewrite Eq. (2.59)
eliminating the heat source R by means of Eq. (2.47) and expanding the divergence
operator3 as

S : Ḟ − ė0 + T0 η̇0 − 1
T0

Q · GradT0 ≥ 0 (2.60)

Assuming that heat always flows from warmer to colder regions, the entropy production
by heat conduction must be non-negative; i.e., −(1/T0)Q · GradT0 ≥ 0. Based on the
previous restriction, the Clausius-Duhem inequality (Eq. 2.60) leads to an alternative
stronger form of the second law of thermodynamics, often referred to as Clausius-Planck
inequality, which we present here only in material description.

Dint = S : Ḟ − ė0 + T0 η̇0 ≥ 0, (2.61)

where Dint ≥ 0 is the internal dissipation or local production of entropy.

2.4 Hyperelastic constitutive models

The so-called hyperelastic models are a type of non-linear elastic constitutive models
that are suitable for finite deformations and are commonly used to model a wide range
of materials including polymers, rubber-like materials and soft tissues. A hyperelastic
material (often referred to as Green-elastic material) postulates the existence of a
Helmholtz free-energy function ψ defined per unit of reference volume, such that

ψ = e0 − T0 η0. (2.62)

This thermodynamic potential measures the useful work that can be obtained from a
closed thermodynamic system at a constant temperature.

In this section we will focus on a purely mechanical theory, that is, thermal effects
are ignored and T0 and η0 are omitted from Eq. (2.62). Furthermore, let us consider
the case of homogeneous materials in which ψ is solely a function of the deformation
gradient ψ = ψ(F) or any other strain tensor, under these conditions ψ is referred to as
the strain-energy function or stored-energy function. The constitutive equation
of a hyperelastic material can be derived directly from the Clausius-Planck form of the
second law of thermodynamics (Eq. 2.61), which degenerates to an equality in the case

3Note that −Div
(

Q
T0

)
= − Div Q

T0
+ Q GradT0

T 2
0
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2.4 Hyperelastic constitutive models

of perfectly elastic materials.

Dint = S : Ḟ − ψ̇ =
(

S − ∂ψ(F)
∂F

)
: Ḟ = 0. (2.63)

Since F and Ḟ can be arbitrarily chosen, the expression in brackets must be zero, giving
the constitutive equation for a hyperelastic material

S = ∂ψ(F)
∂F

. (2.64)

The previous procedure is often referred to as the Coleman-Noll procedure (Coleman
and Gurtin, 1967; Coleman and Noll, 1963). By using the relation (2.24) we can write
the constitutive equation for the Cauchy stress tensor as

σ = J−1∂ψ(F)
∂F

FT = J−1F
(
∂ψ(F)
∂F

)T

. (2.65)

The constitutive equations (2.64) and (2.65) become more complex as we introduce
additional material characteristics such as strain rate dependence or anisotropy. To ease
reading this text, these enhanced hyperelastic constitutive models will be introduced in
further chapters as needed.

Assuming material isotropy, the strain-energy function can be expressed alternatively
in terms of the principal invariants of its argument

ψ = ψ(I1, I2, I3), (2.66)

where I1 = tr(C) = tr(b), I2 = 1
2 [(trC)2 − trC2] = 1

2 [(trb)2 − trb2] and I3 = J2.

Remark. Equation (2.66) will be the preferred form of the strain-energy function through-
out this document.

Incompressible hyperelastic materials . In several of the problems formulated
in this dissertation it will be assumed that the material is incompressible during the
deformation process, i.e., J=1. Under this assumption, it is necessary to complement
the constitutive equations (2.64) and (2.65) with a Lagrange multiplier p so they remain
bijective. Let us define the incompressible strain energy as

ψ = ψ(F) − p(J − 1). (2.67)
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Then, following the Coleman-Noll procedure, the first Piola-Kichhoff and Cauchy stress
tensors can be deduced to be

S = ∂ψ(F)
∂F

− pF−T , σ = ∂ψ(F)
∂F

FT − pI = F
(
∂ψ(F)
∂F

)T

− pI. (2.68)

Compressible hyperelastic materials . Chapter 5 of this dissertation is devoted
to the analysis of the effect of compressibility in the oscillatory behavior of thick-walled
hyperelastic spherical shells. The compressible constitutive equations presented in Chapter
5 will follow the volumetric-isochoric multiplicative decomposition of the deformation
gradient (Flory, 1961)

F =
(
J1/3I

)
F, C =

(
J2/3I

)
C, b =

(
J2/3I

)
b, (2.69)

where
(
J1/3I

)
and

(
J2/3I

)
are associated with the volume-changing deformations, while

F, C = FT F and b = FFT are associated with the volume-preserving deformations.
Let us assume, based on the previous kinematic decomposition, a strain energy

function of the form
ψ(F) = ψvol(J) + ψiso(F), (2.70)

where ψvol(J) and ψiso(F) describe the volumetric and isochoric elastic response of
the material, respectively. Provided Eq. (2.70), the constitutive equations for the
compressible hyperelastic material are given by (2.64) and (2.65).

Assuming material isotropy, the strain energy function (2.70) admits the following
representation in terms of strain invariants

ψ = ψvol(J) + ψiso(I1, I2), (2.71)

where I1 = J−2/3I1, I2 = J−4/3I2 and I3 = 1 are the principal invariants of the isochoric
strain tensors C and b.
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Part II

1D finite vibrations of isotropic
hyperelastic structures
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3 Incompressible isotropic hyperelastic
cylindrical structures

Periodic, quasi-periodic and chaotic motion

This chapter is devoted to the analysis of the nonlinear vibrations of thick-walled
cylindrical shells subjected to a radially symmetric dynamic inflation. The material
is taken to be isotropic and incompressible within the framework of finite nonlinear
elasticity. In particular, Mooney-Rivlin and Yeoh constitutive models have been chosen
to describe the mechanical behavior of the cylinder. We have carried out a systematic
comparison of the results for both models when the cylinder is subjected to (1) a constant
pressure in the radial direction and (2) a harmonic time-dependent pressure. Our analysis
reveals the complexity of the oscillatory behavior of this structure despite its geometrical
simplicity and the substantial differences between the constitutive models; even though
both Helmholtz free-energy functions have been calibrated using the same experimental
data.

3.1 Introduction

The analysis of the dynamic behavior of incompressible hyperelastic shells aroused the
interest of the scientific community thanks to the pioneering works of Knowles (1960,
1962). In these papers Knowles investigated for the first time the large-amplitude radial
oscillations of a very long thick-walled cylindrical tube. Namely, the problem of free
oscillations with arbitrary amplitude was considered in Knowles (1960) and the problem
of forced oscillations with Heaviside step pressure boundary condition was explored
in Knowles (1962). Shortly after, Zhong-Heng and Solecki (1963) inspected the large
amplitude vibrations of thick-walled spherical hyperelastic incompressible bodies. The
work of Zhong-Heng and Solecki (1963) was later revisited, and adapted to the thin-walled
spherical shell by Wang (1965).
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In any of these seminal works, due to the incompressibility of the material, the
problem at hand was reduced to that of an autonomous motion of a system with a
single degree of freedom. Thus, the emphasis of Knowles (1960, 1962); Wang (1965);
Zhong-Heng and Solecki (1963) was on obtaining exact expressions for the period of
oscillations while, due to the severe (geometrical and material) nonlinearity of these
problems (Shahinpoor and Balakrishnan, 1978), the actual states of strain and stress were
not determined. Significant efforts were made over the following years to get rid of this
incompleteness and provide a full description of the stress, strain and displacement fields
of the problems at hand. In this regard, it is worth mentioning the work of Nowinski
and Wang (1966) and the series of papers by Shahinpoor and co-workers (Balakrishnan
and Shahinpoor, 1977, 1978; Shahinpoor, 1972b; Shahinpoor and Balakrishnan, 1978;
Shahinpoor and Nowinski, 1971) that were focused on obtaining complete solutions for
the full set of field variables involved in these problems. The great interest raised during
the 60’s and 70’s by the nonlinear oscillations of hyperelastic shells has continued to the
present, as detailed in the recent review of Alijani and Amabili (2014). Furthermore, in
recent years, we have to emphasize the contributions of Beatty (2011a,b), Verron et al.
(1999, 2001) and Humphrey and co-workers (David and Humphrey, 2003; Haslach and
Humphrey, 2004; Shah and Humphrey, 1999) who investigated the stability of thick
and thin-walled cylindrical and spherical shells subjected to dynamic inflation. The loss
of stability (loss of oscillatory behavior) was identified as a key factor that limits the
capacity of hyperelastic shells to withstand large deformations under dynamic loading.

All the authors cited in previous paragraphs have raised (at least up to some extent)
the key role played by the constitutive model in the dynamic response of hyperelastic
shells, and specifically in the critical conditions which lead to the loss of stability of
the structure. In this regard, we have to mention the latest works of Gonçalves et al.
(2009) and Soares and Gonçalves (2012, 2014), who made a thorough investigation of
the nonlinear vibrations of circular, annular and rectangular hyperelastic membranes.
The authors showed the constitutive sensitivity of these problems using different strain
energy functions calibrated with the same experimental results. In the words of Soares
and Gonçalves (2014) the choice of an appropriate constitutive law is a key step in the
mathematical modeling of hyperelastic materials. This statement is further supported
by Selvadurai (2006), who studied the role played by the constitutive model on the
deflection of hyperelastic membranes. Selvadurai (2006) concluded that the selection
of an appropriate (accurate) strain energy function becomes especially relevant when
the objective is to model the large strain behavior of hyperelastic solids. Moreover,
this conclusion is in line with the main outcome derived from the work of Lacarbonara
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et al. (2014), who showed the key role played by the material nonlinearity in the flexural
vibrations of elastic rings. In addition, Antman and Lacarbonara (2009) and Lacarbonara
and Antman (2012) have shown the critical influence that material compressibility and
viscosity have on the radial motions of cylindrical and spherical shells.

As it can be deduced from all the references stated in previous paragraphs, the
problem of a cylindrical shell subjected to a radial Heaviside pressure in its boundary has
received great attention since the seminal works of Knowles (1960) and Knowles (1962).
However, of all the works previously cited, that of Antman and Lacarbonara (2009) is
the only one to consider periodic forcing on a cylindrical shell. As it will be analyze in
this chapter, if periodic forcing is considered, the governing system of equations becomes
non-autonomous, complicating the analysis of the dynamic response of the structure.
Under these conditions the system presents not only periodic but quasi-periodic and
chaotic solutions.

Hence, moved by these works which pointed out the constitutive sensitivity of the
oscillatory behavior of hyperelastic shells, in this chapter we revisit the original problem
of Knowles (1960, 1962) under two different loading conditions (1) a constant pressure
in the radial direction and (2) a harmonic time-dependent pressure. Two constitutive
models, Mooney-Rivlin and Yeoh, calibrated with the same set of experimental data (see
Bucchi and Hearn (2013a,b)), are taken into consideration. A methodical confrontation
of the results obtained from both constitutive models raises their influence on the
dynamic response of the cylindrical shell. Thus, we have obtained the initial, loading
and geometrical conditions which, depending on the constitutive model, impede the
oscillatory response of the shell. In addition, for the specific cases in which the shell
shows periodic motion we have explored the influence of the constitutive model in the
period of the oscillations. Furthermore, we have analyzed the Poincaré sections in the
case of periodic forcing for different boundary conditions, giving a complete description
of the orbit topologies and analyzing their stability.

3.2 Problem formulation

In this section we formulate the problem of a thick-walled cylindrical shell subjected
to radially symmetric dynamic inflation. The material is taken to be isotropic and
incompressible, within the framework of finite nonlinear elasticity. The main features
of the mathematical derivation are presented, while further details can be found in the
pioneering works of Knowles (1960, 1962).
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Recall from Chapter 2 that the current position vector x in the deformed configuration
Ω ⊂ R3 at time t of the material point that occupies the location X ∈ Ω0 is given by
x = χ(X, t), where χ is a bijective and twice continuously differentiable mapping. The
associated deformation gradient, right Cauchy-Green strain tensor and volume ratio at
X ∈ Ω0 are denoted by

F(X, t) = Grad χ(X, t), C(X, t) = FT(X, t)F(X, t),
J(X, t) = detF(X, t).

(3.1)

Moreover, the balance of linear momentum in the material description requires that

Div S(X, t) = ρ0χ̈(X, t) in Ω0, (3.2)

where the dots denote differentiation with respect to time, S stands for the first Piola-
Kirchhoff stress tensor, and ρ0 is the constant1 mass density of the shell material in its
undeformed configuration Ω0.

3.2.1 Constitutive model

Two isotropic incompressible nonlinear elastic models are considered for the shell material.
They both respond to the following polynomial strain-energy function2

ψ(I1, I2) =
N∑

i,j=0
Cij(I1 − 3)i(I2 − 3)j, (3.3)

where Cij are empirically determined material parameters and I1 = tr(C), I2 =
1
2 [(trC)2 − trC2] are the first and second invariants of the right Cauchy-Green strain
tensor. Namely, we use the so-called Mooney-Rivlin and Yeoh models.

ψM(I1, I2) = CM10(I1 − 3) + CM01(I2 − 3), (3.4)

ψY(I1, I2) = CY10(I1 − 3) + CY20(I1 − 3)2 + CY30(I1 − 3)3. (3.5)

Moreover, from Bucchi and Hearn (2013b) we take CM10 = 210587.307 MPa, CM01 =
1504.76719 MPa for the Mooney-Rivlin and CY10 = 190592.559 MPa, CY20 = −1634.89996
MPa, CY30 = 41.3399927 MPa for the Yeoh model. These material constants correspond to
vulcanized rubber and were originally reported by Treloar (1944). These two constitutive

1The focus of this work is on homogeneous solids thus the choice of constant mass density ρ0.
2Throughout this work we consider isothermal conditions.
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models are selected because they have different functional dependence on F, which allows
to explore the influence of the constitutive model in the oscillatory behavior of the
cylindrical shell.

3.2.2 Radially symmetric dynamic deformation

Let us define the reference configuration Ω0 of the thick-walled cylindrical shell by the
polar coordinates {R,Θ, Z} such that

A ≤ R ≤ B, 0 ≤ Θ ≤ 2π, 0 ≤ Z ≤ L. (3.6)

If we restrict our attention to radially symmetric motions with plane strain in the Z

direction, the current geometry is given by

a(t) 6 r(R, t) 6 b(t), θ = Θ, z = Z, (3.7)

where {r, θ, z} are cylindrical polar coordinates in the current configuration Ω (see Fig.
3.1). Under these conditions the deformation gradient can be expressed in a right-handed
vector basis {er, eθ, ez} of a cylindrical polar coordinate system (see Appendix A) as
follows

F =
(

1
λ(R, t)

)
er ⊗ er + λ(R, t) eθ ⊗ eθ + ez ⊗ ez, (3.8)

where the principal stretches corresponding to the directions {r, θ, z} are given by

λr = ∂r(R, t)
∂R

, λθ = r(R, t)
R

= λ, λz = z

Z
= 1, (3.9)

and we have used the incompressibility restriction J = λr(R, t)λ(R, t) = 1. Similarly, the
first Piola-Kirchhoff stress tensor corresponding to the deformation gradient (3.8) can be
proved to be also of the spectral form

S = Sr(R, t) er ⊗ er + Sθ(R, t) eθ ⊗ eθ + Sz(R, t)ez ⊗ ez. (3.10)

The principal stresses Sr(R, t) and Sθ(R, t) are such that (see e.g. Ogden (1997))

Sθ(R, t) − Sr(R, t)
λ2(R, t) = W ′ (λ(R, t)) , (3.11)

where W ′ = dW (λ)
dλ

and W (λ) = ψ(I1, I2).
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Fig. 3.1 Schematic representation of the radially symmetric deformation process of a
thick-walled cylindrical shell

Under these conditions the balance of linear momentum (3.2) reduces to

∂Sr(R, t)
∂R

+ Sr(R, t) − Sθ(R, t)
R

= ρ0 r̈(R, t). (3.12)

Moreover, it follows from the incompressibility condition J = λr(R, t)λ(R, t) = 1 that

λ(R, t) =
(
B2

R2 (λ2
b(t) − 1) + 1

)1/2

, (3.13)

where λb(t) = b(t)/B stands for the circumferential stretch in the outer face of the cylinder.
The expression (3.13) can be alternatively written as λ(R, t) = (A2/R2(λ2

a(t) − 1) + 1)1/2

in terms of the stretch in the inner face of the cylinder λa(t) = a(t)/A. For our purposes
here, we find dealing with the form (3.13) in terms of the outer stretch λb(t) more
convenient. Taking the derivatives of Eq.(3.13) with respect to R and t we obtain the
following relations

∂λ

∂R
= −λ2 − 1

Rλ
, (3.14)

λ̈ = λ2 − 1
λ2

b − 1

 λ̇b
2 + λbλ̈b

λ
− λ2

b λ̇b
2

λ2
b − 1

λ2 − 1
λ3

 , (3.15)
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where function arguments are omitted here and in some of the subsequent devel-
opment to ease notation. At this stage, it proves convenient to rewrite the equation of
motion (3.12) with λ(R, t) as the independent space variable instead of R. With help of
the expressions (3.14) and (3.15), the result reads as

∂

∂λ

[
Sr

λ

]
= −

Sθ − Sr

λ2

λ2 − 1 + ρ0B
2
[

λ2
b λ̇

2
b

(λ2
b − 1)λ3 − λ̇2

b + λbλ̈b

λ(λ2 − 1)

]
. (3.16)

Assuming now that the inner boundary (R = A) is subjected to a pressure Pa(t),
defined per unit of current area. While, the outer face (R = B) is subjected to a pressure
Pb(t) (see Fig. 3.1), the boundary conditions are given by

Sr(A, t) = −Pa(t)λa and Sr(B, t) = −Pb(t)λb, (3.17)

where Pa(t) and Pb(t) are any functions of choice (suitably well behaved). Hence,
integration of Eq.(3.16) with help of Eq.(3.17) and Eq.(3.11) yields

∆P =

(
λ2

b
−1

f0
+1
)1/2∫

λb

W ′(λ)
λ2 − 1dλ+ρ0B

2

2

[
ln
(

λ2
b

λ2
b + f0 − 1

)
λbλ̈b +

(
ln
(

λ2
b

λ2
b + f0 − 1

)
+ f0 − 1
λ2

b + f0 − 1

)
λ̇2

b

]
,

(3.18)

where we have introduced the non-dimensional parameters f0 = A2

B2 and ∆P = Pa(t) −
Pb(t).

Remark. To be noticed that f0 ∈ (0, 1) takes into account the thickness of the shell. In
the limit of f0 → 1 the classical expressions for a cylindrical membrane are recovered,
while the case of f0 → 0 corresponds to a solid cylindrical region.

At this point, it is interesting to introduce the following length, mass and time scales
in order to pose the problem in non-dimensional form

[L] = B, [M ] = ρB3, [T ] =
√
ρB2

CM10
, (3.19)

As a result, Eq.(3.18) can be rewritten as follows

∆P =

(
λ2

b
−1

f0
+1
)1/2∫

λb

W
′(λ)

λ2 − 1dλ+ 1
2 ln

(
λ2

b

λ2
b + f0 − 1

)
λbλ̈b + 1

2

(
ln
(

λ2
b

λ2
b + f0 − 1

)
+ f0 − 1
λ2

b + f0 − 1

)
λ̇2

b ,

(3.20)
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where ∆P = ∆P/CM10, W = W/CM10, and now a superposed dot denotes differentiation
with respect to the dimensionless time τ .

3.3 Sample results: autonomous system

In this section we consider the cylindrical shell subjected to a constant pressure

∆P = P H(t), (3.21)

where H(t) is the Heaviside function. Under these conditions, and upon multiplication
by 2λb, the equation of motion (3.20) can be rewritten as

2λb P = 2λb

(
λ2

b
−1

f0
+1
)1/2∫

λb

W
′(λ)

λ2 − 1dλ+ d
dλb

[
1
2 ln

(
λ2

b

λ2
b + f0 − 1

)
λ2

b λ̇
2
b

]
.

(3.22)

The previous expression can be integrated in time3 to obtain the energy equation

Uext + Uint + K = C, (3.23)

where

Uint =
λb∫

1

2ξ

(
ξ2−1

f0
+1
)1/2∫

ξ

W
′(λ)

λ2 − 1dλ dξ,

Uext = P (1 − λ2
b), K = 1

2 ln
(

λ2
b

λ2
b + f0 − 1

)
λ2

b λ̇
2
b ,

(3.24)

are the total strain energy, the potential energy of the external loading and the kinetic
energy of the cylinder, respectively 4 . The constant C can be computed from the initial
conditions as the energy at τ = 0. To simplify the analysis, the shell is assumed to
be initially in equilibrium and unstretched, λb(0) = 1 and λ̇b(0) = 0, which leads
to C = 0.

From Eq. 3.23 an expression for the phase portrait (λb − λ̇b) of the particle can be
explicitly obtained

λ̇b(λb) =

 Uext + Uint

1
2 ln

(
λ2

b
+f0−1
λ2

b

)
λ2

b


1/2

. (3.25)

3It should be noted that, under these conditions, dλb = λ̇bdτ
4Specifically, expressions (3.24) correspond to the non-dimensional energies except for a factor of πH

B
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To be noted that the motion is periodic if (and only if) the expression Uext + Uint has at
least two real roots. In that case, the non-dimensional period T can be calculated as

T =
λmax

b∫
λmin

b

λ̇−1
b (λb)dλb, (3.26)

with λmin
b and λmax

b being the minimum and maximum values of λb during the oscilla-
tion. These points can be calculated imposing the total potential energy to be zero
(Uext + Uint = 0).

Mooney-Rivlin constitutive model: assuming the Mooney-Rivlin model for the
cylinder material, the total strain energy is given by

Uint = (1 + CM01

CM10
)(λ2

b − 1) ln
(
λ2

b + f0 − 1
f0λ2

b

)
. (3.27)

Then, the minimum and maximum values of λb during the oscillation (i.e. the points in
which λ̇b = 0) can be calculated imposing the total potential energy to be zero

λmin
b = 1, λmax

b =
 f0 − 1
f0 exp

(
P

1+CM01/CM10

)
− 1

1/2

. (3.28)

For positive applied pressures (P > 0), the minimum value of λb corresponds to
the initial conditions and the maximum value of λb gives the maximum circumferential
stretch that can be reached during the periodic motion. The expression that defines the
critical pressure for which the shell shows oscillatory behavior is

P c+ = lim
λb→∞

(1 + CM01

CM10
) ln

(
λ2

b + f0 − 1
f0λ2

b

)
= (1 + CM01

CM10
) ln

(
1
f0

)
. (3.29)

For negative applied pressures (P < 0), the maximum value of λb is given by the initial
conditions. However, from Eq.(3.28) it can be proved that there is no bound for the
oscillatory behavior if the pressure is negative.

P c− = lim
λb→0

(1 + CM01

CM10
) ln

(
λ2

b + f0 − 1
f0λ2

b

)
= −∞. (3.30)
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Remark. To be noticed that, if the shell is not assumed to be initially in equilibrium
and unstretched i.e. (C ̸= 0), the calculation of P c+ leads to the same value, so the
oscillatory motion is lost for P > P c+ irrespective of the initial conditions.

Yeoh constitutive model: assuming the Yeoh model for the cylinder material, the
total strain energy is given by

Uint =
(
λ2

b − 1
)2

2CM10

[
2(CY2 − 3CY3)

(
1

f0 + λ2
b − 1 + 1

f0
− 1
λ2

b

)
−

2CY2 + CY3
(
λ2

b − 1
)( 1

f2
0

− 1
(f0 + λ2

b − 1)2 + 1
λ4

b

)
+ CY3

(
7 − λ2

b

)
+

2(CY1 − 2CY2 + 6CY3)
λ2

b − 1 ln
(
f0 + λ2

b − 1
f0λ2

b

)]
.

(3.31)

Following the same procedure as for the Mooney-Rivlin, it is easy to check that there
are no bounds in the oscillatory behavior of the cylinder for the Yeoh constitutive model
neither for positive nor negative applied pressures.

Figures (3.2a) and (3.2b) present the evolution of the potential energy (Uext + Uint)
with the circumferential stretch in the outer face of the shell (λb) for Mooney-Rivlin
and Yeoh constitutive models, respectively. Moreover, figures (3.2c) and (3.2d) present
the corresponding phase portraits, λ̇b versus λb. The bifurcation behavior predicted in
Eq.(3.29) can be observed in the case of the Mooney-Rivlin material model: the Uext +Uint

versus λb curves for applied pressures equal or greater than the critical one P c+ only
intersects once the λb axis which implies that the shell does not oscillate.

Fig. (3.3a) depicts the relation between the applied pressure (P ) and the maximum
stretch of the oscillation (λmax

b ) for both constitutive models investigated. For the Yeoh
material the curve first increases with λmax

b showing a concave-downwards shape, reaches
an inflection point for P = 0.54 and then increases again showing a concave-upwards
shape. This behavior is significantly different from the P − λmax

b corresponding to the
Mooney-Rivlin model that shows an concave-downwards shape no matter the value of
λmax

b and an horizontal asymptote at P = P c+.
Fig.(3.3b) presents the period of the oscillation (T ) versus the applied pressure (P )

for both constitutive models. For the Mooney-Rivlin model the period of the oscillation
increases monotonically with the applied pressure showing a concave-upwards shape
and vertical asymptote for P = P c+. For the Yeoh material the period increases with
the applied pressure up to P = 0.54. This value defines the maximum period of the
oscillation. To be noticed that P = 0.54 determines the inflection point in Fig.(3.3a).
For applied pressures greater than 0.54 the period decreases monotonically with P .
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Fig. 3.2 Bifurcation behavior for constant applied pressure for Mooney-Rivlin (Figs a and
c) and Yeoh (Figs b and d) constitutive models. Initial volume fraction f0 = 0.5.

3.4 Sample results: non-autonomous system

In the previous section we have restricted our attention to autonomous systems (constant
applied pressure). However, in many practical applications time dependent external forces,
including periodic inputs, are of great interest. In this section, a periodically forced non-
autonomous system of differential equations is analyzed. Poincaré sections and Lyapunov
exponents are used to determine (qualitatively and quantitatively, respectively) whether
the response of the structure is periodic, quasi-periodic or chaotic. In autonomous systems,
as the one analyzed in previous section, trajectories plotted in the phase space (λb, λ̇b)
cannot cross, and the Poincaré-Bendixon theorem implies that there is no possibility
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Fig. 3.3 (a) Relation between the applied pressure P and the maximum stretch in the outer
face of the shell λmax

b . (b) Evolution of the period T with the applied pressure P .

of chaotic behavior in two dimensions. On the other hand, if a time dependent force is
considered, the phase space increases in one dimension and periodic, quasi-periodic
and chaotic motions are possible.

The time dependent periodic applied pressure considered in this section is

∆P = P (1 + cos(ω τ)), (3.32)

where the non-dimensional frequency ω and the non-dimensional pressure P are given by
ω = ω

√
ρB2/CM10 and P = P/CM10.

The trajectories of a non-autonomous system subjected to a periodic loading can be
represented in terms of an autonomous flow in a torus. Calling x = λb, y = λ̇b, θ = ω τ ,
the non-dimensional equation of motion (3.20) can be rewritten as the following system
of three first order ordinary differential equations.

ẋ = y,

ẏ =
2∆P (θ) − 2

(
x2−1

f0
+1
)1/2∫

x

W
′(λ)

λ2−1 dλ−
(
ln
(

x2

x2+f0−1

)
+ f0−1

x2+f0−1

)
y2

ln
(

x2

x2+f0−1

)
x

,

θ̇ = ω.

(3.33)

This transformation highlights the fact that a non-autonomous system of order n can be
treated as an autonomous system of order n+1. Representing the phase space {x, y, θ}
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in cylindrical polar coordinates where x, y and θ are the radial, vertical and angular
coordinates, respectively, it can be proved that the trajectories are always confined in a
torus. As an example, Fig. 3.4a depicts the torus corresponding to f0 = 0.5, P = 0.3 and
ω = 1 with initial conditions (λb, λ̇b) = (1.7, 0) for the Mooney-Rivlin material model 5.
The red line corresponds to a quasi-periodic trajectory flowing around the torus with
non-dimensional period T = 2π/ω. Periodic and quasi-periodic trajectories will lie on
the surface of the torus, while chaotic trajectories penetrate inside the volume. This
structure of the solution naturally leads to the concept of the Poincaré section. The
Poincaré map (Fig. 3.4b) can be understood as the intersection of the torus with any of
the planes with θ = const. In other words, it is an stroboscopic view of the trajectory
in the (λb, λ̇b) plane at the points that satisfy τ = kT , being k a natural number. This
technique reduces the phase space trajectory of dimension n to a discrete mapping of
dimension n− 1 that contains all the dynamical information of the system. Below we

θ
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0.4

λ· b

λb

(b)

Fig. 3.4 (a) Three-dimensional torus in the (x, y, θ) phase space corresponding to a quasi-
periodic trajectory. (b) Poincaré section corresponding to the plane θ = 0.

present a list with the main ideas that come out from the Poincaré map representation:

• The Poincaré section might contain a single point, indicating a periodic orbit with
period T .

5These values have been selected for the sole purpose of presenting to the reader the structure of the
solution.
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• If the Poincaré section contains k isolated points, the corresponding trajectory is
periodic with period kT .

• A quasi-periodic trajectory will lead to close curves in the Poincaré maps (as the
one presented in Fig. 3.4b).

• A chaotic motion will show up filling a two-dimensional region of the Poincaré
section.

Following with the same configuration (f0 = 0.5 and ω = 1), for the Mooney-Rivlin
material, we analyze now the stability of the different trajectories formed as the applied
pressure P changes. Fig. (3.5) depicts the Poincaré maps for the Mooney-Rivlin material
in the case of P = 0.3 and P = 0.352. We have scanned a wide variety of initial conditions
in order to show in the Poincaré maps all the different orbit topologies that are possible
for the specific level of pressure considered. Considering additional initial conditions will
only provide topologically identical orbits to those already plotted, but with different
amplitude (like the two blue orbits in Fig. 3.5a). In other words, to complete the white
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Fig. 3.5 Poincaré maps for the Mooney-Rivlin model with different values of the applied
pressure P . (a) P = 0.3 and (b) P = 0.352. f0 = 0.5 and ω = 1.

space in Fig. 3.5 will not provide additional relevant information but it will reduce the
clarity of the plots. For P = 0.3, the system is close to the linear regime (stretches are
relatively small) and only periodic and quasi-periodic trajectories are possible. As the
value of P is increased up to 0.352, chaotic regions appear in the explored phase portrait
(see Section 3.4.1 for details). Figures (3.6a) and (3.6b) present the time evolution and
the phase portraits of the two periodic trajectories indicated in Fig. (3.5a). It can be
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Fig. 3.6 Time evolution and phase portraits for the periodic orbits presented in Fig. (3.5a).

seen that for the single-period solution τ = T = 2π, while for the double-period solution
τ = 2T = 4π, where it has to be recalled that T is the period of the external force.

On the other hand, Fig. (3.7) represents the evolution of the Poincaré map for the
Yeoh material model as the value of P changes. As in the analysis of the results obtained
from the Mooney-Rivlin model, we have taken f0 = 0.5 and ω = 1. For P = 0.22
(Fig.3.7a), only periodic and quasi-periodic orbits are present. A pair of periodic orbits
with periods T and 2T are identified in the figure with brown and blue points, respectively.
For P = 0.26 (Fig.3.7b), as predicted by the Kolmogorov-Arnold-Moser (or KAM) theory
(see e.g. Arnol’d (2013)), due to the increase of external work supplied to the system,
some of the tori are destroyed (those with rational winding number 6, often referred to
as resonant tori). These tori break up into chains of alternating elliptic and hyperbolic
fixed points as predicted by the Poincaré–Birkhoff fixed point theorem (Birkhoff, 1913).
These chains can be easily identified in Fig.(3.7b). Furthermore, the onset of chaotic
behavior is appreciated in the vicinity of some of the hyperbolic points. For P = 0.268
(Fig.3.7c), the ordered and stochastic regions have comparable size; the periodic islands
have been highlighted in the plot indicating with the same color which ones are generated
by the same trajectory 7. Finally, for P = 0.29 almost all the explored phase space

6When the trajectories lying on the surface of a torus are described in the angle-action variables, the
winding number is defined as the ratio between the two orbiting frequencies. A system with a rational
winding number is mode-locked, whereas a system with an irrational winding number is quasi-periodic.
See, e.g., Arnol’d (2013) for further details.

7For interpretation of the references to color in the text, the reader is referred to the web version of
this dissertation
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present chaotic behavior. The orbits designated as IC1 and IC2 in Fig. (3.7a) and (3.7d),
respectively, will be further analyzed with more detail in the next section.
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Fig. 3.7 Poincaré maps for the Yeoh model with different values of the applied pressure P .
(a) P = 0.22, (b) P = 0.26, (c) P = 0.268, (d) P = 0.29. f0 = 0.5 and ω = 1.

3.4.1 Lyapunov exponents

One of the main indicators of chaotic behavior is the sensitive dependence on initial
conditions. The Lyapunov exponent (LE) provide a quantitative measurement to
characterize the separation in time of two orbits, starting from arbitrary close initial
points. A positive Lyapunov exponent is usually interpreted as an indicator of chaotic
behavior (provided some other conditions are met; e.g., phase space compactness). While
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a rigorous derivation of the Lyapunov exponent can be found elsewhere (Lynch, 2007;
Strogatz, 2014; Thompson and Stewart, 1986), the basic formulation is introduced in
this section for completeness.

Consider a fiducial orbit "xf ", and a second test orbit labeled "xt" that starts very
close to the first one. Both orbits solve the equations of motion (3.33)

dxf

dτ = G(xf ), dxt

dτ = G(xt), (3.34)

where x(τ) = (x(τ), y(τ), θ(τ)). The distance between these two orbits at any time τ is
d(τ) = xf (τ) − xt(τ) evolves in time according to

ḋ(τ) = ẋf (τ) − ẋt(τ) = G(xf ) − G(xt). (3.35)

Since both orbits are considered very close to each other, the following linear expansion
can be performed

G(xt) ≈ G(xf ) + ∂G
∂x

∣∣∣∣∣
xf

d(τ). (3.36)

Substituting in Eq.(3.35)

ḋ(τ) = ∂G
∂x

∣∣∣∣∣
xf

d(τ). (3.37)

This ordinary differential equation has the following solution

d(τ) = d0eλτ , (3.38)

where d0 = |d(0)| is the initial distance between the orbits and λ = ∂G
∂x

∣∣∣
xf

is the so called
locally exponential divergence rate, which can be written also as

λ = 1
τ

ln
(

d(τ)
d0

)
. (3.39)

Even regular orbits may present a transient behavior for small times that appears to
be chaotic (but it is not). Furthermore, the initial distance between the fiducial and test
orbits should be infinitesimal to ensure the validity of the linear approximation at any
time. To account for these details, a formal definition of the Lyapunov exponent is
completed taking the following limits

λL = lim
d0→0
τ→∞

[
1
τ

ln
(

d(τ)
d0

)]
. (3.40)
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In a n-dimensional phase space there is a spectrum of Lyapunov exponents, one
LE per dimension, indicating whether there is exponential separation in each dimension
and the maximum of this set is the so-called maximal Lyapunov exponent or the
Lyapunov characteristic exponent (LCE). If even one of the LE is positive, the
system is usually considered as chaotic. The conservation of the phase space volume
in conservative systems (see Liouville theorem at, e.g., Lynch (2007); Strogatz (2014);
Thompson and Stewart (1986)) implies that the sum of the Lyapunov exponents must
be zero. Therefore, in regular motions (i.e., periodic and quasi-periodic orbits) all must
be zero.

To numerically compute the LCE, we follow the renormalization scheme introduced
by Benettin and collaborators (see the series of papers of Benettin et al. (1980a,b, 1976);
Benettin and Strelcyn (1978)). While this method allows to compute the hole Lyapunov
spectrum, in this section we implement a simplified version to compute only the LCE.
The main steps of the procedure are described below.

Consider an initial condition r0 = (x0, y0) for the system (3.33) that defines the
fiducial orbit and a second test orbit rt0 = r0 + d0, being the length of the distance vector
d0 = ∥d0∥. After some time τr, the positions of both orbits are given by r1 = (x(τr), y(τr))
and rt1 = r1 + d1(τr). At this point, the position of the test orbit is renormalized along
the vector d1(τr) until the distance between both orbits is again d0. The process is
systematically repeated at integers multiples of τr. Fig.(3.8) presents a diagram of the
method.

 

 Initial 
conditions 

 

 

 

 

 

 
 

 

 

 
  

 

Fiducial orbit 
Test orbit 

Fig. 3.8 Schematic representation of the Benettin and co-workers (Benettin et al., 1980a,b,
1976; Benettin and Strelcyn, 1978) renormalization scheme.
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For each time τ = kτr with k = 1, 2, 3... the normalized position vector of the test
orbit is computed as

r′

tk = rk + d0

|dk(t)|dk(t), (3.41)

and the value of the Lyapunov exponent is given by

λk = 1
kτr

k∑
j=1

ln
(
dj

d0

)
. (3.42)

The Lyapunov characteristic exponent (λLCE) is then computed as the limit of λk when
k → ∞.

Fig. (3.9) shows the Lyapunov exponents for (a) periodic orbit identified with
initial conditions market as IC1 in Fig. 3.7a and (b) chaotic orbit identified with initial
conditions market as IC2 in Fig. 3.7d. As anticipated before, the Lyapunov characteristic
exponent of the periodic orbit IC1 approaches zero as k → ∞, while in the case of the
chaotic orbit IC2 we find an asymptote at λLCE = 0.041 ± 0.0003, where the error has
been computed as the typical deviation of the last 200 points. This makes clear that the
motions we have identified as periodic, quasi-periodic and chaotic in the analysis of the
Poincaré maps is correct.
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Fig. 3.9 Lyapunov exponents for (a) a periodic orbit identified with initial conditions market
as IC1 in Fig. 3.7a and (b) a chaotic orbit identified with initial conditions market as IC2
in Fig. 3.7d.
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3.5 Summary and conclusions

In this chapter we have analyzed the influence of the constitutive model on the dynamic
response of isotropic incompressible hyperelastic cylindrical shells subjected to internal
pressure. Two constitutive models calibrated with the same experimental data are used:
Mooney-Rivlin and Yeoh. We considered autonomous and non-autonomous systems. In
the autonomous case the pressure is defined by a Heaviside function and in the non-
autonomous case by a harmonic function. The analysis has revealed the great sensitivity
of the problem to the model used to describe the material behavior, namely:

• Autonomous system: the structure either shows periodic oscillatory motion or
expands unbounded. The problem has a closed-form solution which allows to
obtain the elastic strain energy, the potential energy and the kinetic energy of the
system at any time. This, in turn, allows to determine analytically the limits in
pressure for which the response of the structure is oscillatory. In the cases for which
the cylinder oscillates, we have also obtained analytically the phase portraits and
the period of the oscillations. The comparison between Mooney-Rivlin and Yeoh
materials shows that the dynamic response of the structure (limits of the oscillatory
motion, amplitude and period of the oscillations...) is strongly dependent on the
constitutive model. For instance, while the Yeoh material predicts the oscillatory
response of the structure no matter the value of the applied pressure, the Mooney-
Rivlin material shows a bifurcation pressure above which the cylinder expands
unbounded.

• Non-autonomous system: the structure either shows periodic, quasi-periodic or
chaotic oscillatory motion, or expands unbounded. The temporal dependence of
the applied pressure impedes to obtain a closed-form solution of the problem, which
has to be solved numerically transforming the original non-autonomous problem of
order 2 into an autonomous problem of order 3. The representation of this system
in cylindrical polar coordinates highlight the toroidal structure of the solution.
The intersection of the torus with planes for which the angular coordinate of the
cylindrical system is constant allows to obtain the Poincaré maps, which illustrate
the nature of the motion of the system as a function of the initial conditions of
the problem. We have observed that, as the applied pressure increases, the motion
of the cylinder goes from being periodic and quasi-periodic to being chaotic for
most of the initial conditions explored. We have also shown that the transition
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between the periodic, quasi-periodic and chaotic responses is strongly dependent
on the constitutive model.
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4 Incompressible isotropic hyperelastic
spherical structures

Nonlinear resonances in idealized aneurysmal lesions

This chapter investigates the non-linear dynamics of thick-walled spherical structures.
Specifically, the formulation is adapted to analyze the occurrence of dynamic instabilities
in idealized intracranial saccular aneurysms subjected to pulsatile blood flow and sur-
rounded by cerebral spinal fluid. The problem has been approached extending the original
2D model of Shah and Humphrey (1999) to a 3D framework. The justification for using
a 3D formulation arises from the works of Suzuki and Ohara (1978), MacDonald et al.
(2000) and Costalat et al. (2011), who showed experimental evidences of intracranial
aneurysms with a ratio between wall thickness and inner radius larger that 0.1. Two
different material models have been used to describe the mechanical behavior of the
aneurysm wall: Neo-Hookean and Mooney-Rivlin. For the first time in literature the
dynamic response of the aneurysm has been analyzed using complete nonlinear resonance
diagrams that have been obtained from a numerical procedure specifically designed for
that purpose. Our numerical results show that, for a wide range of wall thicknesses
and both constitutive models considered, the saccular aneurysms are dynamically stable
within the range of frequencies associated to the normal heart rates, which confirms
previous results of Shah and Humphrey (1999). On the other hand, our results also show
that the geometric and material nonlinearities of the problem could bring closer than
expected the resonance frequencies of the aneurysm to the frequencies of the pulsatile
blood flow.

4.1 Introduction

The question of whether mechanical instabilities, both static and dynamic, may cause
the enlargement and rupture of saccular aneurysms has been debated by the scientific
community during the last 40 years. Several researchers, such as Akkas (1990) and
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Austin et al. (1989), pointed out that the existence of limit point instabilities (i.e.,
mathematical bifurcations in the quasi-static response of the aneurysm) could be a reason
for the growth and rupture of this type of lesions. Alternatively, other authors like Jain
(1963), Sekhar and Heros (1981) and Sekhar et al. (1988) suggested that the pulsatile
blood flow could excite the natural frequency of the aneurysm making it dynamically
unstable. This hypothesis was supported by the results of Simkins and Stehbens (1973)
and nan Hung and Botwin (1975), who studied the elastodynamics of berry aneurysms
and showed that the natural frequency of these type of lesions may lie within the range of
bruit frequencies that commonly accompany aneurysms. However, despite the nonlinear
stress-strain response exhibited by the aneurysm wall over finite strains, these authors
used the classical shell membrane theory in their analysis, which assumes infinitesimal
strains and linear material behavior. Furthermore, they ignored the contribution of the
Cerebral Spinal Fluid (CSF) surrounding the lesion. Thus, the idea that resonances may
cause the rupture of intracranial aneurysms has been gradually losing support within the
scientific community.

Shah and Humphrey (1999) and David and Humphrey (2003) studied the nonlinear
elastodynamics of a sub-class of spherical aneurysms subjected to pulsatile blood pressure
and surrounded by CSF. The aneurysm wall was modeled using a Fung-type pseudostrain-
energy function (Fung, 1993), which included strain rate dependence. These works brought
to light that both surrounding fluid and material viscosity help to increase the dynamic
stability of the aneurysm. Shortly after, Haslach and Humphrey (2004) provided further
insights into the effect of the mechanical behavior of the aneurysm wall on the dynamic
response of the lesion. Through the comparison of various strain energy functions, the
authors pointed out the great sensitivity of the dynamic behavior of the aneurysm to the
constitutive model used to describe the aneurysm wall. In particular, they stressed the
fact that it is essential for the (correct) analysis of the dynamic stability of aneurysms to
use constitutive models specifically formulated and calibrated for the aneurysm wall. It
was shown that the opposite may give rise to misleading results which predict dynamic
instabilities that are not present in actual tissue.

In this research we revisit the works of Humphrey and co-workers (David and
Humphrey, 2003; Haslach and Humphrey, 2004; Shah and Humphrey, 1999) and extend
their 2D elastodynamics model to a 3D framework 1 in order to study the dynamic
response of idealized saccular aneurysms. Many aneurysms show small wall thicknesses,
hence, they can be modeled relying on membrane hypothesis. However, in several works
such as Suzuki and Ohara (1978), MacDonald et al. (2000) and Costalat et al. (2011) the

1For which we have followed the pioneering work of Knowles (1962)
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authors obtained experimental evidences of intracranial aneurysms with a ratio between
wall thickness and inner radius larger that 0.1. This leads to non-negligible radial stresses
through the aneurysm wall and therefore a 3D formulation is needed. Another original
feature of our research is that we have obtained, for the first time in literature, the
complete nonlinear resonance diagrams that characterize the dynamic response of an
aneurysm as a function of the pulsatile blood flow. A Mooney-Rivlin type constitutive
model, calibrated by Costalat et al. (2011) using experimental data obtained from 16
different intracranial aneurysms tested under physiological conditions, has been used to
describe the mechanical behavior of the aneurysm wall. The results are systematically
compared with those obtained from a simple Neo-Hookean model widely applied to
characterize the behavior of rubber-like materials. This research reveals that, for any
of the constitutive models used and irrespective of the thickness of the aneurysm wall,
the resonance frequencies of the aneurysm do not lie within the range of frequencies
associated to the normal heart rates, which in turn seems to confirm the earlier findings
of Shah and Humphrey (1999).

4.2 Problem formulation

In this section we formulate the problem of an idealized intracranial saccular (spherical)
aneurysm surrounded by CSF and subjected to pulsating, and radially symmetric, blood
pressure (see Fig. 4.1). The original contribution is to extend the 2D formulation devel-
oped by Humphrey and co-workers (David and Humphrey, 2003; Shah and Humphrey,
1999) to a 3D framework. The formulation is similar to that presented in Chapter 3,
adapted in this case to a spherical geometry and incorporating an external fluid.

Recall from Chapter 2 that the current position vector x in the deformed configuration
Ω ⊂ R3 at time t of the material point that occupies the location X ∈ Ω0 is given by
x = χ(X, t), where χ is a bijective and twice continuously differentiable mapping. The
associated deformation gradient, right Cauchy-Green strain tensor and volume ratio at
X ∈ Ω0 are denoted by

F(X, t) = Grad χ(X, t), C(X, t) = FT(X, t)F(X, t),
J(X, t) = detF(X, t).

(4.1)

Moreover, the balance of linear momentum in the material description requires that

Div S(X, t) = ρ0χ̈(X, t) in Ω0, (4.2)
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where the dots denote differentiation with respect to time, S stands for the first Piola-
Kirchhoff stress tensor, and ρ0 is the constant mass density of the shell material in its
undeformed configuration Ω0.

4.2.1 The aneurysm wall

Following Shah and Humphrey (1999), the aneurysm wall is taken to be incompressible
and isotropic within the framework of finite nonlinear elasticity. While the hypothesis
of homogeneous and isotropic properties is likely a gross approximation (Ryan and
Humphrey, 1999), it allows us to follow Humphrey and Haslach (2003) and therefore
study the elastodynamics of the aneurysmal lesion. The aneurysm occupies a volume Ω0

defined by the spherical polar coordinates (R,Θ,Φ) in some reference configuration such
that A ≤ R ≤ B. In this case, we have taken A = 4.3 mm and B = 4.67 mm which,
based on the work of Costalat et al. (2011), represent average values for the inner and
outer radii of intracranial aneurysmal lesions.
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Reference
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Fig. 4.1 Schematic representation of an idealized saccular (spherical) aneurysm surrounded
by cerebral spinal fluid and subjected to radially symmetric pulsating blood pressure. (a)
reference and (b) deformed configurations.

Since the material is deformed so that the spherical symmetry is maintained, the
motion is given by

r = r(R, t), θ = Θ, φ = Φ, (4.3)
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where (r, θ, φ) are spherical polar coordinates in the current configuration Ω such that
a(t) ≤ r(R, t) ≤ b(t). Under this conditions the deformation gradient assumes the
following form

F = 1
λ2(R, t) er ⊗ er + λ(R, t) eθ ⊗ eθ + λ(R, t) eφ ⊗ eφ, (4.4)

where the principal stretches corresponding to the directions r, θ, φ are given by

λr(R, t) = ∂r(R, t)
∂R

, λ(R, t) = r(R, t)
R

= λθ(R, t) = λφ(R, t), (4.5)

and the incompressibility restriction J = λr(R, t)λ2(R, t) = 1 has been used. Similarly,
the first Piola-Kirchhoff stress tensor can be proved to be of the spectral form

S = Sr(R, t) er ⊗ er + Sθ(R, t) eθ ⊗ eθ + Sθ(R, t)eφ ⊗ eφ. (4.6)

Hence, the balance of linear momentum presented in Eq. 4.2 reduces to

∂Sr(R, t)
∂R

+ 2Sr(R, t) − Sθ(R, t)
R

= ρ0r̈(R, t), (4.7)

where a superposed dot denotes differentiation with respect to time and ρ0 = 1050 kg/m3

is the reference density of the aneurysm wall (Shah and Humphrey, 1999). Moreover, it
follows from the incompressibility condition that

λ(R, t) =
(
B3

R3 (λ3
b(t) − 1) + 1

)1/3

, (4.8)

where λb(t) = b(t)
B

stands for the circumferential stretch in the outer surface of the
aneurysm wall2. We take the derivatives of Eq. (4.8) with respect to R and t to obtain
respectively

∂λ

∂R
= −λ3 − 1

Rλ2 , (4.9)

λ̈ = λ3 − 1
λ3

b − 1

2λbλ̇b
2 + λ2

b λ̈b

λ2 − 2 λ4
b λ̇b

2

λ3
b − 1

λ3 − 1
λ5

 , (4.10)

2The function (4.8) can be alternatively written as λ(R, t) =
(

A3

R3 (λ3
a(t) − 1) + 1

)1/3
in terms of the

stretch in the inner face λa(t) = a(t)/A. For our purposes here, we find dealing with the form (4.8) in
terms of the outer stretch λb(t) more convenient.
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where function arguments are omitted here and in most of the subsequent develop-
ment to ease notation. At this stage, it proves convenient to rewrite the equation of
motion (4.7) with λ(R, t) as the independent space variable instead of R. The result
reads as

− ∂

∂λ

[
Sr

λ2

]
=

2
(
Sθ − Sr

λ3

)
λ3 − 1 + ρ0B

2

(λ3
b − 1)1/3(λ3 − 1)2/3

[
2λ4

b − 2λbλ
3

λ5(λ3
b − 1) λ̇

2
b + λ2

b

λ2 λ̈b

]
. (4.11)

Assuming now that the inner boundary (R = A) is subjected to a pressure Pa(t) per
unit of current area due to the blood flow. While the outer face (R = B) is subjected to
a pressure Pb(t) due to the CSF (see Fig. 3.1), the boundary conditions are given by

Sr(A, t) = Pa(t)λ2
a(t) and Sr(B, t) = Pb(t)λ2

b(t). (4.12)

Furthermore, for an incompressible spherical shell it can be proved that (see, e.g., Ogden
(1997), p. 284)

Sθ(R, t) − Sr(R, t)
λ3(R, t) = 1

2W
′ (λ(R, t)) . (4.13)

Here the function W (λ) is defined as

W (λ) = ψ(I1, I2), (4.14)

where ψ is the strain energy function that determines the mechanical behavior of the
material. The specific form of ψ will be defined in Section 4.2.5.

With help of (4.13), Eq. (4.7) can be integrated over the thickness of the aneurysm
to obtain

Pa − Pb =
∫ (λ3

b
+f0−1

f0

)1/3

λb

W ′

λ3 − 1 dλ− ρB2
(

1 − λb

(λ3
b + f0 − 1)1/3

)
λbλ̈b−

ρB2
(

3
2 + λ4

b

2(λ3
b + f0 − 1)4/3 − 2λb

(λ3
b + f0 − 1)1/3

)
λ̇b

2
,

(4.15)

where the superscript prime denotes differentiation with respect to the circumferential
stretch and f0 = A3

B3 = 0.78 is a dimensionless parameter that characterizes the thickness
of the aneurysm wall, as in Chapter 3. The specific forms of Pa(t) and Pb(t) are provided
in sections 4.2.2 and 4.2.3.
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4.2.2 Blood pressure

Based on the data measured by Ferguson (1972) for human saccular aneurysms, and
assuming a uniform pressure inside the lesion, the blood pressure is represented by the
following Fourier series

Pa(t) = Pm +
N∑

n=1
(An cos(nωt) +Bn sin(nωt)) , (4.16)

where Pm = 67.5 mmHg is the mean pressure (Shah and Humphrey, 1999), An and Bn

are the Fourier coefficients for N harmonics, and ω is the fundamental circular frequency.
Following Shah and Humphrey (1999) we have considered 5 harmonics: A1 = −7.13,
B1 = 4.64, A2 = −3.08, B2 = −1.18, A3 = −0.130, B3 = −0.564, A4 = −0.205,
B4 = −0.346, A5 = 0.0662 and B5 = −0.120; all quantities are given in mmHg.

4.2.3 Cerebral spinal fluid

The CSF is assumed incompressible and Newtonian. The continuity equation takes the
form

1
r2

∂

∂r
(r2 vr) = 0. (4.17)

The previous expression implies that the radial velocity is of the form vr(r, t) = c(t)
r2 ,

where the function c(t) is found by matching the fluid and aneurysm wall velocities at
r = b. Therefore, we obtain the following expression that relates the radial velocity of
the CSF and the stretch (and stretch rate) in the outer surface of the aneurysm

vr(r, t) = B3λ2
b λ̇b

r2 . (4.18)

Moreover, the balance of linear momentum along the radial direction takes the form

ρf

(
∂vr

∂t
+ vr

∂vr

∂r

)
= −∂p

∂r
+ µ

(
1
r2

∂

∂r

(
r2∂vr

∂r

)
− 2vr

r2

)
, (4.19)

where p denotes pressure. Moreover, ρf = 1000 kg/m3 and µ = 1.26 · 10−4 Ns/m2 are the
density and the viscosity of the CSF, respectively (Shah and Humphrey, 1999). Next, we
insert Eq. (4.18) into Eq. (4.19) to obtain

∂p

∂r
= −ρf

(
B3

r2

(
λ2

b λ̈b + 2λbλ̇
2
b

)
− 2B6λ4

b

r5 λ̇2
b

)
. (4.20)
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Integrating the previous equation over the range r ∈ (b,∞), we obtain an expression for
the static pressure exerted by the CSF on the outer surface of the aneurysm (ps

b)

ps
b(t) = p∞ + ρfB

2
(
λbλ̈b + 3

2 λ̇
2
b

)
, (4.21)

where p∞ = 3 mmHg is the remote pressure assumed constant (Shah and Humphrey,
1999). Moreover, relying on the constitutive equations of incompressible Newtonian
fluids, we compute the dynamic pressure (radial stress) caused by the deformation of
the CSF on the aneurysm wall (pd

b)

pd
b(t) = 4µλ̇b

λb

. (4.22)

Therefore, the total pressure exerted by the cerebral spinal fluid on the outer surface of
the aneurysm is

Pb(t) = −ps
b(t) − pd

b(t). (4.23)

4.2.4 Dimensionless governing equation

As in Chapter 3, the following length, mass and time scales are introduced in order to
pose the problem in non-dimensional form

[L] = B, [M ] = ρB3, [T ] =
√
ρB2

CM10
, (4.24)

where CM10 is a material constant as will be further discussed in Section 4.2.5. Previous
non-dimensional groups, together with equations (4.16) and (4.23), are inserted into Eq.
(4.15) to obtain the following dimensionless governing equation, where λb(τ) is the only
unknown of the problem

∆P =
∫ (λ3

b
+f0−1
f0

)1/3

λb

W
′

λ3 − 1 dλ+ 4κλ̇b

λb

+ ρ
(
λbλ̈b + 3

2 λ̇
2
b

)
−
((

1 − λb

(λ3
b + f0 − 1)1/3

)
λbλ̈b +

(
3
2 + λ4

b

2(λ3
b + f0 − 1)4/3 − 2λb

(λ3
b + f0 − 1)1/3

)
λ̇b

2
)
,

(4.25)

where
∆P = Pm +

N∑
n=1

(
An cos(nτω) +Bn sin(nτω)

)
− p∞. (4.26)
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In this case a superposed dot denotes differentiation with respect to the dimensionless
time τ . Note that when f0 → 1 we recover Eq. (12) of Shah and Humphrey (1999).
The adimensionalization procedure brings to light 8 additional non-dimensional groups
(additional to f0 introduced in Eq. (4.15)) that govern the problem at hand

W = W

CM10
, Pm = Pm

CM10
, p∞ = p∞

CM10
,

Ai = Ai

CM10
, Bi = Bi

CM10
, for i = 1, 2, 3, 4, 5.

ω = ω

√
ρB2

CM10
, κ =

µ

B
√
ρ CM10

, ρ = ρf

ρ
,

where W is the non-dimensional strain energy function, Pm is the dimensionless mean
pressure applied in the inner surface of the aneurysm, p∞ is the dimensionless remote
pressure, and Ai and Bi are the dimensionless harmonics coefficients. Moreover, ω is the
dimensionless fundamental frequency, which was already used in Chapter 3, κ defines the
ratio between the characteristic time scales of CSF and aneurysm wall and ρ is the ratio
between CSF and aneurysm wall densities. Note that in Section 4.4 we will systematically
vary ω in order to obtain the resonance diagrams of the aneurysm.

4.2.5 Constitutive model

Two different strain energy functions are used to describe the mechanical behavior of the
aneurysm wall. They both respond to the following polynomial form

ψ =
N∑

i,j=0
Cij(I1 − 3)i(I2 − 3)j, (4.27)

where Cij are empirically determined material parameters and I1, I2 are the first and
second invariants of the right Cauchy-Green strain tensor, respectively. Namely, we use
the so-called Neo-Hookean and 3-parameters Mooney-Rivlin models.

• Neo-Hookean model
ψ = CN10(I1 − 3). (4.28)

• 3-parameters Mooney-Rivlin model

ψ = CM10(I1 − 3) + CM01(I2 − 3) + CM11(I1 − 3)(I2 − 3). (4.29)
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Recall that the strain energy function W (λ) used in previous sections is defined as
W (λ) = ψ(I1, I2). The 3-parameter Mooney-Rivlin model was calibrated by Costalat
et al. (2011) using experimental results obtained from 16 intracranial saccular aneurysms
tested in uniaxial tension under physiological conditions. The resulting parameters values
are: CM10 = 0.19 MPa, CM01 = 0.024 MPa and CM11 = 7.87 MPa. For the Neo-Hookean
model we have taken CN10 = 0.214 MPa, which ensures that Neo-Hookean and Mooney-
Rivlin models provide the same shear modulus in the linear limit. While both constitutive
models were originally formulated for rubber-like materials, they have been widely used
in the literature to model the mechanical behavior of aneurysms (Costalat et al., 2011;
Gundiah et al., 2007; Tóth et al., 2005). The comparison between Neo-Hookean and
Mooney-Rivlin models that will be developed in Section 4.4 will bring to light the key
role played by the mechanical behavior of the aneurysm wall in the dynamic response of
the aneurysm.

4.3 Numerical solution

In this section we describe the numerical procedure designed to analyze the dynamic
response of the aneurysm. The numerical scheme relies on two main techniques: the
shooting method and the sequential continuation method. The combination of these two
techniques allows to obtain the resonance diagrams of the aneurysmal lesion that will be
presented in Section 4.4.

Following the same procedure presented in Chapter 3, let us reduce Eq. (4.25) to the
following system of two first-order differential equations where z1 = λb and z2 = λ̇b.

ż1 = z2, (4.30)

ż2 =
∆P −

∫ ( z3
1+f0−1

f0

)1/3

z1
W

′(λ)
λ3−1 dλ− 4κ z2

z1
+
(

3
2 + z4

1
2(z3

1+f0−1)4/3 − 2z1
(z3

1+f0−1)1/3 − 3
2ρ
)
z2

2(
ρ+ z1

(z3
1+fo−1)1/3 − 1

)
z1

.

(4.31)
The harmonically forced system described by equations (4.30)-(4.31) is transformed
into an autonomous system adding the following two differential equations whose stable
solutions are the non-autonomous terms

ż3 = z3(1 − z2
3 − z2

4) − wz4, (4.32)
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ż4 = z4(1 − z2
3 − z2

4) + wz3. (4.33)

Taking as initial conditions z3(0) = 1 and z4(0) = 0, the solutions of these equations are
z3(τ) = sin(wτ) and z4(τ) = cos(wτ), respectively. Expanding3 Eq. (4.16) in terms of
sin(wτ) and cos(wτ), the problem can be handled as an autonomous system of dimension
n = 4 that has the following vectorial form

dz
dτ = G(z), (4.34)

where z = (z1, z2, z3, z4)T. Since our attention is restricted to the periodic response of
the aneurysm (resonances), the solutions of interest satisfy the condition z(τ) = z(τ + T )
where T is the period of the oscillation. This allows to formulate the following two-point
boundary value problem

dz
dτ = G(z), z(0) = z0, z(T ) = z0, (4.35)

where z0 is a vector containing the initial conditions. Note that z0 and T are, a priori,
unknown.

4.3.1 Shooting method

The problem defined by (4.35) is solved using the shooting method (Allgower and Georg,
2011; Peeters et al., 2009; Seydel, 2009). For that purpose, we define the periodicity
condition

H(z0, T ) ≡ z(z0, T ) − z0 = 0, (4.36)

where H(z0, T ) is the so-called shooting function. Note that the solution at time T is
now expressed as z(z0, T ) in order to highlight the dependence of the problem solution
with the initial conditions z0.

The shooting technique starts with a trial value for (z0, T ). The solution of the
system is then obtained by numerical integration of the system of equations (4.30)-
(4.33). In general, the trial value will not satisfy the periodicity condition given by Eq.
(4.36). Therefore, a Newton-Raphson iteration scheme is used to correct the initial trial
and converge to the actual solution. The corrections (∆z0,∆T ) are obtained from the

3The trigonometric expansion is given by sin(nα) =
∑n

k=0
(

n
k

)
cosk α sinn−k α sin(1/2(n− k)π) and

cos(nα) =
∑n

k=0
(

n
k

)
cosk α sinn−k α cos(1/2(n− k)π)
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following linear expansion of the periodicity condition

H(z0 + ∆z0, T + ∆T ) ≈ H(z0, T ) + ∂H
∂z0

∣∣∣∣∣
(z0,T )

∆z0 + ∂H
∂T

∣∣∣∣∣
(z0,T )

∆T + H.O.T = 0, (4.37)

where the coefficients of previous linear system (∂H/∂T, ∂H/∂z0) have to be calculated.
From Eq. (4.36) it follows that the n× 1 coefficient vector ∂H/∂T is given by

∂H
∂T

(z0, T ) = ∂z(τ, z0)
∂τ

∣∣∣∣∣
T

= G(z0). (4.38)

Also from Eq. (4.36) it follows that the n× n Jacobian matrix ∂H/∂z0 is

∂H
∂z0

(z0, T ) = ∂z(τ, z0)
∂z0

∣∣∣∣∣
T

− I, (4.39)

where I is the n× n identity matrix. The matrix ∂z(τ, z0)/∂z0 is calculated as described
by Peeters et al. (2009). For that, we differentiate the system of equations (4.30)-(4.33)
with respect to the initial conditions

∂

∂z0

(
dz(τ, z0)

dτ

)
= ∂G(z(τ, z0))

∂z0
. (4.40)

Changing the order of the derivatives in the left hand side of the previous equation
and applying the chain rule in the right hand side it yields

d
dτ

(
∂z(τ, z0)
∂z0

)
= ∂G(z)

∂z
∂z(τ, z0)
∂z0

, (4.41)

with initial conditions ∂z(0, z0)/∂z0 = I. The matrix ∂z(τ, z0)/∂z0 for τ = T can be
then computed integrating numerically previous expression.

In order to determine the n+ 1 corrections (∆z0,∆T ) we need an additional equation
to be added to the system of n equations defined by (4.37). The additional equation is
obtained following Seydel (2009). For an autonomous system the periodic solutions are
invariant to linear shifts of the time origin, which implies that the phase of the solution is
arbitrary. Hence, a restriction (often referred to as the phase condition) must be imposed
to remove this arbitrariness. For this task, we set one component of the initial values
vector z0 equal to zero. In the problem at hand, it is especially suited to take z2 = 0
since this amounts to consider that the stretch rate of the outer surface of the aneurysm
is initially zero (system initially at rest).
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We carry out this iteration process to obtain z(z0, T ) until the following convergence
condition, taken from Peeters et al. (2009) and Sracic and Allen (2011), is reached

||H(z0, T )||
||z0||

< ε, (4.42)

where ε = 10−6 is the tolerance.

4.3.2 Sequential continuation

Once a solution zj(zj
0, T

j) is found for the normalized frequency ωj, this input parameter
is incremented by ∆ωj

ωj+1 = ωj + ∆ωj. (4.43)

The shooting method then restarts to calculate the corresponding solution zj+1(zj+1
0 , T j+1)

using the current solution (zj
0, T

j) as the initial trial. The sequential continuation method
stands out due to its robustness and relatively small computational cost. Nevertheless, we
acknowledge that it fails at the bifurcation points of the resonance diagrams, as further
discussed in Section 4.4.

4.3.3 Stability of the periodic solution

The stability of the solution, corresponding to each value of ω considered, is evaluated
using Floquet stability theory. For that purpose we monitor the eigenvalues of the
so-called Monodromy matrix ∂z(T,z0)

∂z0
, which appeared in Eq. (4.41). If the modulus of

any of the eigenvalues of this matrix is greater than 1, the periodic solution is considered
to be unstable. The classical unit circle representation (see Fig. 4.2) presents that the
loss of stability can take place in three different ways:

i. A real eigenvalue exits the unit circle at (1, 0). This represents a transcritical
cyclic-fold or symmetry-breaking bifurcation.

ii. A real eigenvalue exits the unit circle at (−1, 0). This represents a period doubling
bifurcation.

iii. A complex conjugate pair of eigenvalues exit the unit circle anywhere else. This
represents a secondary Hopf or Niemark bifurcation.

The stability of the solution is further discussed in Section 4.4 when the numerical
results are presented.
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Fig. 4.2 Unit circle representation: imaginary versus real part of the eigenvalues of the
Monodromy matrix. Three different scenarios which lead to the loss of stability of the
solution: (a) cyclic-fold bifurcation, (b) period doubling bifurcation and (c) Hopf bifurcation.

4.4 Sample results

The goal of this section is to provide sample numerical results which bring to light the
relation between the applied frequency ω and the amplitude of the periodic motion of
the aneurysm. In order to carry out this analysis, we first need to characterize (for
each frequency) the transient response of the system: the end of the transient regime
determines the onset of the periodic motion.

Fig. 4.3 depicts: (a) the pressure applied on the aneurysm ∆P versus the loading
time τ , (b) the circumferential stretch in the outer surface of the aneurysm λb versus
the loading time τ and (c) the circumferential stretch rate λ̇b versus the circumferential
stretch λb in the outer surface of the aneurysm (phase diagram). While Fig. 4.3a
is obtained directly from Eq. (4.16), figures 4.3b and 4.3c have been obtained after
solving equations (4.30) and (4.31) using a fourth order Runge-Kutta method. We have
taken ω = 1 and assumed that the aneurysm is initially unstretched and at rest. The
Mooney-Rivlin constitutive model is considered. The geometric, loading and material
parameters used in the calculation are those reported in sections 4.2 and 4.2.5, with a
single exception: the viscosity of the fluid has been increased to obtain κ = 0.1. The
purpose is to provide a clear illustration of the dissipation of energy by the CSF.

Fig. 4.3a presents the evolution of the applied pressure with time, where T is the
period given by ω and determined by the time elapsed between two consecutive peaks.

Fig. 4.3b enables to identify the transient and steady-state regimes in the oscillatory
response of the system. The transient regime lasts until τ ≈ 30 and it is characterized by
the gradual decrease in the amplitude of the oscillations of the aneurysm (dashed line).
This behavior is caused by the energy dissipated by the CSF. The steady-state regime,
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which develops for τ & 30, is characterized by the periodic response of the aneurysm
(solid line). One can identify a repetitive pattern in the λb − τ curve which is determined
by the period T previously noted in Fig. 4.3a.
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Fig. 4.3 (a) Pressure applied in the inner surface of the aneurysm ∆P versus loading time
τ , (b) circumferential stretch in the outer surface of the aneurysm λb versus loading time τ
and (c) circumferential stretch rate λ̇b versus circumferential stretch λb in the outer surface
of the aneurysm (phase diagram). The Mooney-Rivlin constitutive model is considered. The
normalized frequency is ω = 1. The aneurysm is initially unstretched and at rest.

Finally, Fig. 4.3c depicts the phase diagram corresponding to the outer surface of the
aneurysm. We observe that the transient response (dashed line) is also characterized by
a gradual decrease in the velocity of the oscillations of the aneurysm. The oscillations
become slower and shorter in amplitude until the motion becomes periodic, as illustrated
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by the limit cycle identified by a solid line. Note that the limit cycle is non-symmetric,
which implies the existence of symmetry breaking bifurcations. This limit cycle (char-
acterized by the period T ), which results from the balance between the work of the
applied pressure and the energy dissipated by the CSF, is the focus of our attention in the
forthcoming analysis. Namely, our aim is to identify the dependences of the amplitude of
the limit cycle with the applied frequency, the thickness of the aneurysm and the specific
constitutive model used to describe the aneurysm wall.

Figures 4.4a and 4.4b represent the resonance diagrams, λmax − λmin versus ω, for
Neo-Hookean and Mooney-Rivlin constitutive models, respectively. Note that λmax and
λmin are the maximum and minimum stretches of the limit cycle, as indicated in Fig.
4.3c. The geometric, loading and material parameters reported in sections 4.2 and 4.2.5
are used in the calculations, including the fluid viscosity (unlike in the previous example).
The normalized frequencies investigated range from 0.01 to 100.

The excursions in λmax − λmin correspond to resonances of the aneurysm: dramatic
increase of the amplitude of the oscillations for some specific frequencies. Note that
these excursions are tilted, which illustrates the interplay between the natural frequency
and the amplitude of the oscillations. This interplay is caused by the nonlinear nature
of the problem at hand, which includes geometric and material nonlinearities. The
excursion that leads to the maximum amplitude of the oscillations is the so-called
fundamental (or primary) resonance of the aneurysm. The other excursions are the so-
called super-harmonic resonances. We have calculated the stable and unstable branches
of the excursions, which are plotted using solid and dashed lines in figures 4.4a and 4.4b,
respectively. While the sequential continuation method fails at the bifurcation points
of the diagram, it is enough to start the numerical procedure with a stable (unstable)
limit cycle to calculate the whole stable (unstable) branch. Note also that, following the
procedure reported in Section 4.3.3, we have identified the cyclic fold bifurcations that
define some of the intersections between stable and unstable branches.

Neo-Hookean constitutive model: the λmax − λmin excursions are tilted to the
left. This behavior is called softening and implies that in order to rise the amplitude
of the oscillations, a decrease in the applied frequency is required. Thereby, tilting
of the resonance diagram implies that the nonlinear resonance frequency (maximum
amplitude of the oscillation) occurs for ω = 0.4; i.e., away from the natural frequency of
the aneurysm (onset of the main excursion), which is located at ω ≈ 1. The amplitude
of the nonlinear resonance frequency is ≈ 5.5. Besides the main resonance, we have
identified six super-harmonics. The stable and unstable branches of each excursion are
located on the right and left sides of the peak, respectively. Note that the maximum
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Fig. 4.4 Resonance diagrams, λmax − λmin versus ω, for (a) Neo-Hookean and (b) Mooney-
Rivlin constitutive models. The reference geometric, loading and material parameters
reported in sections 4.2 and 4.2.5 are used. The aneurysm is initially unstretched and at
rest.
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amplitude of the super-harmonics does not decrease monotonically as one moves away
from the fundamental (primary) resonance of the aneurysm. The shorter excursion is
the second super-harmonic starting from the fundamental resonance. This unexpected
behavior is most likely related to the fact that the peak of the excursions denotes the
loss of the oscillatory behavior of the shell. The aneurysm cannot sustain larger values
of stretch within an oscillatory motion and expands unbounded (Aranda-Iglesias et al.,
2015; Rodríguez-Martínez et al., 2015).

Mooney-Rivlin constitutive model: the λmax − λmin excursions are tilted to
the right. This behavior, called hardening, is different to the response provided by the
Neo-Hookean model. Only the foot of the shortest super-harmonics is transiently tilted
to the left, showing the so-called snap-through behavior. In general terms, the Mooney-
Rivlin material requires an increase in the applied frequency to rise the amplitude of the
oscillations. The nonlinear resonance frequency occurs for ω = 34, a value significantly
greater than the natural frequency of the aneurysm. The amplitude of the nonlinear
resonance frequency (≈ 2.6) is significantly smaller than in the case of the Neo-Hookean
model. Moreover, we have identified six super-harmonic resonances. In contrast to
the case of the Neo-Hookean model, the maximum amplitude of the super-harmonics
decreases monotonically as one moves away from the fundamental resonance of the
aneurysm. This is due to the fact that now the maximum amplitude of the oscillations is
not limited by loss of the oscillatory response of the aneurysm but by the external work
applied to the system. The aneurysm could sustain larger values of stretch provided that
a larger amount of external work is applied to the system (Aranda-Iglesias et al., 2015;
Rodríguez-Martínez et al., 2015).

It becomes apparent the key role played by the constitutive model in the resonance
diagram of the aneurysm. The strain energy function determines the amplitude of
the oscillations and the nature (softening or hardening) of the interplay between the
amplitude of the oscillations and the applied frequency.

On the other hand, it is critical to note that, taking into account the material and
geometric parameters given in Section 4.2, the values of ω corresponding to the typical
physiologic conditions of an aneurysm range between 2 · 10−3 and 6.5 · 10−3. This range
is calculated assuming that the minimum and maximum heart rates are 60 and 190 beats
per minute, respectively. According to Fig. 4.4, the aneurysm do not show resonances
within these values of ω; i.e., our results suggest that the pulsatile blood flow cannot
lead to the resonance of the aneurysm. This result agrees with the conclusions of Shah
and Humphrey (1999) and David and Humphrey (2003), who already stated that the
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hypothesis of Simkins and Stehbens (1973) and nan Hung and Botwin (1975) suggesting
that saccular aneurysms may be excited at their natural frequency by the pulsatile
blood flow, may not be correct. Even in the case of the Neo-Hookean model for which
the softening response brings the super-harmonics closer to the maximum frequency
of the heart, there is a meaningful gap between the resonance frequency of the lowest
super-harmonic (1.5 · 10−2) and the frequency of the highest heart rate (6.5 · 10−3). Next,
we further investigate the possibility of resonances in the aneurysm due to the pulsatile
blood flow and, thanks to the 3D formulation derived in Section 4.2, assess the effect of
the wall thickness in the oscillatory response of the aneurysm.

Figures 4.5a and 4.5b represent the resonance diagrams, λmax − λmin versus ω, for
Neo-Hookean and Mooney-Rivlin constitutive models, respectively. Three different values
of the thickness parameter f0 are investigated: 0.9, 0.78 (reference) and 0.5 for the
Neo-Hookean model and 0.98, 0.78 (reference) and 0.5 for the Mooney-Rivlin model.
The loading and material parameters reported in sections 4.2 and 4.2.5 are used. The
following key observations arise from these graphs:

• The influence of f0 in the amplitude of the oscillations of the aneurysm depends on
the constitutive model. In the case of the Neo-Hookean model, an increase of f0 (smaller
thickness) decreases the maximum amplitude of the resonances. As the thickness of the
aneurysm decreases, the oscillatory response of the shell is lost (the unbounded expansion
of the shell starts) for smaller values of the ratio λmax −λmin. In fact, for f0 = 0.98 (value
investigated in the Mooney-Rivlin case) the aneurysm does not oscillate under these
loading conditions. On the contrary, in the case of the Mooney-Rivlin model, an increase
of f0 increases the maximum amplitude of the resonances. In this case the response of
the aneurysm is oscillatory regardless of the wall thickness and thus, as expected, the
oscillations exhibit larger amplitudes as the thickness decreases.

• Irrespective of the constitutive model considered, the increase of f0 (which implies
smaller thicknesses) shifts to smaller values of the fundamental and the super-harmonic
resonances of the aneurysm. The thinner the wall of the aneurysm, the closer the
resonance frequencies are to the heart rate. Nevertheless, even in the case of the Neo-
Hookean model, the lowest super-harmonic corresponding to the smallest thickness
considered is yet far from the highest frequency of the pulsatile blood pressure. Thus, our
results broaden the conclusions of Shah and Humphrey (1999) and David and Humphrey
(2003) for a wide range of wall thicknesses and reveal that it is unlikely that resonances
could lead to the enlargement and rupture of saccular aneurysms.
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Fig. 4.5 Resonance diagrams, λmax − λmin versus ω, for (a) Neo-Hookean and (b) Mooney-
Rivlin constitutive models. Three different values of the thickness parameter f0 are investi-
gated: 0.9, 0.78 (reference) and 0.5 for the Neo-Hookean model and 0.98, 0.78 (reference)
and 0.5 for the Mooney-Rivlin. The loading and material parameters reported in sections
4.2 and 4.2.5 are used. The aneurysm is initially unstretched and at rest.
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4.5 Summary and conclusions

In this chapter we have presented the extension to a 3D framework of the formulation
developed by Shah and Humphrey (1999) to model the dynamic behavior of idealized
intracranial saccular aneurysms subjected to pulsatile blood flow and surrounded by
cerebral spinal fluid. The need for a 3D formulation arises from the experimental
measurements of Suzuki and Ohara (1978), MacDonald et al. (2000) and Costalat et al.
(2011) who provided evidences of saccular aneurysms with ratios of wall thickness to
inner radius larger that 0.1.

For the first time in literature, the dynamic response of the aneurysm has been
analyzed using nonlinear resonance diagrams obtained from a numerical procedure
specifically designed for that purpose. Two different constitutive models have been used
in the analysis: Neo-Hookean and Mooney-Rivlin. For each material model we have
identified the fundamental resonance and six super-harmonics. A critical outcome of this
research is to show that none of these resonances, for any of the constitutive models used
and irrespective of the thickness of the aneurysm, lies within the frequencies associated
to the normal heart rates. Thus, in agreement with David and Humphrey (2003), our
results seem to discard the hypothesis of saccular aneurysms being led to rupture because
they are excited at their natural frequency by the pulsatile blood flow. However, our
results also show that the nonlinearities of the problem could bring closer than expected
the resonance frequencies of the aneurysm to the usual frequencies of the heart. This
finding, that has been rarely discussed in the literature, has been found to be strongly
dependent on the constitutive model. It is thus highlighted that the description of the
mechanical response of the aneurysm wall has a great influence on the dynamic response
of this type of lesions.
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5 Compressible isotropic hyperelastic spherical
structures

The role of stress waves propagation

In this chapter we investigate the role played by the material compressibility in the
oscillatory behavior of hyperelastic spherical shells subjected to dynamic inflation. For
that purpose we carried out a comprehensive nondimensional numerical analysis using:
(1) a finite differences MacCormack’s scheme implemented in MATLAB and (2) a finite
element model developed in ABAQUS/Explicit (ABAQUS/Explicit, 2014). We have
detected that numerical dispersion and diffusion impose limits to the capacity of the
computations to describe the shock wave that emanates from the inner surface of the
shell due to the application of the inflation pressure. Nevertheless, both numerical
approaches capture the essential features that describe the oscillatory behavior of the
shell, including the maximum stretch of the oscillation. Using the key nondimensional
groups that control the problem at hand, we have conducted a parametric study to
assess the role played by nondimensional applied pressure, material compressibility and
nondimensional shell thickness in the oscillatory behavior of the specimen. We have
shown the interplay between the maximum amplitude of the oscillation and the applied
pressure, and obtained the critical pressure for which the oscillatory behavior is lost,
leading to an unbounded expansion of the spherical shell. Moreover, our calculations
have revealed that the wave propagation within the specimen plays a key role in the
dynamic response of the shell. The phase portraits used to represent the oscillatory
behavior of the spherical shell show a characteristic sawtooth form that is accentuated
with the increase of material compressibility and shell thickness.

5.1 Introduction

As discussed in the introductory section of Chapter 3, the first studies dealing with the
non-linear dynamic behavior of hyperelastic shells are dated in the early 60’s. Knowles
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(1960, 1962) investigated, for the first time, the large-amplitude radial oscillations of
very long thick-walled cylindrical tubes. Shortly after, Zhong-Heng and Solecki (1963)
inspected the large-amplitude vibrations of thick-walled spherical shells. In these seminal
works, free and forced oscillations with Heaviside step pressure boundary condition were
explored. The material was considered incompressible and the problems were reduced
to that of an autonomous motion of a system with a single degree of freedom (see 3).
The authors provided exact solutions of the trajectory and period of vibrations, and paid
special attention to the critical initial and loading conditions that preclude the oscillatory
response of the shell.

The interest in large-amplitude radial vibrations of hyperelastic incompressible bodies
has continued to the present day. A significant number of papers have been published
over the last five decades on this specific topic (e.g. Balakrishnan and Shahinpoor (1978);
Beatty (2007); Nowinski and Wang (1966); Rodríguez-Martínez et al. (2015); Shahinpoor
(1972b)). For instance, Humphrey and co-workers David and Humphrey (2003); Shah and
Humphrey (1999) studied the axisymmetric deformations of spherical hyperelastic shells
subjected to inner and outer pressure to assess the mechanical (dynamic) stability of
intracranial saccular aneurysms. The axisymmetric dynamic deformations of (dielectric)
elastomeric spherical membranes were also investigated by Mockensturm and Goulbourne
(2006) to assess how these structures could be used as reciprocating and peristaltic pumps.
We should also mention the works of Gonçalves et al. (2009); Soares and Gonçalves (2012,
2014) who studied the free and forced nonlinear vibrations of pre-stretched (circular,
annular and rectangular) hyperelastic membranes subjected to transversal harmonic
pressure. The authors developed a single degree-of-freedom model that was verified via
comparisons with finite element calculations performed with the code ABAQUS. This
series of works highlighted the influence of the pre-stretching ratio, the strain energy
function used to model the material, and the frequency of the applied pressure on the
dynamic response of the membrane.

Alternatively, Amabili and co-workers (Amabili et al., 2016; Breslavsky et al., 2014a,b)
proposed a dynamic local model to investigate the nonlinear vibrations of rectangular
hyperelastic plates. The model, which allowed to include the commonly ignored in-plane
displacements to the analysis of bending vibrations of hyperelastic plates (Breslavsky
et al., 2014b), was validated with experiments and numerical simulations performed with
ABAQUS. The reader is referred to the recent and very detailed review of Alijani and
Amabili (2014) to obtain further information about the literature published over the last
50 years on the dynamic behavior of hyperelastic shells.
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However, the oscillatory behavior of compressible hyperelastic shells has received
much less attention. Most likely, this is due to the fact that material compressibility
prevents obtaining a closed-form solutions of the shell motion. The problem has to
be solved numerically, even in the case that a constant pressure is applied a boundary
condition. To the authors’ knowledge, the first contribution to this field was published
by Haddow and Mioduchowski (1977). This work explored the radial oscillations of
compressible hyperelastic spherical shells subjected to a step function pressure at their
inner surface. Haddow and Mioduchowski (1977) showed that the response of compressible
and incompressible shells subjected to dynamic inflation is significantly different. For
incompressible specimens the effect of the pressure is felt instantaneously throughout
the shell. In the case of compressible spherical shells, the applied pressure leads to the
formation of a shock wave, which propagates back and forth through the thickness of
the specimen. In Janele et al. (1989b), Haddow and co-workers further investigated
the radial oscillations of compressible hyperelastic spherical shells. For that, they
developed a finite difference model, based on a predictor-corrector scheme, that improved
the numerical procedure previously used in Haddow and Mioduchowski (1977). Their
attention was focused on the constitutive sensitivity of the oscillatory behavior of
compressible shells. They used different strain energy functions to model the material
behavior and highlighted the differences between the dynamic response of compressible
and incompressible specimens. The phase portraits of compressible shells showed a
characteristic sawtooth form (this was not observed for incompressible shells), which
revealed the effect of the reflected waves in the oscillatory behavior of the spherical
specimen. Similar results were obtained in Janele et al. (1989a, 1991), where Haddow
and co-workers investigated the dynamic inflation of compressible cylindrical shells. More
recently, we should highlight the work of Antman and Lacarbonara (2009), who developed
a general approach to the radial motions of compressible nonlinear elastic cylindrical
and spherical shells subjected to time dependent pressure. Using the geometrically exact
2-dimensional Cosserat theory developed in Antman (2006), the authors pointed out the
significant differences in the dynamic response of cylindrical and spherical shells. The
reader is referred to chapter 17 in Antman (2006) to obtain additional information about
various engineering problems that arise within the context of the dynamic behavior of
nonlinear elastic shells.

The present chapter, which complements the aforementioned works of Antman and
Lacarbonara (2009); Haddow and Mioduchowski (1977); Janele et al. (1989b), revisits
the problem of a compressible spherical shell subjected to constant pressure at its inner
surface. The goal is to provide further insights into the role played by the applied pressure,
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the material compressibility and the shell thickness in the oscillatory behavior of the
specimen. To this end, we have addressed the problem using two different numerical
approaches: (1) a finite differences scheme implemented in MATLAB and (2) a finite
element model developed in ABAQUS. On the one hand, we have detected that numerical
diffusion and dispersion impose limits to the capacity of (these) numerical methods to
describe the shock wave that emanates from the inner surface of the shell due to the
applied pressure. On the other hand, we have shown that both numerical approaches
capture main features of the oscillatory response of the spherical shell, including the
maximum amplitude of the oscillations. Using the key nondimensional groups that
control the problem at hand, we have conducted a comprehensive parametric analysis and
showed, for different specimen thicknesses and degrees of material compressibility, the
interplay between the maximum amplitude of the oscillations and the applied pressure.
In addition, we have investigated the critical loading conditions and material behaviors
(degrees of compressibility) for which the oscillatory behavior is lost, leading to an
unbounded expansion of the spherical shell.

5.2 Problem formulation

In this section we formulate the problem of a thick-walled spherical shell subjected
to radially symmetric dynamic inflation. The material is taken to be isotropic and
compressible within the framework of finite nonlinear elasticity. The main features of the
mathematical derivation are presented, while further details can be found in the work of
Janele et al. (1989b).

Recall from Chapter 2 that the current position vector x in the deformed configuration
Ω ⊂ R3 at time t of the material point that occupies the location X ∈ Ω0 is given by
x = χ(X, t), where χ is a bijective and twice continuously differentiable mapping. The
associated deformation gradient, right Cauchy-Green strain tensor and volume ratio at
X ∈ Ω0 are denoted by

F(X, t) = Grad χ(X, t), C(X, t) = FT(X, t)F(X, t),
J(X, t) = detF(X, t).

(5.1)

Moreover, the balance of linear momentum in the material description requires that

Div S(X, t) = ρ0χ̈(X, t) in Ω0, (5.2)

82



5.2 Problem formulation

where the dots denote differentiation with respect to time, S stands for the first Piola-
Kirchhoff stress tensor, and ρ0 is the constant mass density of the shell material in its
undeformed configuration Ω0.

5.2.1 Radially symmetric dynamic deformation

Let {R,Θ,Φ} denote the spherical polar coordinates in the reference configuration
such that A ≤ R ≤ B. If the material is deformed so that the spherical symmetry is
maintained, the motion is given by

r = r(R, t), θ = Θ, φ = Φ, (5.3)

where {r, θ, φ} are the spherical polar coordinates in the current configuration such that
a ≤ r ≤ b. Under these conditions, the deformation gradient tensor is given by

F = λr er ⊗ er + λ eθ ⊗ eθ + λ eφ ⊗ eφ, (5.4)

where the principal stretches corresponding to the directions r, θ, φ are given by

λr = ∂r

∂R
, λ = λθ = λφ = r

R
. (5.5)

Moreover, the particle velocity is v(R, t) = ∂r(R,t)
∂t

and the first Piola-Kirchoff stress tensor
assumes the following form

S = Sr er ⊗ er + Sθ eθ ⊗ eθ + Sθ eφ ⊗ eφ. (5.6)

The fundamental equations, formulated in Lagrangian description, which govern the
loading process, are given below.

Kinematic relations. Based on the definitions of the radial and circumferential
stretches, we deduce the following kinematic relations

∂λr

∂t
− ∂v

∂R
= 0, ∂λ

∂t
− v

R
= 0. (5.7)

Hereinafter, we indistinctly denote the circumferential stretch rate as ∂λ
∂t

or λ̇.
Conservation of linear momentum. The balance of linear momentum pre-

sented in Eq. (5.2) reduces to

ρ0
∂v

∂t
− ∂Sr

∂R
− 2 (Sr − Sθ)

R
= 0. (5.8)
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5.2.2 Constitutive model

In this work our attention is restricted to isothermal loading processes at constant temper-
atures. Following Ogden (1997), we use the following isochoric-volumetric decomposition
of the strain energy function, as introduced in Chapter 2.

ψ(I1, I2, J) = ψiso(I1, I2) + ψvol(J), (5.9)

where I1 = J−2/3(λ2
r +2λ2) and I2 = J−4/3(2λ2

rλ
2 +λ4) are the first and second invariants

of the isochoric part of the right Cauchy-Green strain tensor, being J = λrλ
2 the

determinant of the deformation gradient tensor. We have selected the Mooney-Rivlin
material model to characterize the isochoric part

ψiso(I1, I2) = C10
(
I1 − 3

)
+ C01

(
I2 − 3

)
, (5.10)

where C10 and C01 are material parameters such that µ = 2(C10 +C01) is the initial shear
modulus. From Bucchi and Hearn (2013b) we have taken C10 = 210587.307 MPa and
C01 = 1504.76719 MPa. These material constants correspond to vulcanized rubber and
were originally reported by Treloar (1944). We have selected the following expression
first proposed by Ogden (1972) to characterize the volumetric part

ψvol(J) = K

β2 (β ln J + J−β − 1), (5.11)

where K is the initial bulk modulus and β is an empirical material parameter. Note
that, in the limit of small deformations, K = 2µ(1+ν)

3(1−2ν) where ν is the initial Poisson
ratio. In forthcoming sections of this chapter, we will carry out systematic variations
of ν in order to explore the role played by the material compressibility in the dynamic
response of the spherical shell. Moreover, according to Ogden (1972), we have taken
β = 9. Finally, if the strain energy function takes the form W (λr, λ) = ψ(I1, I2, J), the
radial and circumferential stresses are given by

Sr = ∂W

∂λr

, Sθ = 1
2
∂W

∂λ
. (5.12)

5.2.3 Initial and boundary conditions

The formulation of the problem is completed with the following initial and boundary
conditions

Sr (R, 0) = Sθ (R, 0) = 0, v (R, 0) = 0, (5.13)
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Sr (A, t) = −λ(A, t)2P, Sr (B, t) = 0, (5.14)

where P is a constant pressure per unit of current area applied in the inner surface of the
spherical shell. Note that the relation between the radial Piola-Kirchoff stress and the
radial Cauchy stress is Sr = λ2σr. Therefore, the boundary condition in the inner surface
of the shell can be alternatively expressed as σr (A, t) = −P . These relations will be used
in Section 5.5 to analyze the stress field in the spherical shell during the loading process.

5.2.4 Dimensionless formulation

It is convenient at this point to introduce the following set of non-dimensional variables

R = R

A
, r = r

A
, Sr = Sr

C10
, Sθ = Sθ

C10
(5.15)

t = t

A

√
C10

ρ0
, v = v

√
ρ0

C10
, W = W

C10
, P = P

C10
, f0 =

(
A

B

)3
,

where f0 is a nondimensional thickness parameter that represent the geometry of the
spherical shell, as in previous chapters if this dissertation. This set of nondimensional
variables highlights the dependence of the problem on the geometric and loading parame-
ters f0 and P that will be systematically varied in Section 5.6. Previous non-dimensional
variables allow to rewrite the kinematic relations and the balance of linear momentum,
equations (5.7) and (5.8), as follows

∂λr

∂t
− ∂v

∂R
= 0, (5.16)

∂λ

∂t
− v

R
= 0, (5.17)

∂v

∂t
− ∂Sr

∂R
−

2
(
Sr − Sθ

)
R

= 0, (5.18)

This system of equations can be rearranged in the form

∂Q
∂t

+ ∂H (Q)
∂R

+ b (Q) = 0, (5.19)

where Q = (λr, λ, v)T, H = −
(
v, 0, Sr

)T
and b = −

(
0, v

R
,

2(Sr−Sθ)
R

)T
. We can further

operate with previous equations in order to obtain the system in a non-conservative form

∂Q
∂t

− M
∂Q
∂R

+ b (Q) = 0, (5.20)
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where

M =


0 0 −1
0 0 0

−∂Sr

∂λr
−∂Sr

∂λ
0

 . (5.21)

The eigenvalues of M, that will be further analyzed in Section 5.3, are 0 and ±γ, where
γ =

√
∂2W
∂λ2

r
. These are the slopes of three families of characteristics in the

(
R, t

)
plane.

The problem of the dynamic inflation of spherical shells formulated in this section
is approached numerically using the methods of finite differences and finite elements.
The basic features of the numerical models developed for this purpose are described in
sections 5.3 and 5.4.

5.3 Finite differences modeling

This section presents the finite differences scheme used to solve the governing equations
defined by (5.19). The scheme is taken from Janele et al. (1989b), who implemented a
modification of the MacCormack’s predictor-corrector formulation (MacCormack, 1969)
to obtain solutions to problems of shear waves emanating from a cylindrical cavity in an
unbounded hyperelastic medium (Haddow et al., 1987a,b). Only the main features of
the model are presented here since further details can be found in Janele et al. (1989b).

In order to construct the numerical solution, we consider a rectangular grid such that
Π = {Rj = 1 + j∆R, tn = n∆t}, where j = 0, . . . ,M and n = 0, . . . , N . The integration
spatial and time steps are ∆R = B−1

M
and ∆t, where B = B/A. The forward-backward

(predictor-corrector) finite differences relations are, respectively

Q∗
j = Qn

j − ∆t
∆R

(
Hn

j+1 − Hn
j

)
− ∆tbn

j , (5.22)

Qn+1
j = 1

2

(
Qn

j + Q∗
j − ∆t

∆R
(
H∗

j − H∗
j−1

)
− ∆tb∗

j

)
, (5.23)

where the notation Qn
j = Q

(
Rj, t

n
)

has been used. The superscript ∗ refers to predicted
quantities.

Application of the finite differences scheme requires boundary conditions for the
kinematic variables (λr, λ, v). However, only the relations Sr (A, t) = −λ(A, t)2P and
Sr (B, t) = 0 are prescribed, which give the relation between λr and λ at the inner and
outer surfaces of the shell. In order to obtain additional boundary conditions, the finite
differences scheme is modified as follows:
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• Inner surface of the shell (forward-forward scheme): in the predictor step the
velocity is computed following the forward scheme used in the general formulation (Eq.
5.22). The circumferential stretch is obtained using a finite difference form of Eq. (5.17)
taken along the characteristic R = 1 and the radial stretch is obtained from the prescribed
boundary condition (Eq. 5.14).
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2 P . (5.26)

In the corrector step we use a similar procedure. However, the backward scheme
used in the general formulation for the velocity (Eq. 5.23), is replaced by a forward
scheme.
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• Outer surface of the shell (backward-backward scheme): in the predictor step
the forward scheme used in the general formulation for the velocity (Eq. 5.22), is replaced
by a backward scheme. The circumferential stretch is obtained using a finite difference
form of Eq. (5.17) taken along the characteristic R = B and the radial stretch is obtained
from the prescribed boundary condition (Eq. 5.14).
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In the corrector step we use a similar procedure. The backward scheme used in the
general formulation for the velocity (Eq. 5.23), is used.
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(
Sr

)n+1

M
= 0. (5.35)

To the authors’ knowledge, there is no analysis available to determine the stability
condition for the scheme (5.22)-(5.23). Nevertheless, following Haddow et al. (1987b),
we have investigated the stability of the linear system (b = 0) using the Von-Neumann
analysis. In this case, it is required that the Courant number ξ = γ∆t/∆R ≤ 1, where
γ is the numerically greatest eigenvalue of M. We have used this condition in all our
calculations and no numerical instability was encountered (see sections 5.5 and 5.6). Note
that γ defines the propagation speed of radial waves in the shell. The non-linearity of the
material behavior leads to continuous variations of γ during the the loading process and,
consequently, ∆t is adjusted at each time step in order to maintain the same value of ξ
with constant ∆R. We have selected ξ = 0.99, which minimizes numerical diffusion and
dispersion (Mendez-Nuñez and Carroll, 1993), and ∆R = 0.001 for all the simulations
presented in sections 5.5 and 5.6.

It is apparent that the finite differences approach provides flexibility and control
over the formulation and resolution of the problem. As such, it is suited to explore the
physical phenomena that control the dynamic response of the shell (see Section 5.5).

5.4 Finite elements modeling

This section describes the features of the axisymmetric finite element model developed
to simulate the dynamic inflation of spherical hyperelastic shells. The numerical analysis
are carried out using the finite element software ABAQUS/Explicit (2014). The strain
energy function presented in Section 5.2 has been implemented into the finite element
code through a VUMAT user subroutine. Consistent with Section 5.2, the problem
setting is of a spherical shell with inner and outer radii A = 1 and B (we will perform
variations of the shell thickness), respectively (see Fig. 5.1). The solid is initially at rest
and unstretched, while a constant internal pressure P is applied at the cavity wall.
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The model has been meshed using four node axisymmetric reduced integration
elements; CAX4R in ABAQUS/Explicit notation. The mesh shows radial symmetry
in an attempt to retain the symmetry of the problem and reduce the interference of
the mesh in the calculations (see Fig. 5.1). The elements size is constant along the
circumferential direction, whereas it increases linearly along the radial direction. Thus,
we have ensured that the elements aspect ratio is close to 1 : 1 within the whole domain.
According to Zukas and Scheffler (2000), such an element shape is optimal for describing
dynamic events that involve large gradients of stress and strain. We have placed 200
elements along the circumferential direction, i.e., the size of the elements located beside
the inner perimeter is 0.005 × 0.005. A mesh convergence study has been performed,
and phase plane diagrams (stretch rate versus stretch) were compared against a measure
of mesh density until the results converged satisfactorily. Note that ABAQUS/Explicit
introduces artificial damping in the calculations in order to attenuate the numerical
solution and ensure stability. The code generates bulk viscosity pressures, which are
linear and quadratic, respectively, in the volumetric strain rate. This artificial viscosity,
which introduces numerical diffusion, is controlled by two parameters ϖ (linear viscosity)
and χ (quadratic viscosity). In the calculations shown in sections 5.5 and 5.6, we have
selected the default values of the code 0.06 and 1.2, respectively.

In comparison with the finite differences simulations, ABAQUS/Explicit calculations
are computationally less costly (markedly). For this reason, the finite element model is
especially suited to develop parametric analyses that involve a large number of calculations
(see Section 5.6).
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Fig. 5.1 Finite element mesh and mechanical boundary conditions of the spherical shell
modeled as an axisymmetric solid.

In the next sections of the chapter we present selected results obtained from the
finite differences and finite elements models. Note that very high levels of compressibility
are investigated in a range that exceeds the typical values corresponding to rubber-like
materials. Nevertheless, exploring highly compressible solids is justified for the sake
of better understanding the essential phenomena involved in the dynamic response of
compressible hyperelastic shells. The following analysis is composed of two parts. First,
we focus on the intervention of stress waves within the specimen, paying specific attention
to the role played by the wave propagation phenomena in the dynamic response of
the shell. Second, we carry out a systematic variation of (nondimensional) applied
pressure, material compressibility and (nondimensional) specimen thickness and analyze
the influence of these loading, material and geometric parameters in the oscillatory
response of the spherical shell. Throughout the analysis, a comparison between finite
differences and finite elements results is conducted. Additional comparisons are carried
out with the analytical solution derived in previous chapters for the incompressible
sphere.

5.5 Salient features

In this section, we present and discuss some critical outcomes obtained from the numerical
models presented in previous sections. Fig. 5.2 shows phase diagrams, λ̇a versus λa

(stretch and stretch rate in the outer surface), obtained using finite differences and finite
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elements simulations. The applied pressure is P = 0.2, the thickness parameter is f0 = 0.5
and the initial Poisson ratio is ν = 0.45. From this point on, this combination of loading
case, geometric condition and material behavior will be referred to as the reference
case. The phase diagrams present closed orbits, which means that the dynamic response
of the spherical shell is oscillatory. Fig. 5.2a depicts the orbit corresponding to the first
oscillation and Fig. 5.2b to the third oscillation. Both numerical schemes yield phase
plane curves with sawtooth form. This is caused by the reflection of stress waves at the
shell boundaries. Note that the sawtooth form of the orbits is attenuated with time. This
non-physical behavior is due to numerical diffusion. The attenuation is faster in the case
of the finite difference model. Moreover, there is an offset between the finite differences
and the finite elements results, which increases with the loading time. This phenomenon
is attributed to numerical dispersion. Note that these numerical errors (diffusion and
dispersion) barely affect the maximum stretch of the oscillation, which is ∼ 1.13 for both
numerical approaches used.

Fig. 5.3 depicts the Cauchy radial stress σR and the radial velocity v versus the
normalized thickness coordinate H for the reference loading, geometric and material
configurations. The loading time t = 0.0243 is such that the front wave that emanates
from the inner surface of the shell has not yet reached the outer boundary. A comparison
between finite differences and finite elements is shown. The agreement between the results
obtained from both numerical codes is remarkable. Starting from the inner surface of
the shell, we observe that the radial stress σR and the velocity v reveal a slight (roughly
linear) decrease with the normalized thickness coordinate H. Approaching H ≈ 0.4
we find a sudden drop in σR and v, which corresponds to the wave front. The drastic
variation in the field variables is caused by the compressibility of the solid. This is
evidenced in Fig. 5.4 by the abrupt change in material density observed at the front wave.
Nevertheless, the shock is not described as a discontinuity in the calculations because
the numerical diffusion smears the wave front across the mesh. Note that the smearing
of the shock is more pronounced in the case of the finite differences scheme. Moreover,
the finites elements computations present wiggles just behind the shock, which illustrate
the numerical dispersion of the finite elements results.
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Fig. 5.2 Comparison between finite differences and finite elements. Phase diagrams, λ̇a

versus λa. Reference loading case, geometric condition and material behavior: applied
pressure P = 0.2, thickness parameter f0 = 0.5 and initial Poisson ratio ν = 0.45. (a)
Oscillation #1 and (b) oscillation #3.
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Fig. 5.3 Comparison between finite differences and finite elements. Reference loading case,
geometric condition and material behavior: applied pressure P = 0.2, thickness parameter
f0 = 0.5 and initial Poisson ratio ν = 0.45. (a) Cauchy radial stress σR and (b) radial
velocity v versus the normalized thickness coordinate H = λR−λa
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for t = 0.0243.
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Fig. 5.4 Finite elements. Reference loading case, geometric condition and material behavior:
applied pressure P = 0.2, thickness parameter f0 = 0.5 and initial Poisson ratio ν = 0.45.
Contours of (a) material density ρ and (b) radial velocity v for t = 0.0243.

It is apparent that dispersive and diffusive effects limit the capacity of both numerical
models to describe the shock wave propagation and the sawtooth form of the phase
diagrams over extended periods of time. This limitation is especially relevant in the case
of the finite differences scheme. Nevertheless, for short loading times, both numerical
approaches capture the main physical features that control the oscillatory behavior of the
shell, including the maximum stretch of the oscillation. For the first oscillation, the phase
diagram predicted by the finite differences and the finite elements is very similar. Thus,
relying on the numerical results obtained for the first orbit, in the next section of this
chapter we develop a parametric analysis to show the roles played by (nondimensional)
applied pressure, material compressibility and (nondimensional) shell thickness in the
oscillatory behavior of the spherical shell.

5.6 Parametric analysis

In this section we analyze, throughout numerical simulations, the dependence of the
problem on the applied pressure P , the initial Poisson ratio ν and the thickness of the
spherical shell f0.

5.6.1 The role played by the applied pressure

The goal of this section is twofold: (1) to show the interplay between the maximum
amplitude of the oscillation and the applied pressure and (2) to determine the limit
imposed by the applied pressure to the oscillatory motion of shell. The reference thickness
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parameter f0 = 1 and initial Poisson ratio ν = 0.45 are considered in all the calculations
presented below.

Fig. 5.5 represents the phase diagrams obtained using ABAQUS/Explicit for different
values of the applied pressure: P = 0.2, P = 0.3, P = 0.431, P = 0.432 and P = 0.6.
For the applied pressures P = 0.2, P = 0.3 and P = 0.431 the phase portrait is a closed
orbit, i.e. the shell shows an oscillatory motion.
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Fig. 5.5 Finite elements. Phase diagrams, λ̇a versus λa. Oscillation #1. Reference
geometric condition and material behavior: thickness parameter f0 = 0.5 and initial Poisson
ratio ν = 0.45. Several loading cases are considered: P = 0.2, P = 0.3, P = 0.431,
P = 0.432 and P = 0.6.

To be noticed that, as the pressure increases, the shape of the orbit becomes sharpened.
For P = 0.432 and P = 0.6 the phase diagram is not closed, i.e. the shell undergoes
an unbounded expansion. As anticipated, the applied pressure imposes limits to the
oscillatory behavior of the shell. Note the differences between the phase portraits
corresponding to P = 0.432 and P = 0.6. For P = 0.6 the stretch rate is an increasing
function of the stretch. On the contrary, for P = 0.432 the stretch rate first increases
until reaching a relative maximum, then decreases up to a point that λ̇a comes close to
zero (if λ̇a reaches 0 an homoclinic orbit is obtained) and finally increases unbounded.

Fig. 5.6 depicts the applied pressure P versus the maximum stretch of the oscillation
λa|λ̇a=0. A comparison between finite differences and finite elements results is conducted.
The agreement between both numerical procedures is remarkable. The amplitude of
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the oscillation increases with the applied pressure. The P − λa|λ̇a=0 curve presents a
power-type concave-down shape that extents up to λa|λ̇a=0 ≈ 1.663. This value of the
maximum stretch is reached for P ≈ 0.431 (pressure corresponding to the homoclinic
orbit). Larger values of applied pressure lead to the unbounded expansion of the shell
(see the open orbits for P ≈ 0.432 and P ≈ 0.6 in Fig. 5.5).

f0

a
a

Fig. 5.6 Comparison between finite differences and finite elements. Applied pressure P
versus maximum stretch of the oscillation λa|λ̇a=0. Reference geometric condition and
material behavior: thickness parameter f0 = 0.5 and initial Poisson ratio ν = 0.45.

5.6.2 The role played by the material compressibility

In this section we explore the role played by material compressibility in the dynamic
response of the spherical shell. For that purpose, we have carried out ABAQUS/Explicit
calculations using initial Poisson ratios within the range 0.05 ≤ ν < 0.5. For the sake
of brevity we do not show finite difference results. Nevertheless, we have checked that
finite elements and finite differences show very good agreement. Recall that the results
for the incompressible case (ν = 0.5) are obtained from the analytical solution developed
in the previous chapter (see Section 4.2, Eq. (4.15) ). The reference thickness parameter
f0 = 0.5 is considered in all the calculations presented below.

Fig. 5.7 presents phase diagrams obtained using ABAQUS/Explicit for different
Poisson ratios and two different applied pressures: P = 0.2 in Fig. 5.7a and P = 0.3 in
Fig. 5.7b. The sawtooth form of the phase diagram is accentuated with the material
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compressibility. The role of stress waves propagation in the dynamic response of the shell
increases with the decrease of the initial Poisson ratio. Moreover, at the incompressible
limit, the effect of pressure at the inner surface of the shell is felt instantaneously at all
radii (no wave propagation), and the phase portrait does not show sawtooth form.

• For P = 0.2 (see Fig. 5.7a) we have explored 8 different values of the Poisson
ratio: 0.29, 0.3, 0.35, 0.4, 0.45, 0.475, 0.495 and 0.5. For ν = 0.29 the shell expands
unbounded, as illustrated by the open orbit of the phase diagram. For Poisson ratios
ν ≥ 0.3 the phase diagram is a closed orbit, as corresponds to an oscillatory response
of the shell. For a given applied pressure, the degree of compressibility of the material
determines whether or not the shell shows an oscillatory response. Moreover, as
ν increases, the maximum stretch of the oscillation decreases. For ν = 0.495 the
phase orbit virtually overlaps with the one obtained for the incompressible case
and the sawtooth form of the phase diagram is practically negligible.

• For P = 0.3 (see Fig. 5.7b) we have investigated 7 different values of the Poisson
ratio: 0.35, 0.38, 0.4, 0.45, 0.475, 0.495 and 0.5. For ν = 0.35 and ν = 0.38, the
open orbits of the phase diagram indicate that the shell expands unbounded. For
Poisson ratios ν ≥ 0.4, the response of the shell is oscillatory. It becomes apparent
that, as P increases, the loss of the oscillatory behavior of shell occurs for greater
values of ν. Moreover, as in the case of P = 0.2, for ν = 0.495, the phase diagram
can hardly be distinguished from the one corresponding to the incompressible case.

Fig. 5.8 depicts the applied pressure P versus the maximum stretch of the oscillation
λa|λ̇a=0 for various Poisson ratios ν = 0.1, ν = 0.2 ν = 0.3, ν = 0.35, ν = 0.4, ν = 0.45
and ν = 0.5 (analytical solution). For each value of ν, the end of the curve indicates
that an homoclinic orbit has been reached (see Section 5.6.1). Irrespective of the Poisson
ratio, the P − λa|λ̇a=0 curve shows a power-type concave-down shape. As the value of
ν increases, the P − λa|λ̇a=0 curve is shifted upwards. The pressure required to reach a
given value of λa|λ̇a=0 increases with the Poisson ratio. On the other hand, we observe
that the maximum value of λa|λ̇a=0, which corresponds to the homoclinic orbit, strongly
decreases with the material compressibility.
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Fig. 5.7 Finite elements. Phase diagrams, λ̇a versus λa. Oscillation #1. Reference
geometric condition: thickness parameter f0 = 0.5. Several initial Poisson ratios ranging
from ν = 0.29 to ν = 0.5 (analytical solution) are considered. Two applied pressure are
investigated: P = 0.2 in (a) and P = 0.3 in (b). (For interpretation of the colors coding of
this figure, the reader is referred to the online version of this dissertation).

98



5.6 Parametric analysis
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Fig. 5.8 Finite elements. Applied pressure P versus maximum stretch of the oscillation
λa|λ̇a=0. Reference geometric condition: thickness parameter f0 = 0.5. Several initial
Poisson ratios are considered: ν = 0.1, ν = 0.2, ν = 0.3, ν = 0.35, ν = 0.4, ν = 0.45 and
ν = 0.5 (analytical solution).

f0

Fig. 5.9 Finite elements. Homoclinic orbit pressure P h versus initial Poisson ratio ν.
Reference geometric condition: thickness parameter f0 = 0.5.
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This is further illustrated in Fig. 5.9 where the applied pressure corresponding to the
homoclinic orbit P h is plotted as a function of the Poisson ratio ν. The P h − ν curve
shows a power-type concave-up shape with a slope that increases as the Poisson ratio
approaches incompressibility. While very low values of the Poisson ratio are explored
(up to 0.05), for the sake of providing insights into the effect of compressibility on the
dynamic response of the shell, we must recall that such values are not representative of
rubber-like materials and may not be within the range for which Eq. (5.11) was derived
and validated.

5.6.3 The role played by the shell thickness

In this section we assess the role played by the thickness in the dynamic response of the
spherical shell. For that purpose, we have carried out finite elements calculations using
thickness parameters which range from f0 = 1/6 to f0 = 1/26. The reference applied
pressure P = 0.2 is considered. The finite element simulations obtained using ν = 0.45
are compared with the analytical solution developed for ν = 0.5. While finite differences
results are not shown for the sake of brevity, we have checked that they are in agreement
with the finite elements calculations.

Fig. 5.10 depicts phase diagrams obtained for f0 = 1/6, f0 = 1/11 and f0 = 1/26.
We observe that, as the shell thickness increases, the phase plane orbit becomes gradually
reduced: the oscillation is slower and shows smaller amplitude. As the thickness increases,
the orbit corresponding to the compressible case looks less and less like the ellipse
described by the incompressible limit. For ν = 0.45 the number of reflections that occur
during the oscillation of the shell decreases as the thickness increases. However, their
effect in the shape of the phase portrait is more significant. It is apparent that the role of
compressibility in the dynamic response of the spherical shells becomes more important
as the thickness increases.

5.7 Summary and conclusions

In this chapter we have explored the role played by the material compressibility in the
oscillatory behavior of spherical shells. The specimens have been subjected to a constant
inflation pressure step. The compressible Mooney-Rivlin strain energy function has been
used to model the material behavior. The investigation has been based on a two-pronged
numerical approach: (1) we have implemented a finite differences model in MATLAB
and (2) we have developed a finite elements model in ABAQUS/Explicit.
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Fig. 5.10 Phase diagrams, λ̇a versus λa. Oscillation #1. Reference loading case: applied
pressure P = 0.2. Three thickness parameters are considered: f0 = 1/6, f0 = 1/11 and
f0 = 1/26. Results are shown for two different initial Poisson ratios: ν = 0.45 (finite
elements) and ν = 0.5 (analytical solution).
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We have shown that numerical dispersion and diffusion impose limits to the capacity of
the finite differences and finite elements models to describe the shock wave that emanates
from the inner surface of the shell due to the application of the inflation pressure.
Nevertheless, both numerical approaches capture the essential features that describe
the oscillatory behavior of the shell, including the maximum stretch of the oscillation.
A key point of our methodology is that finite differences and finite elements models
show complementary characteristics. The finite differences scheme provides flexibility
and control over the formulation and resolution of the problem. As such, it allowed to
uncover the physical phenomena that play a critical role in the dynamic response of
the specimens. On the other hand, the finite element model presents significantly lower
computational cost. As such, it allowed to develop a comprehensive parametric analysis
that showed distinctive features of the oscillatory behavior of compressible shells. The
systematic comparison and analysis of the finite differences and finite elements results
led to the following conclusions:

• The maximum amplitude of the oscillation increases with the applied pressure.

• There is a critical pressure, which defines a critical oscillation amplitude, for which
the oscillatory behavior of the shell is lost, leading to an unbounded expansion of
the specimen.

• The critical pressure and the critical oscillation amplitude are strongly dependent
on the material compressibility.

• The phase portraits used to represent the oscillatory behavior of compressible shells
show a sawtooth form caused by the stress waves intervention within the specimen.

• The sawtooth form of the phase portraits is accentuated as the material compress-
ibility and shell thickness increase.

• As the specimen thickness increases, the oscillation of the shell is slower and shows
smaller amplitude.

All in all, we have developed an exhaustive numerical analysis that improves the
seminal investigations of Haddow and co-workers (Haddow and Mioduchowski, 1977;
Janele et al., 1989b) and provides new insights into the oscillatory behavior of compressible
hyperelastic spherical shells subjected to dynamic inflation.
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1D finite vibrations of isotropic
visco-hyperelastic structures
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6 Incompressible isotropic visco-hyperelastic
cylindrical structures

Periodic and quasi-periodic motion, and nonlinear resonances

In this chapter we analyze the non-linear oscillations of a thick-walled visco-elastic
cylindrical shell subjected to radially symmetric dynamic inflation. The goal is to extend
the analysis developed in Chapter 3 to visco-elastic materials. For that purpose, we use
the constitutive model originally proposed by Kumar and Lopez-Pamies (2016). This
model (that will also be used in Chapter 7) is derived as an specialization of the two
potential constitutive framework — also known as the generalized standard materials
framework — to rubber viscoelasticity. The constitutive formulation accounts for the
non-Gaussian elasticity of elastomers, as well as for the deformation enhanced shear
thinning of their viscous dissipation governed by reptation dynamics. Two different
loading conditions have been considered: (1) a constant pressure and (2) a harmonic time-
dependent pressure. Our analysis reveals the strong influence of the visocus dissipation in
the dynamic response of the material. For instance, for the case of constant pressure, we
have observed that viscosity reduces the load for which the cylinder expands unbounded.
In addition, in the case that the response of the shell is oscillatory, we have shown that
viscous dissipation gradually reduces the amplitude and velocity of the oscillations until
the structure eventually stops. Moreover, for the case of time dependent applied pressure,
we have obtained the complete nonlinear resonance diagrams of the structure which
reveal the existence of escape bands for which the motion of the cylinder is not periodic.

6.1 Introduction

Kwak et al. (2001) defined passive damping control as the structure’s ability to damp
its own oscillations as a result of its structural design or material properties or the
incorporation of devices, such as coatings and elastomers, that generate energy dissipation.
As discussed in Chapter 1 of this dissertation, elastomeric isolators are nowadays among
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the most widely used type of seismic isolators (Al-Anany and Tait, 2017), and a wide
amount of research has been carried out to investigate their effectiveness for the seismic
isolation of civil infrastructures (Ghobarah and Ali, 1988; Matsagar and Jangid, 2003;
Tsopelas et al., 1996; Wesolowsky and Wilson, 2003). Elastomers are also widely used
for vibration isolation in automotive and aerospace industries in order to, for instance,
isolate the structure of the car/aircraft from the engine motions (Peng et al., 2015;
Vahdati and Saunders, 2002). Within this context, the review of Ibrahim (2008) presents
a comprehensive assessment of recent developments of nonlinear isolators in the absence
of active control means. Specifically, chapter 7 of this celebrated paper highlights the
damping ability of elastomers, which stems from their characteristic viscoelastic behavior
Chung (2001), and their extensive in various industrial applications.

The rate dependent response of various types of rubbers (vulcanized rubber, natural
rubber, acrylonitrile–butadiene rubber, styrene-butadiene rubber...) has been charac-
terized experimentally, in tension and compression and within a wide range of strain
rates, by several authors (Chen et al., 2002; Fatt and Ouyang, 2008; Harwood and
Schallamach, 1967; Khan and Farrokh, 2006; Rao et al., 1997; Schallamach et al., 1966)
over the last decades. However, the precise micro-structural mechanisms which govern
their viscous behavior are not well understood. Nevertheless, in the literature can be
found various ways to incorporate viscosity in the constitutive modeling of finite elasticity.
For example, a plenty of integral formulations of nonlinear viscoelasticity started from
Green and Rivlin (1957, 1960). Further developments are reviewed in Lockett (1972);
Carreau et al. (1997); Hoo Fatt and Ouyang (2007) and Wineman (2009). There are also
numerous differential formulations of nonlinear viscoelasticity based on the introduction
of internal variables and their evolution equations: Lubliner (1985); Lion (1996); Reese
and Govindjee (1998a); Bergström and Boyce (1998a); Huber and Tsakmakis (2000);
Miehe and Keck (2000); Amin et al. (2006) and Aranda-Iglesias et al. (2017).

In this chapter of the dissertation we use the constitutive model developed by Kumar
and Lopez-Pamies (2016), which has been shown to describe reasonably well the response
of a broad variety of rubbers over wide ranges, to analyze the nonlinear vibrations of thick-
walled cylindrical shells subjected to constant and harmonic time dependent pressure.
Despite the large bunch of important applications in which viscoelastic elastomers are
used as vibration isolators (as described above), the number of works which focus their
attention on the specific influence that material viscosity has on the oscillatory response
of hyperelastic structures is very limited (here it is worth mentioning the work of Verron
et al. (2001)). For instance, we have shown that material viscosity reduces the critical
applied pressure for which the oscillatory response of the structure ceases, leading to the
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unbounded expansion of the cylinder. In addition, in the case of time dependent applied
pressure, we have obtained the resonances diagrams of the structure and showed that,
for certain applied frequency, due to the viscous response of the structure, the motion of
the cylinder may turn from periodic to quasi-periodic.

6.2 Problem formulation

In this section we formulate the problem of a infinitely long thick-walled cylinder (plane
strain along the axial direction) made of a nonlinear viscoelastic material and subjected
to constant and harmonica time dependent pressure. As such, we extend the formulation
developed in Chapter 3 to rate dependent materials.

Recall from previous chapters that the current position vector x in the deformed
configuration Ω ⊂ R3 at time t of the material point that occupies the location X ∈ Ω0

is given by x = χ(X, t), where χ is a bijective and twice continuously differentiable
mapping. The associated deformation gradient, right Cauchy-Green strain tensor and
volume ratio at X ∈ Ω0 are denoted by

F(X, t) = Grad χ(X, t), C(X, t) = FT(X, t)F(X, t),
J(X, t) = detF(X, t).

(6.1)

Moreover, the balance of linear momentum in the material description is

Div S(X, t) = ρ0χ̈(X, t) in Ω0, (6.2)

where the dots denote differentiation with respect to time, S stands for the first Piola-
Kirchhoff stress tensor, and ρ0 is the constant mass density of the shell material in its
undeformed configuration Ω0.

6.2.1 Constitutive model

Following Kumar and Lopez-Pamies (2016) the shell is assumed to be made up of
an isotropic incompressible nonlinear viscoelastic solid whose constitutive response is
described by two thermodynamic potentials, a free energy function ψ and a dissipation
potential φ that are functions of the deformation gradient F and of an internal variable
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Fv that serves to measure the viscous part of the deformation

ψ = ψ(F,Fv) and φ = φ(F,Fv, Ḟv). (6.3)

To proceed further, it is necessary to precisely define the internal variable Fv. Con-
sistently with the rehological model presented in Fig. 6.1, we assume the following
multiplicative decomposition of the deformation gradient tensor (Bergstrom, 2015)

F = FeFv, (6.4)

which defines Fv and where Fe can be interpreted as the deformation gradient tensor
associated with the underlying elastic mapping1.

Ω0 Ω

Ω

F = FeFv

Fe Fv

 
ψEq

ψNeq

φ

(a) (b)

Fig. 6.1 (a) Kinematics of the constitutive model showing the reference or initial configura-
tion Ω0, the intermediate configuration Ω and the deformed one Ω. (b) Rheological scheme
of the constitutive model.

It follows that at each material point X ∈ Ω0 the first Piola-Kirchhoff stress tensor S
is given in terms of F and Fv by

S = ∂ψ

∂F
(F,Fv) − pF−T , (6.5)

1It should be noted that Eq. (6.4) is a constitutive assumption and other decompositions consistent
with the requirements of rubber viscoelasticity, such as F = FvFe, could be made leading to a different
definition of Fv.
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where p stands for the arbitrary hydrostatic pressure associated with the incompressibility
constraint and Fv is defined implicitly via the nonlinear ordinary differential equation

∂ψ

∂Fv
(F,Fv) + ∂φ

∂Ḟv
(F,Fv, Ḟv) = 0, (6.6)

that we assume to be subjected to the initial condition Fv = I at t = 0. More specifically,
the free energy function ψ in the constitutive relation (6.5)–(6.6) is taken to be of the
form

ψ(F,Fv) = ψEq(F) + ψNEq(FFv−1), (6.7)

with ψEq and ψNEq denoting any non-negative isotropic functions of choice. Physically,
the free energy function ψEq serves to characterize the nonlinear elasticity of the rubber
at states of thermodynamic equilibrium, while ψNEq serves to characterize the additional
nonlinear elasticity at non-equilibrium states that is to decay in time through viscous
dissipation. Moreover, the dissipation potential φ in the constitutive relation (6.5)–(6.6)
is taken to be of the form (Kumar and Lopez-Pamies, 2016)

φ(F,Fv, Ḟv) = 1
2Ḟv · A(F,FFv−1)Ḟv, (6.8)

with A denoting any positive-definite fourth-order tensor function of choice such that
Aijkl(QFK,QFFv−1) = KmjAimkn(F,FFv−1)Knl for all Q, K ∈ Orth+ and arbitrary F,
Fv.

Let us remark that constitutive relations of the form (6.5)–(6.6) with (6.7)–(6.8) have
been shown to describe reasonably well the response of a broad variety of rubbers over
wide ranges of deformations and deformation rates (see, e.g., Le Tallec et al. (1993),
Reese and Govindjee (1998b), Bergström and Boyce (1998b), Kumar and Lopez-Pamies
(2016)). For illustration purposes and later reference, we conclude this subsection by
spelling out the two-potential rubber viscoelastic model recently introduced by Kumar
and Lopez-Pamies (2016). In that model, the free energy functions (6.7) read as follows

ψEq(F) =


31−α1

2α1
µ1 [Iα1

1 − 3α1 ] + 31−α2

2α2
µ2 [Iα2

1 − 3α2 ] if det F = 1

+∞ otherwise
(6.9)

ψNEq(FFv−1
) =


31−a1

2a1
m1 [Ie

1
a1 − 3a1 ] + 31−a2

2a2
m2 [Ie

1
a2 − 3a2 ] if det(FFv−1) = 1

+∞ otherwise
(6.10)

where I1 = tr(FT F) and Ie
1 = tr(CCv−1) with C = FT F and Cv = FvT Fv, while µ1,

α1, µ2, α2, m1, a1, m2, a2 are real-valued material parameters that may be associated
with the non-Gaussian statistical distribution of the underlying polymer chains in the
rubber of interest (Lopez-Pamies, 2010). On the other hand, the dissipation potential
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(6.8) reads as (Kumar and Lopez-Pamies, 2016)

φ(F,Fv, Ḟv) =
{

ηK Ḟ
v
ijF

e
miF

−1
jn

[
Kmnpq + KmnabF

e
acF

e
qcF

e −1
db F e −1

dp

]
F e

pkF
−1
lq Ḟ v

kl if tr(ḞvFv−1) = 0
+∞ otherwise

(6.11)
where Fe = FFv−1 , Kijkl = 1/2 [δikδjl + δilδjk − 2/3 δijδkl] with δij denoting the Kro-

necker delta (see Appendix A), and

ηK(Ie
1 , I

e
2 , I

v
1 ) = η∞+

η0 − η∞ +K1

[
Iv

1
β1 − 3β1

]
1 +

(
K2 J

NEq
2

)β2
with JNEq

2 =
(
Ie 2

1
3 − Ie

2

)( 2∑
r=1

31−armrI
e ar−1
1

)2

.

(6.12)

Here, Ie
2 = 1/2[(tr(CCv −1))2−tr(Cv −1CCv −1C)], Iv

1 = trCv, and η0, η∞, β1, β2, K1, K2

are real-valued material parameters that may be associated with the viscous dissipation
that stems from the reptational motion of the underlying polymer chains in the rubber
of interest (Doi and Edwards, 1988; Kumar and Lopez-Pamies, 2016). The constitutive
relation (6.5)–(6.6) implied by the thermodynamic potentials (6.9)–(6.10) and (6.11) can
be shown to be given by

S =
[ 2∑

r=1
31−αrµrI

αr−1
1

]
F +

[ 2∑
r=1

31−armr(C · Cv−1)ar−1
]

FCv−1 − pF−T , (6.13)

where the symmetric second-order tensor Cv = FvT Fv is solution of the following equation

Ċv =

2∑
r=1

31−armr(C · Cv−1)ar−1

ηK(Ie
1 , I

e
2 , I

v
1 )

(
C − 1

3(C · Cv−1)Cv
)
. (6.14)

6.2.2 Radially symmetric dynamic deformation

The main issues of the formulation of the cylindrical shell subjected to radial pressure
have already been presented in Chapter 3 of this dissertation. However, the introduction
of a new viscoelastic constitutive model implies that new dissipative terms appear in the
balance equation. Therefore, we found it convenient to provide the whole formulation
of the problem, again, in this chapter of the thesis, even though some equations are
repeated with respect to those presented in Chapter 3.

Let us define the reference configuration Ω0 of the thick-walled cylindrical shell by
the polar coordinates {R,Θ, Z} such that

A ≤ R ≤ B, 0 ≤ Θ ≤ 2π, 0 ≤ Z ≤ L. (6.15)

110



6.2 Problem formulation

If we restrict our attention to radially symmetric motions with plane strain in the Z

direction, the current geometry is given by

a(t) 6 r(R, t) 6 b(t), θ = Θ, z = Z, (6.16)

where {r, θ, z} are cylindrical polar coordinates in the current configuration Ω. Under
these conditions the deformation gradient can be expressed as follows

F =
(

1
λ(R, t)

)
er ⊗ er + λ(R, t) eθ ⊗ eθ + ez ⊗ ez, (6.17)

where the principal stretches corresponding to the directions {r, θ, z} are given by

λr = ∂r(R, t)
∂R

, λθ = r(R, t)
R

= λ, λz = z

Z
= 1, (6.18)

and we have used the incompressibility restriction J = λr(R, t)λ(R, t) = 1. Similarly, the
internal variable Fv defined implicitly by (6.6) admits the spectral representation

Fv =
(

1
λv(R, t)

)
er ⊗ er + λv(R, t) eθ ⊗ eθ + ez ⊗ ez, (6.19)

where the scalar function λv(R, t) is solution of a first-order nonlinear ordinary differential
equation given by Eq. (6.14).

The first Piola-Kirchhoff stress tensor corresponding to the deformation gradient
(6.17) and internal variable (6.19) can now be determined from (6.5)–(6.6) to be of the
spectral form

S = Sr(R, t) er ⊗ er + Sθ(R, t) eθ ⊗ eθ + Sz(R, t)ez ⊗ ez. (6.20)

Furthermore, the principal stresses Sr and Sθ are such that (see e.g. Ogden (1997))

Sθ(R, t) − Sr(R, t)
λ2(R, t) = W ′ (λ(R, t)) , (6.21)

where
W ′ (λ) = dWEq

dλ (λ) + dWNEq

dλ (λ/λv),

WEq(λ) = ψEq(F), WNEq(λ/λv) = ψNEq(FFv−1),
(6.22)
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and it is recalled that λv is defined implicitly by (6.14). In view of (6.20), the equation
of balance of linear momentum (6.2) reduces to

∂Sr(R, t)
∂R

+ Sr(R, t) − Sθ(R, t)
R

= ρ0 r̈(R, t) (6.23)

Assuming now that the inner boundary (R = A) is subjected to a pressure Pa(t), per
unit of current area. While, the outer face (R = B) is subjected to a pressure Pb(t),
the boundary conditions are given by

Sr(A, t) = −Pa(t)λa and Sr(B, t) = −Pb(t)λb (6.24)

Moreover, it follows from the incompressibility condition J = λr(R, t)λ(R, t) = 1 that

λ(R, t) =
(
B2

R2 (λ2
b(t) − 1) + 1

)1/2

(6.25)

where λb(t) = b(t)/B stands for the circumferential stretch in the outer face. The
expression (6.25) can be alternatively written as λ(R, t) = (A2/R2(λ2

a(t) − 1) + 1)1/2 in
terms of the stretch in the inner face λa(t) = a(t)/A (following the same notation of
previous chapters). For our purposes here, we find dealing with the form (6.25) in terms
of the outer stretch λb(t) more convenient. As in previous chapters, taking the derivatives
of Eq. (6.25) with respect to R and t we obtain the following relations

∂λ

∂R
= −λ2 − 1

Rλ
(6.26)

λ̈ = λ2 − 1
λ2

b − 1

 λ̇b
2 + λbλ̈b

λ
− λ2

b λ̇b
2

λ2
b − 1

λ2 − 1
λ3

 , (6.27)

where, as in previous chapters, function arguments are omitted here and in some
of the subsequent development to ease notation. At this stage, it proves convenient to
rewrite the equation of motion (6.23) with λ(R, t) as the independent space variable
instead of R. With help of the expressions (6.26) and (6.27) the result reads as

∂

∂λ

[
Sr

λ

]
= −

Sθ − Sr

λ2

λ2 − 1 + ρ0B
2
[

λ2
b λ̇

2
b

(λ2
b − 1)λ3 − λ̇2

b + λbλ̈b

λ(λ2 − 1)

]
. (6.28)

After introducing the geometric dimensionless parameter f0 = A2/B2, as in previous
chapters, and some algebraic manipulation, the integration of the equation of motion

112



6.2 Problem formulation

(6.28) with help of (6.21), (6.22), and (6.24), leads to

∆P =
∫ (1+

λ2
b

−1
f0

)1/2

λb

1
λ2 − 1

dWEq(λ)
dλ dλ+

∫ (1+
λ2

b
−1

f0

)1/2

λb

1
λ2 − 1

dWNEq(λ/λv)
dλ dλ+

ρ0B
2

2

[
ln
(

λ2
b

λ2
b + f0 − 1

)
λbλ̈b +

(
ln
(

λ2
b

λ2
b + f0 − 1

)
+ f0 − 1
λ2

b + f0 − 1

)
λ̇2

b

]
,

(6.29)

where the scalar function λv(R, t) is solution of Eq. (6.14), which assuming radial
symmetry takes the following form

λ̇v(R, t) = h (λv(R, t), λ(R, t)) (6.30)

and we consider to be subjected to the initial condition λv(R, 0) = 1, as introduced
before. The precise form of the function h(·, ·) in (6.30) depends, of course, on the choice
of free energy functions (6.7) and dissipation potential (6.8). For instance, the precise
form of (6.30) for the choice (6.9)–(6.10) and (6.11) is given by

λ̇v =

( 2∑
r=1

31−armr(λv2

λ2 + λ2

λv2 + 1)ar−1
)(

2λ2 − λv4

λ2 − λv2
)

6λv

η∞ +
η0 − η∞ +K1

[
(λv−2 + λv2 + 1)β1 − 3β1

]
1 +

[
(K2

3

(
λv4

λ4 + λ4

λv4 − λv2

λ2 − λ2

λv2

)( 2∑
r=1

31−armr(λv2

λ2 + λ2

λv2 + 1)ar−1
)2]β2


(6.31)

For any given applied pressure ∆P , equation (6.29) provides a nonlinear ordinary
differential equation for the resulting deformation of the outer boundary, as characterized
by λb, and hence, by virtue of (6.25), the resulting deformation of every material point
in the shell.

Moreover, note that the first term in the right hand side of equation (6.29) corresponds
to the pressure due to the elastic part of the response that is in thermodynamic equilibrium.
The second term is the pressure stemming from the elastic part of the response that is
not in thermodynamic equilibrium, namely, the elastic part that decays in time through
viscous dissipation. The third and last term corresponds to the pressure due to inertial
effects. Thus, the total pressure in the outer boundary can be understood as the sum of
these three contributions:

P = PEq + PNEq + PDyn. (6.32)
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Note that, unlike in previous chapters, we will not pose the problem in non-dimensional
form since, due to the high number of parameters present in the dissipative potential, the
dimensionless version of the equations (6.29) and (6.31) does not provide any additional
insight into the problem.

6.3 Numerical solution

Following the results presented in Chapter 3, we analyze two different boundary conditions:
(1) a constant pressure and (2) a harmonic time-dependent pressure. In order to obtain
the stretch field λb from Eq. (6.29), we reduce this equation to a system of two first
order ordinary differential equations. Calling z1 = λb and z2 = λ̇b we have

ż1 = z2 (6.33)

ż2 =
∆P − PEq − PNEq − ρB2

2

(
ln
(

z2
1

z2
1+f0−1

)
+ f0−1

z2
1+f0−1

)
z2

2

ρB2

2 ln
(

z2
1

z2
1+f0−1

)
z1

(6.34)

Since the evolution equation (6.31) does not admit a closed-form solution for λv(R, t),
we solve it on Gauss quadrature abscissa and make use of the quadrature scheme to
compute PEq and PNEq as described below.

λ̇v
j =

( 2∑
r=1

31−armr(
λv2

j

λ2
j

+ λ2
j

λv2
j

+ 1)ar−1
)(

2λ2
j − λv4

j

λ2
j

− λv2
j

)

6λv
j

η∞ +
η0 − η∞ +K1

[(
λv−2

j + λv2
j + 1

)β1 − 3β1

]

1 +
[

K2
3

(
λv4

j

λ4
j

+ λ4
j

λv4
j

− λv2
j

λ2
j

− λ2
j

λv2
j

)( 2∑
r=1

31−armr(
λv2

j

λ2
j

+ λ2
j

λv2
j

+ 1)ar−1
)2]β2


(6.35)

PEq(λb) =
λb −

(
1 + λ2

b−1
f0

)1/2

2

n∑
j=1

wj
1

λ2
j − 1

dWEq(z)
dz

∣∣∣∣∣
z=λj

(6.36)

PNEq(λb, λ
v
1, λ

v
2, ..., λ

v
n) =

λb −
(

1 + λ2
b−1
f0

)1/2

2

n∑
j=1

wj

dWNEq(z/λv
j )

dz

∣∣∣∣∣
z=λj

(6.37)

where gj are the Gauss points, wj the Gauss weights and λj is related with λb as

λj =
λb −

(
1 + λ2

b−1
f0

)1/2

2 gj +
λb +

(
1 + λ2

b−1
f0

)1/2

2 (6.38)
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Therefore, we end up with a system of n+ 2 first order ordinary differential equations
for the variables {z1, z2, λ

v
1, λ

v
2, ..., λ

v
n}. Such a system has been solved by using the

Matlabr inbuilt ordinary differential equation suite finding the best results with explicit
fourth order Runge-Kutta algorithm. To be noticed that this scheme remains fairly
general admitting any arbitrary boundary condition ∆P (t) (suitably well behaved) and
can be easily extended to any visco-elastic material model (Bergström and Boyce, 1998b;
Le Tallec et al., 1993; Reese and Govindjee, 1998b) as long as it can be defined within
the two potential constitutive framework (see Kumar and Lopez-Pamies (2016)).

Furthermore, as in Chapter 4, we are interested in analyzing the frequency response
of the structure. For this purpose, the system of n+ 2 ordinary differential equations
stated above is complemented with the following two formulas, whose stable solutions
are the non-autonomous terms z3(t) = sin(ωt) and z4(t) = cos(ω, t).

ż3 = z3(1 − z2
3 − z2

4) − ω z4 (6.39)

ż4 = z4(1 − z2
3 − z2

4) + ω z3 (6.40)

Hence, the resonance diagrams presented in the next section have been calculated using
the shooting method and sequential continuation techniques introduced in Chapter 4 on
the previous n+ 4 system of equations for the variables {z1, z2, z3, z4, λ

v
1, λ

v
2, ..., λ

v
n}.

6.4 Sample results

In this section, we present some sample results for the above-developed problem that
are aimed to exemplify the main aspects of the nonlinear vibrations of the structure.
Let us choose B = 1 m and A = 0.707 m, such that f0 = 0.5 (as in previous chapter).
Moreover, we make use of the free energy functions (6.9)-(6.10) and the dissipation
potential (6.11) with material parameters µ1 = 1 MPa, m1 = 2 MPa, µ2 = m2 = 0,
α1 = α2 = a1 = a2 = 1, η0 = 2.11 MPa s, η∞ = 0.1 MPa s, β1 = 3, β2 = 1.929, K1 = 442
MPa s, K2 = 1289 MPa−2. This constitutive choice corresponds to a model that describes
reasonably well the response of a Nitrile rubber over wide ranges of deformations and
deformation rates (Bergström and Boyce, 1998b; Kumar and Lopez-Pamies, 2016). The
mass density of the solid is taken as ρ0 = 1000 kg/m3.

Provided the material parameter stated above, the free energy functions (6.9)-(6.10)
are reduced to Neo-Hookean forms with linear shear moduli µ1 and m1 respectively. We
can find two different limit scenarios:
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• If the thermodynamic equilibrium is satisfied during all the deformation process,
i.e. quasi-static stretch rates, the non-equilibrium branch (see Fig. 6.1) will be
almost inactive ψNEq(FFv−1) ≈ 0. Under these conditions the shear modulus of
the visco-elastic material will be µ ≈ µ1

• On the other hand, if the non-equilibrium branch is fully activated during the
deformation precess, i.e. high stretch rates, the linear shear modulus of the visco-
elastic model will be µ = µ1 +m1.

These two cases, which establish the limits for the stiffness of the visco-elastic material,
will be systematically recalled in the next section to analyze the results.

6.4.1 Autonomous system

Following Chapter 3, we start the analysis considering the cylindrical shell subjected to
a constant pressure

∆P = P H(t) (6.41)

where H(t) is the Heaviside function. Under these loading conditions, the analysis
developed in Chapter 3 to compute the bifurcation pressure or critical pressure Pc+

(pressure that leads to the unbounded expansion of the cylinder) can be applied to
the limit cases stated above (see Eq. (3.29)). Hence, the bifurcation pressure for the
visco-elastic cylinder will be contained within the following range

Pc+ ∈
(
Pmin

c+ , Pmax
c+

)
(6.42)

where Pmin
c+ = µ1

2 ln
(

1
f0

)
and Pmax

c+ = µ1+m1
2 ln

(
1
f0

)
are the minimum and maximum

bifurcation pressures, respectively.

Fig. 6.2a depicts the phase portrait, λ̇b versus λb, in the outer face of the cylinder
for an applied pressure of P = 0.45Pmax

c+ . The solid orange line corresponds to the
visco-elastic solid, while the dashed blue curve corresponds with the limit inviscid case
with linear shear moduli µ = µ1 +m1. The amplitude of the first oscillation is comparable
for the conservative and the dissipative systems, which implies that the non-equilibrium
branch of the visco-elastic model is activated to a large extend. The amplitude of the
first oscillation of the viscous material is only slightly greater than the counterpart of
the inviscid material. Note also that, while the amplitude and velocity of the oscillations
of the conservative system are independet of time (it could not be otherwise), the phase
trajectories of the dissipative system evolve with time, as can be seen in Fig. 6.2b, which
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presents the time evolution of the stretch in the outer face of the cylinder for the first
3 seconds of loading. The amplitude of the oscillations of the dissipative system first
increases with time (for the first 2 oscillations) and then decays, roughly exponentially,
due to the viscous dissipation of energy, until the shell stops in an attractor point.
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Fig. 6.2 (a) Phase portrait and (b) time evolution for an applied pressure of P = 0.45Pmax
c+ .

Fig. 6.3a depicts the phase portrait for an applied pressure of P = 0.52Pmax
c+ , which

corresponds with the bifurcation point for the visco-elastic cylinder. As anticipated, this
pressure is contained within the range Pc+ ∈

(
Pmin

c+ , Pmax
c+

)
. Note that the bifurcation of

the visco-elastic material occurs in the second oscillation in a saddle point, the latter
implying that the limit orbit is homoclinic. Moreover, Fig. 6.3b depicts the phase portrait
for an applied pressure of P = Pmax

c+ . This pressure corresponds with the bifurcation
point for the conservative system. The corresponding phase trajectory for the inviscid
material shows a second intersection with the λb-axis for λb → ∞. It is apparent that
the bifurcation behaviours for the viscid and inviscid materials are markedly different.

6.4.2 Non-autonomous system

In this section we analyze the periodically forced, non-autonomous, dissipative system.
First we present the time evolution of the system to illustrate the dissipative role of
the material viscosity that leads to the formation of a limit cycle (as in Chapter 4).
Furthermore, we present the frequency-amplitude diagram of the system to illustrate
the nonlinear resonance of the structure and the formation of scape bands due to the
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Fig. 6.3 Phase portraits for (a) P = 0.52Pmax
c+ , which corresponds with the bifurcation

pressure of the dissipative system, and (b) P = Pmax
c+ , which corresponds with the bifurcation

pressure of the conservative system.

material viscosity. As in Chapter 3, let us consider the following periodic applied pressure

∆P = P (1 + cos(ω t)) (6.43)

As already introduced in Chapter 4, a good approximation to the resonance frequency of
the system in the linear limit is given by ωR =

√
µ

ρB2 , where µ is the linear shear modulus
of the material. Therefore, based on the limit cases introduced in Section 6.4 we can
predict that the resonance frequency will be contained within the following range

ωR ∈
(
ωmin

R , ωmax
R

)
(6.44)

where ωmin
R =

√
µ1

ρB2 = 31.623 Hz, and ωmax
R =

√
µ1+m1

ρB2 = 54.77 Hz, are the minimum and
maximum resonance frequencies, respectively. In Fig. 6.4a we present the time evolution
of the stretch λb(t) during the first 5 seconds for an excitation frequency of ω = 54.77
Hz and an applied pressure of P = 0.2 MPa. The transient and the steady states are
identified with dashed blue line, and solid orange line, respectively. Identical loading
case is depicted in the phase portrait of Fig. 6.4b, where the transient response of the
systema and the formation of a limit cycle are very clearly defined.

We have used the shooting method and sequential continuation techniques introduced
in Chapter 4 on the n + 4 system of equations (6.33)-(6.40) to analyze the frequency
response of the structure. Fig. 6.5a depicts the amplitude-frequency response of the
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Fig. 6.4 Response of the system for an excitation frequency of ω = 55.77 Hz. Ten Gauss
points have been used for the computations. (a) Time evolution of the stretch in the outer
face of the cylinder. (b) Phase portrait.

cylinder for an applied pressure of P = 0.2 MPa. As for the Mooney-Rivlin material
presented in Chapter 4, the λmax − λmin excursions are tilted to the left. This behavior
is called softening and implies that in order to rise the amplitude of the oscillations a
decrease in the applied frequency is required. The onset of the main resonance frequency
is located at ω ≈ 54.77 Hz and evolves until ωr = 30 due to the tilting of the excursion.
The fact that the onset of the main resonance frequency which coincides with the upper
limit of the expected range (see Eq. (6.44)) indicates that the non-equilibrium branch is
activated almost completely under these loading conditions. Besides the main resonance,
we have identified up to three super-harmonics resonances (with much smaller amplitude)
at frequencies of 36.22, 27.35 and 21.95 Hz. The stable and unstable branches are
indicated in blue solid and orange dashed lines, respectively.

For frequencies above the main resonance, we find a scape band between 88.9 and
131 Hz. In this frequency range, it is not possible to find stable periodic solutions.
As an example, figures 6.5b and 6.5c depict the time evolution of the stretch and the
Poincaré section for an excitation frequency of ω = 100 Hz. In Fig. 6.5b than the peaks
corresponding to the maximum stretch rate of the osccilations do not take the same
value, but evolve with time. In 6.5c the closed curve of the Poincaré is a clear indicator
of the quasi-periodic character of the solution.
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Fig. 6.5 (a) Amplitude-frequency response of the system for an applied pressure of P = 0.2
MPa, ten Gauss points have been used in the computations. (b) Time evolution of the
stretch in the outer face of the cylinder for a excitation frequency of ω = 100 and P = 0.2
MPa. (c) Poincaré section of a solution with excitation frequency of ω = 100 and P = 0.2
MPa. The closed curve indicates a quasi-periodic behavior.
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6.5 Summary and conclusions

In this chapter we have extended the formulation and analysis developed in Chapter
3 including viscosity in the formulation of the constitutive model used to describe
the mechanical response of the cylindrical shell. For that purpose we have used the
constitutive description developed by Kumar and Lopez-Pamies (2016) which uses an
internal variable to take into account viscous dissipation within the so-called two-potential
framework. As in Chapter 3 we have subjected the cylindrical shell to two different
boundary conditions: (1) constant pressure and (2) time dependent harmonic pressure.
The following key results have been obtained:

• Constant pressure: we have shown that material viscosity reduces the maximum
pressure for which the oscillatory response of the structure ceases, leading to the
unbounded expansion of the shell. Moreover, for the cases in which the response of
the shell is oscillatory, we have shown that viscous dissipation gradually reduces
the amplitude and speed of the oscillaotions, leading to the complete stop of the
structure provided that sufficiently long times are reached. This behaviour is
drastically different to that observed for inviscid materials for which, in absence
of any other dissipative source, the structure always oscillate following a given
trajectory in the phase plane.

• Time dependent harmonic pressure: following the procedure presented in Chapter 4,
we have obtained the complete resonance diagrams of the structure. The key point
is the identification of scape bands for which the system cannot reach a limit cycle,
i.e. there is no balance between the work of the applied pressure and the energy
dissipated by the viscosity of the material. In these cases, we have checked using a
Poincaré map representation that the motion of the shell becomes quasi-periodic.

In summary, in this chapter we have presented one of the first studies ever performed
on the oscillatory response of visco-hyperelastic shells. We have made clear the relevance
of viscous dissipation effects in the response of the structure, which proves the necesity
of using accurate constitutive formulations (which include viscosity) in the description
of rubber-like materials used in applications of high structural responsibility, like those
described in the introductory section of this dissertation.
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7 Incompressible isotropic visco-hyperelastic
spherical structures

The role of inertia and viscosity in the onset of cavitation

The prevailing belief that the nonlinear elastic properties of rubber play a significant role
in the so-called phenomenon of cavitation — that is, the sudden growth of inherent defects
in rubber into large enclosed cavities/cracks in response to external stimuli — has recently
been supported with experiments by Lefevre et al. (2014). These comparisons have also
shown that cavitation in rubber may possibly depend, in addition to the nonlinear elastic
properties of the rubber, on inertial effects and/or on the viscous dissipation innate to
rubber. This is because the growth of defects into large cavities is locally in time a very
fast process.

The purpose of this chapter is to provide further theoretical insights into the relevance
of inertial and viscous dissipation effects on the onset of cavitation in rubber. To this
end, we consider the basic problem of the radially symmetric dynamic deformation of a
spherical defect embedded at the center of a ball made up of an isotropic incompressible
nonlinear visco-elastic solid that is subjected to external hydrostatic loading. Specifically,
the defect is taken to be vacuous and the visco-elastic behavior of the solid is characterized
by the constitutive model originally developed by Kumar and Lopez-Pamies (2016), which
was introduced in Chapter 6. It has been found that, at high strain rates, inertia effect
play a fundamental role in the onset and development of the cavitation process, on top of
viscous dissipation that controls the process at quasi-static loading, when inertia effects
are negligible.

7.1 Introduction

With the objective of probing the long-conjectured significance of nonlinear elastic
properties in the phenomenon of cavitation in rubber, Lefevre et al. (2014) have recently
carried out full-field simulations of the classical experiments of Gent and Lindley (1959)
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and Gent and Park (1984) under the premises that the rubber utilized in their specimens
was nonlinear elastic (for arbitrarily large deformations) and that the underlying defects
at which cavitation could initiate were vacuous and their spatial distribution was random
and isotropic. Their results have indicated that accounting just for the nonlinear elasticity
of the rubber and the presence of defects suffices, to a great extent, to describe and
explain the experiments in the sense of: (i) when and where cavitation first occurs
(Lopez-Pamies et al., 2011a,b) as well as (ii) how cavities continue to grow and interact
once they have been nucleated. Their results have also suggested that cavitation in rubber
may possibly depend, in addition to the nonlinear elastic properties of the materials, on
inertial effects and/or on the viscous dissipation innate to rubber. This is because the
growth of defects into large cavities is locally in time a very fast process involving stretch
rates that exceed 1000 s−1.

The object of this chapter is to provide insight into the relevance of inertial and
viscous dissipation effects in the onset of cavitation in rubber. To this end we analyze
the basic problem of the radially symmetric dynamic deformation of a single spherical
vacuous cavity, or defect, embedded at the center of a ball made up of an isotropic
incompressible nonlinear viscoelastic solid that is subjected to external hydrostatic
loading. The viscoelastic behavior of the solid is taken to be characterized by the
constitutive model originally developed by Kumar and Lopez-Pamies (2016), which was
described in Chapter 6 of this dissertation.

To put the problem at hand in perspective, it is fitting to mention that the radially
symmetric dynamic deformation of a single spherical cavity embedded in an isotropic
incompressible nonlinear elastic solid appears to have been first examined as early as
the 1960s by Zhong-Heng and Solecki (1963) and by Knowles and Jakub (1965). These
authors restricted attention to the case when the cavity wall is subjected to a sudden
constant pressure while the outer boundary of the solid is traction free and did not
concern themselves with exploring the phenomenon of cavitation. About twenty five
years later, Chou-Wang and Horgan (1989) made use of the generic solution provided in
Knowles and Jakub (1965); Zhong-Heng and Solecki (1963) to study the onset of radially
symmetric dynamic cavitation in a Neo-Hookean solid for the specific case when the
solid is subjected to a sudden constant pressure on its boundary. Around the same time,
the more complex problem of the onset of radially symmetric dynamic cavitation in an
isotropic compressible nonlinear elastic solid was investigated by Pericak-Spector and
Spector (1988); see also the more recent works of Pericak-Spector and Spector (1997),
Choksi (1997), Giesselmann and Tzavaras (2013) and Miroshnikov and Tzavaras (2015).
In particular, motivated by the work of Ball (1982), these authors looked for a special
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class of radially symmetric discontinuous solutions — referred to as similarity solutions
and physically corresponding to a hole that opens up at the center of the ball — for the
equations of elastodynamics in an isotropic compressible ball (without any defect) that
is subjected to isotropic affine deformations on its boundary. Much like in elastostatics
(Ball, 1982), they found that such solutions exists, and are admissible in the sense of
entropy criteria for hyperbolic pdes Lax (1973), so long as the growth conditions of the
stored-energy function describing the elasticity of the ball are sufficiently slow.

In contrast to the above-outlined considerable body of work on radially symmetric
elastodynamic cavitation, as far as the authors know, the only two results incorporating
viscous dissipation in the onset of (either static or dynamic) cavitation in rubber are
contained in Cohen and Molinari (2015); Yun and Zhuping (2003). In Yun and Zhuping
(2003), the authors presented results for the radially symmetric static growth of a vacuous
spherical cavity embedded in a certain internal-variable-type nonlinear viscoelastic solid
that is subjected on its outer boundary to a hydrostatic pressure that is increased
at a constant rate. In Cohen and Molinari (2015), the authors presented results for
the radially symmetric dynamic growth of a spherical cavity embedded in a certain
hereditary-integral-type nonlinear viscoelastic solid that is subjected to two types of
displacement boundary conditions on its inner boundary, namely, a sudden constant
deformation and a deformation that is increased at a constant rate. In this chapter we
complement the aforementioned works providing a thorough analysis on the effects that
inertia and viscosity have on the grow rate of a cavity embedded in a rubber viscoelastic
medium that is subjected to external hydrostatic loading.

7.2 Problem formulation

In this section we formulate and solve the problem of the radially symmetric dynamic
deformation of a spherical vacuous cavity included in the center of a viscoelastic ball and
subjected to hydrostatic pressure that increases linearly with time.

Recall from previous chapters that the current position vector x in the deformed
configuration Ω ⊂ R3 at time t of the material point that occupies the location X ∈ Ω0

is given by x = χ(X, t), where χ is a bijective and twice continuously differentiable
mapping. The associated deformation gradient, right Cauchy-Green strain tensor and
volume ratio at X ∈ Ω0 are denoted by

F(X, t) = Grad χ(X, t), C(X, t) = FT(X, t)F(X, t),
J(X, t) = detF(X, t).

(7.1)
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Moreover, the balance of linear momentum in the material description requires that

Div S(X, t) = ρ0χ̈(X, t) in Ω0, (7.2)

where the dots denote differentiation with respect to time, S stands for the first Piola-
Kirchhoff stress tensor, and ρ0 is the constant mass density of the shell material in its
undeformed configuration Ω0.

7.2.1 Constitutive model

As in the previous chapter, the shell is assumed to be made up of an isotropic incom-
pressible nonlinear viscoelastic solid whose constitutive response is described by the free
energy functions (6.9)-(6.10) and the dissipation potential (6.11) firstly derived by Kumar
and Lopez-Pamies (2016).

Let us recall that the constitutive relation (6.5)–(6.6) implied by the thermodynamic
potentials (6.9)–(6.10) and (6.11) can be shown to be given by

S =
[ 2∑

r=1
31−αrµrI

αr−1
1

]
F +

[ 2∑
r=1

31−armr(C · Cv−1)ar−1
]

FCv−1 − pF−T , (7.3)

where the symmetric second-order tensor Cv = FvT Fv is solution of the nonlinear ode

Ċv =

2∑
r=1

31−armr(C · Cv−1)ar−1

ηK(Ie
1 , I

e
2 , I

v
1 )

(
C − 1

3(C · Cv−1)Cv
)
. (7.4)

7.2.2 Radially symmetric dynamic deformations

The basic features of the formulation of the spherically symmetric problem were presented
in Chapter 4 of this dissertation. However, considering a different constitutive model
leads to several differences in the formulation that, for the sake of clarity, is presented
again below.

Consider a spherical structure with undeformed geometry Ω0 defined by the polar
coordinates (R,Θ,Φ) such that

A ≤ R ≤ B; 0 ≤ Θ ≤ 2π; 0 ≤ Φ ≤ π (7.5)
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Since the material is deformed so that the spherical symmetry is maintained, the motion
is given by

r = r(R, t); θ = Θ; φ = Φ (7.6)

where (r, θ, φ) are spherical polar coordinates in the current configuration Ω such that
a(t) ≤ r(R, t) ≤ b(t). Under these conditions the deformation gradient assumes the
following form

F =
(

1
λ(R, t)

)2

er ⊗ er + λ(R, t) eθ ⊗ eθ + λ(R, t) eφ ⊗ eφ (7.7)

where the principal stretches corresponding to the directions r, θ, φ are given by

λr(R, t) = ∂r(R, t)
∂R

; λ(R, t) = r(R, t)
R

= λθ(R, t) = λφ(R, t) (7.8)

and the incompressibility restriction J = λr(R, t) λ2(R, t) = 1 has been used. Similarly,
the internal variable Fv defined implicitly by the ordinary differential equation (7.4)
admits the following spectral representation

Fv =
(

1
λv(R, t)

)2

er ⊗ er + λv(R, t) eθ ⊗ eθ + λv(R, t)eφ ⊗ eφ (7.9)

where the scalar function λv(R, t) is solution of a first-order nonlinear ode given by Eq.
(7.4).

The first Piola-Kirchhoff stress tensor corresponding to the deformation gradient (7.7)
and internal variable (7.9) can now be determined from (7.3)–(7.4) to be of the spectral
form

S = Sr(R, t) er ⊗ er + Sθ(R, t) eθ ⊗ eθ + Sθ(R, t)eφ ⊗ eφ. (7.10)

Moreover, the principal stresses Sr and Sθ are such that

Sθ(R, t) − Sr(R, t)
λ3(R, t) = 1

2W
′ (λ(R, t)) . (7.11)

where, as in the previous chapter, the strain-energy function W (λ) is defined as

W ′ (λ) = dWEq

dλ (λ) + dWNEq

dλ (λ/λv),

WEq(λ) = ψEq(F), WNEq(λ/λv) = ψNEq(FFv−1),
(7.12)

and it is recalled that λv is defined implicitly by the ode (7.4).
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In view of (7.10), the equation of balance of linear momentum (7.2) reduces to

∂Sr(R, t)
∂R

+ 2Sr(R, t) − Sθ(R, t)
R

= ρ0r̈(R, t). (7.13)

Let us now consider, the inner boundary of the spherical shell to be traction free1.
And the outer boundary to be subjected to the prescribed affine traction per unit of
undeformed area

Sr(A, t) = 0 and Sr(B, t) = P (t), (7.14)

where P (t) is any function of choice (suitably well behaved). Moreover, we consider the
following type of initial conditions

r(R, 0) = R and ṙ(R, 0) = 0. (7.15)

It follows from the incompressibility condition that

λ(R, t) =
(
B3

R3 (λ3
b(t) − 1) + 1

)1/3

(7.16)

where λb(t) = b(t)
B

stands for the circumferential stretch in the outer surface of the
visco-elastic ball2. We take the derivatives of Eq. (7.16) with respect to R and t to
obtain respectively

∂λ

∂R
= −λ3 − 1

Rλ2 (7.17)

λ̈ = λ3 − 1
λ3

b − 1

2λbλ̇b
2 + λ2

b λ̈b

λ2 − 2 λ4
b λ̇b

2

λ3
b − 1

λ3 − 1
λ5

 (7.18)

At this stage, it proves convenient to rewrite the equation of motion (7.13) with
λ(R, t) as the independent space variable instead of R. With help of the expressions
(7.17) and (7.18) the result reads as

− ∂

∂λ

[
Sr

λ2

]
=

2
(
Sθ − Sr

λ3

)
λ3 − 1 + ρ0B

2

(λ3
b − 1)1/3(λ3 − 1)2/3

[
2λ4

b − 2λbλ
3

λ5(λ3
b − 1) λ̇

2
b + λ2

b

λ2 λ̈b

]
, (7.19)

1Accounting for a pressurized cavity would not pose any additional difficulty
2The function (7.16) can be alternatively written as λ(R, t) =

(
A3

R3 (λ3
a(t) − 1) + 1

)1/3
in terms of the

stretch in the inner face λa(t) = a(t)/A. For our purposes here, we find dealing with the form (7.16) in
terms of the outer stretch λb(t) more convenient.
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where function arguments are omitted here and in most of the subsequent devel-
opment to ease notation. After introducing the dimensionless geometric parameter
f0 = A3/B3 (as in previous chapters) to denote the initial volume fraction of the cavity
and a little manipulation, the integration of the equation of motion (7.19) with help of
(7.11), (7.12), and (7.14) leads to

P = λ2
b

∫ (1+
λ3

b
−1

f0

)1/3

λb

1
z3 − 1

dWEq(z)
dz dz + λ2

b

∫ (1+
λ3

b
−1

f0

)1/3

λb

1
z3 − 1

dWNEq(z/λv)
dz dz+

ρ0B
2λ2

b

[(
2λb

(λ3
b + f0 − 1)1/3 − λ4

b

2(λ3
b + f0 − 1)4/3 − 3

2

)
λ̇2

b +
(

λb

(λ3
b + f0 − 1)1/3 − 1

)
λbλ̈b

]
,

(7.20)

where the scalar function λv(R, t) is solution of the equation (7.4), which assuming radial
symmetry takes the following form

λ̇v(R, t) = h (λv(R, t), λ(R, t)) (7.21)

with initial condition λv(R, 0) = 1. The precise form of (7.21) for the free energy functions
(6.9)–(6.10) and the dissipation potential (6.11) is given by

λ̇v =

( 2∑
r=1

31−armr

(
λv2

z2 + 2 z2

λv2

)ar−1
)(

z6 − λv6
)

6λvz4

η∞ +
η0 − η∞ +K1

[
(2λv2 + λv−4)β1 − 3β1

]
1 +

(
K2
3

(
z4

λv4 + λv8

z8 − 2λv2

z2

) ( 2∑
r=1

31−armr

(
λv2

z2 + 2 z2

λv2

)ar−1
)2)β2



.

(7.22)
For any given applied pressure P on the outer boundary of the shell, equation (7.20)

provides a nonlinear ordinary differential equation for the resulting deformation of the
outer boundary, as characterized by λb, and hence, by virtue of the incompressibility
condition, Eq. (7.16), the resulting deformation of every material point in the shell. It
is a simple matter to deduce that the initial conditions associated with the ordinary
differential equation (7.20) for λb are given by λb(0) = 1 and λ̇b(0) = 0.

We recall from Chapter 6 that: the first term in the right hand side of equation
(7.20) corresponds to the pressure due to the elastic part of the response that is in
thermodynamic equilibrium, the second term is the pressure stemming from the elastic
part of the response that is not in thermodynamic equilibrium and the third term
corresponds to the pressure due to inertial effects. Thus, as anticipated in Chapter 6,
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the total pressure in the outer boundary can be understood as the sum of these three
contributions:

P = PEq + PNEq + PDyn. (7.23)

In the absence of viscous dissipation when PNEq = 0, equation (7.20) reduces to the
classical result in elastodynamics originally discussed in Knowles and Jakub (1965);
Zhong-Heng and Solecki (1963). Moreover, in the additional absence of inertia when
PDyn = PNEq = 0, equation (7.20) reduces to the classical result in elastostatics originally
discussed in Green and Zerna (1954):

P = PEq = λ2
b

∫ (1+
λ3

b
−1

f0

)1/3

λb

1
z3 − 1

dWEq(z)
dz dz. (7.24)

Note that,as in previous chapter, we do not pose the problem in non-dimensional
form since, due to the high number of parameters present in the constitutive model, the
dimensionless version of the governing equations does not provide any additional insight
into the problem.

7.3 The limiting case of a vanishingly small cavity:
f0 → 0+

Equation (7.20) is valid for shells with any value of initial volume fraction of cavity in
the physical range f0 ∈ (0, 1). We now focus on the special subclass of shells where the
initial volume fraction of cavity is vanishingly small, that is, when f0 → 0+ and the
cavity reduces to a point defect. Upon loading, the size of this defect may suddenly grow
from its initially infinitesimal value to a finite value at some sufficiently large critical
pressure, say Pcr. This event corresponds to the onset of cavitation. We denote by tcr

the first critical time t of its occurrence. According to (7.20), the critical pressure at
which cavitation occurs is then given by

Pcr =
∫ ∞

1

1
z3 − 1

dWEq(z)
dz dz +

∫ ∞

1

1
z3 − 1

dWNEq(z/λv)
dz dz+

ρ0B
2 lim

t→ tcr

{(
2λb

(λ3
b − 1)1/3 − λ4

b

2(λ3
b − 1)4/3 − 3

2

)
λ2

b λ̇
2
b +

(
λb

(λ3
b − 1)1/3 − 1

)
λ3

b λ̈b

}
,

(7.25)

where, again, λv is solution of (7.21) with λ(R, t) = z. The following remarks are in
order:
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i) As expected from the preceding discussion of the general form of equation (7.20),
the first term in the right hand side of its asymptotic limit (7.25) corresponds to the
classical result of Ball for the critical pressure at onset of radially symmetric cavitation
in the context of elastostatics Ball (1982).

ii) For realistic models of rubber and irrespectively of the specifics of the applied
pressure P , the second term in the right hand side of equation (7.25), that is, the term
due to the presence of viscous dissipation, is non-negative and can be of the same order of
magnitude as the first term. Physically this entails that the presence of viscous dissipation
can greatly increase the values of the critical pressure Pcr at which cavitation ensues in
rubber, even when the external loads are applied quasi-statically. This point is illustrated
via some examples in the next section.

iii) The third term in the right hand side of equation (7.25), that is, the term due
to inertia, can take on a wide range of positive as well as on negative values depending
on the history of the applied pressure P prior to cavitation, namely, the values of P for
times t ∈ [0, tcr). This term and hence inertia becomes meaningful when the history
of the applied pressure P involves high rates. This point is also illustrated via some
examples in the next section.

iv) Much like in the basic context of elastostatic cavitation (see, e.g., Ball (1982)),
the unbounded upper limits of integration in the first and second terms of the right hand
side of equation (7.25) reveal that the value of the critical pressure Pcr depends on the
viscoelastic behavior of the rubber at infinitely large deformations. While mathematically
profound, this, of course, is physically incongruous since rubber behaves as a viscoelastic
solid up to a critical set of large but finite deformations, beyond which, much like any
other solid, it structurally fails. Nevertheless, in view of the recent analysis (Lefevre
et al., 2014) of the experiments of Gent and Lindley (1959) and of Gent and Park (1984),
equation (7.25) is expected to provide accurate qualitative insight into the effects of
inertia and viscous dissipation in the onset of cavitation in rubber.

7.4 Sample results

In this section, we present sample numerical results from the above-developed analysis
that are aimed at exemplifying the preceding remarks ii and iii.

For possible comparison with experiments, we choose B = 1 cm for the initial outer
radius of the shell and consider the realistically small value A = 10 µm for the initial
inner radius, which corresponds to an initial cavity volume fraction of f0 = 10−9. The
hydrostatic pressure on the outer boundary of the shell is taken to be applied at a
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constant rate. We write
P (t) = Ṗ0 t, (7.26)

where Ṗ0 stands for the prescribed constant pressure rate. Further, we make use of
the constitutive model presented in Chapter 6 with material parameters µ1 = 1 MPa,
m1 = 2 MPa, µ2 = m2 = 0, α1 = α2 = a1 = a2 = 1, η0 = 2.11 MPa s, η∞ = 0.1 MPa s,
β1 = 3, β2 = 1.929, K1 = 442 MPa s, K2 = 1289 MPa−2. As in previous chapter, this
constitutive choice corresponds to a model that describes reasonably well the response of
a Nitrile rubber over wide ranges of deformations and deformation rates Bergström and
Boyce (1998b); Kumar and Lopez-Pamies (2016). The mass density of the solid is taken
as ρ0 = 1000 kg/m3.

Granted the above inputs, equation (7.20) specializes to the ordinary differental
equation

Ṗ0 t = µ1

2

[
1
λ2

b

+ 4λb + f
1/3
0 (4 − 5f0 − 4λ3

b)λ2
b

(λ3
b + f0 − 1)4/3

]
+ 2m1λ

2
b

∫ (1+
λ3

b
−1

f0

)1/3

λb

z6 − λv 6

λv 2z5(z3 − 1)dz

+ρ0B
2λ2

b

[(
2λb

(λ3
b + f0 − 1)1/3 − λ4

b

2(λ3
b + f0 − 1)4/3 − 3

2

)
λ̇2

b +
(

λb

(λ3
b + f0 − 1)1/3 − 1

)
λbλ̈b

] (7.27)

for the stretch λb subject to the initial conditions

λb(0) = 1 and λ̇b(0) = 0, (7.28)

where λv = λv(z, t) is defined implicitly by the ode

λ̇v = m1

6λvz4


z6 − λv6

η∞ +
η0 − η∞ +K1

[
(2λv2 + λv−4)β1 − 3β1

]
1 +

(
K2 m

2
1

3

[(
z

λv

)4
+
(
z

λv

)−8
− 2

(
z

λv

)−2
])β2


. (7.29)

whit λv(z, 0) = 1. While the initial-value problem (7.27)–(7.28) with (7.29) does not
admit a closed-form solution, it is not difficult to generate numerical solutions for it.
We employ here the straightforward approach introduced in Section 6.3, which consist
of converting the second-order ordinary differential equation (7.27) into a system of
first-order ordinary differential equations and to use Gaussian quadrature to evaluate
the integral in (7.27). This approach leads to a system of 2 + n first-order ordinary
differential equations, where n stands for the number of Gauss points utilized in the
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quadrature. The solutions presented below correspond to n = 100 and are generated by
means of an explicit fifth-order Runge-Kutta scheme (Lawson, 1966).

Figure 7.1 shows the growth of the volume fraction of the cavity in the shell f =
a3/b3 = (λ3

b + f0 − 1)/λ3
b , normalized by its initial volume fraction f0, as a function of the

applied pressure (7.26) for three values of constant pressure rate Ṗ0/(µ1 +m1) = 1, 103,
and 5 × 105; recall that µ1 = 1 MPa and m1 = 2 MPa so that these normalized constant
pressure rates correspond to Ṗ0 = 3, 3 × 103, and 15 × 105 MPa/s. To aid the discussion,
for all three constant pressure rates Ṗ0/(µ1 +m1) = 1, 103, and 5 × 105, Fig. 7.2 shows
as a function of time t the contributions (7.23) from each of the three terms PEq, PNEq,
PDyn that make up the value of the applied pressure P . Figure 7.2 includes plots as a
function of t as well of the resulting stretch rate at the outer boundary of the shell λ̇b.
For definiteness, all the plots in Figs. 7.1 and 7.2 are shown from t = 0 up to the point at
which the current volume fraction of the cavity f grows to be four orders of magnitude
larger than its initial volume fraction f0. We consider this instance as the (approximate)
time at which cavitation ensues and identify it by tcr in the plots.
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Fig. 7.1 Growth of the volume fraction of the cavity in the shell f = a3/b3 = (λ3
b +f0 −1)/λ3

b ,
normalized by its initial volume fraction f0 = 10−9, as a function of the applied pressure
(7.26) for the three values of constant pressure rate Ṗ0/(µ1 +m1) = 1, 103, and 5 × 105.
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Fig. 7.2 The three contributions making up the value of the applied pressure P = PEq +
PNEq + PDyn and the stretch rate at the outer boundary of the shell λ̇b, all as functions of
time t. Parts (a)–(b), (c)–(d), (e)–(f) show results, respectively, for the constant pressure
rates Ṗ0/(µ1 +m1) = 1, 103, and 5 × 105.
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In accord with the general remarks ii and iii stated above, Fig. 7.1 shows that higher
pressure rates lead to higher values of the pressure at which cavitation occurs. Moreover,
even for the admittedly low pressure rate of Ṗ0/(µ1 +m1) = 1, the values of these critical
cavitation pressures are higher than the corresponding cavitation pressure in elastostatics,
namely, 5/2µ1 (this value is indicated by a dotted line in the figure). This behavior can
be understood at once from the results shown in Fig. 7.2. Indeed, Fig. 7.2(e) shows
that inertia, as measured by PDyn, is the leading contributor in the onset of cavitation
for the high pressure rate of Ṗ0/(µ1 + m1) = 5 × 105. Note from Fig. 7.2(f) that this
type of loading involves dynamic deformations on the outer boundary of the shell that
are also of relatively high rate (i.e., λ̇b > 1 s−1). On the other hand, Fig. 7.2(c) shows
that inertia is negligible and, instead, viscous dissipation together with elasticity, as
measured by PNEq and PEq, are the leading contributors in the onset of cavitation for
the intermediate pressure rate of Ṗ0/(µ1 +m1) = 103. Note from Fig. 7.2(d) that this
type of loading involves deformation rates on the outer boundary of the shell that are
moderately quasi-static (i.e., λ̇b ∼ 10−1 s−1). Finally, while inertia remains of course
negligible for the even lower pressure rate of Ṗ0/(µ1 +m1) = 1, Fig. 7.2(a) shows that
the onset of cavitation is dominated by elasticity in this case, but also that viscous
dissipation continues to play a significant role, even when the associated deformation
rate on the outer boundary of the shell (see Fig. 7.2(b)) is admittedly low λ̇b ∼ 10−4 s−1.

7.5 Summary and conclusions

In this chapter we have explored the role of viscosity and inertia in the growth rate
of a spherical cavity embedded in a visco-elastic medium subjected to time dependent
hydrostatic loading. Various loading rates, which range from quasi-static to dynamic
conditions, are considered. The visco-elastic material has been characterized by the
constitutive model developed by Kumar and Lopez-Pamies (2016) which describes the
mechanical response of Nitrile rubber over wide ranges of deformations and deformation
rates. We have identified the relative contribution of the elastic, viscous and inertial
terms to the growth rate of the cavity and obtained the following conclusions:

• Within the whole range of loading rates explored in this chapter, the material
viscosity plays a meaningful role in the onset of the cavitation process, which occurs
for a greater of pressure value than that obtained from the classical elastostatic
solution.
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• For the greatest loading rate explored in this work, which involves stretch rates
larger than 1 s−1, inertia effects play the leading role in the cavitation process,
delaying the onset of cavitation and slowing down the grow rate of the spherical
void.

Altogether, the key contribution of this chapter is to make clear the stabilizing role
played by viscosity and inertia in the cavitation process of rubber-like materials. It is
apparent that cavitation is a dynamic process, strongly influenced by the mechanical
response of the material, which requires accurate constitutive descriptions to be modeled.
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Part IV

2D finite vibrations of anisotropic
hyperelastic structures
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8 Incompressible anisotropic hyperelastic
cylindrical structures

Periodic, quasi-periodic and chaotic motion in 2D

In this chapter we explore the two-dimensional (axial and radial) free vibrations of an
incompressible anisotropic hyperelastic cylindrical structure subjected to ab initio levels
of elastic stored and kinetic energies. Our aim is to complement the one-dimensional
case, which only considers radial vibrations, that was investigated in Chapter 3 for
the isotropic material. The anisotropic constitutive model used in the present chapter
was originally developed by Rubin and Jabareen (2007, 2010). We have carried out a
systematic analysis of the parameters which govern the dynamic behavior of the structure,
paying special attention to those which describe the anisotropic material response and
the geometry/dimensions of the shell. Moreover, using Poincaré surface of section
and Lyapunov exponents, we have shown that the motion of the structure can turn
from periodic and quasi-periodic to chaotic as a function of the geometry/dimensions of
the shell and the degree of mechanical anisotropy of the material.

8.1 Introduction

As described in the introduction of Chapter 3, the analysis of the nonlinear dynamics of
hyperelastic shells started with the pioneering works of Knowles (1960, 1962), and the
subsequent developments of Zhong-Heng and Solecki (1963), Wang (1965), Balakrishnan
and Shahinpoor (1978) and Shahinpoor and Balakrishnan (1978). These authors focused
their attention on incompressible and isotropic hyperelastic materials. The extension of
previous studies to compressible hyperelasticity was conducted by Haddow and co-workers
Haddow and Mioduchowski (1977); Janele et al. (1989a,b, 1991), as described in the
introductory section of Chapter 5.

On the other hand, the influence of material anisotropy on the large-amplitude
vibrations of hyperelastic shells has received much less attention. The first paper on
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this topic was published by Huilgol (1967), who studied the problem of axisymetric
oscillations of an infinitely long cylindrical thick-walled tube, which was curvilinearly
transverse-isotropic, i.e., the anisotropy was assumed to exist in the radial direction. The
author derived the conditions that strain-energy functions must satisfy for the existence
of periodic solutions. Few years later, Shahinpoor (1972a) approached the problem
of large-amplitude oscillations of a longitudinally anisotropic thin-walled cylindrical
structure subjected to radial pressure and plane strain conditions along its axial direction
(plane strain was also considered by Huilgol (1967)). Exact expressions for the dynamic
deformations were given upon solving explicitly the non-autonomous time-dependent
differential equation that arises when the applied pressure was considered to decay
exponentially in time. From this point on, most likely due to the extended use of
composite materials such as carbon and glass fiber reinforced polymers in the industry,
the works dealing with large-amplitude vibrations of anisotropic elastic materials have
mostly used linear elasticity. For example, see the recent works of Toorani (2003), Jansen
(2007, 2008), Amabili and Reddy (2010), and other references included in the review of
Alijani and Amabili (2014). The number of recent contributions to the field of anisotropic
nonlinear elasticity is much more reduced. Within this field, we should highlight the work
of Mason and Maluleke (2007), who investigated the radial oscillations of transversely
isotropic incompressible thin-walled cylindrical tubes with generalized Mooney-Rivlin
strain-energy function and subjected to a time dependent applied pressure. Transversely
isotropic cylindrical tubes in the radial, tangential and longitudinal directions were
considered. As in the previous works of Huilgol (1967) and Shahinpoor (1972a), the
cylinder was subjected to plane strain conditions in the axial direction. The attention of
Mason and Maluleke (2007) was focused on calculating the conditions on the strain-energy
function and the applied pressure such that the differential equation of motion has a Lie
point symmetry generator. Under these conditions, the problem can be reduced to an
autonomous system for which analytical solutions exist.

In the present chapter we extend the works of Huilgol (1967), Shahinpoor (1972a)
and Mason and Maluleke (2007) to a 2D framework. We study the axisymmetric
free vibrations of a nonlinear orthotropic hyperelastic thick-walled cylindrical structure.
Unlike in Huilgol (1967), Shahinpoor (1972a) and Mason and Maluleke (2007) no plane
strain hypothesis is assumed, i.e., the cylinder deforms in the longitudinal direction. The
orthotropic mechanical response of the material is modeled following the constitutive
theory developed by Rubin and Jabareen (2007, 2010). We have carried out a systematic
analysis to evaluate, for a wide range of initial conditions, the influence of the following
factors on the oscillatory response of the structure: (1) the initial elastic and kinetic
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energies supplied to the specimen, (2) the dimensions of the shell and (3) the anisotropy
of the material. Our results reveal that, depending on the energy of the system, the
material constants and the geometrical parameters, the response of the structure can be
periodic, quasi-periodic or chaotic.

8.2 Problem formulation

In this section we formulate the problem of an incompressible anisotropic hyperelastic
cylindrical structure subjected to radially symmetric deformations. Unlike in previous
chapters of this dissertation, the problem is posed within a 2D framework which considers
the balance of linear momentum along the radial and axial directions of the cylinder.
The material is modeled using the anisotropic constitutive model developed by Rubin
and Jabareen (2007, 2010).

Recall from Chapter 2 that the current position vector x in the deformed configuration
Ω ⊂ R3 at time t of the material point that occupies the location X ∈ Ω0 is given by
x = χ(X, t), where χ is a bijective and twice continuously differentiable mapping. The
associated deformation gradient, right Cauchy-Green strain tensor and volume ratio at
X ∈ Ω0 are denoted by

F = Grad χ, C = FTF, J = detF. (8.1)

Furthermore, the balance of linear momentum requires that

Div S = ρ0χ̈ in Ω0, (8.2)

where the dots denote differentiation with respect to time, S stands for the first Piola-
Kirchhoff stress tensor, and ρ0 is the constant mass density of the shell material in its
undeformed configuration Ω0.

8.2.1 Constitutive model

The cylindrical structure is modeled as a nonlinear orthoropic hyperelastic material using
the physically-based invariants developed in Rubin and Jabareen (2007, 2010). Using the
work of Flory (1961), the unimodular part C of the right Cauchy-Green strain tensor C,
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which is a pure measure of distortional deformation, is given by (see Section 2.4)

C = J−2/3C, det C = 1, (8.3)

Moreover, the First Piola-Kirchhoff stress tensor S can be expressed in the form

S = S − pI, such that S · I = 0, (8.4)

where p is the Lagrange multiplier already introduced in Section 2.4 , S is the deviatoric
part of S and I is the unit second order tensor1. General hyperelastic materials experience
no distortion when subjected to pure hydrostatic pressure

C = I for S = 0 and J ̸= 1. (8.5)

It is further assumed that the hyperelastic material is a solid that has non-zero stiffness
to all distortional modes of deformation. In contrast, when an orthotropic hyperelastic
material is subjected to hydrostatic pressure it experiences distortion

C ̸= I for S = 0 and J ̸= 1. (8.6)

The main idea in Rubin and Jabareen (2007, 2010), is to develop invariants of deformation,
which are based on the additional distortions required to cause deviatoric stress in an
orthotropic solid. Let ai (i = 1, 2, 3) be an orthonormal triad of vectors that characterize
the principal directions of orthotropy of the material in its reference configuration and
let Ni be the associated structural tensors defined by

Ni = ai ⊗ ai (no sum on i = 1, 2, 3). (8.7)

Specifically, an orthotropic solid will be in a hydrostatic state of stress if an only if C
has the form

C = η2
1N1 + η2

2N2 + η2
3N3, (8.8)

where ηi are positive functions of the dilatation J satisfying the restrictions

ηi = ηi(J), η1η2η3 = 1, ηi(1) = 1. (8.9)
1A · B = tr(ABT) denotes the inner product of two second order tensors {A,B}, see appendix A
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It was shown in Rubin and Jabareen (2010) that the strain energy ψ∗ per unit mass2 of
a general orthotropic material can be expressed as a function of seven invariants

ψ∗ = ψ∗(J, βi), (8.10)

where the invariants βi (i = 1, 2, ..., 6) are defined by

βi =
(

1
η2

i

C + η2
i C−1

)
· Ni, βi > 2 (no sum on i = 1, 2, 3), (8.11)

β4 = (N1CN2 + N2CN1) · C
2(C · N1)(C · N2)

, β5 = (N1CN3 + N3CN1) · C
2(C · N1)(C · N3)

, (8.12)

β6 = (N2CN3 + N3CN2) · C
2(C · N2)(C · N3)

. (8.13)

Moreover, introducing the definition of the auxiliary functions ni(J) it follows that

ni = 3J
ηi

dηi

dJ , n1 + n2 + n3 = 0, (8.14)

∂ηi

∂C
= 1

6niηi J
−2/3C−1 (no sum on i = 1, 2, 3), (8.15)

where we have used that ∂J
∂C = 1

2JC−1; see e.g., Holzapfel (2000). The derivatives of βi

are given by
∂βi

∂C
= Bi (i = 1, 2, ..., 6) (8.16)

where

Bi = J−2/3
[(

1
η2

i

Ni − η2
i C−1NiC

−1
)

− 1
3(1 + ni)

(
1
η2

i

(C · Ni) − η2
i (C−1 · Ni)

)
C−1

]
,

no sum on i = 1, 2, 3
(8.17)

B4 = (N1CN2 + N2CN1) − β4(C · N2)N1 − β4(C · N1)N2

(C · N1)(C · N2)
, (8.18)

B5 = (N1CN3 + N3CN1) − β5(C · N3)N1 − β5(C · N1)N3

(C · N1)(C · N3)
, (8.19)

B6 = (N2CN3 + N3CN2) − β6(C · N3)N2 − β6(C · N1)N3

(C · N2)(C · N3)
. (8.20)

2Please notice that the strain energy function ψ∗ is defined per unit of mass instead the more common
definition per unit of reference volume ψ used in previous chapters
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Furthermore, to be noted that the invariants βi are constants and Bi vanish when C
takes the form (8.8)

βi = 2, βi+3 = 0 for i = 1, 2, 3, Bi = 0 for i = 1, 2, ..., 6. (8.21)

Specific constitutive equations . As a special case, let us take ψ∗ in the form

2ρ0ψ
∗ =

3∑
i=1

Ki(βi − 2) +
6∑

i=4
Kiβi +K7(J − 1)2, Ki > 0, (i = 1, 2, ..., 7) , (8.22)

where Ki are non-negative material constants. It then follows that S is given by

S =
6∑

i=1
KiFBi + J K7(J − 1)F−T. (8.23)

In addition, consider the special case when ni are constants so that integration of
(8.14) yields

ηi = Jni/3, n1 + n2 + n3 = 0. (8.24)

This model has nine material constants

Ki (for i = 1, 2, ..., 7) , n1, n2, (8.25)

which can be related to the components of the small deformation stiffness

ρ0ψ
∗ = 1

2KijklEijEkl, Eij = E · ai ⊗ aj, (8.26)

where Eij are the components of the strain tensor E relative to ai (see, Rubin and Jabareen
(2007, 2010)). Hereinafter, we will consider previous constitutive model restricted to the
incompressible case; i.e., J = 1.

8.2.2 Radially symmetric dynamic deformation

Let us define a reference configuration Ω0 of the thick-walled cylindrical shell by the
polar coordinates {R,Θ, Z} such that

A ≤ R ≤ B, 0 ≤ Θ ≤ 2π, −H

2 ≤ Z ≤ H

2 . (8.27)
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Let us consider a radially symmetric deformation process such that the position vectors
X and x(X, t) in the reference and deformed configurations, respectively, are given by

X = Rer + Zez, x = r(R, t)er + z(Z, t)ez, (8.28)

where the right-handed basis vectors {er, eθ, ez} of a cylindrical polar coordinate system
satisfy the following equations

er × eθ · ez = 1, der

dθ = eθ,
deθ

dθ = −er. (8.29)

Under this conditions the deformation gradient assumes the following spectral form (see
Appendix A)

F = λr(R, t) er ⊗ er + λ(R, t) eθ ⊗ eθ + λz(t)ez ⊗ ez, (8.30)

where the principal stretches corresponding to the directions r, θ, z are given by

λr(R, t) = ∂r(R, t)
∂R

, λθ(R, t) = r(R, t)
R

= λ(R, t), λz(t) = z(Z, t)
Z

. (8.31)

For the problem under consideration here, body force is neglected and tractions are applied
on the top and bottom surfaces of the plate, which are consistent with axisymmetric
vibrations. Specifically, axial stress t(R, t)ez is applied the top of the plate and axial
stress −t(R, t)ez is applied to the bottom of the plate to maintain a uniform deformed
thickness h(t) of the plate which can depend on time. Therefore, we are assuming that
the principal stretch in the axial direction λz(t) is only a function of time.
Furthermore, the first Piola-Kirchhoff stress tensor corresponding to the deformation
gradient (8.30) can be shown to be also in the spectral form

S = Sr(R, t) er ⊗ er + Sθ(R, t) eθ ⊗ eθ + Sz(R, t)ez ⊗ ez. (8.32)

The principal stresses can be obtained from Eq. (8.23) and are given by

Sr = λ−1
r

[
−K1

n1 − 2
3

(
λ2

r − λ−2
r

)
−K2

1 + n2

3
(
λ2 − λ−2)−K3

1 − n1 − n2

3
(
λ2

z − λ−2
z

)
− p

]
,

Sθ = λ−1
[
−K1

1 + n1

3
(
λ2

r − λ−2
r

)
−K2

n2 − 2
3

(
λ2 − λ−2)−K3

1 − n1 − n2

3
(
λ2

z − λ−2
z

)
− p

]
,

Sz = λ−1
z

[
−K1

1 + n1

3
(
λ2

r − λ−2
r

)
−K2

1 + n2

3
(
λ2 − λ−2)+K3

2 + n1 + n2

3
(
λ2

z − λ−2
z

)
− p

]
,

(8.33)
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where the functions arguments have been omitted, as in some of the following
expressions, to ease the notation.

The balance of linear momentum in axial and radial directions lead to

∂Sr(R, t)
∂R

+ Sr(R, t) − Sθ(R, t)
R

= ρ0 r̈(R, t), (8.34)

∂Sz(R, t)
∂Z

= ρ0 z̈(Z, t). (8.35)

Note that, for the first time in this dissertation, we consider the balance of linear
momentum when approaching the problem of the cylindrical shell. In other words, we
do not assume plane strain along the axial direction. Moreover, it follows from the
incompressibility condition J = λr(R, t)λ(R, t)λz(t) = 1 that

λ(R, t) =
(
A2

R2

[
λ2

a(t) − λ−1
z (t)

]
+ λ−1

z (t)
)1/2

, (8.36)

where λa(t) = a(t)
A

stands for the circumferential stretch in the inner face3. Taking the
derivatives of (8.36) with respect to R and t we obtain the following relations

∂λ

∂R
= −λzλ

2 − 1
Rλλz

, (8.37)

λ̈ = 1
2λ

[
λzλ

2 − 1
λzλ2

b − 1
(
2λ̇2

b + 2λbλ̈b − 2λ−3
z λ̇2

z + λ−2
z λ̈z

)
+ 2λ−3

z λ̇2
z − λ−2

z λ̈z

]

− 1
4λ3

[
λzλ

2 − 1
λzλ2

b − 1
(
2λbλ̇b + λ−2

z λ̇z

)
− λ−2

z λ̇z

]
.

(8.38)

Following previous chapters, let us rewrite the equation of motion along the radial
direction (8.34) with λ(R, t) as the independent space variable instead of R. With help
of the expression (8.37) the result reads as

∂

∂λ

[
Sr

λ

]
= −

Sθλz − Sr

λ2

λzλ2 − 1 + ρ0B
2λz

λzλ
2
b − 1

(λzλ2 − 1)2 λ̈, (8.39)

3The expression (8.36) can be alternatively written as λ(R, t) =
(

B2

R2

[
λ2

b(t) − λ−1
z (t)

]
+ λ−1

z (t)
)1/2

in terms of the stretch in the outer face λb(t) = b(t)/B. For our purposes here, we find dealing with the
form (8.36) in terms of the inner stretch λa(t) more convenient.
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where λ̈ is given by Eq. (8.38) and it follows from Eq. (8.33) that

Sθλz − Sr

λ2 = λz

λ

[
K2

(
λ2 − λ−2

)
−K1

(
λ−2

z λ−2 − λ2
zλ

2
)]
. (8.40)

Assuming now that the inner boundary (R = A) is subjected to a pressure Pa(t),
defined per unit of current area. While, the outer face (R = B) is subjected to a
pressure Pb(t), the boundary conditions are given by

Sr(A, t) = −Pa(t)λa and Sr(B, t) = −Pb(t)λb, (8.41)

where Pa(t) and Pb(t) are any functions of choice (suitably well behaved). Hence, Eq.
(8.39) can be integrated in λ with help of (8.38), (8.40) and (8.41) to give

Pa − Pb
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(8.42)

where the following normalized quantities have been introduced

ΛB = B

A
, ΛH = H

A
, τ = t

√
K1

ρ0A2 , (8.43)

and the superposed dot denotes differentiation with respect to the dimensionless time τ .
On the other hand, the axial equation of motion (8.35) is only satisfied in the integral

sense. Therefore, multiplying (8.35) by Z and integrating over Ω0 we deduce that

ρ0
H3

12
(
B2 − A2

)
λ̈z(t)λ2

z(t) = −2
B∫

A

Sz(R, t)λ2
z(t) RdR (8.44)

where Sz(R, t)λ2
z(t) can be written, using Eq. (8.33), as

Sz λ
2
z = Sr

λ
−K1 λz

(
λ−2

z λ−2 − λ2
zλ

2
)

+K3 λz

(
λ2

z − λ−2
z

)
, (8.45)

147



Incompressible anisotropic hyperelastic cylindrical structures: periodic,
quasi-periodic and chaotic motion in 2D

Therefore, Eq. (8.44) can be integrated in R with help of (8.45) and (8.36) to obtain
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(8.46)

where the same normalized quantities ΛB, ΛH and τ , have been used.
The equations of motion (8.42) and (8.46) form a system of two second order ordinary

differential equations for the functions λa(t) and λz(t) that can be easily solved by a
plethora of well-established implicit or explicit methods. Furthermore, it can be deduced
from (8.42) and (8.46) that the parametric dependence of the problem has been reduced
to the following six non-dimensional parameters: two material constants K2/K1 and
K3/K1, two geometrical parameters ΛB and ΛH , and the normalized pressures Pa/K1

and Pb/K1. Please notice that, even when the stresses depend on n1, n2 and n3 (see Eq.
(8.33)), these parameters do not appear in the equations of motion due to the symmetry
of the problem.

For the development of the results presented in Section 8.4 it proves necessary to
introduce here the expressions for the energies involved in the deformation process.
Therefore, we complete the problem formulation with the balance of mechanical power
(see Section 2.3.4) that, in non-dimensional form, can be written as

Pext = d (Uint + K)
dτ , (8.47)

where the work exerted by the external pressures Pext, the total strain energy Uint and
the kinetic energy K are given by
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Pext = πΛHλz

[
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(8.49)
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(8.50)

For the rest of this chapter we focus on the case of zero internal and external pressures,
Pa = Pb = 0. Under these conditions the work of the external forces Pext vanishes and
the total energy remains constant

ET = Uint + K = const. (8.51)

Note that the parameters associated with the orthotropic constitutive model K3/K1 and
K2/K1 only appear in the total strain energy Uint.

8.3 Numerical solution

In the previous section we showed that the motion of the cylindrical structure, which
is defined by (8.42) and (8.46), has two degrees of freedom λa(τ) and λz(τ). The
corresponding four-dimensional phase space is formed by the variables {λa, λ̇a, λz, λ̇z}.
Since we limit our attention to the case for which the total energy is constant (8.51),
one of the variables can be expressed as a function of the others. For the particular
case developed herein we take λ̇z = λ̇z(λa, λz, λ̇a). Hence, for a given energy level,
the phase space can be reduced from four to three dimensions without any loss of
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information. In this new three dimensional phase space {λa, λz, λ̇a}, when the motion of
the cylinder is periodic or quasi-periodic, the trajectory of the structure forms a torus
(Lynch, 2007; Strogatz, 2014; Thompson and Stewart, 1986). As an example, let us
consider ΛH = ΛB = 2, K2/K1 = K3/K1 = 1, ET = 8, λa(0) = 1, λz(0) = 1 and λ̇a(0) = 1.
We insert these geometrical parameters, material constants, total energy and initial
conditions in (8.51) to obtain λ̇z(0) = 1.4140. Then, we solve the system (8.42)-(8.46) to
obtain the solution represented in Fig. 8.1a, which shows the torus (depicted in blue)
and the trajectory corresponding to the first oscillation (represented by the red curve).
To be noted that the torus is the result of plotting together the trajectories of the infinite
number of oscillations of the structure. As occurred in Chapter 3, this type of solution
naturally leads to the concept of Poincaré Surface of Section (SOS). Poincaré SOS
correspond to 2D representations of the motion of the structure that are constructed
from the intersection between the trajectory of the cylinder in the 3D phase space and a
given plane. Throughout this document we will choose the λz = 1 plane. In this way, the
Poincaré SOS reduces a 3D trajectory in the phase space {λa, λz, λ̇a} to a discrete 2D
mapping in the phase space {λa, λ̇a} that contains all the dynamical information of the
system. As an example, Fig. 8.1b shows the Poincaré SOS corresponding to the plane
λz = 1, for λ̇z > 0 and the initial conditions listed above.

As mentioned, Poincaré SOS shown in this chapter correspond to the intersection of
the trajectories of the cylinder with the λz = 1 plane. This ensures that, irrespective of
the energy of the system, the phase space includes all the possible trajectories described
by the structure. We have checked that, in most cases, considering a plane different from
λz = 1 does not modify the main results and trends that will be shown in Section 8.4.
However, it may be the case that, for small values of the energy supplied to the system,
some (or all) trajectories of the cylinder would not intersect the selected plane, which
would lead to the partial (or total) loss of information on the motion of the structure.
Similarly, all the Poincaré SOS of this chapter consider that λ̇z > 0, this condition being
necessary to avoid overlapping between the Poincaré SOS arising from trajectories with
the same energy level but different initial conditions.

The representation of the Poincaré SOS is the main technique used in the following
section of the chapter to analyze the influence of the initial conditions, the total energy
supplied to the system, the dimensions of the cylinder and the degree of mechanical
orthotropy of the material in the dynamical response of the structure. Let us recall from
Chapter 3 what are the possible outcomes of this numerical experiment:

• A single point in the Poincaré SOS corresponds to a periodic motion of the structure,
which is characterized by the period T.

150



8.4 Sample results
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· ·

(b)

Fig. 8.1 Geometrical parameters ΛH = ΛB = 2. Material parameters K2
K1

= K3
K1

= 1. Total
energy ET = 8. Initial conditions λa(0) = 1, λz(0) = 1, λ̇a(0) = 1 and λ̇z(0) = 1.4140. (a)
Three-dimensional torus in the (λa, λz, λ̇a) phase space corresponding to a quasi-periodic
motion. The trajectory of the first oscillation is indicated in red. (b) Poincaréé SOS
corresponding to the plane λz = 1 with the condition λ̇z > 0.

• µ isolated points in the Poincaré SOS correspond to a periodic motion of the
structure, which is characterized by the period µT.

• A closed curve in the Poincaré SOS (as the one presented in Fig. 8.1b) corresponds
to a quasi-periodic motion of the structure.

• A filled region in the Poincaré SOS corresponds to a chaotic motion of the structure.

To obtain the Poincaré SOS, the system (8.42)-(8.46) has been solved with the fourth
order Runge-Kutta method pre-implemented in Wolfram Mathematicar. To guarantee
the quality of the numerical integration, we have checked that all the resultant trajectories
remain in their respective energy hypersurfaces up to an error of 10−6.

8.4 Sample results

In the examples presented in this section, we take as a reference the geometrical pa-
rameters, material constants and energy level used in Fig. 8.1, i.e., ΛH = ΛB = 2,
K2/K1 = K3/K1 = 1 (isotropic material) and ET = 8. The influence of these parameters
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on the response of the structure is explored in the following examples, where we change
one parameter while keeping the other reference parameters fixed.

8.4.1 Reference case

Figure 8.2a depicts the Poincaré SOS corresponding to the reference geometrical param-
eters, material constants and energy level. The active 2D phase space includes all the
possible combinations of λ̇a and λa that fulfill the imposed energy level ET = 8 and the
fact that λ̇z must be greater than 0 (as anticipated in the previous section). The blue
curve enclosing the active phase space has been obtained from (8.51) as the combinations
of λa and λ̇a that minimize λ̇z. Following the indications provided in the previous section
for the interpretation of the Poincaré SOS, we observe that the phase space is divided
into a chaotic domain (plotted in red), and several regions corresponding to periodic
and quasi-periodic trajectories (plotted in brown, blue, purple...). It becomes apparent
that the nature of the radial motion of the structure depends on the initial conditions
considered. This is clearly illustrated in Fig. 8.2b, which shows the time evolution of λa

for those two trajectories whose initial conditions are explicitly labeled in Fig. 8.2a. The
solid blue curve corresponds to a periodic solution (single point in the phase space). The
oscillatory motion of the structure shows a clear repetitive pattern in which the amplitude
and period of the oscillations do not depend on τ . The dashed red curve, on the contrary,
does not show any clear pattern; the amplitude and period of the oscillations are strongly
dependent on the loading time τ . These qualitative observations can be quantified using
the Lyapunov characteristic exponents (LCEs). We followed the procedure presented in
Chapter 3 now extended to a four dimensional phase space. Recall that a positive LCE
indicates that the response of the system is chaotic, while a zero LCE implies that the
response of the system is periodic or quasi-periodic. This is exactly what we observe in
Fig. 8.2c, which shows, for the two trajectories investigated in Fig. 8.2b, the evolution of
their corresponding Lyapunov exponents, denoted by λk, where k is a coefficient that
varies linearly with time (see Section 3.4.1). The LCE approaches zero for the periodic
orbit as k → ∞, and it tends to 0.033 ± 0.0001 for the chaotic orbit, where the error has
been computed as the typical deviation of the last 200 values of κ considered.

In the next section we investigate the influence of the total energy supplied to the
cylinder in the dynamic response of the system.
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Fig. 8.2 (a) Poincaré SOS corresponding to the reference geometrical parameters, material
constants and energy level: ΛH = ΛB = 2, K2/K1 = K3/K1 = 1 and ET = 8. (b) Time
evolution of the stretch in the inner face of the cylinder λa for the periodic and chaotic
trajectories indicated in subfigure (a). (c) Lyapunov exponent λk as a function of k for
the periodic and chaotic trajectories indicated in subfigure (a). (For interpretation of the
references to color in the text, the reader is referred to the web version of this dissertation).
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8.4.2 Influence of the energy supplied to the system

Figure 8.3 presents the Poincaré SOS corresponding to the reference geometrical param-
eters ΛH = ΛB = 2, material constants K2/K1 = K3/K1 = 1, and two different values
of the total energy supplied to the system. Namely, ET = 6 (lower than the reference
value) is considered in Fig. 8.3a and ET = 10 (greater than the reference value) is
considered in Fig. 8.3b. The black dashed line in Figs. 8.3a and 8.3b corresponds to the
curve enclosing the active phase space of the reference configuration presented in Fig.
8.2a. Note that, from this point on, this curve will be plotted in all the Poincaré SOS
presented in the chapter with the aim to compare the size of the active phase spaces.
A decrease in the energy supplied to the system reduces the active area of the phase
space {λ̇a, λa} and favors that the system develops periodic and quasi-periodic motions
rather than chaotic motion. In the case of ET = 6 shown in Fig. 8.3a, the cylinder
does not present chaotic response for any set of initial conditions. The whole chaotic
region observed in Fig. 8.2a for ET = 8 has been transformed in the case of ET = 6 in
a set of closed curves and single points, which reveal the periodic and quasi-periodic
nature of the radial motion of the structure. Note that the closed curves and single
points, which are generated by the same trajectory, are plotted with the same color.
Similarly, an increase in the energy supplied to the system enlarges the active area of
the phase space {λ̇a, λa} and favors the development of chaotic trajectories. In the case
of ET = 10 shown in Fig. 8.3b, the response of the structure is chaotic for most of the
initial conditions and the periodic and quasi-periodic trajectories are confined within
few (relatively) small islands. We have checked that for values of ET greater than 10 the
chaotic region continues growing until it virtually covers the whole phase space. This is
consistent with the Kolmogorov-Arnold-Moser (KAM) theory (see, e.g., Arnol’d (2013)),
which predicts that, as the energy supplied to the system increases, those tori with
a rational winding number 4 are destroyed. These tori (formerly closed curves in the
{λ̇a, λa} phase space) break up into chains of alternating elliptic and hyperbolic fixed
points, as predicted by the Poincaré–Birkhoff fixed point theorem (Birkhoff, 1913). The
comparison of Figs. 8.2a, 8.3a and 8.3b allows to identify these chains, and reveals that
the chaos starts from the hyperbolic points of these chains.

In the next section we investigate the influence of the dimensions of the cylinder in
the dynamic response of the system.

4When the trajectories lying on the surface of a torus are described in the angle-action variables, the
winding number is defined as the ratio between the two orbiting frequencies. A system with a rational
winding number is mode-locked, whereas a system with an irrational winding number is quasi-periodic.
See, e.g., Arnol’d (2013) for further details.
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Fig. 8.3 Poincaré SOS corresponding to the reference geometrical parameters ΛH = ΛB = 2
and material constants K2/K1 = K3/K1 = 1 , and two different values of the total energy
supplied to the system. (a) ET = 6 and (b) ET = 10. (For interpretation of the references
to color in the text, the reader is referred to the web version of this dissertation).

8.4.3 Influence of the specimen dimensions

Figure 8.4 depicts the Poincaré SOS corresponding to the reference non-dimensional
thickness ΛB = 2, material constants K2/K1 = K3/K1 = 1, supplied energy ET = 8, and
two different values of the non-dimensional height of the cylinder ΛH. Namely, ΛH = 1.7
(lower than the reference value) is considered in Fig. 8.4a and ΛH = 15 (greater than
the reference value) is considered in Fig. 8.4b. A decrease in the height of the cylinder
enlarges the active surface of the phase space since a smaller structure develops radial
oscillations for the same supplied energy, which are faster and have greater amplitude.
Moreover, note that a decrease in ΛH favors the development of chaotic motions. In the
case of ΛH = 1.7 shown in Fig. 8.4a, the response of the structure is chaotic for most of the
initial conditions. Furthermore, we have checked that, for values of ΛH smaller than 1.7,
the chaotic region extends virtually to all the phase space. Similarly, an increase in the
height of the cylinder reduces the active surface of the phase space since, as expected, a
bigger structure develops radial oscillations, which are slower and have smaller amplitude.
An increase in ΛH favors the development of periodic and quasi-periodic trajectories
rather than chaotic. In fact, in the case of ΛH = 15 shown in Fig. 8.4b, the response of
the system is never chaotic. In addition, we have checked that for a value of ΛH equal or
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greater than 15 (the tube becomes very long) the three dimensional tori, which describes
the motion of the structure in the phase space {λa, λz, λ̇a}, collapse in different curves
contained in the plane λz = 1. In other words, the response of the cylinder approaches
plane strain conditions, i.e., λz ∼ 1 and λa >> λz. Therefore, the curves depicted in
Fig. 8.4b are no longer Poincaré SOS but complete phase portraits in the {λ̇a, λa} phase
space. Each closed curve in Fig. 8.4b corresponds to a periodic solution, i.e., we recover
the 1D solution developed by Knowles (1960). It is only in the vicinity of the central
point (1, 0) where the plane strain conditions are not satisfied since both stretches are
again of the same order of magnitude O(λa) ∼ O(λz) ∼ 1.
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Fig. 8.4 Poincaré SOS corresponding to the reference non-dimensional thickness ΛB = 2,
material constants K2/K1 = K3/K1 = 1 and supplied energy ET = 8, and two different
values of the non-dimensional height of the cylinder. (a) ΛH = 1.7 and (b) ΛH = 15. Note:
subfigure (b) is not really a Poincaré SOS but a complete phase portrait in the {λ̇a, λa}
space.

In Fig. 8.5 we show the Poincaré SOS corresponding to the reference non-dimensional
height ΛH = 2, material constants K2/K1 = K3/K1 = 1, supplied energy ET = 8, and
two different values of the non-dimensional thickness of the cylinder ΛB. Namely, Fig.
8.5a depicts the solutions for the case of ΛB = 1.7 (lower than the reference value), while
Fig. 8.5b depicts ΛB = 15 (greater than the reference value). As expected, a decrease in
the thickness of the shell increases the active surface of the phase space and promotes
the chaotic response of the structure. In the case of ΛB = 1.7, shown in Fig. 8.5a, the
response of the structure is chaotic for most of the initial conditions. On the other hand,
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an increase of ΛB reduces the surface of the active phase space and favors quasi-periodic
and periodic responses. In fact, in the case of ΛB = 15, depicted in Fig. 8.5b, the
structure does not present chaotic motion for any initial conditions. Furthermore, we
have checked that for a value of ΛB equal or greater than 15 (the tube becomes very
short; like a large plate) the three dimensional tori, which describes the motion of the
structure in the phase space {λa, λz, λ̇a}, collapse in different curves contained in the
plane λz = 1 (as in the case of ΛH = 15 discussed in previous paragraph). The curves
depicted in Fig. 8.5b are complete phase portraits in the {λ̇a, λa} space and define
periodic solutions. In other words, the problem becomes 1D. As in the previous case,
in the vicinity of the central point (1, 0) both stretches are again of the same order of
magnitude O(λa) ∼ O(λz) ∼ 1.
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Fig. 8.5 Poincaré SOS corresponding to the reference non-dimensional height ΛH = 2,
material constants K2/K1 = K3/K1 = 1 and supplied energy ET = 8, and two different
values of the non-dimensional thickness of the cylinder. (a) ΛB = 1.7 and (b) ΛB = 15.
Note: subfigure (b) is not really a Poincaré SOS but a complete phase portrait in the
{λ̇a, λa} space.

It is apparent from previous analysis that, when the volume of the structure is large
enough, either because the tube is infinitely long or the plate is infinitely large, the
system tends to show periodic behaviors.

In the next section we investigate the influence of the mechanical anisotropy of the
material in the dynamic response of the system.
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8.4.4 Influence of the material anisotropy

Figure 8.6 presents the Poincaré SOS corresponding to the reference geometrical param-
eters ΛH = ΛB = 2, circumferential stiffness K2/K1 = 1, supplied energy ET = 8, and
two different values of the axial stiffness K3/K1. Namely, Fig. 8.6a depicts K3/K1 = 0.5
(smaller than the reference value) and Fig. 8.6b depicts K3/K1 = 100 (greater than the
reference value). It has to be noticed that the area of the active phase space in the
{λ̇a, λa} plane remains unchanged against variations in the axial stiffness. This area may
be understood as joint measure of the kinetic and strain energies associated with the
radial motion, which is revealed independent of the axial stiffness. A decrease in the axial
stiffness favors that the development of chaotic motion. In fact, in the case of K3/K1 = 0.5
illustrated in Fig. 8.6a, the structure presents chaotic response for most of the initial
conditions. On the other hand, an increase in the axial stiffness promotes periodic and
quasi-periodic trajectories. In particular, for the case of K3/K1 = 100 illustrated in
Fig. 8.6b, the tori describing the 3D motion of the structure collapse in several curves
contained in the plane λz = 1 (as in the cases of ΛH = 15 and ΛB = 15 presented in
Section 8.4.3) and the motion of the cylinder is periodic. The curves depicted in Fig.
8.6b are complete phase portraits in the {λ̇a, λa} space and define periodic solutions.
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Fig. 8.6 Poincaré SOS corresponding to the reference geometrical parameters ΛH = ΛB = 2,
circumferential stiffness K2/K1 = 1 and supplied energy ET = 8, and two different values
of the axial stiffness. (a) K3/K1 = 0.5 and (b) K3/K1 = 100. Note: subfigure (b) is not
really a Poincaré SOS but a complete phase portrait in the {λ̇a, λa} space.
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The problem becomes 1D as the degree of freedom in the axial direction z is lost.
Note that, due to the mechanical anisotropy of the material, the central point of the
orbits is (1, 0.85) instead of (1, 0) like in the examples presented in Section 8.4.3, where
the material behavior was considered isotropic.

Finally, in Fig. 8.7 we present the Poincaré SOS corresponding to the reference
geometrical parameters ΛH = ΛB = 2, axial stiffness K3/K1 = 1, supplied energy ET = 8,
and two different values of the circumferential stiffness. Namely, Fig. 8.7a depicts
K2/K1 = 0.4 (smaller than the reference value), while Fig. 8.7b presents the solutions for
K2/K1 = 100 (greater than the reference value). A decrease in the circumferential stiffness
increases the active surface of the phase space due to the increase of the amplitude of the
radial oscillations, i.e., the phase space enlarges along the λa axis. A decrease in K2/K1

also favors the development of chaotic motions. In particular, in the case of K2/K1 = 0.4,
depicted in Fig. 8.7a, the chaotic region extends practically to all the phase space. On
the other hand, an increase in the circumferential stiffness reduces the amplitude of
the radial oscillations and, therefore, the active area of the phase space. An increase
of K2/K1 also promotes periodic and quasi-periodic motions. Specifically, in the case
of K2/K1 = 100 depicted in Fig. 8.7b, the structure does not show chaotic motion for
any initial conditions. We have checked that for values of K2/K1 equal or greater than
100 the tori, which describe the 3D motion of the structure, collapse in different curves
contained in the plane λz = 1 (as in the cases of ΛH = 15, ΛB = 15 and K3/K1 = 100
discussed in previous paragraphs) and the motion of the cylinder becomes periodic. The
curves depicted in Fig. 8.7b are again complete phase portraits in the {λ̇a, λa} space, i.e.,
the problem becomes 1D. Note that, due to the mechanical anisotropy of the material,
the central point of the orbits is (1, 0.35) instead of (1, 0) like in the examples presented
in Section 8.4.3.

8.5 Summary and conclusions

In this chapter we have investigated the large-amplitude axisymetric free vibrations of an
incompressible nonlinear elastic cylindrical structure. The material has been described
as orthotropic and hyperelastic using the constitutive model developed by Rubin and
Jabareen (2007, 2010). The cylinder has been modeled using the theory of a generalized
Cosserat membrane which allows for finite deformations that include displacements along
the longitudinal axis of the structure. We have conducted a parametric analysis to
identify the influence that the initial conditions, the energy supplied to the system, the
dimensions of the specimen and the material anisotropy have on the dynamic response
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ET=8,     K2/K1=100, K3/K1=1,     ΛB=2, ΛH=2.

0 0.5 1.0 1.5 2.0
-2

-1

0

1

2

λ· a

λa

(a)

0 0.5 1.0 1.5 2.0
-2

-1

0

1

2

λ· a
λa

ET=8,     K2/K1=0.4, K3/K1=1,     ΛB=2, ΛH=2.

(b)

Fig. 8.7 Poincaré SOS corresponding to the reference geometrical parameters ΛH = ΛB = 2,
axial stiffness K3/K1 = 1 and supplied energy ET = 8, and two different values of the
circumferential stiffness. (a) K2/K1 = 0.4 and (b) K2/K1 = 100. Note: subfigure (b) is not
really a Poincaré SOS but a complete phase portrait in the {λ̇a, λa} space.

of the structure. We have used Poincaré maps and Lyapunov exponents to assess the
nature of the motion of the cylinder and the following conclusions have been obtained:

• Initial conditions: the dynamic response of the system has been proved to be very
sensitive to the initial conditions. For a given set of energy supplied to the system,
geometrical parameters and material constants, the response of the cylinder may
turn from periodic to quasi-periodic and chaotic with slight variations in the stretch
and stretch rate initially imposed to the structure.

• Energy supplied to the system: as the energy supplied to the system increases,
the motion of the system turns from periodic and quasi-periodic to chaotic. The
tori which contain the periodic and quasi-periodic trajectories of the structure are
gradually destroyed with the increase of the supplied energy, which gives rise to
stochastic behavior in the dynamic response of the system. We have shown that
for sufficiently small energies the response of the structure is always periodic or
quasi-periodic, while for sufficiently large energies is always chaotic. These results
agree with the conclusions derived in Chapter 3 and they are consistent with the
KAM theory which postulates that, as the energy of the system increases, the
tori which contain the regular trajectories of the structure are gradually destroyed,
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which gives rise to the emergence of stochastic behavior in the dynamic response of
the system.

• Specimen dimensions: as the volume of the cylinder decreases, the system is more
prone to develop chaotic motion. The smaller the size of the cylinder, the smaller
the amount ot energy required to destroy the tori which contain the periodic and
quasi-periodic trajectories of the structure. To be highlighted that the general
2D formulation developed in this chapter allows to recover the specific cases of
an infinitely long cylinder and an infinitely large plate for which the problem can
be approached within a 1D framework and the response of the structure becomes
periodic.

• Material anisotropy: the structure is more prone to develop chaotic motion as the
stiffness along the axial and circumferential direction decreases with respect to the
stiffness along the radial direction. On the other hand, if the axial stiffness or the
circumferential stiffness of the material are sufficiently high, the response of the
cylinder becomes periodic. This is a key result of this research that makes apparent
that the degree of mechanical anisotropy of the material influences the nature of
the dynamic response of the system.

Altogether, this research complements the 1D approach developed in Chapter 3
–where we studied infinitely long samples assuming plane strain conditions along their
axial direction and an isotropic constitutive model– to a 2D framework which considers
structures of finite axial length with anisotropic material. To take the axial displacements
of the structure into account enables the system to show quasi-periodic and chaotic
responses, which do not appear in the 1D approximation.
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9 Conclusions and future works

In this chapter we briefly summarize the main conclusions of this dissertation and propose
some future work to continue the research developed in this doctoral thesis.

9.1 Conclusions

In accordance with the general objective established in Chapter 1, we have developed a
thorough analysis of the free and forced nonlinear vibrations of cylindrical and spherical
elastic (thick-walled) shell structures subjected to a wide variety of initial and boundary
conditions using 1D and 2D theoretical frameworks. The attention has been focused on
understanding the role played by the constitutive model used to describe the mechanical
behavior of the material in the dynamic response of the system. The research, which
started by considering isotropic, incompressible and rate independent constitutive models,
was based on the systematic incorporation of compressibility, viscosity and anisotropy
in the description of the mechanical response of (thick-walled) shells. While the main
outcomes of this dissertation have already been described at the end of each chapter, we
recall here the most relevant conclusions for the sake of completeness.

• Part II: 1D finite vibrations of isotropic hyperelastic structures. We
focused our attention on isotropic, incompressible and compressible, hyperelastic
structures subjected to constant and harmonic time dependent pressures. In the
case of constant pressure, we showed that, depending on the constitutive model,
there may be values of the applied pressure that impose limits to the oscillatory
response of the shell. Such limiting values of pressure have been shown to be very
much dependent on the compressibility of the material. In the case of harmonic
time dependent pressure, we have shown that the response of the structure may
be periodic, quasi-periodic or chaotic, depending on the value of the external load.
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In addition, we have obtained the complete nonlinear resonance diagrams of the
structure and demonstrated their strong dependence on the constitutive model.

• Part III: 1D finite vibrations of isotropic visco-hyperelastic structures.
We focused our attention on isotropic incompressible visco-hyperelastic structures
subjected to constant and harmonic time dependent pressures. In the case of
constant pressure, we demonstrated that material viscosity reduces the amplitude
and speed of the vibrations of the structure, up to a point that the system may reach
a resting condition for sufficiently long loading times. In the case of harmonic time
dependent pressure, we showed the key role played by the material rate dependence
in the nonlinear resonance diagrams of the structure, which causes the emergence
of scape bands for which the response of the structure is not periodic.

• Part IV: 2D finite vibrations of anisotropic hyperelastic structures. We
focused our attention on anisotropic incompressible hyperelastic structures subjected
to ab initio values of elastic stored and kinetic energy. The analysis revealed that
the response of the structure turns from periodic, to quasi-periodic and chaotic
depending on the energy supplied to the system, the size of the specimen and
the degree of mechanical anisotropy of the material. Namely, the development of
chaotic motion is favored by the increase of the energy supplied to the system,
the decrease of the sample size and the decrease of the stiffness ratio between
axial/circumferential and radial directions.

This dissertation has brought to light the relevance of accurate material constitutive
descriptions in modeling the dynamic behavior of man-made and natural elastic structures.
These structures are commonly found in a wide variety of applications that go from
lead-rubber bearings to saccular aneurysms. The dependence of the mechanical model
with respect to strain, strain rate, anisotropy or hydrostatic pressure have been proven
to be of great importance for the correct modeling of the non linear dynamics of these
structures. We expect that the work presented herein will contribute to encourage further
research on the influence of constitutive modeling on the behavior of such nonlinear
dynamical systems.

9.2 Future works

Throughout this research we have analyzed the role played by compressibility, viscosity
and anisotropy in the nonlinear dynamics of thick-walled hyperelastic shells. However,
as pointed out by several authors, other factors such as the temperature sensitivity also
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play an important role in the dynamic deformation of nonlinear elastic structures; see
e.g., Hwang and Hsu (2001); Ibrahim (2008); Wollscheid and Lion (2013). Therefore,
it becomes apparent that the work developed in this dissertation should be extended
considering constitutive models which include the temperature sensitivity of the material,
in order to address the influence of thermo-mechanical coupling in the dynamic response
of hyperelastic structures.

Moreover, the concepts, techniques and tools employed in this dissertation can be
easily extended to analyze other deformation modes beyond the cylindrical and spherical
cases analyzed here. For example, the shear dominated deformations presented in base
isolation systems (Datta, 2010). Furthermore, there are some other interesting features
about the vibrational behavior of nonlinear elastic structures, i.e., the static pre-stretch
has been proved to play a major role in the nonlinear dynamics of rubber isolators
(Sjöberg and Kari, 2003; Zou et al., 2010), which could be addressed as a continuation of
this research. Another interesting topic of investigation could also be the vibro-acoustical
coupling of rubber isolators, which is of great interest for the industry (specially for the
transportation industry) in order to avoid annoying noises (Coja and Kari, 2007; Kari,
2003).

Finally, let us note that, while in recent years some experimental studies on hyperelastic
cylindrical and spherical shells have been published (see e.g., Gonçalves et al. (2008);
Guo et al. (2013); Lopes et al. (2006)), none of them have investigated the fundamental
aspects of the nonlinear dynamics of this type of structures. Hence, the design and
development of specific experiments to validate and extend the results obtained in this
dissertation remains as a future work.
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A Mathematical preliminaries

With the aim to make this document self-contained, the main mathematical operations
employed throughout this dissertation are detailed in this appendix. Attention is restricted
to those basic operations needed to follow this thesis. For a more elaborative and inclusive
discussion the reader is referred to the work of Hashiguchi and Yamakawa (2012) or
Holzapfel (2000), for example, from where this appendix has been adapted.

Throughout this dissertation and unless otherwise is specified, lowercase bold-face
Latin letters are used for vectors, uppercase bold-faced Latin letters for second-order
tensors, uppercase bold-faced calligraphic letters for third-order tensors and uppercase
blackboard Latin letters for fourth-order tensors. Any other not bold-face Latin or Greek
letter refers to a scalar value.

a, b, c, α, β, γ, ...(scalars), a,b, c, ...(vectors),
A,B,C, ...(2nd order tensors), A,B, C, ...(3rd order tensors),

A,B,C, ...(4th order tensors).
(A.1)

A.1 Algebra of vectors

In this section the basic definitions to operate with vectors are presented.
Scalar product The inner product or scalar product or dot product of the vectors

a and b is defined by
a · b = |a| |b| cos (θ) , (A.2)

where θ is the angle between the vectors a and b, and | | defines the magnitude such that

|v| =
√

v · v ≥ 0. (A.3)

185



Mathematical preliminaries

The scalar product presents the following mathematical properties

a · b = b · a,

a · (b + c) = a · b + a · c,

s(a · b) = (sa · b) = a · (sb) = (a · b)s,
(aa + bb) · c = aa · c + bb · c.

(A.4)

Vector product The vector or cross product produces a new vector and it is not
commutative. It is defined as

a × b = |a| |b| sin (θ) n, (A.5)

where n is the unit vector which forms a right-handed basis (a,b,n) in this order.
Some of the main properties of the vector product are

a × a = 0,
a × b = −b × a,

a × (b + c) = a × b + a × c,

|a × b|2 + (a · b)2 = (|a| |b|)2 .

(A.6)

Index notation The algebra of this dissertation is mainly presented in symbolic (or
direct or absolute) notation, which makes use exclusively of bold-faced letters. However,
to gain more insight in some quantities and to carry out mathematical operations with
three and four order tensors (see Chapter 6) it proves convenient to refer vector and
tensor components to a basis. The vector v is represented in terms of its components
and the basis vectors as follows

v = v1e1 + v2e2 + v3e3 = vi · ei, (A.7)

where the Einstein or summation convention has been used. In this convention whenever
an index is repeated in the same term, then, a summation over the range of this index is
implied (unless otherwise is indicated as in some expressions of Chapter 8). Furthermore,
the Cartesian basis vectors {e1, e2, e3} satisfy the following properties

ei · ej = δij ≡

 1, if i = j,

0, if i ̸= j,
i, j = 1, 2, 3, (A.8)
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which defines the Kronecker delta δij with properties δii = 3, δijui = uj, δijδjk = δik.
Note that δij serves as a replacement operator; i.e., the index on ui becomes an j when
the components ui are multiplied by δij.

There are several common notations for the Cartesian basis vectors, including
{e1, e2, e3}, {i, j,k} or {ex, ey, ez}. The cylindrical {er, eθ, ez} and spherical {er, eθ, eφ}
vector basis are also widely used throughout this document. This basis satisfy the
following conditions, respectively.

er × eθ · ez = 1, der

dθ = eθ,
deθ

dθ = −er, (A.9)

er × eθ · eφ = −1, der

dφ = eφ,
deφ

dφ = −er. (A.10)

Please notice that with previous convention θ is the azimuth 0 ≤ θ ≤ 2π angle and φ
is the inclination 0 ≤ φ ≤ π angle. 1

The scalar and vector products introduced in A.2 and A.5, respectively, can be
expressed in index notation as

a · b = aibi, a × b = ϵi,j,kaibjek, (A.11)

where the permutation (or alternating or Levi-Civita) εi,j,k is defined as

εi,j,k =


1, for even permutations of i, j, k i.e. 123, 231, 312,

−1, for odd permutations of i, j, k i.e. 132, 213, 321,
0, if there is a repeated index,

(A.12)

Triple scalar product The triple scalar (or box) product represents the volume V of
the paralelepiped created from the right-handed triad a, b and c. It is defined as

V = (a × b) · c = (b × c) · a = (c × a) · b = εi,j,kaibjck. (A.13)

The triple scalar product can be also written using the determinant form as follows

(a × b) · c =
a1 b1 c1

a2 b2 c2

a3 b3 c3

. (A.14)

1Although the spherical coordinates are usually ordered as {r, θ, φ}, this arrangement gives a left-
handed basis as it can be seen from Eq. A.101. Expressions in this appendix are for a right-handed
basis, which can be obtained by rearranging the basis as {er, eφ, eθ}.
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If the triple scalar product is zero, then the vectors a, b and c are linearly dependent,
that is, the parallelepiped has no volume.

Triple vector product The product a × (b × c) is called the triple vector product.
The formula of the vector product in terms of the scalar product introduced above is
given by (the demonstration is omitted)

a × (b × c) = (a · c) b − (b · c) a, (A.15)

or in a similar way
(a × b) × c = (a · c) b − (b · c) a. (A.16)

Note that, in general, this operation is not associative, i.e. (a × b) × c ̸= a × (b × c).
The expressions in (A.15) and (A.16) are called back-cab rule from vector algebra.

A.2 Algebra of tensors

A second-order tensor A can be defined as a linear operator that acts on a vector u
generating a vector v following the next linear transformation

v = Au. (A.17)

Tensor product The tensor (or dyadic or matrix or direct) product of two vectors
a and b leads to a second-order tensor defined as a ⊗ b. This second order tensor linearly
transforms a vector c into a vector with the direction of a according to the rule

(a ⊗ b)c = a(b · c) = (b · c)a. (A.18)

Some interesting properties of this operator are

a ⊗ bc = a (b · c) ,
(a ⊗ b)T = b ⊗ a,

a ⊗ (b + c) = a ⊗ b + a ⊗ c,

(b ⊗ c − c ⊗ b) a = a⊗ (b ⊗ c) = (a · c) b − (a · b) c.

(A.19)

Normally, the dyadic product is not commutative; i.e., a ⊗ b ̸= b ⊗ a. Any second-
order tensor may be expressed as a dyadic, using the tensor product. For instance, if
we consider the second-order tensor A, it can be represented as a linear combination of
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dyads formed by the Cartesian basis {ei}

A = Aijei ⊗ ej (A.20)

and tensor A can be also represented in the so-called matrix notation by its components
Aij with respect to {ei}; i.e.,

[A] =


A11 A12 A13

A21 A22 A23

A31 A32 A33

 . (A.21)

Hence, the Cartesian components of the unit tensor I are given by

I = δijei ⊗ ej = ej ⊗ ej. (A.22)

Scalar product The scalar (or dot) product AB of two second-order tensors A
and B is a second-order tensor whose components along an orthonormal basis ei are

(AB)ij = AikBkj (A.23)

The dot product of second-order tensors is, in general, not commutative, that is, AB ≠
BA.

Transpose of a tensor The transpose AT of a tensor A is defined such that

a · Ab = b · ATa = Ab · a (A.24)

for all generic vectors a and b. Some properties of the tensor transpose are
(
AT

)T
= A,

(AB)T = BTAT,

(αA + βB)T = αAT + βBT,

(a ⊗ b)T = a ⊗ b.

(A.25)

In the rectangular Cartesian coordinate system, selecting a = ei and b = ej in
equation (A.24) leads to

AT
ij = Aij (A.26)

or, equivalently
AT = (Aijei ⊗ ej)T = Aijej ⊗ ei (A.27)
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Trace and contraction The trace of a tensor A is a scalar denoted by trA that
is obtained summing the terms of its diagonal. For example, in the case of the dyad
a ⊗ b, the trace is given by the dot product a · b = aibi. The trace of a generic tensor A
with respect to the orthonormal basis {ei} is given by

trA = tr (Aijei ⊗ ej) = Aijtr (ei ⊗ ej)
= Aij (ei · ej) = Aijδji

= Aii = A11 + A22 + A33.

(A.28)

The following properties hold for the trace of a tensor

trAT = trA,
tr (AB) = tr (BA) ,

tr (A + B) = trA + trB,
tr (αA) = αtrA.

(A.29)

The double dot product or contraction A : B of two tensors A and B is an operation
that produces a scalar result. In index notation, a contraction means to identify two
indices and sum over them as dummy indices. Using the tensor components with respect
to the orthonormal basis {ei}, the double contraction is defined by

A : B = AijBij (A.30)

Since the i and j subscripts appear in both factors, they are both summed to give

A : B = AijBij = A11 ·B11 + A12 ·B12 + A13 ·B13 + (A.31)
A21 ·B21 + A22 ·B22 + A23 ·B23 + A31 ·B31 + A32 ·B32 + A33 ·B33

considering that A and B are second order tensors. The double contraction of two
tensors A and B can be also defined in terms of the trace as

A : B = tr
(
ATB

)
= tr

(
BTA

)
= tr

(
ABT

)
= tr

(
BAT

)
= B : A

(A.32)
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Some of the properties of double contraction are now listed

I : A = trA = A : I,

A : (BC) =
(
BTA

)
=
(
BTA

)
: C =

(
ACT

)
: B,

A : (a ⊗ b) = a · Ab = (a ⊗ b) : A,

(a ⊗ b) : (c ⊗ d) = (a · c) (b · d) ,
(ei ⊗ ej) : (ek ⊗ el) = (ei · ek) (ej · el) .

(A.33)

Orthogonal tensor An orthogonal tensor Q is a linear transformation which
fulfills the condition

Qa · Qb = a · b, (A.34)

for all vectors a and b. The set of orthogonal tensors is denoted as Orth throughout this
dissertation (see Chapter 6). As can be seen in Eq. (A.34), the orthogonal transformation
does not affect to the dot product a · b. This means that both the magnitude of the
vectors |a| and |b| and the angle θ formed by the vectors are unchanged (see Fig. A.1).

Q

Fig. A.1 Orthogonal tensor. Adapted from Holzapfel (2000).

Combining the left-hand side in (A.34) with the transpose property given by Eq.
(A.24), the equation becomes

Qa · Qb = a ·
(
QTQb

)
. (A.35)

From equations (A.34) and (A.35) it can be deduced that an orthogonal tensor must
satisfy

QQT = QTQ = I, (A.36)

which implies that
Q−1 = QT. (A.37)
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Based on previous equation, the following property holds

det
(
QTQ

)
= (detQ)2 = 1, (A.38)

where detQ = ±1. If detQ = +1 (−1), then Q is said to be proper (improper) orthogonal
corresponding to a rotation (reflection), respectively. To be noticed that, the orthogonal
transformation also leaves the trace of two tensors unchanged

tr
{(

QAQT
) (

QBQT
)}

= tr (AB) . (A.39)

In addition, the magnitude of a tensor is unchanged under this transformation
∣∣∣QTQT

∣∣∣ = |T| . (A.40)

Symmetric and skew tensors Any tensor A can always be uniquely decomposed
into a symmetric tensor S and a skew or antisymmetric tensor W as follows

A = S + W (A.41)

where

S = 1
2
(
A + AT

)
, W = 1

2
(
A − AT

)
. (A.42)

In matrix notation, S and W are given by

[S] =


S11 S12 S13

S12 S22 S23

S13 S23 S33

 , [W] =


0 W12 W13

−W12 0 W23

−W13 −W23 0

 . (A.43)

Tensors S and W satisfy the following properties

S = ST, W = −WT,

a · Sb = b · Sa,

a · (Wb) = −b · (Wa) ,
SST = S2,

tr (SW) = tr
(
SWT

)
= 0.

(A.44)
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Using the double dot contraction presented in Eq. (A.30), the following properties
are derived

S : B = S : BT = S : 1
2
(
B + BT

)
,

W : B = −W : BT = W : 1
2
(
B − BT

)
,

S : W = 0,

(A.45)

where B is any second-order tensor.
Spherical and deviatoric tensors Any generic tensor A can be decomposed

into a spherical part and a deviatoric part

A = αI + devA, α = 1
3trA = 1

3 (I : A) . (A.46)

The first term in (A.46), in which α is a scalar, is known as a spherical tensor, while
the second term in (A.46) is the deviatoric part of tensor A. The deviatoric part of the
tensor A must satisfy

tr (devA) = 0. (A.47)

A.3 Higher-order tensors

Any tensor of order n may be expressed in the form

Ai1i2...inei1 ⊗ ei2 ⊗ . . .⊗ ein , (A.48)

where a tensor of order n has 3n components Ai1i2...in provided with n indices i1, i2, . . . , in;
i.e., 27 components for third-order tensors or 81 components for fourth-order tensors.

Third-order tensors Let A denote a third-order tensor, according to previous
expression A can be expressed as

A = Aijkei ⊗ ej ⊗ ek, (A.49)

where the components Aijk of A are given by

Aijk = (ei ⊗ ej) : A ek. (A.50)

The double contraction of a third-order tensor A with a second-order tensor B
produces a vector such that

A : B = AijkBjkei. (A.51)
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Fourth-order tensors Any tensor of order four A may be expressed in terms of
its components Aijkl and the Cartesian basis {ei, ej, ek, el} as

A = Aijklei ⊗ ej ⊗ ek ⊗ el, (A.52)

where the components Aijkl of A are given by

Aijk = (ei ⊗ ej) : A : (ek ⊗ el). (A.53)

Hence, the double contraction of a fourth-order tensor A with a second-order tensor B
produces a second-order tensor such that

A : B = AijklBklei ⊗ ej. (A.54)

A.4 Gradients and related operators

A tensor function is a function whose input arguments are one or more tensor variables
and whose output values are scalars, vectors or tensors. The functions Φ (B), u (B) and
A (B) are examples of so-called scalar-valued, vector-valued and tensor-valued tensor
functions of one tensor variable B, respectively. In a similar way, Φ (u), v (u) and A (u)
are vector functions of one vector variable u with the output value of a scalar, vector and
tensor, respectively. Moreover, we can consider scalar functions of one scalar variable;
for example, time t such that Φ = Φ(t), u = u(t) = ui(t)ei and A = A(t) = Aij(t)ei ⊗ ej

are scalar-valued, vector-valued and tensor-valued scalar functions.
From the point of view of Continuum Mechanics the most interesting functions are

those with vector inputs, the so-called fields. In this section the fundamental differential
operators for scalar, vector and tensor fields are presented.

Gradient of a scalar field If we consider a smooth scalar field Φ(x) continuously
differentiable, then the gradient of Φ is given by the following vector field

gradΦ = ∇Φ = ∂Φ
∂xi

ei = ∂Φ
∂x1

e1 + ∂Φ
∂x2

e2 + ∂Φ
∂x3

e3, (A.55)

where the Nabla or vector operator ∇ is defined as

∇(•) ≡ ∂

∂xi

≡
(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
(A.56)
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The dot, cross and tensor products of the vector operator ∇ with a smooth vector or
tensor field (•) are given by

∇ · (•) = ∂(•)
∂xi

· ei, ∇ × (•) = ei × ∂(•)
∂xi

, ∇ ⊗ (•) = ∂(•)
∂xi

⊗ ei (A.57)

Laplacian and Hessian of a scalar field The Laplacian operator ∇2 or ∆ is
defined as follows

∇2(•) = ∇ · ∇(•) = ∇ · ∂(•)
∂xi

ei = ∂2(•)
∂xi∂xj

ei · ej = ∂2(•)
∂xi∂xj

δij = ∂2(•)
∂x2

i

(A.58)

The Laplacian ∇2 of a scalar field Φ results in another scalar field given by

∇2(Φ) = ∂2Φ
∂x2

1
+ ∂2Φ
∂x2

2
+ ∂2Φ
∂x2

3
(A.59)

The Hessian operator ∇∇ (or more explicitly ∇⊗∇) applied on an scalar field results
in a second-order tensor field given by

∇∇Φ = ∇ ⊗ ∇Φ = ∇ ⊗ ∂Φ
∂xi

ei = ∂2Φ
∂xi∂xj

ei ⊗ ej (A.60)

Gradient of a vector field The gradient of a smooth vector field u(x) returns a
second-order tensor field and is given by

gradu = ∇ ⊗ u = ∂ui

∂xj

ei ⊗ ej (A.61)

or, in matrix notation

[gradu] =


∂u1
∂x1

∂u1
∂x2

∂u1
∂x3

∂u2
∂x1

∂u2
∂x2

∂u2
∂x3

∂u3
∂x1

∂u3
∂x2

∂u3
∂x3

 (A.62)

Divergence of a vector field The divergence of a smooth vector field u(x) is a
scalar field given by

div u = ∇ · u = ∂ui

∂xi

= ∂u1

∂x1
+ ∂u2

∂x2
+ ∂u3

∂x3
(A.63)

If div u = 0 the vector field u is said to be solenoidal.
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Curl of a vector field The cross product of the vector operator ∇ with a smooth
vector field u(x) is called the curl of u and is given by

curl u = ∇ × u = ∂ui

∂xi

ei × ej = εi,j,k
∂uj

∂xi

ek (A.64)

If curl u = 0 the vector field u is said to be irrotational or conservative.
Gradient of a second-order tensor field The gradient of a smooth second-order

tensor field A(x) leads to a third-order tensor field and is given by

A = ∇ ⊗ A = ∂Aij

∂xk

ei ⊗ ej ⊗ ek (A.65)

Divergence of a second-order tensor field The divergence of a smooth second-
order tensor field A(x) is the following vector field

divA = ∇ · A = ∂Aij

∂xj

ei (A.66)

A.5 Integral theorems

Divergence theorem The divergence theorem, also known as Gauss’s or Ortrogradsky’s
theorem, states that the volume integrals of the smooth vector field u(x) or the smooth
tensor field A(x) can be converted to surface integrals according to∫

s
u · nds =

∫
v

divudv∫
s
A · nds =

∫
v

divAdv
(A.67)

where n is the outward unit normal field acting along the surface s and dv is the
infinitesimal volume elements at x.

Reynolds’ transport theorem Reynolds’ transport theorem or Leibniz-Reynolds’
transport theorem allows

Stokes Curl Theorem A surface integral on an open surface s can be converted
into a contour integral around the bounding closed curve c using the following theorem
(proof is omitted) ∫

s
curl u · nds =

∮
c
udx (A.68)
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