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Creativity is born from anguish,
just like the day is born form the
dark night. It is in crisis that
inventiveness is born, as well as
discoveries made and big
strategies. He who overcomes
crisis, overcomes himself,
without getting overcome.

Albert Einstein






Preface

This project was composed between September 20" and June 22" by a last
year student pursuing a Bachelor’s degree in Mechanical Engineering. The
theme of the project is General Trajectory Optimisation of a Space Based
Very-Long-Baseline Interferometry Mission. The project aims to develop
an optimal solution to a space mission in which three spacecraft orbiting
around Earth take measurements of diverse points of interest around the
stellar sphere. This includes the developing of a solver’s code as well as the
study of the different approaches concerning manoeuvring.

Reading guide

The report conforms to the scientific standard of citing the sources used
throughout. The report follows the Harvard citation method, where sources
are listed in the text as [Surname, Year|. This citation refers to the bibli-
ography at the end of the report, where books are listed with author, year,
title, edition and publisher. Websites are listed with author, title, date and
URL. The bibliography is alphabetically ordered.

Figures, tables and equations are numbered according to chapter and or-
der of appearance therein. Abbreviations are used throughout the references
as Fig. Sect. and Eq. referring to Figure, Section and Equation respectively.
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Nomenclature

Many “standard” symbols in astrodynamics have been in use for centuries.
This report attempts to keep many of these common symbols, giving alter-
natives wherever appropriate, and try to stay consistent throughout it.

First derivative dot r

Second derivative double dot 7

Vector angular symbol T

Unit vector hat 7

Matrix bold r
Abbreviations

Abbreviation Meaning

COE
CPS
ESA
GMAT
GTOC
[AU
LEO
LTS
MOEA
NASA
NSGA
O(Operator)
RAAN
RADN
SOI
VLBI

Canonical Orbital Elements

Chemical Propulsion System

Furopean Space Agency

General Mission Analysis Tool

General trajectory Optimisation Competition
International Astronomical Union

Low FEarth Orbit

Low Thrust System

Multi-Objective Evolutionary Algorithm
National Aeronautics and Space Administration
Nondominated Sorting Genetic Algorithm
Computational complexity

Right Ascension of the Ascending Node
Right Ascension of the Descending Node
Sphere Of Influence

Very Long Baseline interferometry
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Symbol list

The following list of symbols is alphabetical-lowercase, then uppercase; Ara-
bic, then Greek letters:

Symbol Explanation Unit

a Semimagor azis [km]
ap Acceleration due to perturbations [km/s?]
d Day day

e Eccentricity /]

9o Standard acceleration due to gravity at Farth’s surface Jkm/s?]
h Spacecraft altitude [km]

h Hour [hour]
Nonaz Mazimum height of observation triangle [km]
Romid Intermediate height value for 8 repeated observations [km]
Romin Minimum heigh of observation triangle [km]

h Orbital momentum vector [km?/s]
hopnr Flyby altitude at closest approach to the Moon [km]

i Inclination [deg]
im Normal to observation and node-line direction plane [km]

k Normal unitary vector, points to k direction in IJK frame  [km]

l True longitude [deg]
m General mass [kg]

m Number of Lunar revolutions for resonant orbits [revol]
min Minute [min]
mo Month [month]
n Number of spacecraft revolutions for resonant orbits [rev]

n Mean motion [s71]

n Node-line vector, points to ascending node [km]

n Source measurement direction [km]

n Node-line vector linked to node-line spacecraft [km]

P Semiparameter, semi-latus rectum [km]

T Position vector [km]
TpM Periapsis radius on a flyby respect to the Moon [km]

s Seconds [s]

s Measurement plane normal direction [km]

t General time [s]

tq Trust direction [km]

u Argument of latitude [deg]

U Unitary direction after applied flyby [km]

v Velocity vector [km/s]
Uno Hyperbolic infinity velocity [km/s]
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Symbol Explanation Unit

F General force [N]

B Laplace-Runge-Lenz vector [s*/km3]
E Eccentric anomaly [deg]
G Gravitational constant /m?/kg/s?]
GEN  Number of generations in Genetic Algorithm [km]

J Performance index [km]
JD Julian date [JD]
M Mean anomaly [deg]
M Number of objectives in Genetic Algorithm /]
MJD  Modified julian date [MJD]
N Population size /]

Isp Specific impulse of propulsion system /s]

P Repeat-observation weighting factor /]

Q Offspring population in Genetic Algorithm /]

Rp FEarth radius [km]
Ry Moon radius [km]

T Orbital period /s]

T Coordinate transformation matriz [s]

S Preferable selection value []

T General thrust vector [N/

Q@ Right ascension, measured positively to the east [deg]

a Modulus of obtained velocity in a flyby [km/s]
o Analogous right ascension in the Ecliptic frame, longuitude  [deg]
I5; Cone angle anfter applied flyby [deg]
~y Flight path angle [deg]

) Declination of a source [deg]
o’ Analogous declination in the Ecliptic frame, latitude [deg]
0y Turn angle in a flyby [deg]

€ Computational tolerance /]

€ Ecliptic plane obliquity [deg]

0 Angular direction determination after flyby [rad]

1 Standard gravitational parameter of Earth Jkm3/s?]
13y, Standard gravitational parameter of Luna Jkm3/s?]
v True anomaly [rad]

¢ Specific mechanical energy [kJ /kg]
w Periapsis longitude [deg]
TG Geocentric reference frame /]

Tp Perifocal reference frame /]

w Argument of periapsis [deg]
Av Delta-v, increment in velocity [km/s]
T Vernal equinox []

Q Righ ascension of the ascending node [deg]
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Abstract

GTOC is an event in which the best aerospace engineers and mathematicians
worldwide challenge themselves to solve a complex problem that cannot be
solved with standard optimisation tools. The 8" edition of GTOC is based
on orbital mechanics with an important weight on optimisation. The
description of the problem presents a three spacecraft configuration capable
of taking measurements on the celestial sphere with VLBI instruments on
board. The final objective stands for the maximisation of a performance in-
dex which depends in the course of action to measure different sources during
a maximum mission time given.

In this thesis, is suggested a method to obtain an optimal result. Besides,
the complexity of the mission demands a simplified and optimal approach to
the problem as there are not methods available tu fully solve it.

The approach presented support itself on a fuel-efficient concept, using
the propulsion systems on board only when is strictly necessary. The impor-
tance of gravity assists during the mission subjects the problem to reach the
Moon with the available spacecraft as many times as possible. The obtention
of resonant orbits after a flyby gives the opportunity to multiple fuel-free
orbital transfers while measurements are taken between flybys.

The final optimal trajectory is determined using a MOEA which optimise
the solution for each resonant orbit obtaining the maximum value of the
performance inder minimising time for each flyby in order to explore the
maximum amount of possible resonant orbits.



Chapter 1

Introduction and motivation

The project General Trajectory Optimisation of a Space-Based Very-Long-
Baseline Interferometry Mission is driven by the Aerospace Department of
Universidad Carlos III de Madrid. The project’s objective is to find an
optimal solution to a specific orbital mechanics problem inside Earth’s grav-
itational sphere of influence —SOI—, as well as to develop a code with a
multi-purpose utility for space missions with satellites inside the Earth-Moon
system. In addition, it is expected that the project will also be a research tool
to any user interested in orbital mechanics, as well as spacecraft and planet
motion around Earth with the different effects applied by the propulsion sys-
tems available, highlighting the complexity and mathematical methods used
in celestial mechanics.

The development of this project is going to give a global view of the
problem, the hypothesis taken, and the procedure to develop the solver’s
code using MATLAB. Furthermore, it is going to take into account the pos-
sibility of being customized and improved by others who share an interest in
this field of physics. To achieve this, all procedures are going to be defined
and explained thoroughly.

This chapter exposes the orbital mechanics theory needed and used through-
out the project as well as provides a thorough description of the mission, its
parameters, constraints and modelling approximations.



1.1 Problem description

Space missions can display lots of ways to be accomplished due to the uncon-
strained and non-frictional motion of celestial objects. For instance, one of
their most important features regarding orbital mechanics is its optimisation,
which has a huge impact on mission’s costs and final results obtained.

The problem to solve is based on the Global Trajectory Optimisation
Competition —GTOC—. GTOC was born in the Advanced Concepts Team
of the European Space Agency —ESA-—in 2005, this one is an event taking
place every one-two years over roughly one month during which the best
aerospace engineers and mathematicians world wide challenge themselves
to solve a “nearly-impossible” problem of interplanetary trajectory design.
Each problem’s edition is designed by the winners of the previous one and
over the years, the various problem statements and solutions returned, have
formed a formidable database of experiences, solutions and challenges for the
scientific community.

This project’s aim is to solve the 8" edition of the problem which was
realised in 2015. GTOC 8 edition’s problem was defined by the Jet Propul-
sion Laboratory of the California institute of Technology [Petropoulos, 2015]
and its main characteristics are:

e Global optimisation over a large design space with many local optima

e Unusual objective functions or constraints; which mean that no existing
methods nor software can likely fully solve the problem

Highlighting one of the main aspects of the mission, the necessity of a
constant implication of human resources to solve the problem is remarkable
as no general methods are available to fully achieve a solution.

The mission follows the high-resolution mapping of radio sources in the
universe using space-based Very-Long-Baseline Interferometry —VLBI—.
This will be accomplished by three spacecraft flying around Earth in Low
Earth Orbit —LEO —.

This VLBI system works using the instrumentation of the three space-
craft which can orient the plane defined by them towards each radio source.
The goal is to take a number of observations in order to maximize a perfor-
mance tndex, which depends on the source direction and is loosely related
to the efficacy of the plane formed to obtain the measurement. Repeated
observations of a source are rewarded extra if the observing triangle planes
are of sufficiently different sizes.



1.2 Orbital mechanics

To achieve a solution and fully understand the mission, the use of orbital
mechanics is thoughtfully employed.

Astrodynamics or orbital mechanics is the application of ballistics and
celestial mechanics in practical problems concerning the motion of spacecraft.
The application of this field of physics is the core of space mission design and,
eventually, of the project.

To determine the orbit of an object in motion around a celestial body
it is necessary to define its position and velocity vectors in a determined
reference frame. Those vectors are compounded by 3 elements (one for each
coordinate) creating a problem with 6 variables.

To obtain those parameters, the classical calculus procedures of Newton
and Kepler’s laws are applied to gravitational forces. It is necessary to obtain
an orbit of an object (or spacecraft) m in relative motion to a celestial body
me, the force of attraction between both bodies it is defined by Newton’s
Universal Gravitational Law |G. Mengali, 2013|, [Vallado, 2001]:

mem
P

F=_-@G

r2
Where

G Universal gravitational constant
r Position vector

In astrodynamics, the simplification of this formula with the standard
gravitational constant is used ¢ = G m.. This parameter is unique in
each celestial body and its values are determined and well known for all the
planets in the Solar System.

If this variable change is applied and it is known that r = ﬁ , the
following equation is obtained:

— m_'
F = = (1.2.1)

At that juncture, Newton’s Second Law is applied, taking into account
the fact that acceleration can be expressed in terms of position and time with
the second derivative, obtaining the following differential equation:

m d*r
— U= =m— 1.2.2
e o (1.2.2)
In addition, some other considerations determined related to simplifica-

tion are added, thus a complete Keplerian motion can govern the mission.
Those are:



e The unique gravitational attraction between one primary body (Earth
in this case) and all secondary bodies (the spacecraft)

e The perfect sphericity of celestial bodies so the gradient of gravity along
the same radius is zero

e The null interaction of gravity and any kind of perturbation from any
other bodies outside the Earth’s SOI

With the addition of these simplifications, the equation which mathemat-
ically describes the two body problem is obtained:

.. LA
T+ pogt = 0 (1.2.3)

Before commencing to integer the motion equation to determine the rel-
ative trajectory of a spacecraft, it is necessary to take into account two
mechanical constants which characterize the motion: the specific mechanical
energy, & and the orbital momentum vector h.
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—— = 1.24
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The values of these elements for a body in orbit (without any exter-
nal perturbation) are constant, and they define a priori the equation of the
trajectory. Particularly, the possible trajectories which can be described in
Keplerian motion are represented from conic equations.

Figure 1.2.1: Different conic sections possible [Vallado, 2001][Figure 1-3]



Historically, the demonstration that two points of mass move along their
barycentre following a trajectory described by a conic it was proposed in 1687
by Newton in his ”Philosophiae Naturalis Principia Mathematica”[Newton, 1687].

1.2.1 Orbital elements

There are two main state representations to determine the orbit of a body;
Cartesian and Keplerian representations. Although there are also many other
ways to define orbital parameters they are less employed and they do not
concern the objective of this project.

On one hand, Cartesian elements are position and velocity vectors of the
secondary body relative to the primary body (from each one’s centre of mass).
Those two three-dimensional vectors at a concrete instant of time give all the
information needed to describe orbital motion. Moreover, it is necessary to
define a reference frame (fixed of relative, inertial or not inertial) in order to
maintain concordance.

On the other hand, Keplerian elements describe motion with a series
of canonical orbital elements —COE—. This state representation has the
same amount of components needed to fully define orbits. It is more useful
in terms of precision and direct interpretation of values than the Cartesian
state. Furthermore the Keplerian state describes its own orbital reference
frame although it does require a previously defined thee-axis reference frame
since, to describe all Keplerian elements, an earlier Cartesian position and
velocity vectors must have been provided.

Celestial body

Periapsis

/
True anomaly/
/

/
/

— Y

Reference
direction

Longitude of ascending node

/ »?e/éreﬂce Plope

[ Right Ascension
‘ of the Ascending Node
\ pit

\

\\ or
Apoapsis ~—————

Figure 1.2.2: Orbital elements



The general expressions of Keplerian elements for elliptic orbits are:

5:_ﬂ B e sinv
2a tany = ———
B2 14+ e cosv
p=—=a(l-¢  k-h
1% cosz:T
e:E: 1_|_2€h2 cosQ=1-7
2
K K cosw="m-¢€
- p s =
~ 1+ecosv cosp=enr

For equatorial elliptical orbits it does not exist €2 and w since 7 is not defined
(the equatorial plane coincide with the orbital plane). In this case, the peri-
apsis longitude, w is added governed by the Equatorial-Geocentric reference
frame.

Orbits can also be circular and equatorial. Also in this case 2 and w
are not defined, but is also none the periapsis (so the periapsis longitude w
it cannot being used either). In this case the position of the spacecraft is
defined by the true longitude, [ which is the angle in the direction of motion
respect x-axis.

As a last peculiarity concerning these orbits, it can be obtained a circular
inclinated orbit in which © does exist but w is not defined (in fact, neither
it does the periapsis). As a consequence, the angle argument of latitude, u is
used.

The above-mentioned singularities are described by the following formulae:

~

CoOSTw =1-6 cosl=1-7 cosu=mn-r

1.2.2 Kepler’s Equation and Kepler’s Problem

Throughout history, celestial movement study has been an important topic
full of problems to solve by astronomers. However, it is not going to be
until the XVII century when Astronomy would accurately define celestial
movement and position.

With the contribution of researchers such as Copernicus, Kepler, Galileo
and Newton at that epoch, it was possible to measure the position at an
instant of a celestial body using mathematics and observations —accurate to
about 0.033° which is remarkable for the epoch—.

Moreover, there was an orbital problem did not have a solution: to know a
celestial body’s position and velocity after some time from the measurement



taken. Although Isaac Newton (1642-1727) produced much of the mathemat-
ics required to solve the orbital problem, Kepler determined how to relate
mean and true anomalies in the orbit to time.

Kepler’s Equation allows for the determination of the relation of the
time and angular displacement within an orbit, introducing the concepts of
Mean anomaly and Eccentric anomaly. Angles referred in Fig. [1.2.4
On the basis of Kepler’s second and third laws, this equation— Kepler’s
Equation— relates time of flight from periapsis to the eccentric anomaly,
semimajor axis, and eccentricity. Kepler introduces notation for the mean
anomaly, M as:

Ll
a3

M =F —esinFE = (t—1T) (1.2.6)

Figure 1.2.3: Visual representation of the True Anomaly with the Mean
and Eccentric Anomaly as defined by Kepler

Kepler also introduces the mean motion, n, notation (or mean angular
velocity) and the relation between eccentric anomaly and true anomaly (for
elliptic orbits which is the case of study):

n— % (1.2.7)

tan — (1.2.8)



Actually, two classes of problems arise from Kepler’s equation: the time
to travel between two known points on any type of orbit and the location of
a celestial body after a certain amount of time. Kepler’s equation captures
the first problem although the second one leads to what is known as Ke-
pler’s problem or more generally, propagation. This problem needs of
an iterative method as Newton-Raphson to eventually converge into a valid
solution [Battin, 1999].

The following iterative process is used to solve Kepler’s equation to cal-
culate the eccentric anomaly:

Ey=M (1.2.9)
M — E; + esin E;

1 1 —ecosE; ( )

Eq. (1.2.10) is repeated until the condition | E; 1 — E; |< ¢ is satisfied where
¢ is the tolerance applied. Thereupon E;;, = E.

Mean anomaly, M [rad]
o

-2

0
Eccentric anomaly, E [rad]
Figure 1.2.4: Mean Anomaly vs Eccentric Anomaly: Although the

difference between the eccentric and mean anomaly is not great, as the
eccentricity increases, the differences become larger.

1.2.3 Reference frames

One of the first requirements for describing an orbit is to define a suitable
reference system. There are many different approaches to describe a reference
frame in space. The choice rests on the most convenient approach to work



with orbital elements and on the best visualisation way to interpret numerical
results.

&y Ecliptic plane

Earth equator

Figure 1.2.5: Equatorial and ecliptic planes in IJK reference frame
[Vallado, 2001][Figure 3-7]

The Earth and its orbit around the Sun form the basis for celestial coordi-
nate systems. The ecliptic plane —which defines the plane of Earth’s mean
orbit about the Sun—, its obliquity ¢ and the concept of vernal equinox,
which occurs at the ascending node of the Sun as viewed from Earth, are
the foundations of this systems. It is well noted the direction of the vernal
equinox, designated by T and often referred to as the first point of Aries.

Coordinate systems are divided into interplanetary systems, Earth-based
systems and Satellite-based systems. Nonetheless, as the mission concern-
ing this project it is exclusively inside Earth’s SOI, interplanetary reference
frames will not be chosen nor used.

The origin of Earth-based systems may be at the Earth’s centre or at a
site on the Earth’s surface. Despite there are many reference frames origi-
nated in Earth, during this project and to avoid confusion only the Farth
Mean Ecliptic and Equinox of J2000 frame is going to be used. Some
of the most important coordinate systems are presented as follows:

The Geocentric Equatorial Coordinate System —also named [JK—, has
its foundations in the Earth’s equator. The [ axis pointing towards the vernal
equinox; the J axis is 90°to the east in the equatorial plane and the K axis
extends through the North Pole. It is one of the most common systems in
astrodynamics, but can also be potentially confusing for being a ”pseudo”
Newtonian inertial system referred to the equator and equinox at a particular
epoch.

10



Figure 1.2.6: IJK reference frame with axis and equatorial plane
[Vallado, 2001][Figure 3-11]

As mentioned, to maintain an order in the project a single reference Earth-
based frame it is going to be used to display the results regarding Cartesian
coordinates. It happens to be the Farth Mean Ecliptic and Equinox
of J2000 frame. This reference frame it is a quasi-inertial variation of
the Geocentric Equatorial Coordinate System —with no variations concern-
ing changes in the equinox and equator planes during the mission duration—
and only has a difference between them: its plane of reference is the ecliptic
plane which orbital components are further explained and defined in Sect.

3.1

Although many Satellite-based systems exist, they all have their bases
in the plane of the satellite’s orbit. Keplerian orbital elements are used to
describe these objects’ locations.

Throughout the project, three similar Satellite-based reference frames are
going to be used:

1. The Perifocal Coordinate System, PQW. In this system the fun-
damental plane is the satellite orbit having its origin at the centre of
the Earth. The P axis points towards the perigee, the () axis 90° from
P in the direction of the satellite motion and W axis is normal to the
orbit. This system is used to describe orbits with a well-defined eccen-
tricity and Keplerian elements.

2. The Satellite Radial System, RS W sometimes called Gaussian co-
ordinate system and is sometimes given the letters RTN (radial, trans-
verse, normal) or LVLH (local vertical, local horizontal). The R axis
always points from the Earth’s centre along the radius vector toward

11



the satellite as it moves through the orbit. The S axis point in the
direction of the velocity vector (but not necessarily parallel to) and it
is perpendicular to the radius vector.

3. The Satellite Normal System, NTW the T axis is tangential to
the orbit and always point towards the posigrade velocity vector. The
N axis lies in the orbital plane, normal to the velocity vector and the
W axis is normal to the orbital plane.

These last two systems have characteristic interest while thrusting and
in perturbation analysis. The differences between these systems are shown
in the figure [.2.7, noting special interest in the difference in in-track or
tangential along the T axis.

(a) PQW reference frame (b) NTW and RSW reference frames

Figure 1.2.7: Satellite-based systems used throughout the project
[Vallado, 2001][Figures 3-14; 3-15]

1.2.4 Propulsion

On board each spacecraft is an impulsive Chemical Propulsion System —CPS—
and a continuous Low Thrust System —LTS—. Both systems have their
main difference in their thrust magnitude applied and fuel efficiency. While
CPS applies a high magnitude of thrust instantaneously (expressed directly
as a Av) with a low efficiency, LTS employs a very low thrust magnitude in
exchange for a very high fuel efficiency.

The losses of mass for each propulsion system are determined by the

12



following expressions:

Av
me = mg - exp(— 1.2.11
f 0 P( 9 Isp ( )
dm T
e 1.2.12
dt 9o Isp ( )

On behalf of low thrust, to solve orbital mechanics without perturbations
(such as solar radiation or gravitational forces of other nearby celestial bod-
ies) or any type of delta-v being applied through time, it is possible and
accurate using Keplerian orbit mechanics. Moreover, the addition of a con-
tinuous acceleration in time complicates the dynamics and solving methods
available.

The system of motion’s equations during the application of continuous
thrust to solve is:

(dr

— =

dt

dv 1 T

- _Traz - 1.2.13
7 T3T+GP+ - ( )
dm B T
[ dt 9o Isp

These equations have an analytical solution when the initial and final
orbits satisfy certain conditions such as initial and final circular orbits and
similar cases with non-complex geometries.

To obtain an acceptable approximation as a first approach, is desirable
to simplify the equations than to compute a differential and complex al-
gorithm (which could enlarge the elapsed computational time needed to
solve the full mission). Starting from the two body problem, the differen-
tial equations defining spacecraft orbit raising use the following assumptions
[G. Mengali, 2013]:

e The force of thrust is constant and always in the plain of motion
e The vehicle has a fixed propellant mass flow rate

e The vehicle’s acceleration is due solely to the force of thrust and an
inverse-square, central gravitational field that is spherically symmetri-
cal

13



Starting from the two body problem equations (Eq. [1.2.3)), adding the
differential time and integer the equation, an approach to the solution can
be achieved:

—

ty t L
to m T

As already stated, all perturbation forces are neglected (@p = 0) so, the
remaining elements which provide delta-v along the trajectory are the thrust
applied and the gravitational forces. The following equation from (Eq.

1.2.14)) is obtained:
ty t ,u
Av = / (— — —3f> dt (1.2.15)
o \moT

Nevertheless, the mass flow rate has to be taken into account into this
delta-v equation to obtain optimal results. Further analysis can express
this equation into a series of differential equations which can provide the
numerical solution searched.

T T, ) T
T =, T=—p—+— m=—
s om Isp go
)= "——ﬂ%—& T=,/T2+T2+ T2 (1.2.16)
=y jj=—pg = /T2 +T2+T; 2.
T,
Z =10, Z:—% — 7= /T2 412+ s
r m

1.3 Problem parameters and constraints

Once the fundamental theory is explained, the parameters which govern the
problem can be exposed and properly recognised.

Orbital mechanics can be incredibly complex if the dynamics are not
simplified so, to solve the problem the next simplifications will be taken into
account:

e The Sun and Moon’s gravity are excluded
e Earth is modelled as a point of mass
e The Moon is assumed to follow a conic orbit around Earth

e Flybys of the Moon are to be modelled as patched conics

14



During the mission, a predefined set of physical constants and conversions
to stablish tangible and constant parameters along the problem is going to

be used:
Parameter Value Unit
Gravitational parameter of Earth y 398600.4329  [km?/s%]
Gravitational parameter of Luna uy; 4902.8006 [km?3/s?]
Earth radius 6378.14 [km]
Luna radius 1737.5 [km]
Standard acceleration due to gravity 9.80665- 1072 [km/s?]
Day 86400 5]
Year 365.25 [days]

With concern to dynamics, the spacecraft and the Moon orbiting Earth
are governed by the following formulae from Eq. (1.2.3):

.. X .. Yy . Z

Where

2
r:\/x2+y2+22:—a<1_e)

1+e cosv

The mission is also restricted to the following statements:

Each spacecraft can use its CPS only once, and the chemical system
must be used before the LTS of the spacecraft is first used

The mission begins when the first propulsion system in a spacecraft is
used

The spacecraft are not required to perform their impulses at the same
time as each other

The mission must start between 58849.0 MJD and 5888.0 which corre-
sponds to the complete month of January 2020

The mission must end within three years from the start date

The time at which the last observation is made marks the end of the
mission

The spacecraft range to Earth must obey the following at all times:

6578.15 km < r < 10 000 000 km

15



e For a patched-conic Moon flyby to occur, the spacecraft geocentric
position must match the Moon’s geocentric position within 1 km

It is remarkable to state that the direction of delta-v and thrust applied
along the entire mission is unconstrained.

1.3.1 Initial Orbits

Spacecraft: The three spacecraft are initially located in a 400-km altitude
circular orbit around Earth in the ecliptic plane as shown in Fig. [1.3.1

Ecliptic Plane

OO
\ \
¢

Equatorial Plane >

>

Figure 1.3.1: Initial spacecraft conditions at ¢ in IJK reference frame

to = 58849.0 MJD

Notice that all three spacecraft lie together on the same point on the
positive x-axis at ty and at a distance of 400 km from the centre of the Earth,
in a circular orbit with the inclination of the ecliptic plane. The ecliptic plane
is in a state of constant but inappreciable variation, the mean value at the
realisation date of this project is about 23.4°. The currently variation is
decreasing 0.0013° per hundred years due to planetary perturbations.
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Figure 1.3.2: Obliquity of the ecliptic for 20,000 years [Laskar, 1986][Table
8]

Each spacecraft has on-board two propulsion systems; a CPS and a LTS
with the following characteristics:

Tspope = 450 s

Tsp,pe = 5000 s

Aveps =3 km/s
Trrs <01 N

Which mean that the Specific Impulse of the CPS and LTS are, respec-
tively, 450 and 5000 seconds. The maximum delta-v applicable by the CPS
is 3 km/s and the LTS can apply a thrust up to 0.1 N.

The spacecraft configuration constraint the use of the LTS. In order to use
the low thrust, the CPS needs to previously have been used and jettisoned
of the spacecraft, then, no further use is available.

Each spacecraft has an initial mass of 4000 kg and a minimum permissible
mass of 1890 kg. The initial mass is the mass before any propulsion system
has been employed and the remaining mass is the quantity of oxidiser and
liquid fuel that the propulsion systems need to work.

Moon: To stablish Lunar position at mission’s starting time it will be
necessary to calculate some of its canonical Keplerian orbit elements, starting
off the following given data:
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Orbit element Value Unit

Semimajor axis p 383500.0  [km/
Eccentricity puy  0.04986 /]

Inclination 5.2586 [deg]
RAAN 08.0954  [deg]
Arg. Periapsis 69.3903 [deg]
Mean anomaly 164.35025  [deg]

To obtain the actual position of the Moon in its orbit it is necessary to

solve Kepler’s problem (Sect. |1.2.2]).

1.3.2 Time

The main purpose of time is to define with precision the moment of a phe-
nomenon. Time is a fundamental dimension in almost every branch of sci-
ence. In Astrodynamics, time is especially critical because objects move
so far so quickly. There are copiously time systems to define epochs and
dates based in the Sun and Earth motion or in the star positions however,
concerning the project, only one system is going to be used.

Time units are given by the initial data in Modified Julian Date —MJD—
and there are going to be converted into seconds during the implementation
of the code to achieve a better precision.

The Julian date, JD is the interval of time measured in days from January
1, 4713 B.C. 12:00 stablishing the duration of Julian year as 365.25 days. To
find the Julian date from a known date and time within the period March 1,
1900 to February 28, 2100 the next algorithm could be used:

! {yr AINT (molg_ 9)] 275mo
JD =367 -yr — INT 1 —i—INT(T)
s .
<@ + mm) o
+d+1721013.5 + 6024
(1.3.1)

Where the year, month, day, hour, minute and second are known; thus,
the INT relation denotes real truncation. The values of this system are
typically quite large so, instead of using this system it is recommended by
the International Astronomical Union — IAU — to use a Modified Julian
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Date, MJD commonly calculated as follows:
MJD = JD — 2400000.5 (1.3.2)

This system reduces the size of the date and it can reduce potential
confusion because it begins each day at midnight instead of noon. What is
more, the current case of the initial time given in this mission corresponds
directly to January 1, 2020 00:00.

1.3.3 Patched-conic flyby

Lunar flybys are modelled using the patched-conics approximation and ne-
glecting the time spent inside the Moon’s sphere of influence. The gravity
assist —flyby— occurs at time t; when the spacecraft geocentric position
equals the Moon’s geocentric position to within 1 km; the spacecraft geo-
centric velocity undergoes a discontinuous change in such a way that the
outgoing and incoming hyperbolic excess velocity relative to the Moon have
the same magnitude and are separated by the turn angle d,. Specifically:

(tey) = Ty (tas
Uoog— = U(tg-) — Uy (tg-)
Voot = U(tay) — Om(tay)
|1700G+| = |17ooG—| = Vo
UsoGry * Uno— = V2, €OS 6,

2 V2 4 e/ (Rar + hpar)

an () = el s
This is subjected to the timing and altitude constraints:
tar =ta_ hpr > 50 km Uso > 0.25 km/s hpv = o — Rag

For computational purposes, the equality condition on the flyby position
can be relaxed up to 1 km. And similarly the tolerance on the velocity
condition is 1 m/s:

|Z(te) — Tm(te)] < 1 km [Usoct]| — [Usog—| <1 m/s

1.3.4 Observation plane orientation

All along the mission, the three spacecraft create a triangular plane joining
the points of space they are occupying at each instant. The plane normal is
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tracing the direction of the observation that can be taken. The normal — 7
— of the observing triangle is given by:

n= :]:(7?2 — Fl) X (Fg — Fl) (133)

Where 7 is the position vector of the i** spacecraft relative to the Earth, and
a choice of sign is available. The degenerate case where the cross product
is zero cannot be used to make an observation. The direction of a source is
given by the vector §:

§=cosdcosa & +cosdsinay +sind 2 (1.3.4)

Where « is the right ascension of the source, and ¢ the declination. Which

have to be properly analysed in order to work in the proposed reference frame
as listed in Sect. [.2.3]

north
celestial pole

W@ south
celestial pole

Figure 1.3.3: Right ascension and declination and its differences between
equatorial and ecliptic planes

An observation can be taken when the vectors 7 and § are aligned. On
addition, the alignment tolerance is 0.1°.
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1.3.5 Performance index

The project is going to be driven by the optimisation of all the mission
sequence, subsequently that will be converted into one specific value, the
Performance Index, J. That value determines the performance of all the
measurements taken along the mission in concordance with GTOC descrip-
tion.

The performance index function it is defined by the following expression:

J = Ph(0.2 + cos® ) (1.3.5)

In this formulae, h denotes the smallest of the three altitudes of the
observing triangle and must satisfy:

h <10000 km

An altitude of a triangle is the perpendicular distance from a vertex to
the opposite side (or its extension). § is the declination of the source be-
ing observed . P is a weighting factor for repeated observations that takes
different values according to the next statements:

e If an observation is the first observation taken of a source: P =1

e If an observation is the second observation taken of a previously ob-
served source: P = 3 if Z"M > 3, otherwise P = 1.

man

e [f an observation is the third observation taken of a previously observed
source: P = 6 if hm‘” > 3 and h””d >3 ,else P=3if h’”“ > 3 and
the second observatlon of the Source had a weight of P = 1 "otherwise
P=1.

e If an observation is the fourth or greater observation taken of a previ-
ously observed source: P = 0.

Looking back at the performance index canonical equation (Eq. [1.3.5), it
is recommended to find the canonical parameters which define the solution
to the function, elements as position, velocity or delta-v.

Thus, as the declination and altitude are functions of 7(t), and P it is
defined by the order of measurements which is again a function of 7(t); it
can be confirmed that:

J = f(7 (1)

To optimise the problem it is necessary to take into account the position
of the radio sources and try to obtain the maximum performance index with
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the same amount of measurements. To achieve this, it is mandatory to take
2-3 measurements of the same radio source if the time between measurements
it is not greater than 15 days, which is the minimum possible time between
measurements.

The project’s aims to obtain a value of this performance index in order to,
subsequently, add the solver’s code into a Multi-Objective Genetic Algorithm
—MOEA—code [Deb et al., 2002] to ensure the optimal trajectory to follow.
As the initial possibilities are unlimited, this further study will be attached
to a series of flyby manoeuvres which are explained in advance in Chapter
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Chapter 2

Mission structure

Once the mission is fully described and the mathematical theories exposed,
the initial decisions to change the trajectories can be taken.

This chapter introduces the solving parameters of the mission, gives the
premise of the initial manoeuvres chosen, the solution approach taken and
the final configuration searched.

The initial considerations to be taken care about expose an infinite num-
ber of possible trajectories, this situation gives an outstanding importance
to the first manoeuvres applied, those of which have to be fully analysed in
order to find the optimal solution.

2.1 Initial conditions

At the point where the mission starts, an infinite range of possibilities takes
place hence the decision to apply a delta-v at a specific time instant has to
be chosen.

To approach the mission in the most efficient and easy way possible is
critical to take into consideration the capabilities this project’s author owns.
GTOC is a problem solved by teams with the best Astrophysicist and Math-
ematicians of the world, usually professionals working for space agencies as
ESA or NASA. For instance, the combination of three spacecraft orbiting
at different independent orbits and taking measurements surpass a highly
advanced knowledge in the topic. On that account several simplifications
are determined.

In order to reduce the search field and to approach an optimum and much
simpler solution, the problem is approached from the following standard con-
ditions:
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Two of the spacecraft —mnode-line spacecraft— form the same fixed di-
rection so the resultant triangular plane formed is exclusively in function of
the position of the other spacecraft —out-of-plane spacecraft—. That
fixed direction is going to lay in the ecliptic plane, formed by two spacecraft
orbiting in the same circular orbit, furthermore they are phased 180° the one
from the other to achieve the maximum value of h in the performance index

function (Fig. [2.1.1]).

Out»of—plw

Node-line
spacecraft 2

%
hoS
%
()
>

)
3

<,
6’)
©

5 /
Sy »
'0/[”%/75 Node-line
spacecraft 1

Figure 2.1.1: Standard conditions searched and measurement plane attitude

To reach those conditions with the optimum time and fuel consumptions,
a deep study is necessary. The mission is primarily subdued to time and
fuel restrictions, therefore Lunar-flybys are an excellent choice of fuel-free
orbital transfers and, taking into account the fact that the LTS on board
the spacecraft has a relatively small thrust, achieving a transfer from LEO
to the Moon for the out-of-plane spacecraft is a major trajectory to be done.

Regarding the node-line-spacecraft, both need to raise their apogees and
achieve a circular orbit as fast as possible, nevertheless this can be accom-
plished with their propulsion systems on board.

Therefore, the first objective to be accomplished is the optimal raising of
spacecraft’s apoapsis. To generate a function to solve the performance index
the first manoeuvres using the CPS and LTS until standard conditions are
met are fixed so the solver will start and point its tendency to a solution
near the global maximum zone. Up to this point, it is necessary to define the
first burns the spacecraft are going to perform. This is determinant in the
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mission since it is going to greatly define the final value of the performance
index, hence they have to be cautiously chosen.

2.2 Manoeuvring

2.2.1 Initial considerations for lunar-flyby

Regarding the out-of-plane spacecraft, another range of possibilities needs
to be solved to find the most optimal case. To encounter the Moon at this
point, the CPS alone can be used, but maybe the 3 km/s of delta-v on board
are not enough to reach the Moon. In this case it will be necessary to use
both propulsion systems to reach it [Mingotti et al., 2009].

Another possibility is to use the LTS alone with its 0.1 N of thrust.
Eventually the spacecraft will encounter the Moon but the use of the low-
thrust from LEO might not rise the orbit’s altitude fast enough to consider
this manoeuvre optimal in terms of elapsed time.

It is necessary to solve each possibility exhaustively in order to find the best
manoeuvre.

CPS approach

The objective is to reach the designated target (the Moon) using a single
impulsive burn of 3 km/s or less. These are the initial conditions of a fa-
mous and useful algorithm in orbital mechanics called “Lambert’s Problem”
[Avanzini, 2008]. The solution to this geometric and time-dominated prob-
lem is achieved by an iterative method like Newton-Raphson’s.

First of all, if the delta-v available for the CPS is applied, it is required to
know if there is enough fuel inside our spacecraft. As the propulsion system
used in this approach is the impulsive one, the mass loss is calculated due to
equation (1.2.11]).

km
35

9.80665 - 10-3%2 . 450 s

m; = 4000 kg - exp (— ) = 2026.851 kg > 1890 kg

The initial conditions of the trajectory searched are two bodies moving
at variable different speeds therefore, the time of departure and the time of
arrival are two important variables to take into account as well as the delta-v
needed. If these three variables are combined into a chart it will be obtained
what is commonly called a “pork-chop plot”, which gives a way to visualize
and to optimise the necessary delta-v.
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After the proper code development to solve the trajectory, the results
show that, unfortunately, for a complete lunar period —27.14 days—, there
is not enough delta-v in the CPS to perform a flyby with a single burn. As
shown in figures and and for a better precision figures
and [2.2.1D} it is necessary at least some more delta-v to reach the Moon
in a single impulsive burn since the minimum delta-v needed it is a slightly
higher value of 3 km/s. If this approach case is preferred, it will be needed
to use the LTS once the CPS is first fired.

0 - — 16

Mission duration [days]
3

0.6

2.0 ’ Date of burn [days]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mission duration [days] Date of burn [days]

(a) 3D plot (b) Pork-chop plot

Figure 2.2.1: CPS approach to the Moon for a day

Lunar Flyby Optimization

e

iy

Mission duration [days] Date of burn [days]
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Figure 2.2.2: CPS approach to the Moon for a complete Lunar period
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LTS Circular orbit phasing

For all manoeuvres discussed so far, it has been assumed that there has
been use of impulsive thrust. Although impulsive models work thriving
with most manoeuvres, some energetic burns may require more time to
be applied. Those set of manoeuvres are denominated low-thrust transfers
[Genta and Maffione, 2016].

It is possible to change a spacecraft’s orbital inclination and semi-major
axis using low-thrust, many-revolution manoeuvres, however this type of
trajectories have limited techniques to be solved since their mathematical
complexity. Low-thrust trajectories have attracted a lot of work, and studies
showing how to make them optimal and continuous are especially relevant.
A few of the most popular of those studies are: [Edelbaum, 1965], who has
published many papers discussing on changes in semimajor axis and inclina-
tion; [Alfano and Thorne, 1994, Wiesel and Alfano, 1985|, who studied the
analytical solution for the nearly optimal case of a continuous, tangential,
orbit transfer using low thrust and many revolutions.

To apply this technique to the mission, as a first approach, only the LTS
is going to be used to raise spacecraft’s orbit to the Moon. As mentioned
before, there is a problem with mathematical complexity and a method to
find an analytical solution to the equations of motion.

However, to notice what choice is most efficient in this transfer, the need
to be exhaustively precise is not required; an orbital simulation software can
be used to simulate the trajectory. NASA’s General Mission Analysis Tool —
GMAT —can simulate mission’s parameters and, erasing all the perturbation
effects possible to generate Keplerian orbits as similar as they can be, GMAT
provides the opportunity to generate a continuous thrust trajectory without
the necessity of solving the motion equations directly. Fig. shows the
trajectory obtained with the simulator.

In the simulation, the time needed to perform the manoeuvre is approx-
imately 8 years, achieving an almost circular trajectory. To check this, the
procedures given by ”Propulsion Requirements for Controllable Satellites”
are applied [Edelbaum, 1961] creating a MATLAB code to obtain an ac-
curate solution. Despite GMAT gives an excellent way to visualize data,
Edelbaum’s procedure should achieve analogous results. After implementing
in MATLAB Edelbaum’s algorithms, a comparison between the simulator
and this method can be done.

It is important to take into account the fact that the procedure described
by Edelbaum it is purely design for circular low thrust orbits transfers; this
means that the initial and final orbits must be circular, having the possibility
of a change in inclination and height.
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The procedure’s solutions are presented as follows:

Initial orbit altitude = 400 km
Initial orbit inclination = 0°
Initial orbit velocity = 7.668 km/s

Final orbit altitude = 377121.86 km
Final orbit inclination = Q°
Final orbit velocity = 1.019 km/s

[SP = 5000 s
Trrs =01N
mo = 4000 kg

my = 3492.75 kg
trrs = 3078.268 days

Figure 2.2.3: Trajectory of a continuous LTS burn along the posigrade
vector until Moon approach

As it can be seen, it is possible to accomplish the flyby with the LTS and
with minimum fuel consumption however, the low magnitude of thrust the
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propulsion system is capable of provide greatly enlarges the time needed to
achieve the lunar orbit. This time of around 8.4 years is far greater than the
time provided for the mission (3 years). Unfortunately, it is not possible to
achieve the flyby with this alternative either.

2.2.2 LEO-Moon Manoeuvres

In the previous sections, it has been proved that both propulsion systems on-
board are insufficient by themselves alone to accomplish a lunar flyby. The
best option to optimise a flyby trajectory is the initial raise of the apogees
from LEO with the CPS and, right after the impulse is performed, the acti-
vation of the LTS until the spacecraft reaches the Moon.

The LTS’s low thrust magnitude provides a greater performance the lower
the gravitational force acting on the spacecraft hence, as gravity decreases
with the square value of the distance from the source (Eq. , the higher
the orbit the best performance is obtained. For instance, the CPS will apply
its 3 km/s of delta~v to raise the apoapsis creating a highly eccentric orbit
to, subsequently, approach the Moon with the LTS.

LTS to Moon insertion

As previously stated, the use of a continuous low thrust propulsion system to
achieve a rendezvous manoeuvre to encounter another body in space when
the departure orbit is not circular, necessarily adds the inclusion of a number
of constraints in the trajectories and manoeuvres. For the use of this system
with a non-constrained manoeuvre, the equation system to solve will not
have analytical solution and the problem would be approached with other
methods that can compute the solution in the best way possible. Taking into
consideration the fact that the final destination is the Moon and, a Lunar-
flyby occurs when the geocentric position of the spacecraft and the Moon
match into 1 km of distance or less, the accuracy of the method to use has
to be quite high.

The continuous thrust equations listed (Eq. have analytical so-
lutions when the initial and final orbits satisfy certain conditions, compar-
atively to Edelbaum’s method. However, the initial conditions are adverse
to the process of finding a solution to the equations since after the delta-
v applied with the CPS, high elliptical orbits with high eccentricities are
obtained. This complicates the process and adds the requirement to use
complex computational algorithms to accomplish an accurate solution.

As a consequence, to obtain the correct flight path towards the Moon it
is necessary to integer the equation system throughout a multiple-revolution
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travel in the direction of the spacecraft’s posigrade velocity vector, adjusting
the thrust magnitude until a Lunar rendezvous occurs.
The solution to this trajectory is thoroughly discussed in Sec. [3.3

2.3 Standard conditions and final trajectory

Once an initial Lunar-flyby is achieved and two of the spacecraft share the
same orbit on the ecliptic plane phased 180° the one from the other, the
following steps in the mission are going to be determined by the use of all
gravity assists. As far as possible, the LTS system will be unused in or-
der to save fuel and the main “propulsion” system will be the gravitational
assistance of the Moon.

To accomplish a high number of gravity assists, resonant orbits between
the out-of-plane spacecraft and the Moon are going to be searched. With
this approach it is possible to return to the Moon for another flyby after a
“n” revolution journey. Sampling the resultant orbit after the flyby with its
planes formed in the search of radio sources will provide a performance index
value.

Each possible orbit will define a value for the performance index. In order
to obtain its maximum value for each manoeuvre, the LTS can be fired to
reach some radio sources in the vicinity as well to adjust the harmonic orbit to
the Moon. As the LTS is a very-high-efficient propulsion system (sacrificing
thrust in order to gain that efficiency) it can be used exhaustively through
the mission without the concern of a lack of fuel.

The resultant orbits chosen depend on two principal parameters:

e The maximum performance index value the trajectory is able to
obtain

e The minimum elapsed trajectory time between flybys

The amount of radio sources given to perform the measurements are scattered
along the celestial sphere in an relatively homogeneous way so there is not a
cloud of sources considerably close by to aim to. Furthermore, the sources
which give a high value of J (declination near +90°) are much less abundant
than the others.
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Figure 2.3.1: Right Ascension vs Declination of all radio sources given

As referred in Fig. [2.3.1] for a near-polar (= £90°) value of the decli-
nation the valid positions for measurement are distributed more widely and
reach a wider variety of trajectories than the sources with a near-equatorial
(=~ 0°) declination, which are subjected to timing conditions in order to ad-
just the correct right ascension for a declination given.

Consequently, the presence of the weighting factor P changes the perspec-
tive of the mission. Although the more observations are taken, the higher
the value of J will be; a proper spacecraft distribution taking into account P
will acquire a higher performance value with a lesser number of observations.
In addition, once the spacecraft is positioned after firing their propulsion
systems, every orbital change using the LTS will be very time-wasteful.

To achieve the best trajectories, a Multi Objective Genetic Algorithm
is used. This algorithm gives the best trajectories for the two objective
functions (performance index and elapsed time). As the trajectories obtained
are subjected to resonance with the Moon, after a certain period of time it
will be possible to acquire another flight path by a gravity assist. The best
solution for each flyby will give a succession of possible measurements until
the mission time expires, which is finally all translated into a final value of
the performance index.
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Chapter 3

Code development

In this final chapter the results are displayed and the complete algorithm is
explained as well as the known errors and possible improvements to achieve
a better value of J.

Throughout the development of the project there have been many steps
until the final solver’s code was achieved. The first approach to orbital me-
chanics with MATLAB needs to be truly organized and ensure a wide vision
of the mission. However, the main issue regarding project’s management
is the amount of different functions necessary to solve a specific manoeu-
vre hence, visualizing a trajectory or defining the resultant orbit after an
impulsive manoeuvre (things with the lowest solving difficulty at first), are
hard-working tasks which have to be exhaustively revised in order to obtain
a correct result in all case scenarios.

3.1 Code structure

To implement a MATLAB function to solve J it is necessary to insert Av(¢)
and the time when the measurements are taken. An important issue with
the performance index solver is the insertion of all the Lunar-flybys, however
using the patched conics technique, the flybys can be simplified as another
A(t) with the determination of the instant when the geocentric position of
a spacecraft and the Moon is less than 1 km. J is defined as function of:

J = [(AU(t), (1))

In order to achieve the final objective, the development of the code starts
by the smaller and basic functions to determine orbital elements which further
implementation will be elemental. It is also well noted that each manoeuvre
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applied has a different configuration in terms of code, indeed, all function
development is general and easily modified to further implementation in the
code.

The mission has some prefixed orbits that need to be determined for
some circumstances, hence in order to ensure a consistent calculation, a set
of primordial functions have to be generated:

1. Orbit determination and propagation (bold expressions refer to func-
tions as defined in the code):
e COE from position and velocity vectors (rv2coe)
e Position and velocity vectors from COE (coe2rv)
e Kepler’s problem solution (kepler)
e Direct Kepler’s problem solution (keplerdirect)

2. Reference frame change:

e Right ascension and declination from position vector (ijk2radec)
e Position vector from right ascension and declination (radec2ijk)
e Change of reference frame from Ecliptic to Equatorial (ec2eq)

e Change of reference frame form Equatorial to Ecliptic (eq2ec)
3. Time conversions:

e Change seconds to MJD (sec2mjd)
e Change MJD to seconds (mjd2sec)

These functions mainly allow propagation between the spacecraft and
the Moon, to determine positions with right ascension and declination an-
gles, transform the values between the different reference frames and angles,
and subject the problem to MJD time system. Throughout the code, the
creation of more complex functions by the abovementioned prime functions
is thoroughly extended.

To ensure a better comprehension of the code sequence, a brief summary
of the whole code is presented:

With the initial conditions of the mission, the primordial functions and
propulsive manoeuvres the standard conditions are met and a flyby can
be applied. However, before applying the flyby, radio source data has to be
transformed into useful information for the code in order to achieve the ex-
act coordinates to perform the measurements: this is done through function
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observations. Afterwards all data gathered is collected into measure-
ment function, which obtains the final velocity conditions after the flyby
and the possible sources that can be measured. At that time the func-
tion performance_index explores all the search field of possible combina-
tions of measurements and determines the maximum value of J thus, in-
cluding this function with the genetic algorithm nsga_2, the final function
global_trajectory_optimisation obtains the optimal trajectory searched.

radec2ijk & ijk2radec
eqec &ecZeq

Initial conditions

kepler & kepler_direct

rv2coe & coe2rv

standard_conditions
{measuremenl] - Iobser\.’aﬂons - radio source data]

performance_index
Genetic algorithm
[nsga_E - gIobal_lrajeclory_opt\m\sation}

JFinaI optimal trajectory

.
x.,rl

ey

Figure 3.1.1: Activity diagram of code functions

3.2 Spacecraft and Moon initial orbits

Before starting to build up the code for the diverse burns, is necessary to
determine the initial spacecraft and Moon orbits with their Keplerian and
Cartesian elements. With the initial data provided almost all orbital elements
of the spacecraft are determined. For the initial time %, it is known their
orbital inclination (ecliptic obliquity, €), position (7), argument of latitude
(u) and RAAN (Q).

The only parameter left to know is the velocity, which modulus can be



acknowledge with the specific mechanical energy formulae (Eq. [1.2.4)):

Subsequently the vectorial components are easily defined due to the counter
clockwise direction of the spacecraft v, = [0,1,0]. Once the position and
velocity vectors are determined, it is possible to obtain all COE through
function “rv2coe”.

As discussed and concerning Moon’s initial position, its determination is
linked to Kepler’s equation solution (Eq. [1.2.6). Though it, the eccentric
anomaly (and subsequently the true anomaly ) can be solved. With the
initial data provided (Sect. all COE are obtained and as consequence,
through function “coe2rv”, its position and velocity vectors.

3.3 Manoeuvring to Standard Conditions

CPS

Regarding each spacecraft impulsive burns, all of them perform similar ma-
noeuvres to achieve the standard conditions. The CPS of two of the space-
craft is applied at the ascending node of the Moon-Spacecraft orbit system.
Furthermore, the other spacecraft ignite their CPS at the descending node of
the system (true anomaly’s 180° further) to achieve orbits with large enough
distances between spacecraft’s positions during the mission and also to obtain
a common point with the Moon in which perform a flyby (Fig. [3.3.1)).

Applying impulses at these points, a correct alignment with Lunar orbit
is ensured from the starting point. Hence it is possible for the LTS to align
the inclinations of the spacecraft with the Moon, as well as the opportunity
to encounter the Moon at the RAAN or RADN without the necessity to
change the inclination of the transfer orbit.

To obtain an equatorial high-eccentric orbit rising at its maximum the
apogee with Av = 3 km/s it is necessary to apply that delta-v in the following
unitary vector on NTW satellite-based coordinates:

A'UNTW = [3,0,0] km/s

That unitary vector transformed to the Earth Mean Ecliptic and Equinox of
J2000 frame will be:

Adyy., = [—0.9900, —0.1408, 0]
Adyys, » = [0.3650, —0.9309, 0]
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Therefore, the delta-v applied to archive the orbit is:
ATy, = [—3.9900, —3.1408, 0] km/s at t; = 1513.2927 s
AUy, , = [3.3650, —3.9309,0] km/s at to = 2776.8140 s
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Figure 3.3.1: Initial visualisation of first CPS burns

x1 0® Orbit Visualisation

y-axis [km]
o

x-axis [km] %«10°

Figure 3.3.2: Final orbits achieved for a CPS burn of 3 km/s along the
posigrade vector
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LTS

The objective searched is the elaboration of a computational algorithm which
can solve low-thrust equations (Eq. with some initial conditions given.
During the mission the position of the spacecraft " is known along all tra-
jectories but thrust has to be fixed in modulus and direction during the
integration time chosen. Thus, with the initial conditions of thrust and in-
tegration time given, the algorithm calculates the final velocity and position
vectors reached with the total mass loss of the flight.

However, the exact calculation of these kind of procedures goes far be-
yond the aim of this project hence the LTS trajectories and results nec-
essary to achieve standard conditions are simulated with GMAT.

The two node-line spacecraft carry out a different LTS burn than the
out-of-plane spacecraft. Regarding the node-line spacecraft after their CPS
application, they try to circularise their orbits using the LTS at its maximum
thrusting magnitude (0.1 N) towards £4 = [0.7071,0.7071, 0] direction in the
LVLH Satellite Radial System (Sect. until they achieve the minimum
value of eccentricity possible. This performs a trajectory as described in Fig.
[3.3.3al

On behalf of the out-of-plane spacecraft the same procedure is applied
with the exception of the thrusting direction. To achieve an intersection with
the Moon, maximum magnitude of low thrust is applied along the direction
ty = [1,0,0] in the NTW Satellite Normal System. The described trajectory

is referenced in Fig. [3.3.3b|

(a) Node-line spacecraft trajectory (b) Out-of-plane spacecraft trajectory

Figure 3.3.3: Simulation of both LTS trajectories the spacecraft have to
perform in order to achieve standard conditions
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After this manoeuvres, the estimated time of arrival to standard condi-
tions for all spacecraft is 212.25 days thus the first flyby occurs at 58061.25 M J D
and the mission ends at 59944.75 M JD.

3.4 Flyby

Once the flight path approaches the geocentric position of the Moon at the
designated time given, flyby occurs. As stated, patched-conics approximation
is considered in this kind of events, which represents that all the change in
velocity and inclination during the time spent inside the SOI of the Moon is
going to be applied instantaneously in a point.

The patched conics method simplifies the real parameters of a gravity
assist simulating the targeted mass as a point in space until the spacecraft
is reasonably close by to enter its SOI. The hyperbolic orbit during the fight
time inside the SOI is also simplified hence the flyby occurs instantly in a
point within a relatively close geocentric distance between the two objects.
The result will be an instantaneous change of velocity according to the con-
ditions listed in Sect. [.3.3l

x10*

8+ 4

hpM [km]

1 1 1 1 1
0 0.5 1 1.5 2 25

Delta-v [km/s]

Figure 3.4.1: Lunar periapsis heigh vs delta-v obtained in a flyby

The variables to take into consideration are the spacecraft and Lunar ve-
locity vectors (which are prefixed at the moment of the gravity assist by the
performed trajectory) and the final velocity targeted. To solve the proce-
dure, the final velocity obtained after the flyby has to be determined. If the
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final velocity is fixed, the value of height at lunar periapsis it will be deter-
mined. The possibility of an unacceptable value of final velocity can de given
(hpa < 50 km), in which case it will be necessary to change the spacecraft’s
approach trajectory to the Moon; or, if the velocity vector obtained has an
approximate enough value from the targeted one, take it as valid and use the
LTS afterwards (out of lunar influence) to change the orbital parameters to
the desired ones. However, one of the aims for the selected approach is to,
as far as possible, do not use the LTS after the standard conditions are met.

Using the equations provided [Battin, 1999], it is possible to obtain a
direct relation between delta-v gained and height at lunar periapsis for some
fixed initial conditions given as shown in Fig. [3.4.1] As it can be seen,
the lower the lunar periapsis height, the higher the delta-v obtained. For
instance, this displays the direct relation between the final velocity targeted
and the value of h,y needed. A gravity assist of this kind provides a great
advantage in both delta-v and velocity direction change, which can be used
in direct changes of orbital inclination.

In conclusion, it is possible to acquire very high values of delta-v if a
flyby takes place although no fuel is burned during the procedure. However,
even knowing the optimal parameters to achieve the maximum delta-v in
the flyby, the conditions to acquire a desired final velocity are not given. To
achieve this it is necessary to develop an algorithm that, given the initial
velocity vectors (spacecraft and Moon’s), could solve the patched conics
to obtain a specific value of hy,ys to achieve a desired final velocity.

The first constraint for flybys is to obtain a series of resonant orbits with
the Moon, hence there is no need to use the LTS on board and a instanta-
neous change of velocity can be applied every n revolution journey. Since
the resultant orbit can make the system take measurements, a value of J is
attached to it, subsequently this allow to study all the possible post-flyby
orbits and choose the maximum value of J for the configuration.

In all the possible orbits that can be obtained, seven variables describe
the problem: 7sp,Usp, 7ar, Uar, 0, m,n. The initial position and velocity of
the spacecraft and the Moon are unconditionally related to the approach
trajectory taken during the first manoeuvres. Variables m and n define the
number of revolutions performed by the Moon and the spacecraft, respec-
tively, before returning to the same position and allow another flyby. Those
four variables (Usp, Upr, m,n) determine an angle 5 in the flyby plane which
creates a cone of possible directions; and a modulus a = ||U(tgy)||. These
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two elements are assembled by the following algorithm:

Voo = Vsp — UM

2, 2 2
8 = arccos (m)
2 o vy

There is a last variable to be defined: angle # completely determines the
direction given by the flyby travelling along the circumference described by
g (Fig. [3.4.2).

For instance, the final velocity obtained ¥(tg, ) = G-« has to meet patched
conics requirements and the value of the Lunar periapsis height cannot be
below 50 km.

Voo(tG-)

O¢

Voo(tG+)

Voo(ts-) Voo(te+) (b) Vector @
with angles § and 6

(a) Relation among ¥, vectors with
hpar and 6y

Figure 3.4.2: Flyby mathematical description

3.5 Measurements

Source measurement is subjected to spacecraft position which can be trans-
posed to right ascension and declination. However, the problem arises when
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a study of possible measurements is done taking into account all three space-
craft movement, which is constantly variable. Therefore, there is another
simplification to be applied to study the problem in a plausible way:

e The constant motion of the node-line spacecraft is fixed

To obtain an optimal measurement trajectory, each radio source is plotted
independently in function of the right ascension and declination by which can
be measured. Sources are defined by right ascension and declination, since
the problem is study in the Farth Mean Ecliptic and Equinoz of J2000 frame
those angles are transposed to their analogous (longitude, o/ and latitude, 3’)
into the ecliptic frame. As a result, the node line n where the two spacecraft
lay is defined. The node line and source analysed form a plane which normal
vector defines the direction 7, simultaneously, those two vectors define the
trajectory out-of-plane spacecraft has to perform in order to continuously
measure the source (Fig. [3.5.1]).

Observation
source

Observation

source
\ Node-line
\a Spacecraft 1

Node-line
spacecraft 1

Node-line

Node-line spacecraft 2

spacecraft 2 % Q
(a) 7 and i, definition
(b) Spacecraft measurement trajectory

Figure 3.5.1: Reference frames and for initial study of source measurement.
Note that unitary vectors which build up the frame are represented in blue
while the measurement trajectory is represented in red

As previously stated, in order to obtain a pure geometric configuration
in which sources could be measured, the 7 and 7,, frame is used to relate the
right ascension and the declination of the out-of-plane spacecraft with the
possible measurement planes of each source. The obtention of this data is
followed by the next algorithm:

[—sin(a’), cos(a), 0]
im = [—sin(8") cos(a), — sin(8) sin(a’), cos(d")]

Uy =T gy + Ty T

n
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Where:

r24+r2 =1

o/ longitude of the source in the ecliptic frame
0’ latitude of the source in the ecliptic frame

Subjected to n and im, each observation source has its unique output
trajectory (Fig. [3.5.2). The data obtained for each source is saved into a
“.xlsx” file to improve computational time which it will be called further in
the code.
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Figure 3.5.2: Measurement trajectories for different radio sources

When a possible flyby trajectory is calculated, the resultant orbit is ren-
dered subdued to right ascension and declination (Fig. hence the
data from sources and spacecraft trajectory can be compared. As a result,
two functions are compared:

1. Out-of-plane spacecraft trajectory
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2. Source measurement trajectory

Orbit Visualisation

Spacecraft trajectory
T T T
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(a) Right ascension and declination  (b) Orbit visualisation in Ecliptic Frame

Figure 3.5.3: Right ascension vs declination of Out-of-plane
spacecraft: Possible orbits obtained after a flyby. Note the obliquity
change due to the ecliptic and right ascension-declination different frames

For each observation source, the intersection between both data —figures
[3.5.2] and [3.5.3al— is searched. Physically, each intersecting point implies
a possible measurement for the designated source at the time given. As a
result, This approach allows to know how many, where and when sources can
be measured for a designated flight trajectory.

Finally, rsp and vy; do not have direct use in the final trajectory deter-
mination but its inclusion in the algorithm ensures the propagation through
the trajectory in order to measure observation times as well as the guarantee
that the flyby conditions are met at the designated flight times:

rsp(t piysy) = 31 (Erigey)
rsp(n-Tsp) =ra(m - Thy)
In conclusion, the application of the abovementioned studies into a MAT-
LAB algorithm, including the input of 7sp, Usp, 7ar, Uar, 0, m,n the final ve-

locity vector after the gravity assist is obtained as well as instants and posi-
tions of the out-of-plane spacecraft to perform possible measurements.

3.6 Genetic Algorithm Optimisation

Due to the flyby and measurement research, the calculations of all param-
eters needed are obtained and the direct determination of J is concluded.

43



Since the initial manoeuvres are fixed, so are positions and velocities of the
spacecraft and the Moon until the first flyby conditions are met. This allows
the MATLAB function less inputs to work with from the beginning, reducing
the necessary inputs to m,n, 6.

To ensure the optimum parameters from each resonant orbit, a Multi
Objective Genetic Algorithm is applied to the function in order to reach the
maximum value the mission has to offer.

A MOEA is a type of local search that mimics evolution by taking a pop-
ulation of strings, which encode possible solutions, and combines them based
on a fitness function to produce individuals that are more fit. The algo-
rithm used to optimise the mission is NSGA-II [Deb et al., 2002]. NSGA-IT
is a fast and elitist multi-objective evolutionary algorithm that optimise two
or more functions using nondominated sorting and sharing. This algorithm
works with a multi-objective optimisation purpose in order to find the global
maximum or minimum of a set of objective functions.

Unlike in single-objective optimisation, there are two aims in multiobjec-
tive optimisation:

e Converge to the Pareto-optimal set
e Maintenance of diversity in solutions of the Pareto-optimal set

In the proposed NSGA-II a list of population members N is created. This
population evolves and mutates through a set of generations using mathemat-
ical methods that mimic natural evolution processes. Thought generations,
the best members of the population are accepted to be part of the next
generation while the rest are replaced by offsprings from the best solutions
—elitism—.

The set of multiple objectives in a problem gives rise to a set of optimal
solutions (largely known as Pareto-optimal solutions) instead of a single opti-
mal solution. Without any further information, it cannot be stated that any
of this Pareto-optimal solutions are better than the other. NSGA-II employs
a nondominated sorting method, comparing each solution with every other
solution in the population to find its dominated value.

Firstly, the algorithm creates a random population F,. This population
is sorted based on the nondomination and each solution is assigned a fit-
ness rank equal to its nondomination level. Afterwards, the usual binary
tournament selection, recombination and mutation operators are used in or-
der to create an offspring population ) of size N. The actual population
Ry = Py + @ of size 2 N is sorted according to nondomination. Since the
function uses elitism, the best sets of solutions pass to the next generation
until the population N is complete and the rest solutions are rejected.
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Non-dominated Crowding
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Ej ) -*—Rgected
1

Figure 3.6.1: NSGA-II procedure throughout generations
[Deb et al., 2002] [Figure 2]

With the new population P; the algorithm’s main loop uses selection,
crossover and mutation to create a new population (); of size N. Once
more, the nondomination sorting fit and ranks each solution and therefore a
crowding distance sorting evaluates the density of solutions in order to obtain
a diverse variety of solutions as possible Py (Fig. [3.6.1).

The computational complexity of the algorithm is defined as O(MN?3)
(where M is the number of objectives and N is the population size). In order
to obtain a consistent result for each trajectory a population N € [20,50]
along GEN € [5,50] is executed for each flyby trajectory.

When the genetic algorithm presents its multiple results, they are evalu-
ated and the most convenient solution is chosen.

3.7 Result overview

Throughout the conformation of the mission a series of functions have been
created. All of them were assembled in a sequence which grants an optimal
trajectory for each flyby. After proper simulations the first results are finally
achieved.

The solution process defines an array of N elements for each objective
function and for number of decision variables (or inputs). That population is
the result of a number of evolutionary processes through generations inside
Pareto-optimal set of solutions. To obtain a preference for one of the solu-
tions, nsga_2 provides a value of preferable selection S € [0, 1] that points
out which solution has the better values in relation with the objective func-
tions.
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Through the simulations, many different values of J are obtained. The
flybys are constrained by the mission final date (59944.25 M .JD) thus the
flyby sequences go on until the time is depleted. The highest value calculated
is J = 26.732 - 10° km and is linked to the following flight sequence:

| Flyby # | t [MJD] [ m | n |6 [rad] | AJ [km-10°] | J [km - 10°] |
1 08061.250 | 2 | 3 | 5.943 1.554 1.554
2 58115961 | 1 | 2 | 0.731 1.084 2.638
3 o8143.316 | 3 | 2 | 1.534 1.814 4.452
4 08225383 | 3 | 2| 5.229 1.973 6.425
) 08307.449 | 3 | 3| 5.594 2.401 8.827
6 08389.516 | 2 | 2 | 5.577 1.689 10.501
7 08444.227 | 2 | 3 | 2.932 1.755 12.271
8 08498938 | 1 | 2 | 1.208 0.917 13.319
9 08526.293 | 1 | 2| 0.383 0.918 14.107
10 28553.649 | 2 | 3 | 0.534 1.592 15.700
11 58608.360 | 2 | 3 | 0.975 1.754 17.453
12 58663.071 | 1 | 2| 1.426 0.872 18.325
13 58690.426 | 3 | 3 | 3.937 2.365 20.690
14 o8772.693 | 2 | 1 | 0.867 0.876 21.566
15 08854.764 | 2 | 3 | 5.176 1.739 23.306
16 08882.115 | 3 | 3 | 2.376 2.164 25.470
17 09936.127 | 2 | 3 | 5.805 1.817 27.287

Achieving the Pareto-optimal front makes impossible to make any one
population individual better off without making at least one other worse off,
hence the selected results are extracted from this front for each performed
flyby. The selection of a specific population is done with the higher value of
S, which indicate the higher nondominated solution of the front.
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Figure 3.7.1: Pareto-optimal fronts for different populations and
generations. Negative values of time are neglected since they do not have
physical sense. Note that negative values of J are due to NSGA-II
methodology to maximise objective functions.

3.8 Future modifications and implementations

GTOC problems are solved by teams of professional astrophysicists world-
wide due to their difficulty and complexity, consequently the work done by
a single engineering student is not enough to fully solve one of them.

The approach given simplifies the complexity of the problem and gives an
excellent solution, however other design alternatives could provide improved
results. Modifications can be applied throughout the whole mission (from
the first manoeuvres chosen to the final optimisations after flybys) due to
the unconstrained motion of the spacecraft.

The following content points out some of the possible improvements of
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the mission:

Optimal LEO-Standard conditions trajectory: The approach taken
to achieve standard conditions is subdued to the utilisation of the LTS after
the CPS, this provides a wide range of possibilities. The followed approach
is optimum enough, however the low thrust equations need to be properly
solved through propagation and a suitable method to encounter the Moon
and achieve high-altitude circular orbits for the node-line spacecraft is nec-
essary.

Moreover, a possible accuracy method for LTS manoeuvring is given as fol-
lows:

To approach a precise and realistic simulation a new constraint to the nu-
merical integration process can be added:

Keplerian trajectories in space are conics, it can be determined that, the
change of angular separation between the two position vectors calculated in
every step (initial and final) is a parameter to highly take into account for a
good thrusting precision. To establish a range for that parameter and, taking
into account the computational time and precision needed, a good range of
values will be between 0.1° and 1° of angular separation in cases of poor
precision needed and, when the dynamics will be required to be smoother,
the step time can be decreased as much as it is necessary to obtain the desired
accuracy.

Motion-independent spacecraft: To accomplish a suitable approach to
the measurement problem, both node-line spacecraft positions were deter-
mined by the right ascension of the sources and fixed throughout the out-of-
plane spacecraft trajectory. Further implementations to the mission should
take into consideration the constant motion and timing of the plane formed
by all spacecraft between flybys.

LTS for each flyby trajectory: Few trials have been done to implement
this approach of the mission, however, the time of realisation of this project
was not enough to fully develop it.

With the complexity of the addition of another grade of freedom to the
mission, the LTS on board the spacecraft can provide a better flight path
if is ignited between flybys. This provides more freedom regarding source
measurement and would polish the solution thanks to a differential change of
trajectory mid-path. For each flyby, a value of maximum delta-v is calculated
in order to reach more or/and better measurement conditions. This value of
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delta~v can be a objective function for the MOEA to minimise (Fig. [3.8.1)).

Therefore the equation of low thrust propulsion (Eq. [1.2.12]) can analyse
what happens if that delta-v can be applied before the next flyby occurs.

#*

Elapsed time, t [s]

1.3

1.2
Delta-v, Av [km/s] 11 4
Performance Index, J [km]

Figure 3.8.1: NSGA-II Pareto front for 3 objective functions J, ¢, Av
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3.9 Conclusions

With the realisation of this project a simplified and optimal solution to
GTOC composed by a synergy of all learned concepts throughout its ful-
fillment has been provided. Although finding a better solution than the
competition winners was a major objective, a feasible alternative for the au-
thor’s capabilities has been achieved.

With multitude challenging problems that have been proposed through-
out its realisation (Lambert’s problem, Low-thrust manoeuvring, patched con-
ics flybys...), this project has certainly been didactic for its author.

Starting from an initial theoretical approach to orbital mechanics and op-
timisation procedures, different sets of possible solutions have been evaluated
in order to optimise the mission. From the theoretical analysis, a subsequent
MATLAB code has been developed with specific functions to solve Keplerian
orbital mechanics and the addition of mission parameters and constraints.
The final value of J acquired is 27.287 - 10° which, in the final competition
rankings will achieve the 12" rank out of 18 teams presented [GTOC 8 re-
sults|. With GTOC high stands, the result is consistent and positive.

Many of the hypothesis taken have discharged large work to finally reach
a non-optimal approach of the mission, hence they have been discarded. Nev-
ertheless, their study has been a challenge which has enhance the knowledge
of the problem until the final manoeuvre sequence chosen was obtained.

Personal statement: Working on this project has been a rewarding ex-
perience for me. Work in a complex field such as orbital mechanics and
integrating every function needed into a generic numerical computing envi-
ronment as MATLAB is certainly challenging. Starting from a blank script
on day 1 to seeing how everything built up and started to form part of some-
thing bigger (with many effort and long sleepless nights however) was really
pleasing.

I am glad I chose this project as my Bachelor’s Thesis because since I
started working on it, I have not stopped learning new and interesting things
from this passionate field.
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Appendix A

Conversion from Position and
Velocity to Canonical Orbital
Elements

Subsequently, the conversion method from the all eleven orbital elements to
the geocentric position and the velocity is described:

1. Inputs:

e Spacecraft position 7km]

e Spacecraft velocity v[km/s]
2. Outputs:

e Semi-latus rectum p [km)]

e Semimajor axis a [km]

e Eccentricity e [km]

e Inclination i [rad]

e Longitude of the ascending node Q2 [rad]
e Argument of the periapsis w [rad]

e True anomaly v [rad]

e Mean anomaly M [rad]

e Argument of latitude u [rad]

e True longitude [ [rad]

e Longitude of periapsis w [rad]
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3. Calculation sequence:

Firstly, the orbital momentum h and the eccentricity vector € are calculated:
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Inclination is calculated with & (vector perpendicular to the orbital plane):
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Subsequently, the true anomaly is calculated as:
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Up to this junction, the eccentric and mean anomalies are defined as:

v
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With 77, the right ascension of the ascending node and the longitude of the
periapsis are calculated:
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If certain types of orbits are obtained (circular equatorial, circular inclined,
elliptical equatorial) the argument of latitude, true longitude and longitude

of periapsis need to be calculated:

- -

u:arccosm, ifiA0&e=0
T

) o

[ = arccos —, ifi=0&e=0
T
€1 o

w = arccos —, ifi=0&e#0
e
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Appendix B

Conversion from Canonical
Orbital Elements to Position
and Velocity

Subsequently, the conversion method from the geocentric position and the
velocity to the eleven canonical orbital elements is described:

1. Inputs:

Semi-latus rectum p [km]

Semimajor axis a [km)]

Eccentricity e [km]

Inclination i [rad]

Longitude of the ascending node 2 [rad]
Argument of the periapsis w [rad]

True anomaly v [rad]

Mean anomaly M [rad]

Argument of latitude u [rad]

True longitude [ [rad]

Longitude of periapsis @ [rad|

2. Outputs:

Spacecraft position 7[km]

Spacecraft velocity v[km/s]
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3. Calculation sequence:

It is convenient to use the perifocal coordinate system in which the position
vector has the following expression:

7 =rcosvP + rsinv@

Where the distance r is given, as a function of the orbital parameters, from
the conic polar equation:

p

= ith = a1l — ¢? B.0.1
1+ecosv we p a( e) ( )

Hence, the components of 7 in the Perifocal coordinate system are:

cos v 2y |cosv
[Flrp =7 |sinv| = all=e) sin v
r 0 l+ecosv |

On behalf of 7 it is remarkable to take into account that the vectors P and
Q are constant in time thus the Perifocal reference frame can be assumed as
an inertial system:

dP _dQ 0

da — dt

Deriving respect to time the above expression of 7 given (Eq. [B.0.1)) and
applying the corresponding mathematical simplifications the following ex-

pression is obtained:
—sinv
[0)7p = \/E e+ cosv
p 0

Note that the components of 7 and v calculated depend exclusively of the
elements a, e and v. That is owe to the fact that the abovementioned expres-
sions are referred to a Perifocal reference frame.

The components of 7 and @ respect to a Geocentric-Equatorial system or
its analogous depend of all orbital elements. Therefore:

[flre =[xy 2]

[]re = [ve vy v]"
[Mre = [T(i, Q,w)]" [Mrg
[0 = [T, Q,w)) 0]
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Developing [T(7, 2, w)] matrix the final expressions for 7 and ¢ are obtained
(s = sin, ¢ = cos):

x cv(cQcw — sQswei) — sv(cQsw + sQcwci)

y| = _r cv(sQew + Qswei) — sv(sQsw — Qewei)
1+ cosv : .

z CVSWst + svcwst

—sv(sQecw + Qswei) — (e + cv)(sQsw — cQewcei)
—svswsi + (e + cv)cwsi

Vg \/» —sv(cQew — sQswet) — (e + cv)(cQsw + sQcwcei)
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Appendix C

Project’s costs

The project is fully solved with purely computing material thus a decent
computer, which can easily hold the computational calculus of MATLAB,
is adequate. On behalf of human resources, approximately one year is the
time for a last year student to complete the work done. The following table
displays the breakdown of costs:

Materials Computer 699.00 €
Software Complete MATLAB r2016a license 1729.00 €
Microsoft Office 2016 1 year license 69.99 €
Human Resources Annual salary of Entry-level Aerospace Engineer 36 448.22 €
Social security (28.3%) 10 314.85 €
Total project’s costs 49 261.06 €

Information links of project’s costs (URLs only available in electronic
version):

e Commercial MATLAB license

Microsoft Office 2016

Entry- level experienced Aerospace Engineer in the UK

Social security payments

Computer
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https://es.mathworks.com/store/link/productcart
https://www.microsoftstore.com/store/msusa/en_US/cat/All-Office/categoryID.69403900
http://www.payscale.com/research/UK/Job=Aerospace_Engineer/Salary/2613be58/Entry-Level
http://www.seg-social.es/Internet_1/Trabajadores/CotizacionRecaudaci10777/Basesytiposdecotiza36537/index.htm
http://www.pccomponentes.com/
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