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en docencia, son para tenerlos muy en consideración y seguro que llegará el
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Abstract

This Thesis explores low-complexity inference probabilistic algorithms in
high-dimensional Multiple-Input Multiple-Output (MIMO) systems and high-
order M -Quadrature Amplitude Modulation (QAM) constellations. Several
modern communications systems are using more and more antennas to max-
imize spectral efficiency, in a new phenomena call Massive MIMO. However,
as the number of antennas and/or the order of the constellation grow se-
veral technical issues have to be tackled, one of them is that the symbol
detection complexity grows fast exponentially with the system dimension.
Nowadays the design of massive MIMO low-complexity receivers is one im-
portant research line in MIMO because symbol detection can no longer rely
on conventional approaches such as Maximum a Posteriori (MAP) due to
its exponential computation complexity. This Thesis proposes two main re-
sults. On one hand a hard decision low-complexity MIMO detector based on
Expectation Propagation (EP) algorithm which allows to iteratively approx-
imate within polynomial cost the posterior distribution of the transmitted
symbols. The receiver is named Expectation Propagation Detector (EPD)
and its solution evolves from Minimum Mean Square Error (MMSE) solu-
tion and keeps per iteration the MMSE complexity which is dominated by
a matrix inversion. Hard decision Symbol Error Rate (SER) performance is
shown to remarkably improve state-of-the-art solutions of similar complex-
ity. On the other hand, a soft-inference algorithm, more suitable to modern
communication systems with channel codification techniques such as Low-
Density Parity-Check (LDPC) codes, is also presented. Modern channel
decoding techniques need as input Log-Likehood Ratio (LLR) information
for each coded bit. In order to obtain that information, firstly a soft bit
inference procedure must be performed. In low-dimensional scenarios, this
can be done by marginalization over the symbol posterior distribution. How-
ever, this is not feasible at high-dimension. While EPD could provide this
probabilistic information, it is shown that its probabilistic estimates are in
general poor in the low Signal-to-Noise Ratio (SNR) regime. In order to
solve this inconvenience a new algorithm based on the Expectation Consis-
tency (EC) algorithm, which generalizes several algorithms such as Belief

V



VI Contents

Propagation (BP) and EP itself, was proposed. The proposed algorithm
called Expectation Consistency Detector (ECD) maps the inference prob-
lem as an optimization over a non convex function. This new approach
allows to find stationary points and tradeoffs between accuracy and conver-
gence, which leads to robust update rules. At the same complexity cost than
EPD, the new proposal achieves a performance closer to channel capacity at
moderate SNR. The result reveals that the probabilistic detection accuracy
has a relevant impact in the achievable rate of the overall system. Finally,
a modified ECD algorithm is presented, with a Turbo receiver structure
where the output of the decoder is fed back to ECD, achieving performance
gains in all block lengths simulated.

The document is structured as follows. In Chapter I an introduction
to the MIMO scenario is presented, the advantages and challenges are ex-
posed and the two main scenarios of this Thesis are set forth. Finally, the
motivation behind this work, and the contributions are revealed. In Chap-
ters II and III the state of the art and our proposal are presented for Hard
Detection, whereas in Chapters IV and V are exposed for Soft Inference De-
tection. Eventually, a conclusion and future lines can be found in Chapter
VI.



Resumen

Esta Tesis aborda algoritmos de baja complejidad para la estimación proba-
biĺıstica en sistemas de Multiple-Input Multiple-Output (MIMO) de grandes
dimensiones con constelacionesM -Quadrature Amplitude Modulation (QAM)
de alta dimensionalidad. Son diversos los sistemas de comunicaciones que en
la actualidad están utilizando más y más antenas para maximizar la eficien-
cia espectral, en un nuevo fenómeno denominado Massive MIMO. Sin em-
bargo los incrementos en el número de antenas y/o orden de la constelación
presentan ciertos desaf́ıos tecnológicos que deben ser considerados. Uno de
ellos es la detección de los śımbolos transmitidos en el sistema debido a que
la complejidad aumenta más rápido que las dimensiones del sistema. Por
tanto el diseño receptores para sistemas Massive MIMO de baja compleji-
dad es una de las importantes ĺıneas de investigación en la actualidad en
MIMO, debido principalmente a que los métodos tradicionales no se pueden
implementar en sistemas con decenas de antenas, cuando lo deseable seŕıan
centenas, debido a que su coste es exponencial.

Los principales resultados en esta Tesis pueden clasificarse en dos. En
primer lugar un receptor MIMO para decisión dura de baja complejidad
basado en el algoritmo Expectation Propagation (EP) que permite de man-
era iterativa, con un coste computacional polinómico por iteración, aproxi-
mar la distribución a posteriori de los śımbolos transmitidos. El algoritmo,
denominado Expectation Propagation Detector (EPD), es inicializado con
la solución del algoritmo Minimum Mean Square Error (MMSE) y mantiene
el coste de este para todas las iteraciones, dominado por una inversión de
matriz. El rendimiento del decisor en probabilidad de error de śımbolo mues-
tra ganancias remarcables con respecto a otros métodos en la literatura con
una complejidad similar. En segundo lugar, un algoritmo que provee una
estimación blanda, información que es más apropiada para los actuales sis-
temas de comunicaciones que utilizan codificación de canal, como pueden
ser códigos Low-Density Parity-Check (LDPC). La información necesaria
para estos decodificadores de canal es Log-Likehood Ratio (LLR) para cada
uno de los bits codificados.

En escenarios de bajas dimensiones se pueden calcular las marginales
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de la distribución a posteriori, pero en escenarios de grandes dimensiones
no es viable, aunque EPD puede proporcionar este tipo de información a la
entrada del decodificador, dicha información no es la mejor al estar el algo-
ritmo pensado para detección dura, sobre todo se observa este fenómeno en
el rango de baja Signal-to-Noise Ratio (SNR). Para solucionar este prob-
lema se propone un nuevo algoritmo basado en Expectation Consistency
(EC) que engloba diversos algoritmos como pueden ser Belief Propagation
(BP) y el algoritmo EP propuesto con anterioridad. El nuevo algoritmo
llamado Expectation Consistency Detector (ECD), trata el problema como
una optimización de una función no convexa. Esta aproximación permite
encontrar los puntos estacionarios y la relación entre precisión y convergen-
cia, que permitirán reglas de actualización más robustas y eficaces. Con
la misma compleja que el algoritmo propuesto inicialmente, ECD permite
rendimientos más próximos a la capacidad del canal en reǵımenes modera-
dos de SNR. Los resultados muestran que la precisión tiene un gran efecto
en la tasa que alcanza el sistema. Finalmente una versión modificada de
ECD es propuesta en una arquitectura t́ıpica de los Turbo receptores, en
la que la salida del decodificador es la entrada del receptor, y que permite
ganancias en el rendimiento en todas las longitudes de código simuladas.

El presente documento está estructurado de la siguiente manera. En el
primer Caṕıtulo I, se realiza una introducción a los sistemas MIMO, pre-
sentando sus ventajas, desventajas, problemas abiertos. Los modelos que se
utilizaran en la tesis y la motivación con la que se inició esta tesis son ex-
puestos en este primer caṕıtulo. En los Caṕıtulos II y III el estado del arte y
nuestra propuesta para detección dura son presentados, mientras que en los
Caṕıtulos IV y V se presentan para detección suave. Finalmente las conclu-
siones que pueden obtenerse de esta Tesis y futuras ĺıneas de investigación
son expuestas en el Caṕıtulo VI.
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Chapter I

Introduction & Motivation

I.1 MIMO Systems

In the last years wireless systems have attracted a great deal of interest due
to the expansion of mobile communications in detriment of wired systems,
which most of the times require higher investements at the deployment pro-
cess. Radio wireless communications were tradiditonally based on Single-
Input Single-Output (SISO) antenna systems, where detection and equal-
ization techniques have affordable compexity [1]. However, the current user
demand of higher rates and service reliability is turning the interest back
to MIMO systems, airing at increasing the channel capacity and improving
spectral efficiency [2–4]. Nowadays, MIMO is at the core of many modern
communications systems such as High Speed Packet Access (HSPA) and
Long Term Evolution (LTE) [5] in mobile communications. Also, the Insti-
tute of Electrical and Electronics Engineers (IEEE) has standarized MIMO
techniques, in IEEE802.11n and IEEE802.11ac [6] for WI-FI. Further, at
the new mobile communication generation, the so-called 5th Generation of
Mobile Communications (5G) [7, 8], MIMO techniques play a relevant role.
Several antenna configurations are possible in a wireless communication
system. In Figure I.1, different scenarios are shown: SISO, Multiple-Input
Single-Output (MISO), Single-Input Multiple-Output (SIMO) and MIMO.
Spectral efficiency is maximized in the latter case, and this will be the focus
of this Thesis from now on.

Wireless communications are affected by fading, variations on the signal
strength and may cause a dramatic degradation on the system’s perfor-
mance. MIMO systems comprise a collection of techniques proposed to
enhance the performance of wireless systems by exploiting the scattering
environment as the result of having multiple antennas at the transmitter
side and the receiver side [9]. The two main characteristics behind MIMO

1
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Figure I.1: Configurations for Multi-Antenna Systems

systems are Spatial Diversity (SD) and Spatial Multiplexing (SM). On one
hand, SD tries to improve the reliability by combating channel fading using
space-time techniques [10]. These techniques exploit the fact that replicas
of the transmitted signal (in both time and space) arrive to the receiver
affected by different fading coefficients. In a MIMO system with m trans-
mit antennas and r receive antennas, SD is achieved through space-time
coding techniques and it is measured by the diversity gain Nd, full SD is ob-
tained when Nd = mr [11]. On the other hand, SM increases throughput by
exploiting demultiplexing techniques [12]. In SM several data streams are
transmitted over a fading channel exploiting the multipath. Transmit anten-
nas share time and frequency so the efficiency in bits per Hertz is increased.
The maximum number of independent streams that can be transmitted is
Nstreams = min(m, r) and is called Multiplexing Gain [11].

The overall system rate is determined by both SD and SM, so a proper
design is important to reach the desired performance, and an optimal traded-
off between both gains can be found [2, 13]. In this Thesis, we do not
consider SD techniques and focus on exploiting SM in a MIMO channel,
following a V-BLAST architecture [14]. Thus any channel coding technique
that we implement does not consider the spatial dimension. In such a case,
according to [3], in a scenario with a Rayleigh-distributed channel without
Channel State Information (CSI) at the transmitter and perfect CSI at the
receiver, the channel spectral efficiency increases linearly with min(m, r), as
shown in Figure I.2 for m = r.

Roughly speaking, Massive MIMO appears when we target m, r → ∞,
but in the research community has two different meanings. Whereas for
some researchers it is a general scenario where a large number of antennas
is used (in the range of hundreds), for others basically is the result of us-
ing several techniques all together: a celular scenario with multiple users
and very large arrays of antennas in the base station [8, 15, 16]. In both



I.2. Symbol Detection in Massive MIMO 3

0 5 10 15 20 25 30
0

200

400

600

800

SNR(dB)

C
(b

it
s/

s/
H

z)
m = r = 1

m = r = 10

m = r = 50

m = r = 100

Figure I.2: Spectral Efficiency

scenarios, as the number of antennas is increased, it is possible to find the
mentioned MIMO benefits in terms of spectral efficiency, but at the same
time complexity becomes an important challenge. The most important tech-
nical challenges in massive MIMO are the total antenna array size, the need
for deployment of a large number of Radio-Frequency (RF) chains and the
signal processing complexity at both the transmit and receive sides [4]. This
Thesis explores new techniques in this latter aspect.

When a point-to-point MIMO communications system is used, it is usu-
ally called Single-User Multiple-Input Multiple-Output (SU-MIMO), whereas
a multipoint-to-point communication system is called Multi-User Multiple-
Input Multiple-Output (MU-MIMO). In Fig. I.3 it is possible to observe
the different configurations, and it is important to recall that, besides the
fact that there are several transmitters in MU-MIMO and, further, that
it is an heterogeneous scenario in which users may have different number
of antennas, both SU-MIMO and MU-MIMO systems have in common the
same uplink receiver configuration.

I.2 Symbol Detection in Massive MIMO

As the transmit antennas in MIMO are sharing time-frequency resources,
the symbols arrive to the receiver antennas as a linear superposition [17].
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Signal detection is the process by which the receiver estimates the transmit-
ted symbols, dealing with impairments caused by the noise or fading [14].
As the number of antennas m increases, the dimension of the space that
contains all possible transmitted vectors grows exponentially fast with m,
for that reason optimal detection is completely unaffordable and accurate
low-complexity approximate solutions are needed. Actually, this problem
still needs a viable solution for a full deployment of these systems, as the
gap of state-of-the-art methods with respect to optimal techniques is still
very large.

I.2.1 Hard-Detection System Model

Consider a MIMO system where m transmit antennas communicate to a
receiver with r antennas and each antenna transmits a M -Quadrature Am-
plitude Modulation (QAM) symbol at each channel use. The system model
is shown in System Model I.1, where ũ = a + jz ∈ Ãm is the transmitted
vector of QAM symbols, H̃ is a r×m complex matrix representing a mem-
oryless flat-fading complex MIMO channel, and |Ã| = M . Each coefficient
of H̃ is drawn according to a complex zero-mean unit-variance Gaussian
distribution, following a channel model without line of sight and large scat-
tering [18]. As perfect CSI is assumed by the receiver, H̃ is known at the
receiver. The channel output is ỹ ∈ Cr, where

ỹ = H̃ũ + w̃, (I.1)

and w̃ ∈ Cr is an additive white circular-symmetric complex Gaussian noise
vector with independent zero-mean components and σ2

w̃-variance. According
to this model, the Signal-to-Noise Ratio (SNR) is defined as:

SNR(dB) = 10 log10

(
m
Ẽs
σ2
w̃

)
, (I.2)
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where Ẽs is the constellation average energy in Joules.

w̃

ũ
H̃

ỹ Hard

Symbol

Detector

û ∈ Ãm

System Model I.1: Hard Detection Scenario

The channel model in (I.1) can be written in the real domain by consid-
ering the real and imaginary parts separately. Defining:

u =
[
a> z>

]>
w =

[
R (w̃)> I (w̃)>

]>

y =
[
R (ỹ)> I (ỹ)>

]>
H =

R(H̃
)
−I
(
H̃
)

I
(
H̃
)
R
(
H̃
)  .

The real-valued channel model is

y = Hu + w, (I.3)

where σ2
w = σ2

w̃/2 is the variance of the real and imaginary components of
the noise, and A is defined as the new alphabet for the real and imaginary
components of the M -QAM constellation, i.e. u ∈ A2m, with energy Es =
Ẽs/2. The real-valued model is assumed without loss of generality in the
rest of the Thesis. Also squared QAM constellations are used, as the real
and imaginary components can be treated independently, hence |A| =

√
M .

The MAP Detector

Upon observing y, the optimal detector implements Maximum a Posteriori
(MAP) criterion over the joint probability density function (pdf) of the
transmitted vector of QAM, p(u|y),

ûMAP = arg max
u∈A2m

p(u|y), (I.4)

and it minimizes the error rate p(u 6= ûMAP). Applying Baye’s theorem [19]
over (I.4) we have

p(u|y) =
p(y|u)p(u)

p(y)
∝ N (y : Hu, σ2

wI) p(u)

∝ N (y : Hu, σ2
wI)

2m∏
i=1

1√
M

Iui∈A, (I.5)
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where Iui∈A is equal to 1 if ui ∈ A and zero otherwise. N (y : Hu, σ2
wI) is

a probability density function of a Normal distribution over y with mean
Hu and covariance matrix σ2

wI. Assuming that the transmitted M -QAM
symbols have the same probability, it is possible to observe that the MAP
criterion is equivalent to maximize the likelihood p(y|u). Let p(y|u) be the
likelihood function, the Maximum Likehood (ML) symbol detection is:

ûML = arg max
u∈A2m

p(y|u) = arg min
u∈A2m

||y −Hu||2. (I.6)

As described, ML is a brute-force algorithm which looks among all possible
vectors u ∈ A2m and it is not affordable for medium-large systems. Over the
scenario proposed, the number of different symbols u grows exponentially
with m and M as Mm.

Given this complexity, it is clear that need to find a way to reduce the
computational cost of the detectors if a large number of antennas and/or
constellation is demanded. Two are the main directions in which MIMO de-
tectors have evolved. On one hand, some proposals reduce the search space
in (I.6). On the other hand, some other perform a low complexity approxi-
mation to p(u|y) [20–24]. Methods on both directions will be discussed in
the next Chapters.

Performance Metric in Hard-Detection

To evaluate the performance of hard symbol detection, the Symbol Error
Rate (SER) is used, defined as 1

2m

∑2m
i=1 I [ui 6= ûi]. More precisely, the

number of QAM symbols wrongly estimated. Note that the former definition
of SER is an empirical estimate to p(ui 6= ûi).

I.2.2 Soft-Detection System Model

Coding techniques are used to improve the performance of any communica-
tion system, reducing the number of errors at the receiver side. However,
it is necessary to remark that the benefits of the coding techniques do not
come at zero cost, as more bits must be transmitted, usually called as re-
dundancy bits. This cost is measured by the coding rate R. Modern channel
coding techniques such as LDPC [25] codes or Turbo Coding techniques [26]
rely on soft inference approximations, so the previous receiver implementa-
tion with hard symbol detection is no longer valid, i.e, the output ûi ∈ A
in System Model I.1 needs to be replaced by p(ui|u) ∀i ∈ {2m}. Modern
channel decoders update iteratively the probabilistic information provided
by the symbol detector during the decoding process until convergence or
a stopped criterium is reached. It is well known that the more accurate
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the inference is made at the symbol detector, the better performance is ob-
tained after the channel decoding [27–29]. Hence, the receiver soft output is
p(ui|y) ∀i ∈ {2m}. The System Model I.1 is modified as shown in System
Model I.2. To incorporate explicitly the channel encoder and decoder over

w

u
H

y Probabilistic

Symbol

Detector

p(ui|y)

∀i ∈ {2m}

System Model I.2: Probabilistic Symbol Detector

the System Model I.2, a binary information stream is encoded using a block
code of rate R = k/n, where k is the length of the input-sequence and n is

the block length. Let b =
[
b1, b2, · · · , bk

]>
denote the input information bi-

nary vector and c =
[
c1, c2, · · · , cn

]>
the corresponding codeword. Assume

it takes L channel uses to transmit a complete codeword, L ∈ Z+. Code-
word c is Gray-mapped and modulated into L vectors of QAM symbols,
U = [u[1], · · · ,u[L]]. For simplicity, we assume n = log2 (M)mL.

The use of channel coding also introduces delay at the receiver, since
Y = [y[1], · · · ,y[L]] needs to be observed before the decoding process can
begin. If convolutional codes or turbo codes are used, this delay can be
mitigated. However, only block LDPC codes are used for our experiments,
and thus the decoder works with the complete vector Y. The received vector
is given by:

y[l] = H[l]u[l] + w[l] ∀l ∈ {L} . (I.7)

Before any decoding process is performed, a marginalization over the
posterior distribution I.8 must be carried out, as explained below. The
resulting system model is given in System Model I.3.

p(u[l]|y[l]) =
p(y[l]|u[l])p(u[l])

p(y[l])

∝ N (y : H[l]u[l], σ2
wI) p(u[l]) ∀l ∈ {L} , (I.8)

Furthermore the SNR (I.2) in the uncoded system differs with the one in
the coded system Coded Signal-to-Noise ratio (SNRc), to take into account
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b c b̃

w[l]

Channel

Encoder

M -QAM

Modulator

u[l]
H

y[l] Probabilistic

Symbol

Detector

p(ui[l]
∣∣y[l])

∀i ∈ {2m}
Channel

Decoder

∀l ∈ {L}

System Model I.3: Probabilistic Symbol Detector with Channel Coding

the decreased symbol energy required to maintain transmitted power:

SNRc(dB) = 10 log10

(
m log2M

k

n

Eb
σ2
w

)
= 10 log10

(
m log2M

Eb
σ2
w

)
+ 10 log10

(
k

n

)
SNRc(dB) = SNR + 10 log10(R), (I.9)

where Es = log2MEb is the constellation average energy.

Optimal Soft-Detector

Without loss of generality the coded bits are sequentially mapped into M -
QAM symbols, so the bit assigned to j-th position of the Gray code at the
i-th antenna during the l-th use of the channel is cj+log2M(i−1)+2m log2M(l−1),
with ∀j ∈ {log2M}, ∀i ∈ {2m} and ∀l ∈ {L}. In order to simplify the no-
tation the coded bit is renamed to cji[l], furthermore in following equations
the channel use l is also omitted. The posterior probability of the cji bit for
a given channel observation y can be computed as follows:

p(cji = c|y) =
∑

ui∈Bj(c)

p(ui|y), (I.10)

for c ∈ {0, 1}, where Bj(c) =
{
ui ∈ A|Grayj (u) = c

}
and Grayj (ui) is the

bit in the j-th position of the Gray encoding of symbol u. Extending (I.10)
using (I.8), it is possible to obtain:

p(cji = c|y) =
∑

ui∈Bj(c)

p(ui|y) =
∑

ui∈Bj(c)

∑
u−i∈A2m−1

p(u|y)

∝
∑

ui∈Bj(c)

∑
u−i∈A2m−1

p(y|u)
2m∏
i=1

p(ui). (I.11)

Despite the detector ignores possible underlying correlations between
the coded symbols by assuming the independent prior distribution p(u),
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computing the symbol posterior probability p(ui|y) in (I.10) for each an-
tenna still requires O(Mm) operations. At it was argued before, for a
high-dimensional MIMO scenario, where m scales up to hundreds of an-
tennas, the resulting complexity is prohibitive. Under these circumstances,
approximate detection methods are needed.

Once the coded bit probabilities in (I.10) are computed, it is possible to
obtain the Log-Likehood Ratio (LLR) of those bits, as it is the usual input
for the probabilistic channel decoders

LLR(cji) = log
p(cji = 1|y)

p(cji = 0|y)
= log

∑
ui∈Bj(1) p(ui|y)∑
ui∈Bj(0) p(ui|y)

. (I.12)

After the decoding process, the output is also a probability for each coded
bit. These bit probabilities can be used for final decision b̂, which charac-
terizes open-loop architectures [30, 31], or they can be used to re-initialize
the detection stage, resulting in a closed-loop Turbo-like architecture [29,
32].

It is important to recall that the description given in System Model I.3
here applies to a SU-MIMO case. While the receiver structure would be
maintained for MU-MIMO case, at the transmitter side each user encode
their bit stream into M -QAM constellations.

Performance Metrics in Soft-Detection

Bit Error Rate (BER) after the decoding process is one of the available
metrics for the System Model I.3. It is simply given by how many informa-

tion bits are wrongly estimated after the decoding process
∑k

i=1 I
[
bi 6= b̂i

]
,

which is an empirical estimate to p(bi 6= b̂i). However, the use of this metric
is certainty problematic, as it is necessary to select a particular coding rate,
channel code, channel encoder, and channel decoder. A more fundamental
performance metric for the System Model I.2 is given in terms of mutual
information. Consider a fixed and known channel matrix H. The ergodic
channel capacity per transmitted antenna with perfect CSI at the receiver
and no CSI at the transmitter is given by:

C = max
p(u)

I(u,y)

2m
=

log2(det(Ir + SNR
2m HHH))

2m
(I.13)

bits per channel use and antenna [33]. Capacity is achieved when u is
Gaussian distributed with zero-mean and covariance matrix equal to iden-
tity. When u is a random vector uniformly distributed in A2m, the system
transmission rate degrades and can be far from the capacity limit in (I.13).
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The achievable rate per antenna can be computed by evaluating the mutual
information between ui, the transmitted symbol at i-th antenna, ∀i ∈ {2m},
and ûi ∼ p(ui|y), i.e.,

I(ui, ûi) = Ep(ui,ûi)
[
log2

p(ûi|ui)
p(ûi)

]
(bits/channel use). (I.14)

However, it is not possible to compute this mutual information in closed-
form. A Monte Carlo procedure [34] was followed to estimate that rate in
the same channel knowledge scenario as the one assumed in (I.13), namely
perfect CSI only at the receiver.

More precisely, at each SNR point I(ui, ûi) for ∀i ∈ {2m} is estimated
as follows: firstly, collecting N ∈ Z+ samples from the joint distribution of
ui,y and ûi. Using this set of samples, we estimate p(ûi) and p(ûi|ui) for
any ui, ûi ∈ A2m, and finally, compute a numerical estimate to I(ui, ûi)
in (I.14). As N → ∞, this estimate gets accurate. Samples of the joint
(ui,y, ûi) distribution are computed using ancestral sampling [35], where
each of the N samples is generated following the next steps:

1. Sample u from a uniform distribution in A2m.

2. Sample y from p(y|u,H).

3. Sample ûi, i ∈ {2m}, from p(ûi|y).

In Fig. I.4 an example of the achievable rate by the optimal soft detector
is shown for a 4-QAM constellation. It has been computed with N =
106 samples per SNR point. Also, results have been averaged over 100
realizations of H. Observe that the detector operates close to the limit
of log2(M) = 2 bits/channel use when the SNR is high, but the gap to
channel capacity in this regime grows exponentially fast with the SNR. For
intermediate SNR the gap to channel capacity is reduced significantly. It is
precisely in this regime where we need to operate in order to improve the
system efficiency.

I.3 Contributions

MIMO receiver design is one of the most challenging topics in wireless com-
munications, as it was already exposed. The reason is that the complexity
may be prohibitive in the Massive MIMO scenario, and thus approximation
methods must be explored. There are several low-complexity methods pro-
posed until now to solve the problem (see [24] and the references therein
for an in-depth review). Many of them are described in detail in Chapters
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Figure I.4: Achievable Rate in a m = r = 5 system with 4-QAM

II (hard-decision algorithms), and IV (soft-decision algorithms). A repre-
sentative example taken as a baseline, is the Minimum Mean Square Error
(MMSE) algorithm, which has cost O(m3), and it is able to perform well in
the high SNR regime, and also when r >> m.

The main contribution of this Thesis is the proposal ofO(m3)-complexity
algorithms, able to greatly outperform MMSE and even provide close-to-
optimal performance for small m and r. All the proposed methods belong
to a class of approximate inference methods, originally proposed in the
Machine Learning community, that seek to construct approximations to
complex distributions using moment matching as fundamental criterion [35,
36].

The algorithms proposed in this Thesis iteratively approach the posterior
distribution with a divide and conquer strategy. The algorithms approach
the posterior distribution with 2m factors, natural parameters of gaussian
distributions, and these are refined at each iteration of the algorithm. Those
factors are chosen from a restricted family and then the complexity is de-
termined by the model, as will be clarified in Chapters III and V. These
moment propagation algorithms are supported by the Kullback-Leibler (KL)
divergence between the two distributions [37, 38]. The larger number of mo-
ments which are taken into account, the closer the two distributions would
be.

More specifically, the contributions are:

Ô First, Expectation Propagation (EP) is used to obtain a robust hard-
symbol MIMO detector, denoted as Expectation Propagation Detector
(EPD). The results show that EPD is close to the ML detector in
those small scenarios and achieves remarkable gains with respect to
other state-of-the-art algorithms in massive MIMO scenarios. These
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results have been published in a paper in the IEEE Transactions on
Communications [39].

Ô The second main contribution is the analysis of the detection prob-
lem in terms of Expectation Consistency (EC) approximate inference,
which is a generalization of other techniques such as EP itself or Belief
Propagation (BP). An exhaustive study of the algorithm is performed,
and probabilistic convergence methods are proposed. The EC point of
view becomes esencial for this achievement, as EP is simply described
as an iterative message-passing algorithm with a lack of information
about the fundamental problem that now needs to be solved. A Ex-
pectation Consistency Detector (ECD) was used to fed the channel
decoder with accurate symbol posterior probabilities, and the results
show that in low SNR the proposed scheme achieves a transmission
rate much closer to capacity than state-of-the-art methods. This re-
sults have been submitted to IEEE Transactions on Vehicular Tech-
nology[40].



Chapter II

Hard-Detection Methods

In this chapter a review of state-of-art methods for MIMO hard symbol
detection is presented. Although, their approach is very different, all of
them try to reduce the computational cost within the closest performance
to the optimal receiver. For completeness, we include again System Model
II.1.

w

u ∈ A2m

H
y Hard

Symbol

Detector

û ∈ A2m

Figure II.1: Hard Detection Scenario

II.1 Sphere Detection Methods

As it was previously introduced, the optimal detector is the MAP detector.
However, for symbols with uniform prior to be transmitted, the ML detector
is equivalent:

ûML = arg max
u∈A2m

p(y|u)

= arg min
u∈A2m

||y −Hu||2. (II.1)

The main target of Sphere Decoding (SpD) is to reduce the complexity
inherent to the ML detector [41, 42] in (II.1). This algorithm looks for all
lattice points belonging to an sphere with center in the received vector y

13
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and a given radius d. The idea of establishing a limitation on the number of
points is clever but the problem is how to choose the radius of that sphere
and the necessity of checking how many? points are within the sphere. This
algorithm usually has a good performance on a medium-high SNR regime
given that lattice points are close to the y. The solution of interest belongs
to A2m

d , which is the subset of symbols in A2m that satisfy

A2m
d :

{
u ∈ A2m : ‖y −Hu‖2 ≤ d2

}
, (II.2)

and, the SpD solution is

ûSD = arg max
u∈A2m

d

p(u|y) = arg min
u∈A2m

d

||y −Hu||2. (II.3)

Note that ûSD 6= ûML may happen if the radius d very is small. A
tradeoff between the radius of the sphere and the computational cost, usu-
ally depndent on SNR, must be considered for this kind of detector [43, 44].
At high SNR, the radius is taken small. At low SNR, the radius has to grow
excesively and the SpD complexity becomes burdersome. There are several
heuristics [42], but ultimately the complexity is O(Mαm) for α ∈ [0, 1].

II.2 Minimum Mean Squared Error

The MMSE approach is based on the assumption that p(u|y) can be ap-
proximated by a continuous Gaussian distribution within a quadratic cost
function. In signal processing for communications the use of MMSE esti-
mator is not new at all, as it has been used in many other applications
such as Code Division Multiple Access (CDMA) [45, 46] CSI estimation in
Orthogonal Frequency Division Multiplexing (OFDM) [47].

The MMSE posterior approximation is directly obtained by replacing
the discrete uniform prior p(u) in (I.5) by a zero-mean and Es-variance
independent Gaussian distribution:

pMMSE(u|y) ∝ N (y : Hu, σ2
wI)pMMSE(u)

= N (y : Hu, σ2
wI)

2m∏
i

N (ui : 0, Es). (II.4)

This approximation, a multivariate Gaussian distribution, is easy to max-
imize. The MMSE detector [20, 48] first computes the covariance matrix
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and the mean vector of pMMSE(u|y),

ΣMMSE =

(
H>H +

σ2
w

Es
I

)−1

(II.5)

µMMSE = ΣMMSEH>y, (II.6)

where the complexity is dominated by the matrix inversion in (II.5), given
by O(m3). Since pMMSE(u|y) is Gaussian distributed the mode and the
mean coincide and a simple calculation shows that

ûMMSE = max
u∈A2m

pMMSE(u|y) = EpMMSE(u|y)[u] = µMMSE. (II.7)

Finally a component-wise hard decision is performed by projecting each
component of µMMSE into the corresponding QAM constellation:

ûi,MMSE = arg min
uj∈A

|uj − µi,MMSE|2 i ∈ [2m], (II.8)

where the complexity of this step is O(m). The basic steps of the MMSE
method are resumed in Algorithm 1, assuming perfect CSI at the receiver.

Algorithm 1 MMSE Algorithm

1) Compute ΣMMSE from (II.5)
2) Compute µMMSE from (II.6)
3) Project
ûi,MMSE = arg minuj∈A |uj − µi,MMSE|2 i ∈ {2m}

It should be noted that both SpD and MMSE reduce complexity, but
they are based on two complete different approaches. Whereas SpD reduces
the search space, MMSE is based on an statistical approximation to p(u|y).

II.3 MMSE with Successive Interference
Cancellation

The MMSE detector does not provide a very good performance, because the
multidimensional Gaussian approximation in (II.4) is not a sensible model
for large MIMO systems with high-order constellations in which transmis-
sion from one antenna can be seen as interference to other antennas due
to the superposition. The MMSE performance is significantly improved
by successive interference cancellation, yielding the so-called MMSE with
Successive Interference Cancellation (MMSE-SIC) [14, 49]. Iteratively, a
decision is taken only over the vector symbol component with the smallest
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diagonal element in the covariance matrix in (II.5). Its effect is afterwards
removed at the channel output. After each iteration (`), the received vector
is updated

y(`+1) = y(`) − h
(`)
i û

(`)
i,MMSE (II.9)

H(`+1) = H
(`)
−i (II.10)

where h
(`)
i is the i-th column of H(`) and, from (II.9), we see that the effect

of the current decision û
(`)
i,MMSE is removed from the received vector. After-

wards h
(`)
i is removed from H(`) obtaining H

(`)
−i . In a nutshell, MMSE-SIC

improves the MMSE detector, because only a one-dimensional Gaussian ap-
proximation per iteration is involved and the decision is over the component
that has more certainty. Despite, MMSE-SIC requires to perform 2m times
a MMSE matrix inversion similar to that in (II.5), the complexity can be
lowered down to O(m3) [49], by efficiently computing the matrix inversion
at each iteration using the matrix inversion lemma (a rank-one update given
the inverted matrix from the previous iteration).

The basic steps of the MMSE-SIC method are summarized in Algorithm
2.

Algorithm 2 MMSE-SIC Algorithm

Initialize ` = 0
repeat

1) Compute Σ
(`)
MMSE from (II.5)

2) Compute µ
(`)
MMSE from (II.6) using Σ

(`)
MMSE and y(`)

3) Select i = arg mini∈[2m−(`)] diag(Σ
(`)
MMSE)

4) Project ûi,MMSE = arg minuj∈A |uj − µi,MMSE|2
5) Removing effect of ûi,MMSE:

5.1) compute y(`+1) and remove y
(`+1)
i

5.2) remove hi from H

until ` = 2m

II.4 Gaussian Tree-Approximation

The Gaussian Tree-Approximation (GTA) algorithm in [50] constructs a
tree-factorized approximation to the posterior distribution and relies on BP
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algorithm for estimating the marginal posterior distribution of the trans-
mitted symbol, i.e. p(ui|y). GTA was first proposed in [50] as a feasible
method to improve the MMSE-SIC solution for MIMO detection. GTA
is based on the following idea: given the posterior distribution p(u|y) in
(I.5), the discrete nature of the prior p(u) is first ignored and replaced by a
non-informative prior:

pn-i(u|y) ∝ N (y : Hu, σ2
wI)

= N (u : z, σ2
w(H>H)−1), (II.11)

where z = (H>H)−1H>y. Consider the family of all possible Gaussian
distributions with probability density functions that factorize according to
a certain tree graph, i.e. any Gaussian distribution with pdf g(u) such that

g(u) =
∏
i

g(ui|uΠ(i)), (II.12)

where Π(i) is the set of parents of ui and the associated factor graph is
cycle-free. Now, GTA finds the distribution in such family that minimizes
the KL divergence

gGTA(u) = arg minDKL(pn-i(u|y)||g(u)).

Provided that pn-i(u|y) is also Gaussian, gGTA(u) is known in closed-form
[50] and it can be computed at cost O(m2). Finally, going back to the
original posterior p(u|y) in (I.8) and replacing the Gaussian likelihood term
by the Gaussian tree distribution gGTA(u) we have

pGTA(u|y) ∝
∏
i

gGTA(ui|up(i))
∏
i

Iui∈A. (II.13)

Since pGTA(u|y) is a tree factor graph, it is possible to use the BP algorithm
to compute the symbol marginals that are then used for decision. BP over
the factor graph pGTA(u|y) has a complexity O(m2|A|2). While the overall
complexity is dominated by the matrix inversion (H>H)−1, the overhead in-
curred to compute the tree approximation gGTA(u|y) and running BP is not
negligible for typical-sized MIMO systems. While the GTA performance is
similar to MMSE-SIC for low and medium SNR, GTA outperforms MMSE-
SIC for high SNR and it has a significant lower computational complexity
[50].

II.5 GTA with Successive Interference
Cancellation

Recently, it has been shown in [51, 52] that successive interference cancella-
tion substantially improves the GTA performance, in line with MMSE-SIC
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improvements. The procedure described before is repeated m times, since
per iteration the decision is only over the symbol that has the least uncer-
tainty and its effect is canceled from the system as in (II.9). Evaluating the
m matrix inversions during GTA with Successive Interference Cancellation
(GTA-SIC), using the techniques proposed in [49] for MMSE-SIC, requires
O(m3) iterations and performing m times the tree-factorized approximation
and running BP have a cost of O(

∑m
k=1 k

2) ≈ O(m3) operations for suffi-
ciently large m. Results reported for GTA-SIC in [51] shows that it is able
to outperform the best linear detectors for MIMO detection proposed in
the literature in the past years, such as MMSE and MMSE-SIC with lattice
reduction using the Lenstra-Lenstra-Lovász (LLL) algorithm [53, 54].

II.6 Lattice Reduction Techniques

Lattice Reduction (LR) techniques seek to construct an orthogonal lattice
basis to boost the detection performance. Observe that the MIMO channel
model

y = Hu + w

can be regarded, if we ignore the noise, as a lattice space spanned by H [55].
Reducing the channel matrix H using any LR algorithm consist on finding
an integer unimodular matrix T so that HT = H results into a nearly-
orthogonal basis. Afterwards, detection is performed in the transformed
space, namely

y = Hu + w = HT−1u + w (II.14)

= Hu + w

There are several proposal to tune LR techniques, i.e to find the T matrix,
for MIMO receivers [53, 54, 56, 57], even for very large number of antennas
[58]. If W>

LRy is the solution of a linear detector in the transformed space,
then we get the desired solution as

û = TW>
LRy, (II.15)

where WLR depends on the linear approach. For example, the LR-MMSE
solution is

WLR-MMSE = (H
>

H)−1H
>

(II.16)

ûLR-MMSE = TW>
LR-MMSEy. (II.17)

(II.18)

The enhance in performance for linear MIMO detectors is notorious,
also in those implementing SIC [24].
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II.7 Tabu Search Detection

Tabu Search (TS) [59–61] is a greedy algorithm that iteratively looks for the
point in a certain neighborhood that minimizes ‖Hû− y‖2, i.e, the ML cost
function. TS needs as input an initial point (which can be the solution of
any of the MIMO detector presented), and certain parameters that balance
the complexity-performance tradeoff, namely the neighborhood distance per
iteration or the size of the list of past candidates that we need to store to
avoid checking points that were the selected candidate in the past. More
precisely, if up is the current point, we have to evaluate

f (u) = ‖Hu− y‖2 , ∀u ∈ N(up), (II.19)

where N(up) is the set of neighbors to be considered at this iteration. Given
a max symbol-Hamming distance ∆, then

N(up) :
{
u ∈ A2m : dH(up − u) ≤ ∆

}
. (II.20)

To keep complexity small, ∆ is usually taken to 1. In this case the max
number of neighbors to be considered is given in Table II.1.

QAM Costellation Number of Neighbors

M = 4 2m

M ≥ 16 4m

Table II.1: Maximum Number of neighbors for ∆ = 1.

TS is a hard-detection algorithm, that needs a initial estimation to per-
form. In the literature, MMSE has been traditionally used to initialize TS.
The main steps of the resulting algorithm are summarized in Algorithm 3
Obviously the complexity of the algorithm is reduced respect to ML or SD
but heavely depends on the number of iterations and the size of the tabu
list. A proper stopping rule along with a good initial solution may reduce
the complexity and still keep the close-to-ML performance [59–61] in small
scenarios.

II.8 Comparison of State-of-the-art Methods

In Figure II.2 we consider a small scenario in which the optimal detector
can be computed. The SER performance is shown for a m = r = 6 scenario
and a 4-QAM constellation. It is possible to observe that MMSE detector
is remarkally improved by the successive interference cancellation technique
and also that such a small scenario SpD has a really close performance to
the optimal detector.
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Chapter III

Hard-Detection via EP
Approximations

In this Chapter, we first present EP approximate inference and we review
its application to communication scenarios in the literature. Then, a hard-
decision MIMO receiver based on EP is introduced, and its complexity an-
alyzed. Finally, we include an exhaustive comparison with some of the
state-of-the-art methods for MIMO hard detection described in the former
chapter. EP was first introduced by Minka in his Phd Thesis [37, 38, 62, 63].
It is a technique in Bayesian machine learning to construct tractable approx-
imations to a given probability distribution. EP generalizes and combines
two different techniques to construct the approximation. First, the assumed-
density filter [64], which is also based on moment-matching approximations
but does not take into account the graphical model structure of the true
distribution, and second loopy BP [65].

The use of EP inference in communications is not new. For instance, it
has been applied to LDPC channel decoding for the Binary Erasure Channel
(BEC) in [66], and then for general Binary Memoryless Symmetric Channel
(BMSC) in [67]. In this scenario, EP-based algorithms replace the standard
BP algorithm at the decoding state, maintaining the same complexity, but
enhancing the error correction capability. Another application version of
the EP algorithm for communications can be found in [68], in this case as a
channel equalizer for single user Inter Symbol Interference (ISI) channels, in
which the EP probabilistic output is used to replace the BCJR algorithm,
which becomes unfeasiable for high order modulations. The first application
of EP for MIMO communications was firstly introduced in [69]. In this work,
the posterior distribution of the transmitted symbols is approximated by a
fully factorized Gaussian distribution, which neglects correlations imposed
by the channel likelihood, and dramatically affects the receiver performance.

21



22 Chapter III. Hard-Detection via EP Approximations

The proposal in this Thesis improves and extends this scenario by showing
that the EP iterative method can easily tackle with the channel likelihood,
obtaining this way accurate approximations that take into account the cor-
relations imposed by the channel output.
The main idea behind the EP strategy for MIMO detection is to approxi-
mate the overall distribution by a real-valued Gaussian distribution. Iter-
atively, discrete symbol priors are introduced in the approximation and its
moments are corrected according to such information. The ultimate goal is
to converge to a Gaussian distribution whose moments are close to those
of the true posterior distribution of the transmitted symbols. Note that for
hard detection, only the mode of the approximation is relevant.

III.1 Expectation Propagation Approximate
Inference

A brief introduction to EP for graphical models and exponential family
distributions1 is first presented. This description follows essentially [38] and
[65]. Suppose we are given some statistical model with δ latent variables,
u ∈ Ωδ, that factors in the following way

p(u) ∝ f(u)
I∏
i=1

ti(u), (III.1)

where f(u) belongs to an exponential family F with sufficient statistics
Φ(u) = [φ1(u), φ2(u), . . . , φS(u)] and ti(u), ∀i ∈ {I}, are non-negative fac-
tors. For instance, if F is the multivariate Gaussian family, then Φ(u) =
{ui, uiuj}δi,j=1. Assume now that performing inference over the distribution
p(u) in (III.1) is analytically intractable or prohibitively complex. In this
scenario, EP provides a general-purpose framework to construct a tractable
approximation to p(u) by a distribution q(u) from F . The resemblance
between q(u) and p(u) is achieved by designing q(u) such that

Eq(u)[φj(u)] = Ep(u)[φj(u)] ∀j ∈ {S} . (III.2)

Equation (III.2) is known as the moment matching condition. When both
q(u) and p(u) are defined over the same support space and measure, the
moment matching condition in (III.2) is equivalent to finding q(u) in F that
minimizes the KL divergence with p(u), i.e.

q(u) = arg min
q′(u)∈F

DKL(p(u)||q′(u)). (III.3)

1A comprehensive introduction to exponential families and their properties can be
found in [65].
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One näıve approach to find q(u) would be to first compute the moments
Ep(u)[φj(u)] ∀j ∈ {S} and second to construct q(u) according to them.
However by assumption, this is not a viable option since we cannot do
inference over p(u). To overcome this problem, Minka proposed a sequential
EP algorithm to iteratively approach the solution in (III.2) at polynomial
time complexity [37, 70]. The main idea behind the sequential EP algorithm
is the fact that, while performing inference over p(u) in (III.1) is intractable,
many times we are able to perform tractable inference over a distribution
of the form

p̂i(u) ∝ f(u)ti(u), (III.4)

in which there is only present one of the factors ti(u) ∀i ∈ {I} in (III.1) that
do not belong to the exponential family F . The sequential EP algorithm is
as follows. First, assume the following factorization for q(u) ∈ F ,

q(u) = f(u)
I∏
i=1

t̃i(u), (III.5)

where t̃i(u) ∈ F , ∀i ∈ {I}. Note that we have simply replaced each one
of the ti(u) factors in (III.1) by a member t̃i(u) of F . Given an initial
proposal q(0)(u) and being q(`)(u) the approximation to q(u) in (III.3) at
iteration `, q(`+1)(u) is obtained by updating each one of the t̃i(u) factors
independently. For all i ∈ {I},

1. Compute the cavity distribution

q(`)\i(u)
.
=
q(`)(u)

t̃i(u)
∈ F . (III.6)

2. Compute the distribution p̂i(u) ∝ ti(u)q(`)\i(u), and find

Ep̂i(u)[φs(u)] ∀s ∈ {S} . (III.7)

3. The refined factor t̃new
i (u) is obtained so that

Et̃newi (u)q(`)\i(u)[φs(u)] (III.8)

coincides with (III.7) ∀s ∈ {S}, i.e,

Et̃newi (u)q(`)\i(u)[φs(u)] = Ep̂i(u)[φs(u)]. (III.9)
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The sequential EP algorithm is run until a convergence criterion is met
or a maximum number of iterations is reached. As shown in [63], this
algorithm can be interpreted as a coordinate gradient descent over the pa-
rameter space of the q(u) distribution to find a saddle point of a certain
energy function. As such, the convergence to a saddle point is not guaran-
teed [71]. Nonetheless, sequential EP has been shown to achieve accurate
results, typically close to the moment matching solution, in a wide range of
applications [37, 62].

As shown in [38, 62], if a factor ti(·) in (III.1) only depends on a subset
ui of u with dimension δi < δ, then the approximate factor t̃i(ui) in (III.6)
is defined over the same domain and its update at each iteration can be
alternatively performed over the marginal distribution q(ui). An example
of this alternative procedure is the EP approximation to the MIMO symbol
posterior distribution p(u|y) in (I.8) that we present in detail in the next
section.

III.2 Expectation Propagation Detection

The MMSE approximation to the true posterior distribution in (II.4) re-
places the prior over the transmitted symbols by a zero-mean independent
component-wise Gaussian whose variance equals the QAM symbol mean
energy. Intuitively it might make sense to chose the parameters of the
Gaussian prior this way, because it matches the first two moments of the
input distribution. However it is certainly not the best choice, as we are
interested in matching the posterior distribution to optimally detect the
transmitted symbols. The EP approximation to the posterior distribution
p(u|y) in (I.8) is constructed by replacing the prior input distribution by
an independent Gaussian distribution:

pEP(u|y) ∝ N (y : Hu, σ2
wI)

2m∏
i=1

eγiui−
1
2

Λiu
2
i , (III.10)

where γi and Λi > 0 are real valued parameters that have to be adjusted.
Note that, taking γi = 0 and Λi = E−1

s ∀i ∈ {2m}, then (III.10) matchs
with the MMSE approximation to the posterior distribution p(u|y) [20, 27].
For arbitrary vectors γ ∈ R2m and Λ ∈ R2m

+ , pEP(u|y) is a Gaussian with
mean vector µEP and covariance matrix ΣEP, where

ΣEP =
(
σ−2
w H>H + diag (Λ)

)−1
, (III.11)

µEP = ΣEP

(
σ−2
w H>y + γ

)
. (III.12)
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For each channel observation y, the goal is to choose γ and Λ so that

µEP → Ep(u|y)[u], (III.13)

ΣEP → Ep(u|y)[(u− Ep(u|y)[u])(u− Ep(u|y)[u])>]. (III.14)

This condition is known as moment-matching (MM). While the di-
rect computation of the p(u|y) moments requires |A|2m operations, the
EP algorithm iteratively approachs the solution in (III.13) and (III.14) at
polynomial-time complexity [37, 70], as we show in the next Section. Once
the iterative method has stopped, either by convergence or maximum num-
ber of iterations reached, the EPD computes the output independently pro-
jecting each component:

ûi,EP = arg min
uj∈A

|uj − µi,EP|2 ∀i ∈ {2m} . (III.15)

III.3 EP MIMO Detector Updates

The formulation of the EP is presented according to the update rules in [38,
62], and this algorithm is denoted by EP MIMO receiver, EPD for short.
The EPD iterative method approximates the solution in (III.13) and (III.14)
at polynomial complexity by recursively updating the pairs (γi,Λi),∀i ∈
{2m}. After initializing γ and Λ accordingly to the MMSE solution, the

pairs
(
γ

(`+1)
i ,Λ

(`+1)
i

)
, ∀i ∈ {2m}, are updated in parallel, where ` denotes

the EPD iteration. Given the i-th marginal of the distribution pEP(u|y)

in (III.10) at iteration `, namely p
(`)
EP(ui|y) = N (ui : µ

(`)
i , σ

2(`)
i ), the pair

(γ
(`+1)
i ,Λ

(`+1)
i ) is computed as follows:

1. Compute the cavity marginal

p
(`)\i
EP (ui|y) ∝ p

(`)
EP(ui|y)

exp(γ
(`)
i ui − 1

2Λ
(`)
i u2

i )
= N (ui : t

(`)
i , h

2(`)
i ), (III.16)

where the mean t
(`)
i and the variance h

2(`)
i are computed as follows

h
2(`)
i =

σ
(`)
i

1− σ(`)
i Λ

(`)
i

, t
(`)
i = h

2(`)
i

(
µ

(`)
i

σ
(`)
i

− γ(`)
i

)
. (III.17)

2. Introduce the true discrete factor Iui∈A in p
(`)\i
EP (ui|y) obtaining p̂i(ui)

p̂i(ui) = p
(`)\i
EP (ui|y)Iui∈A, (III.18)
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and compute Ep̂i(ui)[u
2
i ] and Ep̂i(ui)[ui]

σ
2(`)

p̂
(`)
i

= Ep̂i(ui)[u
2
i ] , µ

(`)

p̂
(`)
i

= Ep̂i(ui)[ui]. (III.19)

3. Update the pair (γ
(`+1)
i ,Λ

(`+1)
i ) so that the following unnormalized

Gaussian distribution

p(`)\i(ui) exp(γ
(`+1)
i ui −

1

2
Λ

(`+1)
i u2

i ), (III.20)

has mean and variance equal to µ
(`)
p̂i

and σ
2(`)
p̂i

. A simple calculation
shows that the solution is given by:

Λ
(`+1)
i =

1

σ
2(`)
p̂i

− 1

h
2(`)
i

, γ
(`+1)
i =

µ
(`)
p̂i

σ
2(`)
p̂i

− t
(`)
i

h
2(`)
i

. (III.21)

Note that the distribution p̂i in (III.18) can be seen as a refined approx-

imation to the true marginal, replacing the prior term exp(γ
(`)
i ui− 1

2Λ
(`)
i u2

i )
by the true one, Iui∈Ai . On the other hand, the parameter updated in

(III.21) may return a negative Λ
(`+1)
i , which should be positive, because it

is a precision (inverse variance) term. This result just means that there is

no pair (γ
(`+1)
i ,Λ

(`+1)
i ) that places the variance of the Gaussian in (III.20)

at σ
2(`)
p̂i

. In that case, the previous values are kept for those parameters,

i.e. γ
(`+1)
i = γ

(`)
i and Λ

(`+1)
i = Λ

(`)
i , and update all the other pairs,

(γ
(`+1)
j ,Λ

(`+1)
j ) for j 6= i. Finally, to improve the robustness of the algo-

rithm, in [38, 72] it is suggested to smooth the parameter update (i.e., a
low-pass filter) in (III.21) by a convex combination with the former value,
namely

γ
(`+1)
i = β

 µ
(`)
p̂i

σ
2(`)
p̂i

− t
(`)
i

h
2(`)
i

+ (1− β)γ
(`)
i , (III.22)

Λ
(`+1)
i = β

 1

σ
2(`)
p̂i

− 1

h
2(`)
i

+ (1− β)Λ
(`)
i , (III.23)

for some damping parameter β ∈ [0, 1]. Due to its simplicity, smoothing the
parameter updates as in (III.22)-(III.23) is a fairly common technique to
stabilize approximate inference iterative algorithms. To ensure numerical
stability, a fairly small value of β is chosen (β = 0.2 in our experiments for
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hard-detection in the high-SNR regimen). Also, trying to avoid numerical
instabilities, a minimum value in the variance per component is set as:

σ
2(`)
p̂i

= max(5× 10−7,Ep̂i(ui)[u
2
i ]). (III.24)

All the steps of the algorithm are summarized in Algorithm 4. Convergence
is assumed when parameters differ less than 10−4 between two consecu-
tive iteration. Alternatively, experimental results suggest that a maximum
number of I = 10 iterations is enough to achieve robust hard-detection
performance at high SNR.

Algorithm 4 MIMO EPD

Fix a damping factor β.
Initialize ` = 1, γ(0) = 0 and Λ(0) = E−1s .
repeat

1) Given γ(`−1),Λ(`−1), compute Σ
(`)
EP, σ

(`)
EP = diag(Σ

(`)
EP) and µ

(`)
EP following

(III.11) and (III.12).
2) For i ∈ {2m} compute the cavity marginals and their moments

p
(`)\i
EP (ui|y) ∝ p

(`)
EP(ui|y)

exp(γ
(`)
i ui − 1

2Λ
(`)
i u2i )

= N (ui : t
(`)
i , h

2(`)
i )

h
2(`)
i =

σ
(`)
iEP

1− σ(`)
iEPΛ

(`)
i

, t
(`)
i = h

2(`)
i

(
µ
(`)
iEP

σ
(`)
iEP

− γ(`)i

)

3) Introduce the true discrete factor Iui∈A in p
(`)\i
EP (ui|y), obtaining p̂

(`)
i and

compute E
p̂
(`)
i (ui)

[u2i ] and E
p̂
(`)
i (ui)

[ui].

4) Update

Λ
(`+1)
i = β

(
1

σ
2(`)
p̂i

− 1

h
2(`)
i

)
+ (1− β)Λ

(`)
i

γ
(`+1)
i = β

(
µ
(`)
p̂i

σ
2(`)
p̂i

− t
(`)
i

h
2(`)
i

)
+ (1− β)γ

(`)
i

for all i ∈ {2m}
5) ` = `+ 1

until convergence (or stop criterion)

III.4 EPD complexity

The complexity of EPD per iteration is dominated by the computation of the
covariance matrix inversion in (III.11) and the mean vector in (III.12). Note
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that the complexity of this step is identical to the MMSE and GTA posterior
covariance matrix computation and mean vector in, respectively, (II.7) and
(II.11). Once the marginals moments µEP, σEP have been computed, the

parallel update of all pairs (γ`i ,Λ
`
i) ← (γ

(`+1)
i ,Λ

(`+1)
i ) ∀i ∈ {2m} has a

small computational complexity, linear in m|A|. Thus, if EPD is run for I
iterations, the final complexity is O(I(m3 +m|A|+m)). The comparison of
the EPD complexity, O(I(m3+m|A|+m)), with the complexity of GTA-SIC
and MMSE-SIC depends on the channel time varying characteristics:

• In a quasi-static block fading channel model where the fading coeffi-
cients do not change within one time symbol, but vary every symbol
time [73], the EPD complexity with I = 10 iterations is essentially ten
times the MMSE complexity and thus comparable with the MMSE-
SIC and GTA-SIC complexities.

• In a static block fading channel where the channel matrix H is constant
during T consecutive symbol times, the MMSE-SIC matrix inversion
only has to be computed once and thus the complexity of detecting
the T blocks of m symbols is given by O(m3+Tm2) [4]. The computa-
tion of the tree approximations in (II.13) for GTA-SIC has to be done
for each channel observation y and thus, the complexity to detect the
T blocks of m symbols is O(Tm3). Similarly, all the EPD process-
ing depends on the channel observation vector and its complexity is
O(TI(m3 +m|A|+m)), still of the same order that of GTA-SIC.

Experimental results indicate that the typical number of iterations required
to converge is I = 10, and with this number of iterations EPD guaran-
tees and excellent performance and there is not further improvement by
increasing the iterations beyond that level. More importantly, this happens
regardless the number of antennas m or constellation order M , which repre-
sents a huge save in computational complexity. Indeed, for a low dimension
scenario, where the moments of the true posterior p(u|y) in (I.8) can be
computed, it is possible to observe that EPD typically converges to the
right moments in a few iterations. In Figure III.1 we show the evolution of
the components of the EPD mean vector µ(`) in (III.12) as EPD iterates
for a given channel observation y in a m = r = 2 scenario with a 256-QAM
constellation and SNR = 15 dB. Note that the MMSE estimate would be
the EPD solution at iteration 1. In dashed lines, the mean of the posterior
p(u|y) (real and imaginary parts) are also represented. After 10 iterations,
the EPD provides an accurate estimate of the posterior mean of the poste-
rior distribution p(u|y) in (I.8). For the same scenario, Figure III.2 shows
an example of the evolution of the diagonal components of the EPD covari-
ance matrix Σ(`) in (III.11) as EPD iterates. In dashed lines, the real and
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Figure III.1: Evolution of each component of the EPD mean µ(`) in (III.12) as
EPD iterates for am = r = 2 scenario with a 256-QAM constellation and SNR = 15
dB.
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Figure III.2: Evolution of each component of the EPD covariance Σ(`) in (III.11)
as EPD iterates for a m = r = 2 scenario with a 256-QAM constellation and
SNR = 15 dB.
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imaginary values of the variance of the marginal symbol posterior p(ui|y)
are shown. EPD, besides accurately matching the posterior mean, provides
a reliable measure of the uncertainty per symbol, identifying which symbols
can be decided with high grade of confidence and for which ones the risk of
error in hard decision is large.

III.5 EP combined with LLL

The inclusion of lattice reduction techniques in EPD algorithm is explored
by means of the LLL algorithm [58], denoted by EPD with Lenstra-Lenstra-
Lovász (EPD-LLL). It is important to remark that LLL techniques shortens
the gap between ML and Linear Detector (LD) performance by means of
constructing a more orthogonal basis to the detector. This new basis in-
creases the overlapping between the LD decision region and the ML decision
region, thus improves performance [57, 74]. As discussed in Section II.6,
this implementation is based on obtaining first a reduced lattice basis for
the channel matrix H, H = HT, where T is a uni-modular matrix such
that all the matrix entries of T and T−1 are integers.

In order to combine EPD detection with LR techniques, we only have
to tailor the EPD formulation provided above to the LR-reduced model

y = Hu + w (III.25)

or the equivalently,

y = H
>

y = T−1u + Hw (III.26)

According to (III.26), we obtain similar expressions than the EP formulation
in Section III.2

pEP-LLL(u|y) ∝ N (y : T−1u, σ2
wH
>

H)

2m∏
i=1

eγiui−
1
2

Λiu
2
i , (III.27)

ΣEP-LLL =

(
σ−2
w T−1

(
H
>

H
)−1

T−1 + diag (Λ)

)−1

, (III.28)

µEP-LLL = ΣEP-LLL

(
σ−2
w T−1

(
H
>

H
)−1

y + γ

)
. (III.29)

Under this new signal model, and given the new equations for Σ and µ,
the rest of EPD algorithm would formulate similarly. Thus, it is possible to
apply LLL to EPD, the same way as it could have been applied to GTA or
GTA-SIC.
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III.6 Experimental Results

In this section, the performance of the EPD as hard-symbol MIMO detector
for several scenarios in high-order high-dimensional scenarios is studied.
The results are averaged for 1.5 ·104 realizations of the channel matrix. The
considered scenarios are summarized in Table III.1. The EPD parameters
are set to β = 0.2, I = 10 iterations, and a minimum value in the variance
according to (III.24). The detector performance is shown in terms of SER
as a function of SNR, which was defined in (I.2).

Figure m r M -QAM Detectors

III.3 6 6 4 EPD, ML, SpD, MMSE,TS-MMSE, GTA, GTA-SIC

III.4 12 12 16 EPD, EPD-LLL,TS-EPD, SpD, GTA, GTA-SIC

III.5 32 32 16 EPD, MMSE, GTA, GTA-SIC

III.6 64 64 16 EPD, MMSE, GTA, GTA-SIC

III.7 64 64 64 EPD, MMSE, GTA, GTA-SIC

III.8 100 100 16 EPD, MMSE, GTA, GTA-SIC

III.9 250 250 16 EPD, GTA-SIC

Table III.1: Simulated Hard-Detection Scenarios

Figure III.3 reproduces the scenario already considered in Figure II.2,
now including EPD. Observe EPD is very close to ML and SpD for low-
SNR regime. The gain with respect to the low complexity receivers such as
MMSE or GTA is more than 2dB at 10−3 and performs similarly to GTA-
SIC. We need to remark the good behavior of TS-MMSE in comparison
with MMSE, outperforming more than 8dB at 10−2. The only methods
that outperform our proposal at 10−3 are ML and SpD by 1.75dB, and TS-
MMSE by 1dB. However, their complexity grows fast with both M and m.

Figure III.4 considers a more complex scenario, where more antennas
are used at both transmitter and receiver (m = r = 12), and also the
order of the constellation is raised to 16-QAM. Both EPD and EPD-LLL
are considered. As we can observe, both algorithms perform equally, thus
indicating that the use of a more orthogonal protection to perform symbol
detection does not bring any particular advantage for MIMO hard detection
with moment-matching EP techniques. Similar results have been obtained
in different scenarios, and this is the main reason why EPD-LLL is no longer
included in following results. Since ML detection is prohibitively complex in
this scenario, we could only run SpD detection as benchmark. Observe that
the EPD gain with respect to GTA-SIC and GTA are about 1dB and 5dB
respectively. Also, compared with Figure III.3, the crossing between EPD
and GTA-SIC is produced at a lower SER point. Additionally, TS initialized
with the EPD solution is included. Observed that TS-EPD improves EPD’s
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Figure III.3: SER performance in a m = r = 6 system with 4-QAM. 

performance but t he gain is not as big as it is in Figure III.3 far MMSE, 
because EPD provides a better init ial point than MMSE and TS can not 
improves t he final decision in many cases. 

In Figure III.5 t he number of antennas and the constellation are raised 
up to m = r = 32 and 16-QAM respectively. In this scenario, SpD or ML 
are no longer viable solutions. In this scenario, we test the influence in 
the EPD performance of the number I of iterations. In t his case I = 100, 
I = 10 and J = 2 iterations are selected. Observe there is no difference in 
performance between the first two, meaning that it is point less to increase 
the EPD complexity beyond I = 10 matrix inversions (III.11). Further, 
even the least complex EPD (I = 2) is already performing GTA-SIC. More 
specifically, the gain with respect to GTA-SIC at 10-3 are 0.5dB and l.2dB 
for I = 2 and J = 10 = 100 respectively. In Figures Figures III.6 to III.9, 
we reproduce similar experiments with different scenarios with increasing 
number of antennas and constellation orders. All these experiments prove 
that the EPD solution with I = 10 iterations provides excellent performance 
with respect to state-of-the-art methods wit h similar complexity. Further, in 
Figure III.10, we illustrate how the EPD performance is robust and stable far 
increasing m and r (keeping m = r ) if we maintain the constellation arder. 
By comparing the high-SNR performance of EPD and GTA-SIC far m = 
r = 32, m = r = 64, and m = r = 100 we can see that the EPD degrades 
much slower than GTA-SIC. In particular, compare the SNR required by 
each method to achieve a SER of 10-4• In particular, observe that EPD, 
regardless the dimension (m = r ), typically needs around 25dB, while this 
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value grows with the dimension for GTA-SIC. Up to our knowledge, this 
behavior has not been reported for any other MIMO detection method of 
O( m3) complexity. 
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Figure III.6: SER performance in a m = r = 64 system with 16-QAM.
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Figure III.8: SER performance in a m = r = 100 system with 16-QAM.
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Chapter IV

Soft-Detection Methods

Modern channel-coding techniques, such as Turbo codes [75] or LDPC codes
[76], are needed to achieve transmission rates close to the fundamental the-
oretical limits of the MIMO channel. Efficient decoding is possible using
the BP algorithm [76, 77], which is a low-complexity message-passing ap-
proximate inference method that estimates marginal probabilities in a joint
probability distribution. BP decoding needs as input an estimate to the pos-
terior probability of each coded bit given the vector of channel observations.
This information is provided by the so-called probabilistic symbol detector,
see System Model in I.2, which has to marginalize the joint posterior pdf of
the transmitted vector of QAM symbols, given the channel observation.

Multiple algorithms have been proposed to perform hard-output sym-
bol detection in MIMO systems, some of them are introduced in Chapter
II. On the contrary, the list of probabilistic symbol detection algorithms
is comparatively much shorter. The focus on this chapter is on MIMO
probabilistic symbol detection methods that can scale up to hundreds of
antennas and high-order modulations. In particular, we focus on methods
with polynomial complexity with the number of transmit antennas m. In
addition, we will introduce some other works that use Markov-Chain Monte-
Carlo (MCMC) algorithms to approximate marginal posterior probabilities.
MCMC algorithms guarantee exact marginal computation in the limit of the
number of samples taken, hence they can be used as a useful benchmark.
For completeness, we include again the System Model IV.1 as the reference
for these algorithms.

Recall that, as discussed in Chapter I, computing

p(ui|y) =
∑
u∈A

p(u|y) (IV.1)

has O(Mm) complexity. Approximate Inference is the required to estimate
(IV.1) at a feasible cost.

37



38 Chapter IV. Soft-Detection Methods
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System Model IV.1: Probabilistic Symbol Detection Scenario

IV.1 MMSE and GTA as Soft Detectors

As it described in Chapter II, MMSE [20, 48] approximates the posterior
distribution p(u|y) as a multivariate Gaussian distribution, that allows for
tractable marginalization. The MMSE Gaussian approximation is deter-
mined by the following moments:

ΣMMSE =

(
H>H +

σ2
w

Es
I

)−1

(IV.2)

µMMSE = ΣMMSEH>y, (IV.3)

where for hard detection only the mode of the distribution was taken into
account. We can obtain marginal posterior probabilities as follows:

pMMSE(ui|y) = N (ui : µMMSE,i, σ
2
MMSE,i) ∀i ∈ {2m}. (IV.4)

where σ2
MMSE = diag (ΣMMSE) . Then, coded bit marginal probabilities are

simply computed as follows

pMMSE(cji = c|y) =
∑

ui∈Bj(c)

pMMSE(ui|y), (IV.5)

where recall that cji is the bit assigned to j-th position of the Gray code at
the i-th antenna. Similarly, recall that GTA also constructs a tree-factorized
approximation to p(u|y), see (II.13). Given pGTA(u|y), marginalization
to compute pGTA(ui|y) ≈ p(ui|y) is straightforward using BP. Then, bit
posterior marginal probabilities are computed as in (IV.5).

IV.2 CHEMP algorithm

The Channel Hardening-Exploiting Message Passing (CHEMP) [78] algo-
rithm is based on a message passing schedule, and it is inspired on the
success of Approximate Message Passing (AMP) techniques in sparse sig-
nal reconstruction (compressed sensing) [79]. AMP algorithms essentially
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implement the standard rules of BP message passing [65] and all messages
are approximated with univariate Gaussian distributions. Given the obser-
vation vector y, we define:

H>y = H>Hu + H>w, (IV.6)

and equation (IV.6) is rewritten as follows:

z = Ju + v, (IV.7)

where:

z ,
H>y

2m
, J ,

H>H

2m
, v ,

H>w

2m
. (IV.8)

Note that the i-th element of z is finally given by

zi = Jiiui +

2m∑
j=1,j 6=i

Jijuj + vi︸ ︷︷ ︸
, gi

, (IV.9)

where gi denotes the interference-plus-noise term. Given z, CHEMP it-
eratively estimates p(ui|z), ∀i ∈ {2m}, by assuming that gi is Gaussian
distributed with mean µg,i and variance σ2

g,i. These two moments are com-

puted as follows. If q
(`−1)
j (uj) is the CHEMP estimate to p(uj |z) after

iteration `− 1, uj ∈ A ∀j ∈ {2m}, then:

µg,i =
2m∑
j=1
j 6=i

JijEp(u)[uj ] ≈
2m∑
j=1
j 6=i

Jij

(∑
∀s∈A

s q
(`−1)
j (s)

)
, (IV.10)

and

σ2
g,i ≈

2m∑
j=1
j 6=i

J2
ijEp(u)[u

2
j ] + σ2

v

=
2m∑
j=1
j 6=i

J2
ij

(∑
∀s∈A

s2q
(`−1)
j (s)− Ep(u)[uj ]

2

)
+ σ2

v . (IV.11)

where σ2
v = σ2

w/2r. Note that to compute the variance σ2
g,i in (IV.11) it is

assumed that all symbols are statistically independent, which is generally

not true. Based on (IV.9) we can estimate q
(`)
i (ui), ui ∈ A, as follows:

q
(`)
i (ui) =

1

Z
exp

( −1

2σ2
i

(zi − µi − Jiiui)2

)
, (IV.12)
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where Z is a normalization constant that is adjusted once we evaluate
(IV.12) for all ui in A. The algorithm is initialized using a uniform dis-

tribution for q
(0)
i (ui), ∀i ∈ {2m}. The complexity per iteration is O(rm2).

Finally, it is possible from p(ui|y) to compute p(cji|y), as done in (IV.5).

The CHEMP algorithm relies on the fact that, in the limit m→∞, the
J matrix in (IV.8) is approximately diagonal and, consequently, the noise
variance σ2

g,i, in (IV.11) tends to σ2
v [78]. For large m values and 4-QAM

modulation, the CHEMP method provides excellent performance results.
However, as we show in the experimental result section in Chapter V, for
fixed m and increasing constellation order M the CHEMP performance
is significantly degraded. Several factors might explain such degradation,
in particular the fact that the noise variance σ2

g,i in (IV.11) grows with
the constellation order. Following [78], for large constellation orders (16-
QAM and above) CHEMP requires to decrease the number of transmitting
antennas, m < r, in order to maintain the performance observed for the
4-QAM case.

IV.3 Markov Chain Monte Carlo Methods

MCMC algorithms have their roots in the Metropolis-Hastings algorithm
[35], which attempts to compute complex integrals by expressing them as
expectations for some distribution and then estimating this expectation by
drawing samples. MCMC methods have been proposed to approximate the
marginal posterior probabilities in MIMO detection in [80–84], among oth-
ers. On one hand, MCMC methods guarantee that eventually they converge
to the exact solution, the exact marginal distribution in our case. However,
this is rather an asymptotic result as the number of samples required must be
extremely large for high-dimensional MIMO system with high-order QAM
constellations, specially if we want to perform probabilistic detection. The
reason is that in this case we require a sufficiently large number of samples
per constellation point at each transmitter. For large m and high-order
constellations, MCMC methods become excessively burdensome. Another
drawback of MCMC methods for MIMO detection is that it is quite hard
to predict the scaling of the complexity (in terms of number of samples or
different initializations required) as a function of m, r or the constellation
order.

The easiest MCMC method for discrete distributions is the GIBBs sam-
pler [35, 85]. This technique requires an initial estimation of u(0) and after-
wards each component is iteratively sampled using a conditional distribution
using the last value sampled for the rest of variables. The initial estimation
u(0) can be randomly set or based on another estimation method, similarly
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as TS was initialized. Iteratively, each component ∀i ∈ {2m} is updated
sampling from the corresponding conditional distribution:

u
(`+1)
1 ∼ p(u1|u(`)

2 , u
(`)
3 , · · · , u(`)

2m,y,H)

u
(`+1)
2 ∼ p(u2|u(`+1)

1 , u
(`)
3 , · · · , u(`)

2m,y,H)

...

u
(`+1)
2m ∼ p(u2m|u(`+1)

1 , u
(`+1)
2 , · · · , u(`+1)

2m−1,y,H). (IV.13)

As discussed, the number of samples required to maintain a robust per-
formance (accurate estimate of the symbol marginals using the obtain sam-
ples) grows very fast with either M and m. Other problem of these tech-
niques is that the algorithm can be stucked in a local solution. In order
to avoid this problem, usually these techniques are initialized with different
u(0) several times and the detected symbol vector is chosen as the least ML
cost in several iterations.

IV.4 Comparison of State-of-the-art Methods

Consider again the m = r = 5 scenario with 4-QAM modulation which
was the example to show the achievable rate in Figure I.4. Recall that the
dimension is small enough so we are able to solve the marginalization in
(IV.1) exactly. In Figure IV.1 (a) we include a comparison of the achievable
rate for several soft detectors. We show how in the high-SNR regime most of
the methods saturate to the constellation limit log2(M) = 2 bits. However
in the low-SNR regime, the optimal detector is the closest to the capacity
limit. Our aim is to get as close performance as possible in the low-SNR
regime to the optimal one. Furthermore, in Figure IV.1(b) we include a
(3, 6)-regular LDPC coded system with block length k = 5120 bits. In this
case, System Model I.3 is used. Note that, to simulate the BER coded
performance, the coding rate R = 0.5 is taken into account in the definition
of SNRc. The not-so-good CHEMP performance for high-SNR regime, even
worst than MMSE, m is small and assume independence is more difficult
than for a higher value of m. However, in the low-SNR regime, when the
differences between the optimal detector and the capacity limit are lower
has the second performance. The aim of the propose soft detector based on
matching moment is outperform CHEMP in low-SNR regime and GTA in
high-SNR regime.
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Figure IV.1: Performance in a m = r = 5 scenario with 4-QAM modulatio.
(a), achievable transmission rates. (b), BER with a (3, 6)-regular LDPC
code and block length k = 5120 bits.
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Figure IV.2: m = r = 32 MIMO system with 4-QAM and 16-QAM con-
stellation. A (3, 6)-regular LDPC with code block k = 10240 bits has been
used.

To provide some insight into how MCMC detection methods would per-
form in Figure IV.2 we show simulated performance for a m = r = 32
system with 4-QAM and 16-QAM using a (3, 6)-regular LDPC with code
block k = 10240 bits. The MCMC method corresponds to a Gibbs sampling
scheme (see [84]) where, for every channel observation y we run 10 parallel
Gibbs samplers, each with a different random initialization and up to 5.103

samples (we consider a burn-in period of 5.103). Thus, marginals p(ui|y),
for all i ∈ {2m} are estimated using 5.104 samples. MCMC provides a
better performance than GTA and MMSE, but in the 16-QAM case the we
show how MCMC suffers a lack of performance because we are using the
same number of samples than for 4-QAM case and in this case may need
more to provide better approximations.
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Chapter V

Soft-Detection via EC
Approximations

In Chapter III, EP is used to find the mode of a posterior probability distri-
bution that has been projected into a Gaussian approximation. The method
cannot be easily tuned to perform probabilistic detection, as its description
is essentially a message passing type of algorithm that does not provide the
complete picture of the fundamental underlying inference problem. Indeed,
in [86] we show that, while the MIMO EPD in [39] is able to significantly
improve GTA in hard detection problem, both methods perform similarly
when combined with an LDPC channel decoder that requires a probabilistic
input.

In this chapter, we show how probabilistic MIMO symbol detection
can be implemented using a more general approximate inference frame-
work called Expectation Consistency, which was first described by Opper
& Winther in [63]. In EC, we describe the inference problem as the search
of an stationary point of an approximation to the free energy associated
to the true posterior probability distribution of the transmitted symbols.
Any stationary point satisfies a moment matching condition between the
involved distributions. We discuss feasible methods to find such stationary
points and show the fundamental tradeoffs between accuracy and speed of
convergence. Based on this analysis, we find solutions that are robust and
accurate across different modulation orders and system dimensions. The
resulting EC probabilistic MIMO detector achieve excellent performance
results compared to state-of-the-art methods with the same complexity or-
der.

By computing the mutual information between the transmitted MIMO
symbol vector and the corresponding output of the probabilistic symbol
detection stage, we show that the transmission rate of a single-user MIMO

45
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system heavily depends on the probabilistic detector implemented. The pro-
posed ECD MIMO detector achieves the closest gap to channel capacity at
moderate SNR for all tested scenarios. Further, the gain at moderate SNRs
obtained by ECD in comparison with EPD, is corroborated by performance
simulation using optimized irregular LDPC block codes [87] and terminated
convolutional-LDPC block codes [88, 89], in a similar scenario as was tested
EPD in [86]. In all cases, we obtain remarkable SNR gains, proving that
the accuracy of the MIMO probabilistic symbol detection stage is crucial in
order to achieve close-to-capacity performance.

Finally, we show that the probabilistic output given by the BP algorithm
after LDPC channel decoding can be fed back to the ECD symbol detection
stage by a simple modification in the initialization point. Simulation results
indicate that the performance of a MIMO receiver based on EC detection
and LDPC channel coding with a feedback loop does not significantly im-
prove the open-loop architecture if the LDPC code length is long enough.
Therefore ECD probabilistic output is accurate enough and the use of a
feedback loop in a more complex receiver would not be necessary. In any
case, for moderate block lengths, as those typically used in mobile wire-
less communications, the closed-loop architecture can bring non-negligible
performance gains.

V.1 Expectation Consistency Approximate Infer-
ence

A brief introduction to EC approximate inference [63] is presented next. The
formulation given in this section is actually general and allows a straight-
forward description of ECD for MIMO. Let u be a random variable with a
probability density function that factors in the following way

p(u) =
1

Z
fq(u)fr(u). (V.1)

We are in an scenario where the computation of Z =
∫
f(u)du is unfeasi-

ble, and so it is the computation of any moment over p(u). Nevertheless,
separately, fq(u) and fr(u) are tractable with regard to a measure of the
form exp(λTφ(u)) for some real value natural parameter vector λ and some
function vector

φ(u) = [φ1(u), . . . , φJ(u)].
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Namely, it is possible to perform inference over the following two distribu-
tions:

q(u) =
1

Zq(λq)
fq(u) exp(λ>q φ(u)), (V.2)

r(u) =
1

Zr(λr)
fr(u) exp(λ>r φ(u)), (V.3)

where the J-th dimensional parameter vectors λq and λr belong to a certain
convex set Φ, and

Zq(λq) =

∫
fq(u) exp(λ>q φ(u))du, (V.4)

Zr(λr) =

∫
fr(u) exp(λ>r φ(u))du. (V.5)

Note that both q(u) and r(u) define an exponential family of distributions1,
where λq and λr are respectively is the natural parameter vector, φ(u) is
the vector of sufficient statistics, and logZq(λq) and logZr(λr) are convex
functions of λq and λr respectively that satisfy

∇λq logZq(λq) = Eq(u) [φ(u)] , (V.6)

∇λr logZr(λr) = Er(u) [φ(u)] . (V.7)

Since both q(u) and r(u) contain “partial information” of the true dis-
tribution p(u) (fq(u) and fr(u) respectively), the main idea behind EC
approximate inference is to optimize λq and λr so that q(u) and r(u) have
the same moments, i.e., (V.6) is consistent with (V.7). The first step to
derive EC approximation is to note that the partition function Z in (V.1)

1See [65] for an introduction to exponential families and their properties.
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can be expressed in the following way

Z = Zq(λq)
Z

Zq(λq)
= Zq(λq)

∫
f(u)du

Zq(λq)
(V.8)

= Zq(λq)

∫
fq(u)fr(u)du∫

fq(u) exp(λ>q φ(u))du

= Zq(λq)

∫
fq(u)fr(u) exp((λq − λq)>φ(u))du∫

fq(u) exp(λ>q φ(u))du

= Zq(λq)

∫
fq(u) exp(λ>q φ(u))fr(u) exp(−λ>q φ(u))du∫

fq(u) exp(λ>q φ(u))du

= Zq(λq)Eq(u)[fr(u) exp(−λ>q φ(u))]. (V.9)

And thus,

logZ = logZq(λq) + log
(
Eq(u)[fr(u) exp(−λ>q φ(u))]

)
. (V.10)

Again we assume that we are in an scenario where the expectation

Eq(u)[fr(u) exp(−λ>q φ(u))] (V.11)

is not evaluable. In [63], the authors propose to approximate this expec-
tation by replacing q(u) by a simpler distribution s(u) that belongs to the
same exponential family than q(u) and r(u), i.e.,

s(u) =
1

Zs(λs)
exp(λ>s φ(u)), (V.12)

where logZs(λs) is a convex function of λs that satisfies ∇λs logZs(λs) =
Es(u)[φ(u)]. While replacing q(u) by s(u) yields in general a poor approx-
imation of (V.10), it can be a fairly reasonable solution if both q(u) and
s(u) have the same moments, namely if Eq(u) [φ(u)] = Es(u) [φ(u)]. In a
beautiful way, this condition is naturally achieved as a stationary point of
the logZ approximation, as follows. By replacing q(u) by s(u) in (V.10),
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logZ is approximated by

logZEC(λq,λs)

= logZq(λq) + log
(
Es(u)[fr(u) exp(−λ>q φ(u))]

)
= logZq(λq) + log

∫
exp(λ>s φ(u))

Zs(λs)
fr(u) exp(−λ>q φ(u))du

= logZq(λq) + log

∫
exp(λ>s φ(u))fr(u) exp(−λ>q φ(u))du− logZs(λs)

= logZq(λq) + log

∫
fr(u) exp

(
(λs − λq)>φ(u)

)
du− logZs(λs)

= logZq(λq) + logZr(λs − λq)− logZs(λs). (V.13)

Note that logZEC depends only on λq and λs, while it depends on three
probability distributions: q(u) with parameter vector λq, r(u) with pa-
rameter vector (λs − λq) and s(u) with parameter vector λs and that by
assumption Zq(λq), Zr(λs − λq) and Zs(λs) can be computed efficiently.
Recall that moment matching it is necessary between q(u) and r(u) and
also between q(u) and s(u). While the first condition ensures that the two
approximations that are constructing p(u) are consistent, the second is re-
quired so that the measure replacement in the expectation in (V.10) is not
too coarse. By using (V.6) and (V.7) it is easy to prove that:

∇λq logZEC(λq,λs) = Eq[φ(u)]− Er[φ(u)], (V.14)

∇λs logZEC(λq,λs) = Er[φ(u)]− Es[φ(u)]. (V.15)

Therefore, any pair (λq,λs) that satisfies that the gradient of logZEC(λq,λs)
with respect to λq is zero yields moment consistency between q(u) and r(u),
while any pair (λq,λr) that satisfies that the gradient of logZEC(λq,λs)
with respect to λs is zero yields moment consistency between r(u) and
s(u).

While the search of stationary points can be challenging (logZEC is
convex in λq but is the sum of a convex term and a concave term with respect
to λs), we have found that a very simple iterative procedure works well in
general. In this algorithm, called in [63] the EC single loop, “messages” are
sent back and forth between the two distributions q(u) and r(u). s(u) is
updated to be consistent with either q(u) or r(u) depending in which way
are propagated. The algorithm is resumed in Algorithm 5.

Convergence is achieved when ||µ(`−1)
q −µ(`)

r || is below a certain thresh-
old. However, convergence is not guaranteed [63], so it is also necessary to
set an upper limit in the number of iterations. Note that the definition of
convergence is quite subtle, in the sense that the above iterative algorithm
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Algorithm 5 The EC Single Loop

Initialize ` = 1, λ
(0)
q

repeat

1) Given λ
(`−1)
q , compute µ

(`−1)
q = Eq[φ(u)].

2) Compute λ
(`−1)
s such that Es[φ(u)] = µ

(`−1)
q .

3) Update λ
(`)
r = λ

(`−1)
s − λ(`−1)

q .

4) Given λ
(`)
r , compute µ

(`)
r = Er[φ(u)].

5) Compute λ
(`)
s such that Es[φ(u)] = µ

(`)
r .

6) Update λ
(`)
q = λ

(`)
s − λ(`)

r .
7) ` = `+ 1

until convergence (or stop criterion)

may get stuck in a (λq,λr) point such that these parameters do not change
anymore, but at the same time the moment matching condition is not fully
met. Further, in order to avoid numerical issues, a damping (low-pass filter)
is implemented in the update of λq at step 6) of the algorithm, in which λq
is updated using a convex combination between the old value and the new

one. Namely, updating λq as follows: λ
(`)
q = β(λ

(`)
s −λ(`)

r )+(1−β)λ
(`−1)
q for

some damping factor β ∈ [0, 1]. Smoothing the parameter via damping is a
fairly common technique to stabilize approximate inference iterative algo-
rithms. See for instance [90–92] for discussions on stabilization in message
passing algorithms.

V.2 EC MIMO detection

In this section, we adapt the EC inference methodology described above to
construct an approximation to the MIMO posterior probability distribution
in (I.8), in this case explicitly including the normalization parameter Z:

p(u|y) =
1

Z
N (y : Hu, σ2

wI)
1√
M

2m∏
i=1

Iui∈A. (V.16)

V.2.1 EC distributions

We propose the following equivalences

fq(u) = N (y : Hu, σ2
wI), (V.17)

fr(u) =
1√
M

2m∏
i=1

Iui∈A. (V.18)
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Also we build q(u), r(u) and s(u) with the following vector of sufficient
statistics and vector of natural parameters

φ(u) =

[
u1, u2, . . . , u2m,

−u2
1

2
,
−u2

2

2
, . . . ,

−u2
2m

2

]>
, (V.19)

λq = [γq,1, γq,2, . . . , γq,2m,Λq,1,Λq,2, . . . ,Λq,2m]> = [γq,Λq]
>

λr = [γr,1, γr,2, . . . , γr,2m,Λr,1,Λr,2, . . . ,Λr,2m]> = [γr,Λr]
>

λs = [γs,1, γs,2, . . . , γs,2m,Λs,1,Λs,2, . . . ,Λs,2m]> = [γs,Λs]
>, (V.20)

where γq,γr,γs ∈ R2m and Λq,Λr,Λs ∈ R2m
+ . According to (V.2) and

(V.17), is possible to show

q(u) ∝ fq(u) exp(λ>q φ(u)) = fq(u) exp

(
γ>q u− u> diag(Λq)u

2

)

∝ exp

(σ−2
w H>y + γq

)>
︸ ︷︷ ︸

g>

u− 1

2
u>
(
σ−2
w H>H + diag(Λq)

)
︸ ︷︷ ︸

S

u

 . (V.21)

Therefore q(u) = N (u : µ,Σ), where

Eq(u)[(u− µ)(u− µ)] = Σ = S−1, (V.22)

Eq(u)[u] = µ = S−1g. (V.23)

On the other hand, from the definition of fr(u) in (V.18) we get

r(u) ∝ exp

(
γTr u− uT diag (Λr) u

2

) 2m∏
i=1

Iui∈A

∝
2m∏
i=1

exp

(
γriui −

Λriu
2
i

2

)
Iui∈A, (V.24)

and thus r(u) is an independent discrete distribution over A2m such that

Er(u)[ui] =

∑
ui∈A ui exp

(
γriui − Λriu

2
i

2

)
∑

q∈A exp
(
γriq − Λriq2

2

) , (V.25)

Er(u)[u
2
i ] =

∑
ui∈A u

2
i exp

(
γriui − Λriu

2
i

2

)
∑

q∈A exp
(
γriq − Λriq2

2

) . (V.26)
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Finally, the distribution s(u) is given by

s(u) ∝ exp(λ>s φ(u)) = exp

(
γ>s u− u> diag (Λs) u

2

)
, (V.27)

and therefore s(u) is an independent Gaussian distribution, i.e. s(u) =
N (u : Λ−1

s γs,diag
(
Λ−1
s

)
) where

Es(u)[(u− µ)(u− µ)] = Λ−1
s (V.28)

Es(u)[u] = Λ−1
s γs. (V.29)

V.2.2 Single Loop ECD detection

The aim in ECD inference is to find some (γq,Λq) and (γs,Λs) pairs such
that q(u) in (V.21), r(u) in (V.24) (evaluated at γr = γs − γq and Λr =
Λs −Λq) and s(u) in (V.27) that satisfy

Eq(u)[ui] = Er(u)[ui] = Es(u)[ui] (V.30)

Eq(u)[u
2
i ] = Er(u)[u

2
i ] = Es(u)[u

2
i ], (V.31)

∀i ∈ {2m}.
To find such a point, we use Algorithm 5 described before, which is

particularized to the MIMO scenario in Algorithm 6. The steps in this
algorithm are straightforward to implement given the expressions of the
moments of q(u), r(u) and s(u). Furthermore, we inicialize (γq,Λq) such
that q(u) in (V.21) coincides with the MMSE Gaussian approximation, i.e.,

γ
(0)
q = 0 and Λ

(0)
q = E−1

s [20, 27]. The complexity of the Single Loop per
iteration is dominated by the computation of the covariance matrix of the
q(u) distribution in (V.21). This complexity isO(m3), thus it is independent
on the constellation size |A|. Computing the r(u) mean and variance in
(V.25) and (V.26) requires O(m|A|) operations. The complexity of the
rest of steps do not depend on the constellation and thus the complexity is
O(m). Therefore, if the algorithm is run for I iterations, the final complexity
is O(m3I +m|A|I +mI), exactly as the EP complexity described in III.
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Algorithm 6 The Single loop ECD

Fix a damping factor β.

Initialize γ
(0)
q = 0 and Λ

(0)
q = E−1

s I.
repeat

1) Given γ
(`−1)
q ,Λ

(`−1)
q , compute Eq(u)[ui] and Eq(u)[u

2
i ], ∀i ∈ {2m}.

2) Compute γ
(`)
s ,Λ

(`)
s such that Es(u)(u)[ui] = Eq(u)[ui] and Es(u)[u

2
i ] =

Eq(u)[u
2
i ], ∀i ∈ {2m}.

3) Update γ
(`)
r = γ

(`)
s − γ(`)

q , Λ
(`)
r = Λ

(`)
s −Λ

(`)
q .

4) Given γ
(`)
r ,Λ

(`)
r , compute Er(u)[ui] and Er(u)[u

2
i ], ∀i ∈ {2m}.

5) Compute γ
(`)
s ,Λ

(`)
s such that Es(u)[ui] = Er(u)[ui] and Es(u)[u

2
i ] =

Er(u)[u
2
i ], ∀i ∈ {2m}.

6) Update

γ(`)
q = β

(
γ(`)
s − γ(`)

r

)
+ (1− β)γ(`−1)

q

Λ(`)
q = β

(
Λ(`)
s −Λ(`)

r

)
+ (1− β)Λ(`−1)

q

7) ` = `+ 1
until convergence (or stop criterion)
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V.3 EPD vs ECD

In this section, we include a comparison between the proposed receivers EPD
and ECD in order to show that both algorithms are actually equivalent, and
that the EC approach is a more fundamental point of view for approximate
inference that can be exploited to derive more robust algorithms and better
understanding of their convergence.

The first thing that can be observed is the way in which both algorithms
approach the posterior distribution (I.8):

p(u|y) =
1

Z
N (y : Hu, σ2

wI)
1√
M

2m∏
i=1

Iui∈A (V.32)

pEP(u|y) ∝ N (y : Hu, σ2
wI)

2m∏
i=1

eγiui−
1
2

Λiu
2
i (V.33)

EC


q(u) = 1

Zq(γq ,Λq)N (y : Hu, σ2
wI)

∏2m
i=1 eγq,iui−

1
2

Λq,iu
2
i

r(u) = 1
Zr(γr,Λr)

∏2m
i=1 Iui∈Aeγr,iui−

1
2

Λr,iu
2
i

(V.34)

Thus, in the EC case, we dispose of two distributions to approximate
p(u|y) that can provide further information about the posterior distribution
beyond the moments that are set to enforce consistency. For instance, note
that q(u) may captures correlations from p(u|y), while r(u) captures the
non-Gaussianity of the true distribution. Further, not that EC also provides
an approximation to the partition function of p(u|y), and this is not directly
given by the EP algorithm described in Algorithm 4.

However, we can establish a per-step equivalence between the single loop
ECD in Algorithm 6 and the EPD in Algorithm 4. The most subtle point
to understand this equivalence is to reveal how the overlapping distribution
s(u) appears in the derivation of EPD. As we can infer form Tables V.1
and V.2, s(u) is related to the cavity marginals in step 2) of EPD. While
the MM condition between q(u), s(u) and r(u) emerged naturally in the
ECD formulation, concluding that EPD should be stopped when there is

MM between pEP(u|y), the cavity marginals p
(`)\i
EP (ui|y) in 2) and the distri-

butions p̂(`)(ui|y) is not easily justified. This is why assessing convergence
for the EPD algorithm was a much harder task than for ECD, as we show
in the next section.
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EPD as in Algorithm 4

Fix a damping factor β

Initialize ` = 1, γ(0) = 0 and Λ(0) = E−1
s

1) Given γ(`−1) and Λ(`−1) compute Σ
(`)
EP, σ

(`)
EP = diag(Σ

(`)
EP) and µ

(`)
EP

ΣEP =
(
σ−2
w H>H + diag

(
Λ(`−1)

))−1

µEP = ΣEP

(
σ−2
w H>y + γ(`−1)

)

2) Compute the cavity marginals p
(`)\i
EP (ui|y) ∝ p

(`)
EP(ui|y)

exp(γ
(`)
i ui− 1

2
Λ
(`)
i u2i )

=

N (ui : t
(`)
i , h

2(`)
i ), ∀i ∈ {2m}:

h
2(`)
i =

σ
(`)
iEP

1− σ(`)
iEPΛ

(`)
i

t
(`)
i = h

2((`))
i

(
µ

(`)
i

σ
(`)
iEP

− γ(`)
i

)

3) Introduce the true constellation and compute Ep̂(`)[u2
i ] and Ep̂(`)[ui] of

p̂(`)(ui|y) ∝ p(`)\i
EP (ui|y)Iui∈Ai , ∀i ∈ {2m}.

4) Update ∀i ∈ {2m}

Λ
(`+1)
i = β

 1

σ
2(`)
p̂i

− 1

h
2(`)
i

+ (1− β)Λ
(`)
i

γ
(`+1)
i = β

 µ
(`)
p̂i

σ
2(`)
p̂i

− t
(`)
i

h
2(`)
i

+ (1− β)γ
(`)
i

5) ` = `+ 1

Table V.1: EPD steps
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ECD as in Algorithm 6

Fix a damping factor β

Initialize ` = 1, γ
(0)
q = 0 and Λ

(0)
q = E−1

s

1) Given γ
(`−1)
q ,Λ

(`−1)
q , compute Eq[ui] and Eq[u2

i ], ∀i ∈ {2m}

Eq(u)[u
2] = Σ =

(
σ−2
w H>H + diag

(
Λ(`−1)
q

))−1

Eq(u)[u] = µ = Σ
(
σ−2
w H>y + γ(`−1)

q

)
2) Compute γ

(`)
s ,Λ

(`)
s such that :

Es(u)[ui] = Eq(u)[ui] = µi

Es(u)[u
2
i ] = Eq(u)[u

2
i ] = diag(Λ)i

3) Update γ
(`)
r = γ

(`)
s − γ(`)

q and Λ
(`)
r = Λ

(`)
s −Λ

(`)
q

4) Given γ
(`)
r ,Λ

(`)
r , compute Er(u)[ui] and Er(u)[u

2
i ], ∀i ∈ {2m}.

5) Compute γ
(`)
s ,Λ

(`)
s such that Es(u)[ui] = Er(u)[ui] and Es(u)[u

2
i ] =

Er(u)[u2
i ], ∀i ∈ {2m}.

6) Update

γ(`)
q = β

(
γ(`)
s − γ(`)

r

)
+ (1− β)γ(`−1)

q

Λ(`)
q = β

(
Λ(`)
s −Λ(`)

r

)
+ (1− β)Λ(`−1)

q

7) ` = `+ 1

Table V.2: ECD steps
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V.3.1 Assessing convergence

The moment matching condition in (V.30) and (V.31) represents the op-
timal operational point of the EC approximation. In practice, however,
we will show next that the stationary point reached by the Single Loop in
Algorithm 6 shows an irreducible gap between the moments of q(u) and
r(u). Our goal in this section is to illustrate how the quality of the ECD
approximation depends on the update rules implemented during the Sin-
gle Loop and it introduces a modification that achieves a better tradeoff
between accuracy and complexity. We emphasize that the quality of the
approximation is measured in terms of moment matching between tractable
approximations to p(u|y) (q(u) and r(u) respectively), and not with regards
to the distribution p(u|y) itself. We analyze the evolution of the following
two quantities along iterations

∆u =
1

2m

2m∑
i=1

∣∣∣Eq[ui]− Er[ui]
∣∣∣, (V.35)

∆u2 =
1

2m

2m∑
i=1

∣∣∣Eq[u2
i ]− Er[u2

i ]
∣∣∣. (V.36)

In Figure V.1 we represent ∆u and ∆u2 for a m = r = 5 scenario
with 4-QAM modulation at a SNR of 6dB, averaged over 104 realizations
of both the channel matrix H and received vector y. According to Figure
IV.1(a), this SNR value is far from the saturation regime (largest gap to
channel capacity), and it is in this range where we want the ECD to work
and improve state-of-the-art methods. Three implementations of the Single
Loop are compared in Figure V.1. For the red solid line we have used
β = 0.2, i.e., a very slow parameter update in Step 6) of Algorithm 6. This
is exactly the EPD algorithm implemented in Chapter III. The opposite case
is represented by the green dotted line, which has been computed with β =
0.95. While the β = 0.2 case achieves a better approximation, i.e. smaller
∆u and ∆u2 values, it requires in average 25 iterations to converge to such
a stable point. Recall that each Single Loop is as complex as computing the
MMSE estimate, due to the matrix inversion in (V.21). On the other hand,
the β = 0.95 case quickly saturates (around 5 iterations), but its solution is
actually worse. In order to achieve a better tradeoff between accuracy and
complexity, we maintain the fast updates using β = 0.95, but modify the
parameter update in Algorithm 6 and introduce a gradual decrease in the
variance per component allowed at each iteration. More precisely, we set
an iteration-dependent minimum value of the variance Es(u)[u

2
i ] at Step 6)
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Figure V.1: ∆u and ∆u2 in (V.35) and (V.36) for a m = r = 5 scenario with
4-QAM modulation at a SNR of 6dB, averaged over 104 realizations of both the
channel matrix H and received vector y.

of Algorithm 6) with the following form:

Es(u)[u
2
i ] = max

(
2−max(`−3,0),Er(u)[u

2
i ]
)
, (V.37)

namely during the first 3 iterations we set a reasonably minimum high vari-
ance per component (0.5) and, from iteration 4, we let this minimum value
to decrease exponentially fast with `. Setting a high-variance parameter
during the first iterations of the algorithm is crucial in the low-SNR regime
in order to avoid over-fitting. Namely, provided that the MMSE solution
(initialization of our algorithm) is a poor estimate at high-noise levels, set-
ting a large value for ε during the first iterations prevents the algorithm to
provide unreasonable confident estimates, which would also restrain the EC
algorithm to move far away from the MMSE estimate. The convergence of
this implementation of the EC algorithm is represented in In Figure V.1
with dashed lines. Observe that an improvement is achieved with respect
to the β = 0.95 case, reducing the gap to the stationary point achieved
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Figure V.2: ∆u and ∆u2 in (V.35) and (V.36) for a m = r = 32 scenario with
4-QAM modulation at a SNR of 6dB, averaged over 104 realizations of both the
channel matrix H and received vector y.

by β = 0.2, without a significant penalty in speed of convergence, as it
typically converges in less than 10 iterations. These effects are even more
evident when we move to higher-dimensional scenarios. In Figure V.2 we
consider a m = r = 32 scenario with 4-QAM modulation at an SNR of
6dB, and in Figure V.3 we consider a m = r = 32 scenario with 16-QAM
modulation at an SNR of 13dB. Convergence speed is actually maintained
and the gap with respect to β = 0.2 case is clearly reduced. Using the
ECD moment matching criterion many other variants of the single loop up-
date methods can be tested and compared with our proposal. However, no
significant differences have been appreciated when we measure the system
performance in terms of the mutual information in (I.14) or BER. In the
following results, regardless of the dimension of the system or constellation
order, we implement the ECD detector using β = 0.95, the progressive vari-
ance limit in (V.37) and a maximum number of iterations of I = 10. Thus,
the complexity order the ECD detector implemented is roughly 10 times
the MMSE complexity.
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V.4 Experimental Results

In the following, we include simulation performance results that show the
accuracy of the ECD approximation. In our experiments, we compare our
proposal with the soft output MMSE solution in [20, 27], the GTA algorithm
in [50] and the CHEMP method in [78].

V.4.1 Calibration Curves

In Figures V.4 and V.5 we show calibration curves, where we compare the
true marginal symbol posterior probability p(ui|y) in (I.11) with the one
estimated by each method. The obtained curves are shown for SNR = 7 dB
and SNR = 13.5 dB respectively. These figures have been generated using
2500 random channel matrices and transmitting five MIMO symbol vectors
per channel matrix H. For each MIMO symbol vector, we include in the plot
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Figure V.3: ∆u and ∆u2 in (V.35) and (V.36) for a m = r = 32 scenario with
16-QAM modulation at a SNR of 13dB, averaged over 104 realizations of both the
channel matrix H and received vector y.
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p(ui lY) and its approximation for every transmitted antenna, i.e., Vi E {2m} 
and for every symbol in A. T hus, in total every plot contains M x m x 
2500 x 5 = 2.5 · 105 points. Observe that when the noise variance is large, 

... 
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Figure V.4: Calibration curves in m = r = 5 system with a4-QAM at SNR = 7dB. 

the calibration curves for ECD, GTA and CHEMP are roughly diagonal. 
At low-SNR regime, t he joint posterior probability p(u ly) is dominated by 
the Gaussian noise and hence it presents an unimodal Gaussian-like shape, 
where approximate inference methods typically perform well. As we increase 
the SNR, note that only ECD is able to maintain and approximate diagonal 
calibration curve while the rest of methods present a large dispersion in the 
corners (p(ui lY) close to either zero or one) . Compared to ECD (and also to 
GTA), the CHEMP solution for high SNR presents a significant density of 
points in the upper left and bottom right quadrants of the calibration curve, 
where either p( Ui IY) tends to zero and PCHEMP ( u.dy) to one or the other way 
around. T hese errors are particularly harmful for the LDPC decoding stage. 
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Figure V.5: Calibration curves in m = r = 5 system with a 4-QAM at SNR = 

13.5dB. 

V .4.2 A Low Dimensional M IM O Syst em 

We consider again the m = r = 5 scenario with 4-QAM modulation already 
considered in Figure IV.l and extended in Figure V.6(a) with the achievable 
rate of the ECD MIMO detector. Remarkably, it essentially overlaps the 
optimal detector performance, achieving a large gain with respect to GTA, 
MMSE and CHEMP. When the number of antennas is small (5 in our case), 
the columns of the channel matrix H are typically non-orthogonal and this 
limits the MMSE performance [20, 27]. Also, as discussed in Section IV.2, 
the CHEMP method relies on the matrix J = m-1 HTH being diagonal and 
for a small m, this assumption is unrealistic. 

Results in Figure V.6(a) indicate that the MIMO system performance 
can highly benefit from the more accurate estimates to the symbol pos-
terior marginals p(ui lY) provided by ECD. To corroborate this fact, we 
include an LDPC channel encoding stage at the transmitter and an LDPC 
channel decoder at the receiver (System Model 1.3). T he LDPC channel 
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decoder is fed by soft coded bit probabilities computed using the symbol
posterior marginals p(ui|y) (or their approximations), according to the bit-
modulation mapping. It is well known that the more accurate the prob-
abilistic detector is, the better performance is obtained after the LDPC
decoding stage using BP [27–29]. In Figure V.6(b), we show for this sce-
nario the simulated BER measured after the LDPC decoding stage (solid
lines). A (3, 6)-regular LDPC code with block length k = 5120 bits has been
used. In terms of coded performance, the gap between optimal detection
and ECD is only about 0.4 dB measured at a BER of 10−4 while the gap
to GTA is over 1.5 dB. Note that both MMSE and CHEMP provide poor
performance, which slowly decreases with SNRc.
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Figure V.6: m = r = 5 system with 4-QAM modulation, in (a) achievable trans-
mission rates. In (b), with a (3, 6)-regular LDPC code with block length k = 5120
bits.
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Figure V.7: m = r = 32 MIMO system with 4-QAM and 16-QAM con-
stellation. A (3, 6)-regular LDPC with code block k = 10240 bits has been
used.

V.4.3 A m = r = 32 MIMO system

In a larger scenario, exact marginalization is not viable anymore and we
rely on approximate methods. Recovering the larger scenario from Chapter
IV, we include the ECD performance. We show in Figure V.7 that even
for the simplest case, 4-QAM, the MCMC performance seems to degrade
at high-SNR regime. This effect is more severe in 16-QAM case, as MCMC
typically gets trapped in a local mode. Works on MCMC MIMO detection
propose different heuristic methods to compensate for this behavior, but
ultimately the only way is to increase both the number of samplers that are
run in parallel and the number of samples generated by each one of them.
Additionally, the result remarks the performance provided by ECD.

In Figures V.8 to V.10, we represent the obtained achievable rates for
a m = r = 32 MIMO system using 4-QAM modulation, 16-QAM mod-
ulation, and 64-QAM modulation respectively. While CHEMP and ECD
are competitive for the 4-QAM case, CHEMP is no longer a viable option
in the 16-QAM or 64-QAM cases. As discussed in Section IV.2, the vari-
ance of the interference noise that CHEMP aims to iteratively cancel grows
with the constellation order. For m = r and high order constellations the
interference noise becomes excessively large.

Following [78], it can be checked that CHEMP becomes effective again
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Figure V.8: Acheivable rate computed for a m = r = 32 MIMO system with
4-QAM.
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Figure V.9: Acheivable rate computed for a m = r = 32 MIMO system with
16-QAM.

as we reduce the number of transmitting antennas, i.e., if m < r. In Fig-
ure V.11 (a), we compare the ECD and CHEMP transmission rates for a
16-QAM modulation with r = 32 and m = 16, 20, 25 and 32. In (b), we
include BER simulation results using the (3, 6)-regular LDPC with code
block length k = 5120 bits. For small m values, CHEMP is comparative
to the EC based solution. However, its performance severely degrades as
m approaches r. CHEMP can be regarded as a Gaussian message-passing
distributed implementation of the EC algorithm for those cases where inter-
ference is “locally” tractable. Unlike CHEMP, the ECD algorithm performs
the update of all parameters at the same time in a centralized manner.
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Figure V.10: Acheivable rate computed for a m = r = 32 MIMO system with
64-QAM.

These results show that ECD is robust against the increase in the constel-
lation order. In the following we solely consider m = r scenarios with high
order constellations and hence we omit CHEMP from the results.

We complete the analysis of this scenario in Figure V.12, by including
BER performance results using LDPC constructions that are designed to
improve the performance of the (3, 6)-regular LDPC code used in previous
experiments. In dashed lines we show the performance of the rate-1/2 ir-
regular LDPC code2 with block length k = 30720 bits. We also include sim-
ulation results (solid lines) for a Convolutional Low-Density Parity-Check
(LDPCC) code constructed by spatially-coupling 48 independent copies of
a (3, 6)-regular LDPC code, each having block length k = 640 bits, with
low-rate terminations [93]. The resulting coding rate is 0.479 and a total
block length k = 30720 bits3. For the irregular LDPC code, at moderate
SNRs, ECD is able to provide a significant gain, which vanishes at high-SNR
regime because of the LDPC error floor. In contrast, because the LDPCC
code has large minimum distance, no error floor has been observed in the
range of SNRs considered and ECD achieves a stable gain of 2.5 dB with
respect to GTA.

V.4.4 Feedback helps for intermediate LDPC block lengths

The BP algorithm for LDPC decoding recomputes a probability for each
coded bit that takes into account the correlations imposed by the LDPC

2The code is generated using ([76], Example 3.99).
3The code is generated using protographs [94] in order to optimize its minimum dis-

tance, as described in [95].
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Figure V.11: r = 32 MIMO system with 16-QAM modulation, in (a) achievable 
transmission rates for different m values. In (b), BER performance when a (3, 6)-
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Figure V.12: BER performance of a m = r = 32 system with 16-QAM, using 
the irregular (dashed lines), R = 1/ 2 LDPC with code block k30720 bits and a 
(3, 6)-regular (solid lines) LDPCC with the same block and coding rate 0.479. 

code. We can use such an estímate to recompute a prior probability far 
each transmitted symbol, in arder to provide to the EC MIMO detector in 
Algorithm 6 with a refined initialization ( different from the default MMSE 
initialization). Denote the estimation computed this way by PBP(ui) far 
any Ui E A, i E {2m}. Note that the transmission of an LDPC codeword 
require in general the transmission of several symbol vectors through the 
(known) MIMO channel, each ofthem independently equalized by the ECD. 
T he re-initialization that we propase far ECD is perfarmed similarly far all 
cases. Given Pap(ui ) far any ui E A, we run Algorithm 6 with the fallowing 
values 

(V.38) 

(V.39) 

far i E {2m}. Each time we call the ECD stage using the BP LDPC soft 
output is referred to as a "loop" . In Figure V.13 we include the BER 
measured after the LDPC decoding stage after two loops far m = r = 32 
system with 16-QAM modulation. A (3, 6)-regular LDPC with code block 
k = 1280 bits (salid lines) and k = 10240 bits (dashed lines) have been 
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used. T he ECD has been run wit h 10 iterations in all cases, despite we have 
observed that after the first loop the number of iterations can be reduced 
as the initialization is better. In all cases, observe that feedback indeed 
improves the performance and that the highest gain is achieved after the 
first loop. However , such a gain quickly decreases with t he block length, as 
it is around 1.2 dB for k = 1280 bits (measured at 10-4) and less than 0.1 
dB already for k = 10240 bits. As we consider large block lengths, the BP 
LDP C decoding probabilistic outputs tend to be extreme, i.e., estimated 
probabilities are close to either zero or one [76], preventing the ECD stage 
to substantially diverge from this point . 

10º 

10-1 

10- 2 

~ 10-3 ~ 
i:Q 

10- 4 

10-5 

10- 6 
14 15 16 

,',_ 
\ \ 

17 
SNRc(dB) 

18 

_._ No Feedback 
~ lLoop 
-8- 2 Loops 

19 20 

Figure V.13: ECD performance in a m = r = 32 system with 16-QAM using the 
feedback loop. We consider a (3, 6)-regular LDPC code with different k lengths. 

T he use of a more-complex receiver scheme that implements the feed-
back loop can be justified for those applications where power and delay 
constraints limit the block length t hat users at the t ransmitter side can af-
ford. A common scenario is the uplink in mobile wireless communications, 
where t he m users, each one using a single antenna, independently encode 
its information stream using a channel code with a moderate block length, 
around a few hundred bits. We emphasize here that the design of a receiver 
with a feedback loop between channel equalizer and channel decoder is not 
trivial [96] and that the proposed scheme should be regarded as a proof-of-
concept, rather than a final solution. The main conclusion t hat we draw 
here is t hat t he ECD is accurate enough when combined with a sufficiently 
long channel code so t he use of a feedback loop may not be necessary. 
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Conclusions

When the number of antennas at the transmit side is increased, the de-
sign of efficient MIMO receivers is a challenging problem due to the high-
dimensional discrete input space. Classical solutions either reduce the search
space (Sphere decoding or Tabu search methods) or proyect the problem
into a continuous space to solve a quadratic problem (MMSE) or to con-
struct a Gaussian-like approximations (GTA or CHEMP). However, on one
hand, SpD or TS badly scale with the number of antennas. On the other
hand, MMSE presents poorer performance but keeps the complexity cubic
with respect to the number antennas at the transmit side. Recent methods
such as GTA or CHEMP are the state-of-the-art detectors and are able to
perform both hard symbol detection and to provide probabilistic informa-
tion. While GTA constructs a tree-factorized Gaussian approximation to
the posterior pdf, CHEMP is a message-passing inference algorithm. As
we have shown, by callibration curves or BER results, the accuracy of the
probabilistic MIMO detector is crucial to the overall performance.

In this Thesis, Machine Learning techniques based on moment matching
are proposed to solve the inference process. EP is a powerful approximate
inference method to construct tractable approximations to a given pdf. In
experimental results, we show that it outperforms state-of-the-art methods.
We consider several scenarios from small to a very large number of an-
tennas. The results show that our proposal is robust for all constellation
orders. Furthermore, by keeping fix the constellation order and increasing
the number of antennas of the system, we demonstrate that EPD suffers
less degradation than its competitors and thus its scales much better for
massive MIMO scenarios.

While the presented results for MIMO hard detection with EPD sig-
nificantly improve state-of-the-art, our second focus is to develop effective
methods for probabilistic MIMO symbol detection, as it can be combined

71
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with modern capacity-achieving channel codes. The EPD implementation
proposed is shown to be effective only for mean estimation in the high-SNR
regime. However, we found difficult to properly tune the algorithm to obtain
accurate covariance estimates in the low-to-moderate SNR regimen. This
task turned to be cumbersome, due to its heuristic nature. To overcome
this problem, we have proposed EC approximation inference methodology,
which generalizes EP and provides a framework to evaluate convergence.
Using the EC point of view, we propose algorithms that are able to ac-
curately estimate the marginal distribution for each transmitted symbol,
i.e. in a Gaussian approximation through its mean and variance. With
this information, soft-bit inference can be performed to feed the channel de-
coder. Furthermore, we show that the system implementing ECD is able to
achieve a transmission rate closer to capacity than state-of-the-art methods
for probabilistic detection.

It should be noted that our work deals with MIMO scenario where we
have a high-dimensionality of the transmitted constellation, and the detec-
tion process intends to recover all transmitted symbols. There are several
MIMO scenarios matching our premises. One example could be uplink MU-
MIMO scenario in which several users try to transmit to a Base Station (BS)
with at least the same number of receive antennas as the sum of the trans-
mit antennas, otherwise the performance is highly degraded. The BS needs
to detect all those symbols transmitted at the same time sharing frequency.
Another possibility is a downlink SU-MIMO scenario in which a BS with
several antennas can use some of them to transmit to a user, the number
of transmit antennas should be as much as the number of receiver anten-
nas. The user needs to detect the symbols transmitted by those antennas
assigned to it.

Future Lines

Several future research lines can be proposed with the actual-research state.

• During this Thesis perfect CSI was assumed for the receiver. However,
this assumption can be unrealistic. Analyzing the behavior of the pro-
posed methods when there is uncertainty on the CSI is an important
problem. A further step on this direction can be done by assuming a
pdf over the channel matrix H.

• The design of a code to reach channel capacity using EC estimates is
one important open problem if we would like to achieve the gains in
transmission rate predicted by mutual information plots.

• A deep study of the Turbo-like architecture should be performed, as
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many different parameters are involved in the proposed architecture.
In particular, the achievable rate should be analyzed with regard to the
ECD parameters and the number of feedback iterations. Increasing
the number of feedbacks may reduce the number of ECD iterations I,
and eventually this behavior may not be constant for all length codes.

• The application of the EC algorithm to perform fast precoding design
and power allocation in MIMO system replacing current implementa-
tions based on MCMC approximations [97].

• Finally, an important step forward to the communication industry in
order to reach throughput promises [98], can be to test the already
mentioned application in a simulation framework, within a cellular
architecture. This will provide a more general perspective of the key
strengths of the proposed receiver.
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