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Abstract

The ‘big data’ scene has brought new improvement opportunities to most products and ser-

vices, including education. Web-based learning has become very widespread over the last decade,

which in conjunction with the Massive Open Online Course (MOOC) phenomenon, it has enabled

the collection of large and rich data samples regarding the interaction of students with these edu-

cational online environments.

We have detected different areas in the literature that still need improvement and more re-

search studies. Particularly, in the context of MOOCs and Small Private Online Courses (SPOCs),

where we focus our data analysis on the platforms Khan Academy, Open edX and Coursera. More

specifically, we are going to work towards learning analytics visualization dashboards, carrying

out an evaluation of these visual analytics tools. Additionally, we will delve into the activity and

behavior of students with regular and optional activities, badges and their online academically

dishonest conduct. The analysis of activity and behavior of students is divided first in exploratory

analysis providing descriptive and inferential statistics, like correlations and group comparisons,

as well as numerous visualizations that facilitate conveying understandable information. Second,

we apply clustering analysis to find different profiles of students for different purposes e.g., to an-

alyze potential adaptation of learning experiences and pedagogical implications. Third, we also

provide three machine learning models, two of them to predict learning outcomes (learning gains

and certificate accomplishment) and one to classify submissions as illicit or not. We also use these

models to discuss about the importance of variables.

Finally, we discuss our results in terms of the motivation of students, student profiling,

instructional design, potential actuators and the evaluation of visual analytics dashboards

providing different recommendations to improve future educational experiments.

Keywords: Learning analytics; educational data mining; information visualization; MOOCs;

SPOCs; behavioral modeling; machine learning.
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Resumen

Las novedades en torno al ‘big data’ han traı́do nuevas oportunidades de mejorar la mayorı́a

de productos y servicios, incluyendo la educación. El aprendizaje mediante tecnologı́as web se

ha extendido mucho durante la última década, que conjuntamente con el fenómeno de los cursos

abiertos masivos en lı́nea (MOOCs), ha permitido que se recojan grandes y ricas muestras de

datos sobre la interacción de los estudiantes con estos entornos virtuales de aprendizaje.

Nosotros hemos detectado diferentes áreas en la literatura que aún necesitan de mejoras y del

desarrollo de más estudios, especı́ficamente en el contexto de MOOCs y cursos privados pequeños

en lı́nea (SPOCs). En la tesis nos hemos enfocado en el análisis de datos en las plataformas Khan

Academy, Open edX y Coursera. Más especı́ficamente, vamos a trabajar en interfaces de vi-

sualizaciones de analı́tica de aprendizaje, llevando a cabo la evaluación de estas herramientas

de analı́tica visual. Además, profundizaremos en la actividad y el comportamiento de los estu-

diantes con actividades comunes y opcionales, medallas y sus conductas en torno a la deshon-

estidad académica. Este análisis de actividad y comportamiento comienza primero con análisis

exploratorio proporcionando variables descriptivas y de inferencia estadı́stica, como correlaciones

y comparaciones entre grupos, ası́ como numerosas visualizaciones que facilitan la transmisión

de información inteligible. En segundo lugar aplicaremos técnicas de agrupamiento para encon-

trar distintos perfiles de estudiantes con diferentes propósitos, como por ejemplo para analizar

posibles adaptaciones de experiencias educativas y sus implicaciones pedagógicas. También pro-

porcionamos tres modelos de aprendizaje máquina, dos de ellos que predicen resultados finales

de aprendizaje (ganancias de aprendizaje y la consecución de certificados de terminación) y uno

para clasificar que ejercicios han sido entregados de forma deshonesta. También usaremos estos

tres modelos para analizar la importancia de las variables.

Finalmente, discutimos todos los resultados en términos de la motivación de los estudiantes,

diferentes perfiles de estudiante, diseño instruccional, posibles sistemas actuadores, ası́ como la

evaluación de interfaces de analı́tica visual, proporcionando recomendaciones que pueden ayudar

a mejorar futuras experiencias educacionales.

Palabras clave: Analı́tica de aprendizaje; minerı́a de datos educacionales; visualización

de información; MOOCs; SPOCs; modelado de comportamiento; aprendizaje máquina.
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This initial Chapter 1 establishes the research framework of this dissertation. First in Section

1.1 we present the initial motivations to carry out our research. Section 1.2 states the objectives

that we aimed to accomplish during this dissertation. Finally, in Section 1.3 we describe the

outline of the rest of the document.

1.1. Motivation

Over the last decade the production of data has expanded at a stunning fast pace. This has

been due to, among other reasons, switching from analog to digital technologies as well as the

increased data generation of corporations and individuals (CSC, 2012). With this expansion new

terms appeared such as big data which is originally attributed to John R. Mashey (Mashey, 1997),

and addresses the three Vs problems of analyzing large magnitudes of data (volume), data is much

more diverse taking different forms and coming from different sources (variety) and data is gener-

ated in real time and might need to be processed immediately (velocity) (Intel, 2013). With the big

data phenomenon many research lines have arisen to try to get advantage of the data explosion.

Some application examples include the acceleration of value and innovation in healthcare now

that all medical records and pharmaceutical information are being digitalized (Groves, Kayyali,

Knott & Kuiken, 2016), regarding how to use Internet of Things and big data to build the next

generation of smart cities (Strohbach, Ziekow, Gazis & Akiva, 2015), to improve web advertising

(Chandramouli, Goldstein & Duan, 2012), and also in terms of security regarding how to effec-

tively protect all these data (Mahajan, Gaba & Chauhan, 2016). It is not only research but from

banks to retail we can see how all industry areas are starting to take advantage of their data to

1
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improve their revenue, quality of their business and satisfaction of their users and customers, such

as via personalized product recommendations (Amazon), audiovisual content recommendations

(Spotify or Netflix), self-awareness of your own activity (Fitbit), targeted advertising (AdWords

or ExoClick), contact suggestions (Facebook, Twitter or LinkedIn), weather forecasting (The

Weather Company), to enhance loyalty programs (Kroger) or detection of image types (Google

Images), among many others.

The potential areas of improvement that big data can bring to education are wide and can affect

different end-users. For example, administrators can benefit from a better resource allocation and

academic programming, students with adapted learning pathways and personalized feedback or

instructors with information to improve teaching and enabling them to detect students at risk

(Daniel, 2015). Additionally, we should note out the importance also of e-learning initiatives for

corporate training (Urdan & Weggen, 2000), and the potential impact that big data can have to help

evolve this corporate training 1. However, the integration of data-driven approaches in education

has evolved more slowly than in other areas. The initial data mining approaches in education

were based on analyzing demographics and performance in different subjects, for example, to

create meaningful learning outcome typologies or to predict academic outcomes that can enable

interventions (Jing, 2004). As web-based education, such as the use of Learning Management

Systems (LMSs) and other Virtual Learning Environments (VLEs), became more frequent, the

amount of data available grew exponentially in size, but also became much more rich in terms of

the available details (i.e., all interactions of students with the VLE are stored as logs). Some of

these initial Educational Data Mining (EDM) studies using data from web-based systems were

related to the recommendation of activities and other educational resources or to visualize student

activity (Romero & Ventura, 2007). Over the last years a new disrupting phenomenon in online

education and distance learning started as what have been commonly denominated as MOOCs.

MOOCs are defined as courses with a structured start and finish date, which might have

a high number of learners (Massiveness), where the registration, access and participation of the

activities is free (Open) and the whole course and interaction with the components and courseware

is through the Internet (Online) (Siemens, 2013). MOOCs had quite a disruptive effect on online

education when they emerged. The New York Times even dubbed 2012 as “The Year of the

MOOC” 2 and they received a lot of publicity worldwide. Many MOOC platforms started offering

courses from leading universities such as Coursera 3 or edX 4 but also in collaboration with

industry partners such as the case of Udacity 5. MOOCs have many positive features and potential

to be one of the main possibilities for learning from high quality universities, such as for example

in developing countries (Liyanagunawardena, Williams & Adams, 2013). The massive amount

1https://elearningindustry.com/impact-of-big-data-changing-corporate
-training

2https://nyti.ms/2mdCNxY
3https://www.coursera.org/
4https://www.edx.org/
5https://http://udacity.com/

https://elearningindustry.com/impact-of-big-data-changing-corporate-training
https://elearningindustry.com/impact-of-big-data-changing-corporate-training
https://nyti.ms/2mdCNxY
https://www.coursera.org/
https://www.edx.org/
https://http://udacity.com/
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of data generated in MOOCs have facilitated the proliferation of new research studies with large

data samples, sometimes even above 100.000 students in the same MOOC (Breslow, Pritchard,

DeBoer, Stump, Ho & Seaton, 2013) or working with data of many different MOOCs at the

same time e.g. (Brinton, Chiang, Jain, Lam, Liu & Wong, 2014). The MOOC explosion has

widened the possibilities to collect large samples of data that can be more independent (students

from all over the globe), in different data format (unstructured, structured, text log files), from

different sources and functionalities (forums, wikis, exercises, videos, gamification and other

external tools) and in many different topics (computer science, philosophy, art, life sciences, etc).

Additionally, the web platforms where these courses are offered can adapt its functionality for

each course, enabling a good framework for experimental design e.g., to implement A/B testing

with different functionalities or course designs and analyze which of them can lead to better

learning outcomes. These large data samples also provide the opportunity to establish deep and

meaningful statistical significances and be moderately confident about the lessons learned. To

analyze all these data we need a combination of theory, design and data mining techniques, and

in order to fulfill these requisites the field of Learning Analytics (LA) as an intersection between

data science and learning sciences (Gašević, Kovanović & Joksimović, 2017) has been gaining a

lot of notoriety over the last years.

The potential possibilities regarding the data analysis that can be performed with these huge

data samples are immense. Nonetheless, let us not forget that LA should be focused on the learn-

ing process and therefore it also should be in line the existing framework of educational research

(Gašević, Dawson & Siemens, 2015). Some possibilities include the implementation of algo-

rithms for behavioral modeling that can lead to a better understanding of what students are doing

during their learning process and why. This can help to delve into what behaviors might be pos-

itive and which of them might be negative for their learning, but also to know the preferences of

students in terms of their favorite types of activities, learning goals, learning habits and motiva-

tions in order to use all that information to adapt their learning paths and maximize the chances

of providing an engaging and joyful learning experience. It is possible to use all this information

to analyze the relationship of those variables with learning outcomes, e.g., if a student is going to

achieve a passing grade in a course or if the student will dropout from the MOOC, among many

other target objectives. This type of detectors can enable early interventions or automatic warn-

ing systems if the students’ behaviors are not positive for their learning process (e.g., performing

illicit behaviors). Another potential area of improvement can be instructional design based on

data-driven approaches, to automatically detect problems in resources or to use A/B testing to

analyze which specific course design elements can lead to better learning outcomes, which was

a complicated task to perform before in more traditional educational face-to-face formats, but

now with web-based applications is easier to perform experimental design. Additionally, it is

also possible to analyze in smaller scale each one of the design decisions, e.g. to analyze stu-

dent engagement based on video production (Guo, Kim & Rubin, 2014), to improve the overall

learning experience based on smaller findings. All these potential applications can be embedded
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as LA systems within the VLEs. Ultimately, this can facilitate the interaction of the different

stakeholders with the information for decision making or other purposes.

Our motivations for the research in this dissertation are diverse. Data analysis in MOOC en-

vironments is still in its early stage. Therefore we aim to carry out different studies to delve into

different aspects of the behavior of students in these platforms, obtain relationships with other

indicators and learning outcomes, so that we can obtain conclusions that can be used to improve

the learning process. Furthermore, we want to work towards the evaluation of visual analytics

dashboards in those environments to have a more clear evidence about which visualizations are

usable, useful and effective for instructors and students. We want to delve into the activity and

behavior of students with regular activities (e.g., exercises, videos, etc), optional activities (e.g.,

goals, setting up an avatar image, etc) and gamification features (e.g., badges, points, etc). We

want to analyze the relationship between different indicators in order to delve into understanding

student behavior and we will also look into clustering students based on these indicators, which

can be helpful to profile them and use the different preferences to adapt their learning experiences.

We would like to delve into the motivations of students based on these indicators, e.g., to analyze

if students are earning badges on purpose or not, or why they are using optional activities. Addi-

tionally, we want to develop prediction models of learning outcomes that can help to understand

which of these variables and behaviors are positively or negatively correlated to learning achieve-

ment. These findings might be useful for future early recommendation or warning system that

can be part of the learning analytics platforms.

Furthermore, we want to delve into online academic dishonesty and illicit collaborations in

MOOCs. Since these courses are completely online students are able to commit behaviors that are

prohibit such as creating several accounts or sharing their solutions with peers. MOOCs deliver

certificates of accomplishment to show that a student has achieved the level of proficiency and

competencies given by a certain course. Nevertheless, many of these students might be deceiving

the system and achieving these certificates illicitly which can cause a serious and grave problem

to the certificate system. Additionally, the learning indicators of these students might represent

outlying behaviors that are actually strongly correlated with success, hence leading to systematic

bias in educational research studies. Moreover, literature reports that cheating behaviors lead

to poor learning. Therefore, we think that is necessary to develop of algorithms and detectors

that can help to detect students committing illicit behaviors to enable interventions, but also to

remove their data when performing educational research. Finally, it would be valuable to provide

instructional guidelines that can be used to reduce the level of cheating. In next Section 1.2 we

describe more specifically the objectives that we state for this dissertation.

1.2. Objectives

As we mentioned in the motivations, this dissertation is focused on contributing to the eval-

uation of LA dashboards in online learning, analyzing the activity and behavior of students with
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regular activities, optional activities and badges, and analyzing online academic dishonesty be-

haviors and illicit collaborations, this research will have a strong emphasis on MOOC platforms.

The potential outcomes of this research will be in the direction of learning analytics dashboards

and behavioral algorithms, as well as many lessons learned in terms of understanding student

behavior to infer their activity and motivations, instructional design recommendations, student

profiling for adaptation purposes or guidelines to develop actuators such as recommendation or

other warning systems, among other findings. More specifically, the objectives that we establish

are as follow:

In the context of learning analytics dashboards that compute different learning indi-

cators and show them in the form of visualizations, we will work towards the evaluation of

the usability, usefulness and effectiveness of these dashboards.

Analyze the activity and the behavior of students when interacting with the platform,

with emphasis on the use of regular and optional activities:

• Analyze the effectiveness and behavior of students with educational resources

such as problems or videos.

• Analyze the use of optional activities finding also associations between the use

of the different optional activities.

• Analyze the relationship of regular and optional activities with learning out-

comes such as proficient exercises and learning gains, as well as with other metrics

related to the learning process.

• Compare the use of regular and optional activities in self-regulated learning en-

vironments.

• Apply clustering to identify common profiles of students in terms of their use of

regular and optional activities.

• Build prediction models of learning gains and certificate accomplishment based

on the interaction and behavior of students with the platform.

Analyze the activity and behavior of students with badges:

• Overview of the use of badges in self-regulated educational experiences.

• Analysis of the influence of factors associated with the amount of badges trig-

gered.

• Analysis of the badge metrics and behavior of students with badges to find the

relationship with other variables and learning outcomes.

• Apply clustering to identify profiles of students regarding their interaction with

badges analyzing the potential outcomes towards their learning process.
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Analyze academic dishonesty and illicit collaboration behaviors in MOOC environ-

ments:

• Design and implement algorithms to detect academic dishonesty and illicit col-

laboration behaviors that are applicable to online environments.

• Compare students who are performing some unethical behavior with the rest of

students in the course in terms of their indicators related to the learning process.

• Analyze different profiles of students committing unethical behaviors in online

environments, as well as the potential motivations and impact on their learning pro-

cess.

• Provide guidelines supported by our results in order to decrease the prevalence

of academic dishonesty in MOOCs based on instructional design

• Develop a machine learning classification model that can serve as a first step for

a run-time detector as well as to analyze the importance of the different student and

problem features.

The last step is to use all lessons learned in the previous objectives to provide recom-

mendations that can be used to improve learning processes. These recommendations should

be related to the amount of activity and motivations of the behavior of students, about stu-

dent profiling and how to use it for adaptation purposes, regarding potential improvements

based on instructional design and some ideas toward building actuator systems.

1.3. Dissertation Outline

The remainder of the dissertation is organized as follows:

Chapter 2 analyzes different studies related to the areas in relationship with this dissertation.

We review basic concepts of MOOCs, LA and EDM. We explore different studies that imple-

mented or evaluated visualization dashboards, and also studies regarding the use and behavior of

users with regular and optional activities, gamification and academic dishonesty.

Chapter 3 sets up the framework of the dissertation. We describe the different tools that we

use, the case studies that we analyze and the selected indicators that we use during this disserta-

tion.

Chapter 4 is the first chapter of the results and presents some exploratory analysis of our

findings such as visualizations, descriptive statistics and correlations of the different areas that we

investigate during this dissertation.

Chapter 5 presents the clustering results to analyze the different profiles of students in terms

of their behavior presenting some visualizations and examples of archetypal students.

Chapter 6 presents three different machine learning models, two of them are related to predict-

ing learning outcomes (learning gains and certificate accomplishment) and the other to classify

submissions as cheated or not.
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Chapter 7 discusses some of the results and provides potential recommendations regarding

how to use the findings of this dissertation to improve learning processes.

Chapter 8 finishes the dissertation with some final remarks and limitations of our work and

some future work ideas.
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This chapter introduces the related work that is connected with this dissertation. The chapter

is divided into different sections that cover the different areas that have been researched and are in

connection with the objectives. Sections 2.1 and 2.2 give an initial and general overview related

to MOOCs, SPOCs, LA and EDM that will help to frame the general context of this dissertation.

Section 2.3 describes several visualization dashboards in educational contexts and evaluation re-

sults of some of them. Section 2.4 presents different studies that analyze learning outcomes in

educational environments whereas Section 2.5 describes studies in the area of measuring use and

effectiveness of students with regular and optional activities. Section 2.6 presents different studies

in the area of gamification in education, focusing on the use and behavior of students with badges.

Finally Section 2.7 finishes presenting an overview of academic dishonesty, gaming the system

and collaboration, focusing on contemporary research in online environments.

2.1. MOOCs and SPOCs

Masters (2011) sees MOOCs as the fourth stage in the progress of online education, which

follows the previous stage that had LMSs as their central element. Some of the differences in

the MOOC era is that teachers are not going to be monitoring all the actions of their students

due to the massiveness, that learners must have a more active and independent learning, and the

11
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effort and intensity of their interaction with the MOOC platform. Literature shows that MOOCs

frequently combine learning technologies with learning activities. For example the use of short

video lectures and automatic graded assignments is common (Voss, 2013; Nicoară, 2013). The

massiveness of MOOCs makes manual exercise grading difficult for instructors, therefore another

viable option that is very extended in MOOCs is the use of peer review systems (O’Toole, 2013).

Additionally, we can find that MOOCs frequently enable additional communications tools, e.g.,

internal messaging but also external tools such Twitter or Facebook groups (Nicoară, 2013). It is

also extended the use of LA functionality (Voss, 2013) and gamification approaches to motivate

and engage students (Vaibhav & Gupta, 2014). There are different MOOC providers available,

such as Udacity, edX or Coursera. EdX is one special case since it is the only provider that

has open sourced the software that they used as a collaborative project called Open edX. From

now on, the term edX is used to address the institution and Open edX the software. In our case

during this dissertation we have explored data from Khan Academy, Open edX and Coursera.

We believe that exploring data from different platforms can enable us to generalize better and to

analyze functionalities only available in certain platforms.

SPOCs (Fox, 2013) use similar technologies and courseware items than MOOCs. However,

the number of users is usually smaller and the access to these courses is private and controlled

by the platform administrators. SPOCs can be used as supplement to classroom teaching, for

on-campus courses or even professional training. SPOCs are usually applied in blended method-

ologies where part the classroom lectures are available online but students still attend face-to-face

classes for problem solving sessions and to solve doubts. This marriage of face-to-face classes

and MOOC materials has the potential to maximize the strengths of traditional face-to-face classes

while minimizing the potential weaknesses of pure MOOCs (Burge, Fox, Grossman, Roth & War-

ren, 2015). The incorporation of such models have been successful in different studies. Students

usually recognize the benefit of these technologies, but the figure of the instructor still needs to

establish a balance between the two approaches (Bansal & Singh, 2015). During this dissertation

we analyze both MOOCs and SPOCs targeting different areas of interest. Analyzing these two

educational contexts allow us to obtain different conclusions.

The massiveness and the fact that each student generates a large amount of events, provides

the opportunity to analyze huge datasets about the interaction of students with these online edu-

cational platforms with the objective of improving the learning process. During this process, the

raw data that comes from learning environments can be processed and converted into potential

information that can have an impact on educational research and practice (Romero & Ventura,

2010). We discuss about this analytical process that transforms raw data into intelligent insights

in next Section 2.2.
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2.2. Learning Analytics and Educational Data Mining

Within this intersection between learning sciences and data science, LA and EDM emerge

as the areas that study this phenomena. Both fields reflect the importance of analyzing data in

education, though there are many overlaps, a key difference might be that EDM is more focused

in automatic discovery, adaptation and specific models, whereas LA is more designed to inform

and empower instructors and students, relying on them for final decisions (Siemens & Baker,

2012). More specifically, LA was defined during the 1st International Conference on Learning

Analytics and Knowledge as the “the measurement, collection, analysis and reporting of data

about learners and their contexts, for purposes of understanding and optimizing learning and the

environment in which occurs” 1 whereas EDM was defined by Romero & Ventura (2013) as “de-

veloping, researching, and applying computerized methods to detect patterns in large collections

of educational data that would otherwise be hard or impossible to analyze due to the enormous

volume of data within which they exist”. In other words, the two research areas can be comple-

mentary to understand the whole picture, as they have the same ultimate goal which is to improve

learning (Papamitsiou & Economides, 2014). LA has emerged as a different field than academic

analytics, where the latter is more focused on the political and economic challenges of education,

e.g. improving educational opportunities and results at a national or international level, based on

data analysis (Ferguson, 2012). We can find several reviews in the state of the art collecting the

different works in LA and EDM (Berland, Baker & Blikstein, 2014; Ferguson, 2012; Papamitsiou

& Economides, 2014; Romero & Ventura, 2010). Based on that we divide the different studies

according to the learning setting, the analysis method applied or research objectives (Papamitsiou

& Economides, 2014) and then we compare them with the research performed in this dissertation.

The learning environment and specific settings can be quite different in each study. There

are studies in the area of classical VLEs and LMSs (Lee, Recker, Choi, Hong, Kim, Lee, Lefler,

Louviere & Walker, 2016; Młynarska, Greene & Cunningham, 2016), MOOCs (Sharma, Alavi,

Jermann & Dillenbourg, 2016; Khalil, Kastl & Ebner, 2016), SPOCs (Fox, 2013; Delgado

Kloos, Muñoz-Merino, Muñoz-Organero, Alario-Hoyos, Pérez-Sanagustin, Parada G., Ruipérez-

Valiente & Sanz, 2014), more specific educational environments like Intelligent Tutoring System

(ITSs) (Feng, Heffernan & Koedinger, 2006; Kelly, Arroyo & Heffernan, 2013), using mobile de-

vices (Aljohani & Davis, 2012; Tabuenca, Kalz, Drachsler & Specht, 2015) or learner data from

different modalities (Worsley & Blikstein, 2015; Ochoa, Worsley, Weibel & Oviatt, 2016). During

this dissertation we focused on exploring data from MOOCs and SPOCs using Khan Academy,

Open edX and Coursera platforms. Additionally, each study can also have specific and different

research objectives.

These objectives can be very diverse, some of the most common goals are student behavioral

modeling (Qiu, Tang, Liu, Gong, Zhang, Zhang & Xue, 2016; Wen, Yang & Rose, 2014), predic-

tion of performance (Elbadrawy, Studham & Karypis, 2015; Anozie & Junker, 2006), prediction

1https://tekri.athabascau.ca/analytics/

https://tekri.athabascau.ca/analytics/
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of dropout and retention (Chaplot, Rhim & Kim, 2015; Whitehill, Williams, Lopez, Coleman &

Reich, 2015), decision-making support and self-reflection (Littlejohn, Hood, Milligan & Mustain,

2016; Vatrapu, Teplovs, Fujita & Bull, 2011), recommendation systems (Hu, Lo & Shih, 2014;

Dwivedi & Bharadwaj, 2015) or improvement of assessment and feedback (Suen, 2014; Maggs,

2014). Our work has dealt with different research questions within these areas with special em-

phasis on student behavioral modeling, visual analytics and prediction of learning outcomes.

Finally, the techniques also change in each study. Some of the most common techniques

are classification (Whitehill et al., 2015; Hu et al., 2014), regression (Elbadrawy et al., 2015;

Koedinger, Kim, Jia, McLaughlin & Bier, 2015), text analytics (Wen et al., 2014; Tucker, Pursel

& Divinsky, 2014), discovery based on rule models (Lee, Yu, Lee, Tseng, Chang & Chen, 2014;

Aleven, Mclaren, Roll & Koedinger, 2006), social network analysis (Joksimović, Dowell, Skryp-

nyk, Kovanović, Gašević, Dawson & Graesser, 2015; Cela, Sicilia & Sánchez, 2015) and visual

analytics (Qu & Chen, 2015; Coffrin, Corrin, de Barba & Kennedy, 2014). In our work we de-

signed and implemented several algorithms for behavioral modeling based on rule models. We

worked on the evaluation of visual analytics. We applied classification and regression for the

prediction of learning outcomes and clustering for student profiling. In the following sections we

discuss with more emphasis each one of our areas of interests during this dissertation.

2.3. Educational Visualization Dashboards and its Evaluation

Different studies have approached the process of transforming raw data into indicators and

parameters related to learning. We can find a review of different LA indicators presented by

Dyckhoff, Lukarov, Muslim, Chatti & Schroeder (2013). Depending on the platform and the

specific research work, different parameters might be available. For example, specific indicators

such as hint abusing might be available only in some environments like Khan Academy (Muñoz-

Merino, Ruipérez Valiente & Kloos, 2013), while others more general like resource coverage

or access time patterns are generally available in all environments (Zhang, Almeroth, Knight,

Bulger & Mayer, 2007). The use of visual analytics is one of the most common techniques

to transfer information regarding students’ actions to stakeholders. Visualizations can be used

for a big variety of reasons. Generally speaking, in education visualizations are very useful for

self-awareness and self-reflection in the case of students, and in the case of instructors or other

interested stakeholders, as a data-driven support for decision making. Despite their usefulness,

we find that most VLEs do not include any kind of LA dashboards with basic visualizations. One

of the pioneer educational platforms in providing strong LA support was Khan Academy. This

platform has individual and class visualizations about factors such as time spent in exercises and

videos, progress over time and the specific skills achieved by each student.

Visual analytics has been used in educational research for many different purposes such as to

visualize patterns of engagement and performance in MOOCs (Coffrin et al., 2014), to explore the

activity of students with software engineering subjects (Conde, Garcı́a-Peñalvo, Gómez-Aguilar
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& Therón, 2015), to visualize video click-stream data and detect problems in these educational

resources (Shi, Fu, Chen & Qu, 2015), to create tag clouds based on the forum posts of stu-

dents and analyze its evolution over time (Peñalvo, Conde, Bravo, Gómez & Therón, 2011), to

provide topic-wise visualizations regarding the content and classification of discussion threads in

MOOCs (Atapattu, Falkner & Tarmazdi, 2016) or to visualize different student profiles (Xu, Gold-

wasser, Bederson & Lin, 2014). The work by Duval (2011) shows several learning dashboards

and recommender examples. Furthermore, they perform a comparison between educational and

non-educational user tracking environments (Duval, 2011). We can find in the literature many

visualization tools for different VLEs and using distinct types of plots and learning indicators.

For example, TrAVis (May, George & Prévôt, 2011) is a tool that helps students to analyze and

evaluate their own activities while learning online with computer mediated communication tools.

TrAVis displays indicators in radar charts where students can compare their activity with others.

Another visualization dashboard is GISMO for Moodle (Mazza & Milani, 2005), which provides

graphics related to students activity in quizzes, forums and other learning resources. Another

example of LA dashboard for Moodle is LAPA which had three segments: learning, prediction

and action (Park & Jo, 2015). As we can see, due to the well-known popularity of Moodle as

LMS there are many LA dashboard approaches for the tool. CourseVis (Mazza & Dimitrova,

2004) is another visualization tool, in this case for the WebCT; instructors can visualize different

indicators, some of which are also similar to ours, such as number of accesses to each page of a

course or progress with the course schedule. In the specific case scenario of Personal Learning

Environments (PLEs), visualizations are particularly useful to enable self-reflection for students

regarding their interaction with the PLE. CAMERA (Schmitz, Scheffel, Friedrich, Jahn, Niemann

& Wolpers, 2009) is used for monitoring and reporting on learners’ behavior enabling then the

possibility of reflection with e.g. social network analysis. Another tool for a PLE is GLASS

(Leony, Pardo, de la Fuente Valentı́n, de Castro & Delgado Kloos, 2012), which allows to capture

events from different computer applications that students use during their practice hours providing

afterwards visualizations regarding that interaction.

Although initially there were not too many initiatives for visualization dashboards on MOOC

platforms, during the last few years there has been more research effort in this direction. MOOC

providers are also understanding the importance of these LA dashboards and launching their own

initiatives (e.g. edX Insights2). Due to the new technologies used in MOOC and also the mas-

siveness, MOOCs present new challenges regarding technical design and visualizations. As an

example of research studies in this direction, we can find Open-DLAs tool (Cobos, Gil, Lareo

& Vargas, 2016) which was created by Universidad Autónoma of Madrid (UAM) and is able to

digest edX interaction logs and provide visualizations and insights useful for the instructors. A

similar approach was developed for FutureLearn data using a Shiny application for the visual-

ization purposes (Chitsaz, Vigentini & Clayphan, 2016). A very interesting tool is PeakVizor

(Chen, Chen, Liu, Shi, Wu & Qu, 2016) which enables an in-depth video peek visual analysis

2https://insights.edx.org/

https://insights.edx.org/
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supporting data from both edX and Coursera at the same time. In this direction, the author of

this dissertation has been involved in the development of two LA dashboards. First, Add-on of

the Learning Analytics support of the Khan Academy (ALAS-KA) platform (Ruipérez-Valiente,

Muñoz-Merino & Delgado Kloos, 2013; Ruipérez-Valiente, Muñoz-Merino, Leony & Delgado

Kloos, 2015; Ruipérez-Valiente, Muñoz-Merino & Delgado Kloos, 2015b), which extends the

LA functionality of the Khan Academy platform with more than 20 new visualizations. Second,

Add-on of the learNing AnaLYtics Support for open Edx (ANALYSE) which is a visualization

dashboard for Open edX environment (Ruipérez-Valiente, Muñoz-Merino, Gascón-Pinedo & Del-

gado Kloos, 2016; Ruipérez-Valiente, Muñoz-Merino, Pijeira Dı́az, Santofimia Ruiz & Delgado

Kloos, 2017; Pijeira Dı́az, Santofimia Ruiz, Ruipérez-Valiente, Muñoz-Merino & Delgado Kloos,

2016; Santofimia Ruiz, Pijeira Dı́az, Ruipérez-Valiente, Muñoz-Merino & Delgado Kloos, 2014;

Pijeira Dı́az, Santofimia, Ruipérez-Valiente, Muñoz-Merino & Delgado Kloos, 2015) which in-

cludes 12 new visualizations and is designed to scale to the massiveness of MOOCs. During

this dissertation we have used both ALAS-KA and ANALYSE in different case studies as sup-

port (e.g., to retrieve different indicators about the learning process) and to evaluate the learning

process of students.

To validate the usability and effectiveness of these visualization tools, a study is often required

for their evaluation to verify that the computer application can be used by non-technical users and

can help to improve the quality of learning. Two of the main ways of testing the usability of an

application are by preparing a usability survey (or using one of the ones available in the literature,

like the System Usability Scale (SUS) questionnaire (Brooke, 1996)) and by preparing a set of

tasks that respondents must perform in order to be able to answer questions. An evaluation of

TrAVis (May et al., 2011) was performed where six students and one teacher answered the ques-

tionnaire. The authors noted that most of the comments about the usability and utility of TrAVis

were positive. The LARAe platform (Charleer, Santos, Klerkx & Duval, 2014), which is also a

teacher-oriented LA dashboard, was evaluated with six people with teaching responsibilities. The

respondents tried to make sense of the data transmitted by visualizations in a survey obtaining

a 4 in 5-scale Likert questions. They also included a SUS questionnaire, which had a score of

76. Similarly, the SAM tool (Govaerts, Verbert, Duval & Pardo, 2012) was also evaluated with

11 teachers. First, a series of tasks were proposed to the respondents, and then a set of open

questions and a SUS questionnaire (with a score of 71.36) were performed. A prototype of the

exploratory learning analytics toolkit (Dyckhoff, Zielke, Bültmann, Chatti & Schroeder, 2012)

was evaluated by four teachers who were asked to perform tasks without giving a detailed ex-

planation; the authors indicated that good usability results were achieved. The authors of LAPA

(Park & Jo, 2015) performed an evaluation with 7 questions regarding conformity, 7 questions

regarding perceived usefulness and 7 questions about the degree of understanding obtaining an

average value for each set of questions of 3.70, 3.22 and 4.10 respectively. Very similar to the

evaluation of this last study, during this dissertation we performed an extensive evaluation survey

of ANALYSE (Ruipérez-Valiente et al., 2017). The evaluation contained 39 questions regarding
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the effectiveness, usefulness and usability and was taken by 40 respondents using ANALYSE

with the role of an instructor. We describe in depth this evaluation in Section 7.5.

2.4. Analysis of Learning Outcomes

In the field of education there is extensive work towards the analysis of learning outcomes.

The specific target of these studies can differ, e.g. course dropouts (Kloft, Stiehler, Zheng &

Pinkwart, 2014), predicting if a student is going to be successful or not in a degree to support

decision making in college admissions (Nghe, Janecek & Haddawy, 2007), to predict if students

are going to surpass a course or not (Calvo-Flores, Galindo, Jiménez & Piñeiro, 2006), to predict

the major that a student is going to pick, before the student actually enrolls in college courses

(Pedro, Ocumpaugh, Baker & Heffernan, 2014), to provide information about the performance of

groups in collaborative learning environments (Perera, Kay, Koprinska, Yacef & Zaı̈ane, 2009),

to provide learning recommendations in educational systems (Salehi & Kamalabadi, 2013) or to

predict the score of a test before actually doing it (Pardos, Gowda, Baker & Heffernan, 2010; Feng

et al., 2006). Most of these studies are performed using data from VLEs, but we can also find

studies that use data from traditional classroom settings such as high school education (Aguiar,

Lakkaraju, Bhanpuri, Miller, Yuhas & Addison, 2015). There has always been interest in analyti-

cal studies using educational data, however since the MOOC phenomenon started, the amount of

data available has dramatically increased, allowing for Machine Learning (ML) models to thrive

in order to find hidden patterns that can reveal insight regarding what variables have an effect on

learning outcomes. As an example, the work carried out by Brinton et al. (2014) analyses data

from more than 100.000 distinct students from Coursera a single MOOC, which is a data sample

size hardly available in any other educational context.

All these results can have a direct impact to create tools such as actuator systems that can

improve the learning process e.g. if hint abusing behavior is found to be bad for learning, the

system could send a warning advising the student not to abuse hints and make a better use of

them. As a whole system example, Student Success System (S3) (Essa & Ayad, 2012) identifies

students at risk by applying prediction modeling, then they design the interventions to mitigate

that risk and finally they close the feedback loop by checking the effectiveness of the applied in-

tervention. In this direction many studies have approached how to develop early warning systems

that can enable intervention for students that are at risk of not successfully finishing a course e.g.

(Macfadyen & Dawson, 2010). A full working example in this direction was developed by Hu

et al. (2014). They presented an early warning system within a LMS that can provide timely and

automatic predictions regarding which students are at risk of not passing the course and was suc-

cessfully tested with a positive outcome. We also analyzed during this dissertation the prediction

of learning outcomes and we discuss our models and findings in Chapter 6. In this dissertation, we

explore the prediction of learning gains (which is very similar to predicting a test score) and also

the achievement of certificate of accomplishment. Our study can be related to two of the main
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prediction objectives that were mentioned as some of the most common educational objectives in

education in Section 2.2: one is the prediction of learning outcomes or test scores, the other one

is related to dropout prediction.

In the first case, there are many studies that work towards the prediction of post-test transfer

or learning gains. Both cases are quite similar as learning gains depend on the post-test score.

In this direction, there are several research works on the ASSISTment system (Feng et al., 2006;

Feng, Beck, Heffernan & Koedinger, 2008; Anozie & Junker, 2006; Kelly et al., 2013) which

predict a student performance indicator at the end of a course by using the data generated by the

system. The results of the works developed on ASSISTment utilize variables related to seek-

helping behavior and others more general about time or percentage of correct items. Others

similar works are based on an ITS for College Genetics where they also try to predict learning

outcomes (Baker, Corbett, Gowda, Wagner, MacLaren, Kauffman, Mitchell & Giguere, 2010;

Baker, Gowda & Corbett, 2011; Corbett, Kauffman, Maclaren, Wagner & Jones, 2010). Some

studies using data from the College Genetics ITS reported that the developed detector needed

only a limited amount of data (around the first 20% of a students’ data) in order to predict with

reasonably accuracy (Baker et al., 2010). This is very interesting as it would allow to intervene in

the early stages of a course. Another work on the College Genetics ITS compares several bayesian

knowledge tracing variants in order to see which one of them predicts better post-test performance

(Baker et al., 2011). All these studies use data from ITS environments, but we can also find in the

literature similar studies on traditional LMS environment. For example, to predict performance in

Moodle course activities using a collaborative multi-regression model (Elbadrawy et al., 2015) or

the performance in midterm and final exams using partitioning trees (Pardo, Mirriahi, Martinez-

Maldonado, Jovanovic, Dawson & Gašević, 2016). The environment of ITS, LMS and MOOC

platforms can be different. Consequently, it might not be possible to apply the same variables

in all environments and the effect of the predictor variables might change from one case study

to another. MOOCs are recent and there are not as many works on prediction as on the ITS or

LMS field. One key feature of MOOCs is the social activity and the prediction of how social

activity evolves and which variables are important (Brinton et al., 2014). An interesting approach

is to predict if students are going to solve correctly a question using video-watching stream data

(Brinton & Chiang, 2015). Other example is the prediction of students’ knowledge status in

MOOCs using Open edX (Guo & Wu, 2015).

One of the most problematic issues of MOOCs is the high dropout ratio. Recent reviews

estimate the average completion ratios in MOOCs around the 7% (Khalil & Ebner, 2014). These

studies are also related to the prediction of certificate of accomplishment, since the students that

drop out a course do not manage to acquire one. We can find in the literature different studies

targeting learning outcomes in different MOOC platforms such as Open edX (Balakrishnan &

Coetzee, 2013) or Coursera (Kloft et al., 2014; Rosé & Siemens, 2014; Sinha, Jermann, Li &

Dillenbourg, 2014; Chaplot et al., 2015). For example, the study of Balakrishnan & Coetzee

(2013) applies hidden markov model to predict retention, the work by Rosé & Siemens (2014)



2.5 Use of Regular and Optional Activities 19

considers only the information of a specific shared task between each couple of students to predict

dropout, the research by Sinha et al. (2014) uses the clickstream data of the interaction of students

with videos to predict attrition and the work by Chaplot et al. (2015) analyses the importance

of sentiment analysis obtained from applying text analytics on the posts of students. It is also

important to analyze this problem over the weeks to see how accuracy evolves when more data is

available (Kloft et al., 2014).

Another important question that has been addressed in the field of prediction modeling on

education is about the development of these techniques and algorithms. We can even find several

papers that focus on comparing different techniques or variants of the same algorithm with the

purpose of finding which one is the most effective to predict learning outcomes (Nghe et al., 2007;

Baker et al., 2011; Koutina & Kermanidis, 2011). The research by Kotsiantis (2012) performs

a review of the different machine learning techniques for educational purposes. Many authors

apply linear regression (Feng et al., 2006, 2008; Grafsgaard, Wiggins & Boyer, 2014; Kelly et al.,

2013). We also use it in Section 6.1 because we expect a linear relationship between the selected

variables and students’ learning gains. Other authors use different methods such as bayesian

knowledge tracing model (Baker et al., 2011; Guo & Wu, 2015), 1-NN (Koutina & Kermanidis,

2011), neuronal networks using radial basis functions (Calvo-Flores et al., 2006), hidden markov

models (Balakrishnan & Coetzee, 2013), support vector machines (Kloft et al., 2014), partition-

ing trees (Pardo et al., 2016) or C4.5 (Hu et al., 2014) among many others. Another interesting

approach is to ensemble different prediction methods to achieve more robust results (Pardos et al.,

2010; Essa & Ayad, 2012). In our work we have also explored how different algorithms perform

in different contexts and also what happens when more data is available for the prediction of cer-

tificate accomplishment as we describe in Section 6.2. Finally, most of these studies use variables

computed from the interaction of the student with the VLE, but it is also possible to use multi-

modal sources to improve those predictions e.g., gestures and postures (Grafsgaard et al., 2014)

or eye-tracking (Sharma, Jermann & Dillenbourg, 2014). In our case, we have used variables re-

lated to the interaction of students with the platform, but also trying to delve into complex student

behaviors as we explain in Section 6.1.

2.5. Use of Regular and Optional Activities

Since the take over of VLEs as the main environment for distance learning (Keppell, Souter

& Riddle, 2011), learners have achieved a higher degree of freedom to control their learning pro-

cess and adapt their learning experience to their own needs. Often, we can see how VLEs are

used for personalization and self-regulated approaches (McLoughlin & Lee, 2010). VLEs permit

students to access learning resources, with a potential amount of additional features and tools that

might not be mandatory, and that allow them to personalize their learning paths. Furthermore,

VLEs allow students to communicate and collaborate remotely on learning activities (Dabbagh &

Kitsantas, 2012). Over the last years, pedagogy has increased the weight on giving more respon-
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sibility and control to learners (Kay, 2001) which is beneficial for their actual learning outcomes

(Carneiro, Lefrere, Steffens & Underwood, 2012). The main idea with self-regulated learning is

that students should master a process that involves goal setting and planning, monitoring and con-

trol processes, as well as reflection and evaluation processes (Schon, 1984; Bolton, 2010). Within

this self-regulated settings students can decide which items or activities they want to use. We can

roughly divide it in regular or mandatory activities, that are those required to be completed by

students in order to achieve a passing grade (e.g. graded exercises or videos) and those who are

completely optional and might not even be related to the learning process (e.g. setting an avatar

picture). This degree of optionality depends on each specific case study, e.g., in some occasions

forum activity might be mandatory, in other cases completely optional.

If we assume that one of the main objectives of MOOCs and SPOCs is that students complete

the proposed courseware in a correct way (e.g., their interaction with videos or educational activ-

ities). Therefore, it is necessary to define metrics that can accurately measure the effectiveness

of students with the courseware. These metrics can help to determine how students progress in

the course according to the proposed are activities. Nonetheless, in the literature we find that

most metrics that are used to evaluate the effectiveness of students are very simple (e.g, num-

ber of videos completed or number of exercises solved correctly) and usually these metrics are

not adapted to the specificities of the educational context. For example, the study carried out by

Dyckhoff et al. (2013) shows a compilation of indicators used in different studies in the literature,

showing that most of them are simple indicators such as number of threads started by a student,

number of assignments submitted or number of pages viewed. These indicators do not take into

account how educational resources and activities were structured or how they are related to each

other.

The traditional educational literature defines the concept of effectiveness from a perspective

of amount of learning, if we quote the work of Hiltz & Arbaugh (2003) the definition is as fol-

lows, “how much did the students learn, how well did they master skills and how well can they

apply knowledge”. The concept of effectiveness applies for different educational settings such

as face to face lessons or blended learning, but it might have become even more important for

pure online learning courses where instructors cannot establish physical bonds and analyze the

behavior of students in class so easily. Consequently, there is a need to design alternative methods

to measure students’ effectiveness (Ni, 2013; Swan, 2003). One of the most common methods to

measure learning effectiveness is the application of achievement tests or surveys (Moody & Sin-

dre, 2003). Nevertheless, this might not be always available. In addition, each environment might

need specific definitions to measure the effectiveness e.g., Serrano-Laguna, Torrente, Moreno-

Ger & Fernández-Manjón (2012) uses the source of data from an educational game to feed a LA

system to infer knowledge about the effectiveness of the students. One possibility is to analyze

the effectiveness separately as suggested by Swan. Another possibility by Rourke, Anderson,

Garrison & Archer (2007) is to measure effectiveness in terms of interactivity with peers (so-

cial presence), with instructors (teaching presence) and with contents (cognitive presence). This
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categorization of effectiveness can be a good match for MOOC and SPOC environments, where

the social and teaching presence can be inferred from the activity in forums and the cognitive

presence from the interaction with the courseware.

A deeper analysis regarding how students use the different educational activities and course-

ware can help to delve into different behavioral profiles such as for example ‘copy and paster’,

‘hint abuser’, ‘hint avoider’, ‘student misuse’, ‘video avoider’, ‘unreflective user’ or ‘procrasti-

nator’ (Blikstein, 2011; Aleven, McLaren, Roll & Koedinger, 2004; Aleven et al., 2006; Muñoz-

Merino et al., 2013; Baker, Corbett, Koedinger & Wagner, 2004; Baker, Corbett & Koedinger,

2004; Tervakari, Marttila, Kailanto, Huhtamäki, Koro & Silius, 2013). We can analyze the influ-

ence of these different indicators on different outcomes, e.g., factors that might affect teaching

effectiveness (Kyriakides, Christoforou & Charalambous, 2013), factors of student persistence

(Hart, 2012), relationship of different behaviors with learning gains (Aleven et al., 2006) or anal-

ysis of what items can increase student engagement (Wankel & Blessinger, 2012). However, most

e-learning platforms are still providing just rough insight (usually just the number and the grade

of the activities completed) regarding the interaction of students with the educational resources.

There is a need for more precise strategies to measure the effectiveness of students that can take

into account the structure of the activities and other specificities such as the relationship between

the different items in a course. As part of this dissertation, we have analyzed the relationship

between the effectiveness of students with other variables and also with the purpose of student

profiling (Muñoz-Merino, Ruipérez-Valiente, Alario-Hoyos, Pérez-Sanagustı́n & Kloos, 2014;

Muñoz-Merino, Ruipérez-Valiente, Alario-Hoyos, Pérez-Sanagustı́n & Delgado Kloos, 2015).

Additionally to the aforementioned learning activities, there are other activities that might

not be mandatory or required to effectively complete the learning process. These activities can

be defined as optional for students. For example, Muñoz-Merino, Delgado Kloos, Seepold &

Garcı́a (2006) analyzed which tools and functionalities that are provided by the VLEs Moodle 3

and .LRN 4 are the most important regarding students’ perception. Some of the most highly rated

were optional activities such as the use of forums or visualizations regarding their status. This

shows that students also care about extra functionalities. Koedinger et al. (2015) compared the

effect of passive and active learning. They found that only watching videos can be predictive

of dropout and those who completed activities were more successful than just watching videos

or pages. In addition, they also found that the combination of both passive and active learning

lead to the highest success rates. Santos, Klerkx, Duval, Gago & Rodrı́guez (2014) analyzed the

activities conducted by learners in two language MOOCs and they found that a higher activity

in the forum correlated with students’ success. This is in line with the findings of the study

conducted by Cheng, Paré, Collimore & Joordens (2011) with over 2.000 students that found

that students who participated voluntarily in forums also performed better in the course. Other

works that explored activities that can be regarded as optional, are for example the one carried

3https://moodle.org
4http://www.dotlrn.org/

https://moodle.org
http://www.dotlrn.org/
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out by Gašević, Mirriahi & Dawson (2014) in terms of video annotation. They compared two

courses, in the first one annotations were graded and in the second annotations were non-graded.

Their findings suggest that students in the group of graded annotations, were able to use and

develop more complex language indicators as a result of a potential more complex cognitive

process. The study by Coetzee, Fox, Hearst & Hartmann (2014) with a reputation system for

forum activities, suggested that students who were actively using the forum performed better

and at the same time the use of the reputation system produced faster and more numerous post

responses. On the other side, a study by Davies & Graff (2005) suggested the contrary, that

forum activity alone is not enough to lead to higher grades, at least in their context. A study by

Muñoz-Organero, Muñoz-Merino & Kloos (2010) found that participating in e-learning activities

(such as forums) or uploading a profile photograph was positively correlated with the motivation

and final grade of students. During this dissertation we analyze the relationship between the

use of optional activities and learning outcomes (Ruipérez-Valiente, Muñoz-Merino, Delgado

Kloos, Niemann & Scheffel, 2014; Ruipérez-Valiente, Muñoz-Merino, Delgado Kloos, Niemann,

Scheffel & Wolpers, 2016). More specifically, we look into the use of feedback, votes, badge

display, avatar image and setting up learning goals in Khan Academy (this optional activities are

described in Subsection 3.1.1.1). We present the relationship between using certain regular and

optional activities with other learning indicators. We also delve into how the behavior and activity

of students might relate to learning outcomes.

2.6. Gamification and Use of Badges

The use of serious games is widely spread among different contexts. This technique en-

courages the use of game elements for educational purposes in order to provide a more immer-

sive learning flow and improve engagement (Arnab, Berta, Earp, De Freitas, Popescu, Romero,

Stanescu & Usart, 2012). Many studies apply also game components in non-game contexts apply-

ing what is known as gamification (Deterding, Dixon, Khaled & Nacke, 2011). These techniques

have been used in many different contexts; for example the introduction of game achievements in

a photo sharing service (Montola, Nummenmaa, Lucero, Boberg & Korhonen, 2009) or the inclu-

sion of gamification elements in eco-driving (Magaña & Organero, 2014) showing a positive cor-

relation with the use of the proposed eco-driving tips. Gamification has been tested in different e-

learning experiments, reporting positive results. Some of the reasons to use gamification elements

in education is to improve the motivation and engagement of the student towards their learning

goals. Potential applications of gamification can be to improve the engagement of students in en-

gineering education that it is often regarded as more difficult than other degrees (Douglas, Iversen

& Kalyandurg, 2004), or in MOOCs in order to improve the intrinsic motivation of students to

lower the high attrition rates (Borras-Gene, Martinez-Nunez & Fidalgo-Blanco, 2016). Some ex-

amples include a gamified AutoCAD tutorial (Li, Grossman & Fitzmaurice, 2012), a gamification

system for Blackboard (Domı́nguez, Saenz-de Navarrete, de Marcos, Fernández-Sanz, Pagés &
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Martı́nez-Herráiz, 2013), or the interesting example of Septris and SICKO which combines both

LA and gamification in order to improve medical education (Tsui, Lau & Shieh, 2014).

Hamari, Koivisto & Sarsa (2014) presented a literature review of the empirical studies on

gamification analyzing 24 research works. The results indicated that gamification yielded posi-

tive effects as a general rule, but these effects were strongly dependent on the contexts and the

users of the experiment. Some examples of successful specific gamification applications are with

mathematics computer games which were able to improve the motivation of those students who

used them (Kebritchi, Hirumi & Bai, 2010), in engineering classes where students were able to

improve their learning achievement while reducing the stress of complex lessons (Kim, 2013),

the successful case of Pex4Fun (Xie, Tillmann, De Halleux & Bishop, 2015), a gamified engi-

neering software where students earn badges and duel each other while learning the contents of

the course, or for teaching computer programming skills to new students avoiding part of the

stress (Mladenović, Krpan & Mladenović, 2016). Nonetheless, there are handicaps in the use of

gamification. Since it is naturally a extrinsic motivator, some students might lose track of the

actual task in hand and undermine motivation (Deci, Koestner & Ryan, 2001). Additionally, there

are reports indicating that some student felt discouraged and perceived gamification as unneces-

sary (Berkling & Thomas, 2013). That is why it is also important to prepare a carefully tailored

gamification design that enhances the intrinsic motivation of students (Barata, Gama, Jorge &

Gonçalves, 2013b), such as for example by improving the control of students, enhancing cooper-

ation and the possibility to gain recognition (Zirk, 2014). Some works proposed frameworks in

order to effectively design beneficial gamification experiences (Hamari & Eranti, 2011).

One of the most common elements used in gamification is the use of badges, which are virtual

tokens that are delivered after completing certain actions and represent visual achievements or

skills (Goligoski, 2012). There are some open frameworks such as Mozilla Open Badges 5,

which provide the possibility of using a shared infrastructure for implementing them. Badges are

commonly used to try to encourage desired behaviors of users (Gibson, Ostashewski, Flintoff,

Grant & Knight, 2015). Several studies show proof that badges can increment user activity, and

encourage more social interaction or other desired behaviors (Grant & Betts, 2013; Anderson,

Huttenlocher, Kleinberg & Leskovec, 2013). In the case of education, the use of badges is strongly

related to the reinforcement of achievement goal theory, trying to create a positive relationship

between mastering a skill, receiving a badge and actual academic performance (Abramovich &

Schunn, 2011). One of the main objectives of using badges in educational settings, is trying

to increment the engagement of students with the platform and the learning flow, which can be

measured with various metrics such as time or frequency of visits to the learning environment

(Muntean, 2011). There are some successful studies using badges in education, for example

achieving an increment in the social activity of 511% in term of replies and 845% in term of

number of threads (Barata, Gama, Jorge & Gonçalves, 2013a). In addition, the TRAKLA2 online

environment reported good results using badges to encourage desired behaviors for 281 students

5http://openbadges.org/

http://openbadges.org/
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(Hakulinen, Auvinen & Korhonen, 2013). Another successful example is GRASS project 6 which

has been focused on the use of open badges to represent the soft skills of learners. Again, although

badges can indeed improve learners motivations (Abramovich, Schunn & Higashi, 2013), bad

designs can lead to counter-effective systems that might interfere with the important goal which

is the learning of students.

Nevertheless, it is not common to find gamification indicators included in research studies,

e.g., the aforementioned review by Dyckhoff et al., does not include any indicator related to

gamification. Therefore, it is still needed the analysis of student behaviors towards badges. Ad-

ditionally, these indicators can help towards adapting the learning experience of students. We

believe there is a knowledge gap here, and that is why in this dissertation we analyze the use of

badges of students in educational environments (Ruipérez-Valiente, Muñoz-Merino & Delgado

Kloos, 2016a). We could use this information to understand how to use badges and instructional

design to improve engagement and motivation in learning experiences. Previous research about

badges on Stack Overflow 7, found that badges can have an effect on the behavior of users e.g.,

to edit more posts (Grant & Betts, 2013). That is why we want to see the effect of badges on

the behavior of students and we analyze different behaviors such as the concentration or inten-

tionality of students towards badges and its relationship with other metrics (Ruipérez-Valiente,

Muñoz-Merino & Delgado Kloos, 2016b, 2017).

2.7. Academic Dishonesty and Illicit Collaboration

Academic dishonesty can be defined as “any type of fraudulent action in an academic work”

(Lambert, Hogan & Barton, 2003). Academic dishonesty is often denominated as ‘cheating’. It

has been one key issue in education since the early beginnings. Singhal (1982) described the

area of academic dishonesty as one of the main problems in contemporary education; now with

the proliferation of online education, new problems related to academic dishonesty are emerging

as well. Some authors divide academic dishonesty in traditional methods (typical education in a

classroom context) and new methods (those who include electronics, new technologies or Inter-

net) (Palazzo, 2006). This issue has been an area of study for at least half a century. According to

a report by McCabe, Treviño & Butterfield (2001), they rate that very high percentages of students

that have attended college, have also engaged in some kind of academic dishonesty. Other studies

have reported different metrics, such as that most students only cheat occasionally and that there

are not many that cheat systematically (Witherspoon, Maldonado & Lacey, 2012), or that around

67% of students have cheated in at least one exam or more (Balbuena & Lamela, 2015). Despite

the exact percentages can vary greatly from one study to another, we should keep in mind that

this can be strongly affected by the specific criteria to consider actions as cheating or not.

Academic dishonesty and cheating can be influenced by many factors. It has been found in

6https://sites.google.com/site/llpgrassproject/
7http://stackoverflow.com/

https://sites.google.com/site/llpgrassproject/
http://stackoverflow.com/


2.7 Academic Dishonesty and Illicit Collaboration 25

different studies that students’ demographics can play an important role, such as the educational

level (Harding, Mayhew, Finelli & Carpenter, 2007), age (Anderman, Cupp & Lane, 2009) or

gender (Harding et al., 2007; Bogle, 2000; Witmer & Johansson, 2015; Anderman et al., 2009). It

was also found that academic dishonesty was influenced for large and public institutions against

small and private ones, which can indicate that a more personalize learning environment battles

cheating (Palazzo, 2006). There are some studies that also suggest a existing relationship between

personality traits and having a dishonest behavior in academia (Anderman et al., 2009; Harding

et al., 2007; Giluk & Postlethwaite, 2015; Sanecka & Baran, 2015; De Bruin & Rudnick, 2007;

Jordan, 2001). One other important factor of influence is the peers in the environment, which

sometimes can even help or be supportive during the cheating process (Payan, Reardon & Mc-

Corkle, 2010). Despite some students might have initially an ethical behavior and do not cheat,

after seeing other peers succeed using cheating methods, they might feel in disadvantage and start

committing unethical acts as well (McCabe & Trevino, 1993). Additionally, whenever they start

cheating, their guilt might decrease and continue in the future (Shu & Gino, 2012).

Many other factors can also have an effect on academic dishonesty, such as the role of teachers

(Broeckelman-Post, 2008; Anderman et al., 2009) or the features available in the educational

software that students are using (Kauffman & Young, 2015). This last item connects well with

the idea of ‘gaming the system’ in which students will try to succeed in a learning environment by

exploiting some of its properties instead of actually learning the courseware (Baker, Walonoski,

Heffernan, Roll, Corbett & Koedinger, 2008; Desmarais & Baker, 2012). One example of gaming

the system could be that a student consumes all the available hints before even trying to read and

solve the problem first. We can find in the literature different gaming methods such as help abuse,

systematic guessing and checking or copying hints (Wood & Wood, 1999; Muldner, Burleson,

Van de Sande & VanLehn, 2011). Gaming is different than cheating, since gaming behaviors

might not be strictly against the established academic rules. Some studies have shown also that

gaming the system might reduce learning. Hence, it is important to develop detectors that are able

to identify this behavior in online environments (Walonoski & Heffernan, 2006; Fancsali, 2013).

In educational settings, students might tend to group together to carry out certain learning

activities (Webb, 1989; Curtis & Lawson, 2001). However, in some occasions this can also be

associated with illicit behaviors, such as sharing answers between peers (Chapman, Davis, Toy &

Wright, 2004). The use of a Computer-Supported Collaborative Learning (CSCL) environments

is wide-spread nowadays. It is a dynamic, interdisciplinary field of research focused in how the

use of technology can provide a better environment in which peers can learn interacting together

and create knowledge through their learning processes (Resta & Laferrière, 2007). We can find

different ways to implement CSCL features such as the use of wikis for collaborative knowledge

(Judd, Kennedy & Cropper, 2010) or the use of peer review to learn from revising the work of

other peers (Eaton & Wade, 2014). One of the most common approaches is the use of discus-

sion forums as online communities, that can provide means for communication between learners

(Rabbany, Elatia, Takaffoli & Zaı̈ane, 2014). The latter, is one of the most frequently used in
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MOOC environments and has been studied with frequency (Joksimović et al., 2015; Cela et al.,

2015). Similar to what has been found in face-to-face courses, MOOC research has also found

that learners tend to group (Li, Verma, Skevi, Zufferey, Blom & Dillenbourg, 2014). Addition-

ally, jointly registering to a course with a friend can have a positive influence towards completion

(Brooks, Stalburg, Dillahunt & Robert, 2015). However, not all collaboration might be ethical,

since there is no ID confirmation about who took an exam or what was done during the test,

in these online environments the issue of academic dishonesty might even be more problematic

(Harmon & Lambrinos, 2008). One important way to battle academic dishonesty is by creating

an honest culture and moral beliefs that help students understand what is expected from them

(Galbraith & Jones, 2010). Several methods have been reported as useful to decrease academic

dishonesty and gaming the system, e.g., the use of honor codes (LoSchiavo & Shatz, 2011) or

delaying help feedback (Baker et al., 2004, 2004).

Different detectors have been developed to detect academic dishonesty (Sheridan, Alany

& Brake, 2005) or gaming the system (Muldner et al., 2011; Walonoski & Heffernan, 2006).

Nonetheless, more work is required in this direction as it can seriously affect learning quality and

educational research. During this dissertation we explore academic dishonest collaboration, by

designing a method to detect student ties based on temporal proximity of their assignment sub-

missions (Ruipérez-Valiente, Joksimović, Kovanović, Gašević, Muñoz-Merino & Delgado Kloos,

2017a). We will discuss this detector in Subsection 3.3.7.1. We also present one specific form

of academic dishonesty that have been found is MOOCs that is known by the name of Copy-

ing Answers using Multiple Existences Online (CAMEO) (Ruipérez-Valiente, Alexandron, Chen

& Pritchard, 2016; Alexandron, Ruipérez-Valiente & Pritchard, 2015; Alexandron, Ruipérez-

Valiente, Chen, Muñoz-Merino & Pritchard, 2017; Northcutt, Ho & Chuang, 2016). In CAMEO,

students use multiple accounts to harvest correct solutions and then insert the correct answers into

their main account, which is used to earn a certificate. CAMEO is strongly related academic dis-

honesty, since students are breaking the agreed honor code specified by the online environments

(e.g., terms of service of Coursera 8 or edX 9). CAMEO is also related to gaming the system since

students are exploiting certain features such as being able to create several accounts and receiving

feedback from submissions. We discuss CAMEO detection algorithm in Subsection 3.3.7.2.

8https://www.coursera.org/about/terms
9https://www.edx.org/edx-terms-service

https://www.coursera.org/about/terms
https://www.edx.org/edx-terms-service
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This chapter describes the method that we follow during the research process, which also

resembles the outline of the dissertation. The overview of the different stages is presented in

Figure 3.1. Now we describe the different phases within our approach:

1. Educational setting and research questions: The first phase is establishing an educational

context, with the tools that we are going to use, the case study, the selected indicators that

we want to explore and the research questions that need to be answered:

27
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a) Tools: From the educational side we have used mostly MOOC platforms that are

usually composed by different tools. Students interact with the learning environment

and contents generating the educational data that later on is analyzed. In some cases

we also had the support of LA dashboards that provide visualizations regarding the

learning process of students in the platform. These LA systems compute most of the

selected indicators that are used during this research. Finally, in order to perform this

research it was necessary the use of different technologies, as well as statistical anal-

ysis software and methods. The different tools that are used during this dissertation

are presented more deeply later on in next Section 3.1.

b) Case studies: We carry out some case studies based on the aforementioned tools,

where students interact with the MOOC platform and the course contents generating

data regarding all the actions that they perform. These studies can have different

contexts. In our research, we focus on MOOCs and SPOCs, albeit other frequent

contexts in the literature include online courses for credit or professional development.

We present the different case studies in Section 3.2.

c) Selected indicators: The indicators vary from one case study to another as the re-

search questions change as well. In our research, we focus on the use of regular

and optional activities, the behavior with badges and online academic dishonesty and

unethical collaboration. Nevertheless, many other indicators are used to answer the

research questions established for this dissertation. The selected indicators and its

implementation details are described in Section 3.3.

2. Analysis and modeling of educational data: During the second phase we perform the

analysis to be able to understand the research questions. During this stage, it is also im-

portant to keep in mind the specific settings of each case study, e.g., topic, weight of each

assignment, deadlines, and so on. Usually, this step is divided in an initial exploratory

analysis and then more complex algorithms to model the educational data and delve into

understanding student behavior:

a) Exploratory analysis: This is the first stage in order to understand the data and

give answer to the research questions. During this stage we use common methods

to provide descriptive statistics regarding the selected indicators that we are analyz-

ing, different visualizations that are useful for interpretation, relationship mining or

comparison between different groups. The specific analysis is detailed in Chapter 4

b) Models and algorithms: The second stage to really understand the data is to ap-

ply more complex algorithms and models so that greater insight can be obtained to

answer the research questions. We divide this stage in two main chapters of the disser-

tation. Chapter 5 builds clustering models that can be used to personalize/adapt given

the different learning profiles and for student profiling. Chapter 6 builds prediction
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Figure 3.1: Overview of the method followed during the dissertation.

and classification models of learning outcomes, which are useful to understand the

influence of the different selected indicators and perform recommendations.

3. Outcomes, recommendations and feedback: Finally, the last phase is to use all the

lessons learned as part of the analysis and modeling, in order to provide feedback that can

improve educational settings. These improvements and outcomes can have diverse types of

applications, e.g., a diverse set of guidelines about which behaviors might be good or bad

for the learning process of students, evaluation of the usefulness, usability and effectiveness

of visualizations, actuator systems, use student profiling to personalize an adapt learning

processes or the detection of problems in resources or course design. These findings are

discussed in depth in Chapter 7.

3.1. Tools

This section presents an overview and brief description of the different tools and software

used during this dissertation. More specifically, Subsection 3.1.1 presents the different MOOC
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platforms that are used to collect the educational data, Subsection 3.1.2 presents an overview of

the two learning analytics dashboards that are used for support and research during this disserta-

tion and Subsection 3.1.3 presents the different technologies and statistical analysis software and

methods.

3.1.1. MOOC Platforms

We analyze data from different case studies using the following MOOC platforms: Khan

Academy (Subsection 3.1.1.1), Open edX (Subsection 3.1.1.2) and Coursera (Subsection 3.1.1.3).

We selected these 3 platforms since they are some of the most representatives within the MOOC

panorama. Each one of these platforms might have different functionalities and data available

which limits also the type of research that can be pursued.

3.1.1.1. Khan Academy

Khan Academy1 is a not-for-profit educational institution founded originally by Salman Khan

with the mission of providing free education accessible for every person in the world. They

have already reached millions of students and are being translated into 36 languages. Khan

Academy was one of the pioneer educational platforms to provide open content and it was orig-

inally founded by donations from organizations such as Google. Khan Academy incorporated

since its beginning modern engaging ideas for gamification and learning analytics. During our re-

search we use Khan Academy case studies to investigate the use of optional activities and badges,

which are features that are not present in the other two MOOC platforms that we explore.

Optional activities As part of the dissertation, we analyze the use of optional activities. We

understand that optional activities are those that can be used voluntarily and students are not

oblige to use in order to pass the requirements of a course. Depending on each specific case

study, activities might or might not be optional, e.g., in some courses social activity in the forum

might be mandatory and graded, whereas in other courses might be completely voluntary. In our

case, we analyze the use of the five activities that were optional in our experiments using Khan

Academy. First, two of these activities are related to games and social networks:

1. Profile avatar: Students can change the default avatar of their profile. They have access

to a selection of six different avatar images at the beginning of using the platform and

can earn access to more images by acquiring points in their interaction with the platform

functionalities as can be seen on the upper left side of Figure 3.2a.

2. Badge display: Students can personalize a selection of badges to be displayed on their

personal profile. The badges that can be displayed are the ones that each student has earned

1https://www.khanacademy.org

https://www.khanacademy.org
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(a)

(b) (c)

Figure 3.2: This figure shows the different optional activities in Khan Academy. Subplot (a)
shows avatar personalization and badge display, Subplot (b) shows feedback and votes function-
ality and Subplot (c) shows goals system.

previously. The upper right side of Figure 3.2a shows a portion of the personal profile

where the badge display can be observed.

Then, there are three optional activities that are more related to learning:

3. Feedback: Comments that students post to videos of the course are considered as feedback

(Figure 3.2b).

4. Votes: Students can vote down (-1), be indifferent to (0) or vote up (+1) the feedback that

other students have posted to videos. Figure 3.2b shows an example of a comment that has

some votes.

5. Goal: Students can set goals, i.e., they choose a selection of videos or exercises that must

be completed by them. When they finish the goal, they obtain an additional amount of

points. Figure 3.2c shows an example about how to set a custom goal.

Badges One big area that we analyze is the use and behavior of students with badges. Khan

Academy incorporates a wide badge system that has been useful to analyze the behavior of stu-

dents with badges. Table 3.1 shows all badge types split in four categories. Each category contains

the different types of badges that can be acquired and next a description of the requisites for each

type of badge is presented. Finally, the last column has the number of different badges of the

same type that can be earned. As an example the ‘Streak’ type of badge have five different lev-

els which are denominated as ‘Nice’, ‘Great’, ‘Awesome’, ‘Ridiculous’ and ‘Ludicrous Streak’

badge that are triggered when the student correctly solves 20, 40, 60, 80 and 100 exercises in a
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Table 3.1: Classification of the different badge categories in our Khan Academy instance.

Badge category Type of badge Requisites
Number of different

badges

Exercise

Streak To solve several exercise correctly in a row of the same skill. 5

Timed Problem To solve a certain number of correct problems within a specific amount of time 5

Exercise Completion To complete a specific number of exercises 4

Recovery Problem To get exercise problems correct after having some problems solving exercises 2

Unfinished Exercise These badges are awarded when the user does not acquire a,proficient level but he is answering many exercises correctly 3

Topic These badges are awarded when achieving a proficiency level in a,subset of exercises Different for each

courseChallenge These badges are awarded when achieving a proficiency level in a set of exercises which are related to the same topic of knowledge

Video
Topic Time To watch a specific amount of videos in the same topic 4

Video Time To spend a certain amount of time watching videos 1

Social

Feedback To receive up votes in your questions or answers 6

Discussion To flag or vote the questions and answers of other peers 4

Profile To customize your personal profile 1

General

Points To earn a certain amount of points 2

Power Time To watch an specific amount of video and completing a certain amount of exercise problems within a set amount of time 3

Consecutive Activity To consecutively perform an activity on the site for a set of days in a row 3

row respectively. Additionally, for the specific research on the behavior with badges, we focus on

the following two types of badges:

Topic Badge (topic badge): These badges are awarded to students when they ac-

complish to earn proficiency in a set of exercises (skills). In our experiment, the required

exercises to earn one badge are always different from the others. This means that each

problem belongs only to the requirements of one topic badge. Each one of these badges

can be earned only once to each student. As part of the experiment, the badge system was

customized and new badges were added in the case of topic badges, to match the exercises

that were developed for each one of the courses. A total number of 7, 12 and 16 topic

badges were designed for the mathematics, physics and chemistry courses respectively.

The amount of topic badges is in relationship with the amount of exercises in each course

and the relationship between exercises, as related exercises were united to provide a topic

badge about a specific area of knowledge.

Repetitive Badge (repetitive badge): We classify within this category those badges

that can be earned repetitively by the same student as many times as students want (as long

as they keep fulfilling the required conditions). Specifically in our experiment, we have

two types of badges that fall within this category, which are called as ‘Timed Problem’

and ‘Streak’ badges. The first ones are delivered when solving problems rapidly, and the

second ones when solving several exercises correctly in a row. Each one of these two types

of badges have 5 different levels. The different levels of the ‘Timed Problem’ type are quite

similar as the former one. So there are a total number of 10 badges, but note that these

badges can be earned repetitively.

3.1.1.2. EdX and Open edX

EdX is a not-for-profit venture with the general objective of improving online learning. It was

initially founded by Harvard and Massachusetts Institute of Technology (MIT) but currently has
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a consortium of more than 90 global partners. More than 500 MOOCs have been delivered in

edX with more than 5 million students. In June 2013, they open sourced the software that they

use to run the MOOCs creating a collaborative project called Open edX 2 which at the moment it

is being used in 18 languages, 35 countries, more than 200 external institutions reaching over 20

million students 3.

3.1.1.3. Coursera

Coursera is a for-profit educational company that was founded by Andrew Ng and Daphne

Koller, two Stanford professors offering MOOCs from top universities of the world. The software

is proprietary and it is not available for interested stakeholders. Coursera has already offered 4

more than 1600 MOOCs, has more than 145 university partners reaching over 22 million students

and delivering more than 600.000 completion certificates.

3.1.2. Learning Analytics Dashboards

MOOC platforms such as the ones presented in previous Subsection 3.1.1 often generate large

datasets that usually remain unused by the instructors and students that are taking those courses.

The learning analytics support provided in terms of visualizations is often not enough to fulfill

the requites of instructors and students. The author of this dissertation and other researchers at

Universidad Carlos III of Madrid (UC3M) have been involved in the development of two learning

analytics dashboards. One is ALAS-KA (Subsection 3.1.2.1) and the second one is ANALYSE

(Subsection 3.1.2.2). These visualization dashboards provide additional indicators and informa-

tion regarding the learning process for the instructors and students taking a course. This infor-

mation can be used by instructors as a data-driven help for decision making and to keep track of

their students whereas students can improve their self-awareness and self-regulated skills. We use

these two applications for different purposes in our research.

3.1.2.1. ALAS-KA for Khan Academy

ALAS-KA (Ruipérez-Valiente et al., 2013, 2015, 2015b) was developed as part of the master

thesis of the author of this dissertation and is used for research purposes during the studies of this

dissertation that involved Khan Academy data. ALAS-KA is designed as a plug-in for the Khan

Academy platform. The Khan Academy system as well as ALAS-KA run over the Google App

Engine (GAE) architecture and use the GAE Datastore for data persistence. In addition, the un-

derlying programming language is Python. ALAS-KA needs the data generated by students while

interacting with Khan Academy to process it to obtain higher level information. Furthermore, we

2https://open.edx.org/
3https://con.openedx.org/
4https://about.coursera.org/

https://open.edx.org/
https://con.openedx.org/
https://about.coursera.org/
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use the Google Charts Application Programming Interface (API) for visualizations. A more in-

depth description of technology aspects has been addressed in previous work (Ruipérez-Valiente

et al., 2013; Ruipérez-Valiente, Muñoz-Merino & Delgado Kloos, 2014).

ALAS-KA has been open sourced in GitHub 5 and is therefore available for use for the com-

munity, it is also possible to consult a video online 6. A total set of 20 different parameters have

been introduced in ALAS-KA. Specific formulas for some of these metrics can be consulted as

part of the publications (Muñoz-Merino et al., 2013). The metrics of ALAS-KA are divided into

six functional modules (Ruipérez-Valiente et al., 2014) which are enumerated next:

‘Total Use of the Platform’ provides insight about the use that students have done in

the platform.

‘Correct Progress on the Platform’ contains parameters which try to assess how good

the interactions have been.

‘Time Distribution of the Use of the Platform’ focuses on analyzing the distribution

of the time in which users have interacted with the platform.

‘Gamification Habits’ offers a couple of metrics to see if students are motivated by

gamification elements.

‘Exercise Solving Habits’ analyzes users’ behaviors when solving exercises such as

hint avoidance, try abuse or unreflective.

‘Affective States’ (Derick Leony, Pedro J. Muñoz-Merino, José A. Ruipérez-Valiente,

Abelardo Pardo, David Arellano Martı́n-Caro & Carlos Delgado Kloos, 2015) reports the

levels of emotions of students.

Each one of the parameters is represented by the two types of visualizations that follow:

Class visualizations: These visualizations present an overview of the status of the

entire class or a set of students. The main type of graphic used for class visualizations are

pie charts because we want to give an overview of how the class is distributed for each

metric. An example is shown in Figure 3.3a.

Individual visualizations: In-depth visualizations enable teachers to analyze each

student separately and self-reflection for students. Most of the visualizations use bar charts,

and also establish a comparison with the average of the class; Figure 3.3b shows an exam-

ple.

5https://github.com/jruiperezv/ALAS-KA
6https://www.youtube.com/watch?v=vDs1tt7siBA

https://github.com/jruiperezv/ALAS-KA
https://www.youtube.com/watch?v=vDs1tt7siBA
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(a) (b)

Figure 3.3: Visualization examples of ALAS-KA, on the left regarding the time distribution of a
single student and on the right the use of the platform of all the class.

3.1.2.2. ANALYSE for Open edX

ANALYSE is a project that has been developed within the Telematics Department at UC3M.

Several students and researchers have collaborated towards its development, including the author

of this dissertation. ANALYSE is a Django application embedded within the LMS of Open edX

as one more of the installed applications. ANALYSE processes the data generated by the stu-

dents and provides a visualization dashboard for instructors and students that adds information

and graphics that are not enabled by default in Open edX. More information regarding technical

details of the design are available in previous publications (Santofimia Ruiz et al., 2014; Ruipérez-

Valiente et al., 2016). ANALYSE works within the scope of each course. This means that the

metrics are generated per course and it is accessible by instructors and students by clicking on

a new tab in the course contents. Therefore, instructors belonging to a course are able to access

all the individual visualizations and aggregates of the entire class about the students that have

enrolled for that course, whereas students can only access their own information. In the case that

instructors or students are enrolled in several courses, they are able to access the information of

each course separately, but they do not have access to information available from courses they are

not enrolled in.

There are 12 different visualizations that have been grouped in those related to exercises,

videos and course activity (Ruipérez-Valiente et al., 2017). The visualizations can be used for dif-

ferent purposes e.g., to detect problems in video resources (Pijeira Dı́az et al., 2015). ANALYSE

has been also used in different educational experiments (Redondo, Muñoz-Merino, Ruipérez-

Valiente, Delgado Kloos, Pijeira Dı́az & Santofimia Ruiz, 2015). The interface and setting of

each visualization are similar. On the left we can see a description and selection boxes for the

visualization options. The graphic is in the center of the visualization and on the right we can find

the descriptive legend. Figure 3.4 shows an example of ‘Course Summary’ visualization within

the dashboard for instructors.
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Figure 3.4: Interface of ANALYSE and visualization example of ‘Course Summary’ plot.

3.1.3. Technologies, Statistical Methods and Software

The main software, libraries and statistical methods that have been used during this disserta-

tion are the next ones:

Web development: Python with Django 7.

Data persistence: MySQL, MongoDB, GAE Datastore, and text logs in different

formats such as JavaScript Object Notation (JSON), eXtensible Markup Language (XML)

or Comma-Separated Values (CSV) formats.

Statistical software: R (caret and dplyr packages), Python (pandas and scikit-learn

libraries) and SPSS.

Information visualization: R (ggplot2 package), JavaScript (Google Charts 8 and

Highcharts 9 APIs), Gephi 10.

Group comparison: Independent Student’s t-test 11, One-way Analyses of Variance

(ANOVA), Multivariate Analysis of Variance (MANOVA).

Supervised ML: We have used algorithms such as linear and logistic regression (glm

package), Random Forests (RF) (randomForest package), Support Vector Machine (SVM)

(svmRadial function within kernlab package), k-Nearest Neighbours (kNN) (knn package)

and Gradient Boosting Machine (GBM) (gbm package).

Clustering: Two-Step Cluster Analysis 12.
7https://www.djangoproject.com/
8https://developers.google.com/chart/
9http://www.highcharts.com/

10https://gephi.org/
11https://en.wikipedia.org/wiki/Student%27s t-test
12https://www.ibm.com/support/knowledgecenter/SSLVMB 20.0.0/com.ibm.spss

.statistics.help/idh twostep main.htm

https://www.djangoproject.com/
https://developers.google.com/chart/
http://www.highcharts.com/
https://gephi.org/
https://en.wikipedia.org/wiki/Student%27s_t-test
https://www.ibm.com/support/knowledgecenter/SSLVMB_20.0.0/com.ibm.spss.statistics.help/idh_twostep_main.htm
https://www.ibm.com/support/knowledgecenter/SSLVMB_20.0.0/com.ibm.spss.statistics.help/idh_twostep_main.htm
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3.2. Case Studies

This section describes the different case studies and educational data that are analyzed in the

dissertation. Subsection 3.2.1 describes the SPOC case studies that have been used as remedial

courses at UC3M and using a local instance of Khan Academy platform. Then, we describe

several MOOC case studies. Subsection 3.2.2 describes ‘The Spain of Don Quixote’ MOOC

delivered on edX by UAM and Subsection 3.2.3 describes ‘Mechanics Review’ MOOC deliv-

ered also on edX by MIT. Finally, Subsection 3.2.4 describes the MOOCs ‘Music Theory’ and

‘Introduction to Philosophy’ delivered on Coursera by the University of Edinburgh.

3.2.1. SPOCs: Physics, Chemistry and Math with Khan Academy

We analyze several SPOCs that lie within the context of the so called 0-courses at UC3M 13.

These courses are for first-year students who are entering a science degree and would like to re-

view the concepts required for physics, chemistry and mathematics during their first year at the

university, i.e., the courses are not mandatory for students entering at university but they can sub-

scribe to them to reinforce their initial knowledge. Most of the participants are first year students

around 18 years old. An ‘inverted classroom’ methodology (Lage, Platt & Treglia, 2000) is being

used for those courses, that is, students first learn and review concepts at home by using an online

platform during the month of August, and next take the face to face lessons in the university dur-

ing the month of September. This initiative started with a pilot experience in the Summer of 2012

with physics, and expanded to chemistry and mathematics also next years. During the years 2012,

2013 and 2014 the university used Khan Academy as the support platform, during 2015 and 2016

the support platform was Open edX. Our findings suggest that students enjoyed the application of

this initiative and also that it might improve the learning of students compared to more traditional

approaches (Muñoz-Merino, Ruipérez-Valiente, Delgado Kloos, Auger, Briz, Castro & Santalla,

2016; Muñoz-Merino, Méndez Rodrı́guez, Delgado Kloos & Ruiperez-Valiente, 2017). During

this dissertation we use the data that belongs to 2013 and 2014 0-courses with Khan Academy,

data from 2012 was discarded as it was a pioneer initiative which had few students.

The learning resources and activities that are prepared by teachers for the online phase are

composed of a set of videos and exercises. Although it is not mandatory for the students to access

these online courses, it is strongly recommended; this is an important fact when measuring the

use of the platform. Some of the students might have enrolled to several of these courses. It is

important to note that when reporting descriptive statistics in the courses, we use the total number

of students in the courses, i.e., students can be counted more than once, as each student might

have behaved differently in each course and that is also valuable. However, when we perform

inferential statistics such as correlation, we use the number of unique students i.e., every student

is only counted once, in order to maintain the assumption of independence between cases for such

13https://www.uc3m.es/ss/Satellite/Grado/en/TextoMixta/1371213440582/Zero
courses

https://www.uc3m.es/ss/Satellite/Grado/en/TextoMixta/1371213440582/Zero_courses
https://www.uc3m.es/ss/Satellite/Grado/en/TextoMixta/1371213440582/Zero_courses
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statistical techniques. This is due to the fact that we join data from all courses together.

The badge system of the Khan Academy was presented in Subsection 3.1.1.1. As part of

the customization of the platform, the badge system was also adapted for both case studies of

Subsection 3.2.1.1 and Subsection 3.2.1.2. The quantity of topic badges is different for each

course. There is a base amount of common badges of 43 in all courses which is the sum of Table

3.1 badges and a specific amount of 7, 12 and 16 topic badges that were exclusively designed for

the mathematics, physics and chemistry courses respectively.

(a) (b)

Figure 3.5: Subplot (a) shows an example of the original badge system of Khan Academy whereas
Subplot (b) shows the adapted badge system for our case studies with the new topic badges.

3.2.1.1. Summer 2013

These SPOCs ran during the August month of 2013 and had 167 students in the physics

course, 73 students in chemistry and 243 students in mathematics, that at least logged into the

platform once. Thus, there is a total of 564 cases from the different courses. Additionally, as

some of the students take more than one course, the number of unique students who participated

in this experience was 372. The available courseware for these courses was 30 videos and 30

exercises in physics, 25 videos and 30 exercises in mathematics, and 22 videos and 49 exercises

in chemistry.

3.2.1.2. Summer 2014

These second set of SPOCs run during the August month of 2014. In this second set we ran

an experiment with a pre-test at the beginning and post-test after interacting with the platform

to compute learning gains. These tests were available in physics and chemistry courses, thus we

discarded math data from this dataset. The total amount of students who logged into the Khan

Academy platform at least once was 156 for physics and 69 for chemistry. Additionally, the

courseware contained 51 exercises and 24 videos for chemistry, and 33 for both exercises and

videos for physics.
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The purpose of enabling a pre-test and post-test is to be able to measure the learning achieve-

ment of students while interacting with the Khan Academy platform and to relate it with different

indicators. We implement a pre-test and a post-test design for the second experiment. The pre-

test and post-test were offered in the Moodle LMS. The pre-test aimed at measuring the students’

prior knowledge in each one of the courses and was made available at the beginning of August.

Students had to complete it in order to be granted access to Khan Academy contents. At the

end of August, the post-test was enabled, so that the students’ knowledge after interacting with

the Khan Academy platform could be measured. It is important to note that the post-test was

not mandatory thus it was left undone by many students. The pre-test and post-test were a set of

questions designed to have a similar level of difficulty. Then we can infer the learning gain of

students (LG = posttest − pretest).

The pre-test and post-test in physics had 10 questions each whilst the ones of chemistry had 21

as the contents which needed to be reviewed were broader. In order to guarantee that the difficulty

of the pre-test and post-test was similar, the questions were pulled from a pool of similar difficulty.

A total of 163 students in physics and 77 in chemistry completed the pre-test, but only 48 students

in physics and 30 in chemistry also did the post-test. This was due to the fact that students had to

do the pre-test in order to be able to access the Khan Academy contents, while the post-test was

a voluntary activity (although emails were sent in order to encourage students to do both tests).

In addition, not all the students who did both tests were included into the analysis. We added a

condition that students needed to spend at least 30 seconds multiplied by the number of questions

of the test in each test as this is the minimum estimated time for a student to read a question

and answer it. We set this condition in order to remove those students that answered the test just

randomly e.g., some students took only 1 minute or less to answer the complete test. With these

restrictions, the total number of students that were considered for the analysis is 25 for chemistry

and 44 for physics, which makes a total amount of 69 students. Based on this case study we define

three variables that are the following:

Pre Test Score (pre test score): Score of the student in the pre-test of this case study.

Pre Test Time (pre test time): Time required to complete the pre-test of this case study.

Learning Gain (learning gain): Variable defined as the difference between the post

test score and the pre test score, providing an approximation about the learning achievement

of the student while interacting with the platform.

3.2.2. MOOC ‘The Spain of Don Quixote’ on edX

UAM offered the first delivery of their MOOCs at edX platform in February 24th 2014 and

this dataset belongs to one on these MOOCs, which is entitled ‘The Spain of Don Quixote’ -

Quijote501x 14. A total of 3.530 students enrolled in the course. However, only 1.718 students
14https://www.edx.org/course/la-espana-de-el-quijote-uamx-quijote501x-0

https://www.edx.org/course/la-espana-de-el-quijote-uamx-quijote501x-0
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were actively involved with any of the course content of which 164 students obtained a grade of

over 60% and thus received a certificate. Therefore, around 4.65% of the enrolled students earned

a certificate, which is a completion rate similar to the ones reported in the literature. It is a 7-week

course where every week there are multimedia resources, discussion forums, practical activities

without evaluation, and also a final evaluation activity per week. The first and last week (seventh),

students were evaluated with a peer review activity. For weeks 2 to 6, they were evaluated with

a multiple choice test of 21-23 questions. Each weekly evaluation contributed a 14% to the final

grade of the course. For the first three weeks of this course, the evaluation activities deadlines

are four weeks after the release date. Then, from the fourth week to the end of the course the

evaluation activities deadlines are three weeks after.

3.2.3. MOOC ‘Mechanics Review’ on edX

The case study is a MOOC in the topic of introductory physics called ‘Mechanics Review’

about Newtonian Mechanics 15 and run on edX by MIT faculty during the Summer of 2014. A

total amount of 13.500 participants enrolled in the MOOC, and 502 of them managed to earn a

certificate. The course lasted for 14 weeks and there were 12 mandatory units and two additional

optional units on advanced materials. The course contained about 1.000 problems and 69 videos.

These problems are organized as checkpoints embedded within e-text and videos, and homework

and quiz problems which should be done at the end of each week. The weight of each type of

assignment towards the final grade is different, being quizzes the most valuable and checkpoint

the less valuable (Quiz > Homework > Checkpoints).

3.2.4. MOOCs ‘Music Theory’ and ‘Introduction to Philosophy’ on Coursera

This case study involves two different MOOCs run on Coursera platform and taught by faculty

from the University of Edinburgh. The first one is ‘Music Theory’ 16 that was five weeks long,

running from 14/07/14 to 18/08/14 and a total amount of 89.893 students signed up, 1 graded

quiz per week with 10–14 questions each quiz. The second one is ‘Introduction to Philosophy’ 17

that run for 7 weeks from 15/09/14 to 10/11/14, had a total sign up of 33.446 students, 1 graded

quiz per week with 6–12 questions each quiz. We used Coursera trace data in JSON format which

contain records of all course events. From all the students that signed up, 2.359 and 5.159 students

submitted all questions for philosophy and music respectively.

3.3. Selected indicators

In this section, we provide an overview of the different indicators we selected and use over

the different case studies during this dissertation. We analyze data from different VLEs such as
15https://www.edx.org/course/mechanics-review-mitx-8-mrevx
16https://www.coursera.org/learn/edinburgh-music-theory
17https://www.coursera.org/learn/philosophy

https://www.edx.org/course/mechanics-review-mitx-8-mrevx
https://www.coursera.org/learn/edinburgh-music-theory
https://www.coursera.org/learn/philosophy
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Khan Academy, Coursera or Open edX, since each one of these platforms might have specific

functionalities, some of the proposed indicators might not make sense in some platforms (e.g.,

those related to gamification only make sense in Khan Academy since there are not gamification

features in Coursera or Open edX). Additionally, the data format for each platform is different

and can also limit which of the indicators can be computed, since some data logs are richer than

others. Furthermore, depending on the case study we have more interest in some indicators than

others. Therefore, not all case studies use all the indicators described in this section. The organi-

zation of the indicators is as follows. We have grouped the indicators in those related to the use

of the platform (Subsection 3.3.1), those related to the correct progress in the platform (Subsec-

tion 3.3.2), time in the platform and its distribution (Subsection 3.3.3), indicators that describe

problems and submissions (Subsection 3.3.4), behavioral indicators about exercise solving habits

(Subsection 3.3.5), indicators about badge behavior (Subsection 3.3.6) and finally we describe the

two algorithms to compute the indicators regarding online collaboration and academic dishonesty

(Subsection 3.3.7).

3.3.1. Use of the Platform

These features focus on how many learning items each student have interacted with. This is

related to the number of videos and exercises a user has accessed, or the time a user has spent in

the platform and on those different types of activities. These parameters do not take into account

if a user has done very well or bad their exercises, but only the total use on the platform.

Exercises Accessed (exercises accessed): The amount/percentage of unique exercises

accessed by a given student.

Videos Accessed (videos accessed): The amount/percentage of unique videos ac-

cessed or downloaded by a given student.

Optional Activities (optional activities): This variable measures the number of op-

tional activities (such as setting up an avatar or learning goals) that have been used by

the student. More information regarding the optional activities can be found in Subsec-

tion 3.1.1.1 and about this metric in previous publications (Ruipérez-Valiente et al., 2014,

2016).

Number of Active Days (number active days): Number of different days that the

student logged into the platform and performed some action.

Number of Active Sessions (number active sessions): Number of different sessions

of the student with the course.

Number of Events (number events): Number of events generated by the student during

their interaction with the course.
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Number of Submissions (number submissions): The total number of problems that a

particular student submitted.

Number of Threads Viewed (number threads viewed): The total number of unique

discussion topics accessed by a given student.

Average Number of Hints (average number hints): Average number of hints asked by

the student.

Average Number of Attempts (average number attempts): Average number of at-

tempts that a student makes trying to solve an exercise.

3.3.2. Correct Progress in the Platform

The features of this section describe indicators that represent how well users have interacted

with the platform. This block does not take into account the total use but the performance of the

student with the proposed materials.

Proficient Exercises (proficient exercises): Percentage of exercises in which the stu-

dent has acquired a proficiency level (from 0 to 100).

Exercise Effectiveness (exercise effectiveness): This is a specific variable that com-

putes a measure regarding the progress of students with exercises and might be specific for

each course and platform. More information is available in previous work (Muñoz-Merino

et al., 2015).

Exercise Effectiveness with No Help (exercise effectiveness no help): This is the same

previous measure, but adapted to consider only exercises solved without using hints.

Video Effectiveness (video effectiveness): This is a specific variable that computes a

measure regarding the progress of students with videos and might be specific for each case

study and platform. More information is available in previous work (Muñoz-Merino et al.,

2015).

Completed Videos (completed videos): Percentage of videos completed by the stu-

dent.

Performance First Attempt (performance first attempt): Percentage of exercises that

were solved correctly in their first attempt to the exercise.

Average Time for Correct Answer (average time correct answer): Average amount of

time required to provide a correct answer to an exercise.

Number of Attempts per Correct Answer (number attempts correct answer): Average

number of attempts required to provide a correct answer to an exercise.
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Certificate (certificate): Binary variable that represents the acquisition of a certificate

and can take just two values: 0 (if it is not achieved) or 1 (if it is achieved).

3.3.3. Time in the Platform and its Distribution

These features describe the amount of time in the platform and how it has been distributed

among the different activities.

Exercise Time (exercise time): Summation of time invested between the access to a

problem and the submission attempt to the problem. When there are several attempts, the

time of each one is computed individually. This is computed separately for each exercise

assignment.

Video Time (video time): Summation of all the time invested in videos measured as

the play time.

Page Time (page time): Summation of time spent in course pages by the student.

Total Time (total time): Summation of all the time invested interacting with the plat-

form.

Average Time per Day (average time per day): Average time spent in each day of the

course.

Dispersion of Time per Day (dispersion time per day): Dispersion measure of the

time invested in each day of the course.

Dispersion of Time per Exercise (dispersion time per exercise): Dispersion measure

of the time invested in each exercise separately.

Dispersion of Time per Video (dispersion time per video): Dispersion measure of the

time invested in each video separately.

3.3.4. Problem and Submission Features

These features describe specific characteristics of a problem and about the submission at-

tempts of students to problems. First the characteristics of problems that we use are:

Location (location): Location of the problem or video within the course structure

indicating with an integer the chapter where the problem is located.

Type of Assignment (type assignment): Factor variable that indicates the type of as-

signment e.g., free text peer review, checkpoints, exam, laboratory, etc.

Type of Response (type response): Factor variable that defines the type of response

of each problem e.g., multiple choice, fill the gap, formula, etc.
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Show Answer (show answer): Factor variable that defines the configuration of the

‘show answer’ button. It can be available always, only after maxing all your attempts or

only after the due date.

Random (random): Binary variable indicating if the problem contains random vari-

ables or not.

Max Attempts (max attempts): This variable specifies the maximum number of at-

tempts allowed in the problem.

Then, the features related to the submission attempts of students are:

Time to Deadline (time to deadline): Difference of minutes between the submission

deadline for the problem and the actual timestamp when the student submitted the problem.

Attempt Duration (attempt duration): Number of minutes elapsed between the event

when the student accessed the problem and the submission of the problem.

Attempts Required (attempts required): Number of attempts required to answer cor-

rectly the problem.

3.3.5. Behavior Solving Exercises

These parameters represent behaviors that student might do when interacting with exercises.

Exercise Abandonment (exercise abandonment): Percentage of exercises that were

started but the student never achieved mastery in them.

Video Abandonment (video abandonment): Percentage of videos that were started by

the student but never completed.

Follow Recommendations (follow recommendations): This variable provides the per-

centage of exercises that were accessed by the student via a resource recommendation sent

by the platform.

Forgetful User (forgetful user): This variable provides information about the percent-

age of exercises that students failed to solve after solving an exercise of the same type

correctly.

Video Avoidance (video avoidance): Variable about users who failed to solve cor-

rectly an exercise and still they do not watch the video which is associated to that exercise.

Hint Avoidance (hint avoidance): Variable about users who failed to solve correctly

exercises and still they do not ask for hints.
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Unreflective User (unreflective user): Variable about students who attempt to solve

an exercise too many times without reflecting.

Hint Abuse (hint abuse): Variable about students who ask for too many hints without

reflecting on the exercise statement or previous hints.

3.3.6. Behavior with Badges

This section describes the implemented indicators which model students’ behavior towards

badges. The objective is to propose some measures which can provide a deep insight about the

interaction of users with badges. These four models take into account the specific topic badges

and repetitive badges that were explained in Subsection 3.1.1.1. We provide here only a brief

overview, more details can be found at (Ruipérez-Valiente et al., 2016b, 2017). We defined the

following four indicators:

Intentionality on Topic Badges (intentionality topic badges): The subset of exercises

that are required to earn topic badges are always different. Therefore, we can try to infer

if a student is trying to maximize the number of topic badges that he/she is acquiring, or if

they are earning them as just part of the learning process. The implemented algorithm gets

the number of problems that the student has achieved as well as the number of topic badges

earned by the student. Then, it calculates the maximum number of topic badges that the

student could have earned with that number of proficient problems in case he/she intended

to do that.

Intentionality on Repetitive Badges (intentionality repetitive badges): Upon achieve-

ment of proficiency, students receive a notification from the system, and they should stop

doing exercises of this same skill and move on to the next one. In the case that students

keep doing exercises of a skill in which they are already proficient, and they keep earning

repetitive badges this way, we hypothesize that are earning those badges on purpose. Fi-

nally, we can compute a percentage on the amount of repetitive badges that were earned

intentionally, and that provides information about if the student is trying to earn badges on

purpose instead of as part of the learning process.

Concentration on Achieving Badges (concentration badges): Students can devote all

their consecutive actions into fulfilling the requirements of one badge. Another possibil-

ity is that students carry out different actions in the middle, which are not related to the

requirements of that badge before actually receiving the badge. Since topic badges have

as requisites a fixed set of exercises, we can track if students have done the required exer-

cises in a consecutive way or others in the middle before earning a topic badge. Following

this criterion we can infer the proportion of the previous exercises that a student attempted

that actually belong to the requisites. This metric is applicable only to topic badges since

repetitive badges by doing many times a single action.
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Time Efficiency in Badges (time efficiency badges): The time invested by students

can be used to obtain measures which give insight about the number of badges they earn

per unit of time. We define this measure as the total number of badges divided by total time

in the platform.

3.3.7. Online Academic Dishonesty and Collaboration

As part of the dissertation we design and implement two novel algorithms to detect different

types of academically dishonest behaviors. The first one is related to accounts that always submit

their assignments very close in time (Subsection 3.3.7.1). The second one is a particular cheating

method denominated as CAMEO where students create puppet accounts that are used to obtain

the correct solutions that are later on used in their main account to gain a certificate (Subsection

3.3.7.2).

3.3.7.1. Close Submitters

We aim to detect user accounts of students in online courses that always submit their assign-

ments very close in time. We want to address this issue by providing a systematic method and

algorithm that can be easily applied to any online environment where students have to perform

certain learning activities. This algorithm will be able to detect different associations between

accounts such as unethical behaviors but also genuine beneficial collaborations between students.

In order to build this algorithm let us start by defining a vector ~s = [s1 · · · sN ] representing all the

students in a course and a vector ~p = [p1 · · · pM ] representing all the problems in a course. Then

we can define a matrix SP with dimensions NxM where each row represents a student (~s) and

each column represents a problem (~p) in the course, thus SP has the following shape:

SP =


sp11 sp12 sp13 . . . sp1M

sp21 sp22 sp23 . . . sp2M
...

...
...

. . .
...

spN1 spN2 spN3 . . . spNM


where the value of each cell e.g. spjk represents the timestamp of the last submission done by

sj (student j) to Pk (problem k). Additionally, spjk = NA, in the case that sj did not submit pk.

Then let us define a symmetric distance matrix D with dimensions NxN where both rows and

columns represent the vector of students (~s) and it will store the distance between two students

taking into account their submissions to all problems. Then D has the following shape:

D =


d11 d12 d13 . . . d1N

d21 d22 d23 . . . d2N
...

...
...

. . .
...

dN1 dN2 dN3 . . . dNN


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where the value of each cell dij represents the distance between all the submissions of si and

sj , more formally and applying for example a euclidean distance, dij is defined as follows:

dEUCij = dist(i, j) =

√√√√ M∑
k=1

(spik − spjk)2 (3.1)

Where the function dist(i, j) can take different distance metrics and this can lead to different

matrices depending on the distance metric. Since the matrix is symmetric, note that dij = dji.

Additionally, note that the entries of the main diagonal are 0 (dii = 0 for all 1 ≤ i ≤ N , thus

D is also a hollow matrix). For those distances between students that cannot be computed, then

dij = dji = NA.

Notice the complexity of computing this matrix is O(N2∗d), where d is the cost of computing

a distance between two arrays of submission timestamps and depends on the distance metric and

the number of submissions. Therefore the complexity grows exponentially with the number of

students that we want to include in the distance matrix. Now we are interested in the distance

values of the lower triangular part of the matrix without including its diagonal (that means every

possible different combination of students) and we define this vector of distances as ~d which is

has the following shape [studenti, studentj , dist(i, j)] to allow identification of each distance.

From the previous general mathematical definition, there are certain decisions we take about

the criteria for a practical implementation in the case study. These decisions are as follow:

We keep only the assignments that are graded quizzes.

We keep the last submission timestamp for a given problem and student, that is the

timestamp that is stored in SP.

To include an account in the analysis we require that all the graded quizzes within the

course have been submitted. This decision makes the implementation less computationally

demanding because there are fewer students and increases certainty that distances are not

small by mere chance.

In terms of distance metrics we decide to use average distance metrics since this way

is easier to compare different courses that can have different amount of assignments. Also,

we consider that it is adequate to use squared metrics because we want to heavily penalize

far distances. Therefore, we decide to use two distance metrics, Mean Absolute Deviation

(MAD) and Mean Squared Deviation (MSD) that are defined as follow:

dMAD
ij =

1

M

M∑
k=1

|spik − spjk| (3.2)

dMSD
ij =

1

M

M∑
k=1

(spik − spjk)
2 (3.3)
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More information about this algorithm and method can be found in our publication (Ruipérez-

Valiente et al., 2017a). Finally, we only need to empirically compute a threshold for ~d and all the

triplets below that value will be labeled as close submitters. Following this method we define the

following variables:

Close Submitter (close submitter): Boolean variable indicating if a specific account

was detected as close submitter by the algorithm or not.

Order (order): Given two accounts in the course detected as close submitters, this

variable ranges from -1 to 1 indicating the sign of the order of the submissions of one

respect to the other i.e., when the variable takes the value of 1 it means that the first account

always submitted first and when it is -1 it means that the second account always submitted

first; values in between indicate middle situations.

3.3.7.2. Copying Answers using Multiple Existences Online

This algorithm aims to detect the use of multiple accounts by the same student for copying

answers. The method works as follows. The student uses one or more harvesting accounts (the

harvester/s) to obtain the correct answer, and then submits it in the master account, the account for

which the student intends to earn a certificate. Finding the answer in the harvester account can be

done either by asking to see the correct answer after using all the attempts (‘show answer’ on the

edX platform), or by ‘exhaustive search’ (e.g., pure guessing for multiple choice questions) until

the correct answer is found. This cheating method is known as CAMEO. The operationalization

of the algorithm is based on the IP address of the submissions. Since the user accounts can have

different IP’s during a course (due to switching locations or other reasons). We define ‘IP group’

as all accounts linked through an IP. More specifically, it is a group of accounts that shared the

same IP at least once in the course, or are connected through an account with whom both shared

an IP (this criterion is applied recursively). This a graph theory problem which identifies all the

connected components to build the IP groups.

The implemented algorithm searches for CAMEO events between all pairs of accounts in each

IP group. It is composed of two main steps. The first step detects which events fulfill the general

pattern of CAMEO events, which is that one account gets a solution to a problem, and then a

second account that belongs to the same IP group submits a correct answer to the given problem

shortly after. Students can obtain the correct solution to a problem either applying exhaustive

search by doing different attempts in multiple choice questions until getting the correct one or by

using the show answer button enabled in some exercises. This step generates a list of pairs of

master and harvester accounts, and for each given pair, a list of questions which are suspected to

be correct applying CAMEO. Then, the second step has the purpose of adding criteria in order to

filter false positives and increase the reliability of the detected pairs. More specifically, the two

steps are executed as follow:
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1. First step: For each account a1, for each correct submission made by a1 to a question q, we

check whether any other account a2 within the IP group of a1 obtained the correct answer

to q, in the previous 24 hours. If a match is found, we add < a1, a2, q > to the list of

potential CAMEO events. A graphical illustration of two kinds of CAMEO schemes are

given in Figure 3.6.

Figure 3.6: Diagram showing two different CAMEO patterns: immediate (left chart) and batch
mode (right chart).

2. Second step: To the events collected as part of the step 1 we apply the additional filters in

the specified order:

a) The harvester account does not receive a certificate. The rationale is that if the

harvester account is used only to harvest solutions, it would not make sense that it

gets a certificate, thus it might be a false positive.

b) Master-harvester pair harvests at least 10 questions. This is a filter that seeks

to remove noisy master-harvester couples that have performed CAMEO in a small

number of questions. The rationale behind it is that real master-harvester pairs would

exhibit this behavior on a significant amount of questions. The specific value has been

found empirically by analyzing the accumulative distribution of CAMEO questions

for each pair.

c) More than 5% of the master’s correct submissions are potentially harvested. The

rationale is to have a ‘significant level’ threshold on the amount of questions that the

master is suspected to harvest.

d) Evidence of ‘inhumanly fast’ submissions. Previous work found that a very short

delay between opening a problem and submitting a correct answers was related to

cheating (Palazzo, Lee, Warnakulasooriya & Pritchard, 2010), and our findings sug-

gest the same. Therefore, this filter is passed when a potential master have a number of

inhumanly fast correct submissions. There are two parameters, the upper bound time
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to consider it ‘inhumanly fast’ which is established as 30 seconds based on previous

research (Palazzo et al., 2010) and our own findings, and the number of questions

which is established as a minimum of 6 events below 30 seconds.

e) Harvester works for masters. We require that most of the questions done by the

harvester (more than 55%) were actually used by a master account. The purpose of

the harvesting account is to support the master account, so it should do only helpful

actions. The specific value (55%) was picked by observing an elbow in the graph

based on the master-harvester pairs detected.

f ) The harvesting account must not exhibit ‘master’ behavior (and vice versa). The

rationale is that an account that is a ‘service’ account is not likely to use harvester

accounts, and that an account that is a master is not likely to ‘service’ other accounts.

We note that such a behavior would be expected of two students who collaborate, but

not in CAMEO.

Users whose master accounts pass these filters are termed CAMEO users. A more complete

description of the algorithm can be consulted in our previous publications (Ruipérez-Valiente

et al., 2016; Alexandron et al., 2017). Using this method we are able to detect CAMEO users and

also define the following variable:

Harvested (harvested): Boolean variable indicating if a specific correct submissions

was cheated using CAMEO or not.
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This chapter provides an exploratory analysis about the different learning indicators that we

use in the posterior chapters. There is a special emphasis on those that we further analyze later in

this dissertation. The chapter is divided as follows. First, we explore some indicators related to

the use of the platform and behavior of students in Section 4.1. Second, we explore the interac-

tion with regular courseware activities in Section 4.2 and with optional activities in Section 4.3.

Next, we explore badge activity and the behavior of students with badges in Section 4.4. Finally,

we explore online academic dishonesty and collaboration in Section 4.5 in the specific cases of

CAMEO (Subsection 4.5.2) and close submitters (Subsection 4.5.1).
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4.1. Use of the Platform and Student Behavior

The analysis that we present in this section is based on the dataset of Case Study 3.2.1.1.

First, we explore those indicators related to the use of the platform in Figure 4.1. We plot the

density distribution of the entire population for each indicator, for exercises accessed and videos

accessed (top left), for exercise abandonment and video abandonment (top right), for optional

activities (bottom left) and for total time (bottom right). The plot regarding exercises accessed

and videos accessed show as a very similar distribution for both metrics with an average value

of 38.73% for exercises accessed and 39.71% for videos accessed, which seems to indicate that

the percentage of accessed resources is similar for both exercises and videos. In the case of the

abandon metrics, video abandonment (average of 40%) is higher at the beginning and exercise

abandonment (average of 48%) at the end of the distribution. These distributions seem to indicate

that students tend to abandon exercises more often than videos, which makes sense since it might

be harder to solve an exercise correctly rather than just finish a video. The total time indicates

that the average student invested 247 minutes in the platform, however there are many students

that invested more than 16 hours in the platform, which we consider a very high amount of time

taking into account that the use of Khan Academy was not mandatory.

Figure 4.1: Density distribution of the indicators related to the use of the platform.

Additionally, while students solve those exercises they can perform different behaviors. Fig-

ure 4.2 shows the density distribution of the exercise solving behaviors. Since students that hardly

interacted with the platform would have behavioral indicators around 0%, only those students who

interacted at least for 60 minutes have been included, so that we can have a more realistic visu-
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alization of the distribution of the behaviors. The follow recommendations indicator is the most

uniformly spread, where some students follow recommendations frequently while others never

do that. The rest of the behavioral indicators forgetful user, video avoidance, hint avoidance, un-

reflective user and hint abuse have a similar density distribution, where most students are placed

in the lower mid area of the function (< 50%), but some of them have high values as well.

Figure 4.2: Density distribution of indicators representing the behavior of students when solving
exercises.

4.2. Regular Courseware Activities

In this section we explore the interaction of students with regular learning activities (such as

videos and exercises) and analyze the indicators that measure the effectiveness of students with

these activities. First we provide an overview of these effectiveness indicators 4.2.1 and second

we analyze its relationship with other metrics 4.2.2. This section also uses the dataset of the Case

Study 3.2.1.1.

4.2.1. Overview of the Effectiveness with Exercises and Videos

Figure 4.3 shows the density distribution of the effectiveness metrics (exercise effectiveness

and video effectiveness) on the left and the completed resources metrics on the right (proficient

exercises and completed videos). Both plots have in common that the effectiveness and the per-

centage of completed resources is a bit higher for videos, again probably related to the fact that

advancing in videos might be easier and less demanding that completing exercises correctly. How-

ever, we can see that the proposed definition that we did in Subsection 3.3.2 regarding the effec-

tiveness, makes less abrupt the difference between exercise effectiveness and video effectiveness
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(on the left) compared to proficient exercises and completed videos (on the right). Although we

can see many students with very low rates of effectiveness and completed resources, many others

are situated at the end of the distribution meaning that they completed all the available resources.

Figure 4.3: Density distribution of the effectiveness and the completed resources among the dif-
ferent students.

Figure 4.4a represents the effectiveness of each student with videos and exercises in the three

SPOCs. Each point represents the effectiveness of a particular student with videos (y-axis) and

exercises (x-axis ). This way, teachers can know students’ interactions with educational resources

and activities, and recognize at a glance different types of students. Figure 4.4b classifies the stu-

dents in Figure 4.4a in five profiles regarding their level of effectiveness with videos and exercises.

This visualization can be particularly useful to detect resources and activities that are poorly bal-

anced (high proportion of students in areas tagged ‘2’ and ‘3’). We can have five different types

of students:

Do nothing (neither exercises nor videos) or very little (area tagged ‘1’).

Do everything or almost everything (area tagged ‘4’).

Do only or mainly videos (area tagged ‘3’).

Do only or mainly exercises (area tagged ‘2’).

Do some videos and some exercises (area tagged ‘5’).

4.2.2. Relationship of Effectiveness with Other Metrics

Table 4.1 shows the Pearson correlation of exercise effectiveness and video effectiveness in-

dicators with other metrics and themselves. We find that exercise effectiveness and video effec-

tiveness are strongly correlated (0.63). This correlation indicates that active users, who interact

a lot with one of these types of contents, will potentially interact also a lot with the remaining
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(a) (b)

Figure 4.4: Effectiveness scatterplot and types of students according to their effectiveness.

types of contents. Besides the obvious relationships of effectiveness with other metrics of use of

the platform, there are also several statistically significant relationships with students’ behavior

metrics. We find a low and negative correlation (-0.115) between exercise effectiveness and fol-

low recommendations which seem to indicate that students who followed the recommendations

provided by the Khan Academy platform were less effective when interacting with exercises. We

also find significant but low correlations between video effectiveness with forgetful user, video

avoidance and hint avoidance (0.124, -0.234, 0.128). The most interesting one is between video

effectiveness and video avoidance since it indicates that students who avoid watching videos, are

less effective when interacting with the videos they access (as one could expect).

4.3. Optional Activities

In this section we analyze the use of optional activities, that can be defined as those that stu-

dents can perform voluntarily. The section is divided as follows: Subsection 4.3.1 presents an

overview of the use of the optional activities available in Khan Academy. Subsection 4.3.2 ana-

lyzes the relationship of the use of optional activities with other metrics and learning outcomes.

Finally, Subsection 4.3.3 presents a categorical variable analysis of optional activities. This sec-

tion uses the two SPOCs datasets of years 2013 and 2014 described in Case Study 3.2.1.

4.3.1. Overview of the Use of Optional Activities

Students did not use optional activities a lot in their interaction with the platform. The distri-

bution of optional activities indicator can be seen in previous Figure 4.1. Actually, only 23.2% of

the students made use of at least one of the five optional activities available. We can see the use

of each optional activity separately in Table 4.2. These results take into account all the students

who logged in at least once to the Khan Academy platform. Consequently, some of these students

did not interact much with the system, neither with optional activities nor with learning activities.
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Table 4.1: Bivariate Pearson correlation of the effectiveness and use of op-
tional activities with the rest of indicators.

Bivariate Pearson
Correlation1

Exercise
Effectiveness

Video
Effectiveness

Optional
Activities

Exercises Accessed 0.901** 0.678** 0.429 **
Videos Accessed 0.654** 0.937** 0.419 **

Exercise Abandon -0.288** -0.044 -0.259 **
Video Abandon -0.168** -0.418** -0.155 **

Total Time 0.795** 0.833** 0.491**
Proficient Exercises 0.910** 0.517** 0.553**
Completed Videos 0.612** 0.983** 0.435**

Follow Recommendations -0.115* -0.101 -0.002
Forgetful User 0.029 0.124* 0.007

Video Avoidance -0.078 -0.234** -0.051
Hint Avoidance 0.061 0.128* 0.053

Unreflective User 0.035 0.044 0.039
Hint Abuse -0.111 -0.103 -0.089

Optional Activities 0.485** 0.438** 1
Exercise Effectiveness 1 0.630** 0.485**

Video Effectiveness 0.630** 1 0.438**
1 N = 291 students from Case Study 3.2.1.1.
* Correlation is significant at the 0.05 level (2-tailed).
** Correlation is significant at the 0.01 level (2-tailed).

From Table 4.2 we can extract the following main conclusions. The optional activities used the

most are the customization of a profile avatar and the badge display. Although the exact percent-

age numbers differ from one course to another, on average the results show that 10.8% customized

their avatar and 12% their badge display i.e., they are by far the most used optional activities in

all courses. A possible reason for this could be that these students, who are aged around 17-19

years, are comfortable using activities that come from a social network or gaming contexts. On

the other side, optional activities that are related to learning (feedback, vote and goal) have been

used much less (4.1%, 6.6% and 6.2%, respectively). The activity which has been used the least

is feedback. A reasonable argument is that writing a feedback answer about a video generally

requires a greater effort than just simply changing an avatar.

It is also interesting to look at more specific details about students’ behavior in some optional

activities. For example, we can focus on the ratio of finished goals and the type of votes. The

number of students who set goals was 30, setting up a total number of 55 goals when taking

into consideration all courses. The minimum number of goals set by a student was 1 while the

maximum was 3. Taking into account all goals, 28 of them (50.9%) were reached. This finishing

ratio seems to be rather high. However, the goal setting is optional but the selected goal e.g.,

finishing an exercise, might be crucial for understanding the topics that the course is covering.

Furthermore, we assume students that use the optional functionality of setting goals to be highly
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self-motivated and confident about reaching a goal when selecting it which might bias the fin-

ishing ratio. Moreover, the number of students who submitted a vote is 32 with a total number

of 40 votes in all courses: 26 of them were positive (65%), 13 of them were indifferent (32.5%)

and only one of them was negative (2.5%). These results indicate that most of the users vote for

positive reasons given these conditions and it is very unlikely that they vote negatively on other

students.

Table 4.2: Percentage of students who used each optional activity.

Optional activity Feedback Vote Goal Profile avatar Badge display
Percentage 4.1% 6.6% 6.2% 10.8% 12%

Table 4.3: Comparison between the use of regular learning activities versus the use of optional
activities

Type of activity Percentage of activities accessed
0% 1-33% 34-66% 67-99% 100%

Regular learning activities 2.48% 51.55% 23.19% 18.84% 3.93%
Optional activities 76.81% 18.43% 4.14% 0.41% 0.21%

We can establish a comparison between the access to regular learning activities, such as exer-

cises and videos, and to optional activities. This comparison is presented in Table 4.3. It allows

us to get a sense of how many students have used regular activities in comparison to optional

activities. We divide the use of regular and optional activities in five intervals and we show the

percentage of students from all courses in each interval. The first detail to notice is that only 12

students (2.48%) who logged in on the platform did not use any of the regular learning activities

while 76.81% did not use any of the optional activities. This is a huge difference that already

gives insight about the low use of optional activities compared to the use of regular learning ac-

tivities. On the other end, we can notice that 19 students (3.93%) used all the regular learning

activities while only one of the students (0.21%) used all the optional activities. We should also

keep in mind that the amount of learning activities is above 40 in all courses whereas the number

of optional activities taken into account in the study is only five. Finally, we can see that the use of

activities in the 1-99% interval declines gradually and is always superior for the regular activities.

4.3.2. Relationship of Optional Activities with Other Metrics

In this section, we analyze how the use of optional activities is related to other metrics, and

more importantly to learning outcomes. Table 4.1 showed the correlation between optional ac-

tivities and other metrics. The data shows that the most significant correlations are with the total

time (0.491) and proficient exercises (0.553). We further explore this relationship with proficient

exercises later. Some other correlations are also high such as with exercises accessed, videos ac-

cessed and completed videos (0.429, 0.419 and 0.435). The results show that the use of optional
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activities is also correlated with the effectiveness in educational resources (0.485 for exercise ef-

fectiveness and 0.438 for video effectiveness) These results make sense, as the more time a student

spends on the platform, the more videos, exercises and optional activities might do. In addition,

another significant but negative and low correlation exists for exercise abandonment and video

abandonment (-0.259 and -0.155). This negative correlation means that users who abandon exer-

cises and videos use a bit less optional activities than others. Finally, the results indicate that other

behavioral indicators (follow recommendations, forgetful user, video avoidance, hint avoidance,

unreflective user and hint abuse indicators) are not significantly correlated with optional activi-

ties. We found that there is no relation between follow recommendations indicator and optional

activities, although we initially thought that there could exist a relation due to the fact that the use

of optional items can be regarded as an exploring behavior.

As next step we delve into understanding the relationship between the use of optional activ-

ities and learning outcomes. Table 4.4 provides the Pearson correlation and partial correlation

of both proficient exercises and learning gain, with optional activities and each optional activity

separately. The first row of Table 4.4 shows the Pearson correlation with proficient exercises. The

most significant correlation (0.553) is with the global measure optional activities. This strong

correlation points out that the use of optional activities might be used as an indicator to know how

well students have mastered the exercises. Avatar and display badge (0.415 and 0.418) are the op-

tional activities that have been most highly correlated with the percentage of proficient exercises,

whereas feedback and vote (0.205 and 0.243) have been the least. This might be surprising at first

sight because feedback and vote are supposed to be related to the learning process and one might

thus think that they should have a higher correlation with solving exercises correctly than avatar

and display badges which are not related to the learning process. However, the use of the avatar

and display badge are moderately related to the total time spent on the platform (correlations of

0.28 and 0.24 respectively) and students that spend time on the platform are related to perform

better (correlation of 0.70) when solving exercises, so the cause of an improvement in proficient

exercises might not be the use of optional activities by itself. In order to gain more insight about

the results, the second row of Table 4.4 shows the partial correlation between the same indicators

taking out the effect of the rest of the variables considered in the study. After controlling the

effect of the rest of the variables, the significant correlation disappears in the case of proficient

exercises with feedback and votes, and decreases in the case of proficient exercises with optional

activities (0.282), goals (0.250), avatar (0.235) and display badges (0.229). Indeed, these are low

levels of relations. Therefore, when removing the effect of other variables, the relation between

proficient exercises and optional activities is not so strong. However, there is some relation be-

tween optional activities and proficient exercises, taking out third variables like the effect of total

time spent.

The last two rows of Table 4.4 show the correlation of optional activities with learning gain,

which we note that has been performed using the data from the Case Study 3.2.1.2 since it is the

only one where we have learning gains available. The third row shows the Pearson correlation
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where there are significant relations of learning gain with optional activities (0.293), use of vote

(0.333) and use of display badges (0.296). However, the level of relation might be due to third

variables, such as for example total time or proficient exercises that had a moderate/high corre-

lation as we saw in previous correlations. For example, the more time a student spent on the

platform, the more probable it is that he/she votes or changes the badges, does more activities of

all the types and thus learns more. The last row of Table 4.4 presents the partial correlation of

learning gain and optional activities taking out the effect of the rest of the variables considered.

The objective is to remove the possible influence of the other variables to better understand the

relation of learning gain and optional activities. When removing the effect of the other variables

in the partial correlation, only one significant correlation remains which is with the use of display

badges (0.261).

Table 4.4: Pearson and partial correlations of proficient exercises with optional activities.

Metric Optional
Activities Goal Feedback Vote Avatar Display

badges
Pearson correlation1

Proficient exercises 0.553** 0.384** 0.205** 0.243** 0.415** 0.418**

Partial correlation2,***

Proficient exercises 0.282** 0.25** -0.04 -0.031 0.235** 0.229**

Pearson correlation1

Learning gain 0.293** 0.102 0.219 0.333* 0.221 0.296**

Partial correlation2,***

Learning gain 0.142 -0.07 0.124 0.214 0.17 0.261*

1 N = 291 students from Case Study 3.2.1.1.
2 N = 69 students from Case Study 3.2.1.2.
* Correlation is significant at the 0.05 level (2-tailed).
** Correlation is significant at the 0.01 level (2-tailed).
*** Controlling for the all the variables considered in the study.

4.3.3. Categorical Variable Analysis

We analyze the relationship among all the categorical variables that represent the use of each

optional activity. To this end, we apply a log linear analysis which allows the comparison of three

or more categorical variables in order to determine if there is an association between two or more

of them. The factors of the test are the use of each optional activity separately (yes or no) for each

student. Table 4.5 shows the cell count of a log linear analysis of only those associations where

the observed count is above or equal to 1 percent of the cases.

Table 4.5 shows which ones are the most typical associations in percentage. The higher counts

are the use of display badge (4.1%), the use of avatar (2.9%), the use of both display badge and

avatar (2.9%) and the use of votes (3.1%). The data indicate that there are probably underlying

associations between the use of these activities, consequently we check other tests to see if it

is really significant. The z-score values show that the most significant relations are between the
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Table 4.5: Log linear analysis of optional activities as categorical variables

ObservedUsed
goal?

Used
feedback?

Used
vote?

Used
avatar?

Used
display badges? Count Percentage

No No No No No 371 76.8 %
No No No No Yes 20 4.1 %
No No No Yes No 14 2.9 %
No No No Yes Yes 14 2.9 %
No No Yes No No 15 3.1 %
No Yes No No No 8 1.7 %
Yes No No No No 5 1.0 %
Yes No No Yes Yes 7 1.4 %

use of avatar and display badges (z = 2.68, p = 0.007), between the use of feedback and votes

(z = 2.26, p = 0.008) and also between the use of goal and avatar (z = 2.1, p = 0.036). These

results make sense because an association between the use of avatar and display badge is related to

activities that come from customizing your personal profile, and the association between the use

of feedback and votes are activities related to participation in a forum. In addition, there is a three-

way significant relation between the use of goals, avatar and display badge (z = 1.96, p = 0.05),

which is also interesting because these three activities are related to gaming or social networks

environments.

4.4. Use of Badges and Gamification Behavior

This section explores the use of badges and the behavior of students with them. First, we

present an overview of the use of badges in Subsection 4.4.1. Second, we analyze the factors

that can influence the number of badges delivered in Subsection 4.4.2. Third, we explore the

distribution of the badge metrics in Subsection 4.4.3. Finally, we present the correlation of badge

metrics with other metrics in Subsection 4.4.4. The analysis of this section uses the dataset of

Case Study 3.2.1.1.

4.4.1. Overview of Badge Activity

This subsection presents a general analysis of the achievement of badges by the students of the

three courses. As some badges are quite straightforward to acquire with the interaction with the

platform, then most students have obtained some of them (even if they did not have the intention

to get them). Nevertheless, there are others that are very hard to earn. The total number of badges

delivered is 1153, 1609 and 4773 for the chemistry, physics and mathematics courses respectively.

Taking into account the number of students in each course, the number of badges per student is

15.8, 9.6 and 19.64 respectively.

Figure 4.5 shows on the left a histogram chart of the total amount of badges earned by each
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user taking into account all the courses. This graph describes the distribution of badges earned by

each user and can be used to inspect where most of the population is concentrated. For example,

we can see an important peak at the beginning of the distribution which are those students who

interacted very little with the platform. In addition, it is interesting to see how there are many

students in the interval from 100 to 1000 which has achieved a big amount of badges. Analogously

Figure 4.5 shows on the right a histogram of the quantity of different badge types earned by each

user considering all courses. The vast majority of the population is concentrated in the interval

from 1 to 10 different badges. The rational is that most students earn the same types of badges

repetitively. There are important differences with Figure 4.5 on the left, since the previous analysis

took into account all those badges that can be earned repeatedly and this plot considers each badge

type once. This distribution has a more abrupt descendant curve that the other one, because most

users earned few different badge types.

Figure 4.5: Histogram representation of the amount of badges (left) and amount of different badge
types (right) earned by each student.

Additionally Figure 4.6 represents a boxplot visualization of the percentage of badges ac-

quired by students split by course and by the different badge categories as described in Table 3.1.

The black dashed line represents the sample mean. Students beyond the end of the whiskers are

considered outliers and plotted as black dots. This data confirms that not many social badges were

delivered, as social activity within the platform was not very widespread. Video badges have the

highest median since there were only 5 different video badges, and some of them were easy to

acquire. We can find some interesting outliers such as some students that achieved more than 75%

of all the exercise badges.

4.4.2. Influence of Factors on Badge Count

Some badges are triggered when solving exercises or when watching videos, thus it is inter-

esting to analyze which exercises and videos trigger the biggest amount of badges. The causes
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Figure 4.6: Boxplot visualization representing the percentage of badges earned by each student
divided by badge category (x-axis).

can be very diverse, for example an easy exercise can be used to obtain many correct exercises

in a row or a difficult topic might trigger more video badges because students need to watch the

video more than once. There are some important differences between those exercises and videos

that triggered the biggest amount of badges and those which triggered the least. For example for

the math course, the exercise which triggered more badges is the ‘Biquadratic equation’ exer-

cise with a 301 badge count whilst ‘Basic operations with complex numbers triggered’ only 31

badges. These differences are also applicable for the other courses and in videos as well. We

analyze the possible reasons for these results taking into account the location of the exercise and

the following two additional variables:

Percentage Correct of Exercise (percentage correct exercise): This numeric variable

represents the correctness ratio of each type of problem and we use it to operationalize the

difficulty of an exercise, hypothesizing that easier exercises are used to obtain more badges.

Video Duration (video duration): This variable represents the time length of a video.

We found a positive and moderate correlation between the badge count and percentage correct

exercise (0.45, p < 0.00) which indicates that easier exercises trigger more badges. This finding

makes sense as it is more accessible for students to solve those exercises correctly. We also found

a correlation between badge count and video duration (0.5, p < 0.00) which might mean that

longer videos trigger more badges, and the rationale behind this result can be that students need

to spend more time on the video, thus it is more probable that they earn some of the ‘Video Time’

badges. These correlations are presented for all the exercises and videos from the three courses,

but are also maintained when performed within the data from each course separately.

We make a more in-depth and graphical analysis for the case of badges triggered by exercises

in Figure 4.7. We explore how the normalized badge count is affected by percentage correct

exercise and location variables, separating also by course. We express the badge count as normal-

ized z-scores (z = x−µ
σ ), otherwise the difference between the number of students in each course
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would complicate comparing the amount of badges triggered. The plot in the top of the figure

shows a visualization where each point is characterized in the y-axis by the normalized badge

count and in the x-axis by the percentage correct exercise. Additionally we draw the regression

line with the standard error (gray shadow) which shows in all courses a positive tendency sug-

gesting that, the higher is percentage correct exercise variable, the more badges are triggered by

the exercise. The bottom visualization of Figure 4.7 shows a line plot representing the location

of the exercise on the x-axis, being the left side the first exercise and the right side the last one

in the course structure. The visualization shows that those exercises located at the beginning of

the course triggered more badges than those at the end, except for a peak in the middle-end of the

chemistry course. The exercises that caused the peak in the chemistry course are ‘Le Chatelier

Principle’ and ‘Lewis Structure’. These exercises have been solved correctly many more times

(around twice) than others located nearby within the course structure. Although we cannot es-

tablish the causes with certainty, we can hypothesize that maybe the difficulty was easier and

students used these exercises to earn more badges or that the topic was appealing for students

increasing the amount of activity. These results are aligned with the negative and significant cor-

relation between the location of the exercise and the badge count (−0.46, p < 0.00), which seems

to indicate that as the location of the item within the course structure advances, it will trigger less

badges.

4.4.3. Distribution of the Badge Indicators

In this subsection we analyze the distribution of the badge metrics, where we have included

students who interacted at least 60 minutes for more realistic results. Figure 4.8 shows on the

top left the density distribution of both intentionality indicators for all students. The 1st quartile

of intentionality topic badges and intentionality repetitive badges indicators is 0. This means

that there are a big percentage of people who did not show much interest on earning badges,

especially topic badges. On the other hand, the median for intentionality repetitive badges is

48.44%, which seems to indicate that students show more interest in repetitive badges. The mean

value of intentionality repetitive badges indicates that the average user earns 39.52% of repetitive

badges intentionally, which we think is a high percentage. We must state too, that probably many

of the students near the 0% of both indicators, probably did not interact a lot with the platform,

as a result, they might end up classified as having no interest for badges. We can see that for

intentionality topic badges, a higher amount of the population is accumulated in the low values

of intentionality topic badges distribution, and there are not many users between 50-100% of

intentionality topic badges interval. Nevertheless, we can see a small peak at 100%, who are the

cohort of students showing a lot of interest. In the case of intentionality repetitive badges, there is

a valley between 10-30% who are probably those students who interacted with the platform, but

did not show interest for repetitive badges. Also we can see a moderate peak between 50-75%,

whom are students showing a moderate interest in repetitive badges and 75-100% whom are those

showing a high interest. We should note out that, to be able to acquire in intentionality repetitive
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Figure 4.7: Influence of factors (percentage correct and location within course structure) in
amount of badges triggered by exercises.

badges such high values, you must really put a lot of interest in these badges. Overall, it looks like

students felt more motivated towards repetitive badges rather than topic badges, but we should

also mention that as these badges are easier to earn, and that might be why students might feel

more motivated towards them.

The top right of Figure 4.8 shows the density distribution for concentration badges indicator.

Most of the students have low values (≤ 15%) of concentration badges indicator, however we can

find also some students with high values (≥ 50%) that show that their actions were really targeting

the acquisition of badges. Finally the bottom of Figure 4.8 shows an histogram of time efficiency

badges indicator. Although most of students are placed in less than 10 badges per hour, some of

them have higher values that seem to indicate that they earn many badges in short intervals of

time.
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Figure 4.8: Distribution of the different badge metrics.

4.4.4. Relationship of Badge Indicators with Other Selected Indicators

Finally, we analyze some correlations between badge metrics and others. Table 4.6 shows the

correlation results where the first set of indicators are composed by exercises accessed, videos

accessed, exercise abandonment, video abandonment, total time and optional activities which

are related to the use of the platform. As we can see, most of these indicators have been found

statistically significant with badge metrics, which makes sense and we can hypothesize that the

more use of the platform students do, the more badges they will earn. This is due to the fact that

many of the badge requirements are related to the amount of activity of students with the contents

(see Table 3.1). The exercise abandonment and video abandonment indicators have been found

negatively and significantly correlated with several badge metrics. Although this correlation is

low, we believe that it might indicate that engagement plays an important role in the amount of

badges received. The indicators which were less correlated to badge metrics are videos accessed

and video abandonment, which are coherent results taking into account that most of badge metrics

does not take into account video activity. Finally, exercises accessed, exercise abandonment, total

time and optional activities are strongly correlated with most of the badge metrics. We also believe

that it makes sense that the use of optional activities is related to interest in badges, as both of

them represent non-mandatory activities for the student.

The second set of correlations contains proficient exercises and completed videos indicators.

The correlation with completed videos is significant but low, as there are less video badges than

those who are earned by solving exercises. The correlation with proficient exercises is the highest



68 Exploratory Analysis

of all indicators which is probably related to the big amount of exercise badges that can be earned

repeatedly and also due to topic badges. Two of these correlations are especially significant. First

with intentionality topic badges (0.737, p < 0.000), which makes sense since students who have

more proficient exercises are more likely to earn more topic badges as well. Second with time

efficiency badges (0.625, p < 0.000), which also makes sense as the more proficient exercises as

student has mastered, the more badges the student will earn, hence time efficiency badges will

also be higher. The third set contains all the exercise solving behavior indicators and only follow

recommendations was found to be slightly correlated with intentionality topic badges (0.169) and

concentration badges (0.202).

The last section of the table, which is separated by a double line, presents the correlations

among the badge metrics with themselves. All the correlations have resulted to be statistically

significant probably due to the fact that when one student shows interest towards earning badges

it will be reflected in several of these indicators. We should point out the correlation between

intentionality topic badges and concentration badges (0.859, p < 0.000), which is the highest of

all the correlation analysis. One hypothesis is that this correlation is very high as the students who

are concentrated earning topic badges are also probably maximizing and earning as many topic

badges as possible.

Table 4.6: Bivariate Pearson correlation of the badge metrics with the rest of indicators.

Bivariate Pearson
correlation1 ITB IRB CAB TEB

Exercises Accessed 0.456** 0.464** 0.361** 0.438**
Videos Accessed 0.305** 0.322** 0.228** 0.225**

Exercise Abandon -0.456** -0.327** -0.399** -0.352**
Video Abandon -0.177** -0.125** -0.168** -0.049

Total Time 0.51** 0.409** 0.372** 0.338**
Optional Activities 0.489** 0.358** 0.345** 0.393**
Proficient Exercises 0.737** 0.511** 0.563** 0.629**
Completed Videos 0.333** 0.293** 0.259** 0.219**

Follow Recommendations 0.169** 0.041 0.202** 0.024
Forgetful User 0.01 -0.053 0.01 -0.047

Video Avoidance 0.004 -0.047 -0.012 0.019
Hint Avoidance -0.027 -0.025 -0.063 0.021

Unreflective User 0.032 0.024 0.027 0.027
Hint Abuse -0.06 -0.031 -0.015 -0.065

Intentionality on Topic Badges (ITB) 1 0.445** 0.859** 0.567**
Intentionality on Repetitive Badges (IRB) 0.445** 1 0.417** 0.488**
Concentration of Achieving Badges (CAB) 0.859** 0.417** 1 0.456**

Time Efficiency in Badges (TEB) 0.567** 0.488** 0.456** 1
1 N = 291 students from Case Study 3.2.1.1.
** Correlation is significant at the 0.01 level (2-tailed).
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4.5. Online Academic Dishonesty and Collaboration

This subsection explores the results of the two proposed algorithms to detect online academic

dishonesty and collaboration. Subsection 4.5.1 presents the results after applying the close sub-

mitter algorithm and Subsection 4.5.2 describes the findings related to CAMEO algorithm.

4.5.1. Close Submitters

In this subsection, we apply the algorithm for the detection of close submitters as described in

Subsection 3.3.7.1 to the dataset of both MOOCs presented in Case Study 3.2.4 and explore the

basic results.

4.5.1.1. Overview and Distance Distribution

We computed the two SP submission matrices, SPmus for music MOOC with a shape of

89896 rows x 5 columns and SP phi for philosophy MOOC with a shape of 53531 rows x 7

columns. We use these two matrices as the entry to the algorithm and compute two distance ma-

trices for each course using the distance metrics specified in Equation 3.2 and 3.3. Hence, we

obtain DMAD
mus and DMSD

mus with a shape of 5159 rows x 5159 columns for music and, DMAD
phi

and DMSD
phi with a shape of 2359 rows x 2359 columns for philosophy. We note again that we

apply the criteria as specified in Subsection 3.3.7.1, therefore 5159 and 2359 represent for music

and philosophy respectively the number of accounts that submitted all assignments in the course.

Next, we compute the vectors of distances that contain every possible different combination of

distances obtaining ~dMAD
mus and ~dMSD

mus with a length of 13.305.061 triplets for music and, ~dMAD
phi

and ~dMSD
phi with a length of 2.781.261 triplets for philosophy. Finally, Figure 4.9 shows the his-

togram distribution of the distances of each one of these vectors.

The two top visualization of Figure 4.9 show the distribution of the MAD distances for both

courses and the distributions look skew-normal. We believe that the left-skewness distribution

is due to the effect of the deadlines i.e., students are more likely to submit close together since

they are more active when the deadline is closer. The two visualizations in the bottom of Figure

4.9 represent the MSD distances and they look like decreasing exponential distributions due to

the effect of the squared metric. We can see that the variance of the distances in the philosophy

MOOC is higher, probably due to the fact that they had 7 graded quizzes instead of the 5 graded

quizzes of music MOOC, thus increasing the variance of the distance distribution.

4.5.1.2. Detection of Close Submitters

For the detection of close submitters, we need to establish a criteria based on the vector of

distances. We establish a threshold, and we consider distances below that threshold to be values

abnormally similar. Then, we categorize those accounts as close submitters which are carrying
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Figure 4.9: Density histogram distribution of the distance vectors �dMAD
mus (upper left plot), �dMSD

mus

(bottom left plot), �dMAD
phi (upper right plot) and �dMSD

phi (bottom right plot).

out some collaboration or academic dishonest strategy. We follow the next steps in order establish

that threshold:

1. MAD metric is easy to interpret since it is expressed in the same time units whereas MSD is

more problematic to interpret because it is expressed in quadratic time units. Therefore, we

apply a MAD threshold by common sense which is 0.5 hours. We consider this threshold

to be quite strict as it implies that on average, the distance in time of the submissions of

studenti and studentj is below 30 minutes to be considered as close submitters.

2. We compute the quantile of the distribution represented by this threshold value, which is

4.81e-06 quantile for music and 5.75e-06 quantile for philosophy.

3. We establish other thresholds based on the value of this previous one that we have obtained

by common sense. We choose as quantiles, 6e-06, 1e-05 and 5e-05 and we can apply the

three different quantiles to �dMSD
mus and �dMSD

phil distributions. The rationale to use now MSD

distance distributions is because we want to penalize more heavily large distances.

4. Finally, we apply the three quantiles and compare the number of triplets detected by each

one of them. We also explore how the MAD and MSD threshold values change with each

quantile. These results are represented in Table 4.7.

The rationale behind this approach is to make detection more independent from the course.

For generalization and reproducibility purposes, we want to provide a criteria that can be applied

to other courses even when there might be different amount of exercises in each quiz and the
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complexity of those exercises might change as well. Therefore, the use a quantile for the distance

distribution instead of a fixed value of MAD can help. If we inspect the results of Table 4.7, with

the most restrictive quantile (6e-06) there are 78 and 17 triplets below that quantile for music and

philosophy respectively. We can also see that both the MAD (0.61 h for music and 0.57 h for

philosophy) and MSD (0.51 h2 for both music and philosophy) remain very similar and that is

a good sign since it might indicate that we are detecting a similar population. The results of the

other two quantile values (1e-05 and 5e-05) show values of MAD too high and very different one

course from the other.

Table 4.7: Number of triplets, MAD and MSD values after applying different quantiles as thresh-
old of the distance distribution for music and philosophy courses.

Quantile
6e-06 1e-05 5e-05

#Pairs
MAD
tresh

MSD
tresh

#Pairs
MAD
tresh

MSD
tresh

#Pairs
MAD
tresh

MSD
tresh

Music 78 0.61 h 0.51 h2 132 0.9 h 1.15 h2 664 2.9 h 10.94 h2

Philosophy 17 0.57 h 0.51 h2 28 1.25 h 1.98 h2 140 4.98 h 38.13 h2

Choosing a higher threshold might reveal more true positives but also increasing the amount of

false positives, hence we prefer to keep a high precision with a safe threshold rather that increase

recall and decrease precision. Therefore we decide to stick to 6e-06 since this allow us to be

quite secure about our precision and then we can better characterize the group of close submitters

in Subsection 4.5.1.3. Additionally we represent a histogram density distribution of the MAD

distance of those triplets below the threshold (thus categorize as close submitters) in Figure 4.10.

We can see that although the MAD threshold for music is 36.6 minutes and for philosophy is 34.2

minutes, there are many triplets with much lower distances. For example, 12 out of the 17 triplets

(70%) in philosophy and 23 out of the 78 triplets (30%) in music are below a MAD distance of

only 10 minutes. Such low MAD distance values seem to indicate that these results are far from

just mere chance.

Figure 4.10: Density histogram distribution of the MAD distance of the triplets below the thresh-
old (close submitters) separated by course.
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Finally, we can apply basic graph theory to detect communities among students who are

detected as close submitters. Each one of the different accounts is a node of the graph, and from

each one of the close submitters triplets ([studenti, studentj , dist(i, j)]), studenti and studentj

are the unordered pair that link together in the graph the two accounts (nodes). Applying this

criteria, we detect the couples and communities of Figure 4.11. The number and size of the

communities that we find is as follows:

Figure 4.11: Couples and communities detected from the population of accounts detected as close
submitters after applying graph theory.

Music: 30 couples, two 3-communities, one 4-community, three 5-community, one

14-community, therefore 99 different students

Philosophy: 11 couples, one 4-community, therefore 26 different students.

As we can see, most of the communities detected are only couples of accounts. However, we

can see several bigger communities where all the nodes are connected e.g., the community of 4

accounts in philosophy. Due to the restrictive threshold that we have applied we might miss the

detection of additional nodes as well as links betweens nodes e.g., when using the higher quantile

1e-05 the community of 14 accounts that we can see in Figure 4.11 would become a much bigger

community of 34 accounts after some of the smaller communities merge it. Therefore, we cannot

establish final conclusions about the shape of most communities.

4.5.1.3. Comparison of Close Submitters and Rest of Accounts

This section focuses on analyzing differences between the population of close submitters

detected in Subsection 4.5.1.2 and the rest of accounts of the course. Table 4.8 shows a cross-

tabulation of the course, if the account was detected as close submitter and if the account earned

a certificate. Note out again that we only keep those accounts who submitted all graded quizzes

in each course.

We want to compare the population of close submitters with the rest of accounts and we keep

for this comparison only students who got a certificate, since we expect them to have made a
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Table 4.8: Cross tabulation of the variables certificate, close submitter and course. Only accounts
that submitted all quizzes are included.

Close submitters
Course

False True

Certificate

False 794 21
Music

True 4262 78
False 105 6

Philosophy
True 2228 20

similar effort on average to acquire enough score to get a certificate. As specified in Table 4.8,

there is a total amount of 4340 (78 close submitters) accounts for music and 2248 (20 close sub-

mitters) for philosophy. The next boxplot visualization in Figure 4.12 shows this comparison for

the indicators exercise effectiveness, number submissions, number active days, videos accessed

and number threads viewed between the two populations for each course separately.

Figure 4.12: Boxplot visualization comparing the student features of the close submitters and the
rest of accounts separate by course.

First, Figure 4.12 allows to see that both populations have a similar grade distribution, which

makes sense because they need to pass a threshold in order to get the certificate. For the rest of the

indicators we can see a clear difference between the two populations where the median for close

submitters is further below than the rest of the accounts. We can check that these differences

between populations are statistically significant by applying an unpaired t-test for each one of

the variables per course, as we can see the next Table 4.9. Additionally to the independent t-
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Table 4.9: Independent unpaired t-tests for the different variables of the study comparing close
submitter and the rest of accounts.

Variable
Unpaired t-test

Music Philosophy
number

submissions
t = 10.14, p = 3e-16 t = 6.33, p = 3e-06

number
active days

t = 6.29, p = 1e-08 t = 4.88, p = 9e-05

videos
accessed

t = 7.73, p = 3e-11 t = 3.84, p = 0.001

number
threads viewed

t = 5.74, p = 1e-07 t = 15.45, p = 2e-16

tests, we perform a MANOVA which allows to test for difference in the means with two or more

vectors of means at the same time. The results of the MANOVA show that there is a statistically

significant difference in means in both music (F = 55.74, p = 2e − 16) and philosophy (F =

15.6, p = 1e−12) testing all variables at the same time. Therefore, accounts in the close submitter

population are able to earn a certificate with a lower number of submissions, being active less

days, watching few videos and without having much forum activity. These findings confirm that

we are indeed identifying a different population of accounts as the distribution of their variables

clearly shows.

4.5.2. CAMEO

The exploratory analysis of CAMEO is divided in several subsections with different purposes.

The initial Subsection 4.5.2.1 presents an overview of the amount of CAMEO found in the course,

Subsection 4.5.2.2 compares CAMEO accounts with the rest of accounts. Subsection 4.5.2.3

analyzes the evolution of CAMEO over the course timeline. Subsection 4.5.2.2 deepens into the

different profiles of CAMEO accounts that we have found. Finally, Subsection 4.5.2.5 studies

which factors are related to CAMEO. This section is based on the the data from the Case Study

3.2.3.

4.5.2.1. Overview of the Amount of CAMEO

After applying the algorithm for the detection of CAMEO described in Subsection 3.3.7.2, we

analyze first the total amount of CAMEO accounts including both certificate and non-certificate

earners in the course, we can see these results in Table 4.10. It shows that our algorithm detected

65 master accounts, 12.9% of the certificate earners in the course. These accounts operated 78

harvesters. It is important to note out that some master accounts will use several harvesting

accounts to increase their number of attempts available. These masters harvested 17350 correct

answers, 4.3% of all the correct answers submitted by certificate earners (including non-CAMEO
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Table 4.10: Amount of CAMEO by certificate and non-certificate earners

#Master
accounts

#Harvester
accounts

#Harvested
answers

Certificate
earners 65 (12.9%) 78 17350 (4.3%)

Non-certificate
earners 84 (7.7%) 74 12438 (5.1%)

users). The table also shows the results for the non-certificate earners. The table shows that 84

(7.7%) of the non-certificate earners were master accounts, and that these accounts operated 74

harvesting accounts and copied 12438 answers. This is possible when several masters are getting

answers from the same harvester.

Next, we look on how the CAMEO events are distributed between the master accounts. This

is shown in Figure 4.13. The figure shows the percentage of the certificate earners (x-axis) who

harvested at least y% of their correct answers. The point (3.7, 50) means that 3.7% of the certifi-

cate earners used CAMEO to obtain more than 50% of their correct answers. As can be seen in

the graph, the CAMEO events are distributed unevenly between the accounts.

Figure 4.13: Amount of CAMEO among students.

4.5.2.2. Feature Comparison: CAMEO Accounts and Rest of Accounts

In this subsection we compare CAMEO accounts with the rest of accounts in terms of two

variables, performance first attempt and average time correct answer. Our findings suggest that

masters have high success rate with performance first attempt values and are able to solve ques-

tions correctly very fast leading to high average time correct answer values. For this analysis we

focus only on certificate earners since they answered a similar amount of questions. Figure 4.14a

shows in the x-axis the performance first attempt indicator, and the y-axis shows the average time
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correct answer indicator. Master accounts are marked in red, with the size of the circle pro-

portional to the amount of CAMEO. In general, the trend is that the bigger the red circle (more

CAMEO), the higher the success rate and the faster the submission. Also, the top performers

of the course in terms of low average time correct answer and high performance first attempt

are master accounts. Additionally, we also found that it was statistically significant that master

accounts have higher performance first attempt (r = 1.86, p = 0.03) and average time correct

answer is smaller (r = 3.98, p = 4.6e−06).

Additionally, we want to compare the distribution of performance first attempt among mas-

ters, harvesters, and the rest of the students, and this probability density comparison is presented

in Figure 4.14b. In terms of average values, masters have a performance first attempt of 78.9%,

harvesters have a performance first attempt of 39.7%, and the rest of accounts have a perfor-

mance first attempt of 61.6%. The results of an ANOVA test (F = 103.6, p < 2e−16) confirm

that performance first attempt of masters is greater than the rest of students which is greater than

harvesters (masters > rest of students > harvesters). We further discuss the implications of these

findings later in the discussion of Section 7.1.

(a) (b)

Figure 4.14: Subplot (a) shows average time for correct attempt vs. performance at first attempt
for certificate earners; size of red dot indicates amount of CAMEO. Subplot (b) shows the density
distribution of the performance at first attempt for the master, harvester and rest of accounts
separately.

4.5.2.3. Distribution of CAMEO Over Course Timeline

This subsection focuses on the analysis of how the CAMEO submissions performed by cer-

tificate earners evolves over the course timeline. We partitioned the 13 chapters of our course into

10 sections. Some chapters were joint together because they have common quiz and homework

(the combined chapters are 1 and 2, 4 and 5, and 9 and 10). Then for each section, we compute the

amount of CAMEO performed by certificate earners, by mapping the problems to each section.

Most of the students usually perform the activities of the chapters in a linear way, therefore this
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binning into chapters help us see the evolution over time, and we can refer to it as a ‘temporal’

analysis. It will also reflect the progress of students in terms of the graded cumulated after each

chapter, which will help shed light on students’ behavior. The findings of this temporal analysis

are presented in Figure 4.15. The figure shows the percentage of the questions in each section

that were attempted, correct, and harvested (for all the lines, the 100% baseline is the total num-

ber of questions in the section). Additionally, the figure also shows the percentage of students

that achieved enough grade to earn a certificate of accomplishment in each chapter (i.e., achieved

more than 60% of total points in the course). The graphs hows that about 85% of the certificatees

passed the certification point in section 7 (chapters 9+10). We can clearly see that from that chap-

ter the percentage of questions attempted, correct and harvested drop importantly. This finding

strongly supports the hypothesis that for most students using CAMEO, the main motivation is

obtaining enough credit for a certificate.

Figure 4.15: Evolution of the amount of attempted, correct and harvested questions, as well as
percentage of certificates earned, over the course timeline.

4.5.2.4. Comparison Among CAMEO Student Profiles

In this section we compare and find differences between different CAMEO profiles. First,

we present a comparison between certificate earners and non-certificate earners. Analogously to

the figure in previous subsection, Figure 4.16 represents the percentage of correct and harvested

answers over the course timeline. Figure 4.16 is divided into two parts. The first one for certificate

earners (bottom), and the second one for non-certificate earners (above).

The figure clearly shows that non-certificate earners harvest a higher fraction of their correct

answers than certificate earners, and that this fraction increases to 100% before the harvesting

non-certificate earners drop-out from the course (the decreasing curve of success rate reaches

zero), which is why they did not earn a certificate. Altogether, non-certificate earners harvested

68% of their correct answers, whereas certificate earners harvested 44% of their correct submis-
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sions, and a t-test confirms that it is statistically significant that non-certificate earners CAMEO

copy a higher percentage of their correct submissions (p < 0.0001). We believe that the most rea-

sonable explanation for this pattern is that the non-certificate earners who harvested are students

who started the course in the purpose of ‘harvesting for the certificate’, but dropped-out, maybe

because they found that our course contains a lot of questions, many of them randomized (thus,

quite problematic to CAMEO).

Figure 4.16: Comparison of master accounts certificate earners vs. non-certificate earners in terms
of correct and harvested questions, over the course timeline.

Following the aggregated analysis, we look on individual profiles, and classify the students in

the group of the certificate and the non-certificate earners into four different profiles that can be

archetypical. This is illustrated in Figure 4.17. Per each student we see again the percentage of

correct and harvested submissions in each chapter:

1. Student A (certificate earner). High and stable: This profile describes a user who uses

CAMEO extensively from the beginning of the course at least till the account qualifies for

a certificate. This is the more severe use of CAMEO.

2. Student B (certificate earner). Mild and stable: This profile describes a user who is using

CAMEO on a small fraction of the questions that he/she submits, but does so in a relatively

stable manner from the beginning of the course. This student is probably using CAMEO as

a help seeking strategy.

3. Student C (certificate earner). Start low and increase before certificate: Users following

this pattern do not, or rarely use, CAMEO at the beginning of the course, but this use

increases significantly towards the last chapters. These might be users who use CAMEO
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when they get stressed as the course progresses, or that what we observe here is the ‘birth’

of new CAMEO users during our course.

4. Student D (non-certificate earner). Start high and dropout: This represents a typical

pattern for non-certificate earners. Students following this pattern apply CAMEO in most

of their correct answers, but at some point of the course the dropout and do not accomplish

enough points to get a certificate. We consider that this type of students got tired of doing

CAMEO and decided to dropout the course.

Figure 4.17: Selected students that represent archetypal CAMEO behavioral profiles.

4.5.2.5. Factors Associated with CAMEO

Several factors have been analyzed to see their relationship with CAMEO:

1. High-stake questions. The course contains three different categories of assignments which

are quizzes, homework and checkpoints. Each one of this assignments have a different

contribution towards the final grade, quizzes have the highest weight, then homework ques-

tions and then checkpoints. Additionally this information is available in the syllabus of the

course, therefore students are aware of these details. We compute the fraction of CAMEO

submissions with respect the total amount of correct submissions in each category, finding

on average a percentage of 7.25%, 5.65% and 5.09% of CAMEO for quizzes, homework

and checkpoints respectively. Therefore, we can find more CAMEO on high-stake ques-

tions.

2. Delayed feedback. We have several places where questions that are similar in terms of

weight are accompanied by different levels of feedback regarding the correct answer. The

‘show answer’ feature was not available before the deadline for quizzes except for one

quiz (due to a mistake in settings). On this specific quiz, harvesting accounted for 6.4% of
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correct answers, vs. 3.83% on those without show answer. Similar findings were obtained

when looking at the midterm and final exams. On the midterm, with the ‘show answer’

disabled, the average amount of CAMEO was 3.43%, while on the final exam, on which

‘show answer’ was enabled, the average amount of cheating was 6.35%. These results

clearly show that limiting the feedback reduces CAMEO. It does not go totally down since

students can still use exhaustive search utilizing the correct/wrong feedback that is always

provided by the platform.

3. Randomized variables. There are some questions of the course where the question vari-

ables are randomized meaning that each account will receive slightly different variables,

thus final solution for a sample problem. We found that there is less cheating on random-

ized questions, both globally when considering the total amount of cheating events, and

also after normalizing by the total number of submissions to the problem. For random-

ized questions, the percentage of cheating is 4.06%, while for non-randomized questions,

it is 6.07%. The normalized results are statistically significant (p < 0.01), for both the

normalized and the absolute comparisons.
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This chapter focuses on clustering students according to different metrics and exemplifying

their behavior with different student profiles. This can help deepen into how students behave

with respect different items in VLEs and use this knowledge towards personalizing learning ex-

periences to each student profile. This chapter is divided in three sections. Section 5.1 clusters

students based on their use of regular and optional activities. Section 5.2 groups students accord-

ing to their behavior with badges. Ultimately, Section 5.3 profiles couples and groups of students

according to the type of collaboration that they are performing. In all these sections we apply a

Two-Step cluster algorithm leaving the number of groups to be determined by the execution of

the algorithm automatically, we decided to use this algorithm as we do not know beforehand how

many clusters we shall find in our data sample.

5.1. Based on Use of Regular and Optional Activities

We cluster students according to their interaction with regular and optional learning activities

using the dataset of Case Study 3.2.1.1. We use as input variables of the algorithm exercise

effectiveness, video effectiveness (for the use of regular learning activities) and optional activities

(for the use of optional activities). We use the effectiveness metrics as these have been specifically

designed for this case study. We apply the Two-Step algorithm obtaining four clusters with a

cohesion quality of 0.5 in a quality ranging from -1 to 1, which is a good cohesion value. The

81



82 Clustering and Student Profiling

cluster with more students has 141 (48.5%) and the one with less only 29 students (10%), the

other clusters contain 38 (13.1%) and 83 (28.5%) students. This provides a size ratio between

the biggest and smallest of 4.86. The variable importance is 1.0 for optional activities, 0.98 for

exercise effectiveness and 0.77 for video effectiveness. Therefore, all of them provide valuable

information for the clustering model.

Figure 5.1: Boxplot visualization of the clustering results based on the use of regular and optional
activities.

Figure 5.1 shows a boxplot visualization regarding the distribution of each cluster, we can

describe them as follows:

Cluster 1: This is the smallest cluster that includes 29 students (10%) and has as

key feature that is the one with the highest use of the optional activities indicator showing

an average value of 50%. Additionally these students have also high values of exercise

effectiveness (average 67.5%), video effectiveness (average 68.6%) and total time (average

697 min). Therefore, they interacted a lot with the platform showing interest both for

regular and optional activities.

Cluster 2: This cluster contains 83 students (28.5%) that have shown a moderate

interest in the platform in terms of regular activities as the indicators exercise effectiveness

and video effectiveness have an average value of 27.3% and 35.9% respectively, also the

average total time is 270 minutes. However, most of them did not show interest on optional

activities since the average value of optional activities is 6.4%.

Cluster 3: This cluster contains 38 students (13.1%) and the indicators exercise ef-

fectiveness (average 69.7%), video effectiveness (average 75%) and total time (average 631

min) have similar average values than the students in cluster 1. However, cluster 3 indica-

tors have a lower variance than the ones of cluster 1. Additionally, we can see that the use
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of optional activities is very low despite they invested a lot of effort in the platform with

an average value of optional activities of 4.6%. Consequently, the key difference between

students from cluster 1 and cluster 3 is the use of optional activities.

Cluster 4: The biggest cluster involves 141 students (48.5%) that have not made much

use of the platform and neither showed interest in the regular nor in the optional activities

as all the indicators are quite low.

Additionally, we use a high dimensional data visualization denominated as ‘parallel coordi-

nates’ (Inselberg & Dimsdale, 1990) to represent the tendency of each one of the students in

the different clusters. Parallel coordinates represents consecutive parallel axes in which an n-

dimensional point will be represented as a polyline with vertices on the parallel axes. This type of

visualization can be used to detect 2D patterns and it is often use for clustering purposes. Figure

5.2 shows the parallel coordinates visualization where each polyline represents a student charac-

terized by its indicators, and the vertical facet and color represent the cluster. This visualization

helps see more clearly differences among the cluster populations. For example, we are able to see

the higher variance in terms of exercise effectiveness, video effectiveness and total time of cluster

1 when compared with cluster 3, where most of the students follow a more alike distribution.

Figure 5.2: Parallel coordinates visualization of the use of regular and optional activities after
clustering.

Finally, Figure 5.3 shows a line chart representing the x-axis indicator has the value of the

y-axis for the student represented by a specific color; this way we are able to plot some examples

of student profiles. Student A shows very high values of exercise effectiveness, video effectiveness

and optional activities, hence Student A showed interest in regular and optional activities in the

platform. On the contrary, we can see that Student B also showed interest in regular activities
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with high values of exercise effectiveness and video effectiveness but never used any optional

activity. Additionally, Student C did not use much regular activities with low values of exercise

effectiveness and video effectiveness, but optional activities is moderately high. Other different

profiles are Student D which shows low interest in exercise effectiveness but high interest in video

effectiveness and optional activities, so this is maybe a visual learner exploring the contents, and

Student E that which did not use any optional activity of video, but still managed to solve most

exercises correctly as the high value of video effectiveness shows, hence we can hypothesize that

Student E knew most of the contents before accessing the platform. Therefore, we just showed

different examples of students’ behavior with respect the use of regular and optional activities that

can be later on used to customize learning experience. We delve into this discussion in Section

7.2.

Figure 5.3: Line visualization for selected students that represent different interaction profiles.

5.2. Based on Behavior with Badges

In this section, we cluster students according to their behavior with badges and we use again

the dataset of Case Study 3.2.1.1. Therefore, we use as input features for the Two-Step algorithm

the badge indicators intentionality topic badges, intentionality repetitive badges, concentration

badges and time efficiency badges. We also use proficient exercises, completed videos and total

time indicators as evaluation fields to support the interpretation of the results from the algorithm

output.

The Two-Step algorithm selects three clusters providing a good cluster quality (0.75) in terms

of cohesion and separation. The smallest cluster has 70 students (24.1%) whilst the largest has

149 students (51.2%) providing a size ratio of 2.13; the middle-sized cluster has 72 students

(24.7%). The predictors’ importance for the four continuous variables has been 1.0, 0.94, 0.79

and 0.31 for intentionality repetitive badges, concentration badges, intentionality topic badges

and time efficiency badges respectively.
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Analogously to previous section, Figure 5.4 shows a boxplot with the indicator separated by

cluster. The upper plot represents the four badge input metrics that were used to cluster students,

and the bottom plot represents the evaluation fields.

Figure 5.4: Boxplot visualization of the indicators separated by cluster. The upper plot shows the
badge metrics and the bottom plot the evaluation fields.

We use the information provided by Figure 5.4 to learn what type of students compose each

group as we describe next:

Cluster 1: The first cluster is composed by the 24.7% of students. We can rapidly

perceive that students who belong to this cluster are those who have put the greatest effort

in the platform in terms of amount of proficient exercises, total time and completed videos.

The mean value of proficient exercises is 46.88%, for completed videos 46.76%, and for

total time is 489.2 min per user on average, which are all high values. In addition, they have

high values in all badge metrics when compared to the rest of the clusters. The average user

of this cluster made an important investment on time, as well as progress in exercises and

videos, showing also interest in the badge system.

Cluster 2: The second cluster is composed by the 51.2% of the students and it is quite

the contrary of the first one. These students did a small effort using the platform. We can

see that on average they invested 125.8 min per user obtaining only 1.72% in proficient

exercises and 18.93% in completed videos. In addition, they did not show interest in any of

the badge indicators.
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Cluster 3: The third cluster is less clear than the others two being composed by the

24.1% of the population. We can see that students within this cluster invested a decent

amount of time with 314.8 minutes per student. In spite of that, their progress is not so

good with only 17.91% of proficient exercises which is much lower than cluster 1 and

39.07% in the case of completed videos, which is lower than cluster 1, but not that low. The

badge metrics show that intentionality topic badges and concentration badges have very

low average values (1.94% and 3.20%) but intentionality repetitive badges is even higher

than in the in cluster 1. Finally, time efficiency badges indicator shows a moderate value.

Therefore, this cluster concentrates students who have very low intentionality topic badges

and concentration badges, thus they are not doing an organized effort towards achieving

badges. Furthermore, the very high intentionality repetitive badges value demonstrates that

they are very eager to earn those repetitive badges, consequently they are interested in the

badge system. These students have invested a moderate amount of time but they have not

achieved a great progress, additionally they have shown low intentionality topic badges and

concentration badges but the highest average intentionality repetitive badges indicator of

all clusters.

The interpretation of these results is further discussed in Section 7.2. Analogously to previous

subsection, Figure 5.5 shows a parallel coordinates visualization, where students within clusters

2 and 3 are very alike as there are almost no outliers and they show a very clear distribution of

indicators. Cluster 1 is composed of a more diverse source of students but all of them showed

interest in the gamification indicators.

Figure 5.5: Parallel coordinates visualization of the badge metrics of all students separated by
cluster.

Finally, with the purpose of student profiling and exemplifying the behavior of students with
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several specific cases, we provide a radar chart in Figure 5.6 to visualize five students and com-

pare their indicators. Figure 3 shows the radar chart of Students A, B, C, D and E. The values

of the indicators represented in the plot are also normalized in order to be in the interval [0-1].

Figure 5.6 represents starting from the bottom and going counterclockwise the four badge indica-

tors: time efficiency badges (TEB), concentration badges (CAB), intentionality repetitive badges

(IRB), and intentionality topic badges (ITB) in that order. Additionally, we present the indicators

completed videos (CV), proficient exercises (PE) and total time (TT) to help us have an idea about

the interaction with the platform done by those students.

Student A devoted a great amount of time in the platform, actually we can see that total

time indicator goes straight to 1, which is the maximum normalized value, meaning that is the

student who spent most time in the platform (2458 min). As additional note, that amount of time

doubles the one of the second student in terms of total time in the experiment. Additionally, we

can also see that Student A completed all videos and achieved proficiency in almost all exercises.

The student was able to acquire a total amount of 934 badges, and 43 different types of badges.

Student A showed an impressive interest on the badge system, as we can see in both intentionality

topic badges and intentionality repetitive badges indicators. However, the student did not do

the actions necessarily in a consecutive way to achieve the badges i.e., the student did several

activities in parallel to achieve different types of badges. In addition, Student A was not very

efficient in achieving badges, this can also explain the big amount of time that the student spent

on the platform. Our hypothesis is that Student A probably invested that impressive amount of

time because he was very interested in earning badges and he just kept going and going becoming

the top earner among all students. However, he did not achieve the badges following a specific

order.

Student B devoted less time (1168 min) but still managed to complete a high percentage of

the course (100% of videos completed and 60% of exercises), and showed a high intentionality

repetitive badges and concentration badges. However Student B did not have a high intentionality

topic badges. This might be caused due to the fact that achieving these type of badges is more

difficult and requires more effort. Student C spent a similar amount of time (762 min) and made

a similar progress (80% of the videos completed and 40% of the exercises) as Student B, but

his badge indicators are very low which indicates that Student C did not have a high interest in

badges.

Student D devoted a good amount of time (927 min) completing almost all videos and ex-

ercises in the course. The results also show that Student D has average badge indicators which

pointed out that he was not exceptionally motivated by badges, but made use of them. Finally,

Student E invested a low amount of time (249 min), showing low progress where he only com-

pleted 16% of the exercises and 20% of the videos. Nonetheless, the results point out that he

was very interested in badges as both intention and concentration indicators are almost in the

maximum.
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Figure 5.6: Radar chart representing five students with different profiles of badge behavior.

5.3. Based on their Online Collaboration

This section focuses in clustering the population of close submitters that we reported in Sub-

section 4.5.1. We also analyze the different associations between accounts from a pedagogical

point of view. Subsection 5.3.1 applies the clustering algorithm to the close submitters popu-

lation. Subsection 5.3.2 performs an analysis of the associations between couples of accounts

from a pedagogical point of view. Finally, Subsection 5.3.3 presents the example of two bigger

communities of accounts with the different pedagogical implications.

5.3.1. Clustering Analysis

We apply the Two-Step Cluster analysis with the input variables exercise effectiveness, num-

ber active days, videos accessed and number submissions, which are the ones that we found to be

significant when comparing close submitters with the rest of accounts. We note again that we use

the dataset from Case Study 3.2.4. Figure 5.7 shows a boxplot visualization with the clustering re-

sults where each input indicator is separated by cluster (on the x-axis) and by course (top subplot

for philosophy and bottom subplot for music). The first noticeable detail is that the distribution of

the different indicators in the three clusters is very similar for both courses, this a good sign indi-

cating that we might be detecting genuine and real profiles of accounts that could potentially be

found in other courses. The variable importance for the clustering is in descending order videos

accessed, exercise effectiveness, number active days and number submissions for both courses.
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Figure 5.7: Clustering results showing a boxplot visualization of the input variables separated by
cluster and course.

The highest influence for clustering lies in the two first variables videos accessed and exercise

effectiveness and this might be associated with the different account profiles that we discuss later.

The lowest importance is for number submissions, and as we can see in the plot the variance of

this variable is the highest of all, thus it is not the real one defining the clusters. Therefore, from

these cluster results we can infer the following summary for the majority of accounts belonging

to each cluster:

Cluster 1 (N = 34.6% for philosophy and N = 41.41% for music): The accounts that

belong to this cluster have a high exercise effectiveness and the highest median in terms of

number active days and videos accessed. Additionally, the variable number submissions

has a very high variance, thus there are different types of accounts regarding the amount of

submissions. Overall, since this cluster has the highest values for the two activity variables

(number active days and videos accessed) and also a high exercise effectiveness, these ac-

counts invested an important effort and time in the course by accomplishing a high grade

and a certificate.

Cluster 2 (N = 42.3% for philosophy and N = 42.42% for music): This cluster contains

accounts that also have a high exercise effectiveness. Nevertheless, there are important

differences with cluster 1 regarding the rest of the variables. Most importantly, we can see

that in terms of videos accessed, accounts in cluster 1 have a very high use, whereas in

cluster 2 this is quite the opposite case scenario, where most accounts watched very few
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videos. Additionally, the value of number submissions required and number active days

are also lower than in cluster 1. As a summary, the accounts in this cluster achieved a high

grade and certificate, but they were able to accomplish this achievement, by watching very

few videos, being active less days and with fewer submissions than accounts in cluster 1.

Therefore, either the students running these accounts had already knowledge regarding the

topic of the course, or they might have been performing some illicit actions that facilitated

their way into achieving a certificate without much effort.

Cluster 3 (N = 23.1% for philosophy and N = 16.16% for music): The key difference

of accounts in cluster 3 is that the exercise effectiveness is much lower with a median value

of 50%. This means that most accounts in this cluster did not achieve a certificate of accom-

plishment. The value of number active days is also the lowest one of all clusters, with very

few days active. It is also interesting to see that the median value of number submissions

is the highest for both clusters in philosophy and higher than cluster 2 in the case of music.

Therefore, despite these accounts did not achieve a certificate and were active only very few

days, they did a lot of submissions, which are quite surprising results. Finally, for videos

accessed variable, in the case of philosophy the median is 0 and none of those accounts

watched any videos, in the case of music the variable has a high variance and the median

is above cluster 2. Our hypothesis is that this cluster of accounts represents the harvest-

ing accounts that we reported as part of the CAMEO cheating method in Subsection 4.5.2.

These accounts are created for the mere purpose of harvesting correct solutions by using a

exhaustive search (taking into account that questions have several attempts available). This

hypothesis makes sense since the accounts in cluster 3 did not achieve a certificate, were

not very active in the course but still did a lot of attempts to the quizzes showing a low

performance.

Finally, Figure 5.8 shows the different couples and bigger communities that are detected by

the algorithm and the color of each circle represents the cluster assignment. This way we are

able to see the different cluster associations in the communities. Next Subsections 5.3.2 and 5.3.3

analyze respectively the couples and communities detected based on their cluster assignment and

associations between accounts. Additionally, more discussion regarding this findings is included

in Section 7.2.

5.3.2. Analysis of Couples

This subsection analyses the different associations between the couples of accounts based on

their cluster assignment. We provide hypotheses regarding the pedagogical implications that each

cluster association might have. Additionally, Table 5.1 presents some specific examples for each

cluster association.

Cluster 1 and cluster 1 (philosophy 3/11, music 5/30): This association represents two
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Figure 5.8: Visualization of the couples and bigger communities detected by the algorithm and
colored based on their cluster assignment.

students from cluster 1 working together, as we reported in previous subsection, students

from cluster 1 did an important effort in the platform achieving a certificate, with high val-

ues of number active days and videos accessed. Therefore, this association might represent

two students that are taking the course seriously, and are also collaborating reciprocally one

with each other in order to achieve a better grade. Couple 1 in Table 5.1 shows an example

of this association. We can see that both account members of the couple have actively par-

ticipated in the course with high values of number active days and videos accessed. As we

can see, both of the accounts got a perfect score of 100%, which is well aligned with our

hypothesis regarding this association representing students trying to improve their grades.

The value of MAD is 2.65 minutes, which represents the average time difference between

their submissions, thus being very low. Finally, order has a middle value in this case, which

might indicate that the association is reciprocal.

Cluster 1 and cluster 2 (philosophy 1/11, music 11/30): This association represents

one student of cluster 1 and one of cluster 2. This might represent a genuine association

between two real students that might not be reciprocal. The student of cluster 1 invests an

effort in the platform, whereas student of cluster 2 does not make an effort but still gets a

certificate with the help of student of cluster 1. They might be able to do that since student

from cluster 1 might solve a quiz first, and then exchange the solutions with student from

cluster 2. Table 5.1 exemplifies this association in Couple 2. As we can see the account from

cluster 1 watched all videos (37) and did a high amount of attempts (74) achieving a exercise

effectiveness of 81%, whereas account from cluster 2 watched only one video and with only

16 submissions was able to achieve a exercise effectiveness of 98.6%. Additionally, order is
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+1, which means that the account of cluster 1 always submitted the assignments before the

account of cluster 2. Therefore, we can hypothesize that this association was not reciprocal,

and the account of cluster 1 is helping account of cluster 2, probably sharing the solutions

of the quizzes after the feedback.

Cluster 2 and cluster 2 (philosophy 1/11, music 5/30): In this association both ac-

counts belong to cluster 2. Accordingly, this case scenario represents two accounts that did

not perform a big effort in the course in terms of videos seen or active days but still were

able to acquire a certificate of accomplishment. This association can potentially represent

a couple of students collaborating in some academically dishonest way, such as sharing

solutions based on the feedback that the platform provides, in order to receive a certificate

while still investing little time and effort. Couple 3 in Table 5.1 represents an example for

this association. This couple is quite a extreme case since they were active only during 5

days, once per week, and noting out that this couple belongs to philosophy, thus having 5

graded quizzes, they were active only to submit each one of the quizzes, and they did not

watch any videos. Even so, they were able to achieve a high score and receive a certificate.

MAD value for the couple is also low of only 2.64 minutes.

Cluster 1 and cluster 3 (philosophy 1/11, music 6/30): This association represents

one account from cluster 1 and one from cluster 3. Therefore, we have one account that

achieved a certificate investing a great effort and a second one that can potentially be a

harvesting account since it did not achieve a certificate, saw few videos and did many

submission attempts. This association can potentially represent a CAMEO situation in

which the student from cluster 1 is taking the course seriously and learning the contents but

it is also using a the harvesting account to ease or ensure that he is able to get a certificate.

We note that these two accounts can be presumably run by the same physical student. The

couple 4 from Table 5.1 represents the example of this association. The account from

cluster 1 was active for 11 days and watched all videos in the course whereas account from

cluster 3 was active only 5 days (those days that the account from cluster 1 submitted the

quizzes) and did not watch any videos. Additionally, we can see that the amount of number

submissions of account from cluster 3 doubles the value of the account from cluster 1

despite the lower grade and being less active. Finally, the value of order is -1, which

means that the account from cluster 3 always submitted first and the value of MAD is very

low of only 1.21 minutes; these two results are inline with the expected behavior for this

association.

Cluster 2 and cluster 3 (philosophy 5/11, music 3/30): This association represents

one account from cluster 2 that was able to achieve a certificate with a low effort and

one from cluster 3 that can potentially be a harvesting account. As the previous case,

this one can also presumably be a CAMEO association in which the account of cluster

2 is using the harvesting account to search the correct solutions and obtain a certificate
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Table 5.1: Example couple for each one of the cluster associations found.

Couple Cluster MAD order exercise
effectiveness

number
submissions

number
active days

videos
accessed

1
1

2.65 +0.14
100 92 26 35

1 100 12 16 32

2
1

17.07 +1
81 74 7 37

2 98.6 16 19 1

3
2

2.64 +0.71
97.1 7 5 0

2 91.4 18 5 1

4
1

1.21 -1
94 28 11 38

3 49 58 5 0

5
2

1.27 -1
96.4 7 14 0

3 48.5 32 4 0

without investing much time. Couple 5 in Table 5.1 exemplifies this association. None of

the accounts of couple 5 watched any videos. The account from cluster 2 was active 14

days and did 7 submissions to obtain a grade of 96.4% whereas the account of cluster 3

was active only 4 days, did 32 submissions and the grade was only 48.5%. Similarly to

what we say in couple 4, MAD value is very low of only 1.27 minutes and order is -1

meaning that the account from cluster 3 always submitted first. All the results agree with

the typical CAMEO association where the two accounts are run by the same student with a

very deliberate cheating behavior.

Cluster 3 and cluster 3 (philosophy 0/11, music 0/30): We found no associations of

two accounts from cluster 3. We believe this makes sense as we generally label accounts

from cluster 3 as harvesting accounts, and therefore such association between two of them

would not make sense from pedagogical point of view. In spite of we have found none

associations for this case scenario, it would be possible to find them due to different reasons

such as students dropping out or just due to wrong cluster assignments.

5.3.3. Analysis of Communities

The analysis of communities is more complicated that the previous section regarding the anal-

ysis of couples since the size and associations between the different members of the community

vary from one case to another. Therefore, we cannot provide a systematic general approach to

describe all communities. Instead, we delve into the specific patterns of two community examples

that we believe might be representative of the population. The indicators of each account of the

selected communities are represented in Table 5.2. We describe the two communities next:

Community 1: The first community in Table 5.2 belongs to philosophy and is com-

posed by three accounts from cluster 2 and one account from cluster 1. The account of
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cluster 1 watched all the videos in the course, whereas the rest of accounts fewer number of

videos. All accounts have similar values of exercise effectiveness, number active days and

number submissions. Additionally, we can support our hypothesis with Figure 5.9 which

represents for each quiz, the time difference between the first submission (which has a value

of 0) and the rest of the submissions of each account to that quiz. Therefore. we can see

that for the Community 1 the submissions of all accounts for each quiz are always placed

within a 5 minutes timeframe (except for the submission of Account 1 to Quiz 1). They

always met one day each week (either on a Monday or a Tuesday) and solved together the

weekly quiz. As a summary, it appears to be a community of students with similar indica-

tors, meeting once per week to solve the quiz, and where it does not look like there is clear

evidence about someone submitting always first to pass the solutions or something similar.

These results might indicate that it is a genuine community of learning.

Community 2: The second community represented in Table 5.2 was extracted from

music course. There is one account from cluster 1, three from cluster 2 and one from cluster

3. Except for the account from cluster 1 that watched 20 videos, the rest of the accounts

watched none or very few of them. Note out that the account from cluster 3, presumably a

harvesting account, was active only one day, and still the algorithm detected that all quizzes

were submitted close by all accounts, which implies that the five quizzes were solved the

same day. To be more specific, the 25 submissions performed by the 5 accounts, were

done in a interval of time of only 68 minutes. We can delve into the relationship between

accounts by watching the visualization of Figure 5.9. There is a clear trend between Ac-

count 4 and Account 3, where the latter is always submitting few seconds after Account

4, which might indicate that both accounts are managed by the same student applying a

CAMEO methodology. Additionally, Account 2 follows a similar trend but submitting al-

ways around 10 minutes later (except for Quiz 5), which might indicate that Account 2 is

receiving the solutions from the student running Account 3 and 4, or that it is even the same

persona running the three of them. Accounts 1 and 5 do not appear to have a clear rela-

tionship in terms of who answers first but seems to alternate. They might all be exchanging

solutions and attempting quizzes at their own pace since all these happened within a 68

minutes timeframe. Therefore, we find here a community ‘collaborating’ towards achiev-

ing certification in a single day with an approach that looks illicit and combines different

roles and associations between accounts.
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Table 5.2: Description of the extracted indicators for each member of the two selected communi-
ties of accounts.

Community Cluster exercise
effectiveness

number
submissions

number
active days

videos
accssed

1

2 92.14 14 8 15
1 91.79 14 8 38
2 91.55 16 7 7
2 88.57 14 12 13

2

1 56.47 71 8 20
2 69.86 21 6 2
2 79 5 10 0
3 38.55 19 1 0
2 80 27 25 4

Figure 5.9: Time difference between the submissions of each one of the members of the commu-
nity for each quiz.
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This chapter focuses in the implementation of three machine learning models to predict learn-

ing outcomes. Section 6.1 targets the prediction of learning gains of students after interacting with

the educational environment. Section 6.2 targets the prediction of certificate accomplishment in

MOOC environments. Section 6.3 implements a classification model to assess which submis-

sions have been harvested using CAMEO approach. The three sections of this chapter follow the

following structure of contents. First, we describe the machine learning methodology applied to

train the algorithm, and also the evaluation metrics and selected variables are presented. Then,

we present the training and evaluation of the model while interpreting the results that have been

obtained.

6.1. Prediction of Learning Gains

In this first section we approach the prediction of learning gains, which are computed as

the difference between the post-test (done after finishing the interaction with the platform) and

97
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the pre-test (done before interacting with the platform). The section is divided in Subsection

6.1.1, which describes the machine learning methodology and variables used, and Subsection

6.1.2, which reports and interprets the results of the model. More information is available in our

publications (Ruipérez-Valiente, Muñoz-Merino & Delgado Kloos, 2015a, ).

6.1.1. ML Method and Training

The prediction of test scores (or similar) has been targeted in different educational studies

before. Therefore, as first part of the analysis we perform a review of related work in prediction

of learning outcomes in the specific case of learning gains and test scores. This analysis helps

to select the initial set of variables that we consider for the study. Other specificities of the

methodology followed for building this model are as follow:

Dataset: For the training and evaluation of the model we use the dataset of Case

Study 3.2.1.2 since it is the only one where we have available a pre-test and post-test.

Algorithm: We are going to predict a continuous variable and we expect to find a

linear relationship between the selected variables and learning gain. Therefore, we choose

to use a multivariate linear regression.

Variable selection: Since the size of this dataset is limited, we cannot include all the

variables because that would lead to a potential overfitted model. To select the variables that

we want to include, we perform the initial search of related work, an exploratory analysis

by applying stepwise regression approach and correlation analysis. Based on this analysis,

we determine which variables have the highest impact on the prediction model.

Evaluation: To assess the quality of the model, we report the the coefficient of deter-

mination R2 which measures the amount of variability of the dependent variable predicted

by the independent variables. We test if all the assumptions of the regression model are

fulfilled for generalization purposes.

Variable importance: We use the standardized coefficients of the regression model

to have an idea about the importance of each variable.

The selected variables that we take into account to build the model are as follows:

Learning gain: The continuous variable that we want to predict is the learning gain

of students after the interaction of the course

Pre-test: The first two variables are related to the pre-test that students completed

before interacting with the platform, the two variables are the pre test score and pre test

time.
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Use of platform: The variables that we use related to the use of the platform are

average number hints, average number attempts, exercise time, video time, total time and

optional activities.

Progress in the platform: The variables related to how much students have pro-

gressed wit the platform are exercise effectiveness, exercise effectiveness no help, video

effectiveness, completed videos, proficient exercises and average time correct answer.

Distribution of their time: The variables that we use related to how the time is

distributed are average time per day and dispersion time per day.

Behavior of students: We also include variables related to the behavior of students

such as follow recommendations, forgetful user, video avoidance, hint avoidance, unreflec-

tive user, hint abuse, exercise abandonment and video abandonment.

We apply a hierarchical method with three entry steps and a total of six independent variables

(introducing two of them in each step). We select this method as we ran an exploratory analysis

and reviewed related work before designing the model, and we use that outcome to define the

model. In the first step we add as predictors pre test score and average number attempts. This

decision was also supported by the work of Feng et al. (2006) where they made use of these

variables too in their research. In the second step, we add the variables exercise effectiveness

no help and average time per day. In the last step, we introduce the last two variables which

are related to the behavior of students while interacting with the platform. As our sample size

is small, we cannot include all the variables that we have, otherwise this can lead to a potential

overfitting. Therefore, we follow the dummy rule of 10 cases per predictor variable 1. We add

two new variables related to the behavior of students. The first one collects the variables which

have a significant prediction power predicting an increment of the learning gain and the other one

has a decremental influence. The new variables included in the third step are the following:

Total Abandonment (total abandonment): This variable combines both exercise aban-

donment and video abandonment, as they have a significant influence and incremental influ-

ence on the prediction of learning gain. This is interesting as we could guess that students

who abandon exercises and videos would probably learn less.

Negative Behaviors (negative behaviors): This variable combines follow recommen-

dations, forgetful user and unreflective user. An interesting detail is that other behavioral

variables such as video avoidance, hint avoidance or hint abuse were not as significant as

the others, thus they were left outside the model. These variables have a decremental influ-

ence on the prediction model. This makes sense in the case of forgetful user and unreflective

user but no so much about follow recommendations.
1https://en.wikipedia.org/wiki/One in ten rule

https://en.wikipedia.org/wiki/One_in_ten_rule
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6.1.2. Results and Interpretability

Next, we report a summary of the three models in Table 6.1. The first model provides a R2

of 0.481. The second model introduces two new variables rising up to 0.616. Finally, the third

model includes the two variables related to students’ behavior and provides a R2 of 0.68, which

means that our final model is able to predict a 68% of the learning gain’s variability. The standard

error of prediction is 13.3. This implies that when making a prediction the average deviation from

the real value is around 13.3 points. A first impression about the importance of each one of the

variables can be obtained from Table 6.2 by checking the standardized coefficients. Equation 6.1

shows the complete prediction formula with unstandardized coefficients.

LG = {13.615− 0.668 ∗ pre test score+ 6.426 ∗ avg attempts

+ 0.392 ∗ correct exercises no help+ 0.824 ∗ avg day time

+ 0.143 ∗ exercise video abandonment− 0.721 ∗ negative behaviors}

(6.1)

Next, we analyse each one of the model predictors and its importance separately:

pre test score: This variable represents the most powerful predictor. The meaning of

the negative sign is probably related to the fact that if the initial knowledge of students is

very high, it is harder to improve that knowledge. For example, it is hard that a student who

scores 90 in the pre-test goes to a 100 score in the post-test. However, it would be very

probable that a student who scored 0 at the pre-test, will score higher at the post-test after

using the platform. The higher value of the pre-test, the harder is to increase the post-test

score with respect to the pre-test. For every point in the pre-test, the predicted learning gain

decreases 0.668 points.

avg attempts: The average number of attempts that students make trying to solve an

exercise reports a positive effect towards predicting a learning gain. The higher the average

number of attempts the better. A possible hypothesis would be that students who cannot

solve exercises, do not even attempt to solve them and just leave, so they do not increase

learning. In addition, students who make a lot of attempts might learn by error and repeti-

tion and thus they can obtain a higher learning gain in this process than just students that

answer the question directly. For every unit that the average number of attempts increases,

the predicted learning gain raises 6.426 points.

exercise effectiveness no help: The percentage of correct exercises without use of

hints and answering correctly at the first attempt represents one of the most important pre-

dictors of the model. This makes sense as the more exercises students are able to solve

without help, more likely is that their knowledge is higher. For every point that this vari-

able increases, the predicted learning gain increments 0.392 points.
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Table 6.1: Model summary of the linear regression model.

Model R R Squared Std. Error of the Prediction
1 0.693 0.481 16.42
2 0.785 0.616 14.34
3 0.825 0.68 13.3

avg day time: The average number of minutes spent by the student each day is the

second most important predictor of the model. It makes sense that the bigger is the amount

of time invested by students in the platform, the higher is going to be the increment of

their knowledge. However, there might be cases in which this relationship does not apply.

For every minute that the average time per day increases, the predicted learning gain will

increase 0.824.

total abandonment: This variable has the lowest weight on the prediction model,

anyhow it also helped to improve the prediction power. Surprisingly, if the amount of

exercises and videos that students abandon increases, the predicted learning gain will also

increase. A possible explanation is that students that have high abandonment ratios might

be abandoning those resources because they already have that knowledge, thus they will

score high on the post-test later and that will result in a learning gain increment. For every

point that this variable increases, the predicted learning gain will increase 0.143.

negative behaviors: The higher is this variable the lower is going to be the predicted

learning gain. This relationship makes sense for forgetful user and unreflective user, as we

would think that these behaviors do not represent good actions for learning. Students who

forget how to solve exercises mean that they are not really correctly acquiring the knowl-

edge and unreflective students do not have the knowledge to solve the exercises and they

are not reflecting on their errors. However, the relationship with follow recommendations is

not quite straightforward. A possible hypothesis could be that students who follow recom-

mendations, do not have a good background knowledge about the topics covered and they

are going step by step. On the other side, students with a good background might jump

from one topic to another, exploring those topics that are more appealing for them.

All the assumptions of the regression model are fulfilled. The linearity and homoscedastic-

ity assumptions are fulfilled by plotting the standardized residuals versus standardized predicted

values. The normality of the residuals is tested by checking the histogram and normal probabil-

ity plot of the residuals. We should also point out that there are zero cases with a standardized

residual above ±2, which means that the model is well fitted and there are no outliers. Therefore,

under these circumstances the model should generalize well to predict other samples of the same

population. We cannot however test this model with a cross-validation as the number of cases in

the data sample is too small.
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Table 6.2: Unstandardized and standardized coefficients of the regression models.

Model Independent Variable Un-std. Coeff. Std. Coeff.
B Std. Error Beta

1
Constant 38.556 7.88

pre test score - 0.601 0.84 - 0.655
avg attempts 4.093 3.149 0.119

2

Constant 14.485 8.991
pre test score - 0.646 0.076 - 0.703
avg attempts 5.362 2.776 0.156

exercise effectiveness no help 0.271 0.106 0.224
avg day time 0.557 0.200 0.231

3

Constant 13.615 9.734
pre test score - 0.668 0.071 - 0.727
avg attempts 6.426 3.142 0.187

exercise effectiveness no help 0.392 0.104 0.324
avg day time 0.824 0.230 0.342

total abandonment 0.143 0.097 0.155
negative behaviors - 0.721 0.223 - 0.264

We can establish a comparison of results with some of the related works in the area. Despite

our research had several similarities with the study of Feng et al. (2006), some variables are not

the same because of the different nature of the learning environment, but others are the same

such as pre test score or average number attempts. Additionally, we have considered behavioral

variables which were not present at all in the previous study (Feng et al., 2006).

The study by Kelly et al. (2013), which also made use of a linear regression analysis to predict

standardized test scores, obtained a R2 of 0.57. They used different variables except for average

number attempts. The study by Grafsgaard et al. (2014) makes use of posture and gesture data

provided by sensors, they obtained a R2 of 0.38 predicting learning gains. Their educational

environment is a Java Tutor, therefore the variables of their model were different as it was a

programming environment. Anozie & Junker (2006) reported a regression model which is able

to account for the 63.7% of the variability. They also make use pre test score and other variables

related to time and percentage of correct exercises. One of the main differences of this work with

others is that our learning environment was based on MOOC technologies and e.g., the course had

an intense video activity, whereas none of the other works compared here used videos as part of

their learning experience. Therefore, the considered variables change, as the context is different.

There are two other issues that we consider important to approach. First, how good would

get the model if we could use more predictors? We set up a limit to the number of predictors

since our data sample is small. A backward stepwise regression analysis reported that we could

achieve a R2 of 0.75 with the use of all the considered variables. As a result, we find an upper

limit of measuring 75% of the learning gains variability with the use of more variables. That

would provide an improvement of 0.07 points with respect to our design using only 6 predictors
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(so adding many more variables would not represent a big improvement).

A second interesting question is the effect of the pre-test variable on the prediction model. In

the case that we remove this variable from the considered ones and repeat the backward stepwise

regression, we achieve only a R2 of 0.481 with the use of all variables. Hence, we can notice

that the effect of using prior knowledge by using the pre-test score is highly important, as the

influence of this variable in the prediction model cannot be covered by any of the rest of consid-

ered variables. A similar analysis of the influence of pre test score in their regression model was

performed by Feng et al. (2006) with similar conclusions.

6.2. Prediction of Certificate Accomplishment

In this section we approach the early prediction of certificate accomplishment in a MOOC.

The general objective is to see how the quality metrics of the machine learning model change

as more data is available and also the performance of different algorithms, to assess what might

be the best choices. Also, we look into how the importance of variable evolves over the course

timeline. This section is again divided in methodology and selected variables in Subsection 6.2.1

and a report and interpretation of the results in Subsection 6.2.2. More information is available in

our previous publication (Ruipérez-Valiente, Cobos, Muñoz-Merino, Andújar & Delgado Kloos,

2017).

6.2.1. ML Method and Training

In this subsection we describe the machine learning method and training of the model. First

the details of the method are as follow:

Dataset: The dataset that we use is collected from ‘The Quixote’ MOOC Case Study

3.2.2.

Algorithm: As we want to test the performance of different models for an early

prediction, we apply five different algorithms. The implemented models are RF, SVM,

GBM, kNN, and a logistic regression.

Evaluation: We report common metrics used in classifiers such as the confusion

matrix, as well as sensitivity and specificity. Additionally, we also use other metrics that

are better when assessing unbalanced data such Area Under the ROC Curve (AUC), F1-

score is the harmonic mean of specificity and sensitivity, and finally we also use Cohen’s

kappa coefficient which measures the inter-rater agreement for classification taking into

account random guessing and also class ratios.

Variable importance: We use the varImp function from caret package for this pur-

pose and obtain a scaled (from 0 to 100) importance of each one of the variables of the
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model for each week. The relative variable importance metric that we use is the same that

is reported by Friedman (2001) as the final selected machine learning model is the GBM.

The selected variables are a combination, some related to activity, to progress and to the

distribution of the time of students. The specific variables are the following ones:

Certificate earner: The binary dependent variable that we want to predict is if a

student acquired or not a certificate (certificate).

Use of platform and activity: The variables about the use of the platform and amount

of activity that we use are total time, exercise time, exercise time, number active sessions

and number events.

Distribution of their time: The variables that we use related about how the time is

distributed are average time per day, dispersion time per day, dispersion time per exercise

and dispersion time per video

Progress in the platform: The variables related the progress of students are exercise

effectiveness and video effectiveness.

The specific steps that we follow for the training and the evaluation of the models are the

following:

1. We divide the dataset in training (0.75) and test (0.25) maintaining the same ratio of the

predicted variable in both datasets. This partition is shown in Table 6.3.

2. As part of the training pre-processing we scale and center all the numeric variables. We

establish as the quality metric to maximize the Receiver Operating Characteristic (ROC),

and it is going to be estimated through a 10-fold cross validation repeated and averaged

three times. Additionally, we allow train function to automatically search for the best

configuration parameters of each algorithm. We report the results of the 10-fold cross

validation of the best model in terms of F1-score and AUC.

3. We use each one of the selected models of the previous step to predict on the data from the

test dataset. We evaluate the results over the weeks using using F1-score and AUC.

4. We select the best model from the previous for the purpose of this research and further

explore the results for the model, connecting also the results with the specific MOOC that

we are analyzing. We also analyze the importance of variables of the selected model over

the weeks.

After training the five models for each one of the seven weeks (which implies that a total

number of 35 models have been trained) we find that the SVM model has a very strong tendency

to predict the majority class like a baseline predictor, despite our use of ROC as the quality metric

that we want to maximize in our machine learning method. Therefore, we remove the SVM

classifier due to this bad performance. Next, Subsection 6.2.2 reports the results.
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Table 6.3: Distribution of certificate and non-certificate earners in the train and test datasets.

# Students # Non-certificate
earners

# Certificate
earners

Train 1289 1166 123
Test 429 388 41

Figure 6.1: Evaluation results in the test dataset in terms of F1-score and AUC metrics for the
models for each week.

6.2.2. Results and Interpretability

We evaluate each one of the models by predicting on the test dataset. Figure 6.1 represents

the quality metrics i.e., F1-score (on the left) and AUC (on the right), over the weeks for each

model. We can see that the performance after the first week in terms of F1-score is a bit higher

for the RF model, and afterwards GBM model takes over as the best one. In terms of AUC in

the first week log regression is the best, in the second week GBM has the best performance and

afterwards the AUC values are very similar. We are looking for a stable model over the weeks,

offering always a good performance and specially in the first four weeks, since those are the

weeks in which we have chances of sending an early warning to avoid that a student misses the

certificate. Considering these premises, in terms of the F1-score and AUC, we consider that the

model that provides the best performance for this task is the GBM model, which always performs

as the best or second best model over the four first weeks both in terms of F1-score and AUC,

offering performance and stability.

Now we focus on the selected GBM model, which is the one that fits better the purposes

of the study. Figure 6.2 shows the evolution over the weeks for the GBM model in terms of

sensitivity, specificity, F1-score, Cohen’s kappa coefficient, AUC and accuracy. Additionally, we

add the baseline accuracy of the predictor that always classifies as non-certificate earners (0.904).

We can see how the specificity remains high over the weeks, but the sensitivity is very low at

the beginning, we are aware of these results but we think this is the correct approach. We want
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Figure 6.2: Evolution of the performance in the test dataset of the selected GBM model over the
weeks.

to minimize false positives, since a false positive implies a student who is not going to achieve

a certificate and still will not receive a warning by our system. We are less concerned about

students who will get a certificate, but receive a warning regarding they are still in risk of not

getting a certificate. F1-score increases in a similar trend than the sensitivity does, since F1-score

is the geometric mean of sensitivity and specificity. Additionally, kappa coefficient also increases

over time, the more that the predictor starts behaving differently than the baseline predictor (being

able to detect both true negatives and true positives), the more the kappa coefficient increases.

One interesting detail which needs to be explored further, is the effect of the deadlines of

week 5, where we can see that in terms of sensitivity, the predictor gets worse and accuracy

improves little (this happened also with the rest of the algorithms). Then, after week 6 there is a

big improvement in terms of accuracy and sensitivity. By the end of the last week the accuracy is

really high (0.991), but the course is finished and the system can no longer send early warnings,

that is why we should focus in the first three or four weeks.

We explore also the influence of the different variables of the GBM model over the weeks.

We plot the variable importance results over the weeks in Figure 6.3. The results show an inter-

esting trend where there is a lot of difference in the importance of variables during the first three

weeks, where it is distributed among many variables, and at the end of the course, where exercise

effectiveness is with much difference the most important. We can see that after week 3, the most

important variable is exercise effectiveness, exercise time is the second most important one, and

the rest of the variables have low relative importance. Nevertheless, during the first weeks the

importance is more distributed among the different variables. The most interesting detail is that

by the end of the first week, number active sessions, exercise time, number events, dispersion time

per video, total time and video effectiveness have more importance towards the prediction than
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Figure 6.3: Evolution of variable importance of the GBM model in each week.

exercise effectiveness. Additionally, specially at the end of week two but also at the end of week

three, some of these variables still have great importance (note number active sessions variable at

the end of week two).

6.3. Classification of CAMEO Submissions

In this section we approach the prediction of which correct submissions have been copied

applying CAMEO approach as described in Subsection 3.3.7.2. We delve into which features

are more important for the machine learning model, as this can help understand if the specific

characteristics of each problem or the student have a heavier influence on the amount of CAMEO.

Additionally, such prediction models could be used as a run-time detector implement by MOOC

platforms to detect and try to prevent cheating methods online. Analogously to the other two

sections, Subsection 6.3.1 presents the methodology and training of the model, and Subsection

6.3.2 presents the evaluation of the model, assess the variable importance and discuss about these

results as well. More information is available in our publication (Ruipérez-Valiente, Muñoz-

Merino, Alexandron & Pritchard, 2017).

6.3.1. ML Method and Training

This section describes the machine learning methodology and training of the model. Next, we

present some of the details of the method applied to build the model:

Dataset: This study uses the introductory physics MOOC from MIT on edX (Case
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Study 3.2.3). This is an adequate dataset for this study as it has many independent problems

that make easier to detect CAMEO.

Algorithm: We select RF algorithm (Breiman, 2001) as nowadays is considered one

of the best classification algorithms, performing good with diverse types of data and also

useful for raking the importance of predictors.

Evaluation: Similar to the model for certificate accomplishment, we report confusion

matrix, sensitivity and specificity on the test dataset. We also report AUC, F1-score, Kappa

coefficient and compare with the baseline accuracy.

Variable importance: To address the variable importance, we use VSURF 2 (Genuer,

Poggi & Tuleau-Malot, 2015) algorithm which has been developed and optimized for rating

variable importance using RF. Two metrics can be found in the literature to address the

importance of variables in a RF model (Breiman, 2001). Mean decrease node impurity

(Gini) and permuting out-of-bag (OOB) data. We use the second one that can be defined

as follows. For each tree t belonging to the forest, we take the OOBt sample (i.e., the

cases not included in the boostrap data to construct t) and we denote the misclassification

rate of tree t on OOBt as errOOBt. Next, we randomly permute the values of variable

Xj in OOBt to get a disturbed but realistic sample denoted as ÕOB
j

t with an associated

errÕOB
j

t . Then, the variable importance of Xj is calculated as follows:

V I(Xj) =
1

ntree

ntree∑
t

(errÕOB
j

t − errOOBt) (6.2)

Variable selection: We also use VSURF algorithm to approach variable selection as

support to see which variables are more important in the model.

Since in this study we delve into what variables have a higher influence on CAMEO, we

divide the selected variables in these three groups, student, problem and submission features.

CAMEO submission: The prediction target is the binary variable harvested, which

indicates if the a student harvested or not a correct submission on a specific problem apply-

ing CAMEO.

Student features: The student features that we include in the model are performance

first attempt, video time, page time, exercises accessed, number attempts correct answer

and average time correct answer.

Problem features: These features describe characteristics of each problem, we use

type assignment, type response, show answer, location, random and max attempts.

2https://cran.r-project.org/web/packages/VSURF/VSURF.pdf
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Table 6.4: Distribution of non-CAMEO and CAMEO submissions in the train and test datasets.

# Total
submissions

# Non-CAMEO
submissions

# CAMEO
submissions

Train 376752 354966 21786
Test 94187 88741 5446

Submission features: These features describe a specific correct submission to a prob-

lem, we have selected time to deadline, attempt duration and attempts required for this

category.

The specific steps that we follow for the training and the evaluation of the models are the

following:

1. We divide the dataset in training and test with a probability of 0.75 while maintaining the

same ratio of the predicted variable. This partition is shown in Table 6.4.

2. We apply train function from caret package to implement the RF model. We perform a

10-fold cross validation and repeat 3 times to evaluate the results on the training set as

well as select the tuning parameters for the RF model, the target quality metric that we

seek to maximize is AUC. We also configure the train function to pre-process the features

by scaling and centering the numeric variables. The selected model is implemented with

500 trees and 10 variables sampled at each split, the rest of configuration parameters are

maintained as default. The resulting trained model has a AUC value close to 1 (0.99993)

on the training set.

3. Next, we apply the model on the test dataset and report the different quality metrics of the

model.

4. Finally, we apply VSURF algorithm for rating the importance of variables and discussing

about these results to address which of the three categories of features is most important.

6.3.2. Results and Interpretability

We apply the model to the test dataset and Table 6.5 shows the percentage confusion matrix

(N = 94187 submissions) and Table 6.6 shows some quality metrics regarding the model when

applied to the train dataset. We report the AUC, sensitivity, specificity, Kappa coefficient and

accuracy (although taking into account that data is really unbalanced, this is not a very reliable

measure). We can see a clear improvement with respect to the baseline accuracy which would be

the classification of all submissions as not CAMEO.

The results show that the model has very good quality metrics when applied to the test data

with an AUC value close to 1, sensitivity (96.64%) and specificity (99.61%). These results are
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Table 6.5: Confusion matrix applying the model to the test dataset.

Classification Reference
Non-CAMEO CAMEO

Non-CAMEO 93.852% 0.194%
CAMEO 0.366% 5.588%

Table 6.6: Quality metrics of the RF model applied to the test dataset.

Metric AUC Sensitivity Specificity Kappa
coefficient Accuracy Baseline

accuracy
Value 0.9993 0.9664 0.99611 0.9493 0.9944 0.9421

encouraging since they suggest that it would be possible to implement a detector that can predict

CAMEO submissions with high reliability and without depending on the IP and also in real time

(instead of as a retrospective analysis), which were the main handicaps of our previous detector.

The next issue is to analyze how much each one the features is contributing to the model and if

some features are redundant and could be removed without having a big negative impact on the

model.

We apply VSURF algorithm to rate the importance of variables. The algorithm (Genuer et al.,

2015) carries out as a first step a preliminary elimination and ranking of the variables, and second

an analysis for variable selection. During its computation, the results of VSURF algorithm are

averaged over many RF runs, which provides more certainty about the results, taking into account

the intrinsic random factor of RF due to bagging (bootstrap aggregating). The algorithm provides

three outputs, now we describe each one of these outputs providing the results and interpretation

when applied to our model:

1. Sort the input features by variable importance (V I(Xj)) in descending order (averaged

over 50 RF runs). It estimates a threshold of minimum V I (based on the V I standard

deviation) and removes variables below the threshold, let m be the number of variables

left. The m variables selected in descendent order of V I are shown in Figure 6.4. It is

noteworthy to say that no variables were removed in this step, as none of them were below

the threshold. A possible explanation is that no variables are redundant and all of them are

able to convey some unique information for the prediction of CAMEO submissions, thus

all variables are kept.

2. Constructs a nested collection of RF models involving the k first variables, for k = 1 to m.

This means that in this collection, the first RF model constructed includes only the most

important variable, and the last one includes all the variables. It selects the variables which

provide the model with the smallest errOOB (averaged over 25 RF runs). This leads to

m′ variables. The second step reveals that the best model is provided by removing the last

three variables max attempts, attempts required and random as can be seen in Figure 6.5,
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Figure 6.4: Descendent ranking of variables in terms of VI.

where the red line establishes the cutoff point.

3. The final step takes the m′ variables, and constructs a new ascending sequence of RF

models by introducing the variables following a stepwise procedure. More specifically,

a variable is introduced into the model only if it decreases errOOB more than the average

variation provided by noisy variables. Finally, the variables of the last model are selected,

Figure 6.6 shows each model built following the stepwise procedure. After this step, two

more variables are removed since these did not improve the model enough. The removed

variables in this step are page time and exercises accessed. These variables denote an in-

dication of amount of activity and are correlated with other variables measuring student

activity, thus not improving the model enough to be included.

The last checkup consisted in building a RF model with the final 10 variables selected by the

VSURF algorithm, and compare it to the model that had the full 15 variables. The test proves that

the RF model with only 10 variables performs almost as good as the one with 15 variables.

We originally selected six variables related to student features, six related to problem features

and three related to submission features. The VSURF algorithm has removed the same ratio of

each (1/3) leaving four, four and two features in each category respectively. From this finding,

we can conclude that the three categories of features (student, problem and submission) have

influence towards the prediction of CAMEO events. The first four variables in terms of V I

are average time correct answer, video time, performance first attempt and number attempts

correct answer, which correspond with the four student features that are kept in the selected

model. We can conclude from these results that the four most important variables of the model

are the student features, consequently student features are more important than submission and
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Figure 6.5: Nested collection of random forest models.

Figure 6.6: Sequence of RF models constructed using a stepwise procedure.
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problem features. The fifth and seventh variables in V I order are time to deadline and attempt

duration are submission features, whereas the sixth, eight, ninth and tenth are location, show

answer, type response and type assignment which are problem features. Thereupon, it seems that

submission features have slightly more importance than problem features, but this hypothesis is

not conclusive. Nevertheless, it is important to note, that although most of the problem features

have the smallest V I towards the classification, these have been kept in the model because they

provide valuable information regarding the predictability of CAMEO events.

In terms of the V I order of variables, we are not surprised to find out that average time

correct answer, performance first attempt and number attempts correct answer have the highest

V I values. Our previous findings in Subsection 4.5.2 already suggested that master accounts have

the best performance in terms of solving questions in the first attempt and doing it very quickly,

hence it makes sense that those are the most important features. Additionally, time to deadline

and attempt duration features were also kept, and this is in line with our previous findings which

indicated that CAMEO submissions are closer to the deadline and the attempt duration was much

shorter (sometimes inhumanly shorter) than normal submissions. Finally, location, show answer,

type response and type assignment are kept as problem features, which is also in line with our

previous findings where we showed that students applied CAMEO more at the beginning and

middle of the course (until they got the certificate), that they also CAMEO more when the show

answer button was enabled before the assignments’ deadline, when the type of response was

multiple choice and it was a high stake question in terms of grade.

Related to the variables that are removed by the second step of VSURF algorithm, we agree

that max attempts might not provide much information, and in the case of attempts required it

probably has a high correlation with the student feature number attempts correct answer, which

was kept as one of the top importance variables of the model. However, we are surprised to see that

random feature is removed from the model, since we reported in Subsection 4.5.2.5 that CAMEO

is found two times less in questions that contain random variables in the statement. We think that

the variability provided by random feature might be in relationship with other features as well

e.g., type response might provide part of this information as most question with random variables

are ‘formula’ response types and this might be why random feature is removed. Finally, the two

student features page time and exercises accessed are removed in the last step of the VSURF

algorithm despite being variables with a medium importance. We believe that is due to the fact

that they denote some indication of the amount of activity of the learner and this information

might be provided already by other variables.
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This chapter discuses some of the findings of previous Chapters 4, 5 and 6. More specif-

ically, in Section 7.1 we talk over our findings in terms of the amount of activity while trying

to delve into the motivations of students, in Section 7.2 we debate about the profiles of students

that we found in Chapter 5 and the potential applications and outcomes for the learning process.

Section 7.3 presents some recommendations to improve the learning process of students based

on instructional design for optional activities, badges or to decrease CAMEO while Section 7.4

describes initial ideas to build automatic systems that can be used to improve the learning process

of students based in our findings. Finally, Section 7.5.2 presents and discusses our results from

evaluating the effectiveness, usefulness and usability of ANALYSE with 40 respondents.

7.1. Amount of Activity and Motivations

In Section 4.2, we analyzed the use of regular courseware activities and the effectiveness of

students with those activities. We showed that some students focus their learning on solving prob-

lems while others prefer to watch videos. However, the majority of them combine both types of

educational resources. This information can be used to detect the preferred learning method of
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each student. In Table 4.1 we showed correlations between effectiveness and other behavioral

metrics. Our findings suggest that exercise effectiveness and video effectiveness are strongly cor-

related (0.63); a reasonable hypothesis is that part of the cause of exercise effectiveness is due to

video effectiveness. We could also frame this relationship in motivational grounds, students that

are highly motivated for this kind of learning experience might be more active with all educational

resources. Other interesting correlation is between exercise effectiveness and follow recommenda-

tions (-0.115), which indicates that students following advice from Khan Academy recommender

system might perform worse. This might sound surprising in first instance, the rationale can be

that students whom are following those recommendations, might have a lower initial knowledge

and that is why they are following the recommendations, whereas students with a better base

knowledge might solve exercises following a more anarchic behavior. Another interesting asso-

ciation was found between video effectiveness and video avoidance (-0.234). This relationship

indicates that students who avoid watching videos when they are not able to solve the correspon-

dent exercise, are less effective when interacting with the videos they access. One could already

expect this result, since they avoid watching videos even when they need to do it, their video

effectiveness is reduced as they do not watch the correspondent videos in these situations. We

can use these findings to analyze which behaviors might be negative for students’ effectiveness to

send recommendations.

Additionally, as part of Section 4.3, we analyzed the use of optional activities comparing it

also with regular activities. We recall that the available optional activities were feedback, vote,

setting up goals, using the badge display and changing the avatar profile, and that students were

not advised regarding the availability of those activities. In general, our findings suggest that the

use of these activities was low (Table 4.2). Only 23.2% of the users that logged into the platform

used at least one of the optional activities, and the activities that were used more frequently were

the profile avatar (10.8%) and badge display (12%), that are precisely those which are not related

to learning activities. Furthermore, we presented in Table 4.3 a comparison between the percent-

age of regular learning activities and optional activities, showing that regular activities were used

with a much higher frequency. We discuss more about the potential implications regarding these

results in Section 7.3.

Moreover, in Table 4.4 we found that optional activities, and also the use of each one of the

optional activities separately, was significantly correlated to proficient exercises. Nevertheless,

after performing a partial correlation controlling for other variables, this correlation lowered and

in some cases became non-significant. Our hypothesis here is that the use of any the optional

activities does not necessarily produce a higher percentage of proficient exercises, since there

might be a confounding effect with other activity variables, once controlling for them, the rela-

tionship is weakened a lot. Anyhow, we believe that the use of optional activities might engage

students to use the platform more actively, thus leading to more learning. The optional activ-

ities that remained significantly correlated when applying partial correlations were goal (0.25),

avatar (0.235) and display badges (0.229). The fact that students are personalizing their personal
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profile might motivate them to learn more, and in the case of goals, maybe students engage in

the process of completing goals therefore learning more in the process of mastering those skills.

Furthermore, Table 4.4 also showed the level of correlation between learning gain and optional

activities. The Pearson correlation showed that learning gain was significantly correlated with

optional activities (0.282), vote (0.333) and display badge (0.296). However, after removing the

effect of third variables by applying a partial correlation, all relationships became non significant

except for display badges (0.261). Similarly to our hypotheses for proficient exercises, we believe

that despite the use of these activities might itself not lead to more learning achievement, it might

bring motivation for students e.g., setting up badges or displaying an avatar might make students

feel better, setting goals might motivate students to finish them, or making votes and giving feed-

back might make students feel as a part of the community. Consequently, another possible point

of view is that the use of optional activities might be an indicator of students’ engagement and

motivation. Under this assumption, students who are motivated and engaged with the learning

process might explore the platform more deeply, interacting with the different optional activities.

Our results suggest that the use of optional activities can draw a positive influence regarding the

learning outcomes of students.

We also compared the use of optional activities with other categorical variables by cross-

tabulating using contingency tables. First, we compared the gender and the use of each optional

activity separately as a ‘yes’ or ‘no’. The results revealed that women use more often goals, avatar

and badge display whereas men use more frequently vote and feedback. Nonetheless, the only

relationship that was tested significant by the Pearson Chi-Square test was the use of feedback for

men (2.80, p = 0.045). Other previous work in the literature have also found differences between

men and women in the use of web-based learning environments e.g., (Caspi, Chajut & Saporta,

2008; Muñoz-Merino, Molina, Muñoz-Organero & Delgado Kloos, 2014). Additionally, in Table

4.5 we showed the log linear analysis of each optional activity as categorical variables. We found

some associations between the use of avatar and display badges, between the use of feedback and

votes, and also goal and avatar. We believe these results can be interesting for student profiling

as well e.g., finding types of students very into profile personalization or social activity, which

could be later on used for adaptation and personalization of their learning experience. Moreover,

it might be interesting to check which specific associations might lead to more engagement and

motivation.

During Subsection 4.4.1 we made an overview of the amount of badges delivered in Case

Study 3.2.1.1. We showed how the amount of badges delivered is very unbalanced among the dif-

ferent students. We found that while many of those students earned many badges, others did not

use them much. For example, we found more than 80 students who earned 100 badges or more

in one course, and 15 that earned 500 badges or more. This could be indication that the student

was interested in earning badges, but it might also mean just that the student earned those badges

as part of the learning process. Badges are extrinsic motivators, therefore we should be care-

ful in our gamification design (Deci et al., 2001). Indeed, we found some students who earned
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many badges by solving systematically easy exercises. We are concerned about that behavior

since it would imply that the motivation of students lie in earning badges rather than in actually

learning the available educational contents. Therefore, we decided to implement more complex

metrics to measure the behavior of students with badges. During Subsection 4.4.3, we reported

how the badge indicators intentionality topic badges, intentionality repetitive badges, concentra-

tion badges and time efficiency badges were distributed among the students, as we expected we

found some students with very high intentionality, efficiency and concentration towards badges,

which can help measure more accurately the interest of students for the badge system. We were

specially concerned by those students with very high intentionality repetitive badges, which as

we suspected, imply that they are earning the same repetitive badges systematically solving the

same exercises for the mere purpose of having more badges. We believe this can be a troublesome

issue and we discuss more about potential design in Section 7.3.

Furthermore, in Subsection 4.4.4 we analyzed the correlation between badge metrics and

others, our first finding was that the different gamification indicators are highly correlated even

when the definitions are different. As an example, we found a significant correlation (0.445)

between intentionality topic badges and intentionality repetitive badges despite they address two

completely different types of badges. We also found a strong correlation between badge metrics

and those related to activity in the platform. It is only natural to think that students performing

more activities will hence earn more badges as well. However, another potential line of thinking is

that students that are motivated towards badges, will eventually interact more with the platform,

and that increased motivation and interaction will lead them to finish more learning activities

and potentially learn more. Additionally, we found a correlation between badge metrics with

videos accessed and completed videos, despite the definitions of these badges do not take into

account video activity at all. Even though these correlations were not very high, they exist because

video activity might denote engagement with the platform, and this can be in relationship with

their interest on gamification. We also found a very high correlation between intentionality topic

badges and concentration badges (0.859), which can indicate that students focused on learning

topics are concentrated on their task. We consider that as a good behavior that might be positive

to encourage.

Another important part of our analysis was related to academic dishonestly and illicit collab-

orations in Section 4.5. Our first approach was to detect illicit collaborations by detecting close

submitters. We presented our results in Subsection 4.5.1. We were able to detect 99 students in

music course and 26 in the philosophy one, most of them grouped as simple pairs but also bigger

communities submitting together their solutions. Additionally, based on Figure 4.12 and Table

4.8 we argued how these accounts that we categorize as close submitters are able to achieve a cer-

tificate doing a significant amount of less submissions, being active fewer days, watching fewer

videos and viewing less discussion threads. Therefore, they are using some method that facilitates

their way into a certificate of accomplishment. The motivation is probably connected to achieving

a certificate. However, we cannot generalize since there are more complex relationships e.g., in
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some of the bigger communities showed in Figure 4.11 the motivation of some students might be

receive a certificate without effort but others might be altruistically helping their friends by shar-

ing their solutions. Besides, some of these communities might even be positive for the learning

process of students. We delve into these different motivations and which of the associations can

be more harmful for the learning process in next Section 7.2.

Second, we reported results and analyzed the cheating method CAMEO, which we believe

to be very problematic. As a summary, our findings based on Figure 4.13 suggest that 12.9% of

the certificate earners harvested at least a minimum of 1% of their correct answers, additionally

3.7% of the certificate earners cheated in more than 50% of their correct answers, what we can

denominate as ‘cheating through a certificate’. Moreover, the majority of CAMEO submissions

(78% in the case of certificate earners), are premeditated i.e., students did not try to legitimately

solve the question before cheating upon it. Furthermore, there is a correlation (0.359) between this

premeditated behavior and the amount of CAMEO, which seems to convey that the more a student

cheats, the less the student is trying to legitimately learn the contents. We believe that the main

motivation for students to use CAMEO is in order to easily receive a certificate. This is supported

by several of our findings. For example, we showed in Figure 4.15 that the amount of CAMEO

dramatically decreased after students earn their certificate, and we also reported in Subsection

4.5.2.5 that it is more likely to find CAMEO on high-stake questions which provide more points

towards the final grade. One interesting example is the case of non-certificate earners applying

CAMEO, which initially can appear to weaken our hypothesis. Nonetheless, our findings in

Figure 4.16 suggest that non-certificate earners tend to be more cynical, cheating a much higher

percentage of their correct submissions than certificate earners. The most reasonable hypothesis

from our point of view is that those non-certificate earners accessed the course with the intention

of cheating through a certificate, however when they noticed that the course is not very CAMEO

friendly i.e., more than 1000 questions and many of them randomized, they decided to drop out

the course.

We believe CAMEO to be a serious issue due to several reasons. Pedagogy-wise, CAMEO is

most likely related to poor learning, as any other cheating method students are achieving a passing

grade without actually learning the required contents. Additionally, as research has suggested,

students cheating might think that they have better skills that they actually have and damage

long-term success in their career (Sparks, 2011). The second issue is that CAMEO represents a

threat to the MOOC model based on certificate value, more than 10% of certificate earners used

CAMEO and about 3.7% harvested the majority of their answers. Although MOOC providers

are already aware of academic dishonesty problems in MOOCs i.e., trying to control identity and

impersonation, there is still work in this direction, since if certificates are not trustworthy and

valuable, then a MOOC model that uses certificates to accredit learning will not be sustainable

in the following years. Finally, CAMEO also poses a serious problem with educational research

in MOOCs. We showed in Figure 4.14a that master accounts were the faster ones and with

the highest performance to solve problems. Additionally, Figure 4.14b showed that the density
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distribution of the performance of the master accounts was the higher while the harvester accounts

had the worst performance, being normal accounts in the middle part. Therefore, any research that

tries to identify variables correlated with student success in a MOOC is heavily biased by these

accounts. For example, master accounts have a very high success rate, however these accounts

do not use any of the learning contents since they are cheating, therefore these accounts would

weaken the relationship between using instructional materials and certificate accomplishment.

Thus, it is necessary to be able to detect and remove both master and harvester accounts in order

to achieve reliable conclusions from MOOC research.

7.2. Student Profiling Outcomes

Chapter 5 presented how to cluster and profile students in terms of their different behaviors:

first regarding their activity with regular and optional activities, second regarding their behavior

with badges and third in terms of their roles and behavior in academic dishonestly and illicit

collaboration. The overall idea is to present some ideas regarding the potential outcomes of such

clustering and student profiling, such as analyzing the different student profiles and how these can

be useful for adaptation purposes.

In the first instance, Section 5.1 presented the clustering results when we used as input the

variables exercise effectiveness, video effectiveness and optional activities. More specifically,

Figure 5.1 showed a boxplot visualization and Figure 5.2 a parallel coordinates visualization of

the indicators of the resulting four clusters. Cluster 4 was composed by students who did not

show interest in either regular or optional activities. Generally speaking, these students invested

very little time in the platform and were therefore not motivated by the learning experience. We

can argue that these students might not perform well in self-regulated online environments where

they need to self-manage their time and learning process, or maybe they just were not motivated

by the specific contents and they left the platform just after checking them out. Maybe a potential

recommendation for this cohort of students would be to consult with them if they enjoy these kind

of online environments in order to offer them an alternative possibility closer to more traditional

learning environments like face-to-face classes. Then, students from cluster 2 had a moderate

interest in the platform with an average time of 270 minutes, and though most of the students

belonging to this cluster did not show interest in optional activities, some of them used several

optional activities. There is not a clear recommendation for students in this cluster, as we can

see there is a high variability also in exercise effectiveness and video effectiveness, specially the

latter were we can see some students very close to a 100%. Due to this high variance within the

cluster, we cannot establish a clear recommendation for all students, and it would be advisable to

customize recommendations for each particular individual. We discuss next students that belong

to clusters 1 and 3, which shall be analyzed jointly. First, students from cluster 3 were quite

active with the platform spending an average of 631 minutes, and effectively progressing in both

exercises and videos. Nevertheless, most of these students did not used optional activities at all
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or just used one of them. Second, students from cluster 1 also did a nice effort in the platform

with an average of 697 minutes, they also did a good effective progress in exercises and videos.

Nonetheless, the variance of both exercise effectiveness and video effectiveness is much higher

than the one in cluster 3. The key distinction of cluster 1 and cluster 3, is that all students of

cluster 1 used optional activities, and it is a cluster that is fundamentally composed by students

that used optional activities. Although the progress of students in cluster 1 is a bit lower than

the one of students in cluster 3, students in cluster 1 invested more time on average (697 min

compared to 631 min) than the ones in cluster 3. One hypothesis is the idea that we discussed

in previous Section 7.1, which is that the engagement with the learning environment led them to

spend more time in the platform and at the same time to use optional activities. These two student

profiles are very interesting, both of them showed a motivation for the learning environment as

their high effectivenesses reveal, with one key distinction which is that one cluster showed interest

in optional activities and the other did not. We believe that students from both clusters can benefit

from blended or online pedagogies where the use of self-regulated online learning environments

is possible. Students from cluster 1 showed a natural motivation for the environment which they

explored using optional activities, despite they were not advised about the existence of these

activities, spending a very high amount of time and clearly showing engagement with the learning

process; they probably do not need clear guidelines as they enjoy the exploration of the contents.

Students from cluster 3 also showed a clear interest in the learning contents achieving the highest

effectiveness in the course, however they did not make use of optional activities. Therefore,

it might be the case that in order to take advantage of all the features of the online learning

environment they should receive more formal advise and recommendation to use the different

available tools and optional features. Overall, we think that these findings can be useful to find

appropriate pedagogies for different profiles of students.

A similar approach was followed to analyze the behavior of students with badges in Section

5.2. We showed the clustering results in Figures 5.4 and 5.5. The general idea is that we can use

these gamification metrics to try to assess which students are interested in gamification and which

are not, in order to personalize their learning experiences or for group formation purposes i.e., to

make working groups or classes setting up together students that might feel motivated by the same

features. We detected three different clusters that we analyze as follows: cluster 2 was composed

by those students that did not do much effort in the platform, analogously with the findings of

previous student profiling analysis, we can infer that this is the cohort of students that were not

motivated by this self-regulated approach since they invested little time and did not show interest

in badges or educational resources. Consequently, they would probably perform better in more

traditional settings as we already concluded in previous analysis. Students in cluster 1 showed

interested in the Khan Academy environment by actively using videos and exercises, and also

the badge indicators are high. It looks like these students enjoyed both the self-regulated and the

gamification environment, they have the highest time investment and effectiveness, and showed

interested in both topic badges and repetitive badges. As a result, we can conclude that this is an
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appropriate learning environment for this cluster of students. Finally, cluster 3 represents a very

interesting group of students, which have spent a moderate time and accomplished a moderately

low progress with educational resources, but has shown a lot of interest in badges. More specifi-

cally, their intentionality repetitive badges indicator is the highest of all, showing that despite their

progress and time invested is lower than the one of those students belonging to cluster 1, their in-

terest for repetitive badges is higher. Therefore, it is clear that these students were interested in

achieving those badges and that they can feel motivated by gamification features if provided dur-

ing their learning experience. However, we can also see that their progress has been lower than

students in cluster 1. This might be due to repetitively solving the same exercises to gain more

repetitive badges, instead of advancing with different exercises. In any case, this behavior will

not lead them to learn more or progress in their learning experience, so we should be careful with

this kind of behavior as it can be counterproductive for the learning process. We discuss more

about this aspect in next Section 7.3.

As part of Section 5.3 we applied clustering to those accounts detected as close submitters

after applying the algorithm as described in Subsection 3.3.7.1, the input variables were exercise

effectiveness, number active days, videos accessed and number submissions. We note out again

that the global idea is that these students always submit their assignments very close in time,

therefore there is something suspicious and probably illicit happening here. We applied this

analysis to both music and philosophy courses separately and obtained the same cluster types.

Overall the global idea is that accounts from cluster 1 did a great effort by watching most videos

and being active many days and managed to achieve a certificate. Accounts from cluster 2 did

a small effort, they almost did not watch videos, they were active a moderate amount of days

and attempted few submissions, still they were able to achieve a high score and get a certificate.

Finally, accounts in cluster 3 were active very few days, did not watch videos but still performed

plenty of submissions. Accounts in cluster 3 are most likely harvesting accounts as described as

part of CAMEO strategy in Subsection 3.3.7.2 that are used to harvest quiz solutions by applying

exhaustive try and error, that explains the low success and very high number of submissions.

Carrell, Malmstrom & West (2008) reported that peer cheating influences students to also

cheat, so it is only natural that we found these illicit associations. An association between two

accounts that belong to cluster 1 can potentially represent two students that made an effort in

the course by watching videos and trying to learn and understand the contents and meeting once

per week to submit their assignments together, potentially sharing their answers in a reciprocal

relationship. Motivation here can be ambition to improve the grades, and we might argue that

this relationship does not represent a severe problem for the learning process of these students.

An association between a student from cluster 1 and other from cluster 2, might represent a

less balanced interaction where student from cluster 1 is potentially having a passive attitude

and passing the answers to student from cluster 2 (potentially a friend or acquaintance), so that

this latter user can obtain a certificate without investing effort in the course. Indeed, literature

has reported that one typical attitude toward cheating is that, one copies from other (‘active’)
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and the other lets others to copy (‘passive’) (Eisenberg, 2004), which resembles quite well this

situation where student of cluster 1 usually submits the assignment before the one in cluster 2.

Additionally, letting others to copy from you is regarded as less severe than actually copying from

others (Yardley, Rodrı́guez, Bates & Nelson, 2009). In the case of this specific association, the

impact on the learning process of students from cluster 2 is obviously more severe. Then, we

also found associations between two accounts from cluster 2, which implies that two students

are trying to get a certificate without investing much effort in the course. As found in previous

research students do not usually cheat alone but with friends that are close and they feel they

can trust (Scrimpshire, Stone, Kisamore & Jawahar, 2016), therefore we are not surprised to find

couples of students cheating together to accomplish a passing grade without effort. We believe

that this can be severe for the learning process and future beliefs of these students, since they

come to think that they are able to accomplish goals putting effort on them. Finally, we have

the association of one account from cluster 1 and one from cluster 3, and also one account from

cluster 2 and one from cluster 3. As there is a presumably harvesting account (cluster 3) in

both associations, most probably these are CAMEO associations as were described in Subsection

3.3.7.2. Therefore, we note that under these associations, both accounts are run by the same

student. First the association between an account from cluster 1 and one from cluster 3 might

represent a slightly less severe situation since, the account from cluster 1 invested an effort in the

platform and maybe is using the harvesting account to be on the safe side and get a passing grade

without problems. We can see this association closer to the idea of applying CAMEO as a ‘helper-

mode’ that we reported (Alexandron et al., 2017). The second scenario is one account from cluster

2 and one from cluster 3, which might represent a more severe situation since the student is

managing to get a certificate without any effort at all and seems to be closer to the ‘premeditated-

mode’ that we reported (Alexandron et al., 2017). In the case of bigger communities, each one

shall be analyze separately, but we already showed in Table 5.2, how some communities might

combine CAMEO and peer cheating, and some of them might be more ethic and real working

groups that can actually be fruitful for their learning process. It would be interesting to analyze

the role of different students (Boud, Cohen & Sampson, 1999) e.g., leaders or followers and

other behaviors. Although we think that in most cases students know each other prior to starting

the course, they can also meet online in study groups and then decide to perform an ‘unethical

collaboration’ (Lampe, Wohn, Vitak, Ellison & Wash, 2011).

7.3. Instructional Design

Section 7.1 discussed about the relationship between optional activities and learning out-

comes. However, this correlation was weakened once removing influence of third variables.

Nonetheless, we hypothesize then that the use of optional activities can be used as an indicator

of engagement and motivation, and at the same time, these activities can keep students engaged

through their learning experience and motivated them to spend more time in the platform and
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use more activities, hence leading to improve their learning outcomes. Due to these reasons, we

think that the inclusion of optional activities can bring benefits to the learning process of stu-

dents. However, one major problem that we found in our experiment is that under our conditions

(the use of the platform was not mandatory and instructors did not inform their student about the

availability of these optional activities), the use of optional activities was very low compared to

the use of regular activities like exercises and videos, and for most students optional activities

appeared to be unnoticed during their learning process. Consequently, our recommendation is to

encourage or at least to share information regarding the availability of different optional activi-

ties and tools, so that students that might not have a very exploratory behavior know about them

as well. One interesting finding was that more than half of the goals that students started, were

also finished, which gives an indication that students are resilient and are motivated to achieve

their learning goals. Moreover, we also found that most of the votes that students gave to their

peers were positive, and this can be good to reinforce other peers. However, there might be some

cases in which more neutral or even negative votes can have a good impact on the overall learning

process since it can help distinguish good from bad learning content. So students should not be

afraid of emitting neutral or negative votes when adequate. One problem that we detect is that

the activities that were used more (avatar and display badges) are actually not related to learn-

ing. The setting of goal, votes and feedback were used less frequently, therefore we think that

an additional reinforcement for these activities might be necessary, specially in the case of goals

since we already presented that students were motivated to complete most of the started goals.

One possibility, would be to encourage the use of these optional activities related to the learning

process by providing additional points towards the final grade, or a small percentage of the grade

based on these activities.

In Section 4.4 we also presented an overview of which badges were delivered more frequently,

finding that the top-10 ranking was very similar for the three courses. Some of these badges are

easy to acquire and were received by most of the students just after doing some interaction with

the platform. Therefore, we believe that these easy participatory badges will not play an important

role in the motivation of students. Nevertheless, instructors might be able to set up more specific

and motivating badges in those exercises or topics that are tough to master for students, this way

students might feel an extra motivation to learn a difficult topic. Additionally, if we want to boost

some specific aspect or tools, then we can provide specific badges for the desired behavior that

we want to encourage e.g., let us say that we want to increment the use of goals, we can provide

new badges when students start and finish goals; this can apply to many other objectives. During

Subsection 4.4.2, we explored which factors might have an effect on the amount of badges that

were delivered. Although we are not able to be conclusive about our results, our findings seem

to indicate that easier exercises and longer videos will trigger more badges, although this would

be obviously dependent of the criteria to deliver those badges. Therefore, we mention again the

previous idea that we might want to use some easier badges on those exercises that are difficult

to resolve. Furthermore, the position of the item within the course structure had a significant
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effect in the number of badges triggered. As one could expect items at the beginning of the

course triggered more badges than those at the end. To overcome that obstacle and keep students

engaged, we would recommend to spread badges during the course duration with special emphasis

on the contents in the middle and end of the course, to improve the motivation through the whole

duration. As many other studies, our findings suggest that gamification was helpful to engage

many students, and this can be useful for example in engineering education, where students have

severe issues in terms engagement and motivation. Indeed a report by the American Society for

Quality informed than 80% of the children were not interested in engineering careers (Henke,

2009). The use of game-thinking and game elements have been proven to useful in engineering

education e.g., in a course for computer science engineers (Mas-Sanso & Manresa-Yee, 2016).

Nonetheless, creating a good technology-enhanced learning experience is quite a challenging task

that requires a well fitted pedagogy design for each course (Riojas, Lysecky & Rozenblit, 2012).

As an example, we remark again the cluster of students that we discussed in previous Section

7.2, which tended to solve the same easy exercises in a systematic way without no additional

learning involved, in order to earn more repetitive badges. In that case, we can clearly see the

effect of badges as an extrinsic motivator, since students stopped solving exercises for the purpose

of learning. Therefore, the final gamification design need to have the focus on learning and trying

to boost the intrinsic motivation of students (Zirk, 2014).

Finally, in Subsection 4.5.2.5 we analyzed which factors were associated with CAMEO. We

believe that this is already a serious problem and will likely increase if the value of MOOCs cer-

tificates increases over the next years, therefore we provide some instructional advise that can be

helpful for instructors and course designers. Although this is not a final solution to the problem,

it can help to decrease the prevalence and severeness of CAMEO in future courses. One of our

findings was that the use of randomized questions reduces CAMEO by half, and this finding was

also in the same line that the work of Northcutt et al. (2016). Therefore, we recommend the use

of randomization as frequently as possible, specially for high stake questions. More specifically,

randomization allows to select variables of a statement as a range, or select the specific variables

from a pool of values, therefore as these different values lead to different potential solutions, stu-

dents are unable to use the solution of the harvester account in their main account. However,

as randomization difficulties CAMEO, it does not remove it entirely as students can find other

ways. A more general approach could be to implement very big pools of questions, for each

topic. However, this could be hardly implemented by just a course staff, but more a bigger scale

with different stakeholders in order to create large problem pools for different topics, levels of

complexity and with the appropriate technology to be used by different courses. We also found

that delaying the feedback of the question decreased the prevalence of CAMEO by half as well.

The main feature that facilitates CAMEO to students is the use of ‘show answer’ functionality

that can be available in edX. However, even when ‘show answer’ is completely disabled, stu-

dents can also try exhaustive search and get correct/incorrect feedback that it is always given;

this latter approach is specially effective in multiple choice quizzes. Indeed, the main caveat of
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delaying feedback is that is a design pattern that is not beneficial pedagogy-wise. Also, delaying

feedback would be complicated in self-paced courses which do not have hard deadlines. Overall,

this solution improves security regarding CAMEO at the expense of deteriorating the learning

experience of students. As a result, one could argue that we should focus on those students who

actually want to learn instead than on those who do not. Our recommendation is finding a bal-

ance between reducing CAMEO and maintaining quality learning process e.g., to use randomized

questions as frequently as possible and delaying feedback only on really high stake questions like

exams, while maintaining the feedback available for formative assessment activities that do not

have any weight towards the final grade. Moreover, we advise to modify high-stake final exams

in future editions of the course.

7.4. Towards Actuators

In this section, we provide some guidelines regarding how to use the lessons learned to po-

tentially design and implement automatic systems that can have different tasks, such as sending

warnings or recommendations or to detect behaviors. One potential use of these metrics is to

automatically detect problems in educational resources or students. For example, the system can

analyze effectiveness in exercises and send a warning to instructors for those exercises which

have very low correctness ratio which might imply that the exercise is poorly designed or that the

difficulty is too high. Similarly, the system can analyze the repetition ratio of videos and send

warnings for those videos that have a very high repetition ratio, which could imply that students

are confused by the video and they are watching it repetitively. Instructors can use these warnings

to revise the educational contents with problems, this is specially useful in MOOC environments

since instructors are unable to analyze students or educational resources individually, therefore

they need data-driven approaches that might facilitate the detection of outliers and issues.

During this dissertation we analyzed the relationship of different variables with learning out-

comes. In Section 6.1 we built a model to predict learning gains of students and we found that

some behaviors had a negative effect towards learning gains. For example, we learned that be-

ing unreflective (unreflective user) was found to be bad for learning achievement. As a result, a

recommender system could send a warning to students when this behavior is detected advising

them to reflect more on their previous attempts. Another potential example is that if a student

is detected to be avoiding videos (video avoidance) and still failing to solve a certain exercise,

the recommender system can advise him to watch the video which actually explains the concepts

associated with the exercise he is struggling with. Additionally, during the last sections we dis-

cussed about those students that are solving the same easy exercises systematically to earn more

repetitive badges, thus showing very high values of intentionality repetitive badges. It could also

be in our best interest to send warnings to students whenever they are detected carrying out this

noxious behavior. Furthermore, this system could also encourage good behaviors, such as for

example the use of goals or social activity functionality. As part of Section 6.2, we approached
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the implementation of machine learning models with the objective of early predicting certificate

accomplishment with the idea of providing tools, such as a warning system, that can intervene

and help the student get back on track before it is too late. We tried several machine learning

models and found that in our case, the GBM model was overall the best fit, however since we saw

differences in these models as more data becomes available, maybe it would be interesting to con-

sider using different models for predictions at different time frames of the course. We also found

that the importance of variables changed greatly at the different time frames of the course i.e., at

the beginning of the course participatory variables (like number active sessions or number events)

were very important, while as the course advances their importance decreases in favor of exercise

effectiveness. We can use these insights for the implementation of a early warning system. In this

direction, even though we followed a hard class prediction approached in Section 6.2 (we selected

the class with the probability above 0.5), it is possible to follow a soft prediction approach based

on probabilities and we can adapt the different warnings according these probabilities e.g., a very

high probability of not getting a certificate might receive a strong warning whereas a threshold

probability can receive a more moderate warning, and those students who are doing really good

with a very low probability will not receive a warning at all (or maybe an encouraging message).

Finally, in Section 6.3 we implemented a model to predict submission events as CAMEO or

not, which achieved a sensitivity and specificity of 0.96 and 0.99 respectively. We used VSURF

package for feature selection and to analyze the importance of variables. Despite all variables

provided useful information regarding CAMEO, student features had the highest importance,

followed by submission and problem features. Using these findings we can work towards imple-

menting a run-time detector without the use of IP. Since our model in Section 6.3 used all data

available as a retrospective analysis we would need to develop a proof on concept to analyze its

viability by adapting student features to take into account only the data available until the very

instant of time of each submission, which could potentially lead to some deterioration of the qual-

ity metrics of the model. Finally, we could run the model in real time whenever a submission is

made. For example, sending a warning after 3 submissions detected as CAMEO in a row, since

the sensitivity of the model is very high the probability of this event happening by mistake is very

low.

7.5. Evaluation of Visual Analytics Dashboard

In order to gain insight regarding the effectiveness and usability of ANALYSE (Subsection

3.1.2.2), we performed an evaluation of the tool. The respondents were 40 students taking ‘Design

of Telematics Applications’ class, which is part of the Telecommunications Engineering master’s

degree at UC3M. We expect that ANALYSE can be used by non-technical users with no addi-

tional training and that its visualizations are effective and usable. More information regarding

the specific visualizations of ANALYSE can be consulted in our original research papers about

the tool (Ruipérez-Valiente et al., 2016, 2017). The complete questionnaire that the respondents



130 Discussion and Recommendations to Improve Learning Processes

received is in Appendix A.

7.5.1. Overview of the Survey

The survey objective is to evaluate the usability, usefulness and effectiveness of ANALYSE.

The intervention took place for around 60 minutes with the following phases:

1. Initial interaction with a typical course using Open edX (about 8 minutes).

2. Initial interaction with ANALYSE (about 7 minutes).

3. Respondents interacted with the 12 visualizations of ANALYSE with the role of instructor.

Students had to respond the questions from ‘Block 1’ (see Appendix A for all specific

questions) of the survey by interacting with each visualization to complete a task, and

therefore obtaining the proper conclusions to respond the question (about 25 minutes).

4. Respondents had to rate in a 5-point Likert scale the degree of usefulness of each one of

the 12 visualizations and also three general questions about the usefulness of ANALYSE

(‘Block 2’ and ‘Block 3’, about 5 minutes).

5. Respondents were asked the 10 questions of the SUS survey (Brooke, 1996) to evaluate the

general usability of the tool (‘Block 4’, about 5 minutes).

6. Finally, the respondents received two open questions regarding the best features and poten-

tial improvements for ANALYSE (‘Block 5’, about 5 minutes).

As a summary the participants solved the 39 questions survey within Appendix A, which

included 12 questions to measure the effectiveness of the visualizations, 3 questions about the

general usefulness of ANALYSE, 12 questions regarding the usefulness of each visualization, 10

questions regarding the general usability and 2 qualitative open questions about the best features

and potential improvements.

7.5.2. Discussion about the Survey

This subsection discusses the results of the survey. Table 7.1 contains the results for all

questions of the survey in Appendix A divided by blocks as we described in previous Subsection

7.5.1. For the questions of ‘Block 1’ where respondents had to carry out a task we report the

percentage of correct answers, for the rest of 5-Likert scale questions involving ‘Blocks 2, 3 and

4’, we report the mean and standard deviation of the answers.

First in terms of the effectiveness of the tool we analyze questions belonging to ‘Block 1’

in Table 7.1. As we can see, most of the questions are above a 90% of effectiveness except for

question 11. We can infer that most of the visualizations are effective and easy to use, even for

users that interact for the first time with ANALYSE. The problem with question 11 is that students
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had to interact with ‘Chapter Time’ visualization by explicitly clicking to switch from ‘total time’

in the chapter to the ‘graded time’ which was asked by the question, most students did not perform

that action and directly responded the value of the ‘total time’. Therefore, our lesson learned here

is that we should rethink how to make clear to users the available interaction with the different

visualizations. Actually, this issue was also addressed in some of the open questions as part on

‘Block 5’.

In terms of the visualization usefulness based on ‘Block 2’, we believe that the results are

positive since the average value is 3.69/5. All visualizations are close or above a mean value

of 3, thus we can argue that the respondents think that all visualizations have a potential use.

More particularly, the most useful visualizations were ‘Course Summary’ and ‘Students Grades’

(4.43 and 4.45 respectively), we think this matches our initial ideas since these are the most

straightforward and meaningful visualizations related to the learning process. The least useful

visualization was ‘Video Event Distribution’ (2.95), which we believe that this is due to a bad

visualization design that we actually improved in the next version of ANALYSE developed after

this survey. In the case of the global usefulness based on ‘Block 3’ the results are good being

all average values above 4.2, thus respondents considered ANALYSE to be globally helpful to

track students’ progress during their learning progress as well as to detect problems and issues in

educational resources.

The ‘Block 4’ implemented the SUS questionnaire which has been extensively used in the

literature to evaluate the usability. We obtained a total score of 78.4, which according a study

developed by Sauro (2011) it is within the 15% better percentile. These results are really good

and seem to indicate that ANALYSE is usable. There are other studies that have applied SUS

to their learning analytics platforms such as LARAe system (Charleer et al., 2014) with an SUS

score of 76 or the SAM tool (Govaerts et al., 2012) with a score of 71.36.

Finally, ‘Block 5’ contained the two open questions. The first one regarding the most useful

features threw many positive statements such as “I knew everything had happened”, “It permits

knowing where students fail more generally in order to detect problems”, “I was able to see the

evolution of students from the very beginning of the course” or “I am able to see my progress and

compare it with the rest of the students”. We think that the respondents were able to see the poten-

tial use of ANALYSE, and benefits for awareness and self-reflection, which have been reported

as one of the main benefits from learning analytics tool in the literature (Govaerts et al., 2012;

Govaerts, Verbert, Klerkx & Duval, 2010). We also found several positive comments regarding

the usability of the tool such as “The app was very intuitive and I did not need any previous

knowledge to make use of it” or “The best features are that is really easy to use and the interactive

visualizations makes it very intuitive”, which is also in line with the high SUS score that we have

reported. The second question regarding which features could be improved provided interesting

insight from the respondents, such as the implementation of social activity visualizations or adapt-

ing language to the user (note that ANALYSE is in English while the respondents were Spanish).

Several respondents also mentioned ‘Repetitions of Video Intervals’ visualization, some of them
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Table 7.1: Results of the evaluation of ANALYSE based on the questions in Appendix A.

BLOCK 1
# Percentage correct # Percentage correct
1 100 % 2 100 %
3 92.5 % 4 100 %
5 95 % 6 100 %
7 97.5 % 8 97.5 %
9 95 % 10 97.5 %
11 30 % 12 95 %

BLOCK 2
# Mean Std. deviation # Mean Std. deviation
13 4.42 0.75 14 4.45 0.68
15 3.8 0.88 16 3.38 1.13
17 3.48 1.26 18 3.43 1.15
19 2.95 1.22 20 3.45 0.99
21 3.73 1.11 22 3.8 0.94
23 3.8 0.91 24 3.5 1.3

BLOCK 3
# Mean Std. deviation # Mean Std. deviation
25 4.2 0.76 26 4.38 0.77
27 4.35 0.89

BLOCK 4
# Mean Std. deviation # Mean Std. deviation
28 3.98 0.69 29 2 0.92
30 3.98 0.88 31 1.75 1.02
32 4.05 0.59 33 1.63 0.62
34 3.95 0.84 35 1.58 0.89
36 3.83 0.77 37 1.45 0.84

regarding positive feedback and others indicating that it was hard to interpret. Therefore, it looks

like this visualization generated a bit of controversy, which it is also in line with the high standard

deviation of the usefulness rating of this visualization (1.26), hence we might want to revise it in

the future.
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This last chapter of the thesis comprises final conclusions (Section 8.1) and some ideas re-

garding future work (Section 8.2).

8.1. Conclusions

This section is divided first in Subsection 8.1.1 which presents some final remarks and lim-

itations of our work, Subsection 8.1.2 mentions the research projects that have used part of our

findings, and Subsection 8.1.3 describes the research stays that the author has performed.

8.1.1. Final Remarks and Limitations

During this dissertation, we contributed to the area of learning analytics visualization dash-

boards. We analyzed the effectiveness, usefulness and usability of ANALYSE with 40 respon-

dents and the results showed high average values for the three areas. The free responses of the

respondents were also positive and with good ideas for future work. One specific issue was that

respondents needed to interact and click in a visualization to obtain advanced information receive

a low correctness ratio. They felt confused and only 30% of them solved this question correctly.

Therefore, our advice would be that for those visualizations that enable interactivity, users should

receive clear information regarding the availability of that functionality.

We explored the activity and behavior of students with regular and optional activities. Our

findings suggest that there are some students with a more visual (only videos) or active (only

133
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exercises) learning profiles, however most of them had a more balanced learning using both edu-

cational resources. We also found some interesting correlations between effectiveness and some

behavioral patterns. In terms of optional activities, the use was much lower in general than for

regular activities. However, we did find some students that showed a nice interest for these ac-

tivities. The optional activities that were used with more frequency were those not related to

learning, avatar and display badges, a reasonable hypothesis is that these activities require less

effort than others such as commenting, thus we would recommend instructors to encourage the

use of optional activities related to learning. Although the correlation between optional activities

and learning outcomes was weakened once controlling for third variables such as the time, we be-

lieve that there might exist an indirect effect, and optional activities can help generate motivation,

which might imply better learning as supported in previous works. As limitations, we can argue

that we do not have final conclusions but hypothesis and more work would be required to confirm

some of the hypotheses established as part of these findings. Furthermore, some of the correla-

tions might be spurious correlations i.e., they might be caused by one (or more) additional factors.

Finally, the studies were observational, thus, we cannot conclude on any causal relationships.

We used the different variables related to the activity and behavior of students with the plat-

form to build two prediction models of learning outcomes, one of learning gains and the other

for certificate accomplishment. For the first one to predict learning gains we used a multivariate

linear regression that were able to predict 68% of the learning gains variability. We were able to

increment the prediction power of previous work by adding behavioral variables that we found

might be negative for the learning achievement of students e.g., forgetful user and unreflective

user. One of the main limitations of our model was the heavy importance of the prior knowledge

of students (pre test score) in the prediction model, which might not always be feasible to have

available. We showed how if we remove pre test score variable, the prediction power would de-

crease greatly, thus a challenge would be to maintain a good prediction power without the use of

this variable. Additionally, we would need to replicate this research using other MOOC platforms

such as Coursera or Open edX in order to be able to evaluate the generalization of these findings.

We also analyzed the problem of high attrition rates in MOOCs by developing early prediction

models of certificate accomplishment. We used several MLs models and found that GBM was the

best suited in terms of performance and stability as more data became available. Nevertheless,

different models performed better at different time frames, which might raise the idea that it can

be interesting to use different models at different time frames. From our perspective the most

interesting finding was that in the first weeks participatory variables were even more important

than effectiveness variables, which we believe it is very important if we want to develop an early

warning system. One of the main limitations is that both training and test data sets rely on data

from a course which was already finished in a retrospective analysis and we have not been able

to compare with other courses. We believe that the most immediate next step would be to test the

model on a second re-run from the same course, to determine whether the prediction model can at

least extrapolate to courses with similar contents and course structure. Finally, we could use these
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findings with the purpose of including a behavioral recommender system or a warning system in

our LA dashboards ALAS-KA or ANALYSE.

We analyzed the use and behavior of students with badges. We found students earning many

badges e.g., 80 students who earned 100 badges or more, which can be an indication of interest.

In order to delve into their behavior and real motivations, we applied algorithms that try to infer

their interest, concentration and efficiency towards badges. We explored these results finding stu-

dents that indeed showed a very high interest and concentration, while others did not, even when

they invested similar amount of effort in the platform. Additionally, we analyzed the correlations

between these indicators and others, founding that badge metrics are correlated to other activity

and effectiveness metrics. Similar to our hypotheses with optional activities, the use of badges is

not going to increment students’ learning. However, the use of badges might lead students to be

more engaged and participative. Our results indicate that those students that were interested in

badges and gamification, manage to spend more time in the platform and progressed more with

educational resources. Additionally, we also recommended the use of badges to encourage certain

behaviors and actions that might be carried out with less frequency. As an example, we found that

social activity and goals were underused in our experiments, hence we could target this specific

positive behaviors by adding badges that would stimulate students to use these optional activities.

Nonetheless, we also did special emphasis on the fact that badges are external motivators and

as such, we found some students that were solving the same exercises consistently to earn more

repetitive badges and these actions would not lead to additional learning. Therefore, the gamifi-

cation approach should focus on promoting intrinsic motivation so that students do not miss the

real purpose and goal, which is learning. Additionally, we note out two important characteristics,

the first one is that most students were around 17-18 years old and the second is that the use of

Khan Academy was non-mandatory. We believe that these two characteristics can lead to a high

participation with gamification elements, since they are young (thus familiar with video games)

and voluntarily joined this experiment. If we change some of these characteristics we might find

different results e.g., we could expect that older and busier people might not have the interest to

spend an extra time in the platform because of badges.

In terms of our contribution on online academic dishonesty and illicit collaborations, we inves-

tigated CAMEO cheating method, in which students are found to create fake accounts to harvest

correct solutions that are later on used with their master account to gain credit, and ultimately a

certificate of accomplishment in many cases. We implemented an algorithm based on heuristics

to detect CAMEO and applied it to a MOOC in introductory physics, finding that 12.9% (65 ac-

counts) of the certificate earners used this methodology to copy at least 10 questions. We found

profiles of students applying CAMEO more as a back up plan and help mode, but others using it

systematically and very deliberately to obtain a certificate. We believe that CAMEO is already a

significant issue that can really threaten the value of certificates in the long run. Regarding these

results we applied our algorithm only to one MOOC, therefore, in order to get a better estimation

and improve generalization we plan to extend the research across a larger sample of courses. In
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any case, other independent studies (Northcutt et al., 2016) have found the prevalence of CAMEO

across a bigger MOOC portfolio, therefore we do not hold any doubts and this is most likely a

global problem. Additionally, we also designed a RF classification model based on student, sub-

mission and problem features. This model has a high performance achieving a sensitivity and

specificity of 0.96 and 0.99 respectively. Additionally, the model does not rely on the IP of the

submissions, which was one important requirement of our original algorithm based on heuris-

tics. Since we achieved such high quality metrics, we used the model to predict on ‘suspicious’

events, which were those submissions that did not pass all filtering criteria established by our

detection algorithm (see Subsection 3.3.7.2) but were still suspicious, and we found that 9.9% of

those events were classified as CAMEO, indicating that our previous estimate regarding CAMEO

prevalence might need to increment in approximately a 37%. Finally, we used VSURF package

for feature selection and ranking the variable importance of the different features based on RF.

Our findings suggest that student features are more important than those related to the problem

and the submission, which seems to indicate that the student has more influence to detect cheat-

ing as was found also in the context of gaming the system (Muldner et al., 2011). As part of the

limitations of this model is that we used both for the training and evaluation the tagged sample by

our previous algorithm (Subsection 3.3.7.2), therefore we rely on its initial effectiveness to detect

CAMEO. Additionally, we have trained and evaluated the model using data from the same MOOC

that, although is a perfectly valid approach to evaluate the model, impedes us to generalize these

results to other MOOCs.

In this same direction of academic dishonesty we also developed an algorithm and method to

detect accounts that submit their assignments close in time in online learning environments (see

Subsection 3.3.7.1). We used this algorithm on two MOOCs and label the accounts detected by

the algorithm as close submitters. We presented that most close submitters are grouped in couples

of accounts, but other bigger communities were found as well. We showed that it was statistically

significant that those accounts labeled as close submitters were able to achieve a certificate of

accomplishment being active less days, with less submission attempts, watching fewer videos

and accessing less forum threads, which we hypothesized that can be a clear indication that those

students were collaborating or engaged in some academically dishonest behavior. As next step

we used clustering to detect different types of accounts and using these cluster assignments we

discussed the pedagogical associations in the different couples and communities that we detected.

For example, we found some couples that resembled a CAMEO association with two accounts

run by the same student. In other cases, we found a more hard-working student with a leading

role investing a lot of time in the course and sharing the solutions with a peer friend that did

not interacted with the course at all. We also discussed other potential associations in Section

5.3.2. We reported some examples of communities, for example one noticeable community of 5

accounts that in 68 minutes were able to solve the 5 quizzes in a MOOC and achieve certification.

We discussed how harmful the different associations might be for the learning process, despite we

argue that some real collaborations might even be positive for their learning. As main limitation
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we point out that we are conveying reasonable hypotheses but we have not been able to confirm

our findings with more objective criteria like contacting those students.

Overall, we think that if not addressed properly the problem of academic dishonesty can

endanger the future MOOC sustainability. First, we showed that CAMEO but also other illicit

collaborations are already a significant issue in MOOCs and that it could jeopardize the validity

of the MOOC certificate system. Second, since these accounts have outlier behaviors, and usually

either very high or very poor performance, their actions and behavior can heavily and system-

atically interfere with MOOC research if not removed from the data sample. Third, cheating is

usually associated with poor learning, and we found that in most cases the motivation of those

students is to obtain a certificate without actually investing any effort and learning the contents.

Finally, despite the research was conducted in MOOCs, our findings and conclusions might be

similar for other learning environments that allow users to register additional accounts and/or that

provide some kind of feedback before graded assignment deadlines.

8.1.2. Research Projects

Some of the results achieved during this dissertation have been transferred to the following

projects:

Educational Reflected Spaces (EEE)1:

• Funding organization: Spanish Ministry of Science and Innovation, National

I+D+I plan under grant TIN2011-28308-C03-01.

• Partners: Universidad Carlos III de Madrid, Universitat Pompeu Fabra and Uni-

versidad de Valladolid.

• Duration: January, 2012 – December, 2014.

eMadrid2:

• Funding organization: Regional Government of Madrid under grant S2013/ICE-

2715.

• Partners: Universidad Carlos III is the network coordinator and works jointly

with the Autónoma de Madrid, Complutense de Madrid, Politécnica de Madrid, Rey

Juan Carlos and UNED universities

• Duration: October, 2014 – October, 2018.

Reformulate Scalable Educational Ecosystems Offering Technological Innova-
tions (RESET)3:

1http://eee.gast.it.uc3m.es/
2http://www.emadridnet.org/
3http://reset.gast.it.uc3m.es/

http://eee.gast.it.uc3m.es/
http://www.emadridnet.org/
http://reset.gast.it.uc3m.es/
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• Funding organization: Spanish Ministry of Economy and Competitiveness

project RESET under grant TIN2014-53199-C3-1-R.

• Partners: Universidad Carlos III de Madrid, Universitat Pompeu Fabra and Uni-

versidad de Valladolid.

• Duration: January, 2014 – December, 2017.

Supporting Higher Education to Integrate Learning Analytics (SHEILA)4:

• Funding organization: Erasmus+ Programme of the European Union under

grant 562080-EPP-1-2015-BE-EPPKA3-PI-FORWARD.

• Partners: The University of Edinburgh, Brussels Educational Services, Open

University of the Netherlands, Tallinn University, Universidad Carlos III de Madrid,

European Association for Quality Assurance in Higher Education and Erasmus Stu-

dent Network.

• Duration: January, 2016 – July, 2018.

Spanish Network of Learning Analytics (SNOLA)5:

• Funding organization: Spanish Ministry of Economy and Competitiveness

project RESET under grant TIN2015-71669-REDT.

• Partners: Universidad de Salamanca, DeustoTech Learning, Universidad de

León, Universidad del Paı́s Vasco, Universidad Politécnica de Madrid, Universidad

de Valladolid, Universidad Carlos III de Madrid, Universidad de Vigo and Universi-

dad Nacional de Educación a Distancia.

• Duration: January, 2016 – December, 2017.

8.1.3. Research Stays

As part of the research carried out during this dissertation the author performed two research

stays at the following high quality universities:

1. The first research stay was from the 2nd of June (2015) to the 4th of September (2015) at

the Physics department of MIT where the author joined Research in Learning, Assessing

and Tutoring Effectively (RELATE) group6 and was supervised by Prof. Dr. David E.

Pritchard7 which holds a position as Cecil and Ida Green Professor of Physics at MIT. As

a result one workshop presentation (Alexandron et al., 2015) and two articles (Ruipérez-

Valiente et al., 2016; Alexandron et al., 2017) have been published already. Additionally,

4http://sheilaproject.eu/
5https://snola.es
6http://relate.mit.edu/
7http://web.mit.edu/physics/people/faculty/pritchard david.html

http://sheilaproject.eu/
https://snola.es
http://relate.mit.edu/
http://web.mit.edu/physics/people/faculty/pritchard_david.html
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this is still an ongoing collaboration and we have an additional article which is currently

under review (Ruipérez-Valiente et al., 2017).

2. The second research stay was from the 19th of September (2016) to the 21st of December

(2016) at the School of Informatics at the University of Edinburgh where the author joined

the Institute for Adaptive and Neural Computation8 and was supervised by Prof. Dr. Dragan

Gašević9 which is Professor and Chair in Learning Analytics and Informatics in the Moray

House School of Education and the School of Informatics at the University of Edinburgh.

We have already one paper published (Ruipérez-Valiente et al., 2017a). Additionally, we

are working on one additional journal paper that will be submitted soon (Ruipérez-Valiente,

Joksimović, Kovanović, Gašević, Muñoz-Merino & Delgado Kloos, 2017b).

8.2. Future Work

There are many potential areas of future work as a follow up of the results achieved during this

dissertation. In the direction of visual analytics with our platforms ALAS-KA and ANALYSE,

one potential future action is the design and implementation of new and novel indicators as well

as new visualizations e.g., a more in depth analysis of the social activity in these environments

including for example social network analysis visualizations of their activity in the discussion

forums using tools such as qgraph10. We would also like to integrate other tools to perform more

advanced statistical analysis. Generally speaking, we would also want to implement several of the

recommendations received by the respondents of the evaluation survey such as enabling different

languages and clearing up the available interactivity of each visualization. A very challenging

project would be to develop a modular and common framework of indicators and visualization

that can be easily adapted to different courses and platforms, this would increment interoperability

greatly. Another interesting line of work would be to compare the usability of these platforms

between ‘digital natives’ and ‘forced digital immigrants’.

Based on our findings in prediction models and detectors we would like to integrate our

lessons learned within ALAS-KA and ANALYSE. For example, we can introduce a recommender

system that when negative behaviors are detected, it can provide feedback to the student regard-

ing how to improve his past negative action or an early warning that when a student is detected

to be in risk of not achieving a certificate send a warning, so that the student can turnover this

situation before it is too late. As part of our prediction model of certificate accomplishment, we

analyzed the evolution of this model per week, but we would also like to carry out a more gran-

ular approach, maybe a day-to-day analysis which would also help into analyzing the effect of

other variables such as deadlines or days of the week. We would also like to try out forecasting

algorithms that can be useful to find trends in the evolution of data as time goes by. One of the

8http://www.anc.ed.ac.uk/
9http://www.ed.ac.uk/profile/dragan-gasevic

10http://sachaepskamp.com/qgraph

http://www.anc.ed.ac.uk/
http://www.ed.ac.uk/profile/dragan-gasevic
http://sachaepskamp.com/qgraph
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most challenging projects would be to delve into the development of prediction models that can

extrapolate to different topics, courses and even platforms. One idea to accomplish that would be

the use of ratios instead of absolute variables, and use those as the input variables of the prediction

model. The final stage of these ideas would be to perform A/B experiments in which a treatment

group would receive some sort of recommendation or warning (e.g., positive or negative behav-

iors, warning regarding risk of not getting a certificate) and the control group would not; then

we can analyze if the treatment group improved their learning outcomes compared to the control

group (higher learning gains or higher certificate accomplishment ratio).

In terms of the interaction of students with regular activities we would like to work towards

defining new metrics that are able to efficiently characterize the effectiveness of students. For that

purpose new experiments including pre-test and post-test to estimate students’ learning might be

good, since we would be able to analyze which effectiveness metrics are more correlated with the

actual learning achievement of students. In terms of optional activities, we plan to formulate a

common framework that can be applicable to other VLEs and also replicate our experiments in

other platforms. We also want to conduct A/B testing experiments with optional activities where

some students will have them available and others will not, so that we can measure with more

reliability the actual impact of optional activities in the learning process of students.

Related to the behavior with badges, we would like to extend our models to be applicable to

more badge types. Additionally, we would like to replicate our experiment in other environments

to see if we obtain similar findings that can help us generalize. Another interesting direction would

be to survey students regarding their interest about badges, and check for correlations between our

metrics and the reported interest. This can be helpful to validate the effectiveness of our badge

metrics. Finally, we would also like to delve into assessing the influence of interest in badges

on learning achievement, specially in those cases of students that had really high intentionality

repetitive badges.

Our research on online academic dishonesty also opens many potential future work lines. The

most straightforward would be to examine both in terms of CAMEO and close submitter algo-

rithms a larger portfolio of MOOCs, but also maybe other types of online learning courses, such

as on-campus blended learning or corporate training. We can gain insight in terms of general-

ization and to find trends across courses depending on other factors such as university, topic or

platform delivering the course. A broader analysis might enable also the implementation of ML

models that can work well across courses, this would permit developing run-time detectors that

could be embedded within VLEs or learning analytics systems such as ANALYSE. We would also

like to corroborate our findings and the effectiveness of our detectors by interviewing some of the

detected students, although this would problematic for several reasons such as students might feel

that their rights are violated, or they might also lie due to embarrassment and fear to potential

repercussions due to their illicit behavior. On a more general way, there are probably many other

methods that students might be using to facilitate their way into certificates, thus more work to-

wards developing detectors would be useful. Finally, pedagogy-wise we would like to quantify
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the effect that each one of the different associations and different illicit behaviors have on learning

achievement. Although generally speaking cheating is often related to poor learning, we might

be surprised to find that some behaviors, such as using CAMEO as support, might not be harmful

for learning, or that some associations, such as sharing answers with friends but taking the course

seriously, might even be beneficial for learning.





Appendix A

Evaluation Questionnaire for
ANALYSE

BLOCK 1. Specific questions that require that you interact and carry out a certain

task with ANALYSE in order to be able to give an adequate response. Each question is

associated with an specific visualization:

1. Course Summary. What percentage of students have acquired a proficiency grade in

‘Homework’ assignments.

2. Students’ Grades. What is the grade of student ‘Verified’ in the midterm exam?

3. Problem Time Distribution. In which problems have the student ‘Audit’ spent the

most time? How much time?

4. Video Time Watched. Which video has highest difference between different video

watched and total video watched by all students?

5. Repetitions of Video Intervals. In the video ‘Radioactive’, which approximate interval

of seconds has been watched more times by all the class?

6. Video Time Distribution. In which video did the student ‘Staff’ spend more time?

7. Video Events Distribution. In the video ‘Passenger - Let her go’, what is the approx-

imate range of seconds where we can find more ‘Change Speed’ events by ‘Audit’

student?

8. Exercise and Video Progression. Check the progression for the student ‘jruipere’.

Which score was higher on the date ‘15/02/2015’, video progress or exercise grades?

9. Daily Time on Exercises and Videos. Which day did users engage the largest amount

of time on problems with the platform? How much time?

10. Course Accesses. Which section of the course has the highest number of accesses by

student ‘Honor’?
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11. Chapter Time. How much ‘Graded time’ time has been spent by all students in section

2?

12. Students Time Schedule. Which is the time interval in which the student

‘JoseRuiperez’ has us28ed the platform the most? How many minutes?

BLOCK 2. Now that you have used all visualizations, rate from 1 (not useful at all)

to 5 (very useful) the usefulness of each one of the visualizations from the perspective of

an instructor:

13. Course Summary.

14. Students’ Grades.

15. Problem Time Distribution.

16. Video Time Watched.

17. Repetitions of Video Intervals.

18. Video Time Distribution.

19. Video Events Distribution.

20. Exercise and Video Progression.

21. Daily Time on Exercises and Videos.

22. Course Accesses.

23. Chapter Time.

24. Students Time Schedule.

BLOCK 3. Specific questions about the usability of the learning analytics extension.

Mark from 1 (strongly disagree) to 5 (strongly agree) your degree of agreement with the

following statements from the perspective of an instructor:

25. I think that the use of this application would help to evaluate students that are taking

an online course more easily.

26. I think these visualizations are useful and help understand the learning process of

students.

27. I think that these visualizations can be used to detect problems in learning resources

of an online course (exercises, videos, etc).

BLOCK 4. System Usability Scale questionnaire. Mark from 1 (strongly disagree)

to 5 (strongly agree) your degree of agreement with the following statements from the

perspective of an instructor:

28. I think that I would like to use this web application frequently.

29. I found the web application unnecessarily complex.
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30. I thought the web application was easy to use.

31. I think that I would need the support of a technical person to be able to use this web

application.

32. I found the various functions in this web application were well integrated.

33. I thought there was too much inconsistency in this web application.

34. I would imagine that most people would learn to use this web application very quickly.

35. I found the web application very cumbersome to use.

36. I felt very confident using the web application.

37. I needed to learn a lot of things before I could get going with this web application.

BLOCK 5. Questions regarding best features and potential improvements allowing

an open text response:

38. Which features and/or visualizations do you think are the most useful/important after

interacting with ANALYSE?

39. Which features could be improved and what new functionality could be implemented

to improve ANALYSE?
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et al., 2017). Impact factor as of 2015: 0.559, JCR(61/85), Q3, category: engineering,

multidisciplinary.
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2. Ruipérez-Valiente, J. A., Muñoz-Merino, P. J., & Delgado Kloos, C. (2014). A demonstra-

tion of ALAS-KA: a learning analytics tool for the khan academy platform. In Ninth Eu-

ropean Conference on Technology Enhanced Learning (pp. 518–521) (Ruipérez-Valiente
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Google Scholar h5-index factor: 14.
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ALAS-KA Add-on of the Learning Analytics Support of the Khan Academy - See Subsection

3.1.2.1 for details.

ANALYSE Add-on of the Learning Analytics Support for Open edX - See Subsection 3.1.2.2

for details.

ANOVA One-way Analyses of Variance - Read more https://en.wikipedia.org/

wiki/Analysis of variance.

API Application Programming Interface.

AUC Area Under the ROC Curve - Read more http://gim.unmc.edu/dxtests/roc3

.htm.

CAMEO Copying Answers using Multiple Existences Online - See Subsection 4.5.2 for details.

CSCL Computer-Supported Collaborative Learning.

CSV Comma-Separated Values.

EDM Educational Data Mining - See Section 2.2 for details.

GAE Google App Engine - Platform as a Service infrastructure. Read more https://cloud

.google.com/appengine/.

GBM Gradient Boosting Machine - Read more https://en.wikipedia.org/wiki/

Gradient boosting.

ITS Intelligent Tutoring System - See Section 2.2 for details.

JCR Journal Citations Report.

JSON JavaScript Object Notation.

kNN k-Nearest Neighbours - Read more https://en.wikipedia.org/wiki/

K-nearest neighbors algorithm.

151

https://en.wikipedia.org/wiki/Analysis_of_variance
https://en.wikipedia.org/wiki/Analysis_of_variance
http://gim.unmc.edu/dxtests/roc3.htm
http://gim.unmc.edu/dxtests/roc3.htm
https://cloud.google.com/appengine/
https://cloud.google.com/appengine/
https://en.wikipedia.org/wiki/Gradient_boosting
https://en.wikipedia.org/wiki/Gradient_boosting
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm


152 Abbreviations

LA Learning Analytics - See Section 2.2 for details.

LMS Learning Management System - See Section 2.2 for details.

MAD Mean Absolute Deviation - See Equation 3.2.

MANOVA Multivariate Analysis of Variance - Read more https://en.wikipedia.org/

wiki/Multivariate analysis of variance.

MIT Massachusetts Institute of Technology - http://www.mit.edu/.

ML Machine Learning - Read more https://en.wikipedia.org/wiki/Machine

learning.

MOOC Massive Open Online Course - See Section 2.2 for details.

MSD Mean Squared Deviation - See Equation 3.3.

PLE Personal Learning Environment.

RELATE Research in Learning, Assessing and Tutoring Effectively group at MIT – http://

relate.mit.edu/.

RF Random Forests - Read more https://en.wikipedia.org/wiki/Random

forest.

ROC Receiver Operating Characteristic - Read more https://en.wikipedia.org/

wiki/Receiver operating characteristic.

SPOC Small Private Online Course - See Section 2.2 for details.

SUS System Usability Scale (Brooke, 1996).

SVM Support Vector Machine - Read more https://en.wikipedia.org/wiki/

Support vector machine.

UAM Universidad Autónoma of Madrid - https://www.uam.es/ss/Satellite/es/

home/.

UC3M Universidad Carlos III of Madrid - http://www.uc3m.es/Home.

VLE Virtual Learning Environment - See Section 2.2 for details.

VSURF Algorithm for variable importance and selection using RF - Read more https://

cran.r-project.org/web/packages/VSURF/VSURF.pdf.

XML eXtensible Markup Language.

https://en.wikipedia.org/wiki/Multivariate_analysis_of_variance
https://en.wikipedia.org/wiki/Multivariate_analysis_of_variance
http://www.mit.edu/
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
http://relate.mit.edu/
http://relate.mit.edu/
https://en.wikipedia.org/wiki/Random_forest
https://en.wikipedia.org/wiki/Random_forest
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Support_vector_machine
https://www.uam.es/ss/Satellite/es/home/
https://www.uam.es/ss/Satellite/es/home/
http://www.uc3m.es/Home
https://cran.r-project.org/web/packages/VSURF/VSURF.pdf
https://cran.r-project.org/web/packages/VSURF/VSURF.pdf


Nomenclature

attempt duration See Subsection 3.3.4 for details.

attempts required See Subsection 3.3.4 for details.

average number attempts See Subsection 3.3.1 for details.

average number hints See Subsection 3.3.1 for details.

average time correct answer See Subsection 3.3.2 for details.

average time per day See Subsection 3.3.3 for details.

certificate See Subsection 3.3.2 for details.

close submitter See Subsection 3.3.7.1 for details.

completed videos See Subsection 3.3.2 for details.

concentration badges See Subsection 3.3.6 for details.

dispersion time per day See Subsection 3.3.3 for details.

dispersion time per exercise See Subsection 3.3.3 for details.

dispersion time per video See Subsection 3.3.3 for details.

exercise abandonment See Subsection 3.3.5 for details.

exercise effectiveness no help See Subsection 3.3.2 for details.

exercise effectiveness See Subsection 3.3.2 for details.

exercise time See Subsection 3.3.3 for details.

exercises accessed See Subsection 3.3.1 for details.

follow recommendations See Subsection 3.3.5 for details.

forgetful user See Subsection 3.3.5 for details.
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harvested See Subsection 3.3.7.2 for details.

hint abuse See Subsection 3.3.5 for details.

hint avoidance See Subsection 3.3.5 for details.

intentionality repetitive badges See Subsection 3.3.6 for details.

intentionality topic badges See Subsection 3.3.6 for details.

learning gain See Case Study 3.2.1.2 for details.

location See Subsection 3.3.4 for details.

max attempts See Subsection 3.3.4 for details.

negative behaviors See Subsection 6.1.1 for details.

number active days See Subsection 3.3.1 for details.

number active sessions See Subsection 3.3.1 for details.

number attempts correct answer See Subsection 3.3.2 for details.

number events See Subsection 3.3.1 for details.

number submissions See Subsection 3.3.1 for details.

number threads viewed See Subsection 3.3.1 for details.

optional activities See Subsection 3.3.1 for details.

order See Subsection 3.3.7.1 for details.

page time See Subsection 3.3.3 for details.

percentage correct exercise See Subsection 4.4.2 for details.

performance first attempt See Subsection 3.3.2 for details.

pre test score Pre Test Score - See Case Study 3.2.1.2 for details.

pre test time Pre Test Time - See Case Study 3.2.1.2 for details.

proficient exercises See Subsection 3.3.2 for details.

random See Subsection 3.3.4 for details.

repetitive badge See Subsection 3.1.1.1 for details.

show answer See Subsection 3.3.4 for details.
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time efficiency badges See Subsection 3.3.6 for details.

time to deadline See Subsection 3.3.4 for details.

topic badge See Subsection 3.1.1.1 for details.

total abandonment See Subsection 6.1.1 for details.

total time See Subsection 3.3.3 for details.

type assignment See Subsection 3.3.4 for details.

type response See Subsection 3.3.4 for details.

unreflective user See Subsection 3.3.5 for details.

video abandonment See Subsection 3.3.5 for details.

video avoidance See Subsection 3.3.5 for details.

video duration See Subsection 4.4.2 for details.

video effectiveness See Subsection 3.3.2 for details.

video time See Subsection 3.3.3 for details.

videos accessed See Subsection 3.3.1 for details.
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Redondo, D., Muñoz-Merino, P. J., Ruipérez-Valiente, J. A., Delgado Kloos, C., Pijeira Dı́az,

H. J., & Santofimia Ruiz, J. (2015). Combining Learning Analytics and the Flipped Classroom

in a MOOC of maths. In International Workshop on Applied and Practical Learning Analytics,

(pp. 71–79).

Resta, P. & Laferrière, T. (2007). Technology in support of collaborative learning. Educational

Psychology Review, 19(1), 65–83.

Riojas, M., Lysecky, S., & Rozenblit, J. (2012). Educational technologies for precollege engi-

neering education. IEEE transactions on learning technologies, 5(1), 20–37.

Romero, C. & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005.

Expert systems with applications, 33(1), 135–146.

Romero, C. & Ventura, S. (2010). Educational data mining: A review of the state of the art.

IEEE Transactions on Systems, Man and Cybernetics, 40(6), 601–618.

Romero, C. & Ventura, S. (2013). Data mining in education. Wiley Interdisciplinary Reviews:

Data Mining and Knowledge Discovery, 3(1), 12–27.
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Ruipérez-Valiente, J. A., Alexandron, G., Chen, Z., & Pritchard, D. E. (2016). Using Multi-

ple Accounts for Harvesting Solutions in MOOCs. In Proceedings of the Third (2016) ACM

Conference on Learning@Scale, (pp. 63–70). ACM.
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