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Teoŕıa de Aproximación y Polinomios Ortogonales “TAPO”, por per-
mitirme participar en su seminario.
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Resumen y aportaciones

La presente tesis doctoral tiene por objeto el estudio de familias de
polinomios que son soluciones del siguiente problema con valores iniciales

L[f(z)] = λ g(z),

dkf
dzk

(ωk) = 0, ωk ∈ C, k = 0, . . . ,m ∈ Z+,

(1)

donde tanto f como g son polinomios y L en los caṕıtulos 2 y 3 es el
operador derivadam-ésima de f . La diferencia en los dos casos anteriores
es que mientras en el caṕıtulo 2 se considera que g es un polinomio
ortogonal clásico sobre la recta real, en el caṕıtulo 3 denotamos por
g al polinomio ortogonal con respecto a una cierta medida soportada
sobre un arco de la circunferencia unidad y ωk es constante para cada
k = 0, . . . ,m. El caṕıtulo 4, se dedica a las aplicaciones al procesamiento
digital de imágenes, de las soluciones del problema (1) cuando f = g,
λ = λn = n

α−1 (n ∈ Z+, 0 < α < 1) y L es el operador en diferencia

L[f(z)] = 2z4f(z) +
αN − z
1− α

4+f(z)− 2z4−f(z),

donde N ∈ Z+, 4f(z) = 2−1(f(z+ 1)− f(z− 1)), 4+f(z) = f(z+ 1)−
f(z) y 4−f(z) = f(z)− f(z−1). Como puede apreciarse más adelante,
este último caso corresponde a los conocidos polinomios de Krawtchouk.

Acerca de la localización de los puntos cŕıticos de polinomios en
términos de sus ceros existe una teoŕıa amplia (vea [72, Part I] y [81]),
cuyas bases fundamentales son los teoremas de Rolle, Gauss-Lucas y
sus refinamientos. Sin embargo, no existen rećıprocos generales de estos
resultados. Es obvio, que dado un cero de un polinomio y sus pun-
tos cŕıticos, los restantes ceros están uńıvocamente determinados. No
obstante, solo existen unos pocos resultados sobre localización de ceros
en función de sus puntos cŕıticos y uno de sus ceros, la mayoŕıa de los
cuales se pueden ver en [72, §4.5]. En general, estos resultados son
corolarios del Teorema de Composición de Schur-Szegő (vea [72, Th.
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3.4.1d]. Quizás, los resultados más significativos en este sentido sean los
Teoremas de Walsh [72, Th. 4.5.1] y Biernacki [72, Th. 4.5.2]. Hasta
donde conocemos, sobre la localización de ceros de integrales iteradas de
polinomios, normalizados con la condición de anularse en el origen, solo
existe el trabajo [16]. El mencionado art́ıculo estudia varios casos partic-
ulares de familias de polinomios, entre ellos los polinomios de Legendre,
y plantea una serie de conjeturas, algunas de las cuales se responden en
los Caṕıtulos 2 y 3 de esta memoria.

El Caṕıtulo 2 de esta memoria está dedicado a las integrales iteradas
de polinomios ortogonales clásicos sobre la recta real, con énfasis en el
caso Jacobi. Los trabajos [9, 10] muestran el interés de este tipo de
polinomios para las aplicaciones a los métodos numéricos de elementos
finitos. Es bien conocido que el polinomio mónico de Hermite Hn+m de
grado (n + m) ∈ Z+, donde tanto n como m son enteros no negativos,

cumple la relación dm

dzm (Hn+m) = (n+m)!
n! Hn. Luego, las integrales itera-

das de orden m tiene todos sus ceros reales y los ceros de las integrales
iteradas consecutivas se entrelazan.

Como se mencionó anteriormente, el tercer caṕıtulo se dedica al es-
tudio del comportamientos asintótico los polinomios obtenidos mediante
la integración iterada de los polinomios ortogonales con respecto a me-
dias soportadas en un arco de la circunferencia unidad y el conjunto de
acumulación de sus ceros. Se encuentra el comportamiento asintótico
relativo entre las familias de polinomios ortogonales y sus respectivas
familias de polinomios obtenidos por integración iterada. Se muestra la
representación gráfica de regiones cerradas que contienen los ceros de las
nuevas familias de polinomios y de curvas donde se acumulan los mismos
en varios casos particulares.

El tema central del Caṕıtulo 4 es la implementación de un algoritmo
eficiente para la detección de bordes de imágenes digitales basado en las
propiedades de los polinomios ortogonales de Krawtchouk en dos vari-
ables. La primera parte del caṕıtulo se dedica a estudiar las propiedades
de esta familia de polinomios ortogonales en dos variables, que son de
interés para el algoritmo propuesto. Las novedades de este algoritmo
que fundamentan la calificación de eficiente son las siguientes:

• La aproximación de las diferencias parciales (derivadas parciales
discretas) se realiza mediante una combinación lineal de polinomios
de Krawtchouk en dos variables, los cuales son ortogonales con
respecto a un producto interior discreto que involucra a la dis-
tribución binomial. En consecuencia, ya no es necesario suavizar
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la imagen mediante un filtro Gaussiano en dos dimensiones antes
de realizar la diferenciación numérica, con el fin de regularizar la
naturaleza mal condicionada de la diferenciación (ver [91]) y por
lo tanto mejorar la localización de los bordes.

• En [11, 36] los autores describen un procedimiento para la de-
tección de bordes utilizando los polinomios discretos de Cheby-
shev y un único umbral de discriminación de bordes para toda la
imagen. Aqúı, el algoritmo propuesto utiliza dos niveles de um-
brales adaptativos, lo que reduce la presencia de falsos positivos o
negativos en la selección de pixels-bordes.

• El operador gradiente para submatrices bloques de 5× 5, en lugar
del tradicional 3 × 3, proporciona una mejor localización de los
pixels-bordes, ya que los bordes tienden a ser más gruesos cuando
el tamaño del bloque incrementa [36, 69].

• Para evitar el efecto de bordes gruesos y mejorar el resultado fi-
nal en el algoritmo se aplican operaciones morfológicas (estrechar,
erosionar y adelgazar) a la imagen de borde obtenida después del
segundo paso de procesamiento del algoritmo.

Para demostrar la efectividad del algoritmo propuesto se utilizaron
imágenes tomadas de dos campos de aplicación muy diferentes: imágenes
naturales utilizadas para la detección de objetos, vigilancia, etc; aśı como
mapas de profundidad utilizados actualmente en aplicaciones y servicios
multimedia de video 3D. Los contornos de objetos superpuestos, como
la identificación de objetos de primer plano en mapas de profundidad,
se obtienen con bastante buena precisión.
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Chapter

1
Introduction

1.1 Orthogonal Polynomials

Let µ be a positive Borel measure on the complex plane C, with an
infinite number of points in its support. We denote by L2(µ) the space
of square-integrable functions with respect to µ. It is well known that
L2(µ) is an Hilbert space with inner product and norm given by

〈f, g〉µ =

∫
supp(µ)

f(z)g(z)dµ(z), ‖f‖µ =
√
〈f, f〉µ, f, g ∈ L2(µ),

where the support of the measure µ is

supp (µ) = {z ∈ C : µ(Bz,ε) > 0 for every ε > 0} ,

with Bz,ε the open disk with center z and radius ε.

We say that the functions f, g ∈ L2(µ) are orthogonal if 〈f, g〉µ = 0.

Since the support of the measure µ is an infinite set, the functions
1, z, z2, . . . are linearly independent in L2(µ), so we can use the Gram-
Schmidt procedure to obtain unique polynomials

qn(z) = qn(µ, z) = lnz
n + · · · , ln > 0, n = 0, 1, . . .

that form an orthonormal system in L2(µ), i.e.

〈qm, qn〉µ =

{
0 if m 6= n,
1 if m = n.

(1.1)

The polynomials that satisfy (1.1) are called orthonormal polynomi-
als with respect to µ, and ln is the leading coefficient. In what follows
qn(z)/ln = zn + · · · is called the monic orthogonal polynomial.

When dµ(x) = w(x)dx on some interval, then we talk about orthog-
onal polynomials with respect to the weight function w.

3



4 Chapter 1. Introduction

The polynomials (1.1) can be generated using∫
qn(z)

ln
zkdµ(z) = 0, k = 0, 1, . . . , n− 1,

which is an n×n system of equations for the coefficients of qn(z)/ln with
matrix (σi,j)

n−1
i,j where

σi,j =

∫
zi zjdµ(z),

are the complex moments of µ. This matrix is nonsingular, so the sys-
tem has a unique solution, and finally ln comes from normalization. The
complex moments determine explicitly the polynomials by the determi-
nant formulae:

qn(z) =
1√

Dn−1Dn

∣∣∣∣∣∣∣∣∣∣∣

σ0,0 σ0,1 · · · σ0,n−1 1
σ1,0 σ1,1 · · · σ1,n−1 z

...
...

. . .
...

...
σn−1,0 σn−1,1 · · · σn−1,n−1 zn−1

σn,0 σn,1 · · · σn,n−1 zn

∣∣∣∣∣∣∣∣∣∣∣
, (1.2)

where Dn = |σi,j |ni,j is the so called Gram determinants.
In the case that µ is supported on the real line then

σi,j =

∫
xi+jdµ(x) := hi+j ,

so Dn = |hi+j |ni,j is a Hankel determinant, while if µ is supported on the
unit circle then

σi,j =

∫
zi−jdµ(z) := ti−j , (1.3)

where Dn = |ti−j |ni,j is a Toeplitz determinant. In these two important
cases the orthogonal polynomials have many special properties that are
missing in the general theory.

1.1.1 General properties of zeros

One of the most important properties of orthogonal polynomials, is the
location of the zeros. We denote by Co(A) the convex hull of the set
A ⊂ C, i.e., the smallest convex set containing A, and a set G ⊂ C is
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convex if for each pair of points x, y ∈ G the line connecting x and y is
a subset of G. Obviously

Co(A) =
⋂

A⊂G⊂C
G, G convex,

and if A is closed then Co(A) is the intersection of all closed half-planes
containing A.

Theorem 1.1.1. (Fejér) If qn is the orthonormal polynomial of degree
n with respect to the measure µ, then all its zeros lie in Co(supp (µ)).

Proof. See [88, Th. 2.1.1].

Theorem 1.1.2. If Co(supp (µ)) is not a line segment and supp (µ)
is an infinite set, then the zeros of the orthogonal polynomial for the
measure µ can not be on the boundary of the convex hull of supp (µ).

Proof. See [79, Th. 2.2].

By the above theorem, the set Co(supp (µ)) gives a good idea of
where the zeros of the orthogonal polynomials are located. Furthermore,
one might expect the zeros to lie on supp (µ), but this is not true, since
there may be zeros on the set Co(E) \ E, where E = supp (µ). Indeed,
if the set E has “holes”, the zeros may be located there. In fact, all the
zeros may be in the holes, as in the case of the orthogonal polynomials
on the unit circle.

If Ω∞ denotes the connected component of the complement of E that
contains ∞, then Ω∞ is open and PC(E) = C \ Ω∞ is the polynomial
convex hull of E. Clearly PC(E) ⊂ Co(E). For a set A ⊂ Cn the
polynomial convex hull is the set of all x ∈ Cn for which |f(x)| ≤
supz∈A |f(z)| for all polynomials f . If we restrict f to polynomials of
degree 1, then gives the convex hull. For one complex variable the
polynomial convex hull of A ⊂ C coincides with the complement of the
outer component of A. The next theorem says that most of the zeros of
orthogonal polynomials are in the polynomial convex hull of the support
of µ.

Theorem 1.1.3. (Widom) Suppose K is a compact set in Ω∞. Then
the number of zeros of qn in K is bounded by a constant independent of
n.

Proof. See [96, Lemma 4].
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As far as the general properties of zeros and asymptotic of orthogonal
polynomials is concerned, we suggest the references [52, 58, 79, 88, 89,
93].

1.1.2 Orthogonal polynomials on the real line

Let µ a measure supported on the set of real numbers R. The Gram-
Schmidt method may be used to orthogonalize 1, x, . . . , xn, . . ., and omit-
ting the step where the new orthogonal element is normalized, we arrive
at a uniquely determined sequence of polynomials

p0(x), p1(x), . . . , pn(x), . . . , (1.4)

with the following properties:

i) each pn is a monic polynomial of degree n with real coefficients,

ii) 〈pm, pn〉 =

∫
pm(x)pn(x)dµ(x) = 0, if m 6= n.

The sequence (1.4) is the so called monic orthogonal polynomial se-
quence with respect to the measure µ. If we denote the positive numbers
〈pn, pn〉 by γ̃n, (n = 0, 1, . . .), the corresponding orthonormal polyno-
mials are given by

qn(x) = γ̃−1/2
n pn(x) (n ∈ Z+), (1.5)

where Z+ is the set of nonnegative integer numbers. As in general
case (1.1) they satisfy 〈qm, qn〉 = δm,n, where δm,n is Kronecker’s delta.
Clearly, the polynomials (1.4) constitute a basis for the linear space of
all polynomials, and so do the polynomials (1.5). The most important
property that satisfy the inner products with respect to measures sup-
ported in the real line, is that 〈xpm, pn〉µ = 〈pm, xpn〉µ, which has the
consequence that the pn’s (and so qn’s) obey a three-term recurrence
formula.

Proposition 1.1.1. (Recurrence formula) Let µ a measure supported
on R. Then the associated sequence {pk}k∈Z+ of monic orthogonal poly-
nomials satisfies the recurrence formula

pn+1(x) = (x− α̃n+1)pn(x)− β̃npn−1(x) (n = 0, 1, . . .), (1.6)
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where p−1(x) ≡ 0, p0(x) ≡ 1, β̃0 = 1 and

α̃n =
1

γ̃n−1

∫
xp2

n−1(x)dµ(x), β̃n =
γ̃n
γ̃n−1

, (n = 1, 2, . . .),

with γ̃k := 〈pk, pk〉 for k ∈ Z+.

It is important to mention that the three term recurrence relation
has a converse. Given a sequence (α̃n)n∈N of real numbers and (β̃n)n∈Z+

a sequence of positive numbers, the recurrence formula (1.6) produces
a sequence (pn)n∈N of monic polynomials. Then, by a result of Favard,
there exits a measure µ so that p0(x), p1(x), . . . is the system of monic
orthogonal polynomials associated with µ.

The three term recurrence implies for the so called reproducing kernel
the Christoffel-Darboux formula

n∑
k=0

1

γ̃k
pk(x)pk(t) =

1

γ̃k


pn+1(x)pn(t)− pn(x)pn+1(t)

x− t
if x 6= t,

p′n+1(x)pn(x)− pn+1(x)p′n(x) if x = t.

In the real case the zeros of pn are real and simple and the zeros
of pn and pn+1 interlace, i.e., in between any zeros of pn+1 there is a
zero of pn. In fact, pn must have n sign changes, for if it had only
m < n, say at the points y1, . . . , ym ∈ R, then the polynomial r(x) =∏m
j=1(x− yj) of degree m < n, for then r(x)pn(x) would be of constant

sign. Let now x1 < x2 < · · · < xn−1 < xn be the zeros of pn, and
suppose that we already know that the zeros pn and pn−1 interlace,
which implies sign(pn−1(xk)) = (−1)k−1. If we substitute xk into the
recurrence formula (1.6) then we have that pn+1(xk) and pn−1(xk) are
opposite signs at xk, i.e., sign(pn+1(xk)) = (−1)k, and this gives that
the zeros of pn and pn+1 also interlace. Thus, the interlacing property
follows by induction.

1.1.2.1 Classical Orthogonal Polynomials on the real line

The classical orthogonal polynomials are composed of the three fam-
ilies:
• the Jacobi polynomials P

(α,β)
n , with α, β > −1, are orthogonal

with respect to the measure dµ(α,β)(x) = (1 − x)α(1 + x)βdx on
[−1, 1], and are defined by

P (α,β)
n (x) :=

(−1)n

2nn!
(1−x)−α(1+x)−β

dn

dxn

(
(1− x)n+α(1 + x)n+β

)
,
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with the normalization

P (α,β)
n (1) =

(
n+ α

n

)
.

The most important specials cases are the Legendre polynomi-
als (α = β = 0), the Ultraspherical or Gegenbauer polynomials
(α = β), and the Chebyshev polynomials of the first and second
kind, which are obtained when α = β = −1/2 and α = β = 1/2
respectively.

• the Laguerre polynomials L(γ), with γ > −1, are orthogonal with
respect to dµ(γ)(x) = xγe−xdx on [0,∞), and are defined by

L(γ)
n (x) :=

1

n!
exx−γ

dn

dxn
(
xn+γe−x

)
,

with the normalization

L(γ)
n (0) =

(
n+ γ

n

)
.

• the Hermite polynomials Hn are orthogonal with respect to the
measure dµ~(x) = e−x

2
dx on the real line (−∞,∞), and are de-

fined by

Hn(x) := (−1)nex
2 dn

dxn
e−x

2
.

These families of orthogonal polynomials are very special, for they posses
many properties that no other orthogonal polynomial system does. In
particular:

a) They satisfy a second order differential equation of the form

σ(x)y′′(x) + τ(x)y′(x) + λny(x) = 0,

where σ is a polynomial of degree at most two and τ a polynomial
of degree one, both independent of n. In order to obtain a solution
y which is a polynomial of degree n, then comparing the leading
coefficients shows that λn = −n(n−1)σ′′/2−nτ ′. For these specific
values of λn, the polynomial solution yn will consists of orthogonal
polynomials.

b) They have derivatives which form again an orthonormal polynomial
system.
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c) All classical orthogonal polynomial satisfy a Rodrigues type formula

yn(x) =
1

Cnw(x)

dn

dxn
{w(x)σ(x)n},

where Cn is independent of x and w is non-negative on a certain
real interval, σ is a polynomial of degree at most two, independent
of n and w′/w = [τ − σ′]/σ is a rational function, with τ a poly-
nomial of degree at most one. With these conditions one obtains
polynomials yn of degree n which are orthogonal.

Every one of these properties has a converse, namely if a system of
orthogonal polynomials possesses any of these properties, then it is (up
to a change of variables) one of the classical systems.

The Legendre polynomials were introduced in 1785 by the French
mathematician A.M. Legendre in [47]. In the paper [20] of 1854 “Théorie
des mécanismes connus sous le nom de parallèlogrammes”, the Russian
mathematician P.L. Chebyshev, who may be considered as the father of
approximation theory, found the Chebyshev polynomials as solutions of
extremal problems. The Jacobi polynomials were introduced by C.G.J.
Jacobi [43] in 1859. The special case of Laguerre polynomials (α = 0) ap-
pears in earlier works of N.H. Abel, J.L. Lagrange and Chebyshev in [21]
and finally in the work [46] of E.N. Laguerre. The general case (α > −1)
is due to N.J. Sonin [87]. The Hermite polynomials were considered by
P.S. Laplace in his most important work “Traité de Mécanique Céleste”,
published in five volumes in the period (1799 − 1825), then they were
studied by Chebyshev in [21] and by C. Hermite in [37].

1.1.3 Discrete orthogonal polynomials

Let N ∈ N, Λ := {x0, x1, . . . , xN} ⊂ R , where x0 < x1 < . . . < xN ,
F(Λ) be the set of all real functions on Λ, P be the set of all real
coefficient polynomials and PN ⊂ P be the set of polynomials of degree
at most N . Note that any real function of a discrete variable f ∈ F(Λ)
can be seen as the restriction on Λ of a number of functions of real
variable, in particular the Lagrange interpolation polynomial P ∈ RN

such that P (xi) = f(xi) for i = 0, 1, . . . , N . Then we have a natural
identification between the sets F(Λ) and PN .

We call weight function (or simply weight) any positive function µ
on Λ and we say that it is normalized when

∑N
k=0 µ(xk) = 1.
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Let us consider the pair (Λ, µ), where µ is a weight defined on Λ.
The inner product on PN associated to (Λ, µ) is defined by:

〈f, g〉Λ,µ =

N∑
k=0

f(xk)g(xk)µ(xk), f, g ∈ PN . (1.7)

with a corresponding norm ‖f‖Λ,µ =
√
〈f, f〉Λ,µ.

A family of polynomials {pN,k}mk=0 with m ≤ N is orthogonal with
respect to the inner product (1.7) if pk is a polynomial of degree k with
positive leading coefficient and

〈pN,n, pN,m〉Λ,µ =

{
6= 0 if n = m,
= 0 if n 6= m.

(1.8)

If ‖pN,k‖Λ,µ = 1 for all 0 ≤ k ≤ N , the family {pN,k(x)}mk=0 is called
orthonormal with respect to (4.1). Finally if for all 0 ≤ k ≤ N the
leading coefficient of pN,k(x) is equal to one, then {pN,k(x)}mk=0 is called
a family of monic orthogonal polynomials with respect to (4.1). Analo-
gously to the “continuous” case, the polynomials pN,k(z) may be built
from the monomials 1, z, z2, . . . , zN−1 using the Gram-Schmidt process.
The general elementary properties of the discrete orthogonal polynomi-
als are:
• Each discrete polynomial pk(z) has k simple zeros in the interval

[x0, xN ].

• No more than one zero lies in the closed interval [xn, xn+1] between
any two consecutive nodes.

• The discrete orthogonal polynomials satisfy a three term recur-
rence relation.

1.1.3.1 Classical discrete orthogonal polynomials on the real
line

If f is a function on the set F(Λ), the forward and backward differ-
ence operators are defined by

4+f(x) := f(x+ 1)− f(x), 4−f(x) := f(x)− f(x− 1), (1.9)

with 4n
+f(x) = 4+

[
4n−1

+ f(x)
]

for n = 1, 2, . . .. These operators are
the analogous of the derivative operator in the continuous case. The



1.1. Orthogonal Polynomials 11

classical discrete orthogonal polynomials are composed by the four fam-
ilies:
• The Hahn polynomials p

(α,β)
n (x,N), with α, β > −1, are orthogo-

nal on the interval [0, N−1] are defined by the following Rodrigues
type formula

p(α,β)
n (x,N) =

(−1)n

n!µ(x)
4n

+

[
µ(x)

n−1∏
k=0

σ(x− k)

]
,

where σ(x) = x(N + α+ x),

µ(x) =
Γ(N + α− x)Γ(1 + β + x)

Γ(1 + x)Γ(N − x)
,

and as usual Γ(·) denote the Gamma function. The special case
of the Hahn polynomials, called the Chebyshev polynomials of

a discrete variable, denoted by tn(x) = p
(0,0)
n (x,N) arises when

µ(x) ≡ 1.

• The Charlier polynomials C
(a)
n , with parameter a > 0, are or-

thogonal on the interval [0,∞) with respect to the weight

µ(x) =
e−aax

Γ(1 + x)
,

and are defined by the following Rodrigues type formula

C(a)
n (x) =

1

anµ(x)
4n

+

[
µ(x)

n−1∏
k=0

σ(x− k)

]
,

with σ(x) = x.

• The Meixner polynomials Mn(·) = Mn(·; b, c), with parameters
b > 0 and 0 < c < 1, are orthogonal on the interval [0,∞) with
respect to the weight

µ(x) =
cxΓ(b+ x)

Γ(1 + x)Γ(b)
,

and are defined by the following Rodrigues type formula

Mn(x) =
1

cnµ(x)
4n

+

[
µ(x)

n−1∏
k=0

σ(x− k)

]
,

with σ(x) = x.
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• Let N ∈ N, ΛN = {0, 1, 2, . . . , N}, α ∈]0, 1[ and wN,α(x) the
weight function

wN,α(x) =

(
N

x

)
αx(1− α)N−x, for all x ∈ ΛN .

The monic Krawtchouk polynomials can be generated by the for-
mula (c.f. [5, (5.4.3)])

καn(x,N) =

n∑
j=0

(
n

j

)
αn−j(1− α)j(x−N)n−j(x− j + 1)j ,

where (a)j denotes the Pochhammer symbol or shifted factorial as
in [5, (1.1.8)].

The Hahn polynomials were introduced in 1949 by Wolfgang Hahn
in [35]. The Charlier polynomials also known as “Poisson-Charlier”
polynomials, were investigated by C.V.L. Charlier in [19]. The Meixner
polynomials were considered by Joseph Meixner in [57]. The Krawtchouk
polynomials [44] were introduced in 1929 by M. Krawtchouk. These are
the orthogonal polynomials associated with the binomial distribution in
probability theory.

1.2 An application of discrete orthogonal poly-
nomials: Edge detection

Digital image processing is a discipline in mathematics and electrical
engineering which is included within the more general field of signal
processing, which deals with the analysis and processing of analog and
digital signals, and with storing, filtering and many others operations on
signals. There is a considerable variety of possible signals, among which
it is worth mentioning sound and voice signals, transmission signals and
image signals. Then as the name suggests, digital image processing is
the set of techniques and procedures (algorithms) for the transformation
of digital images.

An image is a two-dimensional signal or function f(x, y), where x
and y are the spatial coordinates, and the amplitude of f at any pair of
coordinates (x, y) is called intensity of the image at that level. Digital
images I(x, y) are obtained from “continuous” images f(x, y), by means
of a sampling procedure. Then, digital images are two-dimensional ar-
rays which are composed by a finite numbers of points, each of them
called pixel or pel (from “pictured element”).
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1.2.0.1 Image type data

In a two-dimensional (2D) image the spatial resolution, also called digital
resolution, is the number of pixels used to cover the visual space captured
by the image, and it is denoted by C×R (column by row), for example:
images of resolution 640 × 480, 1024 × 768 etc. Among the most used
formats of representation of 2D images are:

1. Binary images In this type of images each pixel only take the
values zero (for black color), or the value one (for white color),
though any two color can be used.

2. Grey-scale images Let Lg the number of discrete gray levels
allowed in each pixel. Then due to processing, storage, and sam-
pling considerations, we have [34, Ch. 2] that the number Lg is
an integer power of 2: Lg = 2k, and we usually refer to image as
a “k-bit image”. It is commonly assumed that the discrete gray
levels are equally spaced and that they are integers in the interval
[0, Lg−1]. Then in the gray-scaled images, the values of pixels goes
from 0 (black color) to Lg − 1 (white color). One of the most used
gray-scale images is when k = 8 (or 8-bit image), which provides
of Lg = 28 = 256 levels of luminance per pixel.

3. RGB images This type of images are represented by three dimen-
sional arrays that assign three numerical values to each pixel, each
value corresponding to the so called primary colors red (R), green
(G) and blue (B), which can be combined in various proportions
to obtain any color in the visible spectrum.

1.2.1 Edge detection

Edge detection can be considered as part of the most general image pro-
cessing discipline called Segmentation, which roughly speaking consist
in the separation or subdivision of the image into regions or objects to
represent meaningful areas. The main goal of image segmentation is
obtain a representation of the image which is easier to analyze. There
is a great variety of applications to image segmentation, for example:
Machine vision, Medical imaging in order to locate tumors, measure tis-
sue volumes, surgery planning; Object detection (face detection, brake
light detection, locate objects in satellite images, such as, roads, crops,
forest); Recognition tasks such as face, fingerprint and iris recognition;



14 Chapter 1. Introduction

Traffic control systems, etc. There are several possible approaches to
image segmentation:

i) Edge/boundary These methods consist in finding discontinuities or
abrupt changes in intensity on the image in order to identify bound-
aries between regions.

ii) Region-based This approach is based on partitioning an image into
regions that are similar according to a set of predefined criteria.

Basically there are three types of gray level discontinuities on digital
images: points, lines and edges. An edge is a set of connected pixels
that lie on the boundary between two regions. Edge detection can be
defined as the set of procedures to find edge points on an image. In the
same manner that the first derivative is used in one variable functions to
detect critical points, Edge detection procedures makes use of discrete
differential operators to detect changes in the gradients of the gray (or
color) levels image. Edge detection is divided into two major categories:
first order and second order Edge detection. In this work we will mainly
deal with first order methods. It is well known that in the study of such
methods, an efficient approach to the first discrete derivative is needed.
For this purpose, it is necessary to introduce the notion of mask or
kernels and discrete convolution.

Gradient

The gradient is a measure of change in a function, and a digital image
I(x, y) can be considered to be an array of samples of some continuous
function f(x, y) of image intensity. Analogously to the one variable case,
significant changes in the gray level values in a image can be detected
by using a discrete approximation to the gradient, which is defined by
the vector

∇f(x, y) =

[
∂f

∂x
,
∂f

∂y

]
.

As is known, the gradient represent the direction of the greatest rate
of increase of the function f(x, y). Taking into account that the partial
derivatives of f(x, y) are dependent on the direction, i.e., is not isotropic
(invariant), but the magnitude |∇f(x, y)| of the gradient vector is, then
a common approximation into image processing field is as follows
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|∇f(x, y)| =

√[
∂f

∂x

]2

+

[
∂f

∂y

]2

≈
∣∣∣∣∂f∂x

∣∣∣∣+

∣∣∣∣∂f∂y
∣∣∣∣ .

The first order partial discrete derivatives or partial differences of
the image function f(x, y) can be computed [78, Ch. 6, Sect. 6.3.1] by

4xf(x, y) = f(x+ 1, y)− f(x, y), 4yf(x, y) = f(x, y + 1)− f(x, y).

In order to obtain an efficient method to compute the discrete derivative
in each point (pixel) of the image I(x, y), one of the most used proce-
dures is the Spatial linear filtering, which can be explained as follows: If
the image I(x, y) is represented by the 6× 6 matrix

I =


∗ ∗ ∗ ∗ ∗ ∗
∗ I(x− 1, y − 1) I(x− 1, y) I(x− 1, y + 1) ∗ ∗
∗ I(x, y − 1) I(x, y) I(x, y + 1) ∗ ∗
∗ I(x+ 1, y − 1) I(x+ 1, y) I(x+ 1, y + 1) ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

 , (1.10)

and

M =

 m(−1,−1) m(−1, 0) m(−1, 1)
m(0,−1) m(0, 0) m(0, 1)
m(1,−1) m(1, 0) m(1, 1)

 , (1.11)

denotes the filter or mask (also called: template, kernel or window). The
3 × 3 section of the matrix image (1.10) centered at (x, y) (also called
neighborhood of (x, y)) is denoted by I3×3. The response of applying
M to the matrix section I3×3, is given by linear combination

R = m(−1,−1)I(x− 1, y − 1) +m(−1, 0)I(x− 1, y)

+m(−1, 1)I(x− 1, y + 1) +m(0,−1)I(x, y − 1)

+m(0, 0)I(x, y) +m(0, 1)I(x, y + 1) +m(1,−1)I(x+ 1, y − 1)

+m(1, 0)I(x+ 1, y) +m(1, 1)I(x+ 1, y + 1). (1.12)

The response (1.12) of the mask at the point I(x, y), can also be written
in the form R = 〈vec (M) , vec (I3×3)〉2 where 〈·, ·〉2 denotes the usual
Euclidean inner product, and vec (M) is the column vector

(m(−1,−1),m(0,−1),m(1,−1),m(−1, 0),m(0, 0),m(1, 0),m(−1, 1),

m(0, 1),m(1, 1))t ,
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and similarly for vec (I3×3). For example if we applied the mask

Mx =

 0 0 0
0 −1 0
0 1 0

 , (1.13)

to the section I3×3, the result is precisely the partial discrete derivative
with respect to x at the point (x, y):

4xI3×3(x, y) = I(x+ 1, y)− I(x, y).

Usually masks are matrices of order n × m, where n = 2k1 + 1 and
m = 2k2 + 1, and k1, k2 are nonnegative integers, i.e., the filter mask
has an odd numbers of rows and columns. This will ensure that the effect
of filtering is over the center pixel (x, y) of the section matrix In×m. In
general the Spatial linear filtering of an image I of size M ×N with a
filter mask of size n×m at the point (x, y) is given by

IM(x, y) =

k1∑
s=−k1

k2∑
t=−k2

m(s, t)I(x+ s, y + t). (1.14)

In order to process all the pixels of an image, it is necessary to apply
(1.14) varying x = 0, 1, . . . ,M − 1, y = 0, 1, . . . , N − 1, thus obtaining
the transformed image IM, which can be written in compact form as
follows

IM =M∗ I, (1.15)

where the symbol ∗ denotes the discrete convolution of the mask M
with the image I, see [69, Ch. 15], [34, Ch. 3 and 10], and [38, Ch. 15
Sect. 15.1.4].

1.2.2 Classical first-order methods of Edge detection

The most used mask of size 3×3 for approximate first order the discrete
derivatives are:

Roberts This method is one of the earliest procedures for detecting
edges, and was proposed in 1965 by L.G. Roberts [77]. The masks
are given by:

Mx =

 0 0 −1
0 1 0
0 0 0

 , My =

 −1 0 0
0 1 0
0 0 0

 .
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Prewitt The Prewitt operator was developed in 1970 by J.M.S. Prewitt
in [71]. The filter mask are:

Mx =

 1 0 −1
1 0 −1
1 0 −1

 , My =

 1 1 1
0 0 0
−1 −1 −1

 .

Sobel In his PhD dissertation [84] (see also [23, p. 271]), I.E. Sobel pro-
posed the following masks for approximating first order derivatives
of images:

Mx =

 1 0 −1
2 0 −2
1 0 −1

 , My =

 1 2 1
0 0 0
−1 −2 −1

 .

The edge detector using gradient magnitude has the following basic
steps:

• Compute gradient vector at each pixel by convolving the image
with horizontal and vertical derivative filters.

• Compute the gradient magnitude at each pixel.

• If the magnitude at a pixel exceeds a threshold, report a possible
edge point.

The edge set obtained by an edge detector can be divided into three
subsets: correct edges or true edges, corresponding to edges in the scene,
false edges (also called false positive) which do not correspond to edges
in the scene, and the missing edges (or false negative edges) defined as
those edges in the scene that should have been detected.

Previous to the above steps for edge detection (using the magnitude
of gradient), smoothing filters are commonly used to reduce noise, thus
reducing the probability of obtaining false positive edges. Among the
most widely used smoothing filter are: 1) average (or lowpass) filters,
which consist in replacing the value of every pixel in a image by the av-
erage of the gray levels in the neighborhood defined by the filter mask.
2) The median filter and 3) Gaussian filters, see [69, Ch. 7] and [34,
Ch. 3 and 4]. Another reason for applying smoothing filters, is to regu-
larize the ill-posed nature of differentiation and therefore improve edge
localization, as pointed out by Torre and Poggio in [91]. Other methods
for edge detection were put forth proposed by, Hueckel [39] and Frei
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and Chen [26] in the 1970s. Many statistical [98] and several filtering
approaches have also been used for edge detection. Algorithms based on
the Laplacian of Gaussian [55] and based on the gradient of Gaussian
[18] were very popular in the 1980s. Haralick [36] presented an edge
detection scheme based on the second directional derivative. His proce-
dure incorporated a form of image smoothing based on approximating
the image with local surface patches.

One of the most used and complete method for edge detection since
1980s was proposed by J.F. Canny in [18]. This briefly consists in the
following: 1) The image is first smoothed using Gaussian kernel. 2) Find
the edge strength taking gradient of the image with the Sobel operator.
3) Calculate the edge direction. 4) Digitize the edge direction. 5) Non-
maximum suppression. 6) Hysteresis.

1.2.3 Edge detection using two variables Krawtchouk
polynomials

A gray-scale image with resolution (N1+1)×(N2+1) pixels (N1, N2 ∈ N)
can be considered as a function of two variables I(x, y) defined on the
set ΛN1 × ΛN2 , where ΛN1 = {0, 1, . . . , N1} and ΛN2 = {0, 1, . . . , N2},
i.e.

I : ΛN1 × ΛN2 −→ [0, 1],
(x, y) −→ I(x, y).

Hence, the values of I on ΛN1×ΛN2 can be represented by a matrix I of
order (N1 +1)× (N2 +1). Let PN1,N2 be the linear space of polynomials
in the variables x and y, of degree at most N1 and N2 respectively. To
study an image as a polynomial in two variables, we use the Krawtchouk
polynomials in two variables or bivariate Krawtchouk polynomials [75,
Ch. 12], [25, Ch. 2].

Let N1, N2 ∈ N, α1, α2 ∈]0, 1[, ΛN1 = {0, . . . , N1} and ΛN2 =
{0, . . . , N2}. We call Two-dimensional Krawtchouk polynomials or 2D
monic Krawtchouk polynomials the polynomial of two variables

Kα1,α2
n,m (x, y) = κα1

n (x,N1)κα2
m (y,N2),

where (x, y) ∈ ΛN1 × ΛN2 .
The 2D monic Krawtchouk polynomials are orthogonal with respect

to the next inner product on PN1,N2

〈f ,g〉2D =

N1∑
i=0

N2∑
j=0

f(xi, xj)g(xi, xj)wN1,α1(xi)wN2,α2(xj),
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(see [75, Lemma 12-1]). Furthermore

〈Kα1,α2
n,m ,Kα1,α2

r,s 〉2D = 〈κα1
n , κ

α1
r 〉N1,α1

〈κα2
m , κ

α2
s 〉N2,α2

=

{
0, |n− r|+ |m− s| > 0,

‖Kα1,α2
n,m ‖22D > 0, |n− r|+ |m− s| = 0,

where ‖f‖2D =
√
〈f , f〉2D.

From the standard theory of approximation of functions (c.f. [75,
Ch. 12]), for M1 ∈ ΛN1 \ {0} and M2 ∈ ΛN2 \ {0}, the polynomial of
total degree (M1 − 1)× (M2 − 1)

PM1,M2(x, y) =

M1−1∑
n=0

M2−1∑
m=0

βn,mKα1,α2
n,m (x, y),

where βn,m =
〈I,Kα1,α2

n,m 〉2D
〈Kα1,α2

n,m ,Kα1,α2
n,m 〉2D

is such that

min
Q∈PM1,M2

‖I−Q‖2D = ‖I−PM1,M2‖2D,

i.e. PM1,M2 is the polynomial of least square approximation of I in
PM1,M2 and we write I(x, y) ≈ PM1,M2(x, y). Furthermore, if M1 =
N1 + 1 and M2 = N2 + 1, then I = PN1,N2 .

In chapter 4 we will propose an alternative method for edge detection
on gray-scale images, that extends beyond classic first-order differential
operators by using the differential properties of two variable Krawtchouk
orthogonal polynomials, to obtain two matrices Px and Py of the same
order of the original image I, where each entry (i, j) is the partial deriva-
tive with respect to x or y, and hence achieve an approximation of the
modulus of gradient on each point (i, j) of I which is the basis of the
proposed algorithm.

1.3 Non-standard Orthogonal Polynomials

Let P the vector space of all polynomials with complex coefficients,
Pn the vector subspace of all polynomials of degree at most n. We denote
by Tx : P→ P the multiplication operator defined as

∀p ∈ P, Tx(p) = xp. (1.16)
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Definition 1.3.1. Let 〈·, ·〉 : P×P→ C an inner product over P. We will
say that {pn}∞n=0 is a standard sequence of monic orthogonal polynomials
with respect to 〈·, ·〉 if

∀p, q ∈ P, 〈Tx(p), q〉 = 〈p, Tx(q)〉 .

The monic orthogonal polynomial sequence with respect to the mea-
sure µ (1.4) is an example of standard sequence of monic orthogonal
polynomials. Also, the discrete inner product (1.8) produces a set
{pN,k(x)}mk=0 of standard monic orthogonal polynomials in the discrete
setting.

1.3.1 Orthogonal polynomials on the unit circle

Let µ be a nontrivial probability measure on the unit circle T = {z : |z| =
1}, and suppose that dµ(θ) = w(θ)dθ is the Radon-Nikodym derivative
of µ with respect to the Lebesgue measure. Then∫

T
f(z)dµ(z) =

∫ 2π

0
f(ei θ)w(θ)dθ.

According to (1.3) the elements of Gram matrix (in this case called
Toeplitz matrix) are given by

〈zn, zm〉 =

∫ 2π

0
e−i(m−n)w(θ)dθ := tm−n,

with explicit expression

Tn =


t0 t1 · · · tn
t−1 t0 · · · tn−1
...

...
. . .

...
t−n t−n+1 · · · t0

 .

If ϕn denotes the orthonormal polynomial of degree n with respect to
µ, by (1.2) we have

ϕn(z) =
1√

D̃n−1D̃n

∣∣∣∣∣∣∣∣∣∣∣

t0 t1 · · · tn
t−1 t0 · · · tn−1
...

...
. . .

...
t−n+1 t−n+2 · · · t−1

1 z · · · zn

∣∣∣∣∣∣∣∣∣∣∣
= κnz

n + · · · , (1.17)
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where D̃n is the determinant of Tn and κn =

√
D̃n−1

D̃n
. The polyno-

mials (1.17) are also known as Szegő polynomials, and can be written

in the form ϕn(z) = Φn(z)
‖Φn(z)‖ , where Φn(z) is the corresponding monic

polynomial and the leading coefficients are given by κn = ‖Φn‖−1. If
pn(z) =

∑n
j=0 ajz

j is a polynomial of degree n, the reversed polynomial
is defined by

p∗n(z) =
n∑
j=0

ājz
n−j = znpn(1/z̄). (1.18)

The polynomials Φn and Φ∗n satisfy the following orthogonality condi-
tions 〈

Φn, z
k
〉

= 0, 0 ≤ k ≤ n− 1,〈
Φ∗n, z

k
〉

= 0, 1 ≤ k ≤ n.

As a consequence of Fejér Theorem 1.1.1 we have the following

Theorem 1.3.1. ( [82, Part 1, Ch. 1, Sect 1.7]) For each n, all the
zeros of ϕn lie in the unit disc D = {z : |z| < 1}.

Theorem 1.3.2. ( [82, Part 1, Ch. 1]) If Kn(z, ξ) =
∑n

k=0 ϕk(z)ϕk(ξ)
is the reproducing kernel for the orthogonal polynomials ϕn on the unit
circle, then

Kn(z, 0) =

n∑
k=0

ϕk(z)ϕk(0) = κnϕ
∗
n(z), (1.19)

and

Kn(0, 0) =

n∑
k=0

|ϕk(0)|2 = κ2
n. (1.20)

From (1.3) it follows that {Φn}∞n=0 is an non standard orthogonal
polynomials sequence, for this reason these polynomials do not satisfy a
three term recurrence relation, nonetheless they satisfy the following

Theorem 1.3.3. (Szegő recurrence, [82, Part 1, Ch. 1]) For the monic
orthogonal polynomials Φn one has

Φn+1(z) = zΦn(z)− ᾱnΦ∗n(z), (1.21)

Φ∗n+1(z) = Φ∗n(z)− αnzΦn(z). (1.22)
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Moreover,

‖Φn+1‖2 =
(
1− |αn|2

)
‖Φn‖2

=
n∏
j=0

(
1− |αj |2

)
. (1.23)

Using (1.21) and Φ∗n+1(0) = 1, we have

αn = −Φn+1(0). (1.24)

The parameters αn are called Verblunsky coefficients and satisfy |αj | <
1, i.e., are all in D. We define

ρj :=
√

1− |αj |2,

so (1.23) and κn = ‖Φn‖−1 imply

κn =

n−1∏
j=0

ρ−1 =

n−1∏
j=0

(
1− |αj |2

)−1/2
.

Since ϕn = κnΦn and κn+1ρn = κn, the monic Szegő recursions (1.21)
and (1.22) can be written as follows

ϕn+1(z) = ρ−1
n (zϕn(z)− ᾱnϕ∗n(z)) ,

ϕ∗n+1(z) = ρ−1
n (ϕ∗n(z)− αnzϕn(z)) .

Also, the monic recurrence formulas (1.21) and (1.22) can be written in
matrix form as follows(

Φn+1

Φ∗n+1

)
=

(
z −ᾱn
−αz 1

)(
Φn

Φ∗n

)
,

and analogously, for the orthonormal recurrence we have(
ϕn+1

ϕ∗n+1

)
= ρ−1

n

(
z −ᾱn
−αz 1

)(
ϕn
ϕ∗n

)
.

As a consequence of recurrence formulas (1.21) and (1.22) we have the
following expression for the reproducing kernel, similar to the Christoffel-
Darboux formula on the real line.
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Theorem 1.3.4. ([82, Part 1, Ch. 1]) If ϕn are the orthonormal poly-
nomials on the unit circle, then

Kn(z, ξ) =

n−1∑
k=0

ϕk(z)ϕk(ξ) =
ϕ∗n(z)ϕ∗k(ξ)− ϕn(z)ϕk(ξ)

1− zξ
.

The most simple example of orthogonal polynomial on the unit circle
“OPUC” is obtained taking the weight function w(θ) = 1, which pro-
duces Φn(z) = zn and Φ∗n(z) = 1, with Verblunsky coefficients αn ≡ 0.
This example illustrate that unlike the orthogonal polynomials on the
real line, the zeros of OPUC may not be simple, indeed in this case
the unique zero is z = 0. Other examples of OPUC can be found on
[82, §1.6]. Regarding the classical references of OPUC, we suggest the
monographs [27, 31, 89], and the more recent [82].

1.3.2 Orthogonality with respect to a Differential
Operator

Definition 1.3.2. Assume that µ is a positive Borel measure on the real
line and let {ρk}Mk=0 be a set of functions such that,∫

|xjρk(x)|dµ(x) <∞, 0 ≤ j <∞,

for all k = 0, . . . ,M . Denote by

L(M) =

M∑
k=0

ρk(x)
dk

dxk
, (1.25)

an operator acting over the space of polynomials P. We say that {Qn}∞n=0

is a sequence of orthogonal polynomials with respect to the pair (L(M), µ)
if deg[Qn] ≤ n and ∫

L(M)[Qn](x)P (x)dµ(x) = 0, (1.26)

for any polynomial P such that deg[P ] ≤ n− 1.

1. In the case M = 0, i.e. L(M)[f ](x) = ρ0(x)f(x), we obtain the
classical construction of orthogonal polynomials with respect to a
standard inner product∫

Qn(x)P (x)ρ0(x)dµ(x) = 0, deg[P ] ≤ n− 1.
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2. Let ζ ∈ C be fixed and consider the differential operator Lζ :
W 1,2(µ)→ L2(µ)

Lζ [f(x)] = f(x) + (x− ζ)f ′(x),

where W 1,2(µ) = {f ∈ L2(µ) : f ′ ∈ L2(µ)} is the Sobolev space
of index 1. Let us consider a positive measure µ supported on a
subset ∆ ⊂ R. The polar polynomial associated to µ, see [65], is
defined as the polynomial Qn of degree n orthogonal with respect
to (Lζ , µ). Let us consider

P0,ζ = 1

Pn+1,ζ(z) = (z − ζ)Qn(z), n ≥ 0.

Then it is not difficult to see that the family {Pn+1,ζ}∞n=0 is or-
thogonal with respect to the Sobolev inner product

〈f, g〉ζ = ηf(ζ)g(ζ) +

∫
∆
f ′(x)g′(x)dµ(x),

for some η > 0. The case µ = µλ, λ > −1
2 , corresponding to

the Gegenbauer or ultraspherical measure, i.e. dµλ(x) = (1 −
x2)λ−

1
2dx, was studied in detail in [6].

1.3.3 Properties of uniqueness for the sequence of
orthogonal polynomials with respect to differential
operators in general.

Taking into account that the sequence of orthogonal polynomials with
respect to differential operators is not unique, in [3] the authors find
that the notions of T− system results to be a sufficient condition for
normality of the sequence for linear homogeneous differential operators.

Definition 1.3.3. A set {uk}nk=0 of continuous functions on ∆ is called
a Chebyshev system (T− system) on ∆ if any linear combination

n∑
k=0

αkuk,

has at most n zeros on this interval. If for each 0 ≤ m ≤ n, the set of
functions {uk}mk=0 forms a T− system it is called a Markov system (M−
system).
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A sufficient condition for uniqueness is that any polynomial satisfying
(1.26) has exactly degree n. Sufficient conditions for the question of
uniqueness of the sequence of orthogonal polynomials with respect to
linear homogeneous differential operators in general are given by the
next three theorems.

Theorem 1.3.5. Given L(M) as in (1.25), let us assume that the se-
quence {L(M)[xν ]}nν=0 is an M−system on supp (µ). Then deg[Qn] = n.

Basically the above theorem allows to establish a correspondence
between T−systems and fundamental systems of solutions of linear dif-
ferential equations because any fundamental system (u0, . . . , uM−1) of
L(M)[u] = 0 satisfies W (u0, . . . , uM−1) 6= 0. Therefore, any such solution
is a T−system.

The next theorem gives a condition of normality in terms of a fun-
damental system of solutions:

Theorem 1.3.6. Let {u0, . . . , uM−1} be a fundamental system of so-
lutions of L(M)[u] = 0. Let us assume that n ∈ N is given and that

{(u(ν)
0 , . . . , u

(ν)
M−1)}, is a T− system for ν = 1, 2, . . . , n+ 1. If Qn is the

nth orthogonal polynomial with respect to (L(M), µ), then deg[Qn] = n.

The condition for normality provided by Theorem 1.3.6 gives,

Theorem 1.3.7. Assume that L(M) has infinitely differentiable coeffi-
cients {ρk}Mk=0 on supp (µ). Define recurrently the system of functions
{ρk,m}Mk=0, m = 1, 2, . . . , as {ρk,0 := ρk}Mk=0, and

ρk,m+1 = ρk,m + ρ0,m

(
ρk+1,m

ρk+1,m

)
k = 0, . . . ,M − 1, m ∈ N,

ρM,m ≡ 1, m ∈ N.

Then deg[Qn] = n if for all m = 1, 2, . . . , n we have ρ0,m(x) 6= 0 for
x ∈ supp (µ).

Using the previous results, the authors of [3] proved, for some cases
of differential operators, the normality of the associated sequence of
orthogonal polynomials.





Chapter

2
Iterated integrals of
Jacobi Polynomials

2.1 Introduction

There is extensive literature about the location of the critical points of
a polynomial in terms of its zeros ([72, Part I] and [81]), whose main pil-
lars are Rolle’s Theorem, Gauss-Lucas Theorem and their refinements.
However, proper converses of these theorems have yet to be found. It
is obvious that given one of the zeros of a polynomial and its critical
points, the remaining zeros are uniquely determined. Nonetheless, there
are only some results about zero location of polynomials in terms of its
critical points and a given zero, most of them contained in [72, §4.5].
In general, these follow from the Schur-Szegő composition theorem [72,
Th. 3.4.1d]. Perhaps, the most relevant results in this sense are the
theorems of Walsh [72, Th. 4.5.1] and Biernacki [72, Th. 4.5.2].

Let P
(α,β)
n be the nth monic Jacobi polynomials with parameters

α, β ∈ R

P (α,β)
n (z) =

n∑
k=0

(
n+ α

n− k

)(
n+ β

k

)(
2n+ α+ β

n

)−1

· (z − 1)k(z + 1)n−k, (2.1)

where 2n+α+ β 6= 0, 1, . . . , n− 1,
(
a
b

)
= Γ(a+1)

Γ(a−b+1)Γ(b+1) and Γ(·) is the

usual Gamma function (see [89, (4.21.6) and (4.3.2)] for more details).
These classical polynomials have been used extensively in mathematical
analysis and practical applications (cf. [73, 89, 90]). Nowadays, there has
been renewed interest in using the Jacobi polynomials in the numerical
solution of differential equations. Some of these methods require explicit
expressions of the integral of such polynomials and the localization of
their zeros (e.g. see [9, 10]). Another area that demand this knowledge is
the study of families of polynomials orthogonal in a non-standard sense,
particulary the Sobolev-type orthogonality and the orthogonality with
respect to a differential operator (e.g. [6, 14, 65]).

27
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For a fixed m ∈ Z+, let P(α,β)
n,m be the monic polynomial of degree

n + m given by P(α,β)
n,m = P

(α−m,β−m)
n+m . From [89, (4.21.6)-(4.21.7)] it is

known that

dk P
(α,β)
n

dzk
(z) =

n!

(n− k)!
P

(α+k,β+k)
n−k (z), where 0 ≤ k ≤ n. (2.2)

Hence,
dm P(α,β)

n,m

dzm (z) = (n+m)!
n! P

(α,β)
n (z), i.e. P(α,β)

n,m is anmth iterated inte-

gral (or a primitive of order m) of n!
(n+m)! P

(α,β)
n . In what follows, we shall

refer to P(α,β)
n,m as the mth fundamental iterated integral of n!

(n+m)! P
(α,β)
n .

Given m complex numbers ω1, . . . , ωm ∈ C, let Ωk = (ω1, . . . , ωk) for

1 ≤ k ≤ m, and P(α,β)
n,m,Ωm

be the mth iterated integral of (n+m)!
n! P

(α,β)
n

normalized by the conditions

dk P(α,β)
n,m,Ωm

dzk
(ωm−k) = 0, k = 0, 1, . . . ,m− 1. (2.3)

Furthermore, there exists a unique polynomial

An,m(z) = An,m(z;ω1, . . . , ωm)

of degree at most equal to m− 1, satisfying the equations

dkAn,m
dzk

(ωm−k) =
dk P(α,β)

n,m

dzk
(ωm−k), k = 0, 1, . . . ,m− 1. (2.4)

The polynomial An,m is named the Abel-Goncharov interpolation poly-
nomial, associated to the conditions (2.4). The existence and uniqueness
of An,m is obvious if we observe that (2.4) is a triangular system of m
equations and m unknown (the coefficients of An,m) whose determinant
is equal to

∏m−1
k=0 k!. The Abel-Goncharov interpolation polynomial is

a generalization of Taylor’s polynomial, which corresponds to the case
ωm = ωm−1 = · · · = ω1. In section 2.3, explicit expressions of Abel-
Goncharov polynomials and some of their properties are given, for more
details see [2, 24, 90].

Now, the polynomial P(α,β)
n,m,Ωm

can be written as

P(α,β)
n,m,Ωm

(z) = P(α,β)
n,m (z)−An,m(z), (2.5)
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and we can interpret the polynomial P(α,β)
n,m,Ωm

as the polynomial solution
of the next Abel-Goncharov boundary value problem (see [2, §3.5])

dmY
dzm (z) = (n+m)!

n! P
(α,β)
n (z), n > m,

dkY
dzk

(ωm−k) = 0, k = 0, 1, . . . ,m− 1.

Moreover, if α, β > −1 then P(α,β)
n,m,Ωm

is the (n + m)th monic orthog-
onal polynomial with respect to the discrete-continuous Sobolev inner
product (see [1, 6]) given by

〈f, g〉S =
m−1∑
k=0

dkf

dzk
(ωm−k)

dkg

dzk
(ωm−k)

+

∫ 1

−1

dmf

dzm
(x)

dmg

dzm
(x)(1− x)α(1 + x)βdx.

Let m ∈ Z+, {ω0, ω1, . . . , ωm} ⊂ C \ [−1, 1] and α, β > −1, the
aim of this work is the study of algebraic and asymptotic properties

of the sequence of monic polynomials
{
P(α,β)
n,m,Ωm

}
n
. The case α = β =

ω1 = · · · = ωm = 0 was early studied in [16], where the authors wrote “It
would be interesting to obtain results, analogous to Theorem [16, Th. 2],
for these polynomials” referring to the Gegenbauer (or ultraspherical)
polynomials (α = β > −1). Our Theorem 2.4.2 is an extension of [16,
Th. 2] for Jacobi polynomials when all the constants of integration ωi
are outside of the interval [−1, 1].

In the next section we review some of the standard facts on Jacobi
polynomials and we give the proof of some auxiliary results. The third
section is devoted to study the Abel-Goncharov interpolation polyno-
mial An,m(z) of the mth fundamental iterated integral of Jacobi poly-
nomials. In the section 2.4 our main results on asymptotic behavior of

the sequence of polynomials
{
P(α,β)
n,m,Ωm

}
n

and its zeros, are stated and

proved. In the last section, we studied the results analogous to section
2.2, for the Laguerre polynomials.

2.2 Fundamental iterated integral of Jacobi
polynomials

Recall that, for a fixed m,n ∈ Z+, we denote by P(α,β)
n,m the Jacobi monic

polynomial of degree n + m given by P
(α−m,β−m)
n+m . From [73, §135 (12)
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and §138 (14)-(15)] we have the next lemma.

Lemma 2.2.1. For a fixed m ∈ Z+, let P(α,β)
n,m be the (n + m)th fun-

damental primitive of nth monic Jacobi polynomials with parameters
α, β ∈ R, as defined on the introduction of the chapter. Then

P(α,β)
n,m (z) = P(α,β)

n+1,m−1(z) + a(α,β)
n,m P

(α,β)
n,m−1(z) + b(α,β)

n,m P
(α,β)
n−1,m−1(z);

(2.6)

where a(α,β)
n,m =

2(n+m)(α− β)

(2n+ α+ β + 2)(2n+ α+ β)
,

b(α,β)
n,m =

−4(n+m)(n+m− 1)(n+ α)(n+ β)

(2n+ α+ β)2((2n+ α+ β)2 − 1)
and

P(α,β)
n,0 (z) = P (α,β)

n (z).

The asymptotic behavior of the sequence of polynomials {P(α,β)
n,m }n,

stated in the following lemma is a direct consequence of [89, Th. 8.21.7
& Eqn. (4.21.6)]).

Lemma 2.2.2. If α, β ∈ R and m ∈ Z+, then

1. (Outer strong asymptotic). Uniformly on compact subsets of C \
[−1, 1]

lim
n→∞

P(α,β)
n,m (z)

ϕn(z)
= ψα,β,m(z)

√
ϕ(z), where (2.7)

ϕ(z) =
1

2

(
z +

√
z2 − 1

)
with

√
z2 − 1 > 0 when z > 1 and

ψα,β,m(z) =
22m−α−β (√z − 1 +

√
z + 1

)α+β−2m

4
√

(z − 1)2(α−m)+1 4
√

(z + 1)2(β−m)+1
.

2. (nth root asymptotic behavior). Uniformly on compact subsets of
C \ [−1, 1]

lim
n→∞

∣∣∣P(α,β)
n,m (z)

∣∣∣ 1
n

= |ϕ(z)| . (2.8)

3. (Comparative asymptotic behavior). Uniformly on compact subsets
of C \ [−1, 1]

lim
n→∞

P(α,β)
n,m (z)

P
(α,β)
n (z)

=

(
1

ϕ′(z)

)m
. (2.9)
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The two lemmas listed below are deduced from the Rouché’s The-
orem (cf. [70, Th. 1.1.1]) and the Biernacki’s Theorem (cf. [72, Th.
4.5.2]), respectively.

Lemma 2.2.3. (Rouché’s Theorem, [70, Th. 1.1.1]) Let f and g be
polynomials, and γ a closed curve without self-intersections in the com-
plex plane. If |f(z)| < |g(z)| for all z ∈ γ, then the polynomials f + g
and g have the same number of zeros in the interior of γ.

Lemma 2.2.4. Let f be a polynomial whose critical points are on a
compact subset K ⊂ C. If there exists ζ ∈ C such that f(ζ) = 0, then
the zeros of f lie in the compact set [K]ζ = {z ∈ C : infw∈K |z − w| ≤
dKζ}, where dKζ is the diameter of the compact set Kζ = K ∪ {ζ} (i.e.
dKζ = supu,v∈Kζ |u− v|).

Of course, for all ζ ∈ C we get K ⊂ Kζ ⊂ [K]ζ .
In the classical Szegő’s book [89, §6.72], the reader can find a full de-

scription of the distribution of the zeros of P
(α−m,β−m)
n+m , i.e. P(α,β)

n,m , when
α, β ∈ R and n,m ∈ Z+ are fixed. Additionally, in the next theorem we
state some aspect of interest about their asymptotic behavior.

Theorem 2.2.1. Let α, β > −1, m ∈ N fixed, I = (−1, 1) and Z
(α,β)
n,m (A)

be the set of zeros of P(α,β)
n,m on the set A ⊂ C. Then

1. For each n > 2m, at least (n − 2m) distinct zeros of P(α,β)
n,m lie in

I.

2. There exists a compact subset K ⊂ C, such that (−1, 1) ⊂ K and⋃
n≥1

Z
(α,β)
k,m (C) ⊂ K.

3. All the roots of P(α,β)
n,m accumulate at [−1, 1], i.e.⋂
n≥1

⋃
k≥n

Z
(α,β)
k,m (C) = [−1, 1].
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Proof.

(1) From (2.6) for consecutive values of m, we get that there exist
(2m+ 1) constants a0, a1, . . . , a2m such that

P(α,β)
n,m (z) =

2m∑
k=0

ak P
(α,β)
n−m+k(z).

Hence P(α,β)
n,m is a quasi-orthogonal polynomial of order 2m with

respect to the measure (1 − x)α(1 + x)βdx on I. Hence from [17,
Th. 2] we have the first assertion of the theorem.

(2) If m = 1, all the critical points of P(α,β)
n,1 lie in (−1, 1) and by

the first sentence of the theorem at least n− 2 of its zeros are on
I = [−1, 1]. Let x0 ∈ I such that P(α,β)

n,1 (x0) = 0, then according
to the notations in Lemma 2.2.4 we get that Ix0 = I and dIx0

= 2.

Hence, from Lemma 2.2.4 we get
(⋃

n≥1 Z
(α,β)
k,1 (C)

)
⊂ [I]x0 .

Suppose that for a fixed m ∈ N, there exists a compact set K
(α,β)
m

such that
(⋃

n≥1 Z
(α,β)
k,m (C)

)
⊂ K

(α,β)
m . As the zeros of P(α,β)

n,m are

the critical points of P(α,β)
n,m+1, from Theorem 2.2.1-(1) and Lemma

2.2.4 we get the desired statement.

(3) For a fixed m ∈ N, from the Theorem 2.2.1-(2) we known that the

set of all zeros of {P(α,β)
n,m } are uniformly bounded.

Note that for all n ∈ Z+ the functions
P(α,β)
n,m (z)

P
(α,β)
n (z)

and
(

1
ϕ′(z)

)m
=(√

z2−1
ϕ(z)

)m
are analytic on C\[−1, 1]. Furthermore,

(√
z2−1
ϕ(z)

)m
6= 0

if z ∈ C \ [−1, 1], hence (3) is a consequence of (2.9).

2.3 The Abel-Goncharov interpolation
polynomial

Given m complex numbers ω1, . . . , ωm ∈ C, let Ωk for 1 ≤ k ≤ m, as in
(2.3), as it is shown in section 2.1, there exists a unique polynomial An,m
of degree at most m−1, such that the equations (2.4) are satisfied. The
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polynomialAn,m is the mth Abel-Goncharov polynomial of interpolation
relative to the conditions (2.4) and is given by the expression

An,m(z) = P(α,β)
n,m (ωm) +

m−1∑
k=1

1

k!

dkP(α,β)
n,m

dzk
(ωm−k) Gk,m(z) (2.10)

where Gk,m(z) = Gk,m(z;ωm, ωm−1, . . . , ωm−k) is the monic polynomial
of degree k , generate by the kth iterated integral

Gk,m(z) = k!

∫ z

ωm

∫ sm−1

ωm−1

· · ·
∫ sm−(k−1)

ωm−(k−1)

dsm−1 dsm−2 · · · dsm−k, (2.11)

see [90, §4.1.4 (15)-(16)] for more details. The polynomial Gk,m is called
the kth Goncharov’s polynomial associated with {ω1, . . . , ωm}.

Example 2.3.1 (Abel’s polynomials ). If ω1, . . . , ωm form an arithmetic
progression, i.e. ωm−k = ω + kϑ, where ω, ϑ ∈ C are fixed and k =
0, 1, . . . ,m − 1, it is well known that in this case the kth Goncharov
polynomials

Gk,m(z) = (z − ω)(z − ω − (m− k)ϑ)k−1, (2.12)

is the so called kth Abel’s polynomials.

If ϑ = 0, we have the special case Gk,m(z) = (z−ω)k (Taylor’s case)
and then the mth Abel-Goncharov polynomial of interpolation (2.10) be-

comes into the Taylor’s expansion of P(α,β)
n,m in ω , as we mentioned in

the introduction.

According to (2.2) it follows that

1

k!

dkP(α,β)
n,m

dzk
(ωm−k) =

(
n+m

k

)
P(α,β)
n,m−k(ωm−k)

and replacing this formula in (2.10) we thus get

An,m(z) = P(α,β)
n,m (ωm) +

m−1∑
k=1

(
n+m

k

)
P(α,β)
n,m−k(ωm−k) Gk,m(z). (2.13)

Theorem 2.3.1. Given m > 0 and ω1, . . . , ωm ∈ C \ [−1, 1] fixed, let
An,m(z) be the Abel-Goncharov polynomial of interpolation associate to
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the conditions (2.4), ρm = max
0≤k≤m−1

|ϕ(ωm−k)|, U = {k : |ϕ(ωm−k)| =

ρm} and k̂ = max
k∈U
|k|. Then uniformly on compact subsets of C

lim
n→∞

An,m(z)

nk̂ P(α,β)

n,m−k̂
(ωm−k̂)

=
Gk̂,m(z)

k̂!
, (2.14)

lim
n→∞

|An,m(z)|
1
n = ρm. (2.15)

The branch of the square root contained in the explicit formula of ϕ is
chosen so that |ϕ(ωm−k)| > 1, for each 0 ≤ k ≤ m− 1.

Proof. Let V = {k : |ϕ(ωm−k)| < ρm}, obviously U ∩V = ∅ and U ∪V =
{1, 2, · · · ,m}. From (2.13) we get(

(n+m− k̂)!

(n+m)!

)
An,m(z)

P(α,β)

n,m−k̂
(ωm−k̂)

=
Gk̂,m(z)

k̂!
+

∑
k∈U\{k̂}

An,m,k
Gk,m(z)

k!

+
∑
k∈V

An,m,k
Gk,m(z)

k!
, (2.16)

where An,m,k =
(n+m− k̂)!

(n+m− k)!

P(α,β)
n,m−k(ωm−k)

P(α,β)

n,m−k̂
(ωm−k̂)

.

Firstly we will prove that for all k ∈ (U ∪ V ) \ {k̂}

lim
n→∞

An,m,k = 0, . (2.17)

If k ∈ V , then |ϕ(ωm−k)| < |ϕ(ωm−k̂)|,

An,m,k =
(n+m− k̂)!

(n+m− k)!

(
ϕ(ωm−k)

ϕ(ωm−k̂)

)n P(α,β)
n,m−k(ωm−k)

ϕn(ωm−k)

ϕn(ωm−k̂)

P(α,β)

n,m−k̂
(ωm−k̂)

and from (2.7) we can assert that for k ∈ V we get (2.17).
If k ∈ U \ {k̂}, therefore k < k̂ and |ϕ(ωm−k)| = |ϕ(ωm−k̂)|. Let

us write ϕ(ωm−k) = |ϕ(ωm−k̂)|e
iθ and ϕ(ωm−k̂) = |ϕ(ωm−k̂)|e

iθ̂, with

θ, θ̂ ∈ [0.2π). Then

An,m,k =

(
(n+m− k̂)!

(n+m− k)!

)
en(θ−θ̂) i

P(α,β)
n,m−k(ωm−k)

ϕn(ωm−k)

 ϕn(ωm−k̂)

P(α,β)

n,m−k̂
(ωm−k̂)
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and as in the previous reasoning, from (2.7) we can assert that for k ∈
U \ {k̂} we get (2.17).

Now, according to (2.16)-(2.17) we get (2.14). Finally, (2.15) is a
consequence of (2.14) and (2.8).

In example 2.3.1, if for each 0 ≤ k ≤ m− 1 it holds that (ω + kϑ) 6∈
[−1, 1], then all the zeros of the Abel’s polynomials (2.12) are out to the
interval [−1, 1].

2.4 General primitive of Jacobi polynomials
and its zeros

Eρ =
{
z ∈ C : |z − 1|+ |z + 1| > ρ+ ρ−1

}
,

Eρ =
{
z ∈ C : |z − 1|+ |z + 1| ≤ ρ+ ρ−1

}
.

Analogously to the notations introduced in Theorem 2.2.1, we denote

Z
(α,β)
n,m,Ωm

=
{
z ∈ C : P(α,β)

n,m,Ωm
(z) = 0

}
(i.e. set of the (n+m) zeros of

P(α,β)
n,m,Ωm

, and Z
(α,β)
m,Ωm

=
⋂
n≥1

⋃
k≥n

Z
(α,β)
k,m,Ωm

(i.e. set of accumulation points

of zeros of {P(α,β)
n,m,Ω}).

Lemma 2.4.1. Let α, β > −1, m ∈ N and Ωm = (ω1, . . . , ωm) ∈ Cm

fixed. Then there exists a compact subset K ⊂ C, such that (−1, 1) ⊂ K
and Z

(α,β)
n,m,Ωm

⊂ K for all n.

Proof. This claim is proved analogously that the Theorem 2.2.1-(2). If

m = 1, for all n ≥ 1 the critical points of P(α,β)
n,1,ω1

are on I = [−1, 1], then

from Lemma 2.2.4 we get Z
(α,β)
n,1,Ω1

is a subset of the compact set [I]ω1 ,
defined in Lemma 2.2.4.

Suppose that for a fixed m ∈ N, there exists a compact set Km−1

such that Z
(α,β)
n,m−1,Ωm−1

⊂ Km−1. As the zeros of P(α,β)
n,m−1,Ωm−1

are the

critical points of P(α,β)
n,m,Ωm

, from Lemma 2.2.4 we get Z
(α,β)
n,m,Ωm

⊂ [Km−1]ωm .
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Theorem 2.4.1. Given m > 0 and ω1, . . . , ωm ∈ C \ [−1, 1] fixed, let
ρm as in (2.15). Then uniformly on compact subsets of Eρm

lim
n→∞

P(α,β)
n,m,Ωm

(z)

P
(α,β)
n (z)

=

(
1

ϕ′(z)

)m
. (2.18)

Furthermore, Z
(α,β)
m,Ωm

⊂ Eρm.

Proof. From (2.5) we known that

P(α,β)
n,m,Ωm

(z)

P
(α,β)
n (z)

=
P(α,β)
n,m (z)

P
(α,β)
n (z)

− An,m(z)

P
(α,β)
n (z)

.

The uniform limit of the first quotient in the right side is given by (2.9).
Hence to proof (2.18), it is sufficient to proof that

lim
n→∞

An,m(z)

P
(α,β)
n (z)

= 0, uniformly on compact subsets of Eρm . (2.19)

From (2.13) we have

An,m(z)

P
(α,β)
n (z)

=
m−1∑
k=0

P(α,β)
n,m−k(ωm−k)

P
(α,β)
n (ωm−k)

(
(n+m)!

(n+m− k)!

P
(α,β)
n (ωm−k)

P
(α,β)
n (z)

)
Gk,m(z)

k!
,

where Gm(z) ≡ 1. For k = 0, 1, . . . ,m− 1 we get

(n+m)!

(n+m− k)!

P
(α,β)
n (ωm−k)

P
(α,β)
n (z)

=
(n+m)!

(n+m− k)!

(
ϕ(ωm−k)

ϕ(z)

)n
·P

(α,β)
n (ωm−k)

ϕn(ωm−k)

ϕn(z)

P
(α,β)
n (z)

.

As |ϕ(ωm−k)| < |ϕ(z)| for all z ∈ Eρ∗ , from (2.9) it follows (2.19).

Finally, the assertion Z
(α,β)
m,Ωm

⊂ Eρm is a consequence of (2.18) and
Lemma 2.4.1, using analogous argument as in the proof of Theorem
2.2.1-(3).

Theorem 2.4.2. Assume that m > 0 and ω1, . . . , ωm ∈ C \ [−1, 1],then

the accumulation points of zeros of {P(α,β)
n,m,Ωm

} are located on the union
of the interval [−1, 1] and the ellipse

Eρm =
{
z ∈ C : |z − 1|+ |z + 1| = ρm + ρ−1

m

}
, (2.20)
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where ρm = max
1≤k≤m

|ϕ(ωk)| and the branch of the square root contained

in the explicit formula of ϕ is chosen so that |ϕ(ωk)| > 1, for each
1 ≤ k ≤ m.

Proof. From (2.5) the zeros of the polynomial P(α,β)
n,m,Ωm

satisfy the equa-
tion ∣∣∣P(α,β)

n,m (z)
∣∣∣ 1
n

= |An,m(z)|
1
n . (2.21)

Taking the limit as n → ∞ of both sides of (2.21), from (2.15) and

(2.8), we have that Z
(α,β)
m,Ωm

⊂ Eρm where

Eρm =
{
z ∈ C : |z +

√
z2 − 1| = ρm

}
.

Let k̃ be an index, 1 ≤ k̃ ≤ m, such that ϕ(ωk̃) = ρme
iθ̃, 0 ≤ θ̃ < 2π.

Hence, we have that z +
√
z2 − 1 = ρm e

iθ̃, z −
√
z2 − 1 = ρ−1

m e−iθ̃

and taking the difference between both we get
√
z2 − 1 = (ρme

iθ̃ +

ρ−1
m e−iθ̃)/2. Thus,

|z − 1|+ |z + 1| = |ρme
iθ̃ − 1|2 + |ρmeiθ̃ + 1|2

2ρm
,

which is equivalent to the equation of the ellipse in (2.20). As the limit
that we have taken is uniform on compact subsets C\[−1, 1] the theorem
is proved.

Corollary 2.4.2.1. Under the assumptions of theorems 2.3.1 and 2.4.2,
if the zeros of the Goncharov polynomial Gk̂,m are outside to the interval

[−1, 1] then the accumulation points of zeros of {P(α,β)
n,m,Ω} are located on

the ellipse Eρm.

Proof. Obviously, from Theorem 2.4.2 it is sufficient to prove that there

does not exist an accumulation point of zeros of {P(α,β)
n,m,Ω} are located on

the interval [−1, 1].
Let ε ∈ R such that ω1, . . . , ωm and the zeros of Gk̂,m are on the

exterior of the ellipse E1+ε. Thus, if w ∈ E1+ε, from (2.7) and (2.14) we
get for sufficiently large values of n

An,m(w) ≈
(
n+m

k̂

)
ψα,β,m−k̂(ωm−k̂) ϕ

n+ 1
2 (ωm−k̂) Gk̂,m(w), (2.22)

P(α,β)
n,m (w) ≈ψα,β,m(w) ϕn+ 1

2 (w). (2.23)
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As the zeros of the Goncharov polynomial Gk̂,m are on the exterior of

the ellipse E1+ε, then from (2.22), there exists N1 ∈ Z+ such that for
n > N1 the zeros of the polynomial An,m are on the exterior of the
ellipse E1+ε too. From (2.22)-(2.23)

|An,m(w)| ≈
(
n+m

k̂

) ∣∣∣∣∣Gk̂,m(w) ψα,β,m−k̂(ωm−k̂)

ψα,β,m(w)

∣∣∣∣∣
∣∣∣∣ϕ(ωm−k̂)

ϕ(w)

∣∣∣∣n+ 1
2

·
∣∣∣ψα,β,m(w) ϕn+ 1

2 (w)
∣∣∣

≥

∣∣∣∣∣Gk̂,m(w) ψα,β,m(ωm−k̂)

ψα,β,m(w)

∣∣∣∣∣
∣∣∣∣ϕ(ωm−k̂)

ϕ(w)

∣∣∣∣n+ 1
2

·
∣∣∣P(α,β)

n,m (w)
∣∣∣ (2.24)

As is well known from classical complex analysis (cf. [54, §51]),
ϕ(z) is an inverse Joukowsky mapping that maps every confocal ellipse
|z − 1| + |z + 1| = r + 1

r , with r > 0, on to the circumference |z| = r.
Hence, as each ωk are on the exterior of the ellipse E1+ε and w ∈ E1+ε,
we get that |ϕ(ωm−k̂)| > |ϕ(w)|. Thus, from (2.24) there exists N2 ∈ Z+

such that for n > N2 the following inequality holds

|An,m(w)| >
∣∣∣P(α,β)

n,m (w)
∣∣∣ .

Finally, from Lemma 2.2.3 and theorem 2.4.2 the corollary is proven.

2.5 The Laguerre case

Recall that, for a γ ∈ R, we denote by L
(γ)
n the Laguerre monic poly-

nomial of degree n, as in Section 1.1.2, The next lemma summarizes
properties of monic Laguerre polynomials based on [89, (5.1.6),(5.1.8),
(5.1.13)–(5.1.14) and (5.2.1)].

Lemma 2.5.1. Let L
(γ)
n be the nth monic Laguerre polynomials with
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parameter γ ∈ R, as in Section 1.1.2, then

L(γ)
n (z) =

n∑
k=0

(−1)n+k

(
n

k

)
Γ(n+ γ + 1)

Γ(k + γ + 1)
zk, (2.25)

(n+ 1)(n+ γ + 1)L(γ)
n (z) =− L(γ)

n+2(z)

+ (z − (2n+ γ + 3))L
(γ)
n+1(z), (2.26)

L
(γ)
−1(z) = 0, L

(γ)
0 (z) = 1.

L(γ)
n (z) =z−γL

(−γ)
n+γ (z), where γ = 1, · · · , n. (2.27)

dk

dzk

(
L(γ)
n (z)

)
=

n!

(n− k)!
L

(γ+k)
n−k (z), (2.28)

where 0 ≤ k ≤ n.

L
(γ−1)
n+1 (z) =L

(γ)
n+1(z) + (n+ 1)L(γ)

n (z). (2.29)

Let us define

L(γ)
n,1(z) = L

(γ−1)
n+1 (z) = L

(γ)
n+1(z) + (n+ 1)L(γ)

n (z), (2.30)

hence from (2.28) we get

d

dz

(
L(γ)
n,1(z)

)
= (n+ 1)L(γ)

n (z), (2.31)

i.e. (n+ 1)−1L(γ)
n,1(z) is a primitive of L

(γ)
n (z), that we call fundamental

primitive of order one for L
(γ)
n (z).

The following theorem describes the interlacing properties of zeros
between Laguerre polynomials and its fundamental primitives, and be-
tween two consecutive fundamental primitives.

Theorem 2.5.1. Let xn,1 < xn,2 < · · · < xn,n be the n zeros of L
(γ)
n and

L(γ)
n,1 as (2.30), where γ > −1. Then

1.- L(γ)
n,1 has real and simple zeros and at least n of them lie on (0,∞).

2-. Let zn,1 < zn,2 < · · · < zn,n+1 be the (n + 1) zeros of L(γ)
n,1. Then

the zeros of L
(γ)
n and L(γ)

n,1 are interlaced as zn,1 < xn,1 < zn,2 <
xn,2 < · · · < zn,n < xn,n < zn+1,n+1.
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3-. For zn,1, the smallest zero of L(γ)
n,1, we have:

3.1.- if γ > 0, then zn,1 > 0.

3.2.- if γ = 0, then zn,1 = 0.

3.3.- if −1 < γ < 0, then there exist a constant cγ > 0 for all
n ≥ 3, such that zn,1 ∈ (− cγ

n , 0).

4.- Let zn+1,1 < zn+1,2 < · · · < zn+1,n+2 be the n+ 2 zeros of L(γ)
n+1,1.

Then the zeros of L(γ)
n,1 and L(γ)

n+1,1 are interlaced as:

4.1.- if γ ≥ 0, then 0 ≤ zn+1,1 ≤ zn,1 < zn+1,2 < zn,2 < · · · <
zn,n+1 < zn+1,n+2. The equalities occur only if γ = 0.

4.2.- if −1 < γ < 0, then zn,1 < zn+1,1 < 0 < zn+1,2 < zn,2 < · · · <
zn+1,n+1 < zn,n+1 < zn+1,n+2.

Proof.

1.- From (2.30) L(γ)
n,1 is a quasi-orthogonal polynomial of order 1 with

respect to the measure dµ(γ)(x) = xγe−xdx on [0,∞). Hence, L(γ)
n,1

has at least n zeros of odd multiplicity on (0,∞). Furthermore,

as L(γ)
n,1 is a polynomial with real coefficients, the remaining zero

must be a real number and all their zeros are simple.

2.- As the critical points of L(γ)
n,1 are the zeros of L

(γ)
n , from the Rolle’s

Theorem, the interlacing property between zeros of L
(γ)
n and L(γ)

n,1

is straightforward.

3.- The statement 3.1. is straightforward because from (2.30) if γ > 0

then L(γ)
n,1 is a Laguerre orthogonal polynomial.

From [89, (5.1.7), (5.1.8)] and (2.30)

L(γ)
n,1(0) = (−1)n+1 γ

Γ(n+ γ + 1)

Γ(γ + 1)
, (2.32)

where we have the assertion 3.2.

Let sgn· be the signum function defined by sgn0 = 0 and sgnx =
x/|x| for all x ∈ R \ {0}, then for n ≥ 2

sgn
(
L(γ)
n,1(0)

)
=


(−1)n+1, if γ > 0,

0, if γ = 0,
(−1)n, if − 1 < γ < 0.

(2.33)
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Hence, if −1 < γ < 0 we get that sgnL(γ)
n,1(0) 6= sgnL(γ)

n,1(∞) and

there exist z∗ ∈ (−∞, 0) such that L(γ)
n,1(z∗) = 0. From the above

interlacing property 2, zn,2 ∈ (xn,1, xn,2) and from [89, Th. 6.31.3]
there exist a constant cγ ∈ R+ such that (xn,2 − xn,1) < cγ/n.
Now, taking into consideration the Bisector Theorem ([81, Th.
5.7.7]) is straightforward that z∗ ∈ (−cγ/n, xn,1) and the assertion
3.3. is proved.

4.- If γ > 0 the statement 4.1. is the well known interlacing property
between two consecutives Laguerre orthogonal polynomials .

If L(γ)
n+1,1(zn+1,k) = 0 for k = 1, 2, . . . , n + 2, from (2.30) we get

L
(γ)
n+2(zn+1,k) = −(n+ 2)L

(γ)
n+1(zn+1,k) and from (2.26)

(n+ γ + 1)L(γ)
n,1(z) = −L(γ)

n+2(z) + (z − (n+ 2))L
(γ)
n+1(z), (2.34)

Hence

(n+ γ + 1)L(γ)
n,1(zn+1,k) =zn+1,kL

(γ)
n+1(zn+1,k),

L(γ)
n,1(zn+1,k)L

(γ)
n,1(zn+1,k+1) =

zn+1,k zn+1,k+1

(n+ γ + 1)2
L

(γ)
n+1(zn+1,k)

· L(γ)
n+1(zn+1,k+1) (2.35)

• If γ = 0 from 2 and 3.2 , we get L(γ)
n,1(zn+1,k)L

(γ)
n,1(zn+1,k+1) <

0 for k = 2, · · · , n+ 1.

• If −1 < γ < 0, from (2.26) and (2.30):

L(γ)
n+1,1(z) =− (n+ 1)(n+ γ + 1)L(γ)

n (z)

+ (z − (n+ γ + 1))L
(γ)
n+1(z), (2.36)

L(γ)
n+1,1(0) =− (n+ γ + 1)L(γ)

n,1(0).

If L(γ)
n,1(zn,1) = 0, hence L

(γ)
n+1(zn,1) = −(n + 1)L

(γ)
n (zn,1) and

from (2.36) L(γ)
n+1,1(zn,1) = xkL

(γ)
n+1(zn,1). Hence, using [89,

(5.1.7), (5.1.8)], 3.3 of Theorem 2.5.1 and (2.33), we obtain

L(γ)
n+1,1(zn,1)L(γ)

n+1,1(0) = −(n+ γ + 1)zn,1L
(γ)
n+1(zn,1)L(γ)

n,1(0)

sgnL(γ)
n+1,1(zn,1)L(γ)

n+1,1(0) = sgnL
(γ)
n+1(zn,1)L(γ)

n,1(0)

= sgnL
(γ)
n+1(0)L(γ)

n,1(0)

= (−1)n+1(−1)n = −1,
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i.e. zn,1 < zn+1,1 < 0. The interlacing between positive zeros

of L(γ)
n,1 and L(γ)

n+1,1 is analogous to the previous case for γ = 0.

For all m ∈ N, we define recursively the monic polynomial of degree
n+m

L(γ)
n,m(z) = L(γ)

n+1,m−1(z) + (n+m)L(γ)
n,m−1(z); (2.37)

where L(γ)
n,0(z) = L

(γ)
n (z). Reasoning by mathematical induction, we

get
dm

dxm

(
L(γ)
n,m(z)

)
=

(n+m)!

n!
L(γ)
n (z), m ∈ N. (2.38)

Indeed, for m = 1 the equation (2.38) becomes (2.31), and from
(2.37), (2.38) and (2.29)

dm+1

dxm+1

(
L(γ)
n,m+1(z)

)
=

d

dx

(
dm

dxm

(
L(γ)
n+1,m(z)

)
+(n+m+ 1)

dm

dxm

(
L(γ)
n,m(z)

))
=

(n+m+ 1)!

(n+ 1)!

d

dx

(
L

(γ)
n+1(z) + (n+ 1) L(γ)

n (z)
)

=
(n+m+ 1)!

(n+ 1)!

d

dx

(
L

(γ−1)
n+1 (z)

)
=

(n+m+ 1)!

n!
L(γ)
n (z).

For m ∈ N, m ≤ n, we call mth fundamental iterate integral of L
(γ)
n to

the polynomial
n!L(γ)

n,m

(n+m)!
, where L(γ)

n,m is given by (2.37).

Theorem 2.5.2. Let L(γ)
n,m be the mth monic iterated integral defined by

(2.37), where n,m ∈ N, then L(γ)
n,m(z) = L

(γ−m)
n+m (z).

Proof. For m = 1, from (2.29) we get

L(γ)
n,1(z) = L

(γ)
n+1(z) + (n+ 1)L(γ)

n (z) = L
(γ−1)
n+1 (z).

Assume that L(γ)
n,m(z) = L

(γ−m)
n+m (z) for m ∈ N, then

L(γ)
n,m+1(z) = L(γ)

n+1,m(z) + (n+m+ 1)L(γ)
n,m(z)

= L
(γ−m)
n+m+1(z) + (n+m+ 1)L

(γ−m)
n+m (z) = L

(γ−m−1)
n+m+1 (z).
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The following corollary clarifies the location of the real zeros of L(γ)
n,m.

Corollary 2.5.2.1. Let L(γ)
n,m be the monic primitive of degree (n+m)

defined by (2.37), where n,m ∈ N.

1.- If γ −m ∈ (−1,+∞), the (n + m) zeros of L(γ)
n,m lie on (0,+∞)

and are distinct. Furthermore, two consecutive polynomials L(γ)
n,m

and L(γ)
n+1,m have strictly interlacing zeros.

2.- If γ−m = −η, where η = 1, 2, · · · , n+m, the polynomial L(γ)
n,m has

(n+m−η) distinct zeros lie on (0,+∞) and a zero of multiplicity
η at z = 0. Furthermore, the positive zeros of the consecutive

polynomials L(γ)
n,m and L(γ)

n+1,m have strictly interlacing zeros.

3.- If γ−m ∈ (−n−m,−1)\Z the polynomial L(γ)
n,m has (n+[γ−m]+1)

distinct zeros lie on (0,+∞) and

3.1- γ −m ∈ (−η− 1,−η) with η = 1, 3, · · · , 2
[
n+m−1

2

]
+ 1, there

is only a negative real zero.

3.2- γ −m ∈ (−η− 1,−η) with η = 2, 4, · · · , 2
[
n+m−1

2

]
, there are

no negative zeros.

4.- If γ −m ∈ (−∞,−n), there are no positive zeros at all and there
is only a negative real zero if n is odd.

The symbol [x] denotes the greatest integer less than or equal to the
real number x.

Proof. The first assertion of the theorem is straightforward form of the

basic properties of the zeros of Laguerre polynomials L
(γ−m)
n+m (z), where

γ > m− 1.

If γ = m− η, where η = 1, 2, · · · , n, from Theorem 2.5.2 and (2.27)

we get L(γ)
n,m(z) = L

(−η)
n+m(z) = zη L

(η)
n+m−η(z). This means that L(γ)

n,m has
a zero of multiplicity η at z = 0 and there are n+m− η distinct zeros
on (0,+∞).

The cases γ −m ∈ (−n −m,−1) \ Z and γ < −n follow from [89,
§6.73].
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Corollary 2.5.2.2 (Perron’s type formula for fundamental primitive of
Laguerre polynomials). Let γ ∈ R and m ∈ Z+. Then

L(γ)
n,m(z) =

(−1)n+m

√
2

(−z)−
γ
2

+ 2m−1
4 n

γ
2

+ 5
4

·
(n
e

)n
e
z
2

+2
√
−nz

(
1 + O(n−

1
2 )
)
. (2.39)

This relation holds for z in the complex plane cut along the positive real

semiaxis; both (−z)−
γ
2

+ 2m−1
4 and (−z)−

1
2 must be taken real and positive

if z < 0. The bound of the remainder holds uniformly on every closed
domain which does not overlap with the positive real semiaxis.

Proof. From Theorem 2.5.2 and [89, Perron’s formula (Th. 8.22.3)].

Corollary 2.5.2.3. Let γ ∈ R and m ∈ Z+ fixed. Then all zeros {L(γ)
n,m}

accumulate at [0,∞). i.e.⋂
n≥1

⋃
k≥n
{z ∈ C : L(γ)

k,m(z) = 0} = [0,∞)

Proof. From (2.39) and [89, Perron’s formula (Th. 8.22.3)]

lim
n→∞

L(γ)
n,m(z)

nL
(γ)
n (z)

=
(−z)

m
2

√
2

, uniformly on compact subsets of C \ [0,∞).

(2.40)

Observe that the functions
L(γ)
n,m(z)

nL
(γ)
n (z)

with n ∈ Z+ and z
m
2 are analytic

on C \ [0,∞), as z
m
2 6= 0 if z ∈ C \ [0,∞).



Chapter

3
Iterated integrals of
Orthogonal Polynomials
on an arc of the Unit Circle

3.1 Introduction

Let A = A(θ0, θ1) = {eit : θ0 ≤ t ≤ θ1, 0 ≤ θ0 < θ1 < 2π} be a
proper closed arc of the unit circle T = {z ∈ C : |z| = 1} (i.e. A 6= T)
and M(A) be the linear space of all probability measure on A, whose
support is an infinite set (i.e. a nontrivial probability measure on A).
We exclude the case θ0 = θ1 because it degenerates into a proper arc
with one point, and it is not interesting because then we would get a
discrete measure.

Let us denote by φn(z) = zn + · · · the nth monic orthogonal poly-
nomial with respect to σ ∈M(A), which is uniquely determined by the
relations ∫

A

φn(t) t−k dσ(t) = 0 , k = 0, 1, 2, . . . , n− 1 , (3.1)

so in the Hilbert space L2
σ(A), if n 6= m then

〈φn, φm〉 =

∫
A

φn(t)φm(t) dσ(t) = 0 (3.2)

and ‖φn‖ =
√
〈φn, φn〉 > 0.

As far as the zeros of φn are concerned, it is known that they lie in
the interior of the convex hull of A, and if K is a closed set such that
K ∩A = ∅, then the number of zeros of φn on K is uniformly bounded
in n (cf. [79, Th. 2.2] and [96, Lemma 4]).

We say that a measure σ ∈M(A) is regular if

lim
n→∞

n
√
‖φn‖ = cap (A) = sin

(
θ1 − θ0

4

)
, (3.3)

where the constant cap (A) is the logarithmic capacity of A (cf. [92,
Cor. III.39.2] or [74, Section 5.2, Table 5.1]). From the well known

45
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Erdős-Turán criterion (cf. [88, Th. 4.1.1]), the condition σ′ > 0 a.e. on
A implies that σ is regular. We will write that σ ∈M′(A) if σ ∈M(A)
and σ′ > 0 a.e. on A. An important consequence of the condition σ′ > 0
a.e. on A, is that the zeros of {φn} concentrate on A in the sense that
for each compact subset K ⊂ Ω = C \ A there exists n′ such that for
n ≥ n′, φn has no zeros lying on K (cf. [7, Lemma 3]).

For each m ∈ Z+ and λ ∈ C, let Φn,m,λ be the monic polynomial of
degree n+m, such that

dm Φn,m,λ(z)

dzm
=

(n+m)!

n!
φn(z), (3.4)

normalized by the conditions

dk Φn,m,λ

dzk
(λ) = 0, k = 1, . . . ,m; (3.5)

it is assumed that Φn,0,λ = φn. Clearly, Φn,m,λ may be written as the
m-times iterated integrals

Φn,m,λ(z) =
n!

(n+m)!

∫ z

λ

∫ sm

λ
· · ·
∫ s2

λ︸ ︷︷ ︸
m−times

φn(s1) ds1 ds2 · · · dsm,

=
n!

(n+m)! (m− 1)!

∫ z

λ
(z − s)m−1φn(s) ds, (3.6)

where the last equality is obtained from the Cauchy formula for iterated
integrals [62, (2.7.2)]. We refer the reader to [16] for a discussion on zero
location of basic iterated integrals of a polynomial, normalized so that
the constants of integration are all zero.

The aim of this chapter is the study of some algebraic and asymp-
totic properties of the iterated integral of orthogonal polynomials with
respect to a measure supported on an arc of the unit circle and its zeros.
The next section contains two extensions of known results from the ana-
lytic theory of polynomial, about the location of the zeros of polynomials
whose critical points lie on the unit disc. In Section 3.3 we recall some
knowledge of the Logarithmic Potential Theory and prove others aux-
iliary results. The last two sections are devoted to the aforementioned
goal, when λ ∈ Aθ and λ ∈ C \Aθ respectively.
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3.2 Zeros of polynomials with critical points on
a disc

The following lemma is a particular case of the theorem [81, Th. 5.2.7]
or [72, Th. 3.4.1b].

Lemma 3.2.1. (Walsh’s coincidence Lemma) Let F (z1, z2, · · · , zn) be a
polynomial in z1, z2, · · · , zn of total degree n, symmetric in its variables,
and of degree at most one in each of them. Then every disk containing
the points w1, w2, · · · , wn, also contains at least one point w0, such that
F (w1, w2, · · · , wn) = F (w0, w0, · · · , w0).

The next lemma is a straightforward consequence of the bisector
theorem [81, Th. 5.7.7] or the Grace-Heawood theorem [72, Th. 4.3.1].

Lemma 3.2.2. (The bisector lemma) Let P be a polynomial of degree
greater or equal to two and let z1 and z2 be distinct complex numbers
such that P (z1) = P (z2) = 0. Then P ′ has at least one zero in each
of the closed half-planes whose boundary is the mid-perpendicular of the
line segment joining z1 and z1.

It is clear, that if we knew the critical points of a polynomial and
one of its zeros, the remaining zeros would be uniquely determined.
Nonetheless, there are only a few general results about zero location of
polynomials in terms of its critical points and a given zero, most of them
contained in [72, §4.5].

For r ∈ R+ we denote Dr = {z ∈ C : |z| < r}, ∂Dr = {z ∈ C : |z| =
r} and Dr = Dr ∪ ∂Dr. The next useful theorem is a natural extension
of [81, Th. 5.7.8] and the proof is carried out with analogous arguments.

Theorem 3.2.1. Let P be a polynomial of degree n ≥ 2 with all its
critical points in the closed disc Dr, where r ∈ R+ are fixed. If P (λ) =
P (z) = 0, with λ, z ∈ C, then

1. there exists w ∈ U such that

z = Fr(w) = 2rw − λw2. (3.7)

2. |z| ≤ 2r + |λ|.

3. Fr is univalent on U if and only if |λ| ≤ r.
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Proof. As z and λ are zeros of P , from Lemma 3.2.2, if we draw a straight
line ` which cuts perpendicularly the segment joining the two zeros at
its middle point, then P ′ has at least one zero in each of the closed half
planes in which ` divides the complex plane. But, we have assumed that
all the zeros of P ′ lie in Dr and therefore ` must intersect ∂Dr. Hence,
there exists u ∈ T such that |z − r u| = |r u − λ| =

∣∣r − λu∣∣. It follows

that there exists v ∈ T such that z − r u = v
(
r − λu

)
, where we have

z = r(u+v)−λu v. This expresses z as a value of a symmetric linear form
in the variables u and v taking their values on T, and therefore in U =
U ∪T. It follows from Lemma 3.2.1 that z is a value of the polynomial
obtained by putting w = u = v with w ∈ U, which establishes (3.7) and
the inequality in 2. as an immediate consequence.

If λ = 0 then obviously Fr is univalent. Assume that λ 6= 0, if there
exist w1, w2 ∈ U such that w1 6= w2 and Fr(w1) = Fr(w2), we get that
w1 +w2 = 2(r/λ). Therefore, Fr is univalent on U if and only if |λ| ≤ r
and we get the third statement.

Remark 3.2.1. Let us mention some important consequences of The-
orem 3.2.1, that are of general interest. Under the above assumptions,
the possible region of zeros of P is the set Fr(U) and if |λ| ≤ r then Fr
maps T onto a Jordan curve (for r = 1 see Figure 3.1).

Corollary 3.2.1.1. Given two integers n,m > 0 and λ ∈ C, let ρ =
2m(|λ|+ 1)− |λ|. Then all the zeros of the polynomials Φn,m,λ lie in the
closed disc Dρ.

Proof. For m = 1, as all the zeros of φn lie in U (i.e. the critical points
of Φn,1,λ). Then the assertion follows from Theorem 3.2.1. The rest of
the proof runs by induction.

3.3 Asymptotic behavior preliminaries

For any polynomial q of degree exactly n, we consider ν[q] := 1
n

∑n
j=1 δzj ,

where z1, . . . , zn are the zeros of q repeated according to their multipli-
city, and δzj is the Dirac measure with mass one at the point zj . This
is the so called normalized zero counting measure associated with q.
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Figure 3.1: The cardioidal curve Fr(T), for r = 1 and several values of
λ. The interior circle is T and the exterior one is given by |z| = 2 + |λ|.

Let {σn} be a sequence of measures in M(A). If there exits a mea-
sure σ ∈M(A) such that

lim
n→∞

∫
fdσn =

∫
fdσ,

for every continuous function on A, we say that σn converges weakly to
the measure σ as n→∞ and write w-limn→∞ dσn = dσ.

Without restriction of generality, from now on, we can assume A is an
arc symmetric with respect to R, i.e., A = Aθ = {eit : θ ≤ t ≤ 2π−θ, 0 <
θ < π}. Note that if A is not symmetric with respect to R, the problem
reduces to the symmetric case by a simple change of variables (rotation).
From (3.3), it is straightforward that Cθ = cap (Aθ) = cos(θ/2).

The following lemma summarizes the most important consequence
of the regularity (cf. (3.3)) for orthogonal polynomials with respect to
a measure σ ∈M′(Aθ).

Lemma 3.3.1. Let 0 < θ < π fixed, σ ∈ M′(Aθ) and φn be the nth
monic orthogonal polynomial with respect to σ. Then
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1. w-lim
n→∞

dν[φn] = dµθ, where

dµθ(t) =
1

2π

sin (t/2) dt√
cos2(θ/2)− cos2(t/2)

, t ∈ [−θ, θ]. (3.8)

2. lim
n→∞

n
√
|φn(z)| = egΩθ

(z;∞) uniformly on compact subset of Ωθ =

C \Aθ, where gΩθ(z;∞) is the Green function on Ωθ with pole at
infinity and explicit formula

gΩθ(z;∞) = log |`θ(z)|, where (3.9)

`θ(z) =
1

2Cθ

(
z + 1 +

√
(z − eiθ)(z − e−iθ)

)
,

is the conformal mapping of C\Aθ onto C\U such that `θ(∞) =∞
and `′θ(∞) > 0.

Proof. From [83, Th. 3.4] we get the assertion (1) and formula (3.8) is
given in [8, (3.1)]. The sentence (2) is obtained from [83, Th. 3.4] and
formula 3.9 is computed by [68, Cor. 9.9] and [32, (14)-(15)].

Lemma 3.3.2. Let 0 < θ < π, Ωθ = C \ Aθ, gΩθ(z;∞) be the Green
function on Ωθ with pole at infinity and dµθ be the equilibrium measure
of Aθ. Then

ψ(z) =

∫
dµθ(w)

z − w
=
`′θ(z)

`θ(z)
, (3.10)

where `θ is given by (3.10).

Proof. Let us define z = x+ iy and w = u+ iv. Obviously the functions
P (z, µθ) =

∫
log(z−w) dµθ(w) and T (z) = log (`θ(z))+log(Cθ) are ana-

lytic functions on C \Aθ, with real part %P (x, y) =
∫

log |z −w| dµθ(w)
and %T (x, y) = log |`θ(z)|+ log(Cθ), respectively. From the Logarithmic
Potential Theory (cf. [80], [88, Appendices A.II-A.V]) and (3.9), we get

%P (x, y) = gΩθ(z;∞) + log(Cθ) = %T (x, y).

Therefore,

ψ(z) =

∫
dµθ(w)

z − w
=
dP (z, µθ)

dz
=
∂%P
∂x
− i ∂%P

∂y

=
∂%T
∂x
− i ∂%T

∂y
=
`′θ(z)

`θ(z)
.
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Lemma 3.3.3. For every sequence of polynomials {qn}, deg qn ≤ n and

qn 6= 0 we have lim
n→∞

n

√
‖qn‖Aθ
‖qn‖

= 1 (cf. [88, Th. 3.2.3]). Here and

in the following, ‖ · ‖K denotes the supremum norm on the compact set
K ⊂ C.

We denote by Tn the monic Chebyshev polynomial of degree n for
Aθ, i.e. the unique monic polynomial of degree n such that

‖Tn‖Aθ = inf
Q(z)=zn+···

‖Q‖Aθ . (3.11)

Combining [74, Coro. 5.5.5] and [92, Coro. III.9.2], we get the next
useful property of the Chebyshev polynomials on a circular arc.

Lemma 3.3.4. Let Aθ be a symmetric closet circular arc of the unit
circle and Tn be the corresponding nth monic Chebyshev polynomial,
then

lim
n→∞

n

√
‖Tn‖Aθ = Cθ = cos(θ/2). (3.12)

3.4 Asymptotic distribution of zeros for λ ∈ Aθ

Theorem 3.4.1. If 0 < θ < π, σ ∈ M′(Aθ) and λ ∈ Aθ, then for all
m ∈ Z+ fixed

lim
n→∞

n

√
‖Φn,m,λ‖Aθ = Cθ = cos(θ/2). (3.13)

and

w-lim
n→∞

dν[Φn,m,λ] = dµθ, (3.14)

where the measure dµθ is given in (3.8).

Proof. From (3.11)-(3.12)

cos (θ/2) = lim
n→∞

n

√
‖Tn‖Aθ ≤ lim

n→∞
n

√
‖Φn,m,λ‖Aθ . (3.15)

If m = 0, then ‖Φn,0,λ‖ = ‖φn‖ ≤ ‖Tn‖ ≤ ‖Tn‖Aθ . Hence, combining
Lemma 3.3.3, (3.12) and (3.15), we get (3.13).
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Assume that m > 0 and z ∈ Aθ

|Φn,m,λ(z)| =
n!

(n+m)! (m− 1)!

∣∣∣∣ ∫ z

λ
(z − s)m−1φn(s) ds

∣∣∣∣
≤ n!

(n+m)! (m− 1)!

∫ z

λ
|z − s|m−1 |φn(s)| |ds|

≤ n! |1 + λ|m−1

(n+m)! (m− 1)!

∫ z

λ
|φn(s)| |ds|

≤ 2m n!

(n+m)! (m− 1)!
‖φn‖Aθ .

where the last inequality is given by the maximum modulus principle
for holomorphic functions. Hence

lim
n→∞

n

√
‖Φn,m,λ‖Aθ ≤ lim

n→∞
n

√
‖φn‖Aθ = cos (θ/2) . (3.16)

Thus, (3.13) is established from (3.12), (3.15) and (3.16).

The arc Aθ has empty interior and connected complement. It is well
known (cf. [12]) that under such conditions (3.13) implies (3.14).

Theorem 3.4.2. Let 0 < θ < π fixed, σ ∈M′(Aθ), λ ∈ Aθ and m ∈ Z+

fixed. Then

1. uniformly on compact subset of Ωθ

lim
n→∞

φn(z)

nm Φn,m,λ(z)
= ψm(z), (3.17)

where the function ψ(z) is given by (3.10).

2. The zeros of {Φn,m,λ} concentrate on Aθ in the sense that for
each compact subset K ⊂ Ωθ = C \Aθ there exists n′ such that for
n ≥ n′, Φn,m,λ has no zeros lying on K.

Proof. Let tn,k,λ, with k = 1, . . . , n + m − k, the n + m − k zeros of
the polynomial Φn,m−k,λ. From the well known Gauss-Lucas theorem
all the critical points of the non–constant polynomials Φn,m,λ and their
derivatives lie in the convex hull of their zeros. Therefore, from Corollary
3.2.1.1, tn,k,λ ∈ Dρ for k = 1, . . . , n+m− j, where ρ = 2m+1 − 1. Using
the partial fraction decomposition, we get
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n! φn(z)

(n+m)! Φn,m,λ(z)
=

(
n!

(n+m)!

)2 m−1∏
j=0

Φ
(j+1)
n,m,λ(z)

Φ
(j)
n,m−j,λ(z)

=

(
n!

(n+m)!

) m−1∏
j=0

Φn,m−j−1,λ(z)

Φn,m−j,λ(z)

=
m−1∏
j=0

(
1

n+m− j

n+m−j∑
k=1

1

z − tn,k,λ

)

=

m−1∏
j=0

∫
dν

(j)
n,m,λ(t)

z − t
.

where ν
(j)
n,m,λ = νn

[
Φ

(j)
n,m,λ

]
. Therefore, the family of functions

 Φ
(j+1)
n,m,λ

nΦ
(j)
n,m,λ

 , n ∈ Z+ , (3.18)

is uniformly bounded on each compact subset of Ωθ. Hence, from (3.10)
and (3.14)

lim
n→∞

φn(z)

nm Φn,m,λ(z)
=

(∫
dµθ(w)

z − w

)m
= ψm(z) =

(
`′θ(z)

`θ(z)

)m
.

As σ ∈ M′(Aθ), the second assertion of the theorem is an immedi-
ate consequence of (3.17), taking into account that ψm is an analytic
function without zeros on Ωθ and it only has two poles located at the
end points of the arc e±iθ.

Now, from Lemma 3.3.1, we obtain the next corollary.

Corollary 3.4.2.1. Let 0 < θ < π fixed, σ ∈ M′(Aθ), λ ∈ Aθ and
m ∈ Z+ fixed. Then uniformly on compact subset of Ωθ

lim
n→∞

n

√
|Φn,m,λ(z)| = |`θ(z)|. (3.19)
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3.5 Asymptotic behavior of zeros of iterated in-
tegrals with λ ∈ Ωθ

For a fixed 0 < θ < π we define the arc of the unit circle Aθ = {eit : θ ≤
t ≤ 2π− θ}. Let σ be a mesure inM′(Aθ) and {φn} be the sequence of
monic orthogonal polynomials with respect to σ. For each m ∈ Z+ and
λ ∈ C, let Φn,m,λ be the monic polynomial of degree n+m, such that

dm Φn,m,λ(z)

dzm
=

(n+m)!

n!
φn(z), (3.20)

normalized by the conditions

dk Φn,m,λ

dzk
(λ) = 0, k = 1, . . . ,m; (3.21)

where we assume that Φn,0,λ = φn and if λ = −1 we denote Φn,m =
Φn,m,−1.

As we have already studied the case λ ∈ Aθ in Section 3.4, here we
assume that λ ∈ Ωθ = C\Aθ. From (3.20)-(3.21), Φn,m,λ can be written
in an alternative form of (3.6) as

Φn,m,λ(z) = Φn,m(z)− Pm(z), (3.22)

where Pm(z) is the Taylor polynomial of degree m of the function Φn,m in

powers of (z−λ). From (3.20) we have that
Φ

(k)
n,m(λ)
k! =

(
n+m
k

)
Φn,m−k(λ),

therefore

Pm(z) = Pm(z,Φn,m, λ) =

m∑
j=0

Φ
(j)
n,m(λ)

j!
(z − λ)j ,

=

m∑
j=0

(
n+m

j

)
Φn,m−j(λ) (z − λ)j . (3.23)

Theorem 3.5.1. If m > 0, 0 < θ < π and λ ∈ Ωθ = C \Aθ fixed, let
Zθ,λ be the set of all zeros of the polynomials {Φn,m,λ} and Z′θ,λ be the
set of its accumulation points. Then

1. uniformly on compact subsets of Ωθ

lim
n→∞

Pm(z)

n2m Φn,m(λ)
=

(z − λ)m

m!
. (3.24)
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2. uniformly on compact subsets of Ωθ

lim
n→∞

|Pm(z)|
1
n = |`θ(λ)|. (3.25)

3. Z′θ,λ ⊂ (Aθ ∪Υ(λ, θ)), where

Υ(λ, θ) =
{
z ∈ C :

∣∣∣z + 1 +
√
z2 − 2 cos(θ)z + 1

∣∣∣ = ρ
}
, (3.26)

and ρ = ρ(λ, θ) =
∣∣∣λ+ 1 +

√
λ2 − 2 cos(θ)λ+ 1

∣∣∣.
The branch of the square root contained in the explicit formula of `θ is
chosen so that |`θ(λ)| > 1, for each 0 ≤ k ≤ m− 1.

Proof. From (3.23) we get

Pm(z)

n2m Φn,m(λ)
=

m∑
j=0

an,m.j
j!

(z − λ)j , where

an,m.j =
(n+m)!

n2m (n+m− j)!
Φn,m−j(λ)

Φn,m(λ)
,

=
nj (n+m)!

n2m (n+m− j)!
nm−jΦn,m−j(λ)

φn(λ)

φn(λ)

nm Φn,m(λ)
.

Taking limit as n tends to ∞, we get

lim
n→∞

an,m.j =

{
1, if j = m,
0, if 0 ≤ j < m,

(3.27)

which proves (3.24). Finally, we deduce (3.25) from Corollary 3.4.2.1
and (3.24).

As an immediate consequence of Theorem 3.2.1 and Corollary 3.2.1.1,
we get that Zθ,λ is a bounded set. From (3.22) the zeros of the polyno-
mial Φn,m,λ are on the polynomial lemniscate

|Φn,m(z)| = |Pm(z)| .

Hence |Φn,m(z)|
1
n = |Pm(z)|

1
n and taking the limit as n → ∞, from

(3.19) and (3.25) we have that the set of accumulation points of zeros
of {Φn,m,λ} are on the arc Aθ or the curve Υ(λ, θ).
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Figure 3.2: The curve Υ(λ, θ), for θ = π/2 and several values of λ. The
gray circle is T and the arc is Aθ.

Example 3.5.1. By way of illustration, here is an example of the curve
Υ(λ, θ) defined in (3.26) when θ = π/2. Obviously, for λ ∈ Ωπ/2 fixed

Υ(λ, π/2) = {z ∈ C :
∣∣∣z + 1 +

√
z2 + 1

∣∣∣ = ρλ},

where ρλ =
∣∣∣λ+ 1 +

√
λ2 + 1

∣∣∣. It is straightforward to see that there

exists t ∈ [0, 2π] such that

z +
√
z2 + 1 = ρeit − 1 =

1√
z2 + 1− z

,

and therefore 2z = ρeit − 1 − 1

ρeit − 1
=
ρ2ei2t − 2ρeit

ρeit − 1
=
ρ(ρeit − 2)

ρ− e−it
.

Hence, Υ(λ, π/2) is given by the parametric equation

z =
ρ(ρeit − 2)(ρ− eit)
2(ρ2 − 2 cos(t) + 1)

,

with t ∈ [0, 2π] (for λ = −2, −1
2 , 0 or 1 see Figure 3.2).



Chapter

4
Edge Detection Based on
Krawtchouk Polynomials

4.1 Introduction

Edge detection plays a relevant role in digital image processing algo-
rithms for many different fields of application. From computer vision
applications in the industry and medical fields [97] to 3D video and
image coding [61], visual object contour detection is one of the func-
tions based on edge detection, which is very often required as part of
more complex operations. For instance, image segmentation for visual
object identification and recognition, definition of regions of interest
within a visual scene for selective coding, inspection or attention-based
processing, all require fast and efficient edge detection algorithms [64].

There are various methods for edge detection in digital images based
on a fairly consolidated theory (c.f. [69, Ch. 15] and [85, §4.5–§4.6]).
Most of the edge extraction techniques operate a predefined format of
digital image representation (e.g. RGB, gray-scale, etc) using differen-
tial operators to find relevant transitions in the image intensity. Such
transitions represent edges, which are defined as the borders of either
visual objects or image regions, also establishing the boundaries between
overlapping objects or different regions.

In many applications the relevant region boundaries, i.e., edges, are
found on the luminance component of images, which requires a gray-scale
representation, even though other formats might by used (e.g. RGB).
Since the majority of important low-level feature related information
exists in gray-scale images, such as edges, smooth regions, textures and
so on, in this work we only consider gray-scale representation images.
The method for edge detection in gray-scale images proposed in this
paper is based on approximating the derivatives of the function image
using the Krawtchouk orthogonal polynomials properties.

The structure of this chapter is as follows. In the next section
we present the theoretical framework and the basic properties of the
Krawtchouk polynomials in one variable. In Section 4.3 we establish the
Krawtchouk polynomials in two variables which are used to approximate

57
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the image in the sense of least squares. In Section 4.4 we explain how we
analyze the image by blocks and for the numerical experiments we con-
sider a particular cases in order to obtain close formulas. In Section 4.5,
we describe our algorithm of edge detection based on the Krawtchouk
polynomials. Finally in the last Section we present experimental results
and concluding remarks of the proposed method.

4.2 Krawtchouk polynomials in one variable

This work relies on well known references often cited to establish the
basic theory of orthogonal polynomials namely [22, 89]. However these
monographs essentially deal with orthogonal polynomials with respect
to a continuous inner product whilst for the purpose of our work we
are focused on the discrete case as required by the type of data we
are dealing with, i.e., digital images. As far as the theory of discrete
orthogonal polynomials and applications is concerned, we suggest the
references [4, 22, 30, 42, 59, 60] or [5, Ch. 5].

Although we already gave the general definitions of discrete inner
product and discrete orthogonal polynomials in Section 1.1.2, it is con-
venient to state those definitions once again:

Let N ∈ N, Λ := {x0, x1, . . . , xN} ⊂ R , where x0 < x1 < . . . < xN ,
F(Λ) be the set of all real functions on Λ, P be the set of all real
coefficient polynomials and PN ⊂ P be the set of polynomials of degree
at most N . Note that any real function of a discrete variable f ∈ F(Λ)
can be seen as the restriction on Λ of a number of functions of real
variable, in particular the Lagrange interpolation polynomial P ∈ RN

such that P (xi) = f(xi) for i = 0, 1, . . . , N . Then we have a natural
identification between the sets F(Λ) and PN .

We call weight function (or simply weight) to any positive function
µ on Λ and we say that it is normalized when

∑N
k=0 µ(xk) = 1.

Let the pair (Λ, µ), where µ is a weight defined on Λ. The inner
product on PN associated to (Λ, µ) is defined by:

〈f, g〉Λ,µ =
N∑
k=0

f(xk)g(xk)µ(xk), f, g ∈ PN . (4.1)

with a corresponding norm ‖f‖Λ,µ =
√
〈f, f〉Λ,µ.

A family of polynomials {pN,k}mk=0 with m ≤ N is orthogonal with
respect to the inner product (4.1) if pk is a polynomial of degree k with
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positive leading coefficient and

〈pN,n, pN,m〉Λ,µ =

{
6= 0 if n = m,
= 0 if n 6= m.

(4.2)

If ‖pN,k‖Λ,µ = 1 for all 0 ≤ k ≤ N , the family {pN,k(x)}mk=0 is called
orthonormal with respect to (4.1).

Note that (4.2) is equivalent to the condition

〈
pn, x

j
〉

Λ,µ
=

N∑
k=0

pn(xk)x
j
kµk = 0, for j = 0, 1, . . . n. (4.3)

Then given a weight function µ, the relations (4.3) form a system of
N equations with N+1 unknowns (the coefficients of polynomial), which
determine the orthogonal polynomial pn(x) except for a multiplicative
constant which may depend on n.

In this chapter we find a new form to obtain approximations to
the derivatives in each point of the image making use of a family of
discrete orthogonal polynomials called Krawtchouk polynomials, that
are orthogonal with respect to the binomial distribution (c.f. [5, §5.4]).
In the remainder of the section, we state some definitions and properties
about the monic Krawtchouk polynomials in one variable.

Definition 4.2.1. Let N ∈ N, ΛN = {0, 1, 2, . . . , N}, α ∈]0, 1[ and
wN,α(x) the weight function

wN,α(x) =

(
N

x

)
αx(1− α)N−x, for all x ∈ ΛN . (4.4)

We say that καn(x,N) = xn + . . . , with n ≤ N , is the nth monic
Krawtchouk polynomial with respect to the pair (ΛN , wN,α) if

〈
καn(·, N), xj

〉
N,α

=

N∑
i=0

καn(i,N)xj wN,α(i) = 0,

for all j = 0, 1, . . . , N , where 〈·, ·〉N,α = 〈·, ·〉ΛN ,wN,α.

Obviously, from the binomial theorem, the weight function (4.4) is
normalized. The nth monic Krawtchouk polynomial in one variable can
be generated by the formula (c.f. [5, (5.4.3)])

καn(x,N) =

n∑
j=0

(
n

j

)
αn−j(1− α)j(x−N)n−j(x− j + 1)j , (4.5)
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where (a)j denotes the Pochhammer symbol or shifted factorial as in [5,
(1.1.8)].

From [5, (5.2.8)], we obtain the norms of the nth polynomials (4.5)

‖καn(·, N)‖2N,α =
N∑
i=0

(καn(i,N))2 wN,α(i) =

(
N

n

)
n!2(α− α2)n.

If f is a function of one variable, we define the differences of first order
as 4+f(x) = f(x + 1) − f(x), 4f(x) = 1

2 (f(x+ 1)− f(x− 1)), where
the differences 4f of first order is the usual central-differences formulas
on 2 nodes (c.f. [56, Table 6.3]). For a function of two variables f we
define the partial differences of first order as:

4xf(x, y) =
f(x+ 1, y)− f(x− 1, y)

2
,

4yf(x, y) =
f(x, y + 1)− f(x, y − 1)

2
.

 (4.6)

Most of the results contained in this chapter can be obtained analo-
gously for other families of discrete orthogonal polynomials (see [5, Ch.
5]). However, we use the Krawtchouk polynomials because they allow to
obtain closed expressions for the discrete derivatives (differences) of the
polynomials in one and two variables, respectively. The next proposition
is straightforward from the basic properties of Krawtchouk polynomials
in [5, §5.4]. It includes some of the aforementioned closed expressions.

Proposition 4.2.1. The monic Krawtchouk polynomial, with α ∈]0, 1[,
satisfies the following relations:

4+κ
α
n(x,N) = nκαn−1(x,N − 1). (4.7)

4καn(x,N) =
n

2

(
καn−1(x,N − 1) + καn−1(x− 1, N − 1)

)
. (4.8)

Proof. From [5, (5.4.4)], we get the relations (4.7) for the forward differ-
ence. The central difference 4καn(x,N) in (4.8), is a direct consequences
of (4.7).

4.3 Krawtchouk polynomials in two variables

A gray-scale image with resolution (N1+1)×(N2+1) pixels (N1, N2 ∈ N)
can be considered as a function of two variables I(x, y) defined on the
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set ΛN1 × ΛN2 , where ΛN1 = {0, 1, . . . , N1} and ΛN2 = {0, 1, . . . , N2},
i.e.

I : ΛN1 × ΛN2 −→ [0, 1],
(x, y) −→ I(x, y).

Hence, the values of I on ΛN1 × ΛN2 can be represented by the matrix
I of order (N1 + 1)× (N2 + 1)

I =


I(0, 0) I(0, 1) · · · I(0, N2)

I(1, 0) I(1, 1) · · · I(1, N2)
...

...
. . .

...
I(N1, 0) I(N1, 1) · · · I(N1, N2)

 . (4.9)

Let PN1,N2 be the linear space of polynomials in the variables x and
y, of degree at most N1 and N2 respectively. To study an image as
a polynomial in two variables, we need to introduce the Krawtchouk
polynomials in two variables or bivariate Krawtchouk polynomials.

Definition 4.3.1. Let N1, N2 ∈ N, α1, α2 ∈]0, 1[, ΛN1 = {0, . . . , N1}
and ΛN2 = {0, . . . , N2}. We call Two-dimensional Krawtchouk poly-
nomials or 2D monic Krawtchouk polynomials to the polynomial in two
variables Kα1,α2

n,m (x, y) = κα1
n (x,N1)κα2

m (y,N2), where (x, y) ∈ ΛN1 ×
ΛN2.

Note that the set of 2D monic Krawtchouk polynomials

{Kα1,α2
n,m } = {κα1

n (·, N1)} ⊗ {κα2
m (·, N2)},

where the symbol ⊗ denotes the tensor product of the set of polyno-
mials {κα1

n (·, N1)} and {κα2
m (·, N2)} as in [75, §12-3]. The 2D monic

Krawtchouk polynomials are orthogonal with respect to the following
inner product on PN1,N2

〈f ,g〉2D =

N1∑
i=0

N2∑
j=0

f(xi, xj)g(xi, xj)wN1,α1(xi)wN2,α2(xj). (4.10)
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(see [75, Lemma 12-1]). Furthermore

〈Kα1,α2
n,m ,Kα1,α2

r,s 〉2D =

N1∑
i=0

N2∑
j=0

Kα1,α2
n,m (xi, xj)K

α1,α2
r,s (xi, xj)

· wN1,α1(xi)wN2,α2(xj)

=

(
N1∑
i=0

κα1
n (xi, N1)κα1

r (xi, N1)wN1,α1(xi)

)
 N2∑
j=0

κα2
m (xj , N2)κα2

s (xj , N2)wN2,α2(xj)


= 〈κα1

n , κ
α1
r 〉N1,α1

〈κα2
m , κ

α2
s 〉N2,α2

=

{
0, |n− r|+ |m− s| > 0,

‖Kα1,α2
n,m ‖22D > 0, |n− r|+ |m− s| = 0,

where ‖f‖2D =
√
〈f , f〉2D.

For the 2D monic Krawtchouk polynomials we have the following
finite difference formulas:

4xK
α1,α2
n,m (x, y) = (4xκ

α1
n (x,N1))κα2

m (y,N2).
4yK

α1,α2
n,m (x, y) = (4yκ

α2
m (y,N2))κα1

n (x,N1).
(4.11)

From the standard theory of approximation of functions (c.f. [75,
Ch. 12]), for M1 ∈ ΛN1 \ {0} and M2 ∈ ΛN2 \ {0}, the polynomial of
total degree (M1 − 1)× (M2 − 1)

PM1,M2(x, y) =

M1−1∑
n=0

M2−1∑
m=0

βn,mKα1,α2
n,m (x, y), (4.12)

with βn,m =
〈I,Kα1,α2

n,m 〉2D
〈Kα1,α2

n,m ,Kα1,α2
n,m 〉2D

, is such that

min
Q∈PM1,M2

‖I−Q‖2D = ‖I−PM1,M2‖2D,

i.e. PM1,M2 is the polynomial of least square approximation of I in
PM1,M2 and we write I(x, y) ≈ PM1,M2(x, y). Furthermore, if M1 =
N1 + 1 and M2 = N2 + 1, then I = PN1,N2 .
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4.4 Computation of the discrete derivative by
blocks

In order to detect the edges points, we analyze the entire image I, by
blocks Ii,j of fixed-size (n1 + 1)× (n2 + 1), where n1 < N1 and n2 < N2.
We recall that the blocks are all of the same size.

First, let us introduce some notations and definitions. If A = [aij ] is
a u× v real matrix, then AT denotes the transpose matrix and vec (A)
is the column vector of (u v) entries defined as

vec (A) = (a11, . . . , au1, a12, . . . , au2, . . . , a1v, . . . , auv)
T .

Let an = (an(0), . . . ,an(n1)) and bm = (bm(0), . . . ,bm(n2)) be two row
vectors of order (n1 + 1) and (n2 + 1) respectively, where

an(ν) =
κα1
n (ν, n1) wn1,α1(ν)

‖κα1
n ‖2n1,α1

, bm(ν) =
κα2
m (ν, n2) wn2,α2(ν)

‖κα2
m ‖2n2,α2

.

The matrix Cn1,n2(n,m) = aTn bm is of order (n1 + 1)× (n2 + 1) and only
depends on the size of the blocks, not on its entries.

Let βn,m(i, j) be the coefficient given by (4.12), considering I = Ii,j .
This coefficient can be computed as follows

βn,m(i, j) = 〈vec (Ii,j) , vec (Cn1,n2(n,m))〉2 , (4.13)

where 〈·, ·〉2 is the usual Euclidean inner product on R(n1+1)(n2+1).
Let Bn,m be the matrix of all coefficients βn,m(i, j), with i = 0, . . . , n1

and j = 0, . . . , n2. From (4.13), Bn,m = I ∗ Cn1,n2(n,m), where the
symbol ∗ indicates the 2-D discrete convolution of matrices (c.f. [38,
§15.1.4]). Using the discrete Fourier transform, the convolution of these
matrices can be optimized, improving significantly the CPU time (c.f.
[38, Ch. 15]).

For each pixel (i, j) of the image I, we compute the discrete par-
tial derivative (4.6) of the approximation (4.12), only considering the
information contained in the “neighborhood” Ii,j . When this process is
finished, we obtain two matrices Px and Py of the same size of I, where
each entry (i, j) is the partial derivatives with respect to x or y. In the
next section we will see that, these matrices allow us to have a good
estimate of the modulus of the gradient at each point (i, j) of I.

In order to carry out numerical experiments we consider the param-
eters of Krawtchouk polynomials α1 = α2 = α = 1

2 , and n1 = n2 =
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nt = 4, i.e. we approximate the discrete derivatives by considering the
information of the block Ii,j of order 5 × 5, with center on the entry
I(i, j):

Ii,j =



I(i− 2, j − 2) I(i− 2, j − 1) I(i− 2, j) I(i− 2, j + 1) I(i− 2, j + 2)

I(i− 1, j − 2) I(i− 1, j − 1) I(i− 1, j) I(i− 1, j + 1) I(i− 1, j + 2)

I(i, j − 2) I(i, j − 1) I(i, j) I(i, j + 1) I(i, j + 2)

I(i+ 1, j − 2) I(i+ 1, j − 1) I(i+ 1, j) I(i+ 1, j + 1) I(i+ 1, j + 2)

I(i+ 2, j − 2) I(i+ 2, j − 1) I(i+ 2, j) I(i+ 2, j + 1) I(i+ 2, j + 2)


,

From (4.12) with M1 = M2 = Mt, we have for i = 0, . . . , N1 and
j = 0, . . . , N2 the polynomial block approximation:

P
(i,j)
Mt,Mt

(x, y) ≈ I(i+ x− 2, j + y − 2), (x, y) ∈ Λnt × Λnt , (4.14)

where for each fixed point (i, j) the polynomial P
(i,j)
Mt,Mt

(x, y) is given by
(4.12), and the coefficients βn,m(i, j) by (4.13).

Now taking into account the fact that for x = y = 2 in the ap-
proximation (4.14) we stay right at the point I(i, j), the center of the
block Ii,j , then we can compute the first order partial differences of

P
(i,j)
Mt,Mt

(x, y) using the central-difference formula for Krawtchouk poly-
nomials (4.8) together with (4.11). For example, for Mt = 2 we have

4xP
(i,j)
Mt,Mt

(2, 2) = β1,0(i, j)− β1,2(i, j),

4yP
(i,j)
Mt,Mt

(2, 2) = β0,1(i, j)− β2,1(i, j),

}
(4.15)

and for Mt = 4

4xP
(i,j)
Mt,Mt

(2, 2) = β1,0(i, j)− β1,2(i, j)

+3
2 (β3,2(i, j)− β3,0(i, j)) ,

4yP
(i,j)
Mt,Mt

(2, 2) = β0,1(i, j)− β2,1(i, j)

+3
2 (β2,3(i, j)− β0,3(i, j)) .

(4.16)

From (4.15) and (4.16), you can see that for the computation of Px
and Py it is not necessary to compute all the matrices Bn,m. In fact, by
(4.16) we have that the matrices Px and Py, of the partial derivatives
with respect to x or y are respectively:

Px = B1,0 − B1,2 +
3

2
(B3,2 − B3,0) , Py = B0,1 − B2,1 +

3

2
(B2,3 − B0,3) .
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In order to ensure that all the image boundary pixels are analyzed, we
‘fill in’ the missing pixels within the convolution operation, by mirroring
the values that are inside the limits of the image I across the array
border.

4.5 Edge Detection Based on Krawtchouk Poly-
nomials

The proposed edge detection algorithm is based on the results of the
previous sections and is described as follows:

1.- Compute the matrix of gradient magnitude.

Once we obtain the matrices Px and Py, we compute the modulus
of the gradient G(i, j) at each point (i, j) (edge strength).

G(i, j) =
√
P2
x(i, j) + P2

y (i, j).

2.- Find the first threshold and the strong edge points.

We compute the first level of adaptive threshold by:

τh1 = mean(G(i, j)) + k × standard deviation(G(i, j)),

where k ∈ R+.

If G(i, j) > τh1 , the point (i, j) is declared as a strong edge point.

3.- Compute the second level of threshold and the weak edge points.

Now we consider only the points (i1, j1) for which

mean(G(i, j)) < G(i1, j1) < τh1 ,

and compute the second threshold τh2 < τh1 by

τh2 = mean(G(i1, j1)) + k × standard deviation(G(i1, j1)).

If G(i1, j1) > τh2 , the point (i, j) is declared as a weak edge point.

4.- Declaration of edge points.

4.1.- Each strong edge point is considered an edge point.
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4.1.- A weak edge point is considered an edge point if at least some
of its eight neighboring pixels is a strong edge point.

5.- Apply Morphological operations.

The matrix Eh2 of edge points obtained by the proposed scheme,
is a matrix in which in general the edge points tend to be thick and
non-continuous. Then in order to avoid these effects, it is neces-
sary to apply morphological operations [69, Ch. 14], which can be
defined as combination of the two basics operations dilation and
erosion [45]. Hence the final edge image E is obtained by perform-
ing first the thinning operation and then the linked operation.

4.6 Experimental results

4.6.1 Edge quality evaluation

In order to apply a quantitative approach to measure the effectiveness
of the proposed edge detection method, we use the statistical error mea-
sures considered in [49], where the pixels in the candidate edge image
are denoted by: True Positive (TP), False Positive (FP), True Nega-
tive (TN) and False Negative (FN). Using this classification, we define
the measures of the quality of an edge image: φ(E,Eq), χ

2(E,Eq) and
Fδ(E,Eq) as in [49, (11), (12) and (13)], respectively, where Eq is the
true edge image. Finally to measure the errors in a edge image we use
the following numbers:

φ∗(E,Eq) = 1− φ(E,Eq),

χ2∗(E,Eq) = 1− χ2(E,Eq),

F ∗δ (E,Eq) = 1− Fδ(E,Eq), where δ ∈ [0, 1].

To compare, we take as a true edge image ES and EC which are
the edge images given by the Sobel (see [38, Ex. 15.28]) and Canny
methods (see [38, §16.4.3]). The results for the peppers image and depth
map are displayed in Tables 4.1 and 4.2, where EM(E,Eq) denotes the
error measure between the image edge proposed E and Eq = ES (or
Eq = EC).

Images taken from two quite different fields of application were used
to demonstrate the effectiveness of the proposed algorithm: (i) natu-
ral images used for object detection, surveillance, etc. (ii) depth maps
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Measurement φ∗ χ2∗ F ∗0.25 F ∗0.5 F ∗0.75

EM(E,ES) 0.3639 0.5865 0.3536 0.3484 0.3432

EM(E,EC) 0.4167 0.7317 0.4408 0.4714 0.4988

Table 4.1: Error measures for the peppers image.

Measurement φ∗ χ2∗ F ∗0.25 F ∗0.5 F ∗0.75

EM(E,ES) 0.1493 0.3616 0.1742 0.2002 0.2246

EM(E,EC) 0.2046 0.3987 0.2124 0.2222 0.2318

Table 4.2: Error measures for the depth map image.

currently used in 3D video multimedia services and applications (e.g.,
depth-plus-video format [63]). The results show that the proposed algo-
rithm is able to detect the edges of different types of images. Both the
contours of overlapped objects and identification of foreground objects
in depth maps are obtained with quite good accuracy, as shown in the
Figures 4.1, 4.2 and Tables 4.1, 4.2.

Figure 4.1: Edge detection on peppers image.
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Figure 4.2: Edge detection on depth map image.



Chapter

5
Conclusions and
Future Research

5.1 Conclusions

In section Resumen y aportaciones we present an integrative approach
that consider the functions to be studied in this work as solutions of the
initial value problem (1). However, we can perfectly identify two parts
of new knowledge generated that we explain below:

First Part.

This part is composed of the results contained in chapters 2 and 3, whose
central objective is the study of algebraic and analytical properties of
families of polynomials obtained by iterated integration until a fixed
order m ∈ Z+, of families of orthogonal polynomials with respect to
a measure supported on the real line or an arc of the unit circle. The
results appear in [40, 66, 67].

Theorems 2.4.2 (for Jacobi polynomials) and 3.5.1 (for orthogonality
on an arc) were first enunciated in the classical reference [16, Th. 2],
when α = β = 0 (Legendre polynomials) with ω0 = ω1 = · · · = ωm = 0,
i.e., An,m is a Maclaurin polynomial or equivalently a Taylor’s poly-
nomial about zero. The initial motivation of our work was the fourth
remark in the last section of [16], where the author write “It would be
interesting to obtain results, analogous to Theorem [16, Th. 2], for these
polynomials” referring to the Gegenbauer (or ultraspherical) polynomi-
als. Our result is an extension of [16, Th. 2] for iterated integral of Jacobi
polynomials normalized by Abel-Goncharov conditions (see (2.4)) and
orthogonal polynomials on an arc normalized by Taylor conditions (see
(3.5)).

Another interesting result is the comparative asymptotic behavior
between primitives and orthogonal polynomials proved in Theorems
2.4.1 (Jacobi case) and equation (3.24) of Theorem 3.5.1, for orthog-
onality on an arc. The proof of these theorems is based on the one hand
in determining beforehand the asymptotic behavior of certain particular
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primitives as Jacobi fundamental primitives (Section 2.2, Lemma 2.2.2),
Laguerre fundamental primitives (section 2.5, Theorem2.5.1) and the
primitives of orthogonal polynomials on an arc studied in section 3.4
(Theorem 3.4.2). On the other hand, we find the asymptotic behav-
ior of Abel-Goncharov interpolation polynomials (Section 2.3) or Taylor
polynomials in the proof of Theorem 3.5.1.

Second Part.

The results achieved here appear in [76] and the proposed algorithm has
the following characteristics.

• The approximation of the partial differences (derivatives) is carried
out using a linear combination of bivariate Krawtchouk polynomi-
als, which are orthogonal with respect to the inner product (4.10),
which involves the product of binomial distributions (4.4). There-
fore, it is not necessary to smooth the image with a 2-D Gaussian
filter before numerical differentiation, in order to regularize the
ill-posed nature of differentiation and therefore improve the edge
localization. This is a well known procedure as pointed out in [91]
and used in [48].

• In [11, 36] the authors describe edge detection procedures based
on Chebyshev polynomials by using a unique threshold for the
whole image. Here, we propose an algorithm that uses a two-level
adaptive thresholds, that reduce the presence of false positive and
false negative edge pixel.

• As consequence, a gradient operator of size 5×5 produces a better
localized edge pixel, because the edges tend to be thicker as the
size of the block Ii,j increases [36, 69].

• To avoid the thickness effect and improve the final result in our
edge finder, we further apply morphological operations (close, erode
and thin) to the edge image obtained after the second processing
step of the proposed algorithm. As pointed out in recent work [45],
this contributes to increasing the quality of the edges.
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5.2 Some open problems

The open problems collected in this section, are in fact, future lines of
research consequence of the work of this memory.

Once the problems dealt in the second chapter have been solved,
it would seem natural to study the iterated integrals of families of or-
thogonal polynomials with respect to classes of general measures that are
supported on an interval of the real line. Nevertheless, we have preferred
to continue the study with iterated integrals of orthogonal polynomials
with respect to measures supported on an arc of the unit circumference,
motivated by the potentialities offered by some results of the analytical
theory of polynomials and its consequences. The following two problems
arise naturally:

Open Problem 5.1. Study the analytic properties of iterated integral
of families of orthogonal polynomials with respect to general measures
supported on an interval of the real line (bounded or not). In particular,
it could be of interest to determine the asymptotic behavior of their zeros.

Open Problem 5.2. The same aspect of the Open Problem 5.1, now
for iterated integral of families of orthogonal polynomials with respect to
general classes of measures whose support is contained on the unit circle.

In [1, 6, 14, 28, 65] several applications to approximation of func-
tions, electrostatics and hydrodynamics are described, such functions
approximators can be considered as particular cases of the polynomials
studied in the chapters 2 and 3, hence the following problem:

Open Problem 5.3. Study the application of iterated integrals of fami-
lies of orthogonal polynomials to physics problems and the approximation
theory.

From a more general point of view, the iterated primitives of orthog-
onal polynomials are related with orthogonality with respect to differ-
ential operators, as described in [3, 13, 14, 15]. Until now, most of the
results obtained are essentially related to differential operators of first
and second order. The results shown in the chapters 2 and 3 open the
doors to the study of operators of higher order, hence we propose:

Open Problem 5.4. Study the family of orthogonal polynomials with
respect to higher order (> 2) operators, taking as starting point the fam-
ilies of primitives of orthogonal polynomials normalized with conditions
of Abel-Goncharov type (described in Chapter 2), or other.
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In [6] the authors show that the primitives of orthogonal polynomials
of first order can be interpreted as orthogonal polynomials with respect
to a discrete-continuous Sobolev inner product, with derivatives of the
same order of the iterated integral considered. The link between iterated
integrals of orthogonal polynomials and Sobolev orthogonality could go
deeper. For example, consider a product of the type:

〈f, g〉S =

m∑
k=0

∫
I
f (k)g(k)dµk, (5.1)

where m ∈ Z+ is fixed, and we assume, without lost of generality, that
µk for each 0 ≤ k ≤ m is a measure with “good properties”, supported
on a compact interval of the real line.

It is known (see e.g. [29, 50, 51, 53]) that the derivative of order m
of orthogonal polynomials with respect to an inner product of the type
(5.1) has (in some sense) similar asymptotic behavior that the orthogonal
polynomials with respect to an standard inner product. Then the proper
Sobolev orthogonal polynomials with respect to (5.1) are primitives of
order m of their derivatives of order m.

Open Problem 5.5. Study the implications of the results in [40, 66, 67]
to describe the behavior of families of orthogonal polynomials with respect
to (5.1).

Open Problem 5.6. Extend the results reached in [41] if in (5.1) we
consider for 1 ≤ k ≤ m and that the measures µk are discrete and
satisfying Abel-Goncharov conditions.

As we have commented before chapter 4 offers a newfangled proposal
of application of orthogonal polynomials on discrete sets to digital image
processing. The computational advantages of the algorithm for edge
detection has been recognized in an electronic private communication
and in [86]. Notwithstanding the advantages offered by our procedure,
it could be improved by solving the following problem:

Open Problem 5.7. Determine the optimal form of choice of the
thresholds, in order to minimize the probability of obtaining false positive
or true negative edges.

Another proposal that could be interesting in the field of image pro-
cess is the following.
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Open Problem 5.8. Extend the main ideas of our algorithm to the ap-
proximation of the discrete operators that appear in other problems such
as texture detection, face recognition and processing of medical images,
as in the case of [86].

In edge detection, the operators that we need approximate are dif-
ference operators, and as we have proved in [76], the Krawtchouk poly-
nomials give optimal formulas. Perhaps the appropriate answer in this
case would not come in terms of Krawtchouk polynomials, but rather in
terms of other families of orthogonal polynomials on discrete sets.
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able, Bull. Phys.-Math. Acad. Imp. Sci. St. Pétersb. 1 (1859), 193–
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cal Physics, Birkhäuser, Basel, 1988.

[61] Y. Niu, X. Wu, G. Shi and X. Wang, Edge-Based Perceptual Image
Coding, IEEE Trans. Image Process., 21 (2012), 1899–1910.



80 Bibliography

[62] K.B. Oldham and J. Spanier, The Fractional Calculus, Dover Pub.,
Mineola, NY, 2006.

[63] L. Onural, 3D video technologies: an overview of research trends,
SPIE press, Washington, 2011.

[64] G. Papari and N. Petkov, Edge and line oriented contour detection:
State of the art, Image Vision Comput, vol. 29, 2-3 (2011), 73–103.

[65] H. Pijeira, J. Bello and W. Urbina. On polar Legendre polynomials.
Rocky Mountain J. Math., 40 (2010), 2025–2036.

[66] H. Pijeira and D. Rivero-Castillo, Iterated integrals of Jacobi or-
thogonal polynomials, submitted.

[67] H. Pijeira and D. Rivero-Castillo, Iterated integrals of orthogonal
polynomials on an arc of the unit circle, submitted.

[68] Ch. Pommerenke, Boundary behaviour of conformal maps,
Springer-Verlag, Berlin, 1992.

[69] W.K. Pratt, Digital image processing, John Wiley & Sons, NY,
2001.

[70] V.V. Prasolov, Polynomials, Springer, Berlin, 2004.

[71] J.M.S. Prewitt, Object Enhancement and Extration, in Picture
Processing and Psychopictorics, B.S. Lipkin and A. Rosenfeld, Eds.,
Academic Press. NY, 1970.

[72] Q.I. Rahman and G. Schmeisser, Analytic theory of polynomials,
Oxford Univ. Press, NY, 2002.

[73] E.D. Rainville, Special Functions, Chelsea Pub. Co., NY, 1960.

[74] T. Ransford, Potential Theory in the Complex Plane, Cambridge
Univ. Press, Cambridge, 1995.

[75] J.R. Rice, The approximation of functions, Vol. 2: Nonlinear
and multivariate theory, Addison-Wesley Publ. Co., Reading Mass,
1969.

[76] D. Rivero-Castillo, H. Pijeira, P. Assunção, Edge detection based
on Krawtchouk polynomials, J. Comput. Appl. Math 284 (2015),
244–250.



Bibliography 81

[77] L.G. Roberts, Machine Perception of Three-Dimensional Solids,
Optical and Electro-Optical Information Processing, J.T. Tippett
et al., Eds., MIT Press, Cambridge, MA, (1965), 159–197.

[78] A. Rosenfeld and A.C. Kak, Digital picture processing, Vols. 1 and
2, 2nd ed, Academic Press, NY, 1982.

[79] E.B. Saff, Orthogonal polynomials from a complex perspective, in
Orthogonal Polynomials: Theory and Practice, Paul Nevai (ed.),
Kluwer Acad. Pub., Dordrecht, (1990), 363–393.

[80] E.B.Saff and V.Totik, Logarithmic Potentials with External Fields,
Springer-Verlag, NY, 1997.

[81] T. Sheil–Small, Complex Polynomials, Cambridge Univ. Press,
Cambridge, 2002.

[82] B. Simon, Orthogonal Polynomials on the Unit Circle, Parts. 1 and
2, Amer. Math. Soc. Colloq. Series, Providence, RI, 2005.

[83] B. Simon, Equilibrium measures and capacities in spectral theory,
Inverse Probl. Imaging, 4 (2007), 713-772.

[84] I.E. Sobel, Camera Models and Machine Perception, Ph.D. disser-
tation, Stanford University, Palo Alto, CA, 1970.

[85] C. Solomon and T. Breckon, Fundamentals of Digital Image Pro-
cessing. A Practical Approach with Examples in Matlab, Wiley–
Blackwell, Oxford, 2011.

[86] K. Somasundaram, P.A. Kalaividya and T. Kalaiselvi, Edge De-
tection using Chebyshevs Orthogonal Polynomial and Application
to Brain Segmentation from Magnetic Resonance Images (MRI) of
Human Head Scans, Proceedings of the 5th National Conference on
Com. Methods, Comm. Tech. and Informatics, New Delhi, (2017),
1–5.

[87] N.J. Sonine, Recherches sur les fonctions cylindriques et le
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