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ultad de F́ısica de Sevilla. Especialmente al Clú (Nacho, Salva, Álvaro y
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Summary

Nuclear fusion is one of the most promising solutions to the long-term
energy needs of the world. Nevertheless, bringing the source of energy of
stars to Earth is not easy. From the different options explored to produce
fusion, magnetic confinement is the most developed one and, probably,
the first that will be available. Tokamaks and Stellarators are the two
most important configuration concepts of this kind, both having a toroidal
shape.

The main problem magnetic confinement fusion suffers is that
all configurations have important losses of energy and particles along the
radial direction that makes achieving the required conditions a challenge.
Traditionally, those losses have been modelled using neoclassical and tur-
bulent descriptions that assume the existence of an underlying transport
of diffusive characteristics. As a result, effective transport coefficients (dif-
fusivities, viscosities, conductivities, etc.) have been estimated to describe
the transport processes inside the plasmas confined in these magnetic con-
figurations. Recently, it has been however suggested that there are several
important regimes in these devices in which such an assumption may be
wrong. As a result, these diffusive-like models may importantly misrepre-
sent the transport dynamics and compromise the performance predictions
of larger devices.

Among the situations identified where the nature of the radial
transport may be fundamentally non-diffusive, there are two particularly
meaningful for magnetic confinement devices (see Ref. [1] for a review).
The first one is the case of near-marginal transport, in which the plasma
profiles (for pressure, temperature, etc) wander locally very close to the
thresholds for the excitation of instabilities. In such cases, radial avalanch-
ing may become the dominant form of transport, instead of diffusion [2, 3].
In next-generation tokamaks, such as ITER [4], predictions have been
made for an almost near-marginal operation in some profiles, due to the
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IV Summary

fact that turbulent fluxes scale with a large power of the plasma temper-
ature. Thus, at the much hotter plasmas expected in ITER, this might
certainly be an issue to consider. Another example, closer to what we are
going to study in this thesis, is the case of radial transport across strong,
radially-sheared zonal flows, as shown recently in tokamaks [5, 6, 7].

The problem studied in this thesis, however, refers to transport
in stellarators, not tokamaks. Stellarators have seen a recent revival by
improving the confinement properties of neoclassical guiding centre or-
bits by endowing the confining magnetic field with a hidden symmetry
usually referred to as quasi-symmetry. Several types of quasi-symmetries
exist. The most important ones are quasi-poloidal, quasi-helical and quasi-
axisymmetric. We will discuss them in detail in later chapters but, for
now, it suffices with saying that quasi-symmetric configurations have a
better neoclassical confinement compared to that of standard stellarators.
Experimental results from the HSX (helically quasi-symmetric) stellara-
tor [8] have already provided evidence supporting an improved neoclassical
confinement [9]. They also have smaller viscosities in the direction of the
symmetry, which should in principle facilitate an easier excitation of flows,
either by the turbulence itself or externally. Experimental evidence sup-
porting this reduction is also available from HSX [10]. In this context,
it is therefore a natural question to ask whether the reduction of losses
and better confinement in quasi-symmetric configurations are a mere re-
duction of turbulent transport levels, or whether there is something more
fundamental being changed. The investigation of the latter is where this
thesis is centered, focusing in particular on quasi-poloidal configurations.

The reduction of the neoclassical poloidal viscosity expected for
poloidally quasi-symmetric configuration should facilitate the self-generation
of poloidal zonal flows, which are particularly important in terms of af-
fecting radial transport [11]. From the previously mentioned tokamak
evidence, it is therefore expected that nondiffusive features of transport
might appear more strongly in poloidal quasi-symmetric configurations.
Thus, the present thesis investigates whether this is the case or not. Or,
more precisely, we will quantify the changes in the nature of radial tur-
bulent transport and attempt to establish whether these changes are (or
not) correlated to the level of quasi-poloidal symmetry of the configu-
ration. In order to do it, many gyrokinetic turbulent simulations have
been carried out, in a selected configuration with quasi-poloidal symme-
try, using the Gene [12] gyrokinetic code (see Chapter 2). The degree
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of quasi-symmetry of the selected configuration varies, however, strongly
with radius. We have used this to our advantage by carrying out local
simulations around different radial locations of the same configuration,
which has yielded the plethora of data with which the comparative study
previously described has been carried out.

The characterization of the nature or turbulent transport has
been done by means of a methodology that employs tracked particles.
These particles may be massless (i.e., tracers) or possess mass and charge.
Either way, these particles are tracked as they are advected by the un-
derlying turbulence (previously calculated by Gene ) and, if massive, the
different magnetic and parallel drifts that might be present. The tempo-
ral dispersion of an initial population of these particles can be used to
determine the nature of radial transport rather easily, as we discuss in
Chapter 3. However, advecting tracked particles within the advance loop
of modern Vlasov gyrokinetic codes is very inefficient and highly unprac-
tical. Gyrokinetic codes have high complexity, strong parallelization and
a extremely delicate internal balance. For that reason, we have developed
a new and independent tracking code, TRACER, that we have used to
carry out all the studies in this thesis. The inner details of this new code
are discussed at length in Chapter 4.

The discussion of the results of the comparative study previ-
ously mentioned is fleshed out in Chapter 5. The main conclusion we
have drawn is that there is indeed a correlation between the level of quasi-
symmetry and the nature of radial transport, which becomes more sub-
diffusive the larger the level of quasi-symmetry is. The nature of this
change is also shown to be connected with the larger ability of the quasi-
symmetric plasma to excite poloidal flows with strong radial shear, which
is very reminiscent of what is found in tokamaks [7]. We have carried
out this study both for tracers and massive ions, and very similar results
are found in the long-term limit, which makes us believe that the conclu-
sions of this thesis are of importance for the confinement of the thermally
confined plasma.

The main results of this thesis have been presented in several
international conferences and workshops, and have also seen publication
in the international journal Physics of Plasmas. A complete list of these
publications and presentations can be found in Appendix C. As a last note
it is worth saying that, throughout the document, most of the variables
will be expressed in Gene units. A very few variables, mostly related with
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the description of the QPS-configuration, will be however expressed in the
International System of Units. The abbreviations used in the document
are always introduced and they are part of the general terminology used
by the fusion community.
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3.1 Fractional Lévy motion . . . . . . . . . . . . . . . . . . . . 70

3.1.1 Fractional Langevin equation . . . . . . . . . . . . 71

3.1.2 Fractional Brownian motion . . . . . . . . . . . . . 72
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Chapter 1

Fusion basics

The reality of the world where we live in and human needs convert energy
into one of the basic goods of our life. Capitalism, the fast growth of the
population and the vast technological development of the last two centuries
have increased the energy consumption to very high levels, turning the
efficient and responsible production of the energy into one of the most
important problems of humanity[13]. The problem is not trivial because
it is not only a matter of producing energy efficiently; the environmental
impact and its sustainability are also critical issues that must be taken
into account in order to solve the whole problem [14, 15].

All sources that can be used to produce energy have associated
costs and different environmental impacts. For example, fossils (petrol,
coal, gas, wood,...) are cheap but very inefficient producing energy [16].
They are limited and involve numerous environmental risks such as global
warming, pollution, the impact of mineral extraction, oil spills and other
environmental disasters. During the last few decades, renewable sources
have increased their presence in the energy production schemes of the
most important economies, in part due to the better technology that is
becoming available. The spread-out nature of renewable sources is however
a big problem [17]. In addition, the energy produced must be consumed
as it is generated, since there is not a reliable way to store large amounts
of energy. These sources also have an impact on nature. For example, on
animal behaviour such as wind energy that changes bird migration routes,
or solar energy that may affect the Earth albedo to enumerate just a few
of them. Nuclear fission is probably the most efficient of the sources of
energy currently in use. It produces a great amount of energy at very

1
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competitive costs [18, 19]. However, fission produces toxic and long-lived
radioactive residues. It also requires severe security precautions to avoid
disasters. Although existing nuclear power plants are very safe, they need
very qualified staff and constant supervision that is not affordable for all
the countries. They also have a social stigma based on the disasters of
the past [20, 21]. To sum up, it is clear that there is no perfect source
of energy and because of that, the most optimal strategy is to combine
them in an way that permits them to contribute efficiently to the overall
energy production, while, at the same time, trying to reduce as much as
possible the emissions and the environmental risks. Even when few will
oppose the goodness of the concept of an energy production system that
relies on various sources of energy, fossil combustion represents today 80%
of the total energy produced by humans worldwide [16].

In this global and challenging picture, nuclear fusion could play
an important role in solving many of the future world energy problems.
Nuclear fusion is a natural process that produces large amounts of en-
ergy. It is the most efficient source of energy (in terms of amount of
energy generated per kg of fuel), while having a very low environmen-
tal impact. It produces no greenhouse gas emissions and no long-lived
radioactive residues. First-generation fusion reactors will only produce
some radioactive residuals due to the neutron activation of the reactor
walls but, even in that case, the residues will have a short half-life (< 100
years) which reduces the risk of radioactive contamination and facilitates
its control and disposal. The fuel that fusion requires (Deuterium and
Lithium, the latter needed to breed Tritium) is abundant. In second-
generation fusion reactors, that might be based on fusing Deuterium with
itself, the prospects could be even better since Deuterium can be directly
extracted from ocean water.

The ITER1 project will try to demonstrate the scientific and
technical viability of fusion energy production [22]. The main objective of
this international reactor of the tokamak class, currently under construc-
tion in Cadarache (France), is to demonstrate to the world that fusion
energy generation is a possible solution to the energy problem, opening
the way to a new commercial power plants production.

1International Thermonuclear Experiment Reactor
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1.1 Thermonuclear Fusion

Nuclear Fusion is a natural process where two light nuclei are combined
into a heavier one. The final nucleus is more stable than the previous
ones. The fusion reaction is thus exothermic, liberating energy in the
process [23]. The excess of energy liberated during the fusion of nuclei
increases the kinetic energy of the final products. In nature, many differ-
ent fusion reactions are possible but the easiest one to produce on Earth,
(because its cross section reaches a maximum value at the lowest tem-
perature) occurs between two isotopes of hydrogen: Deuterium (D) and
Tritium (T ).

Figure 1.1: Deuterium-Tritium fusion reaction scheme. D represents Deu-
terium, T is Tritium and He refers to Helium (or α particles). Blue spheres
represent neutrons and yellow spheres protons. The final kinetic energy
of the resultant particles is expressed in MeV.

In the D-T reaction, most of the energy liberated is used to ac-
celerate the neutron to a very high speed. The rest of the surplus energy
increases the kinetic energy of the α-particle. The reactants, Deuterium
and Tritium, are obtained in different manners. On one hand, Deuterium
can be found anywhere where there is water, from which it can be ex-
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tracted. Around 0.015% of the world water is heavy water (D2O) which
constitutes a large reserve of Deuterium [24]. On the other hand, Tritium
is radioactive and has a short decaying life. Therefore, it does not exist on
Earth and it needs to be manufactured in the laboratories. One interest-
ing process for its obtention is to make the fast neutrons produced during
the fusion reactions collide with Lithium to create Tritium. The relevant
reactions of neutrons with the different isotopes of Lithium are:

6Li+ n→ 4He+ T + 4.8MeV

7Li+ n→ 4He+ T + n− 2.5MeV. (1.1)

In order to use these reactions, future fusion reactors would need
to include some kind of external Lithium layer where the Tritium could be
produced on-site. Fusion reactors will also take advantage of this Lithium
layer to slow down the fast neutrons created inside of the reactor and to
absorb the heat that could then be converted into electricity. The actual
Lithium reserves are located within the Earth crust (92.5% corresponding
to 6Li and 7.5% to 7Li). They are as large as what is required to generate
electricity for the whole world for some centuries.

It has been predicted by many that future fusion reactors will
probably be developed into two different generations. As was previously
said, the first generation would need to manufacture the Tritium that is
used as fuel. The second generation of fusion reactors, however, will fuse
just Deuterium nuclei. Efficient deuterium fusion requires much higher
temperatures, which means that they will be technologically much more
complicated. Their main advantage is that they do not need Tritium to be
manufactured, and that the neutrons produced will have smaller energies
(at least the majority of them, since some D-T fusion reactions will still
take place due to the fact that Tritium is one of the products of one type
of D-D reactions), which will in theory reduce the radioactive activation
problems. The relevant Deuterium reactions are, in this case:

D +D → 3He(0.82MeV ) + n (2.45MeV )

D +D → T (1.01MeV ) + p (3.03MeV )

D + 3He → 4He (3.67MeV ) + p(14.67MeV ). (1.2)

From the environmental point of view, the by-products of fusion
reactions are not toxic [24]. They do not cause greenhouse effects. First
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generation reactors would use Tritium, that is radioactive but has a very
short half-life (∼ 12 years). The internal structure of the reactor will
be activated due to the interaction with fast neutrons, but it will decay
relatively quickly ( ∼ 100 years), which permits it to be safely disposed
of. In addition, the amount of fuel necessary for the reactions will be of
the order of a few grams per discharge inside of the reactor, which will
reduce the risk of any radioactive escapes.

1.2 Nuclear fusion conditions

Nuclei are positively charged and repel each other due to the Coulomb
electric force. In order to produce a fusion reaction it is necessary to pro-
vide enough energy for the nuclei to overcome their mutual Coulombian
repulsion. The optimal temperature for the reaction to take place is fixed
essentially by the cross-section of this process. Once the reaction temper-
ature is determined, a threshold value for the product of plasma density
and energy confinement time must be overcome for net energy to be pro-
duced. Therefore, one can only vary either the density of the plasma, or
the amount of time that the plasma must be confined at the conditions in
which reactions can take place significantly.

1.2.1 Energy balance: break-even and ignition

The main objective of a fusion reactor is to produce net energy. This
means that, at the end of the process, the total amount of energy used to
achieve the confinement, to bring the plasma to the proper conditions and
to produce the fuel, among others, must be less than the energy finally
produced by the reactor.

Using the Equipartition Theorem [25], a plasma with density n
and temperature T has a thermal energy density of 3nT , half of it in
the electrons, the other half in the ions. The main contributions to the
energy losses are heat and particle transport along the radial direction plus
the radiation losses (mostly, bremsstrahlung). It is traditional to define a
characteristic time τ to quantify the energy confining time:

τ =
3nT

Plost
, (1.3)
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where the total losses are the sum of both contributions Plost = Php +PB.
Plost is the power density lost by all loss channels. In particular, heat and
particle transport, Php, and radiation transport due to bremsstrahlung,
PB.

When the energy produced from fusion equals the energy losses,
the reactor reaches an state of break-even that is defined by the balance
equation:

Php + PB = η(PF + Php + PB). (1.4)

This expression is known as the Lawson criteria [26]. In it, PF
is the density of power generated by the fusion reaction. η represents
the thermic to electric energy efficiency conversion ratio, that is typically
∼ 1/3. Combining expressions (1.3) and (1.4) a criterion to go beyond
break-even is obtained that only depends on temperature. Namely,

nτ ≥ f(T ). (1.5)

This function reaches a minimum value, for the D-T fusion re-
action, at a temperature of around T = 20keV (roughly, two hundred
million degrees). Assuming a thermic-electric conversion ratio η = 1/3,
the value of the product at that temperature is nτ ∼ 4× 1019m−3s.

The break-even state is however not the final objective to reach.
It still requires external energy to keep the process going. In a real reactor,
the majority of this energy should be provided by heating from the α-
particles produced during the fusion reaction, that remain confined in the
reactor. When the reactor is in that state, it is said to have reached
ignition. The condition for the ignition state is:

Php + PB = Pα, (1.6)

that is equivalent to the Lawson criteria when using η = 0.136 [27]. For
the D-T reaction, the ignition condition at the optimal temperature (T ∼
20keV ) is

nτignition ≈ 5nτLawson = 2× 1020m−3s. (1.7)

The ignition condition is around five times the breakeven condition be-
cause only a 20% of the energy in the fusion reaction is given to the α
particle that, being charged, can be maintained inside of the reactor. The
rest, around 80% of the energy, is taken out of the reactor by the fleeing
neutrons.
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1.3 Fusion plasma confinement methods

As we already said, fusion is a natural reaction that happens when two
light nuclei approach each other with sufficient energy as to overcome the
Coulomb repulsion between them. As the magnitude of this repulsion is
proportional to the product of the charges, achieving fusion becomes more
difficult as the nuclei become heavier. That is why hydrogen isotopes will
be used as fuel in the first fusion reactors on Earth. Fusion reactions often
occur in nature, for example inside stars. In this case the huge mass of
these celestial objects (the mass of our Sun is, for instance, m ≈ 1030kg)
creates an enormous pressure at the center that is more than sufficient to
create the conditions needed to fuse the hydrogen inside. On Earth, other
strategies must be devised to overcome the Coulombian repulsion between
the positive ions. There are two main routes being currently pursued to
overcome the Lawson criterium once a plasma temperature of the order
of one hundred million degrees has been achieved (see Eq. 1.4): i) small
confinement times combined with high plasma densities or ii) moderate
confinement times at low plasma densities. Both routes define the two
main strategies developed and studied to produce fusion energy on Earth.

The first route, that considers very small confinement times (τ ∼
10−12−10−8s) and high densities (n ∼ 1028−1032particles/m3), is the basic
principle of inertial confinement, that works by firing hundreds of high-
power lasers onto a small spherical pellet (hohlraum) filled with a mixture
of Deuterium and Tritium. The implosion of the pellet is so violent that a
very dense plasma is created inside, in which fusion reactions would take
place [28].

The second option, moderate confinement times (τ ∼ s) and low
densities (n ∼ 1020 − 1021particles/m3), is the basis of magnetic confine-
ment, where a strong magnetic field is used to isolate the plasma inside the
reactor chamber. We discuss it in much more detail in the next section.

1.4 Magnetic confinement of nuclear fusion

From all of the different possibilities to confine fusion plasmas, one of the
most promising is magnetic confinement. Fusion plasmas must be main-
tained at very high temperatures (millions of K) and it is thus necessary
to isolate and concentrate the plasma (and heat) away from the material
walls. Magnetic confinement fusion uses magnetic fields to confine the
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plasma, taking the advantage of the fact that plasmas are constituted by
charged particles. The type of configurations used in magnetic confine-
ment fusion are often referred to as magnetic bottles.

The easiest manner to create a magnetic bottle is by using coils.
Any magnetic field must satisfy ∇·B = 0 which means that the magnetic
field lines are either infinite, extending to infinity or ergodically filling a
volume or surface, or finite but closing on themselves. This fact, together
with the rest of Maxwell equations and other equilibrium and stability
considerations imposes severe restrictions on the possible geometric con-
figurations for the magnetic field. The most successful magnetic bottles
are based on the combination of a toroidal magnetic field Bφ and a poloidal
magnetic field Bθ, the latter being needed to compensate radial particle
drifts that might push the plasma out of the configuration [27].

Figure 1.2: Magnetic field combination of poloidal Bp and toroidal Bt

components in a toroidal reactor with the plasma coloured in pink. In
this case, the poloidal field component Bp is generated with a toroidal
electric current Ip.

Nevertheless, certain choices for the toroidal and poloidal mag-
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netic field components have been demonstrated to be better in the art of
confining a hot fusion plasma. In general, these configurations are formed
by a system of nested toroidal magnetic field surfaces [27]. In the simplest
case, the magnetic configuration is a family of nested tori with a common
axis refereed to as the magnetic axis. These surfaces are defined by the
magnetic field lines of the configuration, since each of them must be con-
tained in a single magnetic surface. When lines close on themselves after
a few toroidal turns, the surface that contains them is called a rational
surface. If the line, on the other hand, fills the surface ergodically, it is
an irrational surface. More complicated topologies are also possible, with
individual field lines filling ergodically a volume inside the configuration,
or giving rise to other structures such as magnetic islands. Each magnetic
surface is usually labeled by a number (or flux coordinate). Not every
quantity is useful for this task. It must be a surface quantity. That is, a
quantity that is constant on the surface such as the toroidal or poloidal
magnetic fluxes inside of the surface, to name a few. Another important
surface quantity is the rotational transform. It is defined as the number
of poloidal turns that a magnetic field line undergoes during one toroidal
turn:

ι =
Num. Poloidal turns

Num. Toroidal turns
. (1.8)

Sometimes, the inverse of this magnitude q = 1/ι is used. It is called the
safety factor because it plays an important role in ensuring the configura-
tion stability.

There are two different toroidal configurations that look particu-
larly promising as future magnetic confinement fusion reactors: tokamaks
and stellarators. The most important difference between both concepts is
how they create the poloidal magnetic field component Bθ. We discuss
them separately next.

1.4.1 Tokamak

Originally developed in the URSS during the 50’s, the Tokamak2 concept
is the most studied and developed of all toroidal magnetic confinement
concepts [29]. In a tokamak, the toroidal magnetic field component is
created by means of external coils but the poloidal component is created
by inducing an internal toroidal current in the plasma of the order of

2Russian acronymous for toroidal chamber with magnetic coils.
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several MA. The toroidal current is also used to heat the plasma (process
known as Ohmic heating). The toroidal current is induced by making
the plasma behave as the secondary of a large transformer, which makes
the tokamak an intrinsically pulsed system, which is not optimal. On the
other hand, it also makes the tokamak configuration toroidally symmetric
to a large approximation, which has many advantages.

Figure 1.3: Basic Tokamak schedule with some of the external modular
coils in green, and the iron transformer core, in orange, which induce the
plasma current and change its polarity.

The pulsed operation is not the only inconvenience of the Toka-
mak configuration. The use of a large plasma current to create the poloidal
component of the magnetic field provides a large source of free energy that
can lead to the excitation of instabilities, some of which (know as disrup-
tions) may destroy the configuration, if unchecked [29]. Disruptions are
considered as one of the worst problems for tokamaks because they destroy
the confinement but might also damage the walls of the reactor.

Nowadays, the most important tokamak in operation (in terms
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of size, results and budget) is JET3 in Culham, Oxfordshire (United
Kingdom)[30]. This device has reached conditions close to breakeven,
although using only a highly-diluted D − T mixture used for safety rea-
sons. Most of the experiments, up to this day, have been made instead
just with Deuterium. These experiments set the basis for the ITER de-
velopment [31]. By extrapolating the JET (and many other tokamaks)
results to the size of ITER, the international reactor is expected to be
able to be operated beyond the breakeven point. ITER will operate with
a plasma formed by 50% of Deuterium and 50% of Tritium for the first
time. Figure (1.4) shows the huge size of the machine. ITER is one of the
biggest experiments in the world, and the third most expensive project of
the humanity (behind Moon’s landing and CERN).

Figure 1.4: ITER reactor. Internal cross-section of the design with all the
elements in different colours and in scale with human size.

3Joint European Torus.
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Figure 1.5: Illustration of the Wendelstein 7-X stellarator showing the set
of twisted coils and the complicated plasma shape.

1.4.2 Stellarators

The second main toroidal magnetic configuration is the stellarator4 [32].
It was first proposed by L. Spitzer in 1950 and built for the first time in the
Princeton Laboratory of Plasma Physics (New Jersey, U.S.A)[33]. During
the 50s and 60s, stellarators were very popular but tokamaks became more
important after the 70s due to their much better performance and lower
costs.

In stellarators, the poloidal component of the magnetic field is
generated in the same way as the toroidal component of the magnetic
field: with external coils. A consequence of this is that the magnetic
field configuration becomes fully tridimensional. In order to have good
properties, stellarators have external coils that may become very twisted
and with a confined plasma with very complicated shapes (see Fig. 1.5).
For the actual and next generation of stellarators, these coils will be made
of superconductive materials which are very expensive and not easy to
manipulate, even more for those complicated shapes. The topology of
the resulting magnetic fields is more complicated than for tokamaks. In

4Combination of Stella which means star and generator.
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addition, the lack of toroidal symmetry implies that particle motion is
more complex and less easily confinable, which has often resulted in worse
confinement properties as compared with tokamaks [32]. Stellarators also
need external heating from the start, since they have no significant Ohmic
heating created by internal currents. In contrast, tokamaks need external
heating only after the plasma exceeds a minimum temperature beyond
which Ohmic heating ceases to be efficient, due to the negative scaling of
the plasma resistivity with temperature.

On the plus side, stellarators have a continuous operation regime,
not pulsed as in tokamaks, which is more attractive for a future reactor.
Stellarators do not have disruptions because of the absence of significant
toroidal currents. Nowadays, tokamaks are at least one generation beyond
stellarators. Nevertheless, stellarators have become more competitive in
the last couple of decades due to the increasing availability of better super-
computers that have been used to design them and to optimize their prop-
erties before construction. In that sense, LHD5 [34] in Nagoya (Japan),
TJ-II in Madrid (Spain) [35] and the Wendelstein 7-X [36] in Greifswald
(Germany) are the best examples.

1.4.3 Quasi-symmetries

Certain strategies have shown promising results that point in a clear direc-
tion in order to improve the confinement time of stellarator reactors. The
resulting magnetic configurations have an internal hidden symmetry (or
a partial symmetry) referred to as quasi-symmetries [37], although some
of them require a small plasma current flowing in order to achieve them.
Quasi-symmetries become apparent when the magnetic field is expressed
using Boozer coordinates (sB, θB, φB)6 [39]. In that case, the motion of
the ion guiding-centre (that is, the motion of the center of the helical
trajectory of the ion in the magnetic field) becomes dependent on just
the magnetic field magnitude B = |B| and its derivatives. Then, one
takes advantage of the double periodicity of the toroidal geometry and
expresses the magnetic field strength as a combination of poloidal and

5Large Helical Device.
6Boozer coordinates will be explained in detail in the Chapter 2. At this point it

is sufficient to say that sB is a radial coordinate, θB a poloidal coordinate and φB a
toroidal coordinate.
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toroidal modes in Fourier space:

B(sB, θB, φB) =
∑
m

∑
n

Bm,n(sB) cos (mθB − nφB). (1.9)

A magnetic configuration is called quasi-symmetric if it is de-
signed with an harmonic content of B with a specific dominant linear
combination of poloidal and toroidal modes MθB − NφB. There are dif-
ferent combinations, but the most important can be classified in three
different groups: i) quasi-poloidal symmetry if M = 0 and N is free, ii)
Quasi-axisymmetry or quasi-toroidal symmetry if N = 0 and M free, and
iii) quasi-helical symmetry when a certain pair of integers M/N = mh/nh
define the configuration. Examples of quasi-symmetric configurations are
the HSX7 [8] quasi-helical (mh = 1, nh = 4) stellarator currently in op-
eration at the University of Wisconsin, the QPS8 [38] and the NCSX9

(quasi-axisymmetric) devices [41]. The latter two projects were regret-
fully cancelled. The different quasi-symmetries of the magnetic field are
illustrated in Fig. 1.6, where the left column shows isocontours of the
magnitude of the magnetic field on a selected magnetic surface for the
HSX, QPS and NCSX devices, respectively. For comparison purposes, the
first row of the figure also includes the same isocontours but for a generic,
non-quasi-symmetric configuration (from the LHD device [34] in Japan).
Clearly, the contours of constant magnetic field approximate follow verti-
cal (for QPS), horizontal (for NCSX) and diagonal (for HSX) directions,
whilst the generic stellarators does not have such a clear alignment.

It is thus clear that, in the three cases of quasi-symmetry, the
magnitude of the magnetic field on any given surface only depends on
one angular variable (θ, φ or a linear combination of them) instead of
two, like in most other configurations10. The fact that the magnetic field
amplitude loses one angular dependence improves the confinement of the
guiding centre orbits due to the fact that there is an additional conserved
quantity, associated to the new (approximated) symmetry [37]. Indeed,
in the absence of the quasi-symmetry, the guiding-centre motion has only
two constants of motion: the energy E and the magnetic moment µ.

7Helical Stellarator eXperiment.
8Quasi Poloidal Stellarator.
9National Compact Stellarator eXperiment.

10In general, the magnetic field vector B will still depend on the three coordinates.
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Figure 1.6: (Left) Isocontours for the magnitude of the magnetic field on a
magnetic surface represented in Boozer angles; (Right) cross-sections of a
set of selected magnetic surfaces at toroidal angles φ = 0 and π/Np, where
Np is the number of periods. From the top to the bottom, the devices are:
LHD, QPS, NCSX, and HSX.
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But the existence of one additional constant further constrains
the orbits which improves their confinement. The canonical momentum
associated with the quasi-symmetry plays that role. Then, Tamm’ s theo-
rem is sufficient to ensure that that particles will not displace themselves
radially over too long distances [37].

However, real devices are never exactly quasi-symmetric. They
have spatial regions where the level of quasi-symmetry is higher or lower
depending on the coil distribution and the plasma current, among other
things. Usually, the level of quasi-symmetry depends on the radial co-
ordinate. In order to quantify this level we will use the degree of quasi-
symmetry defined at each flux surface (s0) by the ratio:

σMN(sB) =

∑∑
MN |BMN(s0)|∑

m

∑
n |Bmn(s0)|

≤ 1, (1.10)

where the numerator is a sum only over the quasi-symmetric modes (m =
M,n = N), whilst the denominator sum is over all Fourier modes. There-
fore, perfect quasi-symmetry would require σMN = 1.

1.5 Transport in fusion plasmas

One of the main problems in magnetically confined plasmas is that energy
and particles are lost too quickly across magnetic surfaces. Or, in other
words, that particle and heat transport is very large along the radial di-
rection. Therefore, the determination of the causes for these confinement
losses, their characterization in terms of different parameters and the opti-
mization of configurations to minimize them have become central problems
in this field. The two main processes that drive transport radially out of
magnetically confined fusion plasmas are collisions and turbulence.

1.5.1 Neoclassical transport: diffusion.

When ions and electrons in the plasma collide, they change the pitch
of their velocity and, as a result, the location of their guiding center is
displaced. Due to the nature of the process, this displacement can happen
in any direction across magnetic surfaces. Since these displacements cancel
each other out over time unless gradients exist across magnetic surfaces,
collisions can only drive transport across magnetic surfaces if there is
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a gradient across them for particle density, heat, pressure or any other
quantity of interest. Regretfully, this is indeed the case of any fusion
experiment, where huge radial gradients are established between the center
and the plasma edge.

If one assumes that typical scales in length and time can be
found, the simplest model to quantify these processes is then provided by
the relation between fluxes and gradients of different quantities usually
known as Fick’s law [42] (or Fourier’s law, for heat transport),

Γ = −D∇n (1.11)

Q = −κ∇T, (1.12)

where Γ represents the particle flux, Q the heat flux, D is the diffusivity
coefficient and κ the thermal conductivity, that is related with the heat
diffusivity coefficient through κ = nχ. These effective transport coeffi-
cients must be determined either phenomenologically or from theoretical
considerations. The simplest estimate can be done using a random walk
(RW ) model [43]. In this model, walkers make jumps of length ∆r after
waiting at rest for a lapse of time ∆t. Walkers transport can then be
modelled using Fick’s law with a diffusivity D given by:

D ∼ (∆r)2

∆t
. (1.13)

In a fully-ionized plasma as those confined in a tokamak or stellarator,
Coulombian collisions between particles are governed by the mean free
path between collisions ∆r, that is of the order of the Larmor radius
orbit, and the inverse of the collision frequency between different particles
∆t = 1/ν, that sets the typical time scale.

Realistic estimates of collisional transport in magnetically con-
fined plasmas must however consider the real and complicated geometry
of the magnetic configurations. In that case, the mathematical formal-
ism is known as Neoclassical transport theory [44, 45]. The complex ge-
ometry forces to consider two different types of particles: passing par-
ticles and trapped particles. Trapped particles appear because the mag-
netic field is not homogeneous, but depends on space. The reason is
rather simple. When particles (ions or electrons) move along a field line,
they must conserve their energy E = (1/2)mv2 and magnetic momentum
µ = mv2

⊥/2B. On the other hand, the total energy can be expressed as
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E = (1/2)mv2
‖ + µB, where v‖ is the parallel velocity along the field line.

The parallel velocity is thus given by v‖ =
√

2E/m− µB. Clearly, if the
energy of particle is small enough, the particle may encounter, as it moves
along the field line, locations where the magnetic field is sufficiently large
as to make the argument of the square root that defines v‖ vanish. At
those locations, the particle must reverse its parallel velocity (otherwise,
the parallel velocity would become an imaginary number!), and the parti-
cle is said to be trapped. The projection of a trapped orbit on any toroidal
cross-section looks like a banana, which gives its popular name to trapped
particle orbits: banana orbits (see Fig. 1.7).

A passing particle, on the other hand, has a sufficiently large
energy as to be able to stay always moving in the same direction. Their
projected orbits look more like circles. These two type of particles be-
have very different, in terms of transport, when a collision takes place. A
passing particle, when it collides, may displace itself radially a length of
the order of a Larmor radius; trapped particles, on the other hand, suffer
radial displacements which are much larger, of the order of the banana
radial width. Therefore, they must accounted for separately when esti-
mating radial transport. In fact, banana orbits increase transport levels
considerably compared to what one would obtain if only passing particles
are considered 11.

Finally, it is essential to remark that, in neoclassical transport
theory as in many other transport formalisms used in plasmas and else-
where, effective transport coefficients are determined by implicitly assum-
ing that typical scales (in space and time) for radial transport exist. Oth-
erwise, a diffusive description of transport would fail to capture the un-
derlying dynamics [1].

1.5.2 Turbulent transport

Regretfully, neoclassical transport theory cannot explain the full levels
of radial transport observed in fusion plasmas. Real fusion experiments
usually have much larger radial transport than the one predicted by neo-
classical theory [46]. Traditionally these discrepancies have been hidden
under the general term anomalous transport, mainly because it was not
clear which the real process behind was. Nowadays, it is widely accepted

11The trapped/passing duality is in fact also responsible for many other important
process, such as the excitation of bootstrap currents [44, 45].
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Figure 1.7: Different orbits of charged particles according to the neoclas-
sical theory. In red, passing-particles. In blue, trapped particles.

that turbulence is the dominant mechanism of transport across magnetic
surfaces controlling, in the last instance, the confinement time of the de-
vice. Turbulent fluctuations (in all plasma fields including electric and
magnetic fields, density, temperature, etc) driven by various sources of
free energy (gradients, currents, etc) are responsible for the majority of
the observed radial transport. In particular, across the magnetic surfaces,
the main contribution to the transport appears to be associated to the
contribution of turbulence to the electrostatic E×B drift.

Traditionally, in the theory of plasma physics, effective coeffi-
cients of transport such as diffusivities or viscosities have also been used
to describe turbulent transport. This has been the go-to strategy even
when, sometimes, there is evidence supporting the fact that a diffusive
description may fail to capture the nature of the transport dynamics. The
process usually goes as follows. First, each variable is decomposed in two
terms: an average value (either in a ensemble or temporal sense) and a
fluctuation with zero-average. For instance, density would become:

n(x, t) = n0(x) + ñ(x, t). (1.14)

Using this decomposition, non-zero average turbulent fluxes are easily esti-
mated. For instance, the electrostatic particle and heat fluxes are obtained
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as:

Γ ∼ 〈ñṽr〉 , and q ∼ n0

〈
T̃ ṽr

〉
+ T0 〈ñṽr〉 , with ṽr ∝ Ẽr, (1.15)

where Γ and q are the radial particle and heat (conductive and convective)
turbulent fluxes, ñ represents the fluctuation of the density, T̃ represents
the fluctuation of the temperature, and ṽr the fluctuation of the radial
component of the plasma velocity. This turbulent fluxes are clearly non-
zero because they are quadratic in the fluctuations. The flux is ultimately
proportional to the fluctuating radial electric field, due to the dominance of
the E×B drift, which is determined by the fluctuations of the electrostatic
potential Ẽ = ∇φ̃. It is worth to say that the level of the turbulent fluxes
depends not only on the magnitude of fluctuations, but also on the phase
difference between them. Indeed, only when ñ or T̃ are in phase with
Ẽr are in-phase (i.e., their relative phase difference is zero), significant
transport ensues. If they are out of phase (i.e., relative phase difference
of π/2), there is not net transport.

As previously mentioned, a diffusive effective description is often
forced at this point by assuming the existence of effective transport coef-
ficients. For instance, we would have, for the particle and conductive heat
fluxes, that they become expressed as:

Γ ∼ 〈ñṽr〉 ' −Deff∇n0, or qconductive ∼ n0

〈
T̃ ṽr

〉
' −χeffn0∇T0,

(1.16)
so that transport driven by turbulence becomes encapsulated within the
effective (or eddy) diffusivity Deff . There are instances in which such ap-
proach probably fails to capture the transport dynamics in fusion plasmas
(see Ref. [1] for a review). Examples can be found, for instance, in cases
where turbulence is near-marginal (that is, where the profiles that drive the
turbulence wander around the local threshold values for unstable modes to
be excited), and in the presence of strong radially-sheared poloidal flows.

1.5.3 Drift-wave turbulence

It is believed that the instabilities responsible for most of the electrostatic
fluctuations are of the drift-wave type [47]. The mechanism behind drift
waves is simple. When a three-dimensional density fluctuation with par-
allel wavenumber (with respect to the background magnetic field) k‖ 6= 0
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appears in the presence of a density gradient ∇n, drift waves appear. The
procedure is illustrated in the left frame of Fig. 1.8. Electrons (−) are
faster than ions (+) and react first to the parallel density gradient ∇n.
As they move against the density gradient they leave behind regions with
a positive charge excess. These changes drive an electrostatic potential
φ̃ whose fluctuations generate turbulent E×B drifts that move the ions,
causing the wave to advance in the poloidal (ion diamagnetic) direction. If
the reaction of the electrons is very fast, almost instantaneous, the cross-
phase between potential and density perturbations remains close to zero
and the drift wave is stable. The net transport is then zero (since the
difference in phase between ñ and Ẽr will be close to π/2). The approxi-
mation of instantaneous electrons is usually known as adiabatic electrons.

However, if there is a delay in the electron response, the response
is then non-adiabatic, the cross-phase is no longer zero and the drift wave
may become unstable. It may also happen that the ion E ×B motion is
strongly perturbed, yielding a non-zero cross-phase and causing the drift
wave to become unstable. In either case, strong radial turbulent transport
ensues. Usually, one refers to each case as one of electron or ion drift wave
turbulence [47].

In toroidal fusion plasmas, there are three important types of
drift-wave micro-instabilities: i) the ion temperature gradient mode (ITG),
ii) the electron temperature gradient mode (ETG) and iii) the trapped elec-
tron mode (TEM). In each case, the radial transport driven by the insta-
bility is most important at different spatial scales. TEM and ITG driven
transport preferentially takes place at the ion Larmor radius scale, whilst
ETG dominates at the scale of the electron gyroradius.

The right frame of Fig. 1.8 shows these different scales for each in-
stability. The linear growth rate γ of the instability is shown as a function
of the perpendicular wavenumber ky for a typical tokamak. The physics
of each of them is different. For TEMs, it is the trapping of electrons as
they move along the field line that perturbs the electron response, making
the wave unstable. For ITGs, the ion perpendicular motion is distorted
by toroidicity in the presence of a ion temperature gradient. ETGs are
similar to ITGs, but for electrons. We discuss them separately in what
follows.
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Figure 1.8: Left: sketch of the drift wave instability. The stability of the
drift-wave depends on the electron reaction along the parallel direction,
and on the E×B perpendicular motion of the ions. If any of them is per-
turbed, the drift wave can become unstable and yield net radial turbulent
transport. Right: Linear growth rate γ as a function of the perpendicular
wavenumber ky for the three main types of drift-wave instabilities. Nor-

malization parameters are the speed of sound cs =
√
Te/mi with Te the

electron temperature and mi the mass of the ions, the major radius R and
the ion Larmor radius ρi [48].

Ion temperature gradient mode (ITG)

The ITG mode is the drift-wave instability that is believed to be respon-
sible for the majority of ion heat transport in toroidal fusion plasmas
[49, 50]. The ITG mode is a purely toroidal mode that can become un-
stable when a temperature gradient exists that is parallel to the magnetic
field amplitude gradient. This phenomenon is typical in the outer part
of the toroidal device, where the magnetic field is lower (bad-curvature
region). The right frame in Fig. 1.9 illustrates this mechanism. Given a
temperature fluctuation, the presence of a gradient of the magnetic field
amplitude ∇B results in a separation of charges with different signs. This
charge separation creates an electric field and the associated E×B-drift.
The drift, in this case, amplifies the propagation of the perturbation in-
creasing its magnitude and turning it unstable. In the inner part of the
torus occurs just the contrary (left frame of the figure 1.9).
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Figure 1.9: The Ion temperature gradient mode instability in a good-
curvature region (left) and in a bad-curvature region (right). In the first
case, the gradient of the magnetic field amplitude ∇B and the tempera-
ture ∇T are in opposite directions. In this case the emergent E×B-drift
mitigates the perturbation. In the second case, ∇B and ∇T are parallel
and the E×B-drift amplifies the perturbation [48].

Figure 1.10: Gyrokinetic simulation performed with Gene code for the
ITG mode in a Tokamak. Negative fluctuations are in blue and positive
fluctuations in red [48].

The temperature gradient is opposite to the magnetic field am-
plitude gradient (good-curvature region). In the inner part of the configu-
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ration, charge separation produces an E×B-drift which reduces the initial
temperature perturbation amplitude and stabilizes the perturbation. As
a consequence, fluctuations at the bad-curvature region (unstable) will be
larger than the fluctuations of the good-curvature region (stable). This
result is reproduced routinely in current gyrokinetic simulations of ITG
turbulence (see Fig. 1.10). It is also clear that structures are elongated
along the field lines, the parallel direction, thus connecting the bad and
good curvature regions, which facilitates the stabilization process.

Electron temperature gradient mode (ETG)

The instability known as the ETG mode is similar to the ITG, but with the
electrons playing the role of the ions[51, 52]. The importance of its role in
explaining electron heat transport is still a matter of active investigation.
ETGs simulations are more complicated, though, because of the much
smaller length scales that must be resolved, due to the different mass of
ions and electrons.

Trapped electron mode (TEM)

It is also believed that trapped electron drift-wave instabilities play a role
in both heat and particle transport in toroidal fusion plasmas [53, 54].
Parallel electron motion is impeded by the trapping of a fraction of the
electron population due to the inhomogeneous magnetic field, which may
drive drift waves unstable. Trapping also concentrates electrons in the
bad curvature region, which enhances the instability.

1.6 Non-diffusive transport in magnetically

confined, fusion toroidal plasmas

As it has already been mentioned in the previous section, most studies
of turbulence and turbulent transport in fusion plasmas have had the fi-
nal goal of capturing the overall effect of turbulence within some kind
of effective transport coefficients of the diffusive type. In the last three
decades, however, there has been a growing body of work that has shown
that this type of description may be inadequate in some cases [1, 2, 3].
In particular, this might be the case of several regimes of relevance to
confined plasmas such as near-marginal turbulence [2, 3] and transport
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across radially-sheared poloidal flows [5]. We will discuss these two situ-
ations separately in this section, but it suffices to say at this point that
ITER will be probably operated in a regime in which near-marginal con-
ditions are expected, and that relies in radially-sheared poloidal flows to
provide access to enhanced confinement regimes [31]. These observations
make relevant any study that attempts to move the description of turbu-
lent transport beyond the usual diffusive framework, searching for better
models that could capture the underlying dynamics more properly. The
work contained in this thesis must be looked at in this light in order to be
properly understood.

1.6.1 Non-diffusive or fractional transport

The classical formulation of the Fick’s law (i.e., Eq. 1.11) relies on the im-
plicit assumption of an underlying locality in space and a lack of memory
in time. That is, the flux at any given location is only a function of the
value of fields (mostly, the gradient of the transported quantity) at the
same location and at the same time. This locality in space and time is
ultimately associated to the existence of well-defined characteristic scales
for transport, both in time and in space. If these conditions are met,
the local, memory-less approach behind Fick’s law applies, at least when
transport is considered at times and distances much longer and larger than
the characteristic ones [55].

There are however cases in which characteristic scales for trans-
port cannot be found due to the nature of the underlying process [1, 56, 57].
One such example is when transport is driven by avalanches whose size
is only limited by the system size, and whose excitation heavily depends
on the previous avalanching activity in the system. A non-fusion-related
example of such a system is provided by earthquake dynamics [58], where
the energy released is heavily conditioned by the size of previous earth-
quakes which, at the same time, also condition where the next tectonic
relaxation will take place. In turbulent plasmas, a similar situation can
happen in cases in which the plasma profiles are close to the local threshold
values for the excitation of the different instabilities that drive transport
[2, 3]. Other examples can be found in plasmas, particularly referred to
transport in regions where magnetic stochastic fields are present [59, 60].

In any of these cases, any diffusive description of transport based
on Fick’s law will fail to capture the underlying dynamics [56]. One must
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Figure 1.11: Transport behaviours captured by the fractional transport
equation (Eq. 1.17 ) depending on the value of α, H and β = αH.

thus move to more complicated mathematical frameworks. In particu-
lar, there are physical considerations that suggest to use instead transport
equations that are based on fractional differential operators (Dβ

t , ∂
α/∂|x|α)

[61, 62] (see Appendix B: Introduction to fractional derivatives and inte-
grals; see also the discussion around Eq. 3.6) such as [56]:

∂n

∂t
= D1−αH

t

[
D0

∂αn

∂|x|α

]
(1.17)

where D0 is a constant (in general, it is not diffusivity!), α ∈ (0, 2] is
the spatial exponent and H ∈ (0,max(1, 1/α)] is known as the Hurst
exponent. Often, another exponent is introduced, defined as β ≡ αH ∈
(0, 1] that is known as the temporal exponent.

The actual values of these fractional exponents determine the
nature of transport that the solution of the fractional transport equation
will exhibit (see Fig. 1.11). For example, if α = 2 the spatial transport
dynamics are local. Fluxes at any given point depend only on the value of
the gradients at the same location. If α < 2, however, spatial transport is
not local, and fluxes depend on values of the gradients at other locations
as well. Similarly, if β = 1 (or, equivalently, if H = 1/α) transport
throughout the system lacks any memory effects. That is, fluxes only
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depend on the values of the gradients at that same time. On the contrary,
if β < 1, memory becomes important. In fact, the past history of the
system becomes more relevant the smaller β becomes, since events further
back in time will contribute more heavily to the evaluation of the fractional
derivative at the current time. Clearly, for α = 2 and β = 1 (i.e., H =
1/2), classical diffusive behaviour is recovered.

The Hurst exponent characterizes the nature of the transport
captured by Eq. 1.17, whose range of dynamics is illustrated in Fig. 1.11.
If H = 1/2 transport is called diffusive. The reason is that any initially-
localised perturbation that advances in time according to classical diffusion
spreads in time at a rate proportional to t1/2 [55]. If the same perturba-
tion is advanced instead according to the fractional transport equation,
Eq. 1.17, it can be proved that it would spread out as tH [56, 1]. Thus,
H = 1/2 is referred to as a diffusive scaling, although it could be that
the nature of transport is not diffusive in a classical sense, since H can
still be 1/2 for α 6= 2 and β 6= 1, which means that transport is still non-
local and dominated by memory effects. It is also customary to describe
transport as subdiffusive if H < 1/2, and superdiffusive if H > 1/2. The
reason is simple. The perturbation will spread out slower or faster than a
perturbation spreading diffusively would.

1.6.2 Near-marginal turbulent transport

There are many experimental evidences that suggest that non-diffusive
transport behaviour dominates radial turbulent transport in various regimes
relevant to toroidal fusion plasmas (see Ref. [1] for a review). For exam-
ple, it is believed that L-mode tokamak plasmas (and maybe the part of
the plasma inside the edge pedestal in H-mode regimes) are in a state
of near-marginal turbulence across most of the radius, that results in an
effectively non-diffusive radial transport that is dominated by avalanches
[63] and that exhibits long-term memory [64, 65, 66]. A near-marginal
situation means that plasma profiles (such as pressure, temperature, etc.)
wander around the local instability threshold which leads to the local ex-
citation of turbulence. When the local threshold is exceeded at a certain
location, turbulence appears and drives local transport to flatten the local
gradient that drove it unstable. In the process, heat or particles (or both)
are transported to neighbouring locations, whose local gradients then in-
crease and that can become themselves unstable. Therefore, the whole
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Figure 1.12: Sketch of a sandpile model and its avalanche process. Zn
represents the difference between the level of sand of two contiguous cells.
A virtual perturbation of sand, in grey, shows the avalanche process.

process repeats itself again, with heat or particles being transported down
the gradient and the perturbation in the profile propagating in avalanche-
like form.

This behaviour is very reminiscent of one of the most studied
models used to explain the Self-Organized Criticality (SOC) [67]: the
sandpile model (see Fig. 1.12) [68]. In this analogy, the cells and the sand
of the sandpile will respectively be the different radial positions of the
device and the physical variable that drives the turbulence (temperature,
density or pressure) [3]. There are certain situations, when most of the
cells are very close to the threshold level of sand, where a small perturba-
tion could induce a large cascade or avalanche, whose size is only limited
by the sandpile size. Those regimes are usually referred to, as pointed out
before, as near-marginal situations. In the presence of an external drive,
if it is not too strong, the sandpile will always be pushed to stay close to a
near-marginal regime. Similarly, some simulations suggest that the larger
temperatures in ITER will be able to drive fluxes that will continuously
push density/temperature profiles as to keep them close to near-marginal
values across most of the tokamak (see Ref. [1] for a review).
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Figure 1.13: On the left, the eddy’s deformation due to the stretching-
elongation process created by the sheared zonal flow along the y direction
(the vorticity of the eddies is in the z direction). On the right, there
are three different trajectories over the turbulent map of distorted eddies.
The intensity of the eddies is used to express the favoured or unfavoured
eddies.

In the sandpile model, the positions where the avalanche is started
have a lower probability of starting another avalanche in the next instants
because their levels of ”sand” are far from the threshold. On the contrary,
the positions where the avalanche died have a larger probability of starting
new avalanches in the following instants, because their levels of sand are
probably very close to threshold. This is the mechanism through which
memory is established in the system [68].

1.6.3 Sheared zonal flows and turbulent transport

There are other regimes relevant to fusion plasmas, apart from near-
marginal conditions, where radial transport could behave non-diffusively.
In particular, in the last decades, the turbulent radial transport across
strong radially-sheared, poloidal zonal-flows has become one of the most
important topics in fusion plasmas because these flows reduce radial losses
and increase the confinement time by permitting the transition to enhance
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confinement regimes such as the H-mode [11, 69]. There is evidence,
however, that supports that these flows not only reduce radial turbulent
transport, but that they could also alter the intrinsic nature of radial
transport itself. Recent numerical studies do suggest that the effects of
these radially-sheared poloidal zonal flows exceed the mere reduction of
the radial transport of particles or heat, changing the nature of the radial
transport itself, that becomes subdiffusive [5, 6].

To understand the physical mechanism that leads to subdiffusive
radial transport across sheared flows [7], it is useful to consider the sketch
shown in Fig. 1.13. There, the action of a sheared flow on a single eddy is
illustrated. The sheared flow acts differently on eddies with different sign
of vorticity. Vorticity is related to local rotation. In the case in which
the vorticity is of the same sign as that associated to the shear flow, the
eddy is distorted (i.e., its radial length reduced!) but its own vorticity
(i.e., its local angular velocity) is enhanced at the same time. On the
other hand, the vorticity inside eddies with a vorticity of different sign
than that of the flow are weakened, and even eliminated. The results of
this process are sketched in the right frame of the same figure: a vorticity
landscape in which the sign determined by the shear flow dominates. If
one now envisions how a particle, trapped in this vorticity field, advances
perpendicularly to the flow, it is easy to see that every time the particle
leaves an eddy it will be kicked back in the same direction that it came
from. That is the essence of what subdiffusion is about.

It is clear that any effective description built in terms of effective
diffusive coefficients will fail to capture the dynamics of the type of sub-
diffusive transport across sheared flows just discussed. Again, one would
need to use fractional transport equations of the type of Eq. 1.17, with
exponents with values chosen adequately in order to reproduce the under-
lying subdiffusive dynamics.
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Gyrokinetic simulations of
turbulence in quasi-poloidally
symmetric configurations

The physical processes that take place in magnetically confined fusion
plasmas span a very wide range of scales. The ranges are so large – about
12 orders of magnitude in time, about 8 in space – that it is impossible to
build a single code capable of simulating all these physical processes. For
example, the spatial scales in these plasmas extend from the submillime-
ter range of the electron gyroradius to the several meters of correlations
lengths along a magnetic field line. In the case of temporal scales, very
fast dynamics such as the electron Larmor gyration (∼ 1010Hz) coexist
with much slower ones such as the energy confinement time, of the order
of tens, even hundreds of seconds.

In the case of turbulent transport in tokamak and stellarator
plasmas, turbulence is governed by instabilities with growth rates of the
order of micro to a few milliseconds, but that can in some cases sustain
strong correlations for much longer periods of time. Turbulence-induced
modification of the plasma profiles takes place, however, in timescales of
the order of hundreds of milliseconds or longer. It has been long believed
that turbulent scales can be modelled, in these plasmas, by averaging out
the faster scales (such as gyro-motion) and by assuming that the slower
scales (i.e., profile modifications) remain basically unchanged during the
amount of time that turbulence is simulated. Simulations done under
these conditions are then routinely used to estimate effective transport

31



32 CHAPTER 2. QUASI-POLOIDAL SIMULATIONS WITH GENE

Figure 2.1: Examples of different domains for gyrokinetic simulations:
tokamak flux-tube simulation (top); full-annulus simulation for W7-X [74]
(middle); tokamak global simulation [75] (bottom).

coefficients. Although there are situations in which the latter
assumption may fail (see, for instance, the discussion on near-marginal
turbulence held at the end of Chapter 2), we will assume that this ap-
proximation is valid in this work.

In the conditions previously mentioned, the so-called gyrokinetic
description is adequate [70, 71]. The gyrokinetic model describes the evo-
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lution of each plasma species using kinetic equations averaged over the fast
gyromotion around the magnetic field lines. Thus, the resulting equations
describe the time evolution of the distribution function of each particle
guiding centre. This averaging, together with some further simplifications
(namely, the assumption of small fluctuations and strong anisotropy in
the direction parallel to the magnetic field), reduces the high complexity
of the full kinetic equations making them amenable of numerical solution
[72].

Gyrokinetic codes are usually classified into two different types:
full-f and δf. In the first case, the code considers the evolution of the
full distribution function. In contrast, δf codes only evolve in time the
deviation from a background Maxwellian distribution function, F0. It is F0

that contains all information about the radial profiles for plasma density,
temperature, pressure or velocity, that remains constant. The fluctuating
part of the distribution function, δf , is considered small compared to
the stationary background part of the function F0, which permits further
simplifications.

Attending to the simulation domain, gyrokinetic codes are usu-
ally classified as local or global. On one hand, local codes simulate a very
reduced portion of the plasma, usually a flux-tube. That is, a small domain
that follows the magnetic field (see upper frame in Fig. 2.1). Flux-tube
simulations usually assume periodic boundary conditions in all directions.
Since the radial extension is minimal, being localised around some given
magnetic surface, all background radial profiles (i.e., pressure, tempera-
ture, etc.) are represented by a single value that corresponds to the one
of the profile at that magnetic surface. There are also local codes that
consider instead the radial neighbourhood of a complete magnetic flux-
surface. We will refer to these type of domains as full-annulus or flux-
surface. In full-annulus simulations, all background quantities of interest,
except for the magnetic field and its derivatives, are still represented by
their (single) value at the magnetic surface. This means that most of them
use the δf -approach. The magnetic field, however, does vary along the
surface, although it is still considered to be independent of radius.

On the other hand, global codes consider the complete toroidal
domain. All plasma quantities of interest are no longer assumed constant
in radius, having instead a radial profile. Global codes may evolve or not
the plasma background radial profiles. In the first case, that is known as
a flux-driven setup, the average fluxes (of particles, heat, etc.) in steady-
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state are set by introducing sources and sinks. Plasma profiles are then
allow to vary to accommodate these fluxes. Clearly, in order to simulate
a plasma in a flux-driven setup, full-f, global codes are required. On the
other hand, fixed-gradient setups assume fixed background radial profiles
that do not evolve with time. In this case, global gyrokinetic codes can
also be run as δf codes, assuming that the time of the simulation is short
enough so that δf remains small.

Finally, gyrokinetic codes can also be distinguished by the nu-
merical approach used to solve the gyrokinetic equations. There are two
main classes: Eulerian and Lagrangian (or PIC1) codes. Eulerian codes
consider an Eulerian mesh with fixed nodes in gyrokinetic phase space.
All variables and fields are evaluated at the nodes of the mesh. On the
other hand, Lagrangian codes combine Eulerian and Lagrangian descrip-
tions. The distribution function of all species is constructed by means of
marker particles (gyro-averaged ions, and sometimes also electrons), that
are advected in the presence of magnetic and electric fields. These fields,
on the other hand, are advanced in time on a Eulerian mesh (if only the
electric field varies in time, the code is known as electrostatic; if both the
magnetic and the electric field are updated, as electromagnetic). A lot of
information must thus be transferred between the Lagrangian and Eule-
rian representations by PIC codes. Each method has its advantages and
disadvantages. PIC codes, on the one hand, are easier to parallelize, but
are subject to particle noise. Eulerian codes, on the other hand, must use
sophisticated methods such as domain decomposition to be run in parallel
supercomputers, which makes them significantly more complex.

In this thesis, we will use the Gene gyrokinetic code [12, 73].
Gene is a well-established gyrokinetic code with a degree of sophistication
close to the state-of-the-art in the subject. Gene is an Eulerian (Vlasov)
code that can be run in general three-dimensional magnetic geometries.
This is specially convenient for the study of turbulent transport in quasi-
poloidally symmetric configurations that we carry out in this work (in fact,
there are not many other codes of this kind than can deal with complex
3D geometries). Gene is also a δf code, which means that no evolution
of plasma profiles can be done with it at the moment. Finally, we will
always run Gene using a full-annulus setup and assuming electrostatic,
ITG-dominated turbulence.

In this chapter we will first provide a brief description of Gene

1Particle-In-Cell
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although we will not go into all the details, referring instead those in-
terested readers to its reference manual [73]. Then, we will describe and
discuss the turbulent simulations that we have carried out with Gene on
the configuration of a quasi-poloidally symmetric stellarator that we will
use to study the effect on turbulent transport of quasi-symmetries in the
remainder of the thesis. In particular, we will characterize the main fea-
tures of these quasi-poloidal configurations and describe the main char-
acteristics of the turbulence and the turbulent transport obtained with
Gene for them.

2.1 The GENE gyrokinetic code

Gene 2 is a code that has been developed for almost twenty-five years by
a team of computer scientists and plasma physicists led by Prof. Frank
Jenko at the Max Planck Institut für Plasmaphysik (Garching, Germany)
[12, 48, 73, 76, 77, 78, 79, 80, 81, 82] . It is freely available and frequently
updated and expanded. It is one of the gyrokinetic codes more widely
used at the moment.

Gene solves the gyrokinetic-Maxwell system of equations using
an Eulerian-Vlasov, local, δf approach on a fixed grid in a 5-dimensional
phase space. Three of these dimensions are field-aligned spatial coor-
dinates (x, y, z) and the other two are velocity coordinates (v‖, µ), that
correspond to the parallel component of the velocity with respect to the
background magnetic field v‖, and to the magnetic moment µ = mv2

⊥/2B.
Gene was originally a tokamak flux-tube code that has been extended
over the years and that is currently capable of carrying out full-annulus
calculations in the neighbourhood of fully three-dimensional magnetic sur-
faces (such as those of a stellarator). Although Gene can be run in both
electrostatic and electromagnetic modes, we will restrict our studies to
electrostatic runs in which only the electrostatic potential is evolved in
time. In addition, Gene can advance in time both ions and electrons, but
we will however work under the assumption of adiabatic electrons, so that
only the equation for the δf part of the ion distribution function is solved.

2Gyrokinetic Electromagnetic Numerical Code
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2.1.1 Gyrokinetic δf equation

The ion electrostatic gyrokinetic equation that Gene will solve for us, in
this thesis, can be expressed as:

dfi
dt

=
∂fi
∂t

+ Ẋ · ∂fi
∂X

+ v̇‖
∂fi
∂v‖

+ µ̇
∂fi
∂µ

= 0 (2.1)

where X = (x, y, z) represents the spatial position vector. The distribution
function is expressed as fi = F 0

i + δfi, with the Maxwellian

F 0
i =

n0
i

(πT 0
i )3/2

exp
(
−(v2

‖ + µB0)/T 0
i

)
, (2.2)

that contains all background profile information, that is kept fixed. At
the lowest order in ε ∼ δf/F 0, the associated velocities are given by the
expressions [73]:

Ẋ = v‖b0 +
B0

B∗0‖
(vE + v∇B + vc), (2.3)

v̇‖ = − 1

miv‖
Ẋ(qi∇Φ̃ + µ∇B0), (2.4)

µ̇ = 0. (2.5)

In these expressions, several quantities appear. First, vE is the
E×B-drift velocity (B0 is the background magnetic field),

vE = −∇Φ̃×B0

B2
0

, (2.6)

through which the turbulent electric fields (i.e., Ẽ = −∇Φ̃) affect the ion
motion. Secondly, v∇B is the magnetic drift velocity:

v∇B =
µ

miΩiB0

B0 ×∇B0, (2.7)

where Ωi = qiB0/mi is the ion gyrofrequency. Finally, vc is the curvature
drift velocity, defined as,

vc =
v2
‖

Ωi

(∇× b0)⊥ =
µ0v

2
‖

ΩiB2
0

b0 ×∇
(
p0 +

B2
0

2µ0

)
, (2.8)
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where the MHD force balance equation, ∇p0 = J0 × B0, and Ampere’s
law, ∇×B0 = µ0J0, have been used. Also, b0 = B0/B0 is the unit vector
parallel to the magnetic field. The effective magnetic field, B∗0, is defined
as

B∗0 = B0 +
mi

qi
v‖∇× b0. (2.9)

On the other hand, it is worth noting that the equation µ̇ = 0 is a
consequence of the gyro-averaging that leads to the gyrokinetic equation.
In fact, the magnetic moment µ is the conserved quantity associated to
the independence on the gyro-phase that follows from the procedure [70].

2.1.2 Gyro-averaged Poisson equation

In addition to the ion gyrokinetic equation, Gene must also solve a (gyro-
averaged) Poisson equation to get the turbulent electrostatic potential.
This equation is simply the gyro-average of:

−∇2Φ̃ = 4π
∑
j

qjñj. (2.10)

The expression of the equation, in Gene coordinates, that is
solved to find the potential is rather involved. The expression, that ap-
proximates Poisson’s equation via the quasi-neutrality equation, can be
found in the literature [73]. It is worth noting that, in the approximation
of adiabatic electrons that we will use in this work, only the ion fluctu-
ating density is obtained by integration of the solution of Eq. 2.1, whilst
the fluctuating electron density is given by:

ñe '
en0

e

T 0
e

(
Φ̃− < Φ̃ >

)
, (2.11)

where the brackets stand for flux-surface averaging.

2.1.3 Geometry and coordinate system

Gene is very efficient thanks to the use of a field aligned coordinate
system. The starting point is provided by the magnetic equilibrium infor-
mation, which is usually expressed in Boozer coordinates.
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Boozer coordinates

Boozer coordinates form a particularly useful system of flux coordinates
to describe toroidal fields [39]. It is composed of a radial coordinate sB ∈
[0, 1] that identifies the magnetic surface (usually sB := ψ/ψedge, with ψ
being the toroidal magnetic flux through that magnetic surface, as it is
illustrated in the left frame of Fig. 2.2; we will always assume this choice in
what follows), and two angle-like coordinates, θB and φB that go around
the magnetic surface with a period of 2π. These angles do not usually
coincide with the geometric poloidal and toroidal angles, though.

Many flux coordinate systems exist. The importance of the
Boozer one comes from the fact that, when expressed in Boozer coor-
dinates, all magnetic field lines (and also current lines) become straight
[39]. A magnetic field line in Boozer coordinates is defined as α :=
θB + ι(sB)φB = α0, where ι(sB) is the rotational transform (see Eq. 1.8)
and α0 is a constant. α is known as a line label. For this reason, it is very
convenient to describe the equilibrium and stability properties of general
magnetic configurations in Boozer coordinates. It is also the system in
which any quasi-symmetry that might be hidden in a configuration can be
made explicit. The reason is because, in fact, quasi-symmetries are defined
as the symmetries of B when expressed in Boozer coordinates [37, 39].

The magnetic field of any three-dimensional configuration, in
Boozer coordinates, has two representations. First, the contravariant one
given by:

B = BθeθB +BφeφB . (2.12)

Here, the covariant basis vectors are defined as eξ := ∂r/∂ξ (with
ξ = sB, θB or φB), being the vector associated to any coordinate tangent
to the intersection of the isosurfaces of the other two coordinates. It is
worth noting that BsB = 0 since sB = s0 is a magnetic surface for any
s0, and the field must be tangent to it. The contravariant components are
themselves given by [39]:

BsB =
ψedge

2π
√
gB
, BθB =

ψedge

2π
√
gB
ι(sB), (2.13)

where ι(sB) is the rotational transform, and
√
gB is the jacobian of the

transformation to Boozer coordinates, that must be found numerically.
The rotational transform, that gives the pitch of the magnetic field at each
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magnetic surface (see Eq. 1.8), becomes ι(sB) = BθB/BφB . Its inverse,
q(sB) = 1/ι(sB) is the safety factor.

There is also a covariant representation of the magnetic field in
Boozer coordinates. It is given by:

B = BsBesB +BφBeφB +BθBeθB (2.14)

Here, the contravariant basis vectors are defined as eξ := ∇ξ
(with ξ = sB, θB or φB), being each one perpendicular to the ξ = ξ0

surface. The covariant components of the magnetic field are then given
by [39]:

BθB =
Ipol(sB)

2π
, BφB =

Itor(sB)

2π
, (2.15)

with Itor and Ipol the toroidal and poloidal currents flowing inside the
magnetic surface sB. The other component, BsB is a double periodic
function (in θB and φB) with zero surface average, that depends on the
configuration at hand, and that must be found numerically in each case.

Gene coordinates

The field-aligned system of coordinates used by Gene (x, y, z) takes ad-
vantage of the fact that turbulence varies very differently along the mag-
netic field lines in comparison to perpendicularly to them. Thus, Gene
tries to define a coordinate z that runs along the local magnetic field,
in which the resolution required to properly represent the turbulence is
decoupled from that needed in other directions, thus greatly enhancing
numerical efficiency. For flux-tube and full-annulus runs, the local Gene
coordinates are defined around a selected magnetic surface sB = s0. The
expression of Gene internal coordinates, in terms of the Boozer Coordi-
nates that define the magnetic field of the configuration, is (see also right
frame of Fig. 2.2) [73]:

x = ρref (
√
sB −

√
s0), y = Cy [q(x)θB − φB] , z = θB. (2.16)

Here, q(x) is the safety factor of the configuration. That is, the inverse
of the rotational transform previously introduced, q = 1/ι. In the local
representation, it is assumed to be given by q(x) = q0+q′0x with q0 = q(s0).
Cy and ρref , on the other hand, are normalization constants of Gene [73]
(explained in more detail later in this section).
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The field-aligned character of these choices comes from the fact
that, if z is varied while keeping x and y fixed, one just moves along a
single magnetic line (at least approximately, as we will explain later). The
value of x gives the radial distance to the reference magnetic surface. On
the other hand, the value of y fixes on a specific magnetic field line. This is
made apparent by looking at the contravariant expression of the magnetic
field in Gene coordinates, that is:

B = C(x)∇x×∇y =
C(x)
√
gB

ez, (2.17)

with C(x) = Cy
√
gBBθB . Clearly, the magnetic field is parallel to the unit

covariant vector associated to the z coordinate, as advertised.

Figure 2.2: Left: Parametric surfaces in Boozer coordinates with the
definition of fluxes. Right: Relation between Boozer and Gene angular
coordinates and the magnetic field lines.

The numerical domain of Gene is defined by the intervals x ∈
[−Lx/2, Lx/2], y ∈ [0, Ly] and z ∈ [−π, π]. Gene estimates Lx in order to
have a box large enough to include all relevant physics. It is often around
Lx ≈ 100ρ∗ with ρ∗ = ρref/a, ρref being a longitude of reference and a the
minor radius. Ly, is estimated in a similar way but considering instead
the binormal direction. Gene also exploits the symmetry of the device
and takes into account just one complete period of the machine (usually
defined through the line label, α := qθB − φB ∈ [−π/n0, π/n0] where n0

denotes the periodicity of the machine)
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2.1.4 GIST interface

In stellarators, the VMEC equilibrium code [83] is the tool most commonly
used to calculate the equilibrium magnetic field of stellarator configura-
tions for a given plasma pressure profile. VMEC, however, uses its own
internal flux coordinate system, that is different from the Boozer one just
discussed. Thus, an additional interface called GIST 3 is used to calculate,
transform and collect all the information necessary to run Gene in stel-
larator geometries [84]. GIST can also be used to transform equilibrium
information for Gene from tokamak equilibrium codes, such as the EFIT
equilibrium code [85]. In particular, GIST transforms all geometrical in-
formation to Gene internal coordinates, including the metric tensor and
curvature coefficients. It also provides the derivatives of the magnetic field
and many other quantities such as local pressure, safety factor, shear of
the safety factor, etc.

2.1.5 Gene normalization

We conclude this introduction to Gene by clarifying some of its internal
normalization. Normalization is often ignored while discussing physical
results, since it is often (and rightly) considered a purely internal mat-
ter. In our case, however, we have needed this information to build the
TRACER code, that will be used to advance tracer particles in the elec-
trostatic turbulence that Gene computes, and that will be discussed at
length in Chapter 4.

Gene uses a normalization based in either average or equilibrium
values in order to deal only with dimensionless quantities and avoid any
”extremal” values (very large or very small) while solving the gyrokinetic
equation. The reference values of the plasma parameters are those at the
magnetic axis of the configuration [48]. The axis values then define the
reference mass, mref , the reference temperature, Tref , the reference den-
sity, nref , or the reference magnetic field strength, Bref . Internal variables
used by Gene then are, for example:

m̂ = m/mref , T̂ = T/Tref n̂ = n/nref , B̂ = B/Bref . (2.18)

Variables with hat denote dimensionless variables. Gene then

3Gyrokinetic Interface for Stellarators and Tokamaks.
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uses these reference values to build other normalization factors used for
other derived quantities. For instance,

cref =

√
Tref
mref

, Ωref =
eBref

mrefcref
, ρref =

cref
Ωref

, (2.19)

pref = nrefTref , Φref =
ρrefTref
Bref

. (2.20)

Here, cref is the reference velocity value, ρref the reference lengthscale,
Φref the reference electrostatic potential value and pref the reference pres-
sure value.

The reference timescale that Gene uses is not provided by Ω−1
ref ,

though. Instead, it is defined in terms of the macroscopic length of the
system, Lref , that is usually taken to be the major radius R0 of the con-
figuration. It is defined as:

tref =
Lref
cref

. (2.21)

Since the turbulent dynamics along and across the magnetic field
are very different, Gene does not normalize its internal coordinates uni-
formly. Coordinates perpendicular to the magnetic field are normalized
to ρref . The parallel direction is not normalized, though. That is,

x̂ = x/ρref , ŷ = y/ρref , ẑ = z. (2.22)

Regarding the velocity coordinates, they are normalized accord-
ing to

v‖ = cref v̂T v̂‖, µ =
Tref
Bref

T0µ̂ (2.23)

with the thermal velocity vT defined as:

vT =

√
2T0

m
=

√
Tref
mref

v̂T = cref v̂T (2.24)

The Jacobian of the transformation to Gene internal coordinates
is normalized to Lref . The density and temperature gradients scale length,
important since they set the instability threshold for the turbulence, are
respectively normalized as,

ωT = −Lref
T

dT

dx
, ωn = −Lref

n

dn

dx
. (2.25)
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2.2 The Quasi Poloidal Stellarator configu-

ration: general properties

The studies carried out in this thesis to investigate the effects of quasi-
symmetries on the nature of turbulent transport have been done using a
quasi-poloidally symmetric configuration that is known as the QPS stel-
larator [38]. The QPS was to be a compact stellarator with low aspect
ratio A = R0/a = 2.6 < 4 (where R0 and a are the major and minor radius
respectively). It was to be built at the Oak Ridge National Laboratory
(ORNL, Tennessee, U.S.A), but it was finally cancelled due to budget
cuts by the US Department of Energy. QPS was a non-axisymmetric,
fully three-dimensional device. But it was designed to be near poloidally
quasi-symmetric.

For the present study, a two-period configuration has been se-
lected that belongs to a set of cases explored during the design phase
of the QPS project (see Fig. 2.3). We settled on this configuration be-
cause, as it will be shown soon, it exhibits a relatively strong variation
of the degree of quasi-poloidal symmetry along the radial direction. The
configuration corresponds to a two period machine and has an average
β = 〈2µ0p/B

2〉 ∼ 2.5%. It has a toroidal current I ∼ 40kA, which
somewhat moves it away from traditional currentless stellarators, and a
magnetic field with an amplitude on axis of B0 ' 0.9T (see Fig. 2.7).
Endowing this configuration with quasi-poloidal symmetry does not come
easy. A price must be paid in terms of the complexity of the coils needed
to generate it. As can be seen, the coil set necessary for the magnetic
configuration is very complicated and the shape of the plasma becomes
very twisted, as illustrated in Fig. 2.3.

2.2.1 VMEC equilibrium solution

The equilibrium magnetic field for the QPS configuration used in this
thesis has been calculated using the VMEC code [83]. Cross-sections at
different toroidal angles of the set of magnetic surfaces provided by VMEC
are shown in Fig. 2.6. VMEC is an spectral code that represents all
quantities of interest (magnetic field, pressure, etc) as a double Fourier
series in its internal poloidal and toroidal angles, with the magnitude
of the harmonics being a function of the magnetic surface level. In the
VMEC runs used to calculate the equilibrium for the case, poloidal modes
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Figure 2.3: Stellarator QPS design. Set of twisted coils and the plasma
shape. On the left, an upper point of view is shown (coils in blue and
plasma in pink). On the right, a lateral view.

with wavenumbers running from m = 0 up to m = M , with M = 8 have
been included. The toroidal modes used are labeled by |n| ≤ N , with
N = 7. Across magnetic surfaces, though, VMEC uses a finite-differences
representation.

The safety factor of the configuration, q(s) = 1/ι(s), is shown
in Fig. 2.4. As it will be remembered, the safety factor measures the
pitch of the magnetic field. The larger q, the more toroidal turns the
line undergoes per poloidal transit. For the QPS configuration, q(s) is
very large close to the magnetic axis, where q(0) ∼ 8, and then decreases
monotonously until an edge value of q(a) ∼ 4. This dependence is very
different from what is usual for tokamaks, where q increases with radius
from an axis value satisfying q(0) > 1, for stability considerations [29].
The different dependence is due to the much larger plasma current that
flows in a tokamak, of the order of several MAs, and that is responsible
for most of the poloidal component of the field. The pressure and (surface-
averaged) parallel current radial profiles are also shown in Fig. 2.5. The
first one is rather standard. The second shows that most of the current ,
of the order of tens to hundreds of kAs, flows in the intermediate region,
for 0.2 < s < 0.8.

The four different cross-sections of the configuration nested mag-
netic surfaces shown in Fig. 2.6 at toroidal positions φ = 0, π/2, π, 3π/2
demonstrate that the magnetic axis of the configuration is not located at
a fixed R and Z value. Therefore, the configuration has a helical magnetic
axis. It also shows that the shape of the plasma changes greatly with the
toroidal angle, being thus fully three-dimensional, very different from the
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situation in a tokamak. As a result, B is a function not just of the poloidal
angle, as in tokamaks, but of the toroidal angle as well.

Figure 2.4: Safety factor q radial profile evaluated in the magnetic flux-
surfaces of interest for the two-period QPS configuration used in the study.

Figure 2.5: Pressure (left) and parallel current (right) radial profiles for
the two-period QPS configuration used in the study.
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Figure 2.6: Cross-sections at four different toroidal angles of the set of
equilibrium magnetic surfaces computed by VMEC for the quasi-poloidal
configuration selected for the Gene simulations. Nfp = 2 is the number
of periods.

2.2.2 Quasi-poloidal symmetry

Quasi-symmetries are, as we mentioned previously, symmetries of the mag-
nitude of the magnetic field, B, when expressed in Boozer coordinates
[37, 39]. Therefore, they are not always evident when represented in real
space. In the case of the two-period QPS configuration analysed in this
thesis, the level of quasi-poloidal symmetry is however sufficiently large
as to be detectable by direct inspection even in cartesian coordinates. In-
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Figure 2.7: Isocontours of the magnetic field strength B of the QPS con-
figuration under study in real space. The magnetic field is shown at the
magnetic surface s0 = 0.49.

deed, Fig. 2.7 shows a color plot of the isocontours of B in real space
on a selected magnetic surface (s0 = 0.49). It is apparent that the iso-
contours of B appear to be aligned vertically rather neatly, thus being
rather independent of the poloidal direction, as one would expect from a
quasi-poloidally symmetric case.

We have quantified the level of quasi-poloidal symmetry by means
of the degree of quasi-poloidal symmetry ratio that was introduced in
Chapter 1 (see Eq. 1.10). In this case, M = 0 and the sum in the numer-
ator must be taken over all m = 0 modes. A new code, QSYM, has been
specifically written for this purpose [40]. The result of the calculation is
shown in Fig. 2.8 as a function of the Boozer radial coordinate. As it
can be seen, the value of the ratio varies significantly, from almost perfect
quasi-symmetry close to the axis (σ(0) ∼ 0.95) to a smaller, but still sig-
nificant value at the edge (σ(1) ∼ 0.65). This kind of variation is rather
usual in real configurations, since it is almost impossible to maintain a
perfect level of quasi-symmetry throughout the whole device. It is usually
better close to the axis and deteriorates as one moves to the edge (al-
though this is not always the case!), where effects such as the discreteness
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Figure 2.8: Degree of quasi-poloidal symmetry ratio σqp as a function of
the magnetic surface for the QPS configuration examined. The selected
surfaces at which Gene simulations will be carried out are marked by
blue dots.

of the coils are felt more strongly.
In fact, we have taken advantage of the variability of the σqp

ratio in the selected QPS configuration to facilitate our investigation of
the effects of quasi-symmetries on the nature of radial turbulent transport,
carrying out all the required full-annulus Gene simulations at various
magnetic surfaces of the same QPS configuration. The selected locations
are marked with blue dots in Fig. 2.8. The specific values for σqp and other
quantities of interest at those locations have been collected in Table 2.1,
that can be found at the end of the chapter.

2.2.3 Neoclassical transport in poloidally quasi sym-
metric configurations

In Chapter 1, we discussed the different types of particle orbits that must
be considered within the neoclassical description of transport. In partic-
ular, we discussed the difference between trapped-particles and passing
particles. In stellarators, as it is the case of the QPS configuration un-
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Figure 2.9: Different types of neoclassical orbits in quasi-poloidal stellara-
tors: passing particles (light blue, in the toroidal projection on the right),
helically trapped particles (green and red orbits) and toroidally trapped
particles (purple orbit).

der study, trapped particles can be of two different types: toroidal and
helical [32]. The former are similar to the tokamak trapped particles, in
which the particle parallel velocity must change as it moves towards the
high-field side of the toroidal configuration, whose strength must always
decay as B ∝ 1/R according to Maxwell equations. In stellarators, how-
ever, particles can also be trapped inside the local wells that the magnetic
field might have, since it is no longer independent of the toroidal angle.
In poloidally quasi-symmetric magnetic fields, however, the fact that B is
almost independent of the poloidal angle makes that helical trapped orbits
are directed almost completely along the toroidal direction (see Fig. 2.9),
which drastically reduces the width of the helically trapped bananas, lead-
ing to a better confinement than in non-quasi-symmetric configurations.

Another interesting prediction of neoclassical theory for poloidally
quasi-symmetric configurations has to do with the neoclassical poloidal
viscosity [38]. It is accepted that, at least in tokamaks, the neoclassical
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estimate for the poloidal viscosity seems to be very close to what can be
inferred experimentally, being the main mechanism that damps poloidal
flows. Viscosities are estimated, in the neoclassical theory, by balanc-
ing the different contributions associated to each type of orbits [45]. The
modifications in the relative importance of the contributions of these orbits
introduced by quasi-symmetries result in a reduction of the neoclassical
viscosity along the direction of quasi-symmetry with respect to non-quasi-
symmetric configurations. This has been partially confirmed in experi-
ments, at least for quasi-helical configurations [9]. As such, it is expected
that neoclassical poloidal viscosity be significantly reduced in poloidally
quasi-symmetric stellarators [10]. If this is the case, it should be much
easier for turbulence-driven poloidal flows to be excited and also to satu-
rate al larger levels, which should have a large impact in the suppression
of turbulence and turbulent transport [11].

2.3 Gyrokinetic simulations of turbulence

in the QPS configuration

We proceed now to discuss the various Gene simulations performed on the
selected QPS configuration just described. The turbulent fields obtained
will be used to carry out the investigation on the nature of transport that
is the core of this thesis, and that is detailed in Chapter 5. The spatial
domain used in all simulations is a full-annulus centered at a selected
reference surface s0. The various surfaces of the configuration at which
simulations have been done are shown with blue dots in Fig. 2.8. The
radial size of the computational domain used is Lx ≈ 140ρ∗ , with ρ∗ =
ρref/a = 0.004. The box-length along the y-direction is calculated by
Gene to be Ly = πx0/q0, thus including all line labels in the range α ∈
[−π/2, π/2]. In all Gene simulations we have also assumed that there
is no magnetic shear (that is, q′0 = 0) in order to avoid reconnection
problems in the trajectories that will be calculated later by the TRACER
code (see discussion in Chapter 4). As we also mentioned at the beginning
of this chapter, periodic boundary conditions are assumed in all spatial
directions. All equilibrium quantities are assumed constant and equal to
their value at s0, except for the magnetic field vector that depends on y
and z as dictated by the VMEC equilibrium solution for the configuration.
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Figure 2.10: Three different elements of the metric tensor gij in Gene
coordinates (y, z) generated by GIST at two different radial positions s0 =
0.10 (left) and s0 = 0.63 (right). From top to bottom, the elements shown
are gxx, gxy and gyy.

Finally, all gyrokinetic simulations carried out assume that the
dominant instability is the electrostatic ITG mode. In them, the adiabatic
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electron approximation is always assumed, so that no evolution of the
electron distribution function is required. In addition, the magnetic field
is not evolved, being equal to the equilibrium one during the simulation.
This is believed to be a sufficiently good approximation for the low-β
plasmas (β = 2µ0p/B

2, measures the ratio between plasma and magnetic
energy) that will be considered in this thesis, that have β ∼ 2%.

2.3.1 GIST processing of VMEC data

The GIST code [84] has been used to process the information about the
three-dimensional equilibrium magnetic field provided by the VMEC code
and to transform it to the form needed by Gene in its own internal coor-
dinate system. The type of output GIST produces is illustrated in several
figures. First, Figure 2.10 shows three of the most important elements
from the metric tensor of the transformation to Gene internal coordinate
system, ĝij, for two different radial positions. On the left column, isocon-
tours for the selected components of the metric tensor are shown for the
more internal position, s0 = 0.10, whilst on the right column, the same
metric elements are shown for a more external one, s0 = 0.63.

As it can be appreciated, very similar structures are observed at
both radial positions. These structures are more elongated (thinner in the
z-direction and longer in the y-direction) in the internal simulation than
in the external one, which is related with the radially decreasing safety
factor q (number of toroidal turns per a single poloidal turn) of QPS. In
both cases, for the internal and external surfaces, the bad curvature region
effects are visible around z = 0 (θB = 0), the central region of each plot,
particularly for the gxx metric element.

The Jacobian of the transformation to the internal Gene coor-
dinates and the strength of the magnetic field estimated by GIST from
the equilibrium fields computed by VMEC for the QPS configuration are
shown in Fig. 2.11, also for the same internal and external magnetic sur-
faces for which Fig. 2.10 was prepared.

The upper frames of the figure show a colour map of the isocon-
tours of the magnetic field strength, B; the lower frames shown the iso-
contours for the Jacobian

√
g. Similar comments to those already made

while discussing the metric tensor ĝ about the elongated nature of the
isocontours could be made here. The reasons are very similar to the ones
given previously. It is also apparent that the larger number of distinct iso-
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Figure 2.11: Magnetic field strength (above) and Jacobian (below) gener-
ated by GIST for the QPS configuration under study at surfaces s0 = 0.10
(left) and s0 = 0.63 (right). All plots are in Gene internal coordinates,
(y, z).

surfaces that appear at the more interior surface is related with the higher
value of the safety factor as compared with the more exterior surface. The
effects of the bad-curvature region are again visible around z = 0 in both
cases, but are stronger in the external case.

2.3.2 Numerical mesh

As it was mentioned at the beginning of the chapter, Gene purposely
chooses field-aligned spatial coordinates to decouple the parallel resolu-
tion requirements of the turbulent simulations from other directions, tak-
ing thus advantage of the strong asymmetry that exists in the direction



54 CHAPTER 2. QUASI-POLOIDAL SIMULATIONS WITH GENE

parallel to the magnetic field compared with the perpendicular dynamics.

Figure 2.12: Gene spatial mesh shown for a selected surface (s0 = 0.10)
of the QPS configuration studied. A magnetic field line is also shown, in
blue, together with some of the director vectors: ey and ez.

Figure 2.13: Isocontours of the magnetic field strength B in real space on
the same selected surface as Fig. 2.12.

In local (flux-tube and full-annulus) simulations, periodicity in
all directions is further imposed to help reduce the computational time
even more by means of efficient Fast Fourier Transform (FFT) libraries.
However, all these choices, together with the up-down symmetry and pe-
riodicity of the stellarator configuration, lead to a spatial mesh that, when
looked at in real space, is not just a simple annulus around the reference
magnetic surface. Instead, it is actually much more complicated than it
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Figure 2.14: Electrostatic turbulent potential Φ of the QPS configuration
of study in cartesian coordinates with the real shape and geometry of the
plasma. The potential is estimated around the magnetic surface s0 = 0.49
(s being the Boozer radial coordinate).

might seem.

Fig. 2.12 shows the spatial mesh used by Gene in real space
for one of the simulations carried out for the QPS configuration. The
limiting values for the line label α in green, as αmin and αmax, and a
magnetic field line in blue with the covariant unitary vectors ey and ez

are also shown. We have also included a figure in which a color map
for the magnitude of the magnetic field, B, is represented in the mesh
in real space (see Fig. 2.13). The poloidal quasi-symmetric nature of the
magnitude of the magnetic field is still apparent in real space, with the
isocontours of constant magnitude of B being almost vertical.

It must be remembered that, although Gene solves (an approx-
imation to) the (gyroaveraged) Poisson equation (Eq. 2.10) to obtain the
turbulent electrostatic potential in the spatial mesh, (x, y, z), the ion gy-
rokinetic equation is not solved in real space, but in phase space, that
spans the coordinates (x, y, z, v‖, µ). The numerical resolution of the phase
space mesh has been set, in all the simulations that compose this study,
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to (126 × 64 × 256 × 32 × 8) nodes. This choice may not be the opti-
mal one for all magnetic surfaces, but it is a very reasonable one for all
of them. To ensure that this is indeed the case, we have made a very
careful and complete systematic linear and nonlinear convergence study
for each surfaces. In these studies, we monitored the saturation levels of
various physical variables such as the ion heat flux and the parallel and
perpendicular ion temperatures, among others. We describe some of the
convergence tests in the following section.

Convergence tests

The typical aspect of the turbulent electrostatic potential Φ̃, for the QPS
simulations discussed in this thesis, is shown in real space in Fig. 2.14.
It can be easily appreciated that the turbulent, saturated structure, once
the linear growth phase has been left behind, exhibits a clear anisotropy,
with structures being strongly aligned along the field lines as expected.

Figure 2.15: Study of the nz dependence of the growth rate γ for linear
flux-tube simulations of Gene in different radial positions of interest of
the QPS equilibrium.

However, it is important to ensure that this solution is well con-
verged with respect to the various parameters that establish the resolution
along each of the 5 directions in phase space.
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The first thing to consider is that in stellarators, where the mag-
netic field varies its magnitude toroidally and poloidally, the z-direction is
one of the most important to resolve. For that reason, we have determined
the minimum admissible value for nz, the number of points consider along
the z direction, by testing for good convergence in the z direction using in
linear and non-linear flux tube simulations. To do this, we have performed
simulations in which all parameters are identical except for the number of
points along the z-direction.

We have started by calculating the growth rate of linear, flux-
tube ITG simulations at the selected radial positions of interest as a func-
tion of the number of points included in the z-direction. The results of
several of these runs are shown in Fig. 2.15. From the figure, it is clear
that nz = 256 seems to be the minimum resolution admissible in order to
achieve good convergence for all surfaces of the selected QPS configura-
tion. From the plots, it is also clear that the innermost surfaces require a
higher resolution than the outer ones. This fact is related with the larger
value of the safety factor q(s), that increases considerably as one moves
towards the center of the device. Indeed, q(0) ∼ 9, whilst q(a) ∼ 4.5 (see
Fig. 2.4).

Ensuring linear convergence is however not sufficient, since our
interest lies in investigating the nature of radial turbulent transport in the
long-term, non-linearly saturated regime (see Chapter 5). To determine
the minimum nz admissible for nonlinear convergence of the results, we
have also estimated the saturated levels of the turbulent ion radial heat
flux, Q̃i, reached by non-linear, flux-tube simulations carried out at the
same locations as a function of nz. The ion heat fluxes have been averaged
over the whole computational volume. The results are shown in Fig. 2.16,
confirming that nz = 256, the linear result, is also sufficiently good in the
non-linear regime.

Curiously, the value of the safety factor does not seem to have
such a strong impact on non-linear convergence as it for linear convergence,
probably because the nonlinear interaction is less affected by the magnetic
topology than the spatial structure of the linear mode.
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Figure 2.16: Saturated level of volume averaged radial heat flux < Q̃i >
as a function of nz for different radial positions in the QPS-equilibrium.

Next, we discuss the convergence studies to determine the min-
imum admissible value for ny, that gives the resolution along the y di-
rection. After fixing nz = 256, the procedure to investigate the ny-
convergence is almost identical to what was done for nz. But in this
case we use full-annulus simulations instead of flux-tube ones. The reason
for this change (that leads to an increase in complexity and computational
time) is that the field variation on the magnetic surface, but perpendicular
to the field line, plays an important role in the perpendicular transport
dynamics and must therefore be included.

We have investigated first the variation of the growth rate value
γ obtained from linear simulations with different values for ny. The results
are shown in Fig. 2.17, although only for one interior and one exterior ra-
dial position (full-annulus simulations are computationally very expensive,
so available resources only allowed for two simulations). From the figure,
it seems clear that one needs to use at least ny = 64 to guarantee good
linear convergence along the y direction.

Next, similarly to what we did to determine the minimum ac-
ceptable value for nz, we proceed to look for the minimum value for ny
that guarantees non-linear convergence.
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Figure 2.17: Study of the ny dependence of the growth rate γ for linear
full-anullus simulations at different radial positions of interest of the QPS
configuration.

Figure 2.18: Saturated level value of volume averaged radial heat flux
< Q > as a function of ny for different radial positions in the QPS-
equilibrium.
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Again, we have calculated the volume-averaged radial ion heat
flux as a function of ny for the two full-annulus simulations completed
after they reach saturation. The results, shown in Fig. 2.18, also points
to ny = 64 as the minimum admissible resolution along the y direction
that can provide sufficient convergence both linearly and nonlinearly at
all surfaces in the selected QPS configuration.

Figure 2.19: Top: Growth rate γ study as a function of the ky. Middle:
Real part of the growth rate ω. Bottom: Effective diffusivity at each
wavenumber Dk := γ/k2

y.

It must be made clear, however, that the fact that a simulation is
well converged with respect to the spatial resolution does not necessarily
guarantee that all the relevant physics are included. In the case of the y-
direction, the dynamics of interest are those important for the ITG mode.
To ensure that ny = 64 includes all the relevant ITG physics, we have also
calculated the linear growth rate for different wavenumbers along y, ky.
The results are shown in the upper frame of Fig. 2.19. Interestingly, as
it is typical in most stellarators, the growth rate does not go to zero as
ky increases. The relevant quantity to look at here is, however, the level
of transport associated to the ITG mode. Using a mixing-length estimate
that assumes diffusive transport dynamics, the contribution to the overal
radial transport of each wavenumber can be roughly estimated as Dky ∼
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γ/k2
y. This ”effective diffusivity at scale 1/ky” is plotted, as a function of

ky, in the lower frame of Fig. 2.19. The plot clearly shows that the impact
on transport is reduced greatly for ky > 3.5−4. This result coincides with
the rough estimation that Gene does for the size of the computational box
along y that, for ny = 64, is Ly ∼ 115. Using it, a maximum meaningful
ky number can be estimated via kymax = ny2π/Ly ' 3.5.

The last spatial resolution number to determine is nx, the size
of the computational box along the x. To find its minimum admissible
value, we have fixed nz = 256 and ny = 64 and proceeded to carry out
a convergence study for nx. In full-annulus simulations, Gene however
requires as input the maximum number of distinct wavenumbers included
along the x-direction, nkx, instead of the number of points in the real
mesh. Therefore, it is nkx that has been varied in the last set of non-linear,
full-annulus simulations performed. The results are shown in Fig. 2.20,
that shows the volume-averaged radial ion heat flux as a function of nkx.
From the plot, it seems clear that the minimum acceptable value is around
nkx = 64, that translates into nx = 126 in the real mesh.

Figure 2.20: Saturated level value of volume averaged radial heat flux
< Q > as a function of the number of wavenumbers along x, nkx, for
different radial positions in the selected QPS-equilibrium.

Regarding the resolution used along the two velocity directions,
v‖ and µ, that complete the phase space in which the ion distribution func-
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tion is defined, similar convergence studies have been done. To avoid re-
peating ourselves too much, we simply provide here the resulting minimum
admissible resolutions, that were estimated to be nv = 32 and nµ = 8 by
using the same methodology. These minimum resolution values are rather
similar to those obtained for other gyrokinetic simulations of ITG elec-
trostatic turbulence carried out in stellarator geometries with other types
of quasi-symmetries (quasi-helical [86] and quasi-axisymmetric [87, 88])
by members of the Gene team as well as other independent users of the
code.

2.3.3 Temporal length of the gyrokinetic simulations
used in this study

The studiesthat will be carried out in Chapter 5 to determine the nature
of radial transport must be done over the nonlinearly saturated regime of
the turbulence. More precisely, the determination of the long-term nature
of transport, which is the goal of this work, requires that turbulence be
advanced for several tens, if not hundreds, of turbulence decorrelation
times.

As a general rule, one can roughly estimate the decorrelation
time as the inverse of the linear growth rate of the dominant instability
that, in this case, is the ITG mode. Fig. 2.21 shows the time-trace of
the (volume-averaged) ion radial heat flux as a function of time that was
obtained with Gene for two of the full-annulus, nonlinear simulations that
we have carried out in the selected QPS configuration. At the beginning
of each run, the exponential growth phase associated to the linear growth
rate of the dominant ITG mode can be easily identified. Its growth leads
to an estimate of the decorrelation time of the order of τdc ≈ 20− 40 a/cs,
depending on the magnetic surface examined. From this estimate, we
have inferred that the minimum admissible length of the simulations, for
the type of studies we are interested in, correspond to around 50 − 100
decorrelation times.

2.3.4 Ion Temperature Gradient threshold value

The dominant instability in all the Gene simulations we have carried out
for the QPS configuration is the electrostatic ITG mode. Since the density
gradient has been purposely set to zero (that is, the characteristic length
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Figure 2.21: Time evolution of the (volume averaged) radial heat flux
along for two different nonlinear simulations realized at the magnetic sur-
faces located at s0 = 0.17 (blue) and s0 = 0.49 (red).

of the ion density (see Eq. 2.25), ωn = 0), the ion temperature gradient
becomes the quantity that sets the threshold for the onset of the ITG
instability. In order to select an adequate temperature gradient value,
ωT (see Eq. 2.25), we have performed an study of the dependence of the
linear growth rate on the value of ωT using non-linear, full-annulus runs
at different radial positions.

Fig. 2.22 shows the results of the study at three different radial
positions. The threshold value obtained in these runs for the onset of the
instability is roughly around ωthreshold

T ' 2 on all surfaces. In view of this
result, we have settled with a value ωT = 4 for all the nonlinear simulations
that will be used for the investigation described in Chapter 5. With this
choice, we ensure that all simulations remain well above the marginal
point, where the nonlinear saturation of the turbulence would take place
more slowly, thus requiring much longer runs and larger resources that
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Figure 2.22: Growth rate γ variation with the temperature gradient ωT
for three different radial position of the QPS equilibrium. .

what was at our disposal, and where, even more importantly, some of the
underlying ordering assumptions of gyrokinetic theory might be less well
justified [70, 71].

2.3.5 Standard characterization of radial turbulent
transport for the QPS nonlinear simulations

Once the resolution, main parameters and surfaces for the simulations
have been determined and selected, we proceed to describe next the main
transport properties of the runs carried out with the Gene code. The
analysis presented in this section follows the standard approach to this
kind of studies, very common in the literature [71], but that is rather
different from the analysis that we will carry out in the remainder of this
thesis, but that is still valuable for comparison purposes with the work of
other authors in other quasi-symmetric configurations [86, 87, 88].

The saturated value of the (volume-averaged) ion heat radial flux
< Q̃i >Sat, time-averaged over the saturated regime, is one of the most
used diagnostics among Gene users (see Fig. 2.21). In the traditional
analysis, that assumes that turbulent transport can be modelled via an
effective diffusion operator as previously discussed, an effective thermal
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Figure 2.23: Ion thermal conductivity χi (left, in red) and radial shearing
strength of the plasma poloidal flow (right, in blue) as a function of the
degree of quasi-poloidal symmetry σqp(s).

ion conductivity χi is estimated from the ratio,

χieff =

〈
−Q̃i

∇Ti

〉
V

≈ −< Q̃i >Sat

∇Ti
(2.26)

In our study, however, since the temperature gradient is fixed (i.e., ωT =
4), the effective conductivity behaves essentially as a surrogate of the ion
heat flux.

The influence of quasi-symmetry on radial transport can be in-
vestigated by plotting the value of the effective thermal conductivity at
each surface (see also Table 2.1 at the end of the chapter) in terms of the
value of the degree of quasi-poloidal symmetry, σqp (Eq. 1.10). The result
is shown in Fig. 2.23 [40]. Clearly, the ion thermal conductivity is nega-
tively correlated with the degree of quasi-poloidal symmetry. The resulting
reduction in radial transport is consistent with the results obtained, by
other authors, in non-linear gyrokinetic simulations carried out in quasi-
helically symmetric [86] and quasi-axisymmetric [87] devices, where the
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radial ion heat transport was also found to decrease as the magnetic field
strength became endowed with larger degrees of quasi-symmetry.

We have also tested the hypothesis of whether the observed re-
duction in radial transport is correlated to the larger ability of the plasma
to generate poloidal flows with strong radial shear, that would follow from
the reduced neoclassical poloidal viscosity expected in regions of high
levels of quasi-poloidal symmetry [38]. To do it, we have chosen as a
figure-of-merit for the shearing power of the flow the volume-average of
the x-derivative of the local angular poloidal velocity, Ωθ. This quantity,
in Gene internal coordinates, can be computed as [40]:

Ωθ =
(vz + Cyq0vy)/

√
g

gzz + C2
yq

2
0gyy + 2Cyq0gyz

, (2.27)

where q0 is the safety factor at the surface where the simulation is centered,
vz and vy are the covariant components of the E×B drift velocity, and gzz,
gyy and gyz are the proper covariant metric elements. The reason to choose
Ωθ is because it is intrinsically related to the part of the poloidal angular
turbulent velocity which is tangent to the magnetic surface s = s0. As
clearly seen in Fig. 2.23 (see also Table 2.1), there is indeed an important
positive correlation between the radial shearing strength of the poloidal
flow and the degree of quasi-poloidal symmetry, as previously theorized
[38].

However, it is worth noting that, from the fact that a finite ef-
fective conductivity can be computed in this (or any other) case (using,
for instance, Eq. 2.26), it does not necessarily follow that the nature of
radial heat transport is diffusive in the system. Such a conclusion has
been forced into the description adopted here, not derived from the anal-
ysis. In fact, in any finite system where transport is non-diffusive over a
certain range of scales, effective coefficients can be computed but they will
be unable to properly capture the dynamics over those scales. The anal-
ysis of the advection of massless tracer (and also massive) particles that
we will describe in the remainder of this thesis, and that is discussed at
length in Chapter 5, will further prove the truth of this statement, since
it will yield non-diffusive values for the transport exponents (α and H,
introduced in Chapters 2 and 3). Therefore, the analysis suggests that ra-
dial transport of an increasingly non-diffusive nature sets in as the degree
of quasi-symmetry increases. Although, strictly speaking, our advection
analysis refers only to radial particle transport (and not to heat conductive
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s0 σqp q χT [vTρ
∗2a] 〈Qi〉V [Qref ] 〈|dΩθ/dx|〉V [ξref ]

0.10 0.92 7.42 4.81 62.67 31.87
0.17 0.91 6.56 5.54 74.38 16.52
0.22 0.85 5.75 5.87 77.85 11.65
0.32 0.80 5.44 6.75 87.41 7.59
0.37 0.78 5.22 6.93 88.68 6.55
0.49 0.73 4.90 7.38 92.42 5.12
0.63 0.68 4.68 8.08 99.20 4.27
0.72 0.65 4.60 9.84 100.52 4.02

Table 2.1: Values, at the various surfaces of the QPS configurations where
Gene simulations have been carried out, for the quasi-poloidal symmetry
ratio σqp, the safety factor q, the effective ion thermal conductivity χT ,
the (volume-averaged) ion heat flux 〈Q〉 (with Qref = vTρ

∗2p0
ref/L

2
ref ) and

the radial shearing capability of the poloidal flow 〈| dΩθ/ dx|〉.

transport), these results do still suggest that a description of heat trans-
port in terms of usual conductivities might not be the most appropriate
either.
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Chapter 3

Diagnostics to characterize
the nature of transport in
numerical simulations of
turbulence

The main objective of the present thesis is to answer the question of
whether the nature of the turbulent transport along the radial direction
(i.e. along x, in Gene internal coordinates) changes, in a quasi-poloidal
stellarator, as the level of quasi-symmetry is varied. We have at our dis-
posal, to investigate this question, a set of full-annulus gyrokinetic simula-
tions of electrostatic ITG turbulence, carried out with the Gene code, in
the neighbourhood of different magnetic surfaces of a selected configura-
tion of the QPS device. The degree of quasi-poloidal symmetry varies from
one surface to another, so that we need a methodology to examine them
in a way in which the nature of radial transport can be made apparent.

Two independent methods will be used in this thesis to charac-
terize the nature of radial transport. This duality will allow us to compare
and better validate the results. The first method relies on the determina-
tion of propagators and the analysis of their (fractional) standard deviation
growth. Both the propagator and the (fractional) standard deviation are
determined numerically by advancing in time an initially peaked distribu-
tion of tracked particles as they are affected by the turbulence. On the
other hand, the second technique is based on the determination of the
statistical and correlation properties of the Lagrangian velocities of the
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tracked particles, also as they are advected by the background turbulence.
We introduce the basics of both techniques in this Chapter. Since

both methods characterize the nature of transport by comparing the prop-
erties of the motion of the tracked particles with those of fractional Lévy
motion (fLm), we will start by discussing this model. The fLm is a stochas-
tic model that generalizes the popular Langevin equation from which clas-
sical diffusion (i.e., Eq. 3.3) is often derived. As a result, fLm is a good
model to describe non-diffusive transport.

3.1 Fractional Lévy motion

The traditional Langevin equation gives the position of a single particle
moving in one dimension as [55]:

x(t) = x0 +

∫ t

0

dt′ξ2(t′), (3.1)

where ξ2(t) is a Gaussian, uncorrelated noise with a correlation function
given by 〈ξ2(t)ξ2(t′)〉 = Dδ(t − t′) and D its diffusivity. The connection
between the Langevin equation and the usual diffusive transport can be
easily established, for example, by computing the propagator of Eq. (3.1).
The propagator is the probability of finding the particle at any position
x at time t > 0 starting at x0 for t0 = 0. In the case of the Langevin
equation, its propagator is [55]:

PLE(x, t|x0) =
1√

2πDt
exp

(
−(x− x0)2

2Dt

)
. (3.2)

That is, the propagator has the form of a Gaussian distribution with a
standard variation that grows with time as σLE = (Dt)1/2.

In the case of particle diffusive motion, the equation of transport
is well known and given by,

∂n

∂t
= D

∂2n

∂x2
. (3.3)

It turns out that the propagator and (the standard deviation) of the dif-
fusive equation is also given by Eq. 3.2. Because of that, the Langevin
equation is often used as a model of the ”microscopic dynamics” of systems
that exhibit macroscopic diffusive transport [55].
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In a natural turbulent system, however, the role of the noise
would be played by the Lagrangian velocity of the particle being trans-
ported, whose correlation function is often modelled as,

〈v(t)v(t′)〉 ∼ v2
c exp

(
−|t− t

′|
τc

)
. (3.4)

With this choice, the long-term, long-distance limit of transport is also well
described by the classical diffusive equation with diffusivity D ∼ v2

cτc.
Therefore, one can conclude that the long-term dominance of

diffusive transport is ultimately related to the existence of finite charac-
teristic scales, in space as in time, associated to the transport process.
Those scales, for the turbulent system just discussed, are lc ∼ vcτc and
τc respectively. The characteristic velocity, vc, is related to the (square
root of the) variance of the distribution of Lagrangian velocities; τc, on
the other hand, determines for how long memory is maintained (in its
velocity) as the particle advances along its (Lagrangian) trajectory.

3.1.1 Fractional Langevin equation

However, there are situations, where characteristic transport scales do
not exist. In those situations Eq. 3.1 is not an appropriate model to
capture the transport dynamics. These instances are often referred to
under the general name of non-diffusive transport [56]. In those cases, a
more suitable generalization than the Lagevin equation is provided by the
stochastic equation [89, 90]:

x(t) = x0 +
1

Γ(H − 1
α

+ 1)

∫ t

0

dt′(t− t′)H−
1
α ξα(t′), (3.5)

where Γ(x) represents the Euler’s gamma function. Here, ξα(t) is again
noise, but distributed in this case according to an uncorrelated, symmet-
ric Lévy distribution [90], (see Appendix A: Lévy distributions, for a brief
introduction to these pdfs) with a tail exponent α ∈ (0, 2] instead of a
Gaussian distribution. In fact, the Gaussian distribution is just a partic-
ular case of symmetric Lévy distribution with α = 2. For α < 2, Lévy
distributions have a fat power-law tail, Lα(x) ∝ |x|−(1+α), and lack a fi-
nite variance (in fact, all moments of order α or larger are infinite [90]).
Clearly, ξα can no longer be a surrogate of the Lagrangian velocity. The
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latter is obtained by differentiating (with some care) Eq. 3.5. The expo-
nent H ∈ (0,max(1, 1/α)], on the other hand, is referred to as the Hurst
exponent [91]. Its range of possible values is limited to ensure that the
propagator of Eq. 3.5 remains well-behaved [90].

It can be shown that the fractional Langevin equation asymptot-
ically tends, for α < 2 and in the fluid limit (x, t→∞), to the fractional
differential equation [92]:

∂n

∂t
= −0D

1−αH
t

[
D
∂αn

∂|x|α

]
, (3.6)

where 0D
1−αH
t (known as a Riemann-Liouville time derivative) and ∂α/∂|x|α

(a spatial Riesz derivative) are two integro-differential operators, known
under the general name of fractional operator (see Appendix B: Fractional
derivatives and integrals for a quick introduction to these operators), that
respectively integrate over the past history of the system and the whole
spatial domain [61, 62]. This extended integration domains are a reflection
of the lack of characteristic scales in time and/or in space.

We conclude this subsection with two comments relative to Eq. 3.6.
First, it is traditional to introduce an additional (temporal) fractional ex-
ponent β, defined via the relation:

β = αH. (3.7)

We will discuss its significance soon. Secondly, the relation between local
particle fluxes (i.e., Γ) and density gradients (i.e., ∇n) in Eq. 3.6 is no
longer given by the classical Fick’s law (see Eq. 1.11). Instead, much more
complicated relations that involve a fractional integro-differential kernel
appear [93]. Thus, effective diffusivities cease to have a clear physical
meaning in this context, even if they can still be estimated as the ratio of
these two quantities.

3.1.2 Fractional Brownian motion

Several famous stochastic models are contained, as particular cases, inside
Eq. (3.5). For instance, the usual Langevin equation is recovered by mak-
ing the choice of exponents: α = 2 and H = 1/2. On the other hand, if
α = 2 but H is not fixed, Eq. (3.5) reduces to the famous fractional Brow-
nian motion (fBm) introduced by Mandelbrot in the 60’s. The propagator
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of fBm is still a Gaussian distribution but with a standard deviation that
grows in time like [91]:

σfBm ∝ (Dt)H

(2H)1/2Γ
(
H + 1

2

) . (3.8)

Clearly, the fBm propagator only scales diffusively if H = 1/2. Otherwise,
fBm transport is either subdiffusive (H < 0.5) or superdiffusive (H > 0.5).

One can also study the properties of fBm transport from the
ordered sequence of its velocities (obtained by direct differentiation of
Eq. 3.5). It turns out that, although the variance of the pdf of these
velocities (that sets the velocity scale, vc, as was previously discussed)
is well defined, a finite timescale (i.e., τc) is lacking whenever H 6= 1/2.
This means that memory (i.e., long-term temporal correlations) is being
maintained for infinitely long times along the Lagrangian trajectory, a
consequence of the power-law kernel in Eq. (3.5). As a result, the long-
term, long-distance limit of transport no longer corresponds to classical
diffusion.

3.1.3 Fractional Lévy motion

Another famous model contained by the fractional Langevin equation is
fractional Lévy motion (fLm) [89]. fLm corresponds to the choice of ex-
ponent α < 2. In that case, the propagator of Eq. 3.5 takes the form of a
symmetric Lévy distribution [94]:

P fLm(x, t|x0) = t−HLα,σfLm

(
x− x0

tH

)
(3.9)

with scale factor σfLm defined as

σfLm = σξα

[
(αH)1/αΓ

(
H + 1− 1

α

)]−1

, (3.10)

being σξα the scale factor of the noise Lévy distribution. Since all moments
of order α or larger are now infinite, a characteristic length for transport
is no longer present. However, any moment of order µ < α is still finite,
scaling as

〈(x− x0)µ〉 ∝ tµH , (3.11)
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where µ need not be integer. Following fBm conventions, the scaling
H = 1/2 is still referred to as a diffusive scaling, although dynamics are
neither Markovian nor Gaussian since α < 2. It is also customary to keep
using the term subdiffusion if H < 0.5 and superdiffusion if H > 0.5.

It turns out that the dynamics of fLm are Markovian only if H =
1/α (i.e., β = 1), since the temporal derivative in Eq. 3.6 disappears and
the evolution of the particle would then only depend on the information of
the local history. In this case τc is finite but vc cannot be defined because
the velocities are distributed according to Lévy statistics with tail-index
α, that lack a finite variance. If H 6= 1/α, on the other hand, the process is
not Markovian and future motion of the particle depends on their previous
history. This is in fact the more general case of fLm, in which neither a
finite vc nor a finite τc can be defined.

3.2 Characterization of the nature of trans-

port in turbulent simulations using prop-

agators.

It is possible to use the properties of fLm to characterize the nature of
radial transport in our Gene simulations. The idea is to estimate the
fractional exponents α and H that best describe the features of the radial
transport driven by turbulence. The first method we will use relies on the
use of the propagators just discussed. There are various ways to do this
that have been discussed in the literature [1, 95, 96]. But in our case,
based on what was described in the previous section, we will use the tails
of a numerical estimation of the propagator of the process to get α, and
the rate at which the finite moments (i.e., those of order less than α) of
the numerical propagator grow over time to provide an estimate for the
exponent H.

In order to use this method, we need to build a numerical ap-
proximation of the propagator of the transport process. To do this, we
need a code capable of advecting and tracking particles in the presence
of the turbulence. That is, a code that integrates the trajectories of indi-
vidual particles as they are advected by the turbulence and, possibly, any
other relevant process that affect their motion. The code that we have
developed to carry out this task, TRACER, will be described in Chapter
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Figure 3.1: Snapshots of the numerical propagator, shown in log-lin scale,
obtained by tracking 104 particles as they are advected by the turbulence
generated by Gene at the radial position s0 = 0.10 of the selected QPS
configuration.

4. Assuming that such a code is available, a numerical approximation of
the propagator could be easily obtained if one initially distributes a col-
lection of particles randomly in all directions except along the direction of
study (the radial direction in our case), in which particles are concentrated
instead at the same position. The temporal evolution of this population
will provide estimates of the propagator of the process at later times. In
order to be able to extend the particle trajectories as long as possible, the
particles are located at the centre of the (radial) domain. It is also evident
that, in order to approximate the initial delta-function condition as much
as possible and keep a good resolution during the temporal evolution, as
many particles as possible should be used. In our runs, we have always
tracked populations of at least 104 − 105 particles.

The process is illustrated in Figure 3.1 for one of the Gene sim-
ulations of the QPS configuration selected for this thesis. After the initial-
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Figure 3.2: Positive tail of the estimated radial propagator (log-log scale)
calculated in the neighbourhood of the magnetic surfaces located at s0 =
0.10 and s0 = 0.63. The propagator tail scales as P (∆x) ∼ |∆x|−(1+α),
from which α ∼ 0.8 is inferred.

ization phase, all tracked particles are advected by the velocity field calcu-
lated from Gene ’s turbulent fields. This advection causes the spreading
of the propagator across the (radial) domain, as shown in the figure. It is
also seen that the central peak gets lower and flatter and the propagator
develops long fat tails reminiscent of those of Lévy distributions.

If non-diffusive transport is indeed at work, it is expected that the
tails of the numerical propagator should behave like P (∆x) ∝ |∆x|−(1+α)

at sufficient long times. Then, it is very easy to estimate α just by fitting
the tail of the distribution to a power law. Fig. 3.2 illustrates the method
for two different QPS simulations. Both of them yield similar values for
the exponent, that is α ∼ 0.8. The picture also shows the typical shape of
the propagators in log-log scale. There are often (at least) three distinct
regions. A first one where the propagator is almost flat, at the smallest
values of the argument; a second region, where the power law we are
interested in (if it exists) is clearly manifested. And, finally, a third region,
at the largest values of the argument, where the statistics get very poor
and the tail is often truncated. Regretfully, the extend of the second region
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Figure 3.3: Fractional standard deviation as a function of time (in log-log
scale) for two different QPS simulations. In red, results are shown for the
simulation run around the magnetic surface s0 = 0.63; in blue, around
s0 = 0.10.

is less than a decade in the example shown in Fig. 3.2, which is a tad too
short to reliably determining α. This is also the case in the majority of
our Gene simulations. We will discuss the reasons and consequences of
this fact in detail in Chapter 5.

In order to estimate the Hurst exponent using the numerically
estimated propagators, a fractional version of the standard deviation is
calculated [1]. At any finite time, the fractional standard deviation is
then defined as:

σ(t) =

[∫
|x− x0|µP (x, t)dx

]1/µ

, µ < α, (3.12)

where it is assumed that the propagator is symmetric. By comparing this
fractional standard deviation growth with Eq. 3.11, one can estimate the
exponent H simply by fitting σ(t) to the power law tH . This is illustrated
in Fig. 3.3 for the same simulations used in Fig. 3.2. Again, Fig. 3.3 also
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serves to illustrate the (at least) three regions that typically appear in
these curves. First, a flat region at the smallest time lags (of the order of
a few turbulence decorrelation times), followed by a power-law region (if
it exists) that is the one relevant for the current analysis. At much longer
time lags, the scaling is again usually lost, in most cases due to finite-size
effects or lack of statistics.

3.3 Characterization of the nature of trans-

port in turbulent simulations using La-

grangian velocities.

The second method that is used in this thesis is based on the charac-
terization of the statistics and the correlations of the component of the
(Lagrangian) velocity of tracked particles along the direction of inter-
est [97, 98]. By comparing the results with what is expected for fLm,
one can easily estimate both α and H.

Again, we will need a particle tracking code such as TRACER.
The particles to be tracked must now be uniformly initizalized in all direc-
tions throughout the computational box. The radial (Lagrangian) velocity
of the tracked particles, in Gene internal coordinates, is computed at any
given time as:

vr =
vx

|ex|
=

vx√
gxx

. (3.13)

The reason why one needs to use this expression is that the ve-
locity that Gene outputs, vx, is the radial contravariant component of
the particle velocity. Since the coordinate system Gene uses is not or-
thonormal, the x-component must be divided by the length of the proper
contravariant basis vector, |ex| =

√
gxx to yield the actual radial velocity.

The procedure to follow to estimate the exponents, in this case,
goes like this. If radial transport does lack any characteristic scale, the
probability density function (pdf) for the radial velocities of the tracked
particles should then follow a symmetrical Lévy distribution. Therefore,
the fractional exponent α can be estimated from the tail-index of the
pdf of the component of the velocity along the radial direction on the
limit of v → ∞. Or, in other words, by quantifying whether the pdf of
these velocities decays (or not) as a power law p(v) ∼ |v|−(1+α) for large
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values of |v|. Taking into account that each tracked particle is statistically
independent of any other, the results are greatly improved by calculating a
normalized histogram that includes the velocity components of all tracked
particles at many different times.

Figure 3.4: Above: pdfs of the Lagrangian radial velocities (in log-lin
scale); the blue curve corresponds to 104 tracked particles advanced in
the turbulence calculated around the surface s0 = 0.32, where the quasi-
poloidal symmetry ratio is σqp = 0.80; the red one, to tracked particles
advanced around the surface s0 = 0.63, where σqp = 0.68. Below: instan-
taneous tail exponent (see Eq. 3.14) for the two pdfs. The start of the
mesoscale range is marked with a vertical line and an arrow.

The procedure is illustrated in Fig. 3.4 using 104 tracked particles
advanced in the same turbulence used for Figs. 3.2 and 3.3. In the upper
frame, the pdfs of the radial velocities are presented in log-lin scale.
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In order to better estimate α, we also calculate their instanta-
neous tail exponent, that is defined as,

α(v) = −
(

1 +
v

p(v)

dp

dv

)
, (3.14)

and that is shown in the lower frame of the same figure. The mesoscale
region, over which α(v) is roughly constant, is used to determine the
value and range of validity of the exponent. Regretfully, as it is apparent
from the figure, an exponential cutoff appears for the simulated data at
the larger values of v which limits significantly the mesorange. All the
simulations done with Gene exhibit a similar behaviour. The origin of
the cut-off is still not well understood. The implications of its existence
will be discussed in Chapter 5.

To estimate the Hurst exponent, on the other hand, we use a
simple variation of the popular rescaled-range analysis or [R/S] method,
introduced by H.E. Hurst in the 50s to quantify memory in Gaussian-
distributed time series [99]. The [R/S] analysis is a statistical measure
which quantifies the type of correlation present in a long series of data
at different timescales by comparing its properties to fBm (or in our case
fLm). Assuming a time series Vk, k = 1, 2, · · ·N , Hurst’s original pre-
scription required the computation of the rescaled range:

[R/S](τ) :=
max

1≤k≤τ
W (k, τ)− min

1≤k≤τ
W (k, τ)√

〈V 2〉τ − 〈V 〉
2
τ

, (3.15)

with

W (k, τ) :=
k∑
i=1

Vi − k 〈V 〉τ . (3.16)

Here, 〈·〉τ represents the temporal average up to time τ . When
the signal resembles fBm, then [R/S] ∼ τH , with H being the Hurst expo-
nent. The prescription must however be slightly modified [97, 98] to deal
with fLm, due to the divergent nature of its variance. In those cases, the
denominator of the rescaled-range is replaced by the fractional standard
deviation. It is useful to introduce the instantaneous Hurst exponent as a
function of the [R/S],

H(τ) := − τ

[R/S](τ)
· d[R/S]

dτ
(τ) = −τ · d ln[R/S]

dτ
(τ), (3.17)
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that is used to determine the range of scales where H is well defined. They
will appear as flat regions in the instantaneous Hurst exponent.

[R
/S
]

Figure 3.5: Above: rescaled range (i.e., [R/S]) as a function of time delay
for two time series of radial Lagrangian velocities; the blue one comes
from a tracked particle advected by the turbulence computed by Gene
around s0 = 0.22 where the quasi-poloidal symmetry ratio is σqp = 0.85;
the red one, from a tracked particle advected in the turbulence calculated
around s0 = 0.63, where σqp = 0.68. Below: instantaneous Hurst exponent
(Eq. 3.17) for the same two series. The auto-correlation and mesoscale
ranges are marked with vertical lines and arrows.



82 CHAPTER 3. TRANSPORT DIAGNOSTICS FOR TURBULENCE

As a final remark, it is worth saying that we remove any depen-
dence on the initialization of the tracked particle from H by averaging
the rescaled range function over all tracked particles. The procedure is
illustrated in the Figure 3.5, where the results of performing the [R/S]
analysis on time series of the Lagrangian radial velocity for the same two
QPS simulations are shown. The shape of the [R/S] function in this fig-
ure is rather typical. With a first range at the lowest time lags in which
[R/S] ∼ τ (ballistic regime) that gives a rough estimate of the Lagrangian
auto-correlation time. For the cases shown, it is roughly τL ∼ 10 a/cs.
At longer scales, about τ > 102a/cs, is where the mesorange dynamics
appear in the form of a second power-law range. It is the exponent, in
this second region, the one which corresponds to the Hurst exponent. The
figure shows two different cases, one for a tracer advanced in the turbu-
lence calculated at s0 = 0.63 (σqp = 0.68) in which [R/S] ∼ τ 0.49, mildly
subdiffusive (in particular, since R/S is known to somewhat overestimate
H, yielding H ≈ 0.55 for a random signal [100]), and a second one ad-
vanced at s0 = 0.22 (σqp = 0.85) where [R/S] ∼ τ 0.45, that is distinctly
subdiffusive.



Chapter 4

The TRACER code

The two techniques that we have used in this thesis to characterize the
nature of transport, discussed at length in Chapter 3, both require the de-
tailed knowledge of the trajectories that individual particles follow as they
are advected by the turbulence. Regretfully, advecting particles within
modern Vlasov gyrokinetic codes is not a trivial task due to their large
computational cost and their sophisticated but fragile parallel optimiza-
tion [101]. As a result, the most straightforward way to carry out this
type of studies –namely, to include the tracked particle evolution within
the normal Vlasov-Poisson time-stepping– is not very practical. Nonlin-
ear gyrokinetic simulations are highly parallel, with a lot of communica-
tion, and are very expensive to run. Including particle tracking inside a
code like Gene would require a major overhaul of the code in order to
maintain its internal balance for optimal parallelization and performance.
In addition, every time that a different tracked particle initialization is
needed, the whole gyrokinetic simulation would have to be rerun, thus in-
curring in a huge waste of computational resources. This last fact becomes
even worse when considering that it is often convenient to use different
tracked particle initializations with the same background turbulence. For
all these reasons, we have developed our own external particle tracking
code, TRACER, that is able to advance massless and massive particles
in the turbulence that Gene calculates, once all necessary information
has been read from the files generated by the gyrokinetic code. The main
features of TRACER are described in this chapter.

83
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4.1 Equations of motion for tracked parti-

cles

The TRACER code we have developed can integrate in time the trajec-
tories of two types of particles: i) massless, neutral tracer particles and 2)
massive, charged particles. The user will be prompted at run-time about
the type of particle to be considered and TRACER will choose the proper
equations to integrate accordingly. We discuss briefly these equations
next.

4.1.1 Equations of motion in vector form

The equation that is integrated in time, for each particle tracked, is the
one that expresses the Lagrangian velocity of the particle as:

ṙ = vE×B + vMagn + v‖
B

B
. (4.1)

That is, it includes all the important drifts that need to be considered in
a magnetically confined plasma. In particular, the E×B turbulent drift,
the magnetic drift and the parallel motion [27, 29]. The E×B turbulent
drift is obtained, at every point, as:

vE×B = −∇φ̃×B

B2
, (4.2)

where the fluctuating potential φ̃ is the one computed by Gene and that
must be read from previously existent files. The magnetic field B cor-
responds to the background field of the configuration of interest and is
provided by the VMEC code, and then transformed by GIST as explained
in Chapter 2.

When TRACER is pushing massive, charged particles, the mag-
netic drift velocity is given by the usual formula [27]:

vMagn. =
mv2

2qB3

(
1 +

v2
‖

v2

)
B×∇B, (4.3)

Parallel motion is also included by coupling to the parallel equation of
motion,

v̇‖ = − µ
m

B · ∇B
B

, µ̇ = 0. (4.4)
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The parallel dynamics thus include a mirror term, opening up the possi-
bility of causing particle trapping in the magnetic field, if the conditions
are adequate (i.e., non-homogeneous magnetic field plus sufficiently low
particle energy).

If TRACER is pushing instead massless, neutral tracers, the
magnetic drift velocity vanishes and v̇‖ = 0. Thus, no real parallel dy-
namics are included for massless particles. Or, in other words, v‖ is kept
constant and equal to its initial value for all tracers. Therefore, tracers
simply follow the trajectory dictated by the local E × B turbulent drift,
in addition to their steady parallel motion. In fact, the characteristics of
the E×B flow can be calculated by using massless tracers with v‖ = 0.

4.1.2 Equations of motion in GENE internal coordi-
nates

The general equations of motion given in the previous section must, how-
ever, be made explicit in Gene internal coordinate system in order to
be usable by TRACER. That is, we need to express them in the (x, y, z)
field-aligned coordinates that were described in Chapter 2. We will not go
through the long, but straightforward, algebra required for their deriva-
tion. Instead, we provide the final result, together with an explanation of
their meaning.

After neglecting terms of order ρ∗ and higher (which is consistent
with how the gyrokinetic equation is derived within Gene ), the vectorial
Eq. 4.1 reduces to three equations, given by1:

dx̂

dt̂
= v̂xE×B + v̂x∇B + v̂xc (4.5)

dŷ

dt̂
= v̂yE×B + v̂y∇B + v̂yc (4.6)

dẑ

dt̂
= v̂Tj(x0)v̂‖b̂

z (4.7)

dv̂‖

dt̂
= −

µ̂v̂Tj(x0)

2
b̂z
∂B̂0

∂ẑ
(4.8)

These are the equations implemented within the TRACER code.
We will start by discussing the parallel (i.e., z) equation. As previously

1Here, hats are introduced to remind that all quantities are normalized (see Chapter
2).
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said, the evolution equation for the parallel velocity is only used if tracked
particles possess mass. In the opposite case, the magnetic µ̂ = 0 and v̂‖
is a constant, set by its initial value. Another important aspect to be
noted is that b̂z is the z component of the b = B0/B0 unit vector. If
the Gene coordinate system was perfectly aligned, bz would be one, since
the direction of the field would be along z. However, as we discussed in
Chapter 2, the fact that Gene forces the z direction to be periodic implies
that the safety factor of the equilibrium field, B0, is not identical to that
of the coordinate system. Then must be consistent with the number of
points in the mesh, that must be connected to other points of the same
mesh after z increases by 2π. As a result b̂ is not perfectly aligned with
the z direction, and a bz < 1 must be retained.

Regarding the equations along the directions perpendicular to
the magnetic field, x and y, Eqs. 4.5 and 4.6 include first the turbulent
E × B drifts, whose contravariant components in Gene coordinates are
given by,

v̂xE×B =
−1

Ĉ(x)

∂φ̂

∂ŷ
; v̂yE×B =

1

Ĉ(x)

∂φ̂

∂x̂
. (4.9)

Secondly, they also include the magnetic drift, that has been
split in its two traditional contributions. A first one, associated to ∇B0,
is given by,

v̂x∇B =
µ̂T̂0j(x0)

q̂jĈ(x)

(
−∂B̂0

∂ŷeq
− γ̂2

γ̂1

∂B̂0

∂ẑ

)
(4.10)

v̂y∇B =
µ̂T̂0j(x0)

q̂jĈ(x)

(
∂B̂0

∂x̂eq
− γ̂3

γ̂1

∂B̂0

∂ẑ

)
. (4.11)

whilst the second one, associated to the curvature of the field becomes:

v̂xc =
2v̂2
‖T̂0j(x0)

q̂jB̂0Ĉ(x)

(
−∂B̂0

∂ŷeq
− γ̂2

γ̂1

∂B̂0

∂ẑ

)
(4.12)

v̂yc =
2v̂2
‖T̂0j(x0)

q̂jB̂0Ĉ(x)

(
∂B̂0

∂x̂eq
− γ̂3

γ̂1

∂B̂0

∂ẑ
+
βref

2B̂0

∂p̂0

∂x̂eq

)
(4.13)
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Figure 4.1: Scheme of the main modules of TRACER. Red arrows follow
a typical iteration inside the code.

These equations must be completed with the definitions of some
additional quantities, related to the metric elements and defined as:

γ̂1 = ĝxxgyy − gxygyx; (4.14)

γ̂2 = ĝxxgyz − gxygxz;
γ̂3 = ĝxygyz − gyygxz. (4.15)

Finally, the constant Ĉ = B̂0/γ̂1 has also been introduced.

4.2 TRACER workflow

The workflow of a typical TRACER run is shown in Fig. 4.1. It comprises
an initial phase where spatial and temporal fields are read from preexis-
tent files (generated either by Gene or GIST); a second phase where the
number and type of the particles to be tracked are selected and their posi-
tions and velocities initialized; a third phase where the temporal advance
of all particles takes place; and a final phase where several diagnostics are
used to monitor the run.
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4.2.1 Interpolation of spatial fields

TRACER reads all the input information needed from files that Gene
(or GIST) produces. Namely, the background magnetic field of the con-
figuration of interest, the metric elements of the transformation to Gene
internal coordinate system, and the temporal variation of the turbulent
electrostatic potential field. All the field information on file is however
given on Gene ’s spatial (and temporal, in the case of the electrostatic
potential) grid. The integration of the tracked particle trajectories re-
quires that those fields are known along the particle trajectory, instead.
To provide it, TRACER interpolates at any desired location by using ei-
ther a linear or a B-spline scheme. Interpolation through B-splines has
more accuracy but increase the time necessary for a simple iteration in
a factor between 10 − 100. In the case of non-varying-in-time quantities
(such as the metric, or the magnetic field), all interpolation coefficients
needed are calculated at the beginning of the run. The case of the turbu-
lent electrostatic potential, that varies as time advances, must be handled
differently.

4.2.2 Particle initialization

The various analysis methods discussed in Chapter 3 to characterize ra-
dial transport in this thesis (i.e., propagators, Lagrangian velocities, etc.)
require different particle initializations, particularly along the x direction.
For that reason, the TRACER code includes several possible initialization
schemes. The two most used initializations are: i) uniformly distribution
in x, y and z; and ii) localised around x = x0, but uniform in y and
z. The former initialization is the one needed for the application of the
Lagrangian method. The latter, for the calculation of radial propagators.

Regarding the initialization of v‖ and µ, it also depends on the
problem being solved. In all the runs included in this thesis, we have al-
ways set µ = 1. The initialization for v‖ is done according to a Maxwellian
distribution, p(v‖) ∝ exp(−miv

2
T/2kBT ), where the thermal velocity and

temperature are set to those of the background plasma considered in the
Gene simulation. In that sense, the motion of the tracked particles is
brought closer to that of the thermal ions that would be confined in the
magnetic configuration, in order to make the results of our analysis rele-
vant for understanding their dynamics.



4.2. TRACER WORKFLOW 89

+15

-15

[T  /e]ref

~

Figure 4.2: Trajectories of four different tracer particles (blue, red pink
and dark-blue lines along z-direction) in the turbulent electrostatic field
generated by Gene . The turbulent electric potential is also included by
means of two of its isovolumes, one for a positive value (in green) and other
negative (in yellow). The plot is presented in Gene internal coordinates
(x, y, z). The vertical yellow structure of potential is associated with the
zonal flow dynamics (remember that z = θB).

4.2.3 Integration of trajectories

Typically, the number of particles tracked by the TRACER code ranges
from a few tens of thousand to a few million. After the particles have
been initialized according to the needs of the run, both in space (x, y and
z) and velocity (namely, v‖ and µ), they are advanced in time by the time
integrator. Several integration schemes are available, although we have
stuck to a 4-th order Runge-Kutta integrator [102] for all the calculations
presented in this thesis. Depending on whether the particles being pushed
possess mass or not, the integrator may include (or not) the evolution of
the parallel velocity, as dictated by Eq. 4.4.

Each particle trajectory is clearly independent of any other, since
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there is no interaction among the various particles. This is true both for
massless and massive tracked particles. As a result, the TRACER code
is easily parallelizable. This is done by distributing the particles among
all available processors in a balanced way, which accelerates calculations
almost linearly with the number of processors.

Several typical trajectories computed with TRACER, in this case
for massless particles, are illustrated in Fig. 4.2 using Gene internal co-
ordinate system. We use to visualize them one of the diagnostics included
in TRACER. As it is apparent, the motion of the tracers happens mostly
along z, where tracers basically free-stream. The structure of the electro-
static potential that advect them is also shown in the figure, by mean of
several isovolumes of the potential, plotted in different colors.

4.2.4 Interpolation in time of the varying turbulent
electrostatic potential

At this point, it is time to discuss how the problem with the time-varying
turbulent electrostatic potential mentioned previously is handled by TRA-
CER. On one side, TRACER requires the electrostatic potential value at
the particular time instants required by the particle time advance algo-
rithm. On the other side, the electrostatic potential is written in a GENE
large file, as a series of snapshots with enough frequency to capture the
whole dynamics. In general the time-step used in the TRACER time ad-
vance algorithm differs from the time-step used to write the snapshots
in the GENE file. Time interpolation is thus required. In particular,
TRACER estimates the potential at the required time instant using the
closest (in time) four snapshots existent in the potential file. Then, from
those snapshots, the value is obtained using third order spline interpola-
tion [102].

4.2.5 Diagnostics

Once the integration of the particles trajectories has been carried for a
prescribed amount of time, several types of output may be produced.
Some of them are dictated by the needs of the analysis techniques used to
characterize the nature of transport: the calculation of propagators (along
the radial direction), and the analysis of radial velocity series along the
Lagrangian trajectories of the flow, etc. These quantities are typically
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Figure 4.3: Volume colour plot of the magnetic field strength B (left)
and turbulent electrostatic potential (right) shown in Gene coordinates
(x, y, z). The fields have been taken from the Gene simulation carried
out at the magnetic surface s0 = 0.10.

written on file, in a format that facilitates its processing by other analysis
tools (such as Matlab, VisIt, or various custom-made Fortran codes).

Other diagnostics that are also available are of the graphical kind
and can be used to produce files (in either HDF5, Silo or text formats)
that can be used to visualize (using, for instance, applications such as
VisIt or xmgrace) either individual particle trajectories or to inspect the
spatial (and maybe temporal) structure of all background and turbulent
fields. Of particular interest are those diagnostics that allow to convert the
different fields and their components from the internal Gene coordinate
system to the Boozer coordinate system, or even to real space (see, as an
illustration, Figs. 4.3-4.5, in addition to Fig. 2.7).

Among the various fields that can be looked at, the fluctuating
electrostatic potential and its associated E × B drift are of particular
interest to us. Specially, the radial shear of the poloidal component of the
E×B drift that, as hinted in several parts of this thesis (see discussions in
Chapters 2 and 5), is the most meaningful for the interpretation of results
that refer to the nature of radial transport. As an illustration, Fig. 4.6
shows the evolution in time of the radial derivative of the poloidal angular
velocity of the flow, defined by Eq. 2.27 (but without calculating the time
average), that TRACER outputs at various magnetic surfaces of the QPS
configuration.
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Figure 4.4: Volume colour plot of magnetic field strengthB at two different
radial surfaces, s0 = 0.10 (left) and s0 = 0.63 (right), shown in Boozer
coordinates. Regions around θB = 0 show a weaker B and a distortion of
the quasi-symmetry (bad curvature effects). These effects are stronger in
the external simulation (right).

Figure 4.5: Volume colour plot of electrostatic turbulent potential Φ shown
in Boozer coordinates for two different magnetic surfaces: s0 = 0.10 (left)
and s0 = 0.63 (right). Regions around θB = 0 show stronger turbu-
lence effects. Radial shear flows are evident in both plots but in the left
(internal) case is stronger.
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As previously mentioned in Chapter 2, the radial shearing ca-
pability of the poloidal flow is positively correlated with the degree of
quasi-poloidal symmetry, that decreases as one moves outwards in radius.
This trend is clearly appreciated in the figure. At any rate, it is important
to say that the TRACER code is very modular in its structure, and that
adding any new diagnostics is extremely simple.

Figure 4.6: Radial sheared of the poloidal angular velocity of the E×B,
< | dΩθ/ dx| >V (see Chapter 2, for a discussion on the significance of this
quantity), as a function for the various of the QPS simulations discussed
in this thesis.

4.2.6 Boundary conditions

An important point that we have not yet touched upon regarding particle
trajectories is how they are treated when they reach the boundaries of the
integration box. There are different options for the boundary conditions
imposed on the tracked particles when their orbits reach the box limit. In
Gene full-annulus simulations, all directions (x, y and z) are considered
to be periodic. This does not necessarily mean, however, that tracked par-
ticles should also behave periodically. That is, that they should continue
their trajectories through the boundaries as the periodicity dictates. The
boundary condition imposed depends on what is it that we want those
trajectories for. For instance, in order to calculate propagators along the
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radial direction, it is convenient to assume that any particle that reaches
any of the boundaries along the x-direction is considered as lost. If not,
those particles will contribute to the propagator at shorter distances, in-
stead of along the tail. This would distort the propagator, to the limit of
render it useless after a significant number of particles has already crossed
the radial boundaries. In the case of the Lagrangian method, it is also
a problem to continue the orbits periodically, but for a different reason.
The periodic continuation may misrepresent the type of long-term tempo-
ral correlation that we want to characterize.

In order to adapt to the various needs imposed by the transport
analysis, TRACER allows to choose between three basic types of boundary
conditions: i) open boundary conditions, ii) reflecting boundary conditions,
iii) periodic boundary conditions. In the first case, particles are considered
lost once they reach the boundary; in the second, the sign of the compo-
nent of the velocity perpendicular to the boundary is reversed when the
particle gets there; in the third one, the trajectory is continued as dictated
by periodicity. Of course, different conditions can be imposed in different
directions. In our case, the toroidal nature of the configurations require
periodic conditions in y; the field-aligned nature of the coordinate system,
periodic conditions in z; finally, we will always assume open conditions in
the radial direction, x.

4.2.7 Timing

To give some idea of how long it takes to run TRACER, and in order to
put it in context, it suffices to say that any of the nonlinear, full-annulus
Gene simulations carried out in this thesis for the QPS configuration
takes between three and four days to complete using 1024 processors.
That duration does not include the amount of time needed to carry out
convergence studies, both linear and non-linear (see discussion in Chapter
2). In comparison, the TRACER code can advance 104 tracked particles
for a few tens of decorrelation turbulent times in the turbulent fields com-
puted by Gene in just a few hours (depending on the spatial interpolation
scheme selected).

A large contributor to the efficiency of the TRACER code is the
parallelization. As previously mentioned, there is no interaction of the
advanced particles among themselves. Therefore, the requested number
of trajectories can be evenly distributed among the processes available, re-



4.2. TRACER WORKFLOW 95

ducing the computing time in roughly the number of processors. TRACER
makes use of the MPI library of parallel subroutines to exchange infor-
mation among the processors. Although further parallelization might be
achieved by taking advantage of OPENMP subroutines to use the multi-
ple CPUs per core available in many supercomputers, we have not imple-
mented this option yet.
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Chapter 5

Influence of quasi-poloidal
symmetries on the nature of
radial particle transport

5.1 Motivation

This chapter contains the main physics results of this thesis [40]. In it,
we will investigate the changes on the nature of radial turbulent transport
that may take place as a consequence of the presence of a certain level of
quasi-symmetry in the underlying confining magnetic field. In particular,
we focus our study on a selected configuration of the QPS device, that
exhibits strong quasi-poloidal symmetry.

In electrostatic turbulence, the main contributor to particle ra-
dial motion is the E×B drift. In order to study the dynamics of this
transport channel, it is convenient to examine first its Lagrangian proper-
ties by means of tracer particles. That is, particles without mass or charge
that are simply advected by the E×B flow. These particles do not in-
teract among them and do not modify any plasma field in their motion.
Tracer transport is considered a good first approximation to simplify the
study of the complete transport process, and it will be the first topic of
discussion in this chapter.

After the Lagrangian properties of the E×B flow are charac-
terized, we will proceed to study the dynamics of the transport of actual
(gyro-averaged) ions, that naturally have both mass and charge. This
means that, in addition to the E×B drift, magnetic drifts and dynamical

97
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parallel motion need also to be considered. The comparison of the trans-
port characteristics respectively obtained for tracers and massive ions will
also be an important part of the results of this chapter.

The nature of transport (of either tracer or massive particles) will
be characterized using the methodology described at length in Chapter
3. Namely, the determination of the transport (fractional) exponents H
and α from the particles trajectories, calculated by theTRACER code
that was described in Chapter 4. As it will be remembered, H measures
the temporal correlation of the Lagrangian motion, while α measures its
locality in space. Any values of H away from 0.5, or α smaller than
2 constitute evidence for non-diffusive behaviour, and of an associated
fundamental change in the nature of transport dynamics. The reader
should also refer to Chapter 2 to find an alternate characterization of
the transport properties of the configuration examined here but using
instead a more standard approach based on the computation of effective
transport coefficients. The comparison of the more standard analysis with
the methodology used here is indeed rather interesting.

We will determine the exponents α and H using two independent
methods, both of them discussed in Chapter 3: Lagrangian analysis and
propagators. This duality will allow us to provide more confidence in
the results, as well as to benefit from the strengths and ameliorate the
weaknesses intrinsic to each method.

5.2 Characterization of the nature of radial

transport of tracer particles

In order to study the influence of the local degree of quasi-symmetry of the
magnetic field, quantified by the σqp ratio (see Eq. 1.10), on the nature of
radial transport, we have calculated a large number of tracer trajectories
on a set of Gene simulations carried out at selected radial positions of the
QPS configuration that was described in Chapter 2. Since the degree of
quasi-symmetry decreases as we move radially outwards in this QPS con-
figuration, this set of runs provide us with a sufficient variety of values for
σqp. In Table 5.1, the different values of σqp at each surface examined have
been collected, together with other quantities of interest (see Fig. 2.8).
The range of σqp extends from 0.92 close to the axis of the configuration,
to 0.65 at the outermost examined magnetic surface, that is located at
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75% of the radius.
The number of tracer particles advected in the turbulence from

each of the QPS simulations is around 104. Values for the fractional ex-
ponents α and H have been determined for each case using both the
Lagrangian and the propagator methods (see Chapter 3 for a description
of the methods).

s0 σqp

〈∣∣∣∣ dΩθ

dx

∣∣∣∣〉
V

[
cs
aρs

]
HRS Hprop αv αprop

0.10 0.92 31.87 0.42 0.42 0.81 0.76
0.17 0.91 16.52 0.43 0.42 0.77 0.79
0.22 0.85 11.65 0.44 0.43 0.83 0.81
0.32 0.80 7.59 0.45 0.44 0.85 0.80
0.37 0.78 6.55 0.46 0.45 0.82 0.80
0.49 0.73 5.12 0.47 0.47 0.85 0.82
0.63 0.68 4.27 0.48 0.49 0.87 0.85
0.72 0.65 4.02 0.50 0.50 0.88 0.87

Table 5.1: From left to right: magnetic surface s0; quasi-poloidal symme-
try ratio σqp; figure-of-merit for the radial shear capability of the zonal
flow,

〈∣∣ dΩθ
dx

∣∣〉
V

(see Chapter 2); Hurst exponent estimated with the RS-
method, HRS; Hurst exponent estimated using the propagator method,
Hprop; spatial exponent estimated from the pdfs of the radial velocity, αv;
spatial exponent obtained from the tail of the propagator, αprop.

5.2.1 Hurst exponent H

The results obtained for the H exponent in the QPS runs as the quasi-
poloidal symmetry ratio is varied are illustrated in Fig. 5.1 (and collected
in Table 5.1). The values are very similar for the Lagrangian and the
propagator methods, with no significant differences between them. It is
apparent that H < 0.5 is found at all surfaces except for the outermost sur-
face examined at s0 = 0.72, that is also the less quasi-symmetric position.
It is also clear that H and the quasi-symmetry ratio σqp are negatively
correlated, with H decreasing as σqp is increased. Given the fact that the
R/S-method, that we have employed to estimate H, is well-known to over-
estimate H by about a 5% (that is, a purely random signal typically yields
H ∼ 0.55 [100]), the obtained values for H suggest that radial turbulent
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Figure 5.1: Hurst exponent values for radial tracer motion as a function
of the degree of quasi-poloidal symmetry σqs. The blue circles represent
values obtained with the RS-method; red triangles, with the propagator
method.

Figure 5.2: Spatial exponent α for the radial tracer motion as a function
of the degree of quasi-poloidal symmetry σqs. The blue circles represent
values obtained with the Lagrangian method; red triangles, with the prop-
agator method.
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transport is mildly subdiffusive in all locations. It becomes in-
creasingly subdiffusive as one moves towards the centre of the configura-
tion, where the degree of quasi-symmetry is larger. We will discuss our
interpretation of this result and its physical meaning later, in the discus-
sion subsection.

Figure 5.3: Above: pdfs of tracer Lagrangian radial velocities (in log-lin
scale); the blue curve corresponds to tracers advanced in the turbulence
calculated around the surface s0 = 0.32, where σqp = 0.80; the red one, to
tracers advanced around the surface s0 = 0.63, where σqp = 0.68. Below:
instantaneous tail exponent (see Eq. 3.14) for the two pdfs. The start of
the mesoscale range is marked with a vertical line and an arrow.
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5.2.2 Spatial exponent α

The values obtained in the QPS runs for the spatial exponent α are shown
in Fig. 5.2 (and collected in Table 5.1) as a function of the degree of
quasi-poloidal symmetry, σqp. As happened with the exponent H, the
Lagrangian and propagator methods again coincide rather well, always
yielding values of α < 1. The maximum value, α ≈ 0.9, is reached at
the magnetic surface with the lowest degree of quasi-poloidal symmetry
(i.e., σqp = 0.68). The spatial exponent α is also seen to decrease softly as
the degree of quasi-poloidal symmetry increases. It reaches its minimum
value, roughly α ∼ 0.8, at the location of the innermost magnetic surface,
where the degree of quasi-poloidal symmetry is the highest, σqp = 0.92.

Unfortunately, the estimation of the exponent α is not as clean
as that of the Hurst exponent H. Any conclusions on the meaning of the
obtained values for α, must thus be taken with a grain of salt. Fig. 5.3
shows the pdf of the radial Lagrangian velocities (above) and the instan-
taneous α exponent (below; see also Eq. 3.14). Clearly, the tail of the pdf
becomes exponential too quickly. The same conclusion can be drawn from
the instantaneous exponent, that exhibits just a short mesoscale of about
half a decade (it is in this region that the values for α listed in Table 5.1
have been estimated), followed by an exponential cut-off. The shortness of
the mesoscale severely limits the credibility of the obtained values, since
one would like to have at least a decade long mesoscale.

The short mesoscale observed is not an artefact caused by the
methodology used, though. In fact, the estimates obtained of α are similar
to those that are obtained using more traditional (but less stringent, in
our opinion) methods instead. For instance, Fig. 5.4 shows the result
of fitting the survival function of the velocity pdf, Sf(V ) = P [v ≥ V ],
using an analytic function that includes an algebraic region of exponent
α between scales v1 and v2 � v1, followed by an exponential fall-off:

S2(v) ∼ A2 exp(−v/v2)

[1 + v/v1]α
. (5.1)

The survival function is particularly useful to examine the pos-
itive tail of the pdf (for the negative tail, the cumulative distribution
function is used) [66]. Mainly, because an exponential pdf leads to an also
exponential survival function; a pdf with an algebraic region scaling as
v−(1+α), on the other hand, leads to a survival function scaling as v−α over
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Figure 5.4: Determination of α by fitting the tail of the survival function
Sf(V ) = P [v ≥ V ] for the radial velocities at σqp = 0.82 against the an-
alytical function defined in Eq. (5.1). A comparison to another fit using
a purely exponential form, S1(v) ∼ A1 exp(−v/v0), is also included. Val-
ues of the χ2 coefficients are also included to provide an estimate of the
goodness-of-the-fit.

the same scales. Going now back to Fig. 5.4, it is clear that the range
of scales over which α is roughly half a decade, followed by and exponen-
tial cutoff. In order to show that the power-law region, albeit limited, is
meaningful, we have also included a purely exponential fit. The goodness-
of-the-fit, measured by the standard χ2 measure, is at least one order of
magnitude lower if the power-law region is included.

We concede, however, that since the extension of the scaling re-
gion is limited to about half a decade, it is much less of what one would
usually demand to show scale-invariance. In spite of that, we considered
that the values of α obtained in the reduced mesoscale are still meaning-
ful, and have included them in the discussion for the sake of clarity and
completeness. They are significantly non-Gaussian, with α ∼ 0.7 − 0.9,
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suggesting a mild decreasing trend with larger degrees of quasi-symmetry.

5.2.3 Analysis and discussion

The exponents H and α obtained from the analysis of the tracer radial
motion in the previous subsections suggest that the fact that the effective
ion heat conductivity χi is indeed reduced as the degree of quasi-poloidal
symmetry σqp increases (see discussion in Chapter 2, including Fig. 2.8)
is in itself far from providing the complete picture of what is happening
with radial turbulent transport in the presence of strong quasi-poloidal
symmetry of the underlying magnetic configuration.

Figure 5.5: Variation of the radial shearing capability of the poloidal flow
with the quasi-poloidal symmetry ratio σqp at the different magnetic sur-
faces where Gene simulations have been run.

The radial transport of tracers seems to manifest a clear subd-
iffusive character (i.e., H < 0.5) that becomes stronger as the degree of
quasi-symmetry becomes larger. The reduction of the effective thermal
conductivity has been shown by other authors to be positively correlated
with an increase in the capability of self-generated radially sheared zonal
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Figure 5.6: Variation of the Hurst exponent as a function of the radial
shearing strength of the poloidal flow as characterized by due the figure of
merit < |dΩθ/dx| >. The blue circles represent the values obtained with
the Lagrangian method; the red triangles, with the propagator method.

flows to act and suppress the turbulence of the plasma [11]. In this case,
however, the self-generated turbulent zonal flow in the poloidal direction
is correlated to a larger degree of radial subdiffusion. This correlation can
be made apparent, however, by characterizing the shearing capability of
the flow by means of the figure-of-merit 〈| dΩθ/ dx|〉 (defined by Eq. 2.27),
that estimates the radial derivative of the local poloidal angular velocity,
and therefore quantifies how strongly the poloidal flow can shear apart a
radially correlated structure.

Fig. 5.5 shows the variation of the radial shearing capability
of the poloidal flow with quasi-poloidal symmetry, as obtained by the
TRACER code (the specific values have also been collected in Table 5.1).
Clearly, it shows that the shearing capability increases for larger sym-
metry, thus confirming the role that the predicted reduced neoclassical
poloidal symmetry plays in permitting the excitation by the turbulence
of larger (and more sheared) poloidal flows [38]. The growth is clearly
nonlinear with the degree of quasi-symmetry.
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Figure 5.7: Spatial exponent α as a function of the radial shearing capa-
bility of the poloidal flow as characterized by due to the figure of merit
< |dΩθ/dx| >. The blue circles represent the values obtained with the
Lagrangian method; the red triangles, with the propagator method.

We proceed now to explore the connection between the subdif-
fusive nature of radial tracer transport and the radial shearing capability
of the poloidal flow by plotting the exponents H and α as a function of
the figure-of-merit, 〈| dΩθ/ dx|〉volume. The result for H is illustrated in
Fig. 5.6. Clearly, H is negatively correlated with 〈| dΩθ/ dx|〉volume, imply-
ing that radial transport becomes more subdiffusive as the radial shearing
capability of the poloidal flow increases.

This behaviour is very reminiscent of how radial transport was
found to behave in recent gyrokinetic simulations of ITG tokamak turbu-
lence that had strong radially-sheared poloidal flows [5, 6, 7]. In fact, most
of the available numerical evidence points to the same physical mechanisms
as the responsible ones for the subdiffusive radial transport observed here.

The physical mechanism for this process can be understood as
follows. Any large positive [negative] value of 〈| dΩθ/ dx|〉volume, whose gen-
eration via the Reynolds stresses is facilitated by the reduced neoclassical
viscosity that a larger quasi-poloidal symmetry brings, causes a growth in
extension and intensity of those regions with positive [negative] vorticity
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together and a suppression of those with negative [positive] vorticity [7].

This process takes place in addition to the concomitant stretch-
ing along y and the shortening along x of any region of localised vorticity
(along z) driven by the sheared rotation. The vorticity landscape that re-
sults from these processes makes it more probable for any radial motion to
reverses its direction often, instead of moving steady, which automatically
leads to the observed subdiffusion along x. This behaviour is insensitive
to the sign of the shear, caring only about the shear absolute strength.
This is what we observe here. More interestingly, tokamak simulations
proved that the establishment of subdiffusion via this process does not
require that the zonal flow be self-generated by the turbulence [5]. Trans-
port would also become subdiffusive in the presence of externally driven
flows, which suggests an interesting avenue to transport control via exter-
nal biasing.

Regarding the non-Gaussian tails (α < 2) found in the QPS
simulations (see Fig. 5.7), their significance is not so clear. In previous
tokamak gyro-kinetic simulations the values of the tail exponents found
were much larger (α ∼ 1.4 − 1.5) and increased towards the Gaussian
value (i.e., α ∼ 2) as the zonal flow shear strength decreased and transport
became more diffusive [7]. This is not what we have found in the current
Gene simulations for a quasi-poloidal geometry. Instead, α ∼ 0.75− 0.9
and it seems to increase very weekly as the value of the quasi-poloidal
symmetry ratio is reduced.

Due to problem with the limited size of the scaling region in the
current simulations previously discussed, it is difficult to tell whether the
different behaviour seen for the exponent α is caused by differences in the
dominant physics caused by the geometry, or just because of factors related
to the different numerical implementation used. The tokamak simulations
were done with UCAN [103], a radially global, PIC gyrokinetic code. In
contrast, Gene is Eulerian and radially local. Zonal flow dynamics could
be quite different in these two setups due to the simplifications made in
each of them, and might perhaps be the reason for the observed differences.

Be it as it may, it is our intention to further investigate this
question in the near future, with a particular focus on the determination
of which is causing the exponential cutoff found in the determination of
α.
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5.3 Characterization of the nature of ther-

mal ion radial transport

In this section, the nature of the radial transport of actual thermal ions
will be investigated. In contrast to the tracer case just described, the ion
mass, charge and kinetic energy of the thermal ions is important to deter-
mine their motion. Both magnetic and curvature drifts, as well as parallel
motion, are now important, which modifies the pure E × B approxima-
tion to motion that we considered in the previous section. The fractional
exponents H and α have been determined using the same methodology
as in the case of tracers. Namely, using the Lagrangian and propagator
methods. The number of particles considered is very similar to the ones
used for the tracer runs, including around 104 − 105 ions.

5.3.1 Hurst exponent

It turns out that, for thermal ions, the values obtained for the exponent
α barely change with respect to the ones obtained for tracers. They also
have the same problem previously discussed of being well defined only
over a very short mesoscale, less than a decade long. However, things
become much more interesting with respect to the H exponent. This
is illustrated in Fig. 5.8. The plot compares the instantaneous value of
the Hurst exponent (Eq. 3.17) for three different types of TRACER runs
carried out at the most quasi-poloidally symmetric position (that is, s0 =
0.10 where σqp = 0.92). The red curve correspond to a tracer run in which
the advection is done considering only the E ×B drift. The green curve
corresponds to the case of a thermal ion, thus including all magnetic drifts,
on top of the E×B drift. The blue curve corresponds to an intermediate,
academic case in which only magnetic drifts are kept, but with the E×B
drift artificially set to zero.

The important thing to notice, when comparing the red and green
cases, is that the long-term behaviour of the exponent (for τ > 102 a/cs)
seems to be very similar for thermal ions and tracers, remaining subdif-
fusive in both cases. However, there is a new intermediate range of scales
for the thermal ions (10 < τ < 102 a/cs), in which a clear superdiffusive
plateau (H ≈ 0.7) becomes apparent, that is absent for massless tracers.
The same qualitative behaviour is observed at the other radial locations
of the QPS configuration under study, although we have not included any
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Figure 5.8: Instantaneous Hurst exponent as a function of time for three
runs carried out at the same radial position (s = 0.10) with different
schemes to advance particles. In red, the advecting velocity is just only
the E × B drift. In green, the full dynamics are considered, including
both ExB and magnetic drifts E × B and magnetic drifts. In blue, only
magnetic drifts are considered.

additional plot. We will try to explain the physics behind this new scaling
behaviour in the discussion section, with the help of the blue simulation
included in Fig. 5.8 that considers only magnetic drifts.

5.3.2 Analysis and discussion

The very different behaviour of the H exponent found for massive ions
and illustrated in Fig. 5.8 is indeed very interesting. We think that, in
order to explain it, one needs to consider the spatial distribution of the
sign of the radial component of B ×∇B that governs the magnetic drift
of thermal ions. As it is shown in the left frame of Fig. 5.9 this sign is
predominantly positive (i.e., red) for z ∈ (0, π) and negative (blue) for
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Figure 5.9: Variation of the radial component of B×∇B across the com-
putational volume centered at the magnetic surface s0 = 0.10 (left, in
Gene internal coordinates; right, in Boozer coordinates). Since z = θB,
the poloidal Boozer angle, the plot shows that massive particles are going
to be pushed outwards in radius (i.e., to larger x’s) when z ∈ (0, π), and
then inwards (to smaller x’s) while z ∈ (−π, 0), as they move along the
field line. These ballistic processes are responsible for the superdiffusive
behaviour made apparent in Fig. 5.8.

z ∈ (−π, 0). Since z corresponds to the Boozer poloidal angle, this up-
down asymmetry pushes massive ions radially outwards in the upper half
of the configuration, and radially inwards in the lower half. But since z
also represents the label that runs along any magnetic field line, massive
ions feel these effects alternatively as they move along the field lines due to
the relatively large safety factor. This behaviour is visually more evident
in the right frame of Fig. 5.9, where the radial B × ∇B component is
plotted now in Boozer coordinates. It is clear that, in the upper part of
the device, the magnetic drift has a negative sign, while it is positive on
the lower part.

As a result of the spatial structure of the magnetic drift in the
QPS configuration, the radial motion is endowed of a ballistic component
that governs the scaling of radial transport in the intermediate range (10−
102)a/cs as was apparent in Fig. 5.8. This is illustrated by the blue curve
in that figure, that only considers magnetic drifts and parallel motion for
the massive ions. When the contribution to perpendicular motion of the
turbulent E×B is also included, as shown by the green curve in Fig. 5.8,
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turbulent decorrelation begins to dominates for timescales τ > 102 a/cs,
beyond which the radial motion of massive ions becomes very similar to
that of the massless tracers. In this regime, the temporal correlations start
to be dominant. The final result is a radial motion that becomes more
subdiffusive when the quasi-poloidal symmetry ratio is larger.
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Chapter 6

Conclusions and Future Work

In this thesis, we have investigated how the nature of radial transport,
and the improved confinement that should follow from it, depends of the
level of quasi-symmetry in quasi-poloidal symmetric stellarators. To pro-
vide answers in this respect, we have used the Gene gyrokinetic code to
produced nonlinear simulations of electrostatic, ITG turbulence around
specific magnetic surfaces of a quasi-poloidally symmetric configurations.
The resulting radial transport has then been investigated by means of
tracked particles (massless and massive) that are advected in the presence
of the ITG turbulence by a new code, TRACER. The main conclusions of
the investigation as well as future lines of research are listed below.

6.1 Conclusions

1. Radial turbulent transport is reduced as the quasi-
poloidal symmetry is increased.

We have demonstrated for the first time that radial turbulent transport
is reduced as the level of quasi-poloidal symmetry, measured through σqp,
is increased. By following first a traditional analysis, we have shown that
the effective ion heat conductivity is reduced as σqp is increased. We have
also shown that transport is negatively correlated with the radial shearing
capability of the poloidal flow, which grows with σqp due to the smaller
poloidal viscosities predicted by neoclassical theory [10, 38]. Our studies
thus complete a series of previous studies carried out by other authors for
other quasi-symmetries. In particular, for quasi-helical symmetry [9] and
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quasi-axisymmetry [87], where a positive correlation between good con-
finement and the level of these types of quasi-symmetry was also reported.

2. Quasi-poloidal symmetry affects the nature of ra-
dial turbulent transport by making it become subdif-
fusive. The radial shear in the poloidal flow whose de-
velopment quasi-poloidal symmetry facilitates is the
key for this change in transport dynamics.

We have shown that the Hurst exponent that describes both tracer and
thermal ion radial transport becomes increasingly subdiffusive (i.e., H <
0.5) as the degree of quasi-poloidal symmetry increases. Therefore, it is not
that confinement becomes better because the effective turbulent conduc-
tivity is reduced due to shear-flow suppression, is that the nature of radial
transport itself changes to one that leads to better confinement. Again,
the reason for this behaviour must be sought in the increased ease with
which poloidal flows with strong radial shear may be excited due to the
reduced neoclassical viscosity associated to the quasi-poloidal symmetry.
The dynamics of transport across the flow are similar to what has been
previously observed in tokamaks in the presence of strong radially-sheared
zonal flows [5, 6, 7].

3. Thermal ions behave very similar to tracers in
terms of radial transport for sufficiently long times.

Our analysis at the end of Chapter 5 has also shown that long-term radial
transport dynamics is rather similar for tracer and massive ions. Differ-
ences appear, however, at intermediate scales due to the action of the
magnetic drifts in a magnetic configuration that is spatially dependent.
This realization is important, since it implies that the conclusions drawn
from our tracer studies are relevant at least to understand qualitatively
long-term ion transport.
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4. Transport dynamics seem to be non-Gaussian but
quantitative evidence is still inconclusive.

All the methods used in this thesis point to non-Gaussian velocity statis-
tics and non-local spatial behaviour for radial turbulent transport in the
QPS configurations. However, strong statements cannot be made about
their significance due to the short mesorange over which such behaviour
is clearly displayed. It is not clear to us what the reason is, since sim-
ulations with higher spatial resolution yielded similar results. It might
be related with the type of zonal flow dynamics that are allowed by the
fully-periodic, full-annulus local simulation we have done, but this is an
aspect of the research that will be continued in the future.

5. A new numerical tool has been created to study
transport in gyrokinetic simulations: the TRACER
code

We have developed a new code that integrates particle trajectories in the
turbulent fields generated by a gyrokinetic code. The code is modular and
easily adaptable to accept input from multiple codes, once the magnetic
field structure, the metric and the turbulent fields are provided. The tool
can thus easily be adapted carry out transport studies not just with the
Gene code used here, but with many other codes as well, both of the
gyrokinetic or fluid kinds.

6.2 Future lines of research

There are several lines of work that have arisen or has been suggested by
the activities carried out during this investigation. First, we would like
to keep using TRACER to examine transport dynamics in other regimes
and configurations. In particular, we would like to repeat the analysis
carried out in Chapter 5 for the other two quasi-symmetries: quasi-helical
symmetry and quasi-axisymmetry. This would provide a nice complement
to the more traditional transport studies (more in the line of what we
showed at the end of Chapter 2 for QPS) that are available in the literature
[86, 87]. Currently, we are already starting to analyze a configuration
from the HSX quasi-helical device [8] that also has a strong variation of
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the degree of quasi-helical symmetry ratio in the radial direction. Another
configuration that we would like to analyze is that of the W7-X stellarator,
that has a different type of property: quasi-isodynamicity [36].

In addition, we would like to explore other regimes in which
non-diffusive radial transport might be relevant in fusion plasmas. One
such example is the study of near-marginal turbulence, which requires
fully global gyrokinetic codes run in flux-driven setups (see discussion at
the beginning of Chapter 2). TRACER has already been adapted to be
capable of accepting input from another well-known gyrokinetic code that
has such capabilities: GYSELA [104]. We expect to be able to carry out
such studies in the near future.

Another question that we would like to investigate is the be-
haviour we have found in the QPS simulations regarding the α spatial
exponent. The cut-off found that limits the mesorange to less than a
decade has an origin that does not seem to be related to resolution, but to
physics. Clearly, a new set of simulations would be required to explore this
issue, which is something we would like to address soon. This may require
the use of a global setup in Gene , except of the local, full-annulus one
we have used. There are currently efforts in the Gene team to develop
such a version, which might make this activity possible in the near future.

Finally, we have also worked, during the years required to com-
plete this thesis, in the development of new methods to characterize the
nature of radial turbulent transport that could complement what we have
already done using propagators or the Lagrangian methods. In particular,
the use of transport kernels [1, 105, 106, 107]. The purpose here is not
to have another independent method to validate results, but to come up
with reliable methods that do not require the detailed following of particle
trajectories but that can work instead with Eulerian data. Although we
have tested these approaches in simulations, this activity has its sights
clearly set on applications to actual experiments, which is why it has not
been included as part of this thesis work. This is a line of work that will
continue in the next few years.



Appendix A

Introduction to Lévy
distributions

Lévy distributions are also known in mathematics as stable distributions
[90]. In probability theory, a distribution is stable if a linear combination
of two independent series of a random sample has the same distribution
except for a shift (parameter usually denoted as µ) or a rescaling of the
distribution. Lévy distributions are attractor distributions for properly
normed sums of independent and identically distributed random variables
[90]. As in the classical central limit theorem, where the normed sum of
random variables with finite variance tends to a normal distribution, the
generalized central limit theorem refers to the sum of random variables
with infinite variance that tends asymptotically to a Lévy distribution.

Among other things, Lévy distributions are characterized by
their stability parameter 0 < α < 2 (when α = 2, they reduce to the
Gaussian pdf). They have heavy-tails in the sense that, in the limit of
large argument, decay algebraically as Lα(x) ∼ x−(1+α) (Fig. A.1). The
fatness of the tails make these distribution like a finite variance, σ2. In
fact, considering the family of moments,

〈|x|s〉 =

∫
dxL(x)|x|s, (A.1)

Lévy laws lack any finite moment with s ≥ α. An example of these dis-
tributions is the Cauchy distribution, for α = 1. It lacks a finite variance,
and also any other moment of order one or larger. Lévy distributions with
1 < α < 2 are sometimes called Pareto-Lévy distributions.
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A.1 Characteristic funciton

There is not an analytical closed expression for stable distributions, except
for a few of them (for instance, the Cauchy distribution, or the Gauss
distribution as a limiting case). Nevertheless, their characteristic function
ϕ(k), defined as:

L(x) =

∫ ∞
−∞

ϕ(k)e−ikxdk (A.2)

is analytic and given by [90]:

ϕ(k;α, β, c, µ) = exp (iµk − |ck|α(1− iβsgn(k)Φ)) . (A.3)

It is defined in terms of four parameters, including the α stability param-
eter previously discussed. β ∈ [−1, 1] is the so-called skewness parameter
and measures the asymmetry of the distribution, being 0 for symmetric
ones. µ is the shift parameter, whilst c is just a rescale parameter. Finally,
Φ is defined as

Φ =

{
tan
(
πα
2

)
α 6= 1

− 2
π

log |k| α = 1
(A.4)

A.2 Asymptotic behaviour

The tail behaviour of Lévy distributions is one of their most interesting
properties. For α 6= 1 it is algebraic, as previously metioned, and given
by [90]:

L(x;α, β, µ, σ)(x) ∼


Cα
(

1−β
2

)
cα|x|−(1+α), x→ −∞

Cα
(

1+β
2

)
cα|x|−(1+α), x→ +∞

(A.5)

where the constant Cα is given by:

Cα =
α(α− 1)

Γ(2− α) cos(πα/2)
, (A.6)

being Γ(x) the Euler Gamma function.
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A.3 Symmetrical stable distributions

Symmetrical Lévy distributions are defined as those with β = 0. Their
characteristic function is just a stretched exponential function (ϕ ∝ e−|k|

α
).

Gaussian and Cauchy distributions are example of these distributions.
Fig A.1 show several symmetrical Lévy distributions for different values
of the α parameter centred at µ = 0 and with the scale factor c = 1.
As can be seen, the distributions become more peaked at the center and
develop fatter tails as the α value decreases towards 0.

Figure A.1: Symmetric Lévy distributions for different α values in lin-lin
(left) and (log-log) scales (right). The black curve is a Gaussian and the
green curve is a Cauchy distribution.

A.4 Extremal stable distributions

If β 6= 0 the Lévy distribution is asymmetric. Some examples are shown in
Fig. (A.2). Of particular interest is the extremal asymmetric case in which
β = ±1, that is known as extremal Lévy distributions. Extremal
Lévy distributions for α < 1 are particularly interesting, since they have
the property of only being defined on positive (if β = 1) or negative
(if β = −1) values of their arguments, vanishing exponentially fast on
the other side (see Eq. A.5). This property is quite interesting in some
contexts related to the theory of fractional transport [108].
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Figure A.2: Asymmetrical Lévy distributions for different β values and
α = 0.5 in lin-lin (left) and log-log (right) scales. Black curve is the
symmetrical case (i.e., β = 0).



Appendix B

Introduction to fractional
derivatives and integrals

Fractional derivatives (integrals) are integro-differential operators that
provide smooth interpolants in between the more usual integer deriva-
tives (integrals)[61, 62]. Although they are relatively old, they have seen
renewed interest in the last decades in physics, particularly in context
where non-diffusive transport is important.

B.1 Spatial fractional derivatives.

The definition of the spatial derivatives used in this thesis is related to the
Rieman-Liouville definition of a fractional derivative [61, 62]. They read:

∂αφ

∂xα
= −∞D

α
xφ(x) =

1

Γ(m− α)

dm

dxm

∫ x

−∞

φ(x′)

(x− x′)1+α−mdx
′, (B.1)

and,

∂αφ

∂(−x)α
= ∞Dα

xφ(x, t) =
−1

Γ(m− α)

dm

d(−x)m

∫ ∞
x

φ(x′, t)

(x− x′)1+α−mdx
′,

(B.2)
where m − 1 < α < m with integer m. In this definition, α is the order
of the derivative and −∞ and ∞ are the low and upper limits of the
integration respectively. In practical applications these limits must be
truncated, which requires the normalization of these operators [95]. Γ(x)
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represents the Euler Gamma function. These operators can be combined
to define the symmetric Riesz fractional derivative [61]:

∂α

∂|x|α
= − 1

2 cosπα/2
[ −∞D

α
x + ∞Dα

x ] (B.3)

that plays an important role in fractional transport theory. The reason is
that its spatial Fourier Transform is,

F [
∂αφ(x)

∂|x|α
] = −|k|αφ(k) (B.4)

which for α = 2 tends to the Laplacian operator that appears in the
classical diffusive equation (Eq. 3.3).

B.2 Temporal fractional derivatives

Since time is always positive, the starting point of the fractional derivatives
is always t0 ≥ 0. In this thesis we always assumed that they are defined
by the usual Riemann-Lioville expression [61]:

t0D
β
t φ(t) =

1

Γ(p− β)

dp

dtp

∫ t

t0

φ(t′)dt′

(t− t′)β−p+1
. (B.5)

However, it is worth noting that in numerical applications this definition
diverges when t′ → t, which forces the regularization of this operator.
This is usually done in terms of the so-called Caputo fractional derivatives
[109, 110, 111].
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Publications and presentations
of the results at international
venues

Publications and Communications to Conferences and Work-
shops containing results included in this thesis:

• ”Determination of the nature of radial transport in quasi-symmetric
stellarators configurations for the confinement of fusion plasma”.
J.A. Alcuson, J.M. Reynolds-Barredo, R. Sanchez and P. Xanthopou-
los. Poster at IV FuseNet PhD-event. Lisbon, Portugal (2014).

• ”Development of tracer technology to characterize radial turbulent
transport in stellarator geometry using the Gene gyrokinetic code”.
J.A. Alcuson, J.M. Reynolds-Barredo, R. Sanchez and P. Xanthopou-
los. Poster at 19th Joint EU-US Transport Task Force Meeting.
Culham, Abingdon, United Kingdom (2014).

• ”General Framework for statistical tracer analysis as a diagnostic for
turbulent transport in gyrokinetic codes”. J.M. Reynolds-Barredo,
J.A. Alcuson, R. Sanchez and V. Tribaldos. Poster at 56th American
Physical Society meeting of the Division of Plasma Physics. New
Orleans, USA (2014).

• ”Influence of quasi-symmetries on the nature of radial turbulent
transport”. J.A. Alcuson, J.M. Reynolds-Barredo, A. Bustos, R.
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Sanchez, V. Tribaldos and P. Xanthopoulos. Poster at V FuseNet
PhD-event. Prague, Czeck Rep. (2015).

• ”Quasi-symmetry and the nature of radial turbulent transport in
quasi-poloidal stellarators”. J.A. Alcuson, J.M. Reynolds-Barredo,
A. Bustos, R. Sanchez, V. Tribaldos, P. Xanthopoulos, T. Goerler
and D.E. Newman. Physics of Plasmas 23 102308 (2016).

Publications and Communications to Conferences and Work-
shops of other related results:

• ”Direct calculations of spatio-temporal transport kernels in simula-
tions of near-marginal DTEM turbulence”. J.A. Alcuson, J.A. Mier,
D. del-Castillo-Negrete, D.E. Newman and R. Sanchez. Poster at
17th Joint EU-US Transport Task Force Meeting. Padua, Italy
(2012).

• ”Characterization of the nature of transport in quasi-axisymmetric
configuratons”. J.A. Alcuson and R. Sanchez. Poster at II FuseNet
PhD-event. Pont-a-Mousson, France (2012).

• ”New method for the transport nature characterization based on Inte-
gral Transforms”. J.A. Alcuson, J.M. Reynolds-Barredo, J.A. Mier,
D. del-Castillo-Negrete, D.E. Newman and R. Sanchez. Poster at
III Fusenet PhD-event. York, United Kingdom (2013).

• ”Characterization of non-diffusive transport in plasma turbulence by
means of flux-gradient integro-differential kernels”. J.A. Alcuson,
J.M. Reynolds-Barredo, J.A. Mier, R. Sanchez, D. del-Castillo-Negrete,
D.E. Newman and V. Tribaldos. Poster at 57th American Physical
Society meeting of the Division of Plasma Physics. Savannah, Geor-
gia USA (2015).

• ”Characterization of avalanche-like transport in plasma turbulence
by means of flux-gradient integro-differential kernels”. J.A. Alcuson,
J.M. Reynolds-Barredo, J.A. Mier, R. Sanchez, D. del-Castillo-Negrete
and D.E. Newman. Poster at the Avalanches Processes in Con-
densated Matter Physics and Beyond Workshop. Barcelona, Spain
(2017).
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• ”Characterization of non-diffusive transport in plasma turbulence by
means of flux-gradient integro-differential kernels”. J.A. Alcuson,
J.M. Reynolds-Barredo, R. Sanchez, J.A. Mier, D. del-Castillo-Negrete,
and D.E. Newman. (to be submitted to Physics of Plasmas, 2017).
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