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Abstract

We present several methods for prediction of new observations in penalized regression
using different methodologies based on the methods proposed in: i) Currie et al.
(2004), ii) Gilmour et al. (2004) and iii) Sacks et al. (1989). We extend the method
introduced by Currie et al. (2004) to consider the prediction of new observations in
the mixed model framework. In the context of penalties based on differences between
adjacent coefficients (Eilers & Marx (1996)), the equivalence of the different methods
is shown. We demonstrate several properties of the new coefficients in terms of the
order of the penalty. We also introduce the concept of memory of a P-spline, this
new idea gives us information on how much past information we are using to predict.
The methodology and the concept of memory of a P-spline are illustrated with two
real data sets, one of them on the yearly mortality rates of Spanish men and other
on the rental prices.

Keywords: Prediction, Penalized regression, P-splines, Mixed models

1 Introduction

There are many situations in which prediction of new observations in the context
of smoothing models is needed, for example hourly temperatures at a weather sta-
tion or yearly number of deaths. This can have a major impact in areas such as
demography (mortality tables), epidemiology, particularly in “disease mapping” or
environmental sciences. A graph of data often exhibits patterns, such as an upward
or downward moment, trend, or a pattern that repeats, seasonal variation, both
might be used to predict new values. These are some of the main reasons that
encourages us to work in the prediction field and base our work on the forecasting
method proposed in Currie et al. (2004). They have shown how the method of pen-
alized splines (P-splines), introduced by Eilers & Marx (1996), can be extended to
smooth and predict two-dimensional mortality tables, showing how to construct the
appropriate regression bases and penalty matrices for forecasting.

Most of the existing literature in this area is related to the prediction of new ob-
servations in a temporal context, i.e. forecast of new observations. Let us start by
doing a brief review of the main literature related to forecasting in smoothing mod-
els by commenting the main approaches of Ba et al. (2012), Caudel & Frey (2012)
and Sacks et al. (1989). We also can find in Hyndman et al. (2008) an overview of
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exponential smoothing methods.

The exponential smoothing family is used to name a class of forecasting meth-
ods, each of them having the property that forecasts are weighted combinations of
past observations, with recent observations given relatively more weight than older
observations. In Hyndman et al. (2008), extensive information about exponential
smoothing methods can be found. A brief summary of the exponential smoothing
history allows us to know the great importance of this kind of models, they are since
1950 the most popular forecasting methods used in business and industry. They
consider a time series as a combination of various components such as the trend
(T), cycle (C) (a pattern that repeats with some regularity but with unknown and
changing periodicity), seasonal (S), and irregular or error (E) (the unpredictable
component of the series) components, and distinguish the models depending on the
combination of the components. For instance,

• A purely additive model has the form: y = T + S + E, the three components
are added together to form the observed series.

• A purely multiplicative model is written as: y = T×S×E, the data are formed
as the product of the three components.

The trend component is, in turn, a combination of a level term and a growth term.
Once a trend component is chosen, they, optionally, introduce a seasonal component,
either additively or multiplicatively. Taking into account all possible combinations
15 methods are obtained, and for each of them there are two possible state space
models, one corresponding to a model with additive errors and the other to a model
with multiplicative errors. If the same parameter values are used, these two models
give equivalent point forecasts although different prediction intervals.

Other authors such us Ba et al. (2012) use penalized splines to fit and forecast time
series data and want to minimize

S = (y −Bθ)′M (y −Bθ) + θ′Pθ, (1)

where y is the observed response, θ are the coefficients,B is a spline basis that covers
the hole range of the extended explanatory variable and M is a weight matrix that
puts different weights on the samples, instead of what Currie et al. (2004) do, who
give the same weight to each sample. It means, in this case,

M = diag(ωn−1, ωn−2, ..., ω2, ω, 1), (2)

with n the size of the sample and the forgetting factor, ω, in the interval (0, 1].
Therefore, M puts exponentially decreasing weights on the samples, according to
the order of their arrival. They use the following penalty matrix:

P = diag(γ, γ, ..., γ), (3)

with γ > 0.
To get the fit and forecast they propose two algorithms, both of them start with
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initial values for the coefficients and run until the estimated coefficients can be used
to compute predictions for new given covariates, following a certain criteria. With
one of them the obtained solution is the same as in (1) with M as in (2) for a fixed
value of ω and P as in (3).
In the second proposed algorithm the forgetting factor is not fixed, they use adapt-
ive forgetting factors in order to improve the stability and the tracking behaviour.
The basic idea is to choose large forgetting factor during stationary regimes, and
small forgetting factors during transient phases. To do it they update the forgetting
factor according to a particular formula with the objective of minimizing the expec-
ted value of the a priori errors.

In Caudel & Frey (2012) P-splines are also used to fit and forecast time series, their
main approach is to update the P-spline as new time series observations arrive, i.e.,
once a new observation is predicted the P-spline is updated; they have shown that
large change in the fitted values of the P-spline caused by new time series data
rarely occurs past the fourth knot going backward in time. Because of this, they
introduced the concept of stitching, i.e., several P-splines are constructed and then
combined to make one long continuous P-spline, to stitch the P-splines they force
the fitted response values to be equal in the points of window breaks. The main
benefit of the construction of windowed P-splines is the use of multiple smoothing
parameters, and therefore, take into account each state of the time series. Stitching,
they obtain a fit that closely resembles the time series data at each moment and that
is unaffected by time historical time series data that occurred in the distant past.
It is notable that stitching is also a substantial computational benefit over complete
P-spline estimation method.

In the framework of global optimization several authors, Sacks et al. (1989) and Jones
et al. (1998), fit a stochastic process to data and predict at a new point computing
the function value that is most consistent with the estimated typical behavior. They
treat the observations as if they were generated by a constant and an error that is
a stochastic process. Considering the error as a stochastic process and relating the
correlation between errors to the distance between the corresponding points allow
them to obtain a smooth function with a simple constant as the regression terms.
Their approach is called Bayesian global optimization and the concept is the same as
the idea behind the well-know technique in spatial statistics called kriging (Cressie
(1993)).

Taking into account the previous ideas, and in order to give a general framework
for prediction in penalized regression and to delve deeper into our knowledge of the
forecasting method proposed in Currie et al. (2004), we have organized the remaining
of the paper as follows. Section 2 is dedicated to introduce the fundamentals of three
different methods that we can use to predict with smooth models, they have been
proposed in Currie et al. (2004), Gilmour et al. (2004) and Sacks et al. (1989). We
also extend the proposal of Currie et al. (2004) to the mixed model framework and
show the equivalence of all methods in the particular case of penalties based on
differences between adjacent coefficients (Eilers & Marx (1996)).
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In section 3 we follow Currie et al. (2004) and show that the order of the penalty
determines the shape of the predictions. The proposed methodology is illustrated in
Section 4 with the analysis of two real data sets. In the fifth section, we introduce
the concept of memory of a P-spline as a tool to know the weight of each observation
on the prediction when we use the method proposed in Currie et al. (2004). Finally,
concluding remarks are made in Section 6.

2 Prediction in penalized regression

In this section we present three different methodologies (penalized regression with
a quadratic penalty, linear mixed models and stochastic processes) that allow us to
estimate, nonparametrically, a smooth curve and to predict new observations. To
begin with we are going to give a brief revision of the penalized regression.

Consider the case of a univariate Gaussian data, with response variable y and re-
gressor x, the smooth model is of the form:

y = f(x) + ϵ, ϵ ∼ N (0, σ2
ϵI), (4)

where f(·) is an unknown smooth function, it is estimated from the data points
(xi,yi), for i = 1, ..., n, and ϵ are independent and identically distributed errors
with variance σ2

ϵ . Let us see how the different methodologies that allow us to obtain
f(x) and to predict new observations.

The model (4) can be written in matrix form:

y = Bθ + ϵ, ϵ ∼ N (0, σ2
ϵI), (5)

whereB is a regression basis constructed from the covariate x, such that,B = B(x),
and θ is the vector of regression coefficients. Rather than estimating the coefficients
θ in (5) by simple maximum likelihood methods we penalize the coefficients through
a quadratic penalty, i.e., the fit is:

ŷ = Bθ̂ = B(B′B + λP )−1B′y, (6)

where P is any quadratic penalty that forces the coefficients to vary smoothly, and
consequently to obtain a smoothed curve and λ a smoothing parameter. There are
several alternatives for the choice of the regression basis B and the penalty matrix
P , like Eilers & Marx (1996), we use a B-spline basis and P = D′

qDq, with Dq a
difference matrix of order q (P-splines).

2.1 Prediction with smooth models and quadratic penalties
Currie et al. (2004) proposed a method to fit and predict, simultaneously, in pen-
alized regression models. We call their proposal “the missing value approach”. We
give a brief summary of their methodology.
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In the framework of model (4), given a vector of n observations y of the response
variable, suppose that we want to predict np new values yp at xp. If the prediction
is within sample everything is straightforward, the coefficients remain the same and
we just have to extend the basis accordingly. The fit and the prediction are,

y+ = B̃θ̂,

with B̃ a reconstruction of the basis B, keeping the same knots but with new rows,
and θ̂ as in (27).

In the case of prediction out-of-sample, we obviously have to extend the basis but
also the penalty to penalize the new coefficients. Currie et al. (2004) define the new
vector of observations

y+ = (y′,y′
p)

′, (7)

that contains the observed response y and the unknown values to be predicted.

A new extended basis, B+, is built from a new set of knots that extends the original
knots used to fit the observed data to cover the range of the np observations to
forecast:

B+ =

[
B O
B1 B2

]
, of size n+ × c+, (8)

where B is the n × c basis used for fitting the trend component, B1 and B2 are
auxiliary basis for prediction up to n+ = n + np values, of sizes np × c and np × cp
respectively, and c+ = c+cp. The following figure represents a extended splines basis.

Figure 1: Extended basis example.

In Figure 1 we show the original basis B in black, the B1 component in red and the
B2 part in blue. Associated to the new basis B+, a new vector of coefficients, θ+,
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is defined, with length c+ × 1. A new quadratic penalty associated with the new set
of coefficients needs to be introduced, let say P+. As B+, P+ can be splited as:

P+ =

[
P 1 P 2

P ′
2 P 3

]
. (9)

In the case of P-splines P+ = D′
+D+, built from a difference matrix,

D+ =

[
D O
D1 D2

]
, (10)

of order q and size (c+ − q) × c+, with D the difference matrix used to build the
penalty matrix for the fit.

Then, the model can be fitted and predicted simultaneously by minimizing the
following function of θ+:

S = (y+ −B+θ+)
′W (y+ −B+θ+) + λθ′

+P+θ+, (11)

where the yp values of y+ are arbitrary and W is a diagonal matrix of dimension
n+ × n+ with 0 entries if the data is missing and 1 if the data is observed.
Deriving with respect to θ+:

∂S

∂θ+

= −2B′
+W (y+ −B+θ+) + 2λP+θ+. (12)

Therefore, the penalized least square solution is given by:

θ̂+ = (B
′

+WB+ + λP+)
−1B′

+Wy+, (13)

and ŷ = H+y+ with H+ = B+(B
′
+WB+ + λP+)

−1B′
+W .

Moreover, writing the fit and the forecast in function of the extended penalty matrix,
(9), and applying Theorem 9.6.1 given in Harville (2000), we have that:

ŷ+ = B+

[
I

−P−
3 P

′
2

]
(B′B + λP 1 − λP 2P

−
3 P

′
2)

−1B′y. (14)

The 95% confidence interval is ŷ ± 1.96
√

σ2
ϵdiag(H+H

′
+).

2.2 Prediction with mixed effects smooth models
The connection between penalized smoothing and mixed models was established
thirty years ago in Green (1987). The key point of this equivalence is the fact that the
smoothing parameter becomes a variance components ratio. Both variance compon-
ents can be estimated through restricted maximum likelihood procedure (REML),
see Patterson & Thompson (1971), and, therefore, it is not longer necessary to es-
timate λ via a cross-validation method or an information criterion.
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To represent a penalized smooth model as a mixed model it is necessary to find a
new basis that allows the representation of model (5) with its associated penalty as
a mixed model of the form:

y = Xβ +Zα+ ϵ, with α ∼ N (0,G) and ϵ ∼ N (0, σ2
ϵI), (15)

where X and Z are the model matrices and β and α are the fixed and random ef-
fects coefficients respectively. The random effects have covariance matrix G, which
depends on the variance of the random effects σ2

α.

There are different alternatives for the reparameterization of the original smooth
model based on quadratic penalties into a mixed model depending on the basis and
the penalty used. The idea is to find a transformation Ω such that:

BΩ = [X : Z] and Ω′θ =

[
β
α

]
to have Bθ = Xβ +Zα,

where Ω is an orthogonal matrix. We split the matrix Ω into two submatrices (for
the fixed and the random components respectively), i.e., Ω = [Ωf : Ωr], and such
that X = BΩf and Z = BΩr. Since the fixed effects are unpenalized, the matrix
X, may be replaced by any sub-matrix such that: (i) the composed matrix [X : Z]
has full rank (this also implies that both X and Z have full column rank) and (ii)
X and Z are orthogonal, i.e., X ′Z = 0. For the sub-matrix Ωr there are different
alternatives, following the approach of Currie & Durbán (2002), we use the singular
value decomposition of the penalty matrix, P = UΣ̃U ′, where Σ̃ is a diagonal
matrix that contains the eigenvalues of P , and U is the corresponding matrix of
eigenvectors, and we define

Ωr = U rΣ
−1/2,

Σ containing the positive eigenvalues and U r containing the span of the decompos-
ition. With this reparametrization, it is straightforward to obtain the relationship
between the inverse of the covariance matrixG of the random effects and the penalty
P :

G−1 =
1

σ2
α

Ω′
rPΩr. (16)

Once we have stablished the connection between mixed models and P-splines, we
can use the results given in Gilmour et al. (2004) to predict new observations. In the
paper the authors defined the prediction to be a linear function of the best linear
unbiased predictor (BLUP) of random effects with the best linear unbiased estim-
ator (BLUE) of the fixed effects in the model.

They consider the augmented mixed model,

y+ = X+β+ +Z+α+ + ϵ+, (17)

i.e.: [
y
yp

]
=

[
X
Xp

]
β+ +

[
Z O
Z1 Z2

] [
α
αp

]
+

[
ϵ
ϵp

]
,
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with ϵ+ ∼ N (0, σ2
ϵI),

[
X
Xp

]
the extended fixed part, β+ the fixed effects (the same

as the ones that give the fit),

[
Z O
Z1 Z2

]
the extended random part (with Z the

random part that gives the fit) and α+ = [α′,α′
p]

′ the augmented random effects
with covariance matrix

Var[α+] = G+ =

[
G Gop

Gpo Gpp

]
,

where G is the covariance matrix of the random effects in the model for the observed
data.
They showed that the new predicted values are

ŷp = Xpβ̂+ +Z(p)α̂, (18)

with
Z(p) = Z1 +Z2GpoG

−1 (19)

Therefore, the random effects vector of the predicted values is α̂p = GpoG
−1α̂. We

denote this method as “MM”.

Now we propose an alternative approach based on the reparameterization of the
method presented in Section 2.1 as a mixed model, in this case the estimation of
model (17) is done using the extended mixed model equations of Henderson:

[
β̂+

α̂+

]
= C−1

[
X ′

+M
Z ′

+M

]
y+, (20)

where C =

[
X+

′MX+ X+
′MZ+

Z+
′MX+ Z+

′MZ+ +G−1
+

]
and Z+ = B+Ω+r , with Ω+r any

orthogonal transformation such that

B+[Ω+f
: Ω+r ] = [X+ : Z+] and

[
Ω′

+f

Ω′
+r

]
θ+ =

[
β+

α+

]
to haveB+θ+ = X+β++Z+α+,

y+ = (y′,y′
p)

′ as in (7) , and M = 1
σ2
ϵ
W , with W a diagonal matrix of dimension

n+ × n+ with 0 entries if the data is forecasted and 1 if the data is observed. The
solutions are

β+ = (X ′
+V

−1
+ X+)

−1X ′
+V

−1
+ y+, (21)

α+ = G+Z
′
+V

−1
+ (y+ −X+β+), (22)

where V + = Z+G+Z
′
+ + σ2

ϵW and V −1
+ = M −MZ+(G

−1
+ +Z ′

+MZ+)
−1Z ′

+M .

Note that V + includes the variance components σ2
ϵ and σ2

α, through the covariance
matrices σ2

ϵI and G+, respectively. Let us denote this last method as “MMM”.
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The 95% confidence interval is ŷ ±

√
σ2
ϵdiag

([
X ′

+

Z ′
+

]
C−1

[
X+|Z+

])
, with C as in

(20).

The method proposed in Gilmour et al. (2004) is a two-stage procedure (first fit the
actual data, and then predict new values) and our extension of the missing value ap-
proach to the mixed model framework fits and predicts simultaneously. In order to
know the relationship between the two methods, MM and MMM, we need to know
the relationship between the covariance matrix of the random effects that gives the
fit and the extended covariance matrix.

The following theorem shows the relation between the MMMmethod and the method
proposed in Gilmour et al. (2004) in the context of penalties based on differences.

Theorem 1. Given the model in (6) with penalty based on differences between adja-
cent coefficients. The fit and the prediction of new observations given by MMM and
MM are the same if the transformation matrix in (20) is the direct extension of the
original transformation,

Ω+r =

[
Ωr O
O Ωpr

]
, (23)

where Ωr = U rΣ
−1/2, based on the SVD of D′D = UΣ̃U ′, is the transformation

matrix for the random component used for the observed data and Ωpr = D−1
2 is the

transformation matrix for the random component of the predicted values, with D
and D2 blocks of the extended difference matrix D+, (10).

The proof can be found in Appendix A.

We also prove in Appendix B that the variance components (σ2
α, σ

2) that maximize
the REML, l, and the REML corresponding to (17), l+, are equal,

l(σ2, σ2
α, ρ) = − 1

2
log|V |︸ ︷︷ ︸
Part I

− 1

2
log|X ′V −1X|︸ ︷︷ ︸

Part II

− 1

2
(y −Xβ)′ V −1 (y −Xβ)︸ ︷︷ ︸

Part III

, (24)

l+(σ
2, σ2

α, ρ) = − 1

2
log|V +|︸ ︷︷ ︸
Part I

− 1

2
log|X ′

+V
−1
+ X+|︸ ︷︷ ︸

Part II

− 1

2

(
y+ −X+β+

)′
V −1

+

(
y+ −X+β+

)︸ ︷︷ ︸
Part III

.

(25)
Notice the importance of the previous statement, it means that the variance para-
meters used to predict are the same as the ones that estimating the original fit.

2.3 Prediction with penalized Gaussian process regression
As it is known, one of the attractive features of penalized regression is its link to
stochastic processes. The title of this section is inspired in Yi et al. (2011), they use
the penalized Gaussian process regression to provide an alternative solution to the
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Gaussian process regression variable selection problem, since when dimension of the
data is high, it suffers from large variance of parameter estimation and high pre-
dictive errors. They apply several penalized methods to a Gaussian process model,
including Ridge, LASSO, Bridge, SCAD and adaptive LASSO penalties.

We also use Gaussian processes but not on the curve, we make a representation of
the curve in terms of bases and coefficients, and we have a Gaussian process on the
coefficients. Our proposal to predict new values, in the context of Gaussian process
smoothing, is to use a model based on Gaussian process prior and a P-spline cov-
ariance matrix to fit non linear data. That is, we will harness the flexibility of the
Gaussian process and the choice of a suitable covariance matrix to model any non-
linear model nonparametrically. In addition, the prediction is quite straightforward
due to the properties of Gaussian processes.

Prediction with Gaussian processes has a long history in at least three literatures:
mathematical geology (where the approach is called ’kriging’, see Cressie (1993)),
neural networks (Poggio & Girosi (1990) and Girosi et al. (1995)) and global optim-
ization in the analysis of computer experiments (e.g Sacks et al. (1989)).

Building on the previous approaches, we predict new values by proposing the pen-
alized regression framework to a Gaussian process model. In the context of model
(4), we can assume that the stochastic behaviour of the random vector y depends
on the observed covariate and a latent process s, according to a linear mixed model,

y = Xβ + s+ ϵ,

with Xβ the trend and ϵ an independent Gaussian process with zero mean and
variance σ2

ϵ , modelling the measurement error, i.e., ϵ ∼ N (0, σ2
ϵI). Random effects

are assumed to account for variability and represented in terms of basis functions
s = Bα, with B any basis. Imposing a prior structure on α through α ∼
N (0, σ2

αP
−), with P− the covariance matrix of the vector of coefficients, we have

the Gaussian process
s ∼ N (0,Σss),

with Σss = σ2
αBP−B′. Independence of s and ϵ implies that elements of y are

independent and normally distributed conditionally onX and s. Then, the marginal
distribution of the process y is

y ∼ N (Xβ,Σyy),

with Σyy = σ2
ϵI + σ2

αBP−B′.

Assuming that the covariance matrix Σyy is known, the maximum likelihood estim-
ator of the trend parameter vector β is

β̂ = (X ′Σ−1
yyX)−1X ′Σ−1

yyy. (26)

As is well known from Normal distribution theory, the conditional normal distribu-
tion of s|y is N (E[s|y],Σs|y), with:

10



E[s|y] = E[s] +ΣsyΣ
−1
yy(y − E[y])

= 0+ σ2
αBP−B′(σ2

ϵI + σ2
αBP−B′)−1(y −Xβ)

= B(λP +B′B)−1B′(y −Xβ),

since Σsy = E[ss] = Σss = σ2
αBP−B′, and

Σs|y = Σss −ΣsyΣ
−1
yyΣys

= σ2
αBP−B′ − σ4

αBP−B′(σ2
ϵI + σ2

αBP−B′)−1BP−B′

= σ2
ϵB [λP +B′B]

−1
B′.

Therefore, the fit is:

ŷ = Xβ̂ + ŝ = Xβ̂ +B(λP +B′B)−1B′(y −Xβ̂). (27)

Let xp be a vector of np unobserved values of the process with

yp = Xpβ + sp + ϵp,

where sp ∼ N (0, σ2
αΣspsp), ϵp ∼ N (0, σ2

ϵI). Therefore, the joint distribution of
observed and unobserved values is given by:[

y
yp

]
∼ N

([
Xβ
Xpβ

]
,

[
Σyy Σyyp

Σ
′

yyp
Σypyp

])
,

where Σyy = σ2
ϵI + σ2

αΣss and Σyyp
= σ2

αΣssp .

Pollice & Bilancia (2001) showed that the minimum variance predictor of yp condi-
tional on values of β and Σyy, is given by

E[yp|y] = Xpβ +Σ′
yyp

Σ−1
yy(y −Xβ).

Therefore, in order to calculate the predicted values we need to compute Σ′
yyp

Σ−1
yy.

Imposing a prior structure on α+ through α+ ∼ N (0, σ2
αP

−
+), where P−

+ is the
covariance of the extended vector of coefficients:

P−
+ =

[
P 1 P 2

P 2′ P 3

]
,

and since the extended basis is B+ is (8), we have:

B+P
−
+B

′
+ =

[
BP 1B′ B(P 1B′

1 + P 2B′
2)

(B1P
1 +B2P

2′)B′ (B1P
1 +B2P

2′)B′
1 + (B1P

2 +B2P
3)B′

2

]
,

i.e., Σyyp
= σ2

αB(P 1B′
1 + P 2B′

2). Then, applying Theorem 18.2.8 and Lemma
18.2.1 given in Harville (2000) we have that:
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Σ′
yyp

Σ−1
yy = σ2

α(B1P
1B′ +B2P

2′B′)(σ2
αBP−B′ + σ2

ϵI)
−1

= σ−2
ϵ B1P

1P (σ−2
α P + σ−2

ϵ B′B)−1B′ + σ−2
ϵ B2P

2′P (σ−2
α P + σ−2

ϵ B′B)−1B′.

Therefore, predictions are written as function of the extended penalty matrix:

ŷp = Xpβ̂+
[
B1 B2

] [ I
−P−

3 P
′
2

]
(P 1−P 2P

−1
3 P ′

2)
−P (B′B+λP )−1B′(y−Xβ̂),

(28)
with β̂ as in (26).

Since, essentially splines correspond to Gaussian processes with a particular choice
of covariance function. Knowing that in the case of penalties based on differences
the extended penalty matrix is

P+ =

[
D′D +D′

1D1 D′
1D2

D′
2D1 D′

2D2

]
, (29)

built from the difference matrix D+, (10), it is straigthforward to prove that the
solution of the missing value approach (14) and the solution assuming that the
response is a realization of a Gaussian process (28) are equal.

3 Properties of the predictions in the case of P-splines with
penalties based on differences

To study the properties of the proposed methods we focus on the case of penal-
ties based on differences between adjacent coefficients, in which case, the extended
penalty matrix in (11) is (29). The following theorem introduces two attractive
properties of the coefficients of the model.

Theorem 2. The coefficients from the minimizing of (11) with extended penalty
matrix (29) satisfy the following properties:

I. The first c coefficients of θ̂+, are those obtained from the fit of y, i.e.:

θ̂+1,...,c = θ̂.

II. The coefficients for the np predicted values are θ̂p = −D−1
2 D1θ̂.

Proof. Substituting the blocks of P+ by their specific values in (14) we have that:

ŷ+ = B+

[
I

−D′
2D1

]
(B′B + λP )−1B′y

i.e., the first c coefficients of θ̂+ are:

(B′B + λD′D)−1B′y,

12



the same as the ones that give the fit, and the additional coefficients are:

θ̂p = −D−1
2 D1(B

′B + λD′D)−1B′y = −D−1
2 D1θ̂. (30)

Corollary 3 (Theorem 2). The solution of the extended missing value problem, (11),
and the solution of the extended problem,

S+ = (y+ −B+θe)
′(y+ −B+θe) + λD′

+D+, (31)

where y+, B+, D+ are as in (7), (8) and (10) respectively, are equal.

Proof. Then if θ̂e is the vector that minimizes (31), written B+ as in (8) in

B′
+B+θ̂e + λD′

+D+θ̂e = B′
+y+

we have:

B′
oBoθ̂e +B′

pBpθ̂e + λD′
+D+θ̂e = B′

oy +B′
pyp. (32)

On the other hand, equation (31) can be written as[
y −Boθe

yp −Bpθe

]′ [
y −Boθe

yp −Bpθe

]
+ λθ′

eD
′
+D+θe,

so taking derivatives with respect to yp, we get

ŷp = Bpθ̂e (33)

Now, using (33) to rewrite (32) and simplifying:

B′
oBoθ̂e + λD′

+D+θ̂e = B′
oy.

Hence θ̂e is

θ̂e = (B′
oBo + λD′

+D+)
−1B′

oy. (34)

I.e., the solution of the extended missing value problem, (13), and the solution of
the extended problem, (34), are the equal.

Corollary 4 (Theorem 2). Given penalties of order q, the new coefficients are com-
binations of order q − 1 of the last q fitted coefficients.

As the most popular penalties are of second or third order, the proof of the previous
corollary for such cases and for penalties of order 1 is showed in Appendix C.

This is an important result since it shows an inmediate connection between the
penalty (or prior distribution) and the coefficients and the shape of the prediction.
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4 Application

In this section, we apply the proposed methods to two real data sets. One of them
on the log mortality rates, since modelling and forecasting mortality data is a chal-
lenging task in areas such as demography or insurance industry. The other dataset,
rental prices, allows us to show a simple example of predicting within the framework
of additive models.

4.1 Mortality data
To illustrate the proposed methodology we use a data set on the log mortality rates
of Spanish men aged 73 between 1960 and 2009. In order to predict the log mortality
rates of Spanish men aged 73 between 2010 and 2019, we apply the missing value
approach with B-splines of degree 3 as basis and second-order difference penalties
between adjacent coefficients as the penalty. The result and the 95% confidence
interval are showed in Figure 2.
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Figure 2: Fit, forecast and 95% confidence interval result of applying the missing value approach
of a data set on the log mortality rates of Spanish men aged 73, between 1960 and 2009.

In order to illustrate the result of Corollary 4 we repeat the procedure of the previous
example with three different penalty orders (1, 2 and 3). As it can be seen in Figure
3, if the penalty has order 1, the forecast is constant, if the penalty is of order 2 the
forecast is a line and if penalty is of third order the forecast is quadratic.
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Figure 3: Fit and forecast result of applying the missing value approach with penalty orders 1, 2
and 3 of a data set on the log mortality rates of Spanish men aged 73 between 1960 and 2009.

4.2 Rental data
Although all results presented in the previous sections are obtained in the case of
smooth models with a single covariate. It is immediately to extend these results
to the case of semiparametric or additive models. In this case we analyze data
corresponding to rental prices of 3153 houses. The aim of the analysis is to see the
relationship between the net rent and the size in square meters and the location of
a house. We can fit the following model:

yi = β0 + ciβ1 + f(xi), (35)

where

ci =

{
0 if house i is not located in the center
1 if house i is located in the center

and f(x) is the function that represent the main effects of the area (it is measured
in square meters and its values are between 20 and 230). The regression matrix is
then defined by blocks as

B =
[
1 | c | Bx

]
,

with marginal B-spline basis of degree three of the covariate area, Bx. The penalty
matrix associated with model (35) has a block-diagonal form:

P = blockdiag(0, 0, λxP x),

where P x is the marginal second-order difference penalty for area.
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Suppose that we want to predict the prices for houses with area between 231 and
280 square meters, applying the missing value approach we extend the basis and the
penalty:

B+ =

[
1 c Bx O
0 0 Bx(1)

Bx(2)

]
, P+ = blockdiag(0, 0, λxP x+).

Once we have extended the basis and the penalty, it is straightforward to obtain
the fit and the forecast applying equation (13), but in order to avoid identifiability
problems, since 1 is contained in the space spanned by the columns of Bx, we
reparameterize the model using the representation of a penalized spline model as a
mixed model, i.e. we apply method MMM. Figure 4 shows the smooth fitted and
forecasted trend for area and the 95% confidence interval.
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Figure 4: Fit, forecast and 95% confidence interval of the additive smooth term for area, result
of applying the MMM approach of a data set on the rental prices of houses with area between 20
and 230 m2.

5 Memory of a P-spline

In some occasions, our knowledge of the data can influence our decision on the pro-
portion of the data set that we want to use to predict new observations. I.e., it may
be important to know how much of the known information we are using to predict.
In this section we introduce the concept of memory of a P-spline as a tool to provide
that information and show some of its properties.

It is important to notice that, because the matrix W in (13) is a block diagonal
matrix with entries zeros or ones, H+ in (13) has the following form:

H+ =

[
H O1

Hp O2

]
, (36)
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with H of size n × n, Hp of size np × n and O1 and O2 matrices of zeros of size
n×np and np×np, respectively. I.e., the predicted values given by the missing value
approach in the case of penalties based on differences between adjacent coefficients
are

ŷp = Hpy,

where Hp = B1(B
′B + λD′D)−1B′ − B2D

−1
2 D1(B

′B + λD′D)−1B′, with B,
B1 and B2 as in (8) and D, D1 and D2 as in (10). Therefore, summarizing the
rows and columns of Hp we will give us an insight of how the past is affecting the
prediciton.

To illustrate the concept of memory of a P-spline we use the mortality data set of
Section 4.1. The data set contains 50 observations, i.e., the size of the hat matrix
that give us the fit is 50 × 50. If we forecast up to 2019, i.e., we compute 10 new
observations, the hat matrix Hp has size 10 × 50. Panel (a) of Figure 5 shows the
fit and forecast of the log mortality rates until 2019. Panel (b) dislplays the rows
of Hp, panel (c): columns of H+, the black lines separates the elements of H and
Hp. Panel (d) shows the image of the H+ matrix.

Forecast up to 2019, 10 new obervations. Lambda = 23.63
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Figure 5: Panel (a): fit and forecast of the log mortality rates until 2019. Panel (b): rows of Hp.
Panel (c): columns of H+, the black lines separates the elements of H and Hp. Panel (d): H+

matrix.

We have noticed that all rows of Hp follow a similar pattern, i.e., if we consider
each row as a function, we find that they behave similarly (see panel (b) of figure
5). For instance, if the maximum of the last row is taken at the last column, this
also happens in the rest of columns. Moreover, the contribution of each point in the
past reduces gradually as we move away from the present.
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As each column of Hp gives the contribution of each point of the past in the future
values. We have also observed that these contributions are a polynomial function of
time of order q − 1, where q is the order of the penalty (see panel (c) of Figure 5,
where q = 2).

Based on these ideas we have developed the concept memory of a P-spline, this
new idea will give us information on the overall weight of each observation on the
prediction.

We have summarized the columns of Hp as follows: we add them (in absolute value)
and standardize them by their sum, this will give us a vector of weights w of the
same length of the response variable, n × 1. Considering T as the number of steps
backward from the last observation and associating the vector of weights to these
values. Then, the memory of the P-spline is the 99th percentile, t0. That
would mean that beyond t0 steps backward no relevant information is affecting the
prediction.
Notice that considering the memory as the 99th percentile is just one possible way
to summarize the vector of weights. Summary statistics that treat the weights as if
they are a discrete distribution (mean, quantiles, expectiles) are other choices.

To calculate the memory of the P -spline in the previous example, we compute the
vector of weights,w, its values are shown in Table 1 (the values ofwt for t = 25, ..., 50
are not shown in the table since they are approximately 0) and obtain the 99th

percentile. In this case the memory of the P -spline is t0 = 18, i.e., what has happened
18 years backward, before 1992, does not influence on the future.

t wt t wt t wt t wt

1 0.3315 7 0.0676 13 0.0100 19 0.0029
2 0.1765 8 0.0617 14 0.0044 20 0.0025
3 0.0663 9 0.0511 15 0.0006 21 0.0020
4 0.0150 10 0.0391 16 0.0018 22 0.0014
5 0.0470 11 0.0276 17 0.0028 23 0.0009
6 0.0644 12 0.0178 18 0.0031 24 0.0006

Table 1: Normalized weights, wt, for the number of steps backward from the last observed year.

Figure 6 illustrates the result. Left panel shows the vector of weights, the red line
corresponds to the year from which we are taking information, 1992. Right panel of
Figure 6 shows the fit and the forecast of the log mortality rates until 2019, the data
that are between the red and the black lines correspond to the data that contributes
to the prediction.
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Figure 6: Left panel: vector of weights, the red line corresponds to the year from which we are
taking information, 1992. Right panel: fit and forecast of the log mortality rates until 2019, the
data that are between the red and the black lines correspond to the data that contributes to the
prediction.

5.1 Properties of the memory of a P-spline
Although we do not have yet analytic proof of the properties of the memory, we have
performed the following simulation study that shows the behaviour of the memory.

We have applied the missing value approach with B-spline basis and second-order
penalty to several simulated data sets by using different prediction horizons and
bases of different sizes.

We have simulated from yi = f(xi) + ϵi, i = 1, ..., n, xi ∼ Unif[0, 1] with:

a) Smooth functions and errors:

i) f(xi) = exp(xi), ϵi ∼ N (0, σ = 0.1).

ii) f(xi) = 2 + xi, ϵi ∼ N (0, σ = 0.1).

iii) f(xi) = 2 + sin(4πxi), ϵi ∼ N (0, σ = 0.4).

b) Basis: B-spline bases with dimensions n× k, with k = seq(40, 1000, by = 5).

c) Prediction horizons between 1 and 30 in steps of 1.

From the obtained results, we concluded:

1. The memory, like the effective dimension, only depends on the smoothing
parameter and not on the size of the B-spline basis (provided that the basis is
sufficiently large).

2. The memory does not depend on the prediction horizon.
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3. The memory depends on the smoothing parameter. The smaller (larger) the
smoothing parameter is, the smaller (greater) the influence of the past on the
predicted values is.

In order to illustrate property 2, we use the previous mortality data set, Figure
7 shows the vector of weights for different prediction horizons, as we can see the
memory is always the same and data prior to 1992 do not contribute to the pre-
diction. To illustrate the third property we fit and forecast up to 2019 the log
mortality rates by using different smoothing parameters, depending on the value of
the smoothing parameter the memory is smaller or greater. As we can see in Figure
8, as the value of the smoothing parameter increases, the memory also increases.
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Figure 7: Vector of weights for different prediction horizons when we fit and forecast the log
mortality rates of Spanish men aged 73.
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20



6 Conclusions

Smoothing techniques have become a very popular tool for estimation of functions.
However, prediction is still an open area of research. In this paper we have proposed
a general framework for prediction of new observations in penalized regression, the
methodology proposed can be accommodated to the different frameworks in which
smoothing is carried out:

• Extend the basis used for regression and the penalty to control the smoothness
in the framework of penalized regression based on quadratic penalties.

• Extend the fixed and random components in the context of mixed models.

• Define a Gaussian process for the extended set of random effects.

In the context of penalties based on differences between adjacent coefficients, we
have proved the equivalence of all methods and we have seen that the order of pen-
alty function, which is less relevant in the smoothing of data, is now critical, because
the penalty function determines the form of the prediction.

We have also introduced the concept of “memory of a P-spline” as a tool to know
how much known information we are using to predict. Through a simulation study
we have been able to conclude that the memory just depends on the smoothing
parameter, provided that the regression basis is sufficiently large.

To illustrate the methodology, the proved results and the concept of “memory of a
P-spline”, we have showed the performance of the missing value approach method
with B-spline basis and penalties based on differences by using two examples based
on real data sets.

Finally, the presented methodology is general and as further work we will focus
on the extension of it to more general cases, for example, for correlated errors, for
Poisson response variables or for multidimensional setting.

Appendix

A Proof of Theorem 1

Proof. Since with the transformation matrix (23) the extended fixed and random
parts are the same in both methods, we just need to show that the fixed and random
effects are equal in both methods.

Let us compute the covariance matrix G+ of the augmented random effects α+,
(22):

G+ = σ2
α(Ω

′
+r
D′

+D+Ω+r)
−1 = σ2

α

[
G Gop

Gpo Gpp

]
, (A.1)
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D+Ω+r is a squared matrix, so the inverse of ((D+Ω+r)
′D+Ω+r)

−1 is

((D+Ω+r)
′D+Ω+r)

−1 = (D+Ω+r)
−1(D+Ω+r)

′−1

= (D+Ω+r)
−1(D+Ω+r)

−1
′

.

Using Lemma 8.5.4 of Harville (2000), we have that:

(D+Ω+r)
−1 =

[
DΩr 0
D1Ωr D2Ωpr

]−1

=

[
(DΩr)

−1 0
−(D2Ωpr)

−1D1Ωr(DΩr)
−1 (D2Ωpr)

−1

]
.

Therefore,

G = I,

Gop = −Ω
′

rD
′
1,

Gpo = −D1Ωr,

Gpp = I +D1ΩrΩ
′

rD
′

1.

Notice that its inverse is:

G−1
+ =

1

σ̂2
α

[
Goo Gop

Gpo Gpp

]
=

1

σ̂2
α

[
I +Ω

′

rD
′

1D1Ωr −Ω
′

rD
′
1

D1Ωr I

]
.

Now that we know G+, we just need to compute V −1
+ to know the expression of the

extended fixed effects. We have that,

G−1
+ +Z ′

+MZ+ =

[
1
σ2
α
(I +Ω

′

rD
′

1D1Ωr) +
1
σ2
ϵ
(BΩr)

′BΩr
1
σ2
α
Ω

′

rD
′
1

1
σ2
α
D1Ωr

1
σ2
α
I

]
=

[
K1 K2

K3 K4

]
,

and that,

MZ+ =

[ 1
σ2
ϵ
BΩr O

O O

]
.

Defining (G−1
+ +Z ′

+(WR+W )−1Z+)
−1 =

[
J1 J2

J3 J4

]
, it follows that:

MZ+(G
−1
+ +Z ′

+MZ+)
−1Z ′

+M =

[ 1
σ4
ϵ
BΩrJ1(BΩr)

′ O

O O

]
.

Hence, we just need to know J1. Applying Theorem 8.5.11 given in Harville (2000):

J−1
1 = K1 −K2K

−1
4 K3

= K1 −
1

σ2
α

Ω′
rD

′
1(σ

2
αI)

1

σ2
α

D1Ωr

=
1

σ2
α

(I +Ω
′

rD
′

1D1Ωr) +
1

σ2
ϵ

(BΩr)
′BΩr −

1

σ2
α

Ω′
rD

′
1D1Ωr

=
1

σ2
α

I +
1

σ2
ϵ

(BΩr)
′BΩr,
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and, applying Theorem 18.2.8, given in Harville (2000) to compute J1:

J1 = σ2
αI − σ2

αI(BΩr)
′(σ2

ϵI +BΩrσ
2
αI(BΩr)

′)−1BΩrσ
2
αI

= σ2
αI − (σ2

α)
2(BΩr)

′(σ2
ϵI +BΩrσ

2
αI(BΩr)

′)−1BΩr.

Therefore:

V −1
+ = M −MZ+(G

−1
+ +Z ′

+MZ+)
−1Z ′

+M

=

[ 1
σ2
ϵ
I − 1

σ4
ϵ
BΩr [σ

2
αI − σ4

α(BΩr)
′(σ2

ϵI + σ2
αBΩr(BΩr)

′)−1BΩr] (BΩr)
′ O

O O

]
=

[
V ∗

+11
O

O O

]
.

Moreover, as V = σ2
ϵI +ZGZ ′, with G = σ2

αI:

V −1 =
1

σ2
ϵ

I − 1

σ4
ϵ

BΩr

(
1

σ2
α

I +
1

σ2
ϵ

(BΩr)
′BΩr

)−1

(BΩr)
′

By Theorem 18.2.8 given in Harville (2000),

(
1

σ2
α

I +
1

σ2
ϵ

(BΩr)
′BΩr

)−1

= σ2
αI − σ4

α(BΩr)
′ (σ2

ϵI +BΩrσ
2
α(BΩr)

′)−1
BΩr

i.e., V −1 = V ∗
+11

.

As we have proved that V −1
+ =

[
V −1 O
O O

]
it is straightforward to show that β+ = β.

Moreover, by the MMM method we have that,

α+MMM = G+Z
′
+V

−1
+ (y+ −X+β+)

=
β=β+

σ2
α

[
(BΩr)

′V −1 O
−D1Ωr(BΩr)

′V −1 O

]
(y+ −X+β)

=

[
GZ ′V −1(y −Xβ)

GpoG
−1GZ ′V −1(y −Xβ)

]
=

[
αMM

GpoG
−1αMM

]
.

As we wanted to show solutions given by MMM and MM are the same.

B Proof of the equivalence of the restricted maximum like-
lihoods (24) and (25)

By the proof of theorem 1 we knok that V −1
+ =

[
V −1 O
O O

]
, therefore it is straight-

forward to prove that Part II and III of approximate restricted maximum likelihoods
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(24) and (25) are equal. As V + ̸= V , Part I of (24) and (25) are not equal, but its
derivatives with respect to the parameters (σ2

ϵ , σ
2
α) are equal:

Derivatives of Part I with respect to σ2:

∂
(
1
2
log|V |

)
∂σ2

ϵ

=
1

2
trace

(
V −1

)
and

∂
(
1
2
log|V +|

)
∂σ2

ϵ

=
1

2
trace

(
V −1

+

∂σ2
ϵW

∂σ2
ϵ

)
=

1

2
trace

(
V −1

)
,

the derivatives with respect to the correlation parameter, ρ, are analogous.

Derivatives of Part I with respect to σ2
α:

∂
(
1
2
log|V |

)
∂σ2

α

=
1

2
trace

(
V −1Z

∂G

∂σ2
α

Z ′
)

and

∂
(
1
2
log|V +|

)
∂σ2

α

=
1

2
trace

(
V −1

+ Z+
∂G+

∂σ2
α

Z ′
+

)
=

1

2
trace

([
V −1Z ∂G

∂σ2
α
Z ′ V −1Z

(
∂G
∂σ2

α
Z ′

1 +
∂Gop

∂σ2
α
Z ′

2

)
O O

])

=
1

2
trace

(
V −1Z

∂G

∂σ2
α

Z ′
)
.

C Proof of corollary 2

Proof. • Differences of order 1.
Suppose a difference matrix with first order penalty D+ of dimensions (c+−1)×c+,

D+ =

[
D O
D1 D2

]
=


−1 1 0 0 0 0 0 · · ·
0 −1 1 0 0 0 0 · · ·
0 0 −1 1 0 0 0 · · ·
...

...
...

...
...

...
...

...
0 0 0 0 0 0 −1 1

 ,

where D1 has dimension cp × c, with cp the additional number of parameters in θ+,
and D2 has dimension cp × cp:

D1 =


0 0 · · · 0 −1
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0

 , D2 =



1 0 0 0 0 · · · 0
−1 1 0 0 0 · · · 0
0 −1 1 0 0 · · · 0
0 0 −1 1 0 · · · 0
0 0 0 −1 1 · · · 0
...

...
...

...
...

...
...

0 0 0 0 0 −1 1


.
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Then, the additional vector of coefficients in (30) is:

θ̂p = −D−1
2 D1θ̂ = −


0 0 · · · 0 −1
...

... · · · 0 −1
...

... · · · 0 −1
0 0 · · · 0 −1
...

... · · · ...
...




θ̂1

θ̂2
...

θ̂c−1

θ̂c

 = θ̂c


1
1
1
...

 .

Therefore, using differences of order 1 the new coefficients are equal to the last coef-
ficient.

• Differences of order 2.
Suppose a difference matrix with second order penaltyD+ of dimensions (c+−2)×c+,

D+ =

[
D O
D1 D2

]
=


1 −2 1 0 0 0 0 · · ·
0 1 −2 1 0 0 0 · · ·
0 0 1 −2 1 0 0 · · ·
...

...
...

...
...

...
...

...
0 0 0 0 0 1 −2 1

 ,

where D1 has dimension cp × c, with cp the additional number of parameters in θ+,
and D2 has dimension cp × cp:

D1 =


0 0 · · · 1 −2
0 0 · · · 0 1
...

...
. . .

...
...

0 0 · · · 0 0

 , D2 =



1 0 0 0 0 · · · 0
−2 1 0 0 0 · · · 0
1 2 1 0 0 · · · 0
0 1 −2 1 0 · · · 0
0 0 1 −2 1 · · · 0
...

...
...

...
...

...
...

0 0 0 0 1 −2 1


.

Then, the additional vector of coefficients in (30) is:

θ̂p = −D−1
2 D1θ̂ = −


0 0 · · · 1 −2
...

... · · · 2 −3
...

... · · · 3 −4
0 0 · · · 4 −5
...

... · · · ...
...




θ̂1

θ̂2
...

θ̂c−1

θ̂c

 = θ̂c


1
1
1
...

+ (θ̂c − θ̂c−1)


1
2
3
...

 .

Therefore, using differences of order 2 the new coefficients are a linear combination
of the two last coefficients obtained after fitting the observed data.

• Differences of order 3.
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Suppose a difference matrix with third order penalty, D+ of dimensions (c+−3)×c+,

D+ =


−1 3 −3 1 0 0 · · · 0 0 0 0
0 −1 3 −3 1 0 · · · 0 0 0 0
0 0 −1 3 −3 1 · · · 0 0 0 0
...

...
...

...
...

... · · · ...
...

...
...

0 0 0 0 0 0 · · · −1 3 −3 1

 .

In this case, D1 and D2 are:

D1 =


0 0 0 · · · −1 3 −3
0 0 0 · · · 0 −1 3
0 0 0 · · · 0 0 −1
...

...
... · · · ...

...
...

0 0 0 · · · 0 0 0

 , D2 =


1 0 0 0 · · · 0 0 0 0
−3 1 0 0 · · · 0 0 0 0
3 −3 1 0 · · · 0 0 0 0
...

...
...

... · · · ...
...

...
...

0 0 0 0 · · · −1 3 −3 1

 .

Therefore, by (30):

θ̂p = −D−1
2 D1θ̂ = −



0 · · · 0 −1 3 −3
0 · · · 0 −3 8 −6
0 · · · 0 −6 15 −10
0 · · · 0 −10 24 −15
0 · · · 0 −15 35 −21
0 · · · 0 −21 48 −28
0 · · · 0 −28 63 −36
0 · · · 0 −36 80 −45
0 · · · 0 −45 99 −55
... · · · ...

...
...

...





θ̂1

θ̂2

θ̂3
...

θ̂c−2

θ̂c−1

θ̂c



= θ̂c



1
1
1
1
1
1
...


+

3θ̂c − 4θ̂c−1 + θ̂c−2

2



1
2
3
4
5
6
...


+

θ̂c − 2θ̂c−1 + θ̂c−2

2



1
2
3
4
5
6
...



2

,

in this case, the new coefficients are a linear combination of the last three coefficients
obtained after fitting the observed values. The prediction is a quadratic polynomial.
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