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Abstract

We propose a new methodology for predicting a partially observed curve from
a functional data sample. The novelty of our approach relies on the selection of
sample curves which form tight bands that preserve the shape of the curve to predict,
making this a deep datum. The involved subsampling problem is dealt by algorithms
specially designed to be used in conjunction with two different tools for computing
central regions for functional data. From this merge we obtain prediction bands for
the unobserved part of the curve in question. We test our algorithms by forecasting
the Spanish electricity demand and imputing missing daily temperatures. The results
are consistent with our simulation that show that we are able to predict at the far
horizon.
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1 Introduction

The concept of depth for functional data, first discussed by Fraiman and Muniz (2001), has

received a great deal of attention in recent years (Cuesta-Albertos and Nieto-Reyes, 2008;

López-Pintado and Romo, 2009, 2011; Narisetty and Nair, 2015; Nieto-Reyes and Battey,

2016). Several functional depth measures have been considered for different application,

including classification (Cuevas et al., 2007), outlier detection (Febrero et al., 2008; Arribas-

Gil and Romo, 2014), measuring dispersion of curves and rank tests (López-Pintado et al.,

2010). Functional versions of boxplots and other graphical tools based on different depths

have been also proposed for visualizing curves with the aim of discovering features from a

sample that might not be apparent by using other methods (Hyndman and Shang, 2010;

Sun and Genton, 2011). The key instrument of these methods is the band delimited by the

deepest curves, also termed central region. Central regions have been successfully used for

shape and magnitude outliers detection. However, as far as we know, they have not been

used for predicting unobserved part of curves, an important issue in the literature related

to missing data (James et al., 2000; James and Hastie, 2001; Yao et al., 2005; Delaigle and

Hall, 2013; Chiou et al., 2014) and forecasting (Antoniadis et al., 2006; Aneiros-Pérez and

Vieu, 2008; Aneiros-Pérez et al., 2011; Shang and Hyndman, 2011; Shang, 2017).

To illustrate the power of central regions based on depths for forecasting, consider the

average monthly sea temperatures between 1950 and 2015 measured by moored buoys in

the “Niño region”. The data was taken from http://www.cpc.ncep.noaa.gov/and have

been already used by Hyndman and Shang (2010) and Sun and Genton (2011) to illustrate

their methodologies. We will divide years in two halves and reserve the last six months for

testing the prediction. Thus, considering data only from the first six months, we compute

the deepest curve and the central regions Cα described by Sun and Genton (2011) for

α = 0.1, 0.3 and 0.5. In the next section we will detail which is this deepest curve and what

is Cα; for now it is enough to think that the former is “in the middle” of the curves at

most of the first half of the year and Cα is a band surrounding the deepest where α×100%

of the sample curves are enclosed during the first six months. The three central regions

are differentiated by grey grades (black, dark and light grey) on the left side of Figure 1,

where we also represent the temperatures of 1990 by a solid red line (corresponding to the
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Figure 1: Curves of average monthly sea temperatures (1950–2015). Left-half side: the deepest

curve on the first six months (corresponding to 1990, solid red line) and central regions Cα

(α = 0.1, 0.3 and 0.5, in black and two grey grades) computed according to Sun and Genton

(2011) but considering data only from the first six months. Right-half side: extended central

regions according to equation (1) and temperatures on the last six months of 1990 (dashed red

line).

deepest curve on the first six months). Let Jα be the set of curves that are completely

contained in Cα on the first six months. Then, we extend the regions Cα to the last six

months in the straightforward way by

Cα = {(t, y(t)) : 6 < t ≤ 12 and min
y∈Jα

y(t) ≤ y(t) ≤ max
y∈Jα

y(t)}. (1)

As one can see in the Figure 1, the extended regions Cα (identified by the same grey

grades used for the corresponding Cα) envelope the dashed line providing prediction bands

for the temperatures of the last six month of 1990. Smaller the value of α, tighter Cα.

In addition, notice how Cα preserves the shape of the dashed red line. In this article,

we are interested in constructing similar prediction bands for the unobserved part of a

curve, not necessarily the deepest. The main problem of this task consists on how to
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select sample curves surrounding the curve to extend. We propose two algorithms to

address this problem which depend on the way of computing central regions, according to

Hyndman and Shang (2010) and Sun and Genton (2011). James et al. (2000), James and

Hastie (2001) and Yao et al. (2005) consider sparse functional data sets and deal with the

problem of curve reconstruction based on parametric modeling. On other hand and in the

context of functional data classification, Delaigle and Hall (2013) provide a nonparametric

approach for extending curves by vertical translation of other pieces of functions from the

sample. Rather than to extend an unobserved fragment by a piece of curve, Shang and

Hyndman (2011) and Shang (2017) propose nonparametric methods for forecasting when

the data come from a functional time series. In a more general framework, we introduce a

new approach for providing prediction bands which preserve the shape of the function to

predict.

This paper is organized as follows. In Section 2 the concept of central regions is re-

viewed. Section 3 presents two algorithms for subsampling curves surrounding a function

and making the latter a deep datum. The prediction problem is considered in Section 4

and in Section 5 we apply the methodology proposed to two real data sets, the Spanish

daily temperatures and electricity demand. Finally, we present some conclusions of our

study in Section 6.

2 Functional Central Regions

Consider a sample of random functions Y = {y1, ..., yn} observed on a common compact

interval I. For each y ∈ Y , denote by D(y,Y) the sample depth of y relative to Y according

to some depth measure. We refer the reader to the recent paper of Nieto-Reyes and Battey

(2016) for a thorough discussion on the definition of depth for functional data. Consider

now the ordered sample {y(1), ..., y(n)} from larger to lower depth. This is D(y(1),Y) ≥

D(y(2),Y) ≥ . . . D(y(n),Y). Then, the band delimited by the α proportion of deepest

sample functions

Cα = {(t, y(t)) : t ∈ I, min
r=1,...,[αn]

y(r)(t) ≤ y(t) ≤ max
r=1,...,[αn]

y(r)(t)}, (2)
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where [αn] is the integer part of αn, is referred to as the α sample central region (Sun and

Genton, 2011). This concept is an extension of the definition of multivariate central region

introduced by Liu et al. (1999).

In this paper, we will consider two ways of ordering functional data for computing

central regions. By one hand, Hyndman and Shang (2010) first compute the cloud of points

corresponding to the first two robust principal component scores of the sample curves.

These scores are computed by applying the Croux and Ruiz-Gazen (2005) algorithm. Then,

they assign to each curve the celebrated Tukey’s halfspace depth of its score relative to the

cloud of points. The Tukey’s depth of a point w relative to a cloud of points W , denoted

here by TD(w,W), is defined as the smallest number of points of the cloud contained in

a closed half-plane containing w on its boundary (Tukey, 1975). By the other hand, Sun

and Genton (2011) consider the modified band depth of López-Pintado and Romo (2009)

with bands formed by two curves. Namely,

MBD(y,Y) =

(
n

2

)−1 ∑
1≤i<j≤n

λ ({t ∈ I : min(yi(t), yj(t)) ≤ y(t) ≤ max(yi(t), yj(t))})
λ(I)

,

λ being the Lebesgue measure.

Both ordering ways, based on TD and MBD, have demonstrated to provide central

regions that envelope the deepest curve (with curves from below and above) and exhibit

its shape. They have been also successfully used for outlier detection, specially to iden-

tify sample curves that lie outside the range of the vast majority of the data (magnitude

outliers).

As an alternative of the central region based on the Tukey’s depth, Hyndman and

Shang (2010) also consider the so called functional high density regions (HDR). For this,

they assign to each curve its bivariate kernel density estimate (Terrell and Scott, 1992)

calculated from the first two robust principal component scores. Then, the functional

HDR is defined as the band delimited by the sample curves whose corresponding scores

are inside the bivariate region with coverage probability 1 − α, where all scores within

the region have a higher density estimate than any of the points outside the region. The

authors propose these regions having in mind curves that may be within the range of the

rest of the data but have a very different shape from other curves (shape outliers). We

remark that, if the bivariate kernel density involved is multimodal, the HDR may consist
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in an union of separate bands, as Hyndman and Shang (2010) have shown. Therefore,

we discard HDR in this paper, we are interested in just one band that envelops curves

surrounding the deepest, as the central regions discussed above.

3 Curves selection

Additionally to the n sample curves in Y , consider a focal curve y0 /∈ Y , the function

that we are interested in predicting. We assume that y0 is observed on I, where the n

sample curves are also observed. In line with the ideas sketched in the introduction, we

are interested in subsamples J ⊂ Y with tight central regions that envelope y0. Of the

2n possible subsamples, many of them may have tight central regions which scarcely cover

the focal curve, even if they are nearby. Conversely, many subsamples may completely

cover the focal with wide central regions, with boundaries faraway from y0. These regions

may not provide proper information about the features of the focal curve. To illustrate the

above, consider the sample of random harmonic signals shown in Figure 2 (black lines) and

the three subsamples (blue lines) of each panel. The central region delimited by the two

deepest curves of each subsample is painted in gray and the focal curve in red. The band

of the left panel completely cover the focal curve, but it is the widest possible sample band.

The band of central panel is tight and delimited by the two nearest curves in L2 to the focal,

however the focal curve is always out of this band. In fact, curves faraway from above and

below usually envelope the focal but provide wide bands. Also, the nearest curves provide

tight bands but they may not contain important parts of focal. Our goal is to provide tight

central regions like the shown in right panel, where the focal is completely enveloped. We

will address the problem by subsampling curves from y0 to outwards, making y0 a deep

datum. According to the widely-accepted statistical wisdom which suggest large samples

to decrease sampling errors, we are also interested in such large subsamples as possible.

For that, we introduce two heuristics inspired by the two methods for computing central

regions that we discussed in the previous section.

6



0 1 2 3 4 5 6

−1.
0

−0.
5

0.0
0.5

1.0

0 1 2 3 4 5 6
−1.

0
−0.

5
0.0

0.5
1.0

0 1 2 3 4 5 6

−1.
0

−0.
5

0.0
0.5

1.0

Figure 2: Three scenarios of central regions (dark gray) from subsamples (blue lines) of harmonic

curves. Left panel: the region delimited by the farthest curves to the focal (in red). Central panel:

the region delimited by the two nearest curves to the focal. Right panel: the tightest region that

envelopes the focal.

3.1 Selection based on principal-component neighbourhoods

Following Hyndman and Shang (2010), we begin by mapping the curves {y0, y1, ..., yn}

to their first two robust principal component scores denoted by W0 = {w0, w1, ..., wn}.

Since the main features of the curves should be captured by the scores (Jones and Rice,

1992), clusters of scores centered on w0 should correspond to curves surrounding y0. In

order to construct these clusters, we consider Delaunay triangulations, probably the most

widely used tool for solving proximity problems in stochastic geometry (Okabe et al., 2008).

Henceforward, D(W) denotes the Delaunay triangulation on a set of scores W .

Consider the neighbours of w0 in D(W0). These neighbours are the scores directly

connected to w0 by an edge of D(W0). If w0 is inside the polygon of minimum perimeter

that joins its neighbours (the loop through these scores), we gather them in a set N0 for

surrounding w0. Next, we consider the triangulation onW0 \N0. Let N be the neighbours

of w0 . If the loop through N contains w0 and the percentile in depth of w0 relative to

N0∪N is greater or equal to the percentile relative to N0 then we add N to N0. Otherwise,

N is discarded fromW0. Here we use the Tukey’s depth. We repeat the process until there
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are not loops around w0. The final subsample is obtained by mapping the scores N0 to the

set of sample functions Y . This algorithm is describe below in pseudocode (Algorithm 1)

Algorithm 1 Input: Y ,W0/Output: J

Initialize N0 = ∅

while D(W0 \ N0) 6= ∅ do

Determine the neighbours N of w0 in D(W0 \ N0)

Compute the loop L through the points of N

Let p0 be the percentile of TD (w0,N0 ∪ {w0})

Let p1 be the percetile of TD (w0,N0 ∪ {w0} ∪ N )

if w0 is inside L and p1 ≥ p0 then

N0 = N0 ∪N

else

W0 =W0 \ N

end if

end while

Compute J by mapping N0 to Y

For illustration purposes, we consider again the sea surface temperatures discussed in

Section 1 and we choose the curve corresponding to 1999 as focal. Figure 3 shows outputs

of the first, second and last (third) iteration of Algorithm 1. Left panels display Delaunay

triangulations (in grey), w0 (in red), its neighbours and the corresponding loops (in black).

Central panels show the expansion ofN0 (in black) by iteration and right panels the selected

curves (in black) for surrounding the focal (in red). Note how the corresponding scores of

J increases at each iteration around w0 by adding the vertices of polygons that contain w0

(black points in left panel of Figure 3). Hence, the resulting cluster of scores (black points

of bottom-center panels) form a cloud of points almost centered on w0.

3.2 Selection based on band depth

Unlike the selection based on proximity of principal components scores, now we consider

proximity of curves directly in the functional space. Remember that we look for subsample
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Figure 3: First, second and last (fourth) iteration of Algorithm 1 applied to the average monthly

sea temperatures. Left panels: Delaunay triangulations (in grey), w0 (in red), the triangles

incident towards w0 and its vertexes (in black). Central panels: N0 (in black). Right panels:

selected curves (in black) for surrounding the focal (in red), corresponding to 1999.
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Figure 4: First, second and last (fourth) iteration of Algorithm 2 from average monthly sea

temperatures. In dark gray the band delimited by the curves chosen at each iteration. In black,

the curves collected previously. In red, the focal curve.

with central regions formed by nearby curves (here we use L2-norm) which wrap the focal

as much as possible. For doing so, first we identify the set In ⊂ I where y0 is covered by

the sample. This is

In = {t ∈ I : min
y∈Y

y(t) ≤ y0(t) ≤ max
y∈Y

y(t)}.

Then, we find the nearest sample curves to y0 which envelope it on In. We gather these

curves in a set J . Next, we find the nearest curves in Y \ J which envelope the focal

as much as possible and collect them in N . If the percentile in depth of y0 relative to

J ∪ N ∪ {y0} is greater or equal to the percentile relative to J ∪ {y0} then we add N to

J , otherwise we remove N from Y and repeat the process. In this procedure the depth

used is MBD. This algorithm is detailed below and Figure 4 shows its first, second and

last iterations from the sea surface temperatures, given 1999 as focal.

In order to compare the algorithms, we will vary the focal curve among the 66 years

(1950–2015) and run both procedures. Denote by J (y) the subsample obtained for the

focal curve y. Note that J (y) may be empty with Algorithm 1 if the score related to the

principal components of y is out of any sample polygon. In contrast, Algorithm 2 provides

bands excepting when y is always above or below the rest of the curves. We report the
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Algorithm 2 Input: Y , y0/ Output: J

Initialize J = ∅

while size of Y \ J ≥ 2 do

Let y(k) be the kth-nearest curve to y0 from Y \ J .

Let N = y(1) and m = 0

for k ≥ 2 do

λk = λ
(
{t ∈ I : miny∈N∪y(k) y(t) ≤ y0(t) ≤ maxy∈N∪y(k) y(t)}

)
if λk > m then

N = N ∪ {y(k)}

m = λk

end if

end for

Let p0 be the percentile of MBD (y0,J ∪ {y0})

Let p1 be the percetile of MBD (y0,J ∪ {y0} ∪ N )

if m > 0 and p1 ≥ p0 then

J = J ∪N1

else

Y = Y \ N1

end if

end while
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Algorithm 1 Algorithm 2

outlying curves 8 out of 66 0 out of 66

subsample size 20.534 18.276

depth percentile 0.997 0.927

Table 1: Averages obtained by varying focal curve on the data set of sea temperatures.

number of such cases as number of outlying curves. For all the other cases, we compute

the following performance statistics:

• Subsample size, number of curves in J (y).

• Depth percentile, the percentile of D(y,J +(y)) in {D(z,J +(y)), z ∈ J +(y)}, being

J +(y) = J (y) ∪ {y}.

Consider also the k-deepest curves of J +(y) and denote by Jk(y) these curves, excluding

the focal if this is one of the k deepest. We also compute:

• Standardized mean width

Wk(y) =
∑
i

(
max
z∈Jk(y)

z(ti)− min
z∈Jk(y)

z(ti)

)
/
∑
i

(
max
z∈Y

z(ti)−min
z∈Y

z(ti)

)
, (3)

being {ti} the knots where the curves are observed.

• Covered proportion

Pk(y) =
1

T

T∑
i=1

1

(
min

z∈Jk(y)
z(ti) ≤ y(ti) ≤ max

z∈Jk(y)
z(ti)

)
, (4)

being T the cardinality of {ti} and 1(A) the indicator function of A.

Table 1 and Figure 5 show the average of these statistics. From the Table 1, we observe 8

outlying curve of 66 possible cases by using Algorithm 1. Meanwhile Algorithm 2 provides

bands for all the cases.

Despite this difference, both algorithms are almost on a par. They generate subsamples

of similar size where the focal curve is deep, in fact the deepest in half of the cases. From
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Figure 5: Average of coverage proportion and standardized mean width of the central regions Jk
for monthly sea temperatures. Black line corresponds to Algorithm 1 and dashed blue line to

Algorithm 2.

the Figure 5, we note that both algorithms provide central regions Jk which cover a high

proportion of focal curve, from k ≥ 5. In addition, the regions are delimited by tight bands,

up to a 80% thinner than the band that covers the entire sample. This fact produces that

the bands preserve the shape of the focal curve.

4 Prediction bands

Now consider that the sample functions y1, ..., yn are observed not only on I but on a

contiguous interval I0 where we have not record of y0. Let J (y0) be the subsample for

y0 obtained by restricting the sample functions on I. What we expect is that the shape

and magnitud of y0 is captured by the deepest curves of J (y0), not only on I but on I0.

This simple approach can bee seen as a functional version of the nonparametric method

introduced by Sugihara and May (1990) for making short-term predictions about the tra-

jectories of quasi-ergodic dynamical processes. It seems intuitively clear that, subject to

general conditions on the sample curves, if y0 is approximately enveloped on I by a set of

near curves then they also will surround y0 on I0. Next, we explore this idea by simulation.
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Algorithm 1 Algorithm 2

outlying curves 5 out of 100 0 out of 100

subsample size 22.031 22.421

depth percentile on [0, π] 0.987 0.975

depth percentile on (π, 2π] 0.987 0.969

Table 2: Average based on 100 random focal curves from the harmonic signals sample separately

for the training interval [0, π] and the predicting one (π, 2π].

We consider a sample of 100 harmonic signals yi(t) = ai sin(t) + bi cos(t), t ∈ [0, 2π],

with ai and bi being independent and uniformly distributed on (0, 1). These functions are

similar to those used by Hyndman and Shang (2010) and Sun and Genton (2011) but with

wider range of values of ai and bi, allowing more variety of shapes. We simulate 100 focal

functions of the same form. Restricting on I = [0, π], consider the k-deepest curves Jk(y0).

We use I0 = (π, 2π] for testing our predictions. For illustration, we show in Figure 6 bands

with k = 6 for two different shapes of the focal curve. The first thing one can notice is that

the shape and magnitude of the focal is captured by the bands on both intervals, [0, π] and

[π, 2π], no matter which algorithm we are using. The above is confirmed by the results of

our simulation. Table 2 shows that the focal remains deep in both intervals and the total

number of curves chosen of both algorithms are roughly the same. In Figure 7, we only

present the averages for the prediction interval [π, 2π] since the corresponding curves for

averages on [0, π] are overlapped. This figure shows that, from k ≥ 5, the bands delimited

by the k deepest curves cover (in mean) the focal one on a large proportion, providing tight

prediction bands.

5 Case studies

The results of previous section are not a surprise. Note that the curves considered are

determined only by the coefficients ai and bi. Therefore, features of neighbour curves to

the focal, such as shape and magnitude, are similar on the training interval (0, π) and on

the predictive interval (π, 2π). For the same reason, the dimension of these functional data

14
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Figure 6: Left-half side of panels: focal curve (solid red line) and band (in black) based on six

deepest harmonic curves on [0, π] provided by Algorithms 1 (left panels) and 2 (right panels).

Right-half side of panels: extended extended bands and focal (dashed red line).
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Figure 7: Average over 100 random harmonic signals of coverage proportion and standardized

mean width for prediction central regions Jk. Black line corresponds to Algorithm 1 and dashed

blue line to Algorithm 2.

can be reduced to two. Hence, both algorithms should be comparable we are not loosing

much information by reducing the dimension of the functional data set. Next, we test the

algorithms with two real data sets that provides a natural functional setting with more

complicated shapes and structures.

5.1 Spanish electricity demand

Data concerning the Spanish electricity demand is available at http://www.ree.es/es/,

from where we obtained the demand in megawatts (MW) from January first 2014 to De-

cember 31st 2016 each 10 minutes. We consider the daily demand as the sample unit, 1096

curves in total. Our prediction exercise consisted in forecasting half day from October first

to December 31st of 2016, 92 days, by only using past information. The averages over the

92 predictions of coverage proportions and standardized mean widths of central regions

Jk are shown in Figure 8. We also compute mean depth percentiles and subsample sizes

(Table 3).

The bands delimited by the k ≥ 10 deepest curves are tight ( 80% smaller in mean than

the band produced by the whole sample) and cover the focal function on a high proportion

16
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Figure 8: Average of coverage proportion and standardized mean width of Jk for forecasting daily

electricity demand. Black line corresponds to Algorithm 1 and dashed blue line to Algorithm 2.

Algorithm 1 Algorithm 2

outlying curves 1 out of 92 0 out of 92

subsample size 124.362 120.242

depth percentile on [0, 720] 0.999 0.985

depth percentile on (720, 1440] 0.753 0.725

Table 3: Averages obtained for forecasting electricity demand between October 1 and December

31 of 2016. The training interval consists on the first 720 minutes.

(more than 80% in mean). Although the centrality of the focal function in the interval

(720, 1440] decreases with respect to the interval [0, 720], its depth percentile remains high

(0.753 and 0.725 for Algorithm 1 and 2 respectively).

As illustration, we show in top panel of Figure 9 the band corresponding to Tuesday,

November 29th, 2016 by using Algorithm 2 and k = 10. Notably, all the curves used

to envelope the focal come from months between November and February, however they

correspond to different working days and years.
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Figure 9: Two examples of predicting bands based on k = 10 from Algorithm 2. Top panel:

Spanish electricity demand. Focal curve (in red) corresponds to Tuesday, November 29th, 2016.

Bottom panel: Spanish daily temperatures. Focal curve corresponds to the station that achieved

the minimum temperature of 2015 (Burgos/Villafŕıa).
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Figure 10: Average of coverage proportion and standardized mean width of Jk for predicting

daily temperatures. Black line corresponds to Algorithm 1 and dashed blue line to Algorithm 2.

5.2 Spanish daily temperatures

Daily maximum temperatures along a year usually show strong oscillations that enrich the

shape of the data sets analysed in previous sections. This particularly challenging feature

has been resolved in other studies of daily temperatures by averaging (Delicado et al.,

2010) or by applying Fourier basis smoothing Ramsay and Silverman (2005). However,

in this section we not only considered raw data but the additional difficulty of predicting

far horizons. Beyond a mere exercise, the daily register of some weather Spanish stations

have large missing intervals. For testing, we consider only complete year. This data set

involves years from 1893 to 2015 of the 53 stations located at the capital of provinces

and was provided by AEMET (Spanish State Agency of Meteorology). The present study

consisted in predict, one by one, the daily temperature from July to December 2015 of the

53 stations, by using the complete sample, excepting the assumed missing interval.

In this example, the bands corresponding to Algorithm1 provides lower mean coverage

and then envelope worse the focal in comparison with the results obtained with previous

ones. Moreover, the focal decreases considerably in depth from the training interval to the

prediction one. We expected these results due to the complexity of the curves that can

not be reduced only to the first two principal components. Here, to reduce the dimension
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Algorithm 1 Algorithm 2

outlying curves 1 out of 53 0 out of 53

subsample size 216.981 72.711

mean depth percentile on (0, 182] 0.995 0.930

mean depth percentile on (182, 365] 0.490 0.797

Table 4: Averages obtained for predicting daily temperatures.

implies a lost of information. It is not the case of the bands corresponding to Algorithm 2,

which provides comparable results to Algorithm 1 (see Figure 10 and Table 4). We show

the band corresponding to k = 10 in the bottom panel of Figure 9 for the station that

achieved the minimum temperature of 2015 (Burgos/Villafŕıa). Among the curves involved

in the band, we observe that there are curves coming from far stations and dated long time

ago.

6 Conclusions

In this article, we propose an approach for predicting partially observed functions. The

methodology relies on the selection of subsamples that make the function to predict a deep

datum in the range of observation. We propose two heuristics for selecting sample curves

from a focal function to outwards with the goal of combining proximity and centrality. The

bands delimited by the deepest curves of the selected subsample provide tight regions that

envelope the unobserved part of the focal, preserving its shape.

The approach presented is nonparametric and phenomenological since it attempts to

capture the morphology of the curve to predict without attempting to provide an under-

standing of the statistical model where the sample come from. Furthermore, the methodol-

ogy is easy to adapt to any functional sample. We propose two algorithms for implementing

our approach. Algorithm 1 is based on the Tukey’s depth and the first two robust principal

components. Algorthm 2 uses the band depth evaluated on the functional space. The per-

formance of both algorithms is similar for samples where dimensionality reduction does not

involve considerable loss of information. In this case, Algorithm 2 seems to be better. This
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is evident by considering the challenging data set of Spanish daily temperatures. However,

both procedures are comparable in terms of performance in our simulation study and in

the forecast of the Spanish electricity demand.

The algorithms can easily be extended in several directions. On one hand, for Al-

gorithm 1 we could consider more than two principal components, in order to capture

additional features of the sample curves. For this, we only requiere Delaunay tesselations

in more than two dimensions. Alternative dimension reduction methods to principal com-

ponents can be considered, such as other multivariate approaches suggested by Hyndman

and Shang (2010) and functional procedures proposed by Shang (2017). On the other

hand, although it is true that Euclidean distance between points is the natural way to

measure proximity between scores, there are several alternatives to measure nearness be-

tween curves. The L2 norm used in Algorithm 2 can be substituted by other distances,

including those that consider shape difference (Marron and Tsybakov, 1995; Minas et al.,

2011). Some distances may be more appropriate for detecting certain aspects of the data

under study. It is possible also to replace the depth measure used. Nieto-Reyes and Battey

(2016) discuss different properties that functional depths should satisfy, being the h-depth

proposed by (Cuevas et al., 2007) the one that satisfies more properties. Additionally,

one can extend our approach to multivariate functional data, by using surface bands as

those discussed by Sun and Genton (2011) and taking advantage of new multivariate func-

tional depth measures (Ieva and Paganoni, 2013; López-Pintado et al., 2014). Finally, other

heuristics for selecting sample curves from the focal to outwards could be considered.
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López-Pintado, S., Sun, Y., Lin, J. K., and Genton, M. G. (2014). Simplicial band depth

for multivariate functional data.

Marron, J. S. and Tsybakov, A. B. (1995). Visual error criteria for qualitative smoothing.

Journal of the American Statistical Association, 90(430):499–507.

Minas, C., Waddell, S. J., and Montana, G. (2011). Distance-based differential analysis of

gene curves. Bioinformatics, 27(22):3135–3141.

Narisetty, N. N. and Nair, V. N. (2015). Extremal depth for functional data and applica-

tions. Journal of the American Statistical Association, pages 1–38.

Nieto-Reyes, A. and Battey, H. (2016). A topologically valid definition of depth for func-

tional data. pages 61–79.

23



Okabe, A., Boots, B., Sugihara, K., Chiu, S. N., and Kendall, D. G. (2008). Spatial

Tessellations: Concepts and Applications of Voronoi Diagrams. John Wiley & Sons, Inc.

Ramsay, J. and Silverman, B. (2005). Functional Data Analysis. Springer, New York, 2nd

edition.

Shang, H. L. (2017). Functional time series forecasting with dynamic updating: An appli-

cation to intraday particulate matter concentration. Econometrics and Statistics, 1:184–

200.

Shang, H. L. and Hyndman, R. (2011). Nonparametric time series forecasting with dynamic

updating. Mathematics and Computers in Simulation, 81(7):1310–1324.

Sugihara, G. and May, R. M. (1990). Nonlinear forecasting as a way of distinguishing chaos

from measurement error in time series. Nature, 344(6268):734–741.

Sun, Y. and Genton, M. G. (2011). Functional boxplots. Journal of Computational and

Graphical Statistics, 20(2):316–334.

Terrell, G. R. and Scott, D. W. (1992). Variable kernel density estimation. The Annals of

Statistics, 20(3):1236–1265.

Tukey, J. W. (1975). Mathematics and the picturing of data. In Proceedings of the Inter-

national Congress of Mathematics (Vancouver, 1974), volume 2, pages 523–531.

Yao, F., Muller, H.-G., and Wang, J.-L. (2005). Functional data analysis for sparse longi-

tudinal data. Journal of the American Statistical Association, 100(470):577–590.

24


	Introduction
	Functional Central Regions
	Curves selection
	Selection based on principal-component neighbourhoods
	Selection based on band depth

	Prediction bands
	Case studies
	Spanish electricity demand
	Spanish daily temperatures

	Conclusions

