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Abstract: Models consider ideal and simplified situations that will never be met in the real case. The process of comparing model predictions
and experimental observation is in the basis of scientific research. This comparison is however complicated because of the uncertainties of the
model input data and the difficulty to control the accuracy of the tests and to obtain a significant statistical sampling. Moreover, there isn’t yet a
consensus on a validation parameter. This paper presents a three-step validation procedure that allows quantifying the application limits of a
two-dimensional stress model in a three-dimensional situation. A global uncertainty model is calculated comprising the uncertainty of the model
and also the uncertainty coming from the experimental results. The EN number, a statistical magnitude for interlaboratory comparisons, is used
to analyse the compatibility between the experimental and theoretical results. Finally, a bootstrapping method is proposed to calculate the
coverage interval of the sampling and determine if new experiments should be carried out. Numerical results of this new validation procedure
are provided for the case under study. It is also demonstrated that the computed uncertainty budget can be a useful tool to enhance the
two-dimensional model by enlarging its uncertainty limits.
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Introduction

Deterministic structural mechanics has been extensively
used by mechanical engineers as they needed models that
could predict the behaviour of the designed structures and
components [1]. Nowadays, a more realistic analysis and
elegant design of structures can be performed, if the
uncertainty due to the random behaviour of the model’s
parameters is taken into account [1–3]. Many are the
benefits of considering the uncertainties of the parameters
of the model. On the one hand, the model can provide a
range of probabilities and thus, more realistic values, and
additional uncertainty components can be added when
the ideal conditions of the model are not met. On the other
hand, once the effects of the uncertainties of the parameters
are quantified, it is possible to improve the results by acting
on the accuracy of those parameters showing a higher
influence in the final result [4].

Moreover, model verification and validation has to
consider the uncertainty in the model and the experimental
results [5], as the quantitative comparisons of model
predictions and experiments are incomplete, only if the
difference between both is calculated [6]. The traditional
graphical comparison is also subjective and depends on
the graph scale [7].

Therefore, if the validation methodology of an
engineering model is based on the acceptance of a
certain error, it should also include the uncertainty
inherent to it [4].

Validation procedures have revealed to be complex, so
engineering associations and research centres have
published guides for a better understanding of the process

[3, 4,8], even though the approach has not yet been unified
[6]. The reviewed literature evidences that the publication
of practical cases in the field of stress model validation
is scarce. This paper presents a three-step validation
procedure (in advance TSVP) that allows quantifying the
application limits of a two-dimensional stress model in a
three-dimensional situation.

The process of comparing model predictions and
experimental observation is applied between a two-
dimensional stress elasticity model of a ring compressed by
two aligned forces [9] and the results of five different size
tubes compressed by two flat surfaces. The measures are
carried out by means of resistive strain gauges fixed on the
external surface of the tube. The classical two-dimensional
problem presented in this article has been already treated
before [10, 11], but the uncertainty of the model and of
the experiments results was not taken into account.

The benefit of using strain gauges is that it is possible to
compare the resultant experimental slope KE, known as the
stress concentration factor and defined as KE= σP/(4P/πLD),
with the predictions proposed by Chianese [9]. The
experimental stress concentration factor KE, is the
non-dimensional ratio between the tangential stress σP and
the stress 4P/πlD, where P is the applied force; D and l are
the external diameter and the tube length, respectively.

The experimental slope KE and its uncertainty are
calculated considering the randomness of the variances in
both Cartesian axes, u2(σP) and u2(4PπLD), by means of a
weighted least square algorithm [12]. The determination of
the slope using this procedure enables us to reduce the
comparison to a univariate analysis instead of comparing
multiple stress states.
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Furthermore, an adaptive Monte Carlo procedure for the
calculus of the theoretical model uncertainty is imple-
mented [13], allowing thus to calculate the theoretical stress
concentration factor and its uncertainty at any point of the
ring. A global uncertainty model is proposed in order to
improve the theoretical predictions, as it not only considers
the stochastic behaviour of the model parameters but also
the influence of the experimental parameters. This allows
increasing the application range of the theoretical model
when the ideal case is not met.
It is proposed in the paper to employ the EN number, a

statistical magnitude used in proficiency testing for
interlaboratory comparisons [14] as the criteria of model
validation. For the model to be accepted as a good predictor
of the real case under study, the EN number has to be
between 0 and 1. The EN number takes into account the
difference between the results of the model and the
experimental data as well as the magnitude of the global
uncertainty model for a confidence level that has been
demanded.
Moreover, the determination of a representative

experimental sampling is usually conditioned by the high
costs of achieving multiple trials, both in time and expenses
[4]. Obviously, test repetitions and sample increments
improve the reliability of the statistical analysis. That is
why it is proposed that a resampling technique known as
Bootstrapping, or sampling with replacements be used, as
it is a simple and effective method to generate a bigger
sampling when the initial sample size is small [15]. The
advantage of this technique is that the probability
distribution and the coverage interval is based on the
experimental results and not assumed from the beginning
[16]. The proposed methodology that combines the EN
number with Bootsrapping will help decision-making when
at least one sample does not meet the requirements of the EN
number criteria. The possible solutions could be to repeat
the test or to increase the sample size.

Analytical Model
The two–dimensional analytical solution of the circular ring
with a concentric hole and rectangular cross section, which
has been submitted to two symmetric and opposite forces
(Figure 1), is obtained by the superposition of two stress

states [17]. The first state considers the stresses in a disc
compressed by two equal and opposite forces, and
the second accounts for a ring, where the stress in its inner
rim cancels the stress in the disc of the same value of radius
r’ [18].

The procedure to find the exact solution of this two-
dimensional problem was first discussed by Timoshenko
[19] and has been developed by Chianese and Erdlac [9]
for any relationship between the radii and for any point of
the ring. Other solutions were developed by authors like
Nelson [20], Ripperger [10] and Batista [11], producing
nearly identical results.

When the tangential stress distribution in a ring is
studied, the stress concentration factor K concept is
normally used [19], as it is a dimensionless magnitude that
depends exclusively on the radii ratio ρ and the angle θ
where the stress is calculated. Therefore, rings with different
sizes but with the same ρ present identical values of K.

According to Chianese and Erdlac [9], the tangential
theoretical stress σP for any point of the ring is expressed by

σP ¼ 2P
πLR

K ¼ 4P
πLD

K (1)

where the stress concentration factor K for the tangential
stress is calculated solving the following equation [9]:

K ¼ 1
2
� 1ρ2

2r2
1þ r2

1� ρ2

� �
� 1� r cos θð Þsin2θ

r2 þ 1� 2r cos θð Þ2
� 1þ r cos θð Þsin2θ

r2 þ 1þ 2r cos θð Þ2

þ
X∞
n¼2

n n� 1ð Þ½ cnrn�2 þ nþ 2ð Þ nþ 1ð Þdnrn þ n nþ 1ð Þcn 0
r�n�2

þ n� 2ð Þ n� 1ð Þdn 0
r�n�cos n θ

(2)

and the coefficients of the infinite sum are defined as [9]

cn ¼ 1
2 n� 1ð ÞC n ρ2 � 1

� �þ ρ2n � 1
� �� n2 ρ� 1

p

� �2
" #

dn ¼ 1
2 nþ 1ð ÞC n2 ρ� 1

ρ

� �2

þ n
1
ρ2

� 1
� �

� ρ2n � 1
� �" #

c
0
n ¼ 1

2 nþ 1ð ÞC n ρ2 � 1
� �þ ρ2n � 1

� �� �
d

0
n ¼ 1

2 n� 1ð ÞC n ρ� 1
ρ

� �
þ ρ2n � 1
� �� 	

C ¼ n2 ρ� 1
ρ

� �2

� ρn � 1
ρn

� �2

This solution is expressed as a function of the ratio
between the inner and outer radii ρ equal to r’/R and the
angular position θ, which is the angle with respect to the
point of load application. The index n is always an even
integer and the ratio r defines the position of the point of
interest in the cross section were the stress has to beFigure 1: Superposition of the stress in the compressed ring
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calculated. This means that r= ρ when the point is in the
inner radius and r=R/R=1 when the point is in the outer
radius.
Up to this date, the theoretical results developed by the

authors cited before have only been compared with
experimental results using hollow cylinders by means of
photo-elasticity [10, 20]. The authors discussed that the load
distribution along the length of the tube is not really
uniform, as it is approximately uniform except near
the ends. Their results produced differences between the
model and the experiment ranging from 0.2 to 3.64%.
Nevertheless, the uncertainties of the experiment and the
model were not considered for the model validation.
The stress behaviour of real and finite tubes can then be

approximated to the two-dimensional model but it is
necessary to know how the ratio L/D influences this
approximation, and this has not yet been quantified.

Methodology
The experiment was initially designed with a sampling of
five seamless alloy steel tubes E–355 of different diameters,
thicknesses and lengths. In order to quantify the influence
of the ratio L/D, the geometry of the tubes shown in Table 1
is such that they cannot be considered as long tubes. To
ensure the uniformity of the diameters along their lengths
and the concentricity, the turning of the outside diameter
and the boring of the inside diameter was done in one
set-up, that is, without moving the work between
operations. The load was applied in such a way that, in none
of the cases, the value of the yield strength of the tested
material was exceeded.
The five tubes were instrumented with four tee rosettes of

6mm gauge length with the disposition shown in Figure 2A.
Rosette #1 was located as close as possible to the tube border;
rosette #2 was in the middle of the tube and rosette #3
was located between rosettes 1 and 2. In order to control
the symmetry in the application of the load, one additional
strain gauge rosette (rosette #4) was fixed in the middle
of the length of the opposite side. For all the strain gauges,
a three-wire quarter Wheatstone bridge circuit was
employed [21].
The length of the strain gauges was selected knowing that

its measurement is an average that occurred under its grip

[22]. Therefore, the theoretical stress concentration factor
will be also integrated (Equation (3)), where Δα is the angle
corresponding to the coverage of the gauge.

K ¼ 1
Δα

∫
Δα
Kdα (3)

The difference between the integrated value and the value
for a single point is nevertheless superior to 0.03%.

The tubes have been tested using a compression testing
machine installed in a controlled climate room (~23 °C).
For the test, a compression plate and a base were especially
manufactured and installed onto the force transducer and
the machine test bench, respectively. The tube was fixed to
the base in such a way that it was assured that it would
not move (Figure 2B).

Experimental data processing

The force and the strain data were recorded at a 10Hz
frequency; the force applied P was increased at a rate of
50N until its maximum value was reached. Figure 3 shows
the flowchart for the estimation of the experimental stress
concentration factor KE. This procedure was repeated 10
times for each tube.

All the sources of error inherent in the measurement of
the strain gauges (Table 2) have been calculated and were
subtracted from the final strain (Equation (4)) [22]. Then,
the corrected strains were transformed into principal strains
(Equation (5)) [23].

Table 1: Tubes dimensions and applied compression loads

Tube Outer diameter D (mm) Inner diameter d (mm) Length L (mm) ρ= d/D Compression Load P (kN) Young Modulus E (Pa)

1 75.73 60.08 99.25 0.793 27.93 2.176 × 1011

2 98.47 82.32 87.68 0.836 20.11 2.063 × 1011

3 125.68 107.58 79.98 0.856 18.00 2.119 × 1011

4 149.60 132.82 80.08 0.888 12.96 2.130 × 1011

5 233.49 205.62 80.50 0.881 24.19 2.066 × 1011

(A) (B)

Figure 2: Distributions of the strain gauge rosettes in the
compressed tube
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εi ¼ ε̂i � EW � ET � ETS (4)

εP;Q ¼ ε1 þ ε2
2

±
ε1 � ε2

2 cos 2βð Þ (5)

where ε1 and ε2 are the corrected strain gauge readings from
the x and y axes, that are misaligned by an angle β from the
direction of the minimum and maximum strains εQ and εP,
respectively.
For the calculus of the experimental tangential stress σP, it

is considered that each tube material is homogeneous and

isotropic in its mechanical properties. Therefore, the
biaxial form of Hooke’s law is used to convert the principal
strains from Equation (5) into the principal stresses
(Equation (6)) [23].

σP ¼ E
1� ν2

εP þ νεQ
� �

(6)

where E is the Young Modulus and ν is the Poisson ratio.
Afterwards, the tangential stress σP was plotted versus the

ratio 4P/πLD and a linear relationship was observed. The
final slope represents the experimental stress concentration
factor, KE.

Determination of the experimental stress concentration
factor and its uncertainty

As the experimental stress concentration factor, KE, is not
measured directly, it is necessary to evaluate the
uncertainty of different error sources to determine its
uncertainty U(KE). The experimental stress concentration
factor represents the slope between the tangential
stress σP and the ratio 4P/πLD (Figure 3). Therefore, it
is necessary to apply the law of propagation of
uncertainties to calculate the variance of the axis y (σP)
and the axis x (4P/πLD), according to [24].

The Williamson–York method [12] is used to calculate the
experimental stress concentration factor KE. It is a weighted
least square algorithm for calculating the best straight line
when the variance in both axes exists [25]. The solution is
obtained starting with an initial value of the slope that can
be calculated by the standard least square method. Then,
taking into account the influence of the variance of the axes
in the initial slope, a new slope is calculated. The process is
repeated until the difference between consecutive iterations
is below the value of the desired accuracy. In this case, an
accuracy of 10�6 was chosen, in order to ensure a high
precision in the final slope.

Figure 3: Flowchart for the estimation of the experimental stress concentration factor KE

Table 2: Sources of error in strain gauges measurement

Error due to Formula

Wheatstone bridge
nonlinearity

Ew;i ¼ ε̂ i � 2ε̂ i
2�Fε̂ i

εi: strain indicated by the strain data acquisition system

F: gauge factor.

Temperature ET;i ¼ 2
F 1þαG TE�Tcð Þ½ � � εT=0 þ αs Bð Þ � αs Að Þ

� �� TE � Tcð Þ� �
2: gauge factor used by the manufacturer to estimate the
thermal output of the strain gauge.

αG : temperature coefficient of the gauge factor

εT/0 : thermal output or apparent strain

αs(B): coefficient of thermal expansion of the test material

αs(A) : coefficient of thermal expansion of the material
used by the strain gauge manufacturer.

TE,TC : Temperatures of the test piece and the room
temperature on the gauge package data label, respectively.

Transverse
sensitivity

ETS;X ¼ Kt

1� Kt
2� ε̂x ν0 � Ktð Þ þ ε̂y 1� ν0Ktð Þ� �

ETS;Y ¼ Kt

1� Kt
2� ε̂y ν0 � Ktð Þ þ ε̂x 1� ν0Ktð Þ� �

ε̂x , ε̂y : uncorrected strain of the gauges 1 and 2 of the
tee rosette

Kt : transverse sensitivity coefficient

ν0= 0.285
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Uncertainty of the y-axis
The combined standard uncertainty of the corrected strains
(ε1 and ε2) was calculated with Equation (7), according to the
expression developed by Montero et al. (Table 3) [26]:

u εið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 ε̂ið Þ þ u2 EW;i

� �þ u2 ET;i
� �þ u2 ETS;i

� �q
(7)

Once the variance for each of the components forming
Equation (7) is calculated, it is possible to obtain the
combined variances of the principal strains (Equation (8)).

u2 εP;Q
� � ¼ ∂εP;Q

∂ε1
u ε1ð Þ

� 	2
þ ∂εP;Q

∂ε2
u ε2ð Þ

� 	2
þ ∂εP;Q

∂β
u βð Þ

� 	2
(8)

As the magnitudes E and v have been obtained by
simultaneous observations, a correlation between them
exists [24]. Therefore, the combined variance of the
tangential stress is calculated with the following equation:

u2 σPð Þ ¼ ∂σP
∂εP

u εPð Þ
� 	2

þ ∂σP
∂εQ

u εQ
� �� 	2

þ ∂σP
∂E

u Eð Þ
� 	2

þ ∂σP
∂ν

u vð Þ
� 	2

þ 2
∂σP
∂E

∂σP
∂ν

u E; vð Þ (9)

where

u E; vð Þ ¼ 1
n n� 1ð Þ

Xn
i¼1

Ei � Eð Þ vi � vð Þ

Uncertainty of the x-axis
The uncertainty of the x-axis is determined by the force data
acquisition system and the instrument used to geometrically
characterise the tubes. As they were measured with the same
calliper, the law of propagation of uncertainties and the
correlation considered between L and D [27] produce the
following expression of the x-axis combined variance:

u2 xð Þ ¼ ∂x
∂P

u Pð Þ
� 	2

þ ∂x
∂l

u Lð Þ
����

����þ ∂x
∂D

u Dð Þ
����

����
� 	2

(10)

Uncertainty of the experimental stress concentration factor
The experimental stress concentration factor KE,i and its
uncertainty u(KE,i) for each i repetition has been calculated
using the weighted least squares algorithm [12]. Moreover,
for each rosette, the final value of the experimental stress
concentration factor is the mean of the ith observations
(n=10) made, i.e.:

KE;r ¼ 1
n

Xn
i¼1

KE;i (11)

So the standard uncertainty associated with KE;r (Equation
(14)) considers the contribution of the two uncertainty of
each observation (Equation (12)) and the experimental
standard deviation of KE;r (Equation (13)).

u KE
� � ¼ 1

n

Xn
i¼1

u KE;i
� �

(12)

s2 KE;r
� � ¼

Xn
i¼1

KE;i � KE;r
� �2
n n� 1ð Þ (13)

u KE;r
� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u KE
� �þ s2 KE;r

� �q
(14)

For a 95% confidence level, the expanded uncertainty is
[24]:

U KE;r
� � ¼ 2u KE;r

� �
(15)

It has to be reminded that the extrapolation of the two-
dimensional model for hollow cylinders is based on the
simplification of considering a uniform stress distribution
along the tube length. In order to quantify the contribution
of this approximation, the experimental stress concentration
factor is averaged for each tube KE

� �
, and the uncertainty

u KE;av
� �

due to this averaging has been computed, considering
that all the possible values of the experimental stress

Table 3: Variance of the strain measurement

Variance due to Formula

The strain measuring instrument u2 ε̂ ið Þ ¼ a2
3

a= 0.5 με

Wheatstone bridge nonlinearity u2 Ew;i
� � ¼ ∂Ew;i

∂ε̂ i
u ε̂ ið Þ

h i2
þ ∂Ew;i

∂F u Fð Þ
h i2

Temperature
u2 ET;i

� � ¼ ∂ET ;i

∂F
u Fð Þ

� 	2
þ ∂ET ;i

∂αG
u αGð Þ

� 	2
þ ∂ET ;i

∂TE
u TEð Þ

� 	2
þ ∂ET ;i

∂Tc
u Tcð Þ

� 	2

þ ∂ET ;i

∂εT=0
u εT=0
� �� 	2

þ ∂ET ;i

∂αs Bð Þ
u αs Bð Þ
� �� 	2

þ ∂ET ;i

∂αs Að Þ
u αs Að Þ
� �� 	2

Transverse sensitivity u2 ETS;i
� � ¼ ∂ETS;i

∂ν0
u ν0ð Þ

� 	2
þ ∂ETS;i

∂Kt
u Ktð Þ

� 	2
þ ∂ETS;i

∂ε̂x
u ε̂xð Þ

����
����þ ∂ETS;i

∂ε̂y
u ε̂y
� �����

����
� 	2
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concentration factor are between the maximum and
minimum calculated for each tube [13]. u KE;av

� �
is thus

expressed by the following rectangular distribution:

u KE;av
� � ¼ KE;r max � KE;r minffiffiffiffiffiffi

12
p (16)

u KE;av
� �

can thus be an indicator of how far the analysed
specimen is from the ideal condition of the model. The error
associated to this concept cannot be determined and it is the
reason why it is considered as zero and computed as an
uncertainty.
In order to minimise the magnitude of uncertainties

when it was possible, the Young’s modulus E and the
Poisson ratios ν of each tube have been determined using

flat specimens taken from the tubes [28]. The isotropy
and homogeneity is therefore considered within each
tube but not within the sample for the sake of better
accuracy. The tests were repeated five times on each
sample and performed as recommended by ASTM [29,
30]. Their uncertainties were calculated following the
recommendation of Gabauer [31] computing the variance
of the mean and the uncertainties of the measurement
instruments.

Table 4 summarises all the variables used to calculate the
experimental stress concentration factor and its uncertainty.
Several uncertainties were calculated by means of type B
evaluation, assuming a symmetric rectangular distribution
[24]. Note that some of the variables have been presented
in the following form: for example, the Young Modulus is

Table 4: Values and uncertainty of all the variables

Variable Value Units Tolerance Semi-range a Uncertainty u

F 2.10 Dimensionless ±1.00 × 10�2 1.00 × 10�2 5.77 × 10�3

Kt 1.00 × 10�3 Dimensionless �1.00 × 10�3 1.00 × 10�3 5.77 × 10�4

αG 1.00 × 10�2 °C�1 ±5.00 × 10�5 5.00 × 10�5 2.89 × 10�5

v0 0.285 Dimensionless ±1.00 × 10�2 1.00 × 10�2 5.77 × 10�3

β �1.05 × 10�2 ≤ β ≤1.75× 10�2 Radians ±8.73 × 10�4
— 9.60 × 10�4

L See Table 1 mm ±1.00 × 10�1
— 2.15 × 10�2

D

d See Table 1 mm ±5.00 × 10�1
— 2.89 × 10�2

TE,1 21 °C ±1.00 1.00 5.77 × 10�1

TE,2 21

TE,3 23

TE,4 25

TE,5 21

εT/0,1 3.80 × 10�1 μm/m — — 8.50 × 10�1 (μm/m)/°C

εT/0,2 3.80 × 10�1

εT/0,3 8.96 × 10�1

εT/0,4 1.09

εT/0,5 3.80 × 10�1

P Varies kN — — 2.5 × 10�3P

TC 23 °C — — —

αs(A) 11.8 × 10�6 °C�1
— — —

αs(B) 11.7 × 10�6 °C�1
— — —

Values and uncertainty of the test material using type A evaluation

E1 2.176 × 1011 Pa — — 1.95 × 109

E2 2.063 × 1011 — — 6.14 × 108

E3 2.119 × 1011 — — 1.79 × 108

E4 2.130 × 1011 — — 4.77 × 108

E5 2.066 × 1011 — — 1.79 × 108

v1 3.010 × 10�1 Dimensionless — — 2.03 × 10�4

v2 3.000 × 10�1
— — 2.00 × 10�4

v3 3.043 × 10�1
— — 2.05 × 10�4

v4 2.909 × 10�1
— — 2.98 × 10�4

v5 2.893 × 10�1
— — 1.11 × 10�4
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Ei where i represents the number of the tube where the
variable was measured.

Procedure to determine the uncertainty of the
theoretical stress concentration factor

An adaptive Monte Carlo procedure [13] was implemented
for the uncertainty calculus of the theoretical stress
concentration factor. The adaptive procedure for the case
study is shown in Figure 4 and it allows solving a calculus
in a few minutes that could take several hours due to the
infinitive summation needed.
The adaptive method is based on carrying out an

increasing number of Monte Carlo trials (h) until the results
of interest have stabilised. The result is deemed to have
stabilised if twice the standard deviation associated
with the stress concentration factor, its uncertainty and
its left and right hand of the coverage intervals
2sK; 2su Kð Þ;2sKL ; 2sKH

� �
are less than the numerical tolerance

associated with the standard uncertainty u(K), in this case
δ=0.5 10l, according to the Guide to the expression of
Uncertainty in Measurement (GUM) [13], where l represents
the position of the ndig digit integers associated with the
standard uncertainty u(K).
When the numerical tolerance δ is reached, all h×M

model values obtained are used to calculate the theoretical
stress concentration factor K and its uncertainty u KMC

� �
.

The inputs of the theoretical stress concentration factor are

D, d and θ. As their uncertainties are known (Table 4), a
Gaussian probability distribution function was selected.
Therefore, according to the Guide to the expression of
uncertainty in measurement [13], a coverage factor of two
is used, corresponding to a coverage probability of
approximately 95%.

Theoretical model enhancement by means of
uncertainty

The uncertainty analysis and quantification offers a
possibility to enhance the two-dimensional model taking
into account the real three–dimensional effects. The
variations of the experimental concentration factor along
the tube length, depicted by u KE;av

� �
, are due to real effects

that are not considered in the two-dimensional and ideal
theoretical model. So, if the ideal conditions are not met,
this paper proposes an increase in the uncertainty calculated
for the elasticity model u KMC

� �
with the addition of the

u KE;av
� �

. Therefore, the standard uncertainty associated to
the model will be

u K
� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 KMC
� �þ u2 KE;av

� �q
(17)

With this approach, the results predicted by the model are
not changed but are improved when the assumption of
uniform stress along the length diverges from the real situation.

Figure 4: Adaptive Monte Carlo procedure for the evaluation of the uncertainty of the theoretical stress concentration factor K, according to
Guide to the expression of uncertainty in measurement [13]

7



Bias and uncertainty between model and experiment

The level of compliance of a model with a real given case is
only fully quantified if both experimental and theoretical
results are presented with their correspondent uncertainty.
Nevertheless, the criteria or tolerance for its acceptance has
to be decided by the engineers according to the accuracy
required in their work field, dealing with the conflict
between structural integrity and cost optimizations [3].
Model validation is normally performed using the null

hypothesis [7], where, for a given level of confidence, the
results of the prediction and the experiment are compared.
Assuming a normal distribution, it is said that the
predictions are within the range of probable values, that is,
they are good estimators of reality, if the critical statistic
calculated with the t or z-test, is between the proposed
range. In the case of the stress concentration factor, the
critical parameter to be calculated with the z-test is

zcritical ¼
K � KE
�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u KE
� �2 þ u K

� �2q ¼ Errorj j
u Errorð Þ (18)

So that if the zcritical value of Equation (18) is between the z
± zα/2 of the z distribution for a probability α, corresponding
to a confidence interval of 100(1-α) %, it is concluded that
there is not enough statistical evidence to reject the model.
As confidence levels of 95% are usually defined in the fields

of statistical validation andmetrology [4, 24], it is proposed to
calculate the EN number, normally used in interlaboratory
comparisons [14], in order to accept or refuse the predictions
(Equation (19)). An EN number equal to one, for a confidence
level of 100(1-α)% corresponds to the statistics z± zα/2 in the
case of the z distribution. This is because EN numbers are
calculated using expanded uncertainties in the denominator
instead of standard deviations as zcritical

EN ¼ Errorj j
U Errorð Þ ¼

Errorj j
k�u Errorð Þ ¼

zcritical
k

(19)

where k is the coverage factor corresponding to the
confidence level required.
So if the uncertainties are estimated in a way consistent

with the Guide to the expression of uncertainty in
measurement, EN expresses the validity of the expanded
uncertainty associated with each result [14].
A value of EN number smaller than the unit will mean that

the expanded uncertainty of the difference is bigger than
the difference itself, so the uncertainty fields have a part in
common and it can be inferred that both results are
compatible, and thus represent the same measurand. On
the other hand, if it is higher than the unit, it is because
the difference is bigger than its uncertainty having no
common parts and thus it is said that they are not

reproducing the same measurand, so the model needs to
be corrected or improved.

The bootstrap method as indicator of the consistency of
the results

Even under controlled circumstances, experimental pro-
cedures can be submitted to errors and it can happen that
within the sampling chosen, some of the experimental
results match with the model but others don’t. Moreover, in
engineering research, the samplings are usually small as they
can be expensive, time consuming and even destructive.

The paper proposes the use of a statistical resampling
technique known as bootstrap method [16] to calculate the
coverage interval of the sampling results, when, as in this case,
the sample size is insufficient for straightforward statistical
inference [32]. The use of this method, together with the EN
number, allows obtaining a frequency distribution and a
coverage interval representing the sampling. The decision
on whether the sampling enables the model validation can
therefore rely on the values of the coverage interval limits
depending on whether they are inferior or superior to one.

In this case, bootstrapping is applied to a sample of 5 EN
numbers as follows:

• Generate B bootstrap samples of five elements each by
means of random replacement. The number of B samples
being normally between 1000 and 2000 [33], and if a higher
precision is required, it is recommended to use a bigger size
of B=10 000 samples [34] as in this case.
• Calculate the statistic of interest for each B bootstrap
sample. In this case, the average is chosen.With the 10000
values in increasing order [33], represent the frequency
distribution and calculate the inferior and superior limit,
for a coverage interval of 100p%, where:

ENL ¼ EN rð Þ

ENH ¼ EN rþqð Þ
(20)

With r= (n� q)/2, q= pn and p=0.95
The value of r has to be an integer; if not, a conservative

value would be rounded off as r= (n� q+1)/2 [13].

Results and Discussion
Following the steps indicated in the methodology, it is
necessary to quantify the values of the error sources
described in Table 2, in order to calculate the experimental
stress concentration factor KE.

The maximum error in strain measurements due to
several sources was inferior to 1με representing around
0.1% of the maximum strains recorded (≈850με) on the
tube borders. Even though the error values have remained
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relatively low, they were not discarded, i.e. all the strains
recorded have been corrected in order to obtain the highest
possible accuracy in the calculation of the experimental
stress concentrator factor KE.
No significant differences between the experimental

results from the rosettes placed on opposite sides (rosettes
#2 and #4) were observed (Table 5). It is thus confirmed that
the load was aligned with the tubes during the tests.
On the other hand, it was observed that the distribution

of the stress concentration factor along the tube length
presented less variation when the ratio length vs diameter
(L/D) increased. Figure 5 shows the longitudinal distribution
of the experimental stress concentration factor for the tubes
with the lower and higher variation, tubes 1 and 5,
respectively. In order to compare the results, the gauge
positions is given in relative terms.
Tube 5 presents a higher discrepancy for longitudinal

results; it was observed that the gauge closer to the edge
increases its value up to 7.8% with respect to the gauge in
the middle of the tube length. This can be caused by the fact
that as the L/D ratio decreases, the tube resembles less to the
ideal case so the border effect produces a higher and negative
influence on the uniformity of the stress distribution.

Table 6 shows the value of uncertainties associated with
the experimental stress concentration factor, for each of
the tubes analysed. It can be seen that the uncertainty due
to the weighted least square results greater than the one
calculated by the repeatability in the majority of the cases.

Moreover, the uncertainty due to the variation along the
length u KE;av

� �
presents the highest magnitude of all and

can be explained by the negative influence of the border
effect as shown in Figure 6.

As can be observed in Figure 6, the evolution of the
uncertainty due to the variation of the stress along the
length presents an exponential function behaviour with
respect to L/D. It also demonstrates that for ratios
L/D>1.2, the magnitude of u KE;av

� �
reaches values of the

same order than the other components of experimental
uncertainty (Table 6). When the tube is of infinite length,
its contribution will be nearly zero; this evolution being
consistent with the principles of the elasticity model.

Table 7 shows the mean experimental stress
concentration factor KE for the five tubes and the respective
theoretical values of K calculated with Equation (3).

Figure 5: Distribution of the experimental stress concentration
factor with the tube length

Table 5: Final experimental stress concentration factor KE for
rosette #2 and #4

Tube 1 Tube 2 Tube 3 Tube 4 Tube 5

Rosette #2 30.38 51.53 64.66 114.02 101.21

Rosette #4 30.35 51.52 64.40 113.99 101.19

%Diff ¼ 100 max�min
max 0.10 0.01 0.40 0.03 0.02

Table 6: Uncertainty of the experimental stress concentration
factor KE

Weighted
least square

Experimental standard
deviation of the mean

Uncertainty
of KE

Average
along the
length

Tube Equation
(12)

Equation
(13)

Equation
(14)

Equation
(16)

1 0.15 0.17 0.22 0.22

2 0.12 0.10 0.16 0.45

3 0.17 0.04 0.17 0.80

4 0.18 0.12 0.22 1.02

5 0.06 0.31 0.32 2.26

Figure 6: Evolution of u KE;av
� �

with the ratio L/D
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The relative difference between the experimental and the
theoretical result varies from 0.83% for tube 4 to 2.37% for
tube 3. From a quantitative point of view, it can be inferred
that the differences are small and coincident with the ranges
found by other authors [20]. Moreover, the differences are
not showing any particular tendency with respect to the
geometry of the tubes, so it can be assumed that the
differences are due to uncontrolled phenomena and/or
the difference between an ideal two-dimensional model
and a real specimen.
It can also be seen in Table 7 how the uncertainty of the

theoretical model U K
� �

increases when the L/D ratio
decreases, due to the negative effect of the border in the
assumption of uniform stress along the tube length.
As for the influence of the variables considered in the

theoretical model, it has been observed that the uncertainty
u KMC
� �

increases as the radii ratio ρ also increases: the

minimum value is found for tube 1; u KMC
� � ¼ 0:15 and the

maximum for tube 4 with u KMC
� � ¼ 0:47. The stress model

would be, hence, presenting a higher uncertainty U K
� �

for
a thin wall tube with a big diameter compared to its length.
Following the indication of Sandia [4], a global

uncertainty, composed by the theoretical and experimental
uncertainties, is represented around the theoretical result
and is calculated with the following equation:

U Kglobal
� � ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 K

� �þ u2 KE
� �q

(21)

This allows to clearly depict if the experimental result is
within the range of possible values given by the global
uncertainty, and avoids false positives when the ranges
U K
� �

and U KE
� �

have a certain level of coincidence without
this meaning that the model prediction agrees with the
experimental result.
Figure 7 shows the graphical representation of the EN

number and the U(Kglobal), providing an objective and visual
criteria. If the experimental value falls within the range

given by the global uncertainty, the model is considered
valid for the given confidence level.

It can also be seen (Figure 7) that four of the five tubes
present EN numbers inferior to one for a confidence level of
95%. The EN number of tube 2 is slightly superior to one,
whereas the numbers of tubes 1 and 3 are inferior but very
close to it. When the L/D ratio decreases, the exponential
increase of u KE;av

� �
uncertainty generates an EN number that

is clearly inferior, as happens with tubes 4 and 5.
This could be initially considered to be a contradiction, as

it may appear that the shorter tubes tested behave better
than the longer ones when the latter are closer to the ideal
condition of long tubes.

However, this first analysis needs a deeper reasoning as
when the tube tested is longer, the uncertainty u KE;av

� �
decreases exponentially and so does the global uncertainty

Table 7: Final results of the experimental stress concentration factor, theoretical values, error and experimental uncertainty for a coverage
factor of k = 2

Tube 1 (ρ= 0.793)
(L/D= 1.31)

Tube 2 (ρ= 0.836)
(L/D= 0.89)

Tube 3 (ρ= 0.856)
(L/D= 0.64)

Tube 4 (ρ= 0.888)
(L/D= 0.54)

Tube 5 (ρ= 0.881)
(L/D= 0.36)

KE 30.61 51.90 66.18 116.01 104.33

U KE
� �

0.44 0.31 0.35 0.43 0.63

K 29.97 50.75 67.79 116.98 102.25

U K
� �

0.53 1.05 1.69 2.25 4.56

Error ¼ K � KE �0.64 �1.15 1.61 0.97 �2.08

%Error ¼ 100ErrorK �2.13 �2.26 2.37 0.83 �2.03

EN ¼ Errorj j
U Errorð Þ 0.92 1.05 0.93 0.42 0.45

Figure 7: Differences between experimental and theoretical results
for each of the tubes tested with the global expanded uncertainty
of the model, U(Kglobal)
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U(Kglobal). As a consequence, any small variation in the error
makes the EN number get quickly close to one or be even
superior to it. As a general rule, it can be said that if the
global uncertainty is small because the case under study is
close to the ideal model, the model parameters are well
characterised and the measurement device is accurate, the
tests have to be performed under very controlled conditions
to minimise the error and thus reach an acceptable EN value.
Moreover, it has to be pointed out that an EN number

superior to one doesn’t necessarily mean that the model
has to be rejected. The EN number indicates how far the
theoretical result from the experimental one is. After that,
the final decision to accept or reject the model will depend
on the engineer and on the margin of error he can consider
in his design, what is generally called an engineering
validation [4].
The case under study in this paper presents a situation

where the sampling is relatively small and one of the tested
tubes did not fulfil the criteria. The application of the
bootstrap method according to point 2.6 provides an
average EN number (EN) and a coverage interval of the
sampling (ENL, ENH ). Figure 8 presents the probability
distribution obtained for 10 000 bootstrap samples.
As can be seen, both the average EN number (EN) and the

coverage interval (ENL, ENH ) are inferior to one, so it can be
concluded that the model prediction is consistent with the
case under study even if one of the five tubes was out of
the criteria.
In order to demonstrate how the proposed procedure can

be a useful decision-making tool, and also as the superior
limit ENH is quite close to one, a new tube was prepared
out of the same specimen from which tube 2 was
mechanised. The sampling has therefore been increased
from five to six tubes.

The dimensions of tube 6 are D=99.93mm, d=85.76mm
and L=100.55mm. A load of 12 kN was applied obtaining
experimental and theoretical concentration factors of KE ¼
78:44±0:53 and K ¼ 77:73±0:99 , respectively, and an
EN=0.63. This value will have a positive effect in the general
sampling behaviour. The bootstrapping was repeated again
also considering tube 6 in the sample and obtaining an
average EN number EN ¼ 0:73 and a coverage interval of
(0.54, 0.92).

Conclusions
This paper presents a new procedure based on a three-step
validation procedure (TSVP) that allows to quantify the
application limits of a two-dimensional stress model of a
ring compressed by two aligned forces [9] for the case of five
different size tubes, compressed by two flat surfaces. The
measurements are carried out by means of resistive strain
gauges fixed on the external surface of the tube.

The first step of the validation procedure is the
development of a global uncertainty budget. This requires
a good knowledge of the parameters that influence more
both the model and the experiment and also of the latest
statistical procedures considered in metrology [13, 24] as
the ones used in this paper.

Moreover, in this case under study, the stress behaviour of
real and finite tubes have been approximated to the two-
dimensional model considering the uncertainty of the stress
variation along the length because of the border effect and
whose expression is an exponential function of the L/D
ratio.

Many authors have promoted the use of statistical tools
and uncertainties to validate theoretical models [3–5,35].
This paper proposes the calculus of the EN number as the
second step of the procedure. The EN number is a statistical
magnitude used in interlaboratory comparisons, with a
confidence level of 95%, this meaning that values of EN <1
indicate that model predictions are compatible with the
experimental results [14]. Four of the five tubes fulfilled
the EN criteria and the longer ones produced EN values closer
to one. This can happen when the uncertainties are small
due to a good match between the model and the experiment
and a good control of the parameter magnitudes. In this
situation, a small variation in the error makes the EN
number get quickly closer to one or be even superior to it.

In order to determine the weight of the failed test in the
global sampling behaviour, it is proposed to use the
bootstrap method to determine the interval of confidence
of the bootstrapped sample as the third and last step of the
methodology. Bootstrapping will determine if more tests
are needed thus providing a useful decision-making tool.
In this case, despite the bad result of tube 2, the global
coverage limits are below the unit. Still, it was decided toFigure 8: Bootstrapping distribution of the N̄ samples
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increase the sample analysed, by testing a new tube that
provided a new EN, which improved the coverage limits,
thereby showing the advantage of bootstrapping in
decision-making, when the sample is small.
The three-step procedure (TSVP) has offered good results

for the case that has been studied in the paper as the use
of the two-dimensional model is validated for the tubes
tested, and the validation could thus be extrapolated to
other tubes with similar ρ and L/D ratios. Further research
can be undertaken to apply the TSVP in other structural
cases.
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