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B
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We consider Problem 6.94 posed in the book Concrete Mathematics by Graham, 
Knuth, and Patashnik, and solve it by using bivariate exponential generating 

functions. The family of recurrence relations considered in the problem contains 
many cases of combinatorial interest for particular choices of the six parameters 

that define it. We give a complete classification of the partial differential equations 
satisfied by the exponential generating functions, and solve them in all cases. We 

also show that the recurrence relations defining the combinatorial numbers 
appearing in this problem display an interesting degeneracy that we study in detail. 

Finally, we obtain for all cases the corresponding univariate row generating 
polynomials.

ABSTRACT
Universidad Carlos III de Madrid, Unidad Asociada al Instituto de Estructura de la Materia, CSIC, 
Madrid, Spain
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1. Introduction

Graham, Knuth and Patashnik (GKP), in their book Concrete Mathematics [11],
posed the following “research problem” [11, Problem 6.94, pp. 319 and 564]:

Question 1.1. Develop a general theory of the solutions to the two-parameter recurrence∣∣∣∣nk
∣∣∣∣ = (αn + βk + γ)

∣∣∣∣n− 1
k

∣∣∣∣ +
(
α′n + β′k + γ′)∣∣∣∣n− 1

k − 1

∣∣∣∣ + δn0δk0 (1.1)

for n, k ∈ Z, assuming that
∣∣ n
k

∣∣ = 0 when n < 0 or k < 0. (Here and in the following δab
denotes the Kronecker delta.)

Many of the solutions to the recurrence (1.1) have been thoroughly studied in the liter-
ature [3–5,11,19]. They include classic examples such as the binomial coefficients, Stirling 
numbers of several kinds, Eulerian numbers and many others (see Table 1). Particular 
choices of the parameters defining the problem have been considered by Neuwirth in [16], 
where he found the solution of the recursion (1.1) for the particular case α′ = 0  by  using
Galton arrays. Also Spivey [20] has found explicit solutions (using finite differences) for 
the following three cases: (S1) α = −β; (S2) β = β′ = 0 ; a nd  ( S3∣)  ∣α/β = α′/β′ + 1 .

The previous studies focused on finding closed expressions for ∣ nk ∣ in terms of simpler
combinatorial numbers but did not make significant use of generating functions. After
completing the main computations of this paper, we learned1 that those have been
considered in the context of problem (1.1) by Théorêt [21–23] and Wilf [26]. In particular,
Théorêt finds the exponential generating functions (EGF’s) for the four particular cases
explained above, and Wilf gives a general solution to the partial differential equations
(PDE’s) satisfied by the EGF’s in terms of hypergeometric functions. However, in his
own words [26]: “. . . we obtain a complete solution also, though its form is very unwieldy”.

In this paper, we study in a systematic way the PDE’s satisfied by the EGF’s (in the
next formula Pn(x) are the so called row generating polynomials)

F (x, y) =
∑

n,k�0

∣∣∣∣nk
∣∣∣∣xk y

n

n! =
∑
n�0

yn

n! Pn(x), (1.2)

defined by the sequences of numbers given by the recurrences (1.1). We propose a clas-
sification scheme that leads to a clean understanding of their solutions.

It is straightforward to show that the EGF (1.2) associated with the numbers
∣∣ n
k

∣∣
satisfying the recurrence (1.1) is a solution to the PDE

−
(
β + β′x

)
xF1 +

(
1 − αy − α′xy

)
F2 =

(
α + γ +

(
α′ + β′ + γ′)x)F, (1.3)

1 We thank David Callan for calling our attention to Wilf’s paper [26], which in turn refers to some earlier 
work by Théorêt [21–23].
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Table 1
Some sequences of combinatorial interest satisfying (1.1). For each sequence, we give the type of the PDE
for its EGF, the parameters defining its family (α, β;α′, β′), the coefficients (γ, γ′), its description, and the
corresponding entry in Ref. [17] (if any). More examples can be found in similar tables in Refs. [21,22].

Type Family (γ, γ′) Description Entry

I (0, 1; 1,−1) (1, 0) Eulerian numbers
〈

n

k

〉
[11] A173018

[5,19] A008292

(0, 1; 2,−1) (1,−1) Second-order Eulerian numbers
〈〈

n

k

〉〉
[10,11] A008517

(0, 1; 3,−1) (1,−2) Third-order Eulerian numbers [12,18] A219512
(0, 1; ν,−1) (1, 1 − ν) ν-order Eulerian numbers

〈
n

k

〉ν
[2]

(0, 1; 0, 1) (0, 0) Surj(n, k) [3,9] A019538
(0, 1; 1, 1) (0,−1) Ward numbers

{{
n+k

k

}}
[9] A134991

(0, 1; ν, 1) (0,−ν) ν-order Ward numbers [2]
(1, 1; 1, 1) (−1,−1)

�
n+k

k

�
[9]

II (0, 1; 0, 0) (0, 1) Stirling subset numbers
{

n

k

}
[11] A008277

(−1,−1; 0, 0) (1,−1) Lah numbers Ln,k [5,19] A008297
(1, 1; 0, 0) (−1, 1) Unsigned Lah numbers L(n, k) [24] A105278
(2, 1; 0, 0) (−2, 1) Generalization of

{
n

k

}
and L(n, k) [14,15] A035342

(1,−1; 0, 0) (0, 1) [n � k]n!/k! [11,25] A094587
(r − 1, 1; 0, 0) (1 − r, 1) S(r;n, k) [14,15]

III (0, 0; 0, 1) (1, 0) Inj(n, k) [9] A008279
(0, 0;−2, 1) (1, 0) Coefficients of Laguerre polynomials

in reverse order [1]
A021010

(0, 0;−1, 1) (1, 0) (−1)k
{

n

n−k

}
A106800

(1, 0; 1, 1) (−1,−1) Ramanujan function Qn+1,k(−1) [8,27] A075856
(0,−2) Ramanujan function Qn,k(1) [27] A217922
(0,−1) Ramanujan function Qn+1,k(0) [27] A054589

IV (0, 0; 0, 0) (1, 1) Binomial coefficients
(

n

k

)
[11] A007318

(1, 0; 0, 0) (−1, 1) Stirling cycle numbers
[
n

k

]
[11] A132393

(−1, 0; 0, 0) (1, 1) Stirling numbers of the 1st kind s(n, k) [3–5] A008275

with the initial condition F (x, 0) = 1. (Here and in the following Fi denotes the partial
derivative of F with respect to its i-th variable.)

We classify now the PDE’s satisfied by the EGF’s solving Question 1.1 in terms of
(α, β, γ;α′, β′, γ′). The dependence of the equations on the parameters (γ; γ′) is always
fairly simple, so we will introduce families of equations characterized by the parameters
(α, β;α′, β′). In the paper we will sometimes refer to the full set of parameters defining
a recurrence (α, β, γ;α′, β′, γ′), and sometimes just to the family (α, β;α′, β′). A careful
look at (1.3) reveals that the two most important parameters are β and β′. In fact,
what really matters is whether these parameters are zero or non-zero. This leads us to
introduce the following four different types of equations:

Definition 1.2. The PDE’s for the EGF’s relevant to solve Question 1.1 are classified in
four different types: Type I: ββ′ �= 0; Type II: β �= 0 and β′ = 0; Type III: β = 0 and
β′ �= 0; and Type IV: β = β′ = 0.
3



Remarks. 1. It is important to notice that although the parameters (α, β, γ;α′, β′, γ′)
uniquely determine the numbers

∣∣ n
k

∣∣, the converse is not true. For example, the trivial
sequence

∣∣ n
k

∣∣ = δn0δk0 can be obtained through equations of any type by choosing the
parameters to be (α, β,−α;α′, β′,−α′ − β′), regardless of the specific values of α, β, α′,
and β′, as can be easily seen by looking at Eq. (1.3). We will explore this phenomenon in
the present paper and identify all the possible indeterminacies of this type. The reason
why we classify equations instead of their solutions is a direct consequence of this fact.

2. If the numbers
∣∣ n
k

∣∣ satisfy a recursion of the form (1.1) for certain parameters
(α, β, γ;α′, β′, γ′), then the numbers∣∣∣∣nk

∣∣∣∣� =
∣∣∣∣ n

n− k

∣∣∣∣ (1.4)

also satisfy a recursion of the form (1.1) with parameters

(
α�, β�, γ�;α′ �, β′ �, γ′ �) =

(
α′ + β′,−β′, γ′;α + β,−β, γ

)
. (1.5)

This involution was already introduced by Théorêt [22, Eq. (34)]. Hence, every Type II
family is the �-image of a Type III family and vice versa. On the other hand, the classes
of Types I and IV are both closed under the �-map, and it makes sense to talk about
self-dual (symmetric) numbers as those satisfying∣∣∣∣nk

∣∣∣∣ =
∣∣∣∣ n

n− k

∣∣∣∣ =
∣∣∣∣nk

∣∣∣∣�. (1.6)

The families (α, β, γ;α + β,−β, γ) are, for example, self-dual.
A more general involution can be defined as follows: let us denote by z = (x, y)

the variables of the EGF (1.2), and by μ = (α, β, γ;α′, β′, γ′) the parameters of the
corresponding recurrence (1.1), so the EGF can be compactly rewritten as F (z;μ). We
now define the �-image of F as:

F �(z;μ) = F
(
M1(z,μ);M2(μ)

)
, (1.7)

where M2(μ) is an involution (i.e., M2(M2(μ)) = μ), and the function M1 satisfies

M1
(
M1(z,μ),M2(μ)

)
= z, for all z. (1.8)

Then, this �-map is obviously an involution: i.e., (F �)�(z;μ) = F (z;μ). The simplest of
these involutions (i.e., those for which M1 is only a function of z) are listed in Table 2.
In Ref. [2] we will discuss in detail a more involved case.

The plan of the paper is the following. After this introduction, Section 2 is devoted to
the derivation of the EGF’s for the four distinct types of equations (cf. Definition 1.2).
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Table 2
Involutions, their effects on the parameters (α, β, γ;α′, β′, γ′), and on the EGF’s. They can be immediately
checked by performing the change of variables defining the EGF transformation in the PDE (1.3).

Involution Parameter transformation EGF transformation∣∣∣ n
k

∣∣∣ → ∣∣∣ n

n−k

∣∣∣ (α, β, γ;α′, β′, γ′)
→ (α′ + β′,−β′, γ′;α + β,−β, γ) F ∗(x, y) = F (1/x, xy)∣∣∣ n

k

∣∣∣ → (−1)k
∣∣∣ n

n−k

∣∣∣ (α, β, γ;α′, β′, γ′)
→ (α′ + β′,−β′, γ′;−α − β, β,−γ) F ∗(x, y) = F (−1/x,−xy)∣∣∣ n

k

∣∣∣ → (−1)k
∣∣∣ n
k

∣∣∣ (α, β, γ;α′, β′, γ′)
→ (α, β, γ;−α′,−β′,−γ′) F ∗(x, y) = F (−x, y)∣∣∣ n

k

∣∣∣ → (−1)n−k
∣∣∣ n
k

∣∣∣ (α, β, γ;α′, β′, γ′)
→ (−α,−β,−γ;α′, β′, γ′) F ∗(x, y) = F (−x,−y)∣∣∣ n

k

∣∣∣ → (−1)n
∣∣∣ n
k

∣∣∣ (α, β, γ;α′, β′, γ′)
→ (−α,−β,−γ;−α′,−β′,−γ′) F ∗(x, y) = F (x,−y)

In Section 3, by using generating functions, we classify the parameter ambiguities in
the problem; i.e., the possibility of obtaining the same solution to the recurrence with
different sets of parameters. Finally, Section 4 is devoted to the study of polynomial
generating functions in one variable, and Appendix A compiles some particular cases for
which their EGF’s can be computed in closed form.

2. Exponential generating functions

As we mentioned in the introduction, Wilf [26] has given general solutions for the
EGF’s solving (1.3) in terms of hypergeometric functions. This type of solution partially
hides the structure of the EGF’s, and it does not make it easy to see which param-
eter choices are the most relevant ones. To avoid these problems we have introduced
a classification of the PDE’s for the EGF’s in four types that we discuss in the following
subsections.

2.1. Type I equations

In this case both β and β′ are non-zero. This fact can be used to rewrite the PDE (1.3)
in a simpler way by performing the change of variables (x, y) �→ (X,Y ) defined by

X =
∣∣∣∣β′

β

∣∣∣∣x = σ
β′

β
x, where σ = sgn

(
ββ′), (2.1a)

Y = βy. (2.1b)

Notice that the signs of x and X are the same. This is not strictly necessary, but it is
convenient to avoid absolute values in log x or logX, as we will consider x > 0 and,
hence, X > 0. The function F (x, y) is then given by a function F(X,Y ) via the relation

F (x, y) = F(X,Y ) = F
(
σ
β′

x, βy

)
, (2.2)
β

5



where F(X,Y ) satisfies the PDE

−(1 + σX)XF1 +
(
1 − rY − σr′XY

)
F2 =

(
s− σs′X

)
F , (2.3)

with initial condition

F(X, 0) = 1. (2.4)

The parameters r, r′, s, s′ appearing in (2.3) are defined as:

r = α

β
, r′ = α′

β′ , s = α + γ

β
, s′ = −1 − α′ + γ′

β′ . (2.5)

We have, hence, reduced the number of continuous parameters in two units: from
(α, β, γ;α′, β′, γ′) to (r, s; r′, s′), plus a discrete parameter σ = ±1. By doing this the
expression for the PDE (2.3) becomes simpler than the original one (1.3). By using now
the well-known method of characteristics, it is straightforward to prove the following

Theorem 2.1. The solution F to (2.3) satisfying F(X, 0) = 1 is given by

F(X,Y ) =
(
Gr,r′,σ(Y X−r(1 + σX)r−r′ + G−1

r,r′,σ(X))
X

)s

×
(

1 + σX

1 + σGr,r′,σ(Y X−r(1 + σX)r−r′ + G−1
r,r′,σ(X))

)s+s′

, (2.6)

where

G−1
r,r′,σ(X) =

∑
k∈Z0\{r}

σk

(
−1 − r′ + r

k

)
Xk−r

k − r
+ χZ0(r)σr

(
−1 − r′ + r

r

)
logX (2.7)

for 0 < X < 1, χA denotes the characteristic function of the set A, and Z0 = N ∪ {0}.

It is important to point out here that in many cases of combinatorial interest, the series
defining G−1

r,r′,σ can be summed in closed form to give simple functions (see Appendix A).
Something similar happens for the other types of equations.

2.2. Type II equations

This type corresponds to β �= 0 and β′ = 0; then the PDE (1.3) simplifies to

−βxF1 +
(
1 −

(
α + α′x

)
y
)
F2 =

(
α + γ +

(
α′ + γ′)x)F. (2.8)

This equation can be solved by using the method of characteristics. The solution is the
content of the following theorem.
6



Theorem 2.2. When β �= 0 and β′ = 0, the EGF is given by

F (x, y) =
(
Gα,β,α′(yx−α/βe−α′x/β + G−1

α,β,α′(x))
x

)(α+γ)/β

× exp
[
−α′ + γ′

β

(
x−Gα,β,α′

(
yx−α/βe−α′x/β + G−1

α,β,α′(x)
))]

, (2.9)

where G−1
α,β,α′(x) is defined for any x > 0 as:

G−1
α,β,α′(x) =

∑
k∈Z0\{α/β}

(−α′/β)k

k!β
xk−α/β

k − α/β
+ χZ0(α/β) (−α′/β)α/β

(α/β)!β log x. (2.10)

2.3. Type III equations

This type corresponds to β = 0 and β′ �= 0. The PDE (1.3) reads now

−β′x2F1 +
(
1 −

(
α + α′x

)
y
)
F2 =

(
α + γ +

(
α′ + β′ + γ′)x)F (2.11)

and we have the following

Theorem 2.3. When β = 0 and β′ �= 0, the EGF is given by

F (x, y) =
(
Gα,α′,β′(yx−α′/β′

eα/(β
′x) + G−1

α,α′,β′(x))
x

)1+(α′+γ′)/β′

× exp
[
α + γ

β′

[
1
x
− 1

Gα,α′,β′(yx−α′/β′eα/(β′x) + G−1
α,α′,β′(x))

]]
, (2.12)

where G−1
α,α′,β′(x) is defined for x > 0 as:

G−1
α,α′,β′(x) = −

∑
k∈Z0\{−1−α′/β′}

(α/β′)k

k!β′
1

k + 1 + α′/β′
1

xk+1+α′/β′

+ χN

(
−α′/β′) (α/β′)−1−α′/β′

(−1 − α′/β′)!β′ log x. (2.13)

It is interesting to note here that the involutions of the first two rows of Table 2 turn
equations of Type II into equations of Type III (and vice versa) when the parameters
and the arguments of the EGF’s are transformed according to the rules given in any of
those rows. Hence it would have sufficed, in principle, to discuss one of the two types of
equations. We have considered both here for the sake of clarity.
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2.4. Type IV equations

This type is characterized by β = β′ = 0, and corresponds to case (S2) of Spivey [20].
For the families (α, 0;α′, 0), Eq. (1.3) simplifies to the ordinary differential equation(

1 −
(
α + α′x

)
y
)
F2 =

(
α + γ +

(
α′ + γ′)x)F. (2.14)

Hence, in this case, it is trivial to obtain its closed form solutions satisfying the initial
condition F (x, 0) = 1 (see also [22, Eq. (20)]):

Theorem 2.4. When β = β′ = 0 the EGF is

F (x, y) =
{

(1 − (α + α′x)y)−
α+γ+(α′+γ′)x

α+α′x if (α, α′) �= (0, 0),
exp((γ + γ′x)y) if (α, α′) = (0, 0).

(2.15)

In particular, the EGF’s for the Type IV self-dual families (α, 0, γ;α, 0, γ) are:

F (x, y) =
{

(1 − α(1 + x)y)−α+γ
α if α �= 0,

exp(γ(1 + x)y) if α = 0.
(2.16)

3. Parameter ambiguities

We discuss here the possibility of obtaining the same combinatorial numbers
∣∣ n
k

∣∣ with
different choices of parameters (α, β, γ;α′, β′, γ′). A straightforward way to do this is
to consider Eq. (1.2) for the same EGF F (x, y) and two different sets of parameters
(α1, β1, γ1;α′

1, β
′
1, γ

′
1) and (α2, β2, γ2;α′

2, β
′
2, γ

′
2), i.e.,

−
(
β1 + β′

1x
)
xF1 +

(
1 − α1y − α′

1xy
)
F2 =

(
α1 + γ1 +

(
α′

1 + β′
1 + γ′

1
)
x
)
F, (3.1a)

−
(
β2 + β′

2x
)
xF1 +

(
1 − α2y − α′

2xy
)
F2 =

(
α2 + γ2 +

(
α′

2 + β′
2 + γ′

2
)
x
)
F, (3.1b)

with F (x, 0) = 1. By subtracting both equations, we see that a necessary condition that
the EGF F (x, y) must satisfy in order to give rise to the same family of combinatorial
numbers is

−
(
β12 + β′

12x
)
xF1 −

(
α12 + α′

12x
)
yF2 =

(
α12 + γ12 +

(
α′

12 + β′
12 + γ′

12
)
x
)
F, (3.2)

where α12 = α1 − α2, β12 = β1 − β2, γ12 = γ1 − γ2, α′
12 = α′

1 − α′
2, β′

12 = β′
1 − β′

2, and
γ′
12 = γ′

1 − γ′
2.

The simplest type of ambiguity occurs when F (x, y) = F (x, 0) = 1 (corresponding to
the trivial case for which

∣∣ n
k

∣∣ = δn0δk0). In this case, Eqs. (3.1) imply that α1 + γ1 =
α2+γ2 = 0 and α′

1+β′
1+γ′

1 = α′
2+β′

2+γ′
2 = 0. This means that any choice of parameters

(α, β, γ;α′, β′, γ′) such that α + γ = 0 and α′ + β′ + γ′ = 0 defines the same (trivial)
family of numbers

∣∣ n ∣∣. In the following we will assume that F (x, y) is not constant.
k

8



The solutions to Eq. (3.2) are remarkably simple, and can be written in terms of
elementary functions. In order to solve it, one has to separately consider four cases
again: (i) β12β

′
12 �= 0, (ii) β12 = 0, β′

12 �= 0, (iii) β12 �= 0, β′
12 = 0, and (iv) β12 = 0,

β′
12 = 0. The solutions for F (x, y) are, respectively:

(i) F (x, y) = x−α12+γ12
β12 (β12+β′

12x)−1+α12+γ12
β12

−α′
12+γ′

12
β′
12 Ψ1(yx−α12

β12 (β12+β′
12x)

α12
β12

−α′
12

β′
12 ).

(ii) F (x, y) = exp(α12+γ12
β′
12

1
x )x−1−α′

12+γ′
12

β′
12 Ψ2(ye

α12
β′
12

1
xx

−α′
12

β′
12 ).

(iii) F (x, y) = exp(−α′
12+γ′

12
β12

x)x−α12+γ12
β12 Ψ3(ye−

α′
12

β12
xx−α12

β12 ).

(iv) F (x, y) = y
−α12+γ12+(α′

12+γ′
12)x

α12+α′
12x Ψ4(x), if α12 �= 0 or α′

12 �= 0. If α12 = α′
12 = 0 then

either γ12 = γ′
12 = 0 – and F (x, y) is arbitrary – or we must have F (x, y) = 0.

The functions Ψj , j = 1, . . . , 4, appearing in the preceding expressions are arbitrary at
this stage.

By demanding that F (x, 0) = 1 for all x > 0 in a neighborhood of 0, and requiring
that Eq. (3.1a) (or equivalently, (3.1b)) is satisfied, we get the conditions that the pa-
rameters must satisfy in order to have non-trivial parameter indeterminacies, and also
the functional forms of the functions Ψj . Once the EGF’s are obtained, it is easy to
derive closed formulas for the combinatorial numbers that they encode. All these steps
are straightforward, so we just give here the final form of the degenerate families:

• (α, β, γ;α′, β′, γ′) = (α, α + ρG,G− α;−ρH, ρH + αH
G , H − αH

G ). Then

∣∣∣∣nk
∣∣∣∣
α,G,H

=
(
n

k

)(
H

G

)k n−1∏
j=0

(G + αj), (3.3)

independent of ρ. Notice that G = α + γ and H = α′ + β′ + γ′.
• (α, β, γ;α′, β′, γ′) = (α,−α,−α;−α′, L− α′, γ′). Then

∣∣∣∣nk
∣∣∣∣
L,γ′

= δnk

n∏
j=1

(
γ′ + Lj

)
, (3.4)

independent of α, α′. In this case L = α′ + β′.
• (α, β, γ;α′, β′, γ′) = (α, β,M − α; 0, β′,−β′). Then

∣∣∣∣nk
∣∣∣∣
M,α

= δk0

n−1∏
j=0

(M + αj), (3.5)

independent of β, β′. In this case M = α + γ.
9



• (α, β, γ;α′, β′, γ′) = (α, β,−α;α′, β′,−α′ − β′).∣∣∣∣nk
∣∣∣∣ = δk0δn0, (3.6)

independent of α, β, α′, β′. This is the trivial case.

As we can see, by adjusting the parameters within each of these families, it is possible
to change the type of the PDE for their EGF. This is the reason why we introduced
a classification for the equations instead of the combinatorial numbers themselves.

4. Polynomial generating functions in one variable

We study here the one-variable polynomials Pn(x) defined in (1.2) for the four types
of equations used in the solution to Question 1.1, as defined in Definition 1.2. We get
these polynomials from the corresponding EGF’s F (x, y) by employing complex-variable
methods. We will start with the most general case (Type I), and will work out the proof
of the main theorem with some detail. For the other cases, the corresponding proofs are
very similar, so we will just sketch them for the sake of brevity.

4.1. Type I case

When ββ′ �= 0, it is convenient to work with the variables X, Y introduced in (2.1),
and define the auxiliary polynomials

Pn(X) = n!
[
Y n

]
F(X,Y ), (4.1)

so that

Pn(x) = βnPn

(
σ
β′

β
x

)
. (4.2)

In this section we will get concrete expressions for Pn(X) by using Cauchy’s theorem.
The possibility of employing this procedure depends crucially on the analyticity proper-
ties of the generating functions F(X,Y ) (cf. (2.2)) that, in turn, hinge upon those of the
function Gr,r′,σ (cf. (2.7)). These can be studied by using the complex implicit-function
theorem [13]. Our result can be summarized in the following

Theorem 4.1. The polynomials (4.1) corresponding to EGF (2.2) satisfying Type-I equa-
tions are given by

Pn(X) = (1 + σX)n(r−r′)+s+s′

Xs+rn

× lim
Z→X

∂n

∂Zn

[
Zs−r−1

(1 + σZ)η

(
Z −X

G−1 (Z) −G−1 (X)

)n+1]
, (4.3)
r,r′,σ r,r′,σ

10



where η = s + s′ + 1 + r′ − r, or in the following alternative form if r ∈ Z0:

Pn(X) = (1 + σX)n(r−r′)+s+s′

Xs+rn
σ(n+1)r

(
−1 − r′ + r

r

)−n−1

× lim
Z→X

∂n

∂Zn

[
Zs−r−1(Z −X)n+1

(1 + σZ)η

[
log

ZQ̂0
r,r′,σ(Z)

XQ̂0
r,r′,σ(X)

]−n−1]
, (4.4)

where

Q̂0
r,r′,σ(X) = exp

(
Q0

r,r′,σ(X)
σr

(−1−r′+r
r

)), (4.5a)

Q0
r,r′,σ(X) =

∑
k∈Z0\{r}

σk

(
−1 − r′ + r

k

)
Xk−r

k − r
. (4.5b)

Proof. Let us pick X ∈ C\{0} contained within the convergence disk of Q0
r,r′,σ (|X| < 1;

cf. (4.5b)). As Q0
r,r′,σ contains a term of the form X−r, the origin can be a singular point

for specific choices of r (either a pole or a branch point). We consider the function

A:U ⊂ C
3 → C: (X1, X2, X3) �→ A(X1, X2, X3) = ξ(X1, X2) − ξ(X3, 0), (4.6)

where U ⊂ C
3 is an open neighborhood of (X, 0, X) and

ξ(X1, X2) = X2X
−r
1 (1 + σX1)r−r′ + G−1

r,r′,σ(X1). (4.7)

Now, as A(X, 0, X) = 0 and A3(X, 0, X) �= 0 for all X ∈ C such that 0 < |X| < 1,
there exist open neighborhoods U1 ⊂ C

2 and U2 ⊂ C of (X, 0) and X, respectively, with
U1 × U2 ⊂ U , and a unique holomorphic function θ:U1 → U2 such that

A−1(0) ∩ (U1 × U2) =
{(

(X,Y ), θ(X,Y )
)
: (X,Y ) ∈ U1

}
. (4.8)

An important consequence of this result and the definition of Gr,r′,σ (cf. (2.7)) is that

Gr,r′,σ

(
ξ(X,Y )

)
= Gr,r′,σ

(
ξ
(
θ(X,Y ), 0

))
= θ(X,Y ). (4.9)

The analyticity of θ implies that there exists an open neighborhood Ω of the origin
of the complex Y -plane such that, for every X ∈ C satisfying 0 < |X| < 1, the function
Y �→ F(X,Y ) given by (2.6) is analytic in Ω. By using Cauchy’s theorem we can then
write

[
Y n

]
F(X,Y ) = 1

2πi

∫ [
Gr,r′,σ(ξ(X,Y ))

X

]s[ 1 + σX

1 + σGr,r′,σ(ξ(X,Y ))

]s+s′
dY

Y n+1 , (4.10)

Γ

11



where Γ is a simple closed curve of index +1, contained in Ω, surrounding the origin
Y = 0 and no other singularity of the integrand. A natural change of variables, suggested
by the form of (4.10), is to put (cf. (4.9))

Z = Gr,r′,σ

(
ξ(X,Y )

)
= θ(X,Y ), (4.11)

so let us consider the one-parameter family of holomorphic maps (π2 denotes the pro-
jection onto the second argument)

ZX :π2
((
{X} × C

)
∩ U1

)
⊂ C → C:Y �→ ZX(Y ) = G

(
ξ(X,Y )

)
. (4.12)

Notice that as Z ′
X(0) �= 0 we have that ZX(Γ ), the image of the original integration

contour Γ , will be also a closed, simple curve of index +1, contained in ZX(Ω) and
surrounding the point Z = X in the complex Z-plane. Notice also that, given any open
neighborhood VX of Z = X, it is possible to choose the original integration contour Γ

in such a way that ZX(Γ ) ⊂ VX .
It is now straightforward to rewrite the integral in (4.10) as a contour integral on

ZX(Γ ) to obtain the following expression for the polynomials Pn(X):

Pn(X) = n! (1 + σX)n(r−r′)+s+s′

Xs+rn

× 1
2πi

∫
ZX(Γ )

Zs−r−1

(1 + σZ)η
dZ

(G−1
r,r′,σ(Z) −G−1

r,r′,σ(X))n+1 , (4.13)

where η = s + s′ + 1 + r′ − r.
The analytic structure of the integrand of (4.13) shows that it is possible to choose Γ

in such a way that (1) the singularity that may appear due to the term Zs−r−1 can be
avoided, and (2) the only singularity surrounded by ZX(Γ ) is Z = X. Hence, we can
compute the integral by using the residue of the integrand at Z = X. This point can
be immediately seen to be a pole of order n + 1 because (G−1

r,r′,σ)′(X) �= 0 if X satisfies
0 < |X| < 1. By doing this, we immediately get (4.3).

When r ∈ Z0, it is convenient to explicitly take into account the logarithmic terms
appearing in G−1

r,r′,σ(Z) and G−1
r,r′,σ(X). This gives (4.4). �

Remarks. 1. Notice that the procedure that we have followed above allows us to partially
sidestep the difficulties associated with the impossibility to obtain closed form expressions
for the function Gr,r′,σ(Z) from (2.7) in many cases; we only need the function G−1

r,r′,σ(X)
or Q0

r,r′,σ(X).
2. As discussed above, the integrand of (4.13) has a pole of order n + 1 at Z = X.

The expressions written above are based on the computation of the residue at this point
and take advantage of the fact that the integrand is a meromorphic function in an
open neighborhood of it. However, in many occasions it is possible to consider analytic
12



extensions of the integrand and move the integration contour to rewrite the integral in
more convenient ways.

3. Formula (4.4) suggests the change of variables eU = ZQ̂0(Z) and eV = XQ̂0(X).
This leads to simple Rodrigues-like formulas for the row polynomials.

4.2. Type II case

When β �= 0 and β′ = 0, the EGF F (x, y) has the general form given by Theorem 2.2.
In this case we can work with the original variables x, y. Our goal is to express the
one-variable polynomials Pn(x) as a contour integral by following the same steps that
led to Theorem 4.1.

Using the complex implicit function theorem, we can show (as in the proof of The-
orem 4.1) that there is an open neighborhood Ω of the origin of the complex y-plane
where F (x, y) is analytic as a function of y (for every x ∈ C satisfying 0 < |x| < 1).
Then, Pn(x) can be expressed as a contour integral by using Cauchy’s theorem:

Pn(x) = n!
2πi

∫
Γx

[
Gα,β,α′(ξ(x, y))

x

]α+γ
β

× exp
[
−α′ + γ′

β

(
x−Gα,β,α′

(
ξ(x, y)

))] dy

yn+1 , (4.14)

where Γx is a closed, simple curve of index +1, that surrounds the origin y = 0 and no
other singularity of the integrand, ξ(x, y) is given by

ξ(x, y) = yx−α/βe−xα′/β + G−1
α,β,α′(x),

and Gα,β,α′ is defined by (2.10).
As we did in the preceding section, it is convenient now to perform the change of vari-

ables z = Gα,β,α′(ξ(x, y)). The same steps followed in the proof of Theorem 4.1 lead to

Pn(x) = n!
2πiβ

e−((n+1)α′+γ′)x/β

x((n+1)α+γ)/β

∫
Γ

zγ/β−1eγ
′z/β

(G−1
α,β,α′(z) −G−1

α,β,α′(x))n+1 dz, (4.15)

where the integration contour in (4.15) is a closed, simple curve of index +1, that sur-
rounds the point z = x and no other singularity of the integrand. The integrand in (4.15)
has a pole of order n + 1 at z = x, so we can compute this integral using residues. The
above discussion can be summarized in the following

Theorem 4.2. The polynomials Pn(x) corresponding to EGF satisfying Type-II equations
are given by

Pn(x) = e−((n+1)α′+γ′)x/β

βx((n+1)α+γ)/β lim
z→x

∂n

∂zn
zγ/β−1eγ

′z/β(z − x)n+1

(G−1 (z) −G−1 (x))n+1 . (4.16)

α,β,α′ α,β,α′
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4.3. Type III case

When β = 0 and β′ �= 0, the EGF F (x, y) has the general form given by Theorem 2.3.
Again, we can work with the original variables x, y and write the polynomials Pn(x) as
a contour integral.

Using the complex implicit function theorem, we can show (as in the proof of The-
orem 4.1) that there is an open neighborhood Ω of the origin of the complex y-plane
where F (x, y) is analytic as a function of y (for every x ∈ C satisfying 0 < |x| < 1).
Then, Pn(x) can be expressed as a contour integral by using Cauchy’s theorem:

Pn(x) = n!
2πi

∫
Γx

[
Gα,α′,β′(ξ(x, y))

x

]1+α′+γ′
β′

× exp
[
α + γ

β′

[
1
x
− 1

Gα,α′,β′(ξ(x, y))

]]
dy

yn+1 , (4.17)

where Γx is a closed, simple curve of index +1, that surrounds the origin y = 0 and no
other singularity of the integrand, ξ(x, y) is given by

ξ(x, y) = yx−α′/β′
eα/(β

′x) + G−1
α,α′,β′

and Gα,α′,β′ is defined by (2.13).
As we did in Section 4.1, we perform the change of variables z = Gα,α′,β′(ξ(x, y)) to

obtain

Pn(x) = n!
2πiβ′

e((n+1)α+γ)/(β′x)

x1+((n+1)α′+γ′)/β′

∫
Γ

zγ
′/β′−1e−γ/(β′z)

(G−1
α,α′,β′(z) −G−1

α,α′,β′(x))n+1 dz, (4.18)

where the integration contour in (4.18) is a closed, simple curve of index +1, that sur-
rounds the point z = x and no other singularity of the integrand. The integrand in (4.18)
has a pole of order n + 1 at z = x. Then, we can compute this integral using residues.
The above discussion can be summarized in the following

Theorem 4.3. The polynomials Pn(x) corresponding to EGF satisfying Type-III equations
are given by

Pn(x) = e((n+1)α+γ)/(β′x)

β′x1+((n+1)α′+γ′)/β′ lim
z→x

∂n

∂zn
zγ

′/β′−1eγ/(β
′z)(z − x)n+1

(G−1
α,α′,β′(z) −G−1

α,α′,β′(x))n+1 . (4.19)

4.4. Type IV case

This corresponds to Spivey’s case (S2) [20]. The EGF F (x, y) for the families
(α, 0;α′, 0) is given in closed form by (2.15), so it is not necessary to provide the integral
representation used above. The result is easy to obtain, so we simply quote it here:
14



Theorem 4.4. The polynomials Pn(x) corresponding to EGF satisfying Type-IV equations
are given by

Pn(x) =
n∏

k=1

(
kα + γ +

(
kα′ + γ′)x). (4.20)

Actually, the form of the coefficients for this case is also easy to obtain:

Corollary 4.5. The coefficients
∣∣ n
k

∣∣ for n � 0 and 0 � k � n corresponding to solutions
to Question 1.1 of Type IV are given by

∣∣∣∣nk
∣∣∣∣ =

n∑
t=0

k∑
s=0

[
n

t

](
t

s

)(
n− t

k − s

)
(α + γ)t−s

(
α′ + γ′)sαn−t+s−k

(
α′)k−s

. (4.21)
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Appendix A. Some particular cases

In this appendix we will deal with particular cases of interest of the results obtained
in Section 2. In particular, we will give closed formulas for the EGF’s corresponding to
cases where the functions G−1 of Theorems 2.1–2.3 can be written in closed form in
terms of simple functions. Please, note that Type IV equations have been completely
solved in Theorem 2.4.

A.1. Particular cases for Type I equations

In this subsection we will use the standard parameters (α, β, γ;α′, β′, γ′) (1.1) in the
EGF, instead of the parameters (r, r′, σ) (2.3)/(2.5) labeling G−1

r,r′,σ (cf. (2.7)).

A.1.1. Solution for 1 + r′ = r

This is case (S3) of Spivey [20]. The function G−1
r,r−1,σ is given by:

G−1
r,r−1,σ(X) =

{
−(rXr)−1 if r �= 0, (A.1)

logX if r = 0,
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and the EGF is

F (x, y) =

⎧⎪⎨⎪⎩
( β+β′x(1−αy(β+β′x)/β)−β/α

β+β′x )γ
′/β′−γ/β

(1−αy
β (β+β′x))(α+γ)/α if α �= 0,

ey(β+β′x)γ/β(β+β′xey(β+β′x)

β+β′x )γ′/β′−γ/β if α = 0.
(A.2)

This EGF was also obtained by Théorêt [22, Proposition 3]. A particular case of this
family corresponds to the Eulerian numbers defined by (0, 1, 1; 1,−1, 0).

A.1.2. Solution for r = −1
This is case (S1) of Spivey [20]. The function G−1

−1,r′,σ is given by:

G−1
−1,r′,σ(X) =

{ σ
(1+r′) (1 − 1

(1+σX)1+r′ ) if r′ �= −1,
σ log(1 + σX) if r′ = −1,

(A.3)

and this leads to

F (x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
( 1
β′x

β+β′x
(1−(α′+β′)xy)β′/(α′+β′) − β)γ/β−1

× ( 1
1−(α′+β′)xy )

2ββ′+(α′+γ′)β−γβ′
β(α′+β′) if α′ �= −β′,

exyβ
′(1+γ′/β′−γ/β)( e

xyβ′
(β+β′x)−β
β′x )−1+γ/β if α′ = −β′.

(A.4)

This EGF can also be obtained starting from the EGF for r′ = 0 (A.8), and using the
involution (1.5) (cf. first row of Table 2), as suggested by Théorêt [22, p. 97].

A.1.3. Solution for r = r′ = 1
In this case, the function to invert is

G−1
1,1,σ(X) = −1/X + σ log

(
(1 + σX)/X

)
. (A.5)

This immediately gives

F (x, y) = 1
(β′x)1+γ/β

(
T (eβ2y/(β′x)T−1(1 + β/(β′x)))

β + β′x

)1+γ′/β′−γ/β

×
(

β

T (eβ2y/(β′x)T−1(1 + β/(β′x))) − 1

)2+γ′/β′

, (A.6)

in terms of the tree function T [6,7]. An interesting particular case corresponds to
(1, 1,−1; 1, 1,−1) giving the numbers

[[
n+k

]]
introduced in [9].
k
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A.1.4. Solution for r′ = 0
This is the case studied by Neuwirth [16]. The function G−1

r,0,σ is given by:

G−1
r,0,σ(X) =

{−(1/r)((1 + σX)/X)r if r �= 0,
log(X/(1 + σX)) if r = 0.

(A.7)

Then, we have

F (x, y) =

⎧⎪⎨⎪⎩
( β
(β+β′x)(1−αy)β/α−β′x

)1+γ′/β′

× (1 − αy)(β/α)(1+γ′/β′−(α+γ)/β) if α �= 0,
eyγ( β

β+β′x(1−eyβ) )
1+γ′/β′ if α = 0.

(A.8)

This EGF was also obtained by Théorêt [21,22].2 An important particular case corre-
sponds to the numbers Surj(n, k) [9] defined by (0, 1, 0; 0, 1, 0).

A.1.5. Solution for r = 0 and −r′ ∈ N

As r′ is a negative integer, it is convenient to define ν = −r′ ∈ N. Then, the function
G−1

0,−ν,σ is given by

G−1
0,−ν,σ(X) = logX +

ν−1∑
k=1

(
ν − 1
k

)
(σX)k

k
. (A.9)

It is convenient to define a new function Tν as

T−1
ν (z) = zeQν(z), where Qν(z) =

ν−1∑
k=1

(
ν − 1
k

)
(−z)k

k
. (A.10)

It is clear that T1 is the identity, and T2 is the tree function [6,7]. The EGF is

F (x, y) = β1−ν+γ′/β′
(
Tν(eyβ

1−ν(β+β′x)νT−1
ν (−β′x/β))

(−β′x)

)γ/β

×
(

1 − Tν(eyβ
1−ν(β+β′x)νT−1

ν (−β′x/β))
β + β′x

)1−ν−γ/β+γ′/β′

. (A.11)

It is possible to define ν-order Eulerian numbers as a generalization of ordinary and
second order Eulerian numbers by the parameter choice (0, 1, 1; ν,−1, 1 − ν) [2].

A.1.6. Solution for r = 0 and r′ ∈ N

It is convenient to redefine r′ = ν ∈ N in accordance with the previous section. The
function G−1

0,ν,σ is given by

2 The expression for the case α = 0 has a typo in [21, Eq. (4.66)]; but it is correct in [22, Eq. (16)].
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G−1
0,ν,σ(X) = log

(
σT−1

ν+1

(
σX

1 + σX

))
, (A.12)

where Tν is given by (A.10). We have now that

F (x, y) = β1+ν+γ′/β′

(β + β′x)1+ν+γ′/β′−γ/β

(
Tν+1(eyβ

1+ν(β+β′x)−ν

T−1
ν+1(β′x/(β + β′x)))

β′x

)γ/β

×
(
1 − Tν+1

(
eyβ

1+ν(β+β′x)−ν

T−1
ν+1

(
β′x/

(
β + β′x

))))−1−ν−γ′/β′
. (A.13)

Interesting particular cases are the ν-order Ward numbers – a generalization of the
ordinary Ward numbers – given by (0, 1, 0; ν, 1,−ν) [2].

A.2. Particular cases for Type II equations

In this subsection we will use the standard parameters (α, β, γ;α′, 0, γ′) in both G−1
α,β,α′

(cf. (2.10)) and the EGF.

A.2.1. Solution for (−β, β;α′, 0)
In this case G−1

−β,β,α′ can be computed in closed form to give

G−1
−β,β,α′(x) =

{
(1 − e−α′x/β)/α′ if α′ �= 0,
x/β if α′ = 0.

(A.14)

Hence

F (x, y) =
{

(1 − β log(1−α′xy)
α′x )γ/β−1(1 − α′xy)−1−γ′/α′ if α′ �= 0,

(1 + βy)−1+γ/βeγ
′xy if α′ = 0.

(A.15)

A relevant particular case is defined by the parameters (1,−1, 0; 0, 0, 1) and corresponds
to the numbers nn−k.

A.2.2. Solution for (α, β; 0, 0)
In this case G−1

α,β,0 can be easily summed to give

G−1
α,β,0(x) =

{
−x−α/β/α if α �= 0,
(1/β) log x if α = 0.

(A.16)

Hence we have

F (x, y) =
{

(1 − αy)−(1+γ/α) exp(−γ′x
β (1 − (1 − αy)−β/α)) if α �= 0,

exp(γy − γ′(1 − eβy)x/β) if α = 0.
(A.17)

The generalization of the Lah and Stirling subset numbers S(r;n, k) [14,15] correspond-
ing to (r − 1, 1, 1 − r; 0, 0, 1) is a particular interesting case.
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A.3. Particular cases for Type III equations

In this subsection we will use the standard parameters (α, 0, γ;α′, β′, γ′) in both
G−1

α,α′,β′ (cf. (2.13)) and the EGF.

A.3.1. Solution for (α, 0;β′, β′)
The expression for G−1

α,β′,β′ is given by

G−1
α,β′,β′(x) =

{
eα/(β

′x)(β′/α2 − 1/(αx)) − β′/α2 if α �= 0,
−1/(2β′x2) if α = 0.

(A.18)

Therefore,

F (x, y) =
{

[ α
xβ′(1−T (ζ)) ]

2+γ′/β′ exp[α+γ
β′ ( 1

x − β′

α (1 − T (ζ)))] if α �= 0,
(1 − 2β′xy)−(1+γ′/(2β′)) exp[ γ

β′x (1 −
√

1 − 2β′xy )] if α = 0,
(A.19)

where

ζ(x, y) =
(
α2y + β′x− α

)
exp

(
α/

(
β′x

)
− 1

)
/
(
β′x

)
. (A.20)

The particular family (1, 0, γ; 1, 1, γ′) contains numbers related to the Ramanujan func-
tions Qn,k(x) [27] (see Table 1). These EGF’s seem to be new.

A.3.2. Solution for (0, 0;α′, β′)
A straightforward computation leads to the expression for G−1

0,α′,β′ :

G−1
0,α′,β′(x) =

{
−x−1−α′/β′

/(α′ + β′) if α′ �= −β′,

(log x)/β′ if α′ = −β′.
(A.21)

Hence

F (x, y) =
{

exp(γ(1−(1−xy(α′+β′))β
′/(α′+β′))/(β′x))

(1−xy(α′+β′))1+γ′/(α′+β′) if α′ �= −β′,

exyγ
′ exp(γ(1 − e−xyβ′)/(β′x)) if α′ = −β′.

(A.22)

A.3.3. Solution for (α, 0; 0, β′)
The expression for G−1

α,0,β′ is given by:

G−1
α,0,β′(x) =

{
(1 − eα/(β

′x))/α if α �= 0,
−1/(β′x) if α = 0.

(A.23)

The corresponding EGF is
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F (x, y) =
{

( α
α+β′x log(1−αy) )

1+γ′/β′(1 − αy)−(1+γ/α) if α �= 0,
eγy(1 − xyβ′)−(1+γ′/β′) if α = 0.

(A.24)

A particular case corresponds to the injective numbers Inj(n, k) [9] defined by the pa-
rameters (0, 0, 1; 0, 1, 0).
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