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a b s t r a  c t

In this article, we formulate the study of the unitary time evolution of systems consisting of an 
infinite number of uncoupled time-dependent harmonic oscillators in mathematically rigorous 

terms. We base this analysis on the theory of a single one-dimensional time-dependent oscillator, for 
which we first summarize some basic results concerning the unitary implementability of the 
dynamics. This is done by employing techniques different from those used so far to derive the 

Feynman propagator. In particular, we calculate the transition amplitudes for the usual harmonic 
oscillator eigenstates and define suitable semiclassical states for some physically relevant models. 
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ic oscillator (TDHO) has received a lot of attention due to its
many physical systems. This is the case, for example, of

e-dependent laser sources or in spatial regions filled with
r [1]. The behavior of ions in Paul traps [2–4] can also be de-

illators with time-dependent frequencies. The mathematical
aspects of the quantum TDHO and its applications to more general theoretical models have been pro-
fusely analyzed in the literature [5–8]. In particular, they have been studied in the context of the
search of exact invariants for nonstationary quantum systems. This method was introduced for the
first time by Lewis and Riesenfeld [9,10] and proved to be especially useful to generate exact solutions
to the Schrödinger equation and also to probe the existence and properties of semiclassical states for
these systems.
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In the context of infinite dimensional dynamical systems, physical theoretical models with infi-
nitely many time-dependent oscillators naturally appear in quantum field theory in curved space-
times [11,12] and also in the reduced phase space description of some midisuperspace models in
general relativity [13–16]. It is clear that, in the quest for a suitable quantization for these systems,
the understanding of the special features of the single TDHO is particularly advisable. This fact moti-
vates us to summarize in a rigorous and self-contained way the theory of the quantum TDHO in the
first part of the paper by (implicitly) making use of the theory of invariants. Although some of the basic
results such as the formula of the Feynman propagator are certainly well-known, they will be recov-
ered by using novel techniques, and contrasted with the expressions obtained in the existing litera-
ture. This procedure will facilitate the generalization to field theories in the second part of the
paper, where we apply the ideas exposed for the one-dimensional oscillator in order to obtain the
propagator for infinite-dimensional systems and discuss applications both to quantum field theory
and quantum gravity. The structure of the article is the following.

In Section 2, we analyze some relevant properties of the classical TDHO equation, in particular, its
connection with the so-called Ermakov–Pinney (EP) equation [17–19], which plays an auxiliary role in
the calculation of invariants for nonquadratic Hamiltonian systems [20]. Many of the quantities de-
rived in this section are used afterward to obtain a simple and closed expression for the unitary evo-
lution operator of the quantum TDHO.

In Section 3, we first briefly review the definition of the abstract Weyl C�-algebra of quantum
observables for the TDHO, the uniqueness of all regular irreducible representations of the canonical
commutation relations, and the unitary implementability of the symplectic transformations that char-
acterize the classical time evolution. Once a concrete representation is fixed, we construct the unitary
evolution operator by introducing some suitable displacement and squeeze operators [21]. In our dis-
cussion, the use of the auxiliary EP equation is appropriately interpreted as a natural way to solve the
Schrödinger equation and obtain an expression of the evolution operator valid for all values of the time
parameter. We then show that this method is especially useful to derive the Feynman propagator,
whose calculation follows readily in this context. We obtain an expression in agreement with those
previously derived in the existing literature, where (more complicated) path-integration techniques
are often employed [22,23]. We also analyze in this section the calculation of the transition ampli-
tudes for the usual harmonic oscillator eigenstates and, as a particular case, the instability of the vac-
uum state as a direct consequence of the nonautonomous nature of the system.

The eigenstates of the Lewis invariant [9] provide a family of state vectors closed under time evo-
lution, depending on a particular solution to the EP equation, that generalize the minimal wave pack-
ets of the harmonic oscillator with constant frequency. These states, however, do not have the usual
properties of the ordinary coherent states—not even the ones associated with the squeezed states—
and can be taken as semiclassical states just in case they are well-behaved enough. In Section 4, we
analyze the construction of semiclassical states for some physically relevant systems, such as the ver-
tically driven pendulum and, particularly, the class of TDHO equations that occur in the well-known
Gowdy cosmological models [24], as a previous step to generalize this construction to field theories.

Section 5 is precisely devoted to the extension of the previous study to linear dynamical systems
with infinite degrees of freedom governed by nonautonomous quantum Hamiltonians that can be
interpreted as systems of infinite uncoupled harmonic oscillators with time-dependent frequencies.
This fact allows us to give a straightforward procedure to obtain the unitary evolution operator, fol-
lowing the discussion developed for a single oscillator. We particularize our results to the well-known
Minkowskian free scalar fields and also to the Gowdy cosmologies, that have attracted considerable
2



attention in recent years as appealing frameworks to test quantum gravity theories (see [14–16,25–
27] and references therein). Making use of Schrödinger representations, where states act as function-
als on appropriate quantum configuration spaces, we construct the analog of the one-dimensional
propagator. We also discuss the difficulties that arise when dealing with infinite dimensional sys-
tems—specifically, the impossibility of unitarily implementing some symplectic transformations—
and their implications for the search of semiclassical states. We conclude the paper with some final
comments and remarks in Section 6 and Appendix A.

Throughout the paper, we will take units such that the Planck constant �h, the light velocity c, and
the characteristic mass of the system under study are equal to one. For any z 2 C n ð�1;0� ;

ffiffiffi
z
p

will de-
note the unique square root of z such that Reð

ffiffiffi
z
p
Þ is strictly positive.

2. Properties of the TDHO equation

We will review in this section some properties of the classical equation of motion of a single har-
monic oscillator with time-dependent frequency, from now on referred to as the TDHO equation,
given by
€uðtÞ þ jðtÞuðtÞ ¼ 0 ; t 2 I ¼ ðt�; tþÞ# R ; ð1Þ
where j : I! R is a real-valued continuous function and time-derivatives are denoted by dots. Given an ini-
tial time t0 2 I, let ct0 and st0 be the independent solutions of (1) such that ct0 ðt0Þ¼ _st0 ðt0Þ¼1 and
st0 ðt0Þ¼ _ct0 ðt0Þ¼0. These can be written in terms of any set of independent solutions to (1), say u1 and u2, as
ct0 ðtÞ ¼
_u2ðt0Þu1ðtÞ � _u1ðt0Þu2ðtÞ

Wðu1; u2Þ
; st0 ðtÞ ¼

u1ðt0Þu2ðtÞ � u2ðt0Þu1ðtÞ
Wðu1; u2Þ

; ð2Þ
where ðt0; tÞ 2 I � I and Wðu1;u2Þ :¼ u1 _u2 � _u1u2 denotes the (time-independent) Wronskian of u1 and
u2. In what follows, we will use the notation cðt; t0Þ :¼ ct0 ðtÞ; _cðt; t0Þ :¼ _ct0 ðtÞ; sðt; t0Þ :¼ st0 ðtÞ, and
_sðt; t0Þ :¼ _st0 ðtÞ. Note that the s function belongs to the class C2ðI � IÞ, whereas cð�; t0Þ 2 C2ðIÞ and
cðt; �Þ 2 C1ðIÞ. As a concrete example, for the time independent harmonic oscillator (TIHO) with con-
stant frequency jðtÞ ¼ j0 2 R, we simply get ðx > 0Þ
j0 ¼ x2; cðt; t0Þ ¼ cosððt � t0ÞxÞ; sðt; t0Þ ¼ x�1 sinððt � t0ÞxÞ; ð3Þ
j0 ¼ 0; cðt; t0Þ ¼ 1; sðt; t0Þ ¼ t � t0; ð4Þ
j0 ¼ �x2; cðt; t0Þ ¼ coshððt � t0ÞxÞ; sðt; t0Þ ¼ x�1 sinhððt � t0ÞxÞ : ð5Þ
In fact, as well known from Sturm’s theory, the c and s functions corresponding to arbitrary fre-
quencies share several properties with the usual cosine and sine functions. Firstly, their Wronskian
is normalized to unit, Wðc; sÞ ¼ 1. Hence, if one of them vanishes for some time t ¼ t�, then the other
is automatically different from zero at that instant. In view of this condition and Eq. (2), their time-
derivatives satisfy
_sðt; t0Þ ¼ cðt0; tÞ ; _cðt; t0Þ ¼
cðt; t0Þcðt0; tÞ � 1

sðt; t0Þ
; ð6Þ
where the last equation must be understood as a limit for those values of the time parameter t� such
that sðt�; t0Þ ¼ 0. The odd character of the sine function translates into the condition sðt0; tÞ ¼ �sðt; t0Þ.
Finally, the well-known formula for the sine of a sum of angles can be generalized as
sðt2; t1Þ ¼ cðt1; t0Þsðt2; t0Þ � cðt2; t0Þsðt1; t0Þ : ð7Þ
It is well known that solutions to the TDHO Eq. (1) are related to certain non-linear differential
equations. Here, we will restrict our attention to the so-called Ermakov–Pinney (EP) equation (see
[17,18]; the interested reader is strongly suggested to consult the historical account of [19] and refer-
ences therein). Let
A ¼
a11 a12

a12 a22

� �
3



be a positive definite quadratic form with detðAÞ ¼ 1. Then, the (never vanishing) function
q : I! ð0;þ1Þ defined as
qðtÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a11c2ðt; t0Þ þ a22s2ðt; t0Þ þ 2a12sðt; t0Þcðt; t0Þ

q
ð8Þ
satisfies the EP equation
€qðtÞ þ jðtÞqðtÞ ¼ 1
q3ðtÞ ; t 2 I : ð9Þ
According to Eq. (2), the most general analytic solution to Eq. (9) can be written as [28,29]
qðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b11u2

1ðtÞ þ b22u2
2ðtÞ þ 2b12u1ðtÞu2ðtÞ

q
; ð10Þ
where, as a consequence of (8) and (9), the coefficients b11; b12; b22 2 R satisfy W2ðu1;u2Þ ¼
ðb11b22 � b2

12Þ
�1
> 0. Conversely, given any solution to the EP equation it is possible to find the general

solution to the TDHO equation. Indeed, it is straightforward to prove the following theorem.

Theorem 1. Let q be any solution to the EP Eq. (9); then, the c and s solutions to (1) are given by
cðt; t0Þ ¼
qðtÞ
qðt0Þ

cos
Z t

t0

ds
q2ðsÞ

� �
� qðtÞ _qðt0Þ sin

Z t

t0

ds
q2ðsÞ

� �
; ð11Þ

sðt; t0Þ ¼ qðtÞqðt0Þ sin
Z t

t0

ds
q2ðsÞ

� �
; ðt; t0Þ 2 I � I : ð12Þ
Remark 1. By using Eqs. (11) and (12), it is possible to find other q-independent objects. For example,
the combination
qðt0Þ
qðtÞ cos

Z t

t0

ds
q2ðsÞ

� �
þ qðt0Þ _qðtÞ sin

Z t

t0

ds
q2ðsÞ

� �
¼ cðt0; tÞ ¼ _sðt; t0Þ
and the zeros of sðt; t0Þ, characterized by
Z t

t0

ds
q2ðsÞ � 0 ðmodpÞ ;
are independent of the particular solution q to the EP equation. These results will be profusely applied
along the article.
3. Unitary quantum time evolution

3.1. General framework

The canonical phase space description of the classical system under consideration consists of a non-
autonomous Hamiltonian system ðI � C;dt;x;HðtÞÞ. Here, C :¼ R2 denotes the space of Cauchy data
ðq; pÞ endowed with the usual symplectic structure xððq1; p1Þ; ðq2; p2ÞÞ :¼ p1q2 � p2q1;8ðq1; p1Þ;
ðq2; p2Þ 2 C. The triplet ðI � C;dt;xÞ then has the mathematical structure of a cosymplectic vector
space (see [30] for more details). The time-dependent Hamiltonian HðtÞ : C! R; t 2 I, is given by
Hðt; q;pÞ :¼ 1
2

p2 þ jðtÞq2� �
: ð13Þ
The solution to the corresponding Hamilton equations with initial Cauchy data ðq; pÞ at time t0 can
be written down as
qHðt; t0Þ
pHðt; t0Þ

� �
¼ T ðt;t0Þ �

q

p

� �
; T ðt;t0Þ :¼

cðt; t0Þ sðt; t0Þ
_cðt; t0Þ _sðt; t0Þ

� �
: ð14Þ
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Note that the properties stated in Section 2 about the c and s solutions to the TDHO Eq. (1) guar-
antee that T ðt;t0Þ 2 SLð2;RÞ ¼ SPð1;RÞ for all ðt; t0Þ 2 I � I, i.e., the classical time evolution is imple-
mented by symplectic transformations.

We now formulate the quantum theory of the TDHO by defining an appropriate abstract C�-algebra
of quantum observables [31]. This algebraic approach, although being more complicated than the tra-
ditional canonical quantization for this system, will facilitate the study of field theories in subsequent
sections. We first realize that, as a consequence of the linearity of C, the set of elementary classical
observables can be identified with the R-vector space generated by linear functionals on C. Every pair
k :¼ ð�b; aÞ 2 C has an associated functional Fk : C! R such that, for all X ¼ ðq; pÞ 2 C; FkðXÞ :¼
xðk;XÞ ¼ aqþ bp. In order to quantize the system, we introduce the abstract Weyl C�-algebra of quan-
tum observables on C;WðCÞ, generated by the unitary Weyl operators WðkÞ ¼ expðiFkÞ; k 2 C,
satisfying
Wðk1Þ� ¼Wð�k1Þ ; Wðk1ÞWðk2Þ ¼ exp ixðk1; k2Þ=2ð ÞWðk1 þ k2Þ ; 8k1; k2 2 C : ð15Þ
According to von Neumann’s uniqueness theorem [31,32], all regular irreducible representations
p : WðCÞ ! BðHÞ of the Weyl C�-algebra into separable Hilbert spaces ðH; h� j �iÞ are unitarily equiva-
lent. Here, BðHÞ denotes the collection of bounded linear operators on H. A �-homomorphism
p : WðCÞ ! BðHÞ is said to be a regular irreducible representation if it has {0} and H as the only closed
p-invariant subspaces, and pðWð0; aÞÞ and pðWð�b;0ÞÞ are strongly continuous in the a and b param-
eters, respectively. A well-known solution is given by the Schrödinger representation
ps : WðCÞ ! BðL2ðR;dqÞÞ into the Hilbert space L2ðR;dqÞ where, for all pure states w 2 L2ðR;dqÞ,
ðpsðWðkÞÞ � wÞðqÞ :¼ exp �iab=2ð Þ expðiaqÞwðqþ bÞ ; k ¼ ð�b; aÞ 2 C :
Thanks to the regularity condition, the usual Heisenberg algebra can be recovered in a definite
sense from the Weyl C�-algebra. The strong continuity of psðWð0; aÞÞ and psðWð�b;0ÞÞ in the real vari-
ables a and b ensures, by virtue of Stone’s theorem, the existence of (unbounded) self-adjoint gener-
ators Q and P with dense domains in L2ðR;dqÞ. In particular, the Schwartz space SðRÞ of smooth rapidly
decreasing functions in R is a common invariant dense domain of essential self-adjointness for Q and
P, where the usual Heisenberg algebra is satisfied. For all w 2 SðRÞ, we have ðQwÞðqÞ ¼ qwðqÞ and
ðPwÞðqÞ ¼ �iw0ðqÞ, where w0 denotes the derivative of w.

Another possibility is to represent the canonical commutation relations (CCR) in the space
L2ðR;dlaÞ where, given some a 2 C n f0g;la denotes the Gaussian probability measure
dla ¼
1ffiffiffiffiffiffiffi

2p
p

jaj
exp � q2

2jaj2

!
dq :
To each a there corresponds a family of unitary transformations VaðbÞ : L2ðR;dqÞ ! L2ðR;dlaÞ con-
necting the standard Hilbert space with the new one in the form
WðqÞ ¼ VaðbÞwð ÞðqÞ ¼
ffiffiffiffiffiffiffi
2p
p

jaj
� �1=2

exp �i�bq2=ð2�aÞ
� �

wðqÞ ; ð16Þ
where the complex numbers b must satisfy a�b� b�a ¼ i. Note that the unitary transformations VaðbÞ
map the ‘vacuum’ state
w0ðqÞ ¼
ffiffiffiffiffiffiffi
2p
p

jaj
� ��1=2

exp i�bq2=ð2�aÞ
� �

2 L2ðR;dqÞ
into the unit function W0ðqÞ ¼ ðVaðbÞw0ÞðqÞ ¼ 1 2 L2ðR;dlaÞ. In these cases, the position and momen-
tum operators act on state vectors as
ðQWÞðqÞ ¼ qWðqÞ and ðPWÞðqÞ ¼ �iW0ðqÞ þ
�b
�a

qWðqÞ ;
where, with the aim of simplifying the notation, Q and P respectively denote the Schrödinger trans-
formed operators VaðbÞQVaðbÞ�1 and VaðbÞPVaðbÞ�1 with common dense domain VaðbÞSðRÞ
� L2

R;dla

� �
.
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Any regular irreducible representation p : WðCÞ ! BðHÞ is stable under time evolution, i.e., there
exists a (biparametric) family of unitary operators Uðt; t0Þ : H! H, the so-called quantum time evo-
lution operator, such that
U�1ðt; t0ÞpðWðkÞÞUðt; t0Þ ¼ pðWðT ðt;t0ÞkÞÞ ; 8WðkÞ 2WðCÞ ; 8ðt; t0Þ 2 I � I ; ð17Þ
with T ðt;t0Þ defined in Eq. (14). These relations determine Uðt; t0Þ univocally up to phase. It is important
to notice at this point that, if there exist singularities for the classical evolution at the boundary of the
interval I, they also occur for the quantum dynamics, i.e., there is no resolution of classical singular-
ities. On the other hand, we will check in Section 5 that the unitary implementability of symplectic
transformations like those corresponding to the classical time evolution is not directly guaranteed
for infinite-dimensional systems. The Heisenberg equations for Q and P can be solved just by the same
expressions involved in the classical solutions (14), i.e.,
Q Hðt; t0Þ
PHðt; t0Þ

� �
:¼ U�1ðt; t0Þ

Q

P

� �
Uðt; t0Þ ¼

cðt; t0Þ sðt; t0Þ
_cðt; t0Þ _sðt; t0Þ

� �
Q

P

� �
: ð18Þ
With more generality, given any well-behaved (analytic) classical observable F : C! R for the
TDHO, the time evolution of its quantum counterpart FHðt; t0Þ :¼ U�1ðt; t0ÞFðQ ; PÞUðt; t0Þ in the Heisen-
berg picture is simply given by
FHðt; t0Þ ¼ FðQ Hðt; t0Þ; PHðt; t0ÞÞ ¼ F cðt; t0ÞQ þ sðt; t0ÞP; _cðt; t0ÞQ þ _sðt; t0ÞPð Þ : ð19Þ
Hence, the matrix elements hW2 jU�1ðt2; t1ÞFðQ ; PÞUðt2; t1ÞW1i, W1;W2 2 H, can be computed with-
out the explicit knowledge of the unitary evolution operator. This is also the case for the probability
transitions ProbðW2; t2 jW1; t1Þ ¼ jhW2 jUðt2; t1ÞW1ij2, as will be discussed in detail in Section 3.4. The
commutators of time-evolved observables can be also calculated without the concrete expression of
Uðt2; t1Þ. For instance, from Eq. (19) we easily obtain
QHðt1; t0Þ;Q Hðt2; t0Þ½ � ¼ isðt1; t2Þ1 ;
where we have used the relation (7) stated in Section 2. As expected, the commutator given above is
proportional to the identity operator and independent of the choice of the initial time t0. Note, in con-
trast with the transition probabilities, that the calculation of transition amplitudes of the type
hW2 jUðt2; t1ÞW1i does require the explicit knowledge of (the phase of) the evolution operator. This
is also the case for the (strong) derivatives of both Uð�; t0Þ and Uðt; �Þ.

The dynamics of the quantum TDHO is governed by an (unbounded) nonautonomous Hamiltonian
operator HðtÞ : H! H; t 2 I, satisfying
_Uðt; t0Þ ¼ �iHðtÞUðt; t0Þ : ð20Þ
Given the quadratic nature of the classical Hamiltonian (13), HðtÞ must coincide with the operator
directly promoted from the classical function modulo a t-dependent real term proportional to the
identity 1 encoding the election of Uðt; t0Þ satisfying Eq. (17). For a concrete representation of the
CCR, we will simply take
HðtÞ :¼ 1
2

P2 þ jðtÞQ 2
� �

: ð21Þ
This choice fixes Uðt; t0Þ uniquely. The Hamiltonian (21) is a self-adjoint operator with dense do-
main DHðtÞ—equal to C10 ðRÞ in the standard Schrödinger representation—for each value of the time
parameter t. We will prove the following theorem in the next subsections.

Theorem 2. The action of the unitary TDHO evolution operator Uðt; t0Þ corresponding to the Hamiltonian
(21) on any state vector w 2 SðRÞ � L2ðR;dqÞ in the traditional Schrödinger representation is given by
Uðt; t0Þwð ÞðqÞ ¼
Z

R

Kðq; t; q0; t0Þwðq0Þdq0 ;
where the propagator Kðq; t; q0; t0Þ depends on times t0 and t through the classical TDHO solutions c and s.
Explicitly,
6



Kðq; t; q0; t0Þ ¼
1ffiffiffiffiffiffiffiffi
2pi
p s�1=2ðt; t0Þ exp

i
2sðt; t0Þ

cðt0; tÞq2 þ cðt; t0Þq2
0 � 2qq0

� �� �
; ð22Þ
wherever sðt; t0Þ–0, and
Kðq; t; q0; t0Þ ¼ c�1=2ðt; t0Þ exp i
_cðt; t0Þ

2cðt; t0Þ

� �
dðq0 � q=cðt; t0ÞÞ ð23Þ
if sðt; t0Þ ¼ 0.

Remark 2. Given a solution uðtÞ to the TDHO Eq. (1) which is positive in some interval
ðt0; t0 þ eÞ � I; e > 0, we define
u�ðt; t0Þ :¼ exp i�pmðu; t; t0Þð ÞjuðtÞj� ; � 2 R ; t 2 I ;
where mðu; t; t0Þ 2 Z is the index function of u, with mðu; t0; t0Þ ¼ 0, defined in such a way that
mðu; t2; t0Þ �mðu; t1; t0Þ; t1 < t2, gives the number of zeros of uð�; t0Þ in the interval ðt1; t2�. Finally,
dðqÞ denotes the Dirac delta distribution.

Remark 3. Let # : I! R be a real-valued continuous function and consider the Hamiltonian
H1ðtÞ :¼ HðtÞ þ #ðtÞ1
defined in terms of (21). The unitary evolution U1ðt; t0Þ associated with H1ðtÞ satisfying Eq. (17) gives
rise to the propagator
K1ðq; t; q0; t0Þ ¼ Kðq; t : q0; t0Þ exp �i
Z t

t0

#ðsÞds
� �

: ð24Þ
Note that U�1
1 ðt; t0ÞOU1ðt; t0Þ ¼ U�1ðt; t0ÞOUðt; t0Þ for any quantum observable O.

Remark 4. In the L2ðR;dlaÞ-representation defined by the unitary transformation VaðbÞ (see Eq. (16)),
the evolution is given by
Uðt; t0ÞWð ÞðqÞ ¼
Z

R

Kabðq; t; q0; t0ÞWðq0Þdlaðq0Þ ;
where
Kabðq; t; q0; t0Þ :¼
ffiffiffiffiffiffiffi
2p
p

jaj exp
ib
2a

q2
0 �

i�b
2�a

q2
� �

Kðq; t; q0; t0Þ : ð25Þ
3.2. Constructing the evolution operator

In order to calculate the unitary evolution operator Uðt; t0Þ we will perform a generalization of the
method developed in [21] that will clarify the appearance of the auxiliary Ermakov–Pinney solution
(10) in this context, and will allow us also to warn the reader about other problematic choices that
have appeared before in the related literature. We first introduce on H the (one-parameter family
of) unitary operators
DðxÞ :¼ exp � i
2

xQ2
� �

; x 2 R ;
generating a displacement of the momentum operator, DðxÞPD�1ðxÞ ¼ P þ xQ (the position operator
being unaffected by them), and define the unitary squeeze operators
SðyÞ :¼ exp
i
2

y QP þ PQð Þ
� �

; y 2 R ;
7



scaling both the position and momentum operator as SðyÞQS�1ðyÞ ¼ eyQ and SðyÞPS�1ðyÞ ¼ e�yP,
respectively. Let WðtÞ 2 DHðtÞ; t 2 I, be a solution to the Schrödinger equation, i.e., i _WðtÞ ¼ HðtÞWðtÞ,
and let x; y 2 C1ðIÞ. We now introduce the unitary operators
TðtÞ ¼ Tðt; x; yÞ :¼ SðyðtÞÞDðxðtÞÞ ;
where the functions x and y remain arbitrary at this stage. Let us consider the time evolution for the
transformed state vector
UðtÞ ¼ Uðt; x; yÞ :¼ Tðt; x; yÞWðtÞ ;
given by
i _UðtÞ ¼ TðtÞHðtÞT�1ðtÞ � iTðtÞ _TðtÞ
� �

UðtÞ

¼ 1
2

e�2yðtÞP2 þ ðxðtÞ � _yðtÞÞðQP þ PQÞ þ e2yðtÞðx2ðtÞ þ jðtÞ þ _xðtÞÞQ2
� �

UðtÞ :
We note at this point that it is possible to get a notable simplification of the previous expression just
by imposing
xðtÞ ¼ _yðtÞ and x2ðtÞ þ jðtÞ þ _xðtÞ ¼ expð�4yðtÞÞ : ð26Þ
The most natural way to achieve this is to choose
yðtÞ :¼ log qðtÞ and; hence; xðtÞ ¼ _qðtÞ=qðtÞ ;
with q being any solution to the auxiliary EP Eq. (9) introduced in Section 2. In this way, the state vec-
tor Uðt; _q=q; log qÞ ¼: UqðtÞ satisfies the differential equation
i _UqðtÞ ¼
1

2q2ðtÞ P2 þ Q 2
� �

UqðtÞ :
Solving this equation and going back to the original state vector WðtÞ, we finally obtain the unitary
evolution operator for the system. We can then enunciate the following theorem.

Theorem 3. The time evolution operator Uðt; t0Þ for the quantum TDHO whose dynamics is governed by
the Hamiltonian (21) is given by a composition of unitary operators
Uðt; t0Þ ¼ T�1
q ðtÞRqðt; t0ÞTqðt0Þ ;
where
Rqðt; t0Þ :¼ exp � i
2

Z t

t0

ds
q2ðsÞ P2 þ Q 2

� �� �
; ð27Þ
and TqðtÞ ¼ SqðtÞDqðtÞ, with
DqðtÞ :¼ exp � i
2

_qðtÞ
qðtÞQ

2
� �

and SqðtÞ :¼ exp
i
2

log qðtÞ QP þ PQð Þ
� �

: ð28Þ
Remark 5. Note that instead of introducing q, we could have used other choices for the x and y func-
tions. In these cases, conditions (26) may not hold and the expressions of the evolution operator would
differ from the one obtained here. For instance, one can select xðtÞ ¼ _uðtÞ=uðtÞ and yðtÞ ¼ log uðtÞ as in
[21], with uðtÞ being any solution to the TDHO equation, but this choice is problematic because the set
ft 2 I juðtÞ ¼ 0g must be non-empty and, hence, the resulting formula for the unitary operator is gen-
erally not well-defined for all values of the time parameter t. This is the reason why the election of the
Ermakov–Pinney solution is especially convenient in this context—recall that q is a positive definite
function. It follows from the above that the appearance of this solution is nearly unavoidable in this
context.

Note that the eigenstates of the Rqðt; t0Þ operator (27) are given by those of the Hamiltonian oper-
ator corresponding to a quantum harmonic oscillator with unit frequency

ffiffiffiffiffiffiffiffiffi
jðtÞ

p
¼ 1,
8



H0 :¼ 1
2

P2 þ Q 2
�

: ð29Þ
This fact will be shown to be particularly useful to calculate the Feynman propagator. It is also impor-
tant to point out that the procedure employed in this section is implicitly based upon the transforma-
tion of the so-called Lewis invariant [9]
IqðtÞ :¼ 1
2

Q 2

q2ðtÞ þ qðtÞP � _qðtÞQð Þ2
!
; _IqH

¼ 0 ; ð30Þ
into an explicitly time-independent quantity—although in order to obtain the unitary operator it has
not been necessary to use it. In this case, we simply have
TqðtÞIqðtÞT�1
q ðtÞ ¼ H0 : ð31Þ
The Lewis invariant is often used to generate exact solutions to the Schrödinger equation, and turns
out to be especially useful to construct semiclassical states for these systems, as will be discussed
later.

3.3. Propagator formula

We finally proceed to derive the Feynman propagator for the quantum TDHO corresponding to the
Hamiltonian (21). In the previous subsection, we have written down the evolution operator for this
system explicitly in closed form in terms of the position and momentum operators (see Theorem
3). It is given by the product of the unitary operators (27) and (28). We calculate now the action of
these factors on test functions w 2 SðRÞ � L2ðR;dqÞ in the standard Schrödinger representation. First,
it is straightforward to see that
TqðtÞw
� �

ðqÞ ¼
ffiffiffiffiffiffiffiffiffi
qðtÞ

p
exp � i

2
_qðtÞqðtÞq2

� �
wðqðtÞqÞ ¼

Z
R

Kþq ðq; t; q0Þwðq0Þdq0 ;

T�1
q ðtÞw

� �
ðqÞ ¼ 1ffiffiffiffiffiffiffiffiffi

qðtÞ
p exp

i
2

_qðtÞ
qðtÞ q

2
� �

wðq=qðtÞÞ ¼
Z

R

K�q ðq; t; q0Þwðq0Þdq0 ;
where we have introduced the distributions
Kþq ðq; t; q0Þ :¼
ffiffiffiffiffiffiffiffiffi
qðtÞ

p
exp � i

2
_qðtÞqðtÞq2

� �
dðq0 � qðtÞqÞ ; ð32Þ

K�q ðq; t; q0Þ :¼ 1ffiffiffiffiffiffiffiffiffi
qðtÞ

p exp
i
2

_qðtÞ
qðtÞ q

2
� �

dðq0 � q=qðtÞÞ : ð33Þ
The propagator for Rqðt; t0Þ, satisfying
Rqðt; t0Þw
� �

ðqÞ ¼
Z

R

K0
qðq; t; q0; t0Þwðq0Þdq0 ;
can be easily derived from the one corresponding to the TIHO with unit frequency. As is well known
[33,34], the Green function K0 for the Hamiltonian (29) is given by the Feynman–Soriau formulae
K0ðq; t; q0;0Þ ¼
1ffiffiffiffiffiffiffiffi
2pi
p sin�1=2ðt;0Þ exp

i
2 sin t

ðq2 þ q2
0Þ cos t� 2qq0

� �� �
; tX0 ðmodpÞ ;

K0ðq; t; q0;0Þ ¼ cos�1=2ðt; 0Þ exp � i sin t
2 cos t

� �
dðq0 � q= cos tÞ ; t � 0 ðmodpÞ ;
where the so-called Maslov correction factor [34], which allows the calculation of the propagator be-
yond the caustics ft 2 R : sinðtÞ ¼ 0g ¼ fpk : k 2 Zg, has been conveniently absorbed into the defini-
tion of sin1=2ðt;0Þ and cos1=2ðt;0Þ given in the formulation of Theorem 2. In view of Eq. (27), we simply
get
9



K0
qðq; t; q0; t0Þ ¼ K0 q;

Z t

t0

ds
q2ðsÞ ; q0;0

� �
: ð34Þ
Therefore,
Uðt; t0Þwð ÞðqÞ ¼ T�1
q ðtÞRqðt; t0ÞTqðt0Þw

� �
ðqÞ ¼

Z
R

Kðq; t; q0; t0Þwðq0Þdq0 ;
where
Kðq; t; q0; t0Þ ¼
Z

R2
K�q ðq; t; q2ÞK

0
qðq2; t; q1; t0ÞKþq ðq1; t0; q0Þdq1 dq2 : ð35Þ
By combining (32)–(35) with (11) and (12), we find the formula for the propagator (22) enunciated
in Theorem 2 expressed in terms of the c and s solutions to the classical TDHO equations (1). As ex-
pected, the propagator—and hence the evolution operator itself—does not depend on the particular
solution q to the EP Eq. (9) chosen to factorize Uðt; t0Þ. Taking the appropriate limits one obtains, after
straightforward calculations, the propagator evaluated at caustics (23). The resulting expressions are
in agreement with those obtained by other authors (see, for example, [22,23,34,35]), though in our
case they have been attained within a different scheme, based essentially on the previous obtention
of a closed expression for the evolution operator. Finally, a direct calculation shows that the propaga-
tor Kðq; t; q0; t0Þ, viewed as a function of ðq; tÞ, formally satisfies the evolution equation
iotK ¼ �
1
2

o2
qK þ 1

2
q2jðtÞK :
3.4. Transition amplitudes and vacuum instability

The exact expressions for the Green functions (22) and (23) can be used to exactly compute both
transition amplitudes and probabilities. Here, we will restrict ourselves to the class of normalized
states Ux

n defined in L2ðR;dqÞ as
Ux
n ðqÞ :¼ x1=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nn!
ffiffiffiffi
p
pp exp �xq2=2

� �
Hnð

ffiffiffiffiffi
x
p

qÞ ; x > 0 ; n 2 N0 ; ð36Þ
with HnðzÞ denoting the nth Hermite polynomial in the variable z. Note that for any fixed value x the
set ðUx

n : n 2 N0Þ defines the usual orthonormal basis of L2ðRÞ constituted by the eigenvectors of the
quantum Hamiltonian (21) corresponding to a TIHO of constant frequency

ffiffiffiffiffiffiffiffiffi
jðtÞ

p
¼ x. Since the Ux

n

states are complete, the corresponding transition amplitudes and probabilities for other states are
readily obtainable. By using the generating function for Hermite polynomials,
exp 2
ffiffiffiffiffi
x
p

qx� x2
� �

¼
X1
n¼0

Hnð
ffiffiffiffiffi
x
p

qÞ x
n

n!
;

it is clear that
Ux2
n2
jUðt2; t1ÞUx1

n1

D E
¼ 1

p
n1!n2!

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x1x2
p

2n1þn2þ1i

� �1=2

s�1=2ðt2; t1Þ ½xn1
1 xn2

2 � Iðx1; x2; Kðt1; t2; x1;x2ÞÞ ; ð37Þ
where ½xn1
1 xn2

2 � f ðx1; x2Þ denotes the complex coefficient appearing in the xn1
1 xn2

2 -term of the Taylor
expansion of function f. Here, for any matrix K 2Mat2�2ðCÞ, we define
Iðx1; x2; KÞ :¼ exp �ðx2
1 þ x2

2Þ
� � Z

R2
exp �1

2
~q tK~qþ 2~x t diag

ffiffiffiffiffiffiffi
x1
p

;
ffiffiffiffiffiffiffi
x2
p� �

~q
� �

d2~q

¼ 2pffiffiffiffiffiffiffiffiffiffiffiffi
det K
p exp ~x t 2diag

ffiffiffiffiffiffiffi
x1
p

;
ffiffiffiffiffiffiffi
x2
p� �

K�1diag
ffiffiffiffiffiffiffi
x1
p

;
ffiffiffiffiffiffiffi
x2
p� �

� I
� �

~x
� �

;

whenever ReðKÞP 0 and det K–0. In this formula,~x denotes the column vector with first and second
components given by x1 and x2, respectively; we define ~q similarly. In our case,
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Kðt1; t2;x1;x2Þ :¼
x1 � i

cðt2; t1Þ
sðt2; t1Þ

i
sðt2; t1Þ

i
sðt2; t1Þ

x2 � i
cðt1; t2Þ
sðt2; t1Þ

0
BBB@

1
CCCA;
with
det Kðt1; t2;x1;x2Þ ¼ x1x2 �
_cðt2; t1Þ
sðt2; t1Þ

� �
� i

x1cðt1; t2Þ þx2cðt2; t1Þ
sðt2; t1Þ

� �
:

Here, ReðKðt0; t;x1;x2ÞÞP 0 and det Kðt0; t;x1;x2Þ–0 for all ðt0; tÞ 2 I � I and x1;x2 2 ð0;þ1Þ.
The Taylor expansion of Iðx1; x2; KÞ can be efficiently computed by applying the following lemma, that
trivially follows from the multinomial formula.

Lemma 1. Let
B ¼ Bt ¼
b11 b12

b12 b22

� �
2Mat2�2ðCÞ :
Then, using the notation introduced above, we have
½xn1
1 xn2

2 � exp ~x tB~x
� �

¼ bðn1�n2Þ=2
11 ð2b12Þn2

X
m2Dðn1 ;n2Þ

ðb11b22Þmð4b2
12Þ
�m

m!ðmþ ðn1 � n2Þ=2Þ!ðn2 � 2mÞ! ;
whenever n1 and n2 have the same parity, and vanishes otherwise. Here, Dðn1;n2Þ :¼
m 2 N0 : maxf0; ðn2 � n1Þ=2g 6 m 6 bn2=2cð Þ, where bxc denotes the largest integer less than or equal

to x 2 R. In particular, taking n1 ¼ 0, we get
½x0
1xn2

2 � exp ~x tB~x
� �

¼ bn2=2
22

ðn2=2Þ! for n2 � 0 ðmod2Þ ; ð38Þ
and vanishes when n2 is an odd number.

Remarks. Note that the TDHO quantum dynamics is invariant under parity inversion P and the
states /x

n satisfy P/x
n ¼ ð�1Þn/x

n . Hence, h/x2
n2
jUðt2; t1Þ/x1

n1
i ¼ 0 if n1 and n2 have different parity.

As a concrete example, in the case of a TIHO with constant frequency x ¼ x1 ¼ x2, we identify
B ¼ 2diagð
ffiffiffiffiffi
x
p

;
ffiffiffiffiffi
x
p
ÞK�1ðt1; t2; x;xÞdiagð

ffiffiffiffiffi
x
p

;
ffiffiffiffiffi
x
p
Þ � I ¼ exp �ixðt2 � t1Þð Þ

0 1
1 0

� �

and, hence,
Iðx1; x2; Kðt1; t2;x;xÞÞ ¼
X1
n¼0

2n

n!
exp �ixnðt2 � t1Þð Þxn

1xn
2 :
This is in perfect agreement with
h/x
n2
jUðt2; t1Þ/x

n1
i ¼ exp �ixðn1 þ 1=2Þðt2 � t1Þð Þdðn1;n2Þ ;
where dðn1; n2Þ denotes the Kronecker delta. For arbitrary time-dependent frequencies the formula
(37), when restricted to the same initial and final frequencies x1 ¼ x2, coincides with the one given
in [36] written in terms of associated Legendre functions.

We conclude this section with the analysis of the instability of the vacuum state /x
0 due to the non-

autonomous nature of the Hamiltonian (21). This can be easily derived from the formulae (37) and
(38).

Theorem 4. The quantum time evolution of the vacuum state Ux
0 is generally given by a superposition of

states Uðt; t0ÞUx
0 ¼

P
n2N0
hUx

2n jUðt; t0ÞUx
0 iU

x
2n ; where the probability amplitudes hUx

2n jUðt; t0ÞUx
0 i are

given by ffiffiffiffiffiffiffiffiffiffiffip � �

hUx

2n jUðt; t0ÞUx
0 i ¼

ð2nÞ!
2nn!

2xðK�1ðt0; t; x;xÞÞ22 � 1
n
hUx

0 jUðt; t0ÞUx
0 i ; n 2 N ; ð39Þ
in terms of the the expectation value
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hUx
0 jUðt; t0ÞUx

0 i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x

det Kðt0; t;x;xÞ

s
expð�ip=4Þs�1=2ðt; t0Þ ;
with
ðK�1ðt0; t; x;xÞÞ22 ¼
xs2ðt2; t1Þ � isðt2; t1Þcðt2; t1Þ

1þx2s2ðt2; t1Þ � cðt2; t1Þcðt1; t2Þ � ixsðt2; t1Þ cðt2; t1Þ þ cðt1; t2Þð Þ :
Remarks. Consider the usual annihilation and creation operators
ax :¼ 1ffiffiffi
2
p

ffiffiffiffiffi
x
p

Q þ iP=
ffiffiffiffiffi
x
p� �

and a�x :¼ 1ffiffiffi
2
p

ffiffiffiffiffi
x
p

Q � iP=
ffiffiffiffiffi
x
p� �

; ð40Þ
with ½ax; a�x� ¼ 1 and ½ax; ax� ¼ 0 ¼ ½a�x; a�x�, such that a�xUx
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1
p

Ux
nþ1 and axUx

n ¼ffiffiffi
n
p

Ux
n�1;8n 2 N, with axUx

0 ¼ 0. The evolution of these operators in the Heisenberg picture can be ob-
tained directly from Eq. (18),
U�1ðt; t0Þax Uðt; t0Þ ¼ Axðt; t0Þax þ Bxðt; t0Þa�x ;
U�1ðt; t0Þa�x Uðt; t0Þ ¼ Bxðt; t0Þax þ Axðt; t0Þa�x ;

ð41Þ
where Axðt; t0Þ and Bxðt; t0Þ are the Bogoliubov coefficients
Axðt; t0Þ :¼1
2

cðt; t0Þ þ _sðt; t0Þ þ i x�1 _cðt; t0Þ �xsðt; t0Þ
� �� �

; ð42Þ

Bxðt; t0Þ :¼1
2

cðt; t0Þ � _sðt; t0Þ þ i x�1 _cðt; t0Þ þxsðt; t0Þ
� �� �

; ð43Þ
satisfying Axðt; t0Þ ¼ Axðt0; tÞ, Bxðt; t0Þ ¼ �Bxðt0; tÞ, and jAxðt; t0Þj2 � jBxðt; t0Þj2 ¼ 1 ;8ðt; t0Þ 2 I � I.
Note, in particular, that Axðt; t0Þ never vanishes. For example, for the TIHO of constant frequency
x > 0 we have Bxðt; t0Þ ¼ 0 and Axðt; t0Þ ¼ expð�iðt � t0ÞxÞ. A straightforward calculation yields
(see also [37] and [38])
Uðt; t0ÞUx
0 ¼ hU

x
0 jUðt; t0ÞUx

0 i exp �1
2

Bxðt0; tÞ
Axðt0; tÞ

a�2x

� �
Ux

0 ; ð44Þ
This formula is in perfect agreement with the transitions (39). Indeed, it is straightforward to check
that
2xðK�1ðt0; t;x;xÞÞ22 � 1 ¼ �Bxðt0; tÞ=Axðt0; tÞ :
Since det Kðt0; t;x;xÞ ¼ �2ixs�1ðt; t0ÞAxðt0; tÞ, the expectation value hUx
0 jUðt; t0ÞUx

0 i can be
rewritten as
hUx
0 jUðt; t0ÞUx

0 i ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jAxðt0; tÞj
p expðirðt; t0ÞÞ ; ð45Þ
where the phase rðt; t0Þ 2 C1ðI � IÞ comes from a careful calculation of the principal argument. For a
TIHO with constant frequency x > 0, we have rðt; t0Þ ¼ ðt0 � tÞx=2 for all t; t0 2 R. Given an arbitrary
squared frequency jðtÞ, the phase rðt; t0Þ evaluated at times t close to t0 is simply given by
rðt; t0Þ ¼ �
1
2

arctan
xsðt; t0Þ �x�1 _cðt; t0Þ

cðt; t0Þ þ _sðt; t0Þ

� �
: ð46Þ
The r phase can be conveniently canceled through a suitable redefinition of the Hamiltonian (21)
just in the case when _rðt; t0Þ is independent of t0. In that situation, by identifying #ðtÞ ¼ _rðt; t0Þ in Eq.
(24), we have that the redefined evolution operator satisfies hUx

0 jU1ðt; t0ÞUx
0 i ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jAxðt0; tÞj

p
. In the

TIHO case, we get #ðtÞ ¼ �x=2 (this amounts to considering normal order). In general, it is not possi-
ble to proceed in this way in all situations when dealing with arbitrary time-dependent frequencies. In
any case, the r phase is irrelevant for the calculation of transition probabilities. In particular, given
W1;W2 2 H with W1 ¼ F1ðax; a�xÞU

x
0 , where F1 is some analytic function, we have
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ProbðW2; t2 jW1; t1Þ ¼ jhW2 jUðt2; t1ÞW1ij2

¼
jhW2 jF1ðaxHðt1; t2Þ; a�xHðt1; t2ÞÞ exp �Bxðt1; t2Þ=ð2Axðt1; t2ÞÞa�2x

� �
Ux

0 ij
2

jAxðt1; t2Þj
;

where the time dependence only appears through the Bogoliubov coefficients (42) and (43). Finally, it
is important to point out that the transformations (41) and the evolution of the vacuum state (44) fully
characterize the quantum time evolution of the TDHO. By using these relations, we can easily compute
the action of Uðt; t0Þ on any basic vector Ux

n ¼ 1=
ffiffiffiffiffi
n!
p� �

a�nx Ux
0 .

4. Semiclassical states

In this section, we will look for states that behave semiclassically under the dynamics defined by
the quantum Hamiltonian (21). We will base our study on the concrete factorization of the evolution
operator defined in Theorem 3. To achieve this goal, note that the eigenvalue problem for the Lewis
invariant (30) can be exactly solved. Indeed, let us fix t0 2 I and let ðUn : n 2 N0Þ be the eigenstates
(36) of the auxiliary Hamiltonian H0 (29) corresponding to unit frequency x ¼ 1. According to relation
(31), the initial states wq

n ðt0Þ :¼ T�1
q ðt0ÞUn,
wq
n ðt0; qÞ ¼

1
2nn!

ffiffiffiffi
p
p

qðt0Þ

� �1=2

exp
i
2

_qðt0Þ
qðt0Þ

þ i
q2ðt0Þ

� �
q2

� �
Hnðq=qðt0ÞÞ 2 L2ðR;dqÞ ;
labeled both by q and the integers n 2 N0, are eigenstates of Iqðt0Þ with eigenvalues equal to nþ 1=2.
Consider now the initial pure state
UðzÞq ðt0Þ :¼ T�1
q ðt0ÞUðzÞ ¼ e�jzj

2=2
X1
n¼0

znffiffiffiffiffi
n!
p wq

n ðt0Þ ; z 2 C ; ð47Þ
with UðzÞ :¼ e�jzj
2=2P1

n¼0
znffiffiffi
n!
p Un being the well-known coherent states for the Hamiltonian H0. Let us take

the annihilation and creation operators a and a� for unit frequency x ¼ 1 defined in Eq. (40). The
superposition (47) is a normalized eigenvector of the (time-dependent) annihilation operator
aqðt0Þ :¼ T�1
q ðt0ÞaTqðt0Þ ¼

1ffiffiffi
2
p Q=qðt0Þ þ iðqðt0ÞP � _qðt0ÞQÞð Þ ; ð48Þ
in the sense that aqðt0ÞUðzÞq ðt0Þ ¼ zUðzÞq ðt0Þ. This operator, together with the associated creation operator
a�qðt0Þ :¼ T�1
q ðt0Þa� Tqðt0Þ ¼

1ffiffiffi
2
p Q=qðt0Þ � iðqðt0ÞP � _qðt0ÞQÞð Þ ;
satisfies the Heisenberg algebra, ½aqðt0Þ; a�qðt0Þ� ¼ 1 and ½aqðt0Þ; aqðt0Þ� ¼ 0 ¼ ½a�qðt0Þ; a�qðt0Þ�, for each ini-
tial value of the time parameter t0. In particular, the Lewis invariant (30) may be expressed in terms of
these operators as Iqðt0Þ ¼ a�qðt0Þaqðt0Þ þ ð1=2Þ1. Through unitary time evolution, we get
UðzÞq ðt; t0Þ :¼ Uðt; t0ÞUðzÞq ðt0Þ ¼ exp � i
2

Z t

t0

ds
q2ðsÞ

� �
Uðzqðt;t0ÞÞ

q ðtÞ ; ð49Þ
where we have denoted
zqðt; t0Þ :¼ exp �i
Z t

t0

ds
q2ðsÞ

� �
z ; z 2 C :
We want to remark that the time-dependent phase appearing in Eq. (49) is necessary for these
states to verify the Schrödinger equation. In our case, they coincide with those defined in Eq. (4.6)
of reference [39]. We conclude that the family of states (47) is closed under the dynamics. Moreover,
the following theorem can be used to justify that these states can be considered as semiclassical under
certain assumptions.
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Theorem 5. Let z ¼ xþ iy 2 C and t0 2 I. The position and momentum expectation values in the state
UðzÞq ðt; t0Þ ¼ Uðt; t0ÞUðzÞq ðt0Þ satisfy
1 All
qHðt; t0Þ ¼ UðzÞq ðt; t0Þ Q UðzÞq ðt; t0Þ
			 ED

¼
ffiffiffi
2
p

qðtÞRe zqðt; t0Þ
� �

;

pHðt; t0Þ ¼ UðzÞq ðt; t0Þ PUðzÞq ðt; t0Þ
			 ED

¼
ffiffiffi
2
p

Re _qðtÞ � i=qðtÞð Þzqðt; t0Þ
� �

;

where ðqH; pHÞ is the classical solution (14) determined by the Cauchy data ðq; pÞ ¼ffiffiffi
2
p

qðt0Þx;
ffiffiffi
2
p
ð _qðt0Þxþ y=qðt0ÞÞ

� �
at time t0. Moreover, the mean square deviations of the position and

momentum operators with respect to the evolved state UðzÞq ðt; t0Þ,
DUðzÞq ðt;t0Þ
Q ¼ 1ffiffiffi

2
p qðtÞ ; DUðzÞq ðt;t0Þ

P ¼ 1ffiffiffi
2
p j _qðtÞ � iq�1ðtÞj ; ð50Þ
are independent of both t0 and the Cauchy data defined by z.

Remark 6. Given any observable O, its uncertainty in the state W 2 DO is defined as

DWO :¼ hW jO2Wi � hW jOWi2
� �1=2

. Note that, in general, the elements of the family of states under

consideration are neither standard coherent states nor squeezed states. For instance, for the free par-

ticle (4) one can choose qðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðt � t0Þ2

q
and, hence, DUðzÞq ðt;t0Þ

Q 	 t=
ffiffiffi
2
p

for large values of t; similar

results occur for other elections of q. Nevertheless, it is obvious that we will obtain good semiclassical
states for a system whenever the solution q to the auxiliary EP Eq. (9) has a suitable behavior, for
instance, if q is periodic in time or is simply a bounded function. We will analyze some clarifying
examples in this respect.

Example 1. (Vertically driven pendulum). Consider the vertically driven pendulum [40], i.e., the
motion of a physical pendulum whose supporting point oscillates in the vertical direction. In the small
angles regime, it is described by the Mathieu equation in its canonical form [41]

€uðtÞ þ jðt; a; bÞuðtÞ ¼ 0 ; jðt; a; bÞ :¼ a� 2b cosð2tÞ ; a; b 2 R :
The general solution to this equation is a real linear combination of the so-called Mathieu cosine
and sine functions [42,43], denoted respectively as Ceðt; a; bÞ and Seðt; a; bÞ. Given a nonzero b value,
it is a well-known fact that the Mathieu cosine and sine functions are periodic in the time parameter
t only for certain (countable number of) values of the a parameter, called characteristic values. The pro-
cedure to calculate these characteristic values for even or odd Mathieu functions with characteristic
exponent1 r 2 Z and parameter b can be efficiently implemented in a computer. In this case, solutions
to the EP Eq. (9) inherit the periodic behavior from the Mathieu solutions, in such a way that one obtains
well-behaved semiclassical states for which the average position and momentum follow the classical tra-
jectories, whereas the corresponding uncertainties vary periodically in time. Note that, for small values
of the b parameter, we have Ceðt; a; bÞ 	 cos

ffiffiffi
a
p

t
� �

and Seðt; a; bÞ 	 sin
ffiffiffi
a
p

t
� �

, and the system closely
approximates the TIHO with squared frequency given by the a parameter.

Example 2. (T3 Gowdy-like oscillator). Consider the TDHO equation
€uðtÞ þ jðt;xÞuðtÞ ¼ 0 ; jðt; xÞ :¼ x2 þ 1
4t2 ; x 2 R ; t 2 ð0;þ1Þ :
This equation is satisfied for each mode of the scalar fields encoding the information about the
gravitational local degrees of freedom of the so-called T3 Gowdy models, which are symmetry reduc-
tions of general relativity with cosmological interpretation that admit an exact—i.e., nonperturbative—
quantization (see next section). In terms of the zero Bessel functions of first and second kind [43], de-
noted J0 and Y0 respectively, the c and s solutions introduced in Section 2 are given by
Mathieu functions have the form expðirtÞFðtÞ, where r is the characteristic exponent and function FðtÞ has period 2p.

14



Fig. 1

qðtÞ ¼
r

cðt; t0Þ ¼
p
4

ffiffiffiffi
t
t0

r
Y0ðxt0Þ � 2x

ffiffiffiffiffiffi
t0t
p

Y1ðxt0Þ
� �

J0ðxtÞ � p
4

ffiffiffiffi
t
t0

r
J0ðxt0Þ � 2x

ffiffiffiffiffiffi
t0t
p

J1ðxt0Þ
� �

Y0ðxtÞ;

sðt; t0Þ ¼ �
p
2

ffiffiffiffiffiffi
t0t
p

Y0ðxt0ÞJ0ðxtÞ þ p
2

ffiffiffiffiffiffi
t0t
p

J0ðxt0ÞY0ðxtÞ :

ð51Þ
Note that the squared frequency is a sum of a positive constant x2 plus a decreasing function of
time, so that the system approaches a time-independent oscillator as t tends to infinity. In Fig. 1,
we show states UðzÞq ðt; t0Þ that behave as coherent states for large values of the time parameter. The
classical equation of motion has a singularity at t ¼ 0 which translates into the vanishing of the uncer-
tainty of the position operator—and, hence, into the divergence of the variance for the conjugate
momentum—at that instant of time.

There are other interesting effects due to the classical singularity. Let us consider again the study of
transition amplitudes developed in Section 3.4 and take x1 ¼ x2 ¼ x. We proceed to analyze the
behavior of the (unique) state Wðt2; t1Þ that evolves to the vacuum state Ux

0 at time t2 when used
as Cauchy data in t1 < t2, i.e.,
Uðt2; t1ÞWðt2; t1Þ ¼ Ux
0 () Wðt2; t1Þ ¼ Uðt1; t2ÞUx

0 :
The transition amplitudes hUx
2n jWðt2; t1Þi ¼ hUx

2n jUðt1; t2ÞUx
0 i;n 2 N0, can be computed by using Eq.

(39). We recognize two regions of interest in the time domain,
T0þ :¼ fðt1; t2Þ j 0 < t1 
 x�1 
 t2g and Tþþ :¼ fðt1; t2Þ jx�1 
 t1 < t2g :
In Tþþ, the asymptotic behavior of the Bessel functions for large values of the time parameter [43]
leads the system to behave as a TIHO of constant frequency x, with Wðt2; t1Þ 	 Ux

0 . On the other hand,
in the region T0þ, the closeness of t1 to the classical singularity manifests itself in the form
Wðt2; t1Þ 	 0. Note that this behavior is in conflict with the unitary evolution of the system, which im-
plies kWðt2; t1Þk ¼ 1.

Example 3. (S1 � S2 and S3 Gowdy-like oscillators). Gowdy models admit spatial topologies different
from the 3-torus one, concretely the 3-handle S1 � S2 and the 3-sphere S3. As expected for closed
universes, these systems present both initial and final singularities. For this reason, they become
useful test beds to discuss the exact quantization of cyclic universes. Here, the modes satisfy equations
of motion of the form

2 1 2
€
uðtÞ þ jðt; xÞuðtÞ ¼ 0 ; jðt;xÞ :¼ x þ
4
ð1þ csc tÞ ; x 2 R ; t 2 ð0;pÞ :

this case, in terms of first and second class Legendre functions [43] denoted respectively as P
In x

and Qx; x 2 R, we have
0 1 2
0

0 1 2
0

, ,

. Variances of the position and momentum operators for the 3-torus Gowdy-type oscillator. Here,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pt J2

0ðxtÞ þ Y2
0ðxtÞ

� �
=2. The UðzÞq ðt; t0Þ are states of minimum uncertainty for times t far from the singularity at t ¼ 0.
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Fig. 2. Variances of the position and momentum operators for the 3-handle and 3-sphere Gowdy-type oscillators. Here, we take

the solution qðtÞ ¼
ffiffiffiffiffiffiffiffiffiffi
sin t
p

P2
ðx0�1Þ=2ðcos tÞ þQ2

ðx0�1Þ=2ðcos tÞ
� �1=2

to the auxiliar Ermakov–Pinney equation. In particular, these

graphics correspond to x0 ¼ 5.

2 The
T3, a 3-
sphere
been pr
cðt; t0Þ ¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin t= sin t0

q
Qðx0�1Þ=2ðcos tÞ ð1þx0ÞPð1þx0 Þ=2ðcos t0Þ �x0Pðx0�1Þ=2ðcos t0Þ

� �
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin t= sin t0

q
Pðx0�1Þ=2ðcos tÞ ð1þx0ÞQð1þx0Þ=2ðcos t0Þ �x0Qðx0�1Þ=2ðcos t0Þ

� �
;

sðt; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin t sin t0

p
Qðx0�1Þ=2ðcos t0ÞPðx0�1Þ=2ðcos tÞ � Pðx0�1Þ=2ðcos t0ÞQðx0�1Þ=2ðcos tÞ
� �

;

ð52Þ
where x0 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4x2
p

. In Fig. 2, we show the behavior of states UðzÞq ðt; t0Þ for which the uncertainties
of the position and momentum operators have an oscillatory behavior far enough from the singular-
ities occurring at t ¼ 0 and t ¼ p. Although q does not vary periodically, the function remains bounded
and, thus, the UðzÞq ðt; t0Þ states can be used to perform a semiclassical study of these models. Finally,
one may proceed as in the 3-torus case in order to analyze the way the classical singularities affect
the quantum behavior of the systems, obtaining similar results.

5. Extension to field theories

5.1. General framework

In this section, we will extend the previous study to linear dynamical systems with infinite degrees
of freedom, focusing our attention on the study of scalar fields evolving in fixed backgrounds such as
the Minkowskian space or the so-called (linearly polarized) Gowdy metrics [24], that correspond to
symmetry reductions of general relativity describing cosmological models with initial and final singu-
larities.2 Our results, however, will have a wide range of applicability, being possible to easily extend
them to other field theories with similar structure. The construction of the appropriate C�-algebra of
quantum observables can be obtained by making a simple comparison with the one-dimensional case
discussed in Section 3. Consider the canonical phase space ðC;xÞ consisting of the infinite-dimensional
R-vector space C of smooth Cauchy data endowed with the natural (weakly) symplectic structure x. Tak-
ing the linearity of C into account, each element k 2 C is identified with the functional Fk : C! R such
that, for any other k0 2 C, Fkðk0Þ :¼ xðk; k0Þ. The abstract quantum algebra of observables is then given by
the Weyl C�-algebra on C;WðCÞ, generated by the elements WðkÞ ¼ expðiFkÞ; k 2 C, that formally satisfy
the relations (15). The GNS construction [12] establishes that, given any state x0 : WðCÞ ! C on the alge-
bra—that is, a normalized positive linear functional—there exist a Hilbert space ðH0; h�j � iH0

Þ, a represen-
isometry group of the Gowdy models is Uð1Þ � Uð1Þ and the spatial slices are restricted to have the topology of a 3-torus
handle S1 � S2, a the 3-sphere S3, or the lens spaces Lðp; qÞ (that can be studied by imposing discrete symmetries on the 3-
case). The exact quantization of the linearly polarized Gowdy models in the vacuum or coupled to massless scalar fields has
ofusely analyzed (see [25] and [27] and references therein).
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tation p0 : WðCÞ ! BðH0Þ from the Weyl algebra to the collection of bounded linear operators on H0, and
a cyclic vector W0 2 H0 such that
x0ðAÞ ¼ hW0 jp0ðAÞW0iH0
; 8A 2WðCÞ :
Moreover, the triplet ðH0;p0;W0Þ satisfying these properties is unique up to unitary equivalence.
Von Neumann’s uniqueness theorem, however, cannot be generalized to field theories, and states
on the Weyl algebra generally yield nonequivalent cyclic representations. In order to pick out a pre-
ferred representation of the canonical commutation relations one can impose additional criterions,
such as the well-known Poincaré invariance of the Fock representation for scalar fields in Minkows-
kian space. Regarding the Gowdy models, one imposes the invariance under an extra Uð1Þ symmetry
generated by a residual global constraint for the 3-torus case [44], or the invariance under the sym-
metry group SOð3Þ of the Klein–Gordon equations of motion for the 3-handle and the 3-sphere cases
[27].

Every linear symplectic transformation T 2 SPðCÞ, for which xðT k1; T k2Þ ¼ xðk1; k2Þ; k1; k2 2 C, de-
fines a unique �-automorphism aT 2 AutðWðCÞÞ such that ðaT �WÞðkÞ :¼WðT kÞ. This is the case, in
particular, of the symplectic transformations that characterize the classical dynamics of the system.
Given a concrete Hilbert space representation ðH0;p0;W0Þ of the Weyl C�-algebra, the symplectic
transformation T 2 SPðCÞ is said to be unitarily implementable on the cyclic representation space H0

if p0 and p0 � aT are unitarily equivalent, i.e., there exists a unitary operator UT : H0 ! H0 such
that
U�1
T pðWðkÞÞUT ¼ pððaT �WÞðkÞÞ ; 8WðkÞ 2WðCÞ : ð53Þ
A common feature of the quantization of infinite-dimensional linear symplectic dynamical systems
is, precisely, the impossibility of defining the unitary quantum counterpart of all linear symplectic
transformations on the phase space [45]. This is the case of the time evolution of the Gowdy models
when these systems are written in terms of the dynamical variables that naturally appear after per-
forming their Hamiltonian formalisms. Note, however, that the lack of a unitary operator implement-
ing the quantum time evolution conflicts with the axiomatic structure of quantum theory itself. In
case of not rejecting the models for this reason, one must analyze carefully the viability of a suitable
probabilistic interpretation for them, as discussed in [46]. Nevertheless, it is possible to overcome this
problem by performing some suitable time-dependent redefinitions of the basic fields [25,27]. In what
follows, we will always refer to these rescaled fields.

5.2. Unitary quantum time evolution

The canonical phase space description of the classical systems under consideration consists now of
an infinite-dimensional nonautonomous Hamiltonian system ðI � C;dt;x;HðtÞÞ. Here, C :¼ C � C is the
space of Cauchy data, where C denotes the Fréchet space of rapidly decreasing real sequences
x :¼ ðx‘ : ‘ 2 XÞ, with ‘ running over some countable set X [47–49]. This space is endowed with the
natural symplectic structure
xððq1;p1Þ; ðq2;p2ÞÞ :¼
X
‘2X

p1‘q2‘ � p2‘q1‘ð Þ ; 8ðq1;p1Þ; ðq2;p2Þ 2 C :
The time-dependent Hamiltonian HðtÞ : C! R is a quadratic form on C that can be diagonalized as
a sum of TDHO Hamiltonians of the type (13). Explicitly,
Hðt;q;pÞ :¼ 1
2

X
‘2X

p2
‘ þ j‘ðtÞq2

‘

� �
; t 2 I ¼ ðt�; tþÞ# R ; ð54Þ
where the time-dependent squared frequencies j‘ðtÞ 2 C0ðIÞ; ‘ 2 X, must satisfy
jðtÞ ¼ ðj‘ðtÞ : ‘ 2 XÞ 2 C, for all t 2 I, with C denoting the vector space of slowly increasing real
sequences, i.e., the topological dual of C. The time evolution is implemented by symplectic trans-
formations of the type (14)
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q‘Hðt; t0Þ
p‘Hðt; t0Þ

� �
¼ T

ð‘Þ
ðt;t0Þ �

q‘
p‘

� �
; T

ð‘Þ
ðt;t0Þ :¼

c‘ðt; t0Þ s‘ðt; t0Þ
_c‘ðt; t0Þ _s‘ðt; t0Þ

� �
; ‘ 2 X ;
where, for each ‘ 2 X; c‘ and s‘ are the solutions to the TDHO equation of squared frequency j‘ðtÞ
introduced in Section 2.

For the Minkowskian quantum field theory generalized to a spacetime R� T3 with closed spatial
sections we have X ¼ Z n f0g and j‘ðtÞ ¼ j‘j2, for all t 2 R. For the 3-torus Gowdy models [25] we take
X ¼ Z n f0g and j‘ðtÞ ¼ j‘j2 þ 1=ð4t2Þ, with t 2 ð0;þ1Þ. For the remaining topologies admitted by the
Gowdy cosmologies, the 3-handle and the 3-sphere [27], X ¼ N and j‘ðtÞ ¼ ‘ð‘þ 1Þ þ ð1þ csc2tÞ=4,
with t 2 ð0;pÞ. For simplicity, we will not consider in these cases the quantization of the zero mode
‘ ¼ 0. It can be represented in terms of standard position and momentum operators with dense do-
mains in L2ðRÞ. The c‘ and s‘ functions for the Minkowskian and Gowdy 3-torus cases are respectively
given by (3) and (51) substituting x ¼ j‘j; for the 3-handle and 3-sphere topologies, they are given by
(52) identifying x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘þ 1Þ

p
. The classical singularities of the Gowdy models will persist in their

quantum formulations.
In order to exactly quantize the infinite-dimensional systems under consideration, we introduce

Schrödinger representations [50–53], where state vectors act as functionals W : C ! C belonging to
certain Hilbert spaces Ha ¼ L2ðC;rðCylðCÞÞ;dlaÞ, and define suitable decompositions of the position
and momentum operators in terms of modes. There are subtleties associated with the infinite-dimen-
sionality of the classical configuration space C that affect the definition of the Hilbert space. On one
hand, it is not possible to define nontrivial Lebesgue-type translation invariant measures la, but rather
probability ones [49,54]. On other hand, set over which the measure space is built—the so-called quan-
tum configuration space—must be given by some suitable distributional extension of C. In this case, it
suffices to consider the dual C. The reason to proceed in this way is that the measure is not supported
on C, i.e., the classical configuration space has zero measure with respect to la. Given a nonzero com-
plex sequence a ¼ ða‘ : ‘ 2 XÞ, the Gaussian measure la is defined on the cylinder sets r-algebra
rðCylðCÞÞ on C. This is the smallest r-algebra with respect to which the functionals
q 2 C#hq;xi :¼

P
‘2Xq‘x‘ are measurable for each x 2 C. Explicitly, for each finite n-tuple

ð‘1; . . . ; ‘nÞ 2 Xn, such that ‘i < ‘iþ1 (i ¼ 1; . . . ;n� 1), let us consider the projections p‘1 ���‘n
: C ! Rn;

q#p‘1 ���‘n
ðqÞ ¼ ðq‘1

; . . . ; q‘n
Þ. Then, la is defined by its action on cylinder sets belonging to r-algebras

of the form B‘1 ���‘n ðCÞ ¼ p�1
‘1 ���‘n
ðBðRnÞÞ � rðCylðCÞÞ, where BðRnÞ is the Borel r-algebra of subsets of Rn,

i.e.,
dla

		
B‘1 ���‘n

¼
Yn

i¼1

1ffiffiffiffiffiffiffi
2p
p

ja‘i j
exp �

q2
‘i

2ja‘i
j2

!
dq‘i

:

The sequence a defines a positive continuous nondegenerate bilinear form Ca : C � C ! R through
the formula Caðx; yÞ :¼

P
‘2Xja‘j

2x‘y‘ ;x; y 2 C. Ca is called the covariance operator in this context [48].
We consider now certain class of measurable functions that we will use in the following. Let X � C

be a finite dimensional subspace of the classical configuration space C. A cylinder function W, based on
X , is a function of the form
WðqÞ ¼ Fðhq; x1i; . . . ; hq;xniÞ
for a finite set x1; . . . ;xn 2 X , where F : Rn ! C is a smooth function. They are called cylinder because
they depend on q 2 C through the pairings hq;xii defined by a finite number of ‘‘probes” xi 2 C. The
Gaussian measure la can be used to endow the linear space spanned by this type of functions with
an inner product. Explicitly, in the particular case X ¼ spanfe‘1 ; . . . ; e‘ng, where ei 2 C denotes a se-
quence whose only nonzero component is the ith one, every cylinder function W on X can be written
in the form WðqÞ ¼ Fðq‘1

; . . . ; q‘n
Þ and the scalar product is given by
hW1 jW2i ¼
Z

Rn

�F1ðq‘1 ; . . . ; q‘n
ÞF2ðq‘1

; . . . ; q‘n Þ
Yn

i¼1

1ffiffiffiffiffiffiffi
2p
p

ja‘i
j

exp �
q2
‘i

2ja‘i j
2

 !
dq‘i :
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Square integrable cylinder functions on X span a C-vector space that we denote as CylX . The class
of all cylinder functions is denoted by Cyl :¼ [XCylX . The inner products defined on each CylX can be
extended to Cyl in the natural way and the Cauchy completion of Cyl with respect to this inner product
is the Hilbert space Ha (see [54] for more details).

The configuration observables will act as multiplication operators, whereas the canonically conju-
gate momenta will differ from the usual ones in terms of derivatives by the appearance of multiplica-
tive terms which are necessary to ensure their self-adjointness; specifically, for W 2 Cyl,
ðQ ‘WÞðqÞ ¼ q‘WðqÞ ; ðP‘WÞðqÞ ¼ �i
oW
oq‘
ðqÞ þ

�b‘
�a‘

q‘WðqÞ : ð55Þ
The complex sequences a and b must satisfy
a‘�b‘ � b‘�a‘ ¼ i ; 8 ‘ 2 X ; ð56Þ
by virtue of the CCR, ½Q ‘; P‘0 � ¼ idð‘; ‘0Þ1 and ½Q ‘;Q ‘0 � ¼ 0 ¼ ½P‘; P‘0 �. These conditions imply ja‘jjb‘jP 1=2
for all ‘ 2 X. The functional form of a and b for the Minkowskian case and Gowdy models will be dis-
cussed later in the context of the unitary implementability of their dynamics.

According to condition (53), if the quantum dynamics is unitarily implementable there exists a
(biparametric) family of unitary operators Uðt; t0Þ : Ha ! Ha, depending on ðt; t0Þ 2 I � I, such that
U�1ðt; t0ÞQ ‘ Uðt; t0Þ ¼ c‘ðt; t0ÞQ ‘ þ s‘ðt; t0ÞP‘ ; ð57Þ
U�1ðt; t0ÞP‘ Uðt; t0Þ ¼ _c‘ðt; t0ÞQ ‘ þ _s‘ðt; t0ÞP‘ : ð58Þ
The above relations characterize Uðt; t0Þ univocally up to phase. They can be rewritten in terms of
annihilation and creation operators a‘ and a�‘ , with ½a‘; a�‘0 � ¼ dð‘; ‘0Þ1 and ½a‘; a‘0 � ¼ 0 ¼ ½a�‘ ; a�‘0 �, such that
Q ‘ ¼ a‘a‘ þ �a‘a�‘ ; P‘ ¼ b‘a‘ þ �b‘a�‘ () a‘ ¼ �i�b‘Q ‘ þ i�a‘P‘ ; a�‘ ¼ ib‘Q ‘ � ia‘P‘ : ð59Þ
Relations (57) and (58) are then equivalent to
U�1ðt; t0Þa‘ Uðt; t0Þ ¼ A‘ðt; t0Þa‘ þ B‘ðt; t0Þa�‘ ;
U�1ðt; t0Þa�‘ Uðt; t0Þ ¼ B‘ðt; t0Þa‘ þ A‘ðt; t0Þa�‘ ;

ð60Þ
where the Bogoliubov coefficients A‘ðt; t0Þ and B‘ðt; t0Þ are given by
A‘ðt; t0Þ :¼i _s‘ðt; t0Þ�a‘b‘ � c‘ðt; t0Þ�b‘a‘ þ _c‘ðt; t0Þja‘j2 � s‘ðt; t0Þjb‘j
2

� �
; ð61Þ

B‘ðt; t0Þ :¼i _s‘ðt; t0Þ � c‘ðt; t0Þð Þ�a‘�b‘ þ _c‘ðt; t0Þ�a2
‘ � s‘ðt; t0Þ�b2

‘

� �
; ð62Þ
satisfying jA‘ðt; t0Þj2 � jB‘ðt; t0Þj2 ¼ 1, for all ‘ 2 X. In particular, A‘ðt; t0Þ–0 for all ðt; t0Þ 2 I � I. Accord-
ing to the theory of unitary implementation of symplectic transformations [45], the unitary time evo-
lution operator Uðt; t0Þ exists if and only if
Bðt; t0Þ ¼ ðB‘ðt; t0Þ : ‘ 2 XÞ 2 ‘2ðCÞ ()
X
‘2X
jB‘ðt; t0Þj2 < þ1 ; 8ðt; t0Þ 2 I � I : ð63Þ
For quantum free fields in Minkowskian spacetime the usual choice
a‘ ¼
1ffiffiffiffiffiffiffiffi
2j‘j

p and b‘ ¼ �i

ffiffiffiffiffi
j‘j
2

r
ð64Þ
implies Bðt; t0Þ ¼ 0 and, as is well known, the time evolution is unitarily implementable for inertial
observers. The uniqueness of this representation can be proved by using the same techniques employed
in the standard R� R3 Minkowskian spacetime under the condition of Poincaré invariance. Concerning
the Gowdy models, it is straightforward to show that the unitarity of the quantum time evolution is
guaranteed for a and b sequences with the asymptotic expansions (see [25–27] for more details)
a‘ ¼
1ffiffiffiffiffiffiffiffi
2j‘j

p expðic‘Þ þ O j‘j�3=2
� �

; b‘ ¼ �i

ffiffiffiffiffi
j‘j
2

r
expðic‘Þ þ O j‘j�1=2

� �
;
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where c is an arbitrary real-valued sequence. Moreover, all (Uð1Þ or SOð3Þ-invariant) representations
for which the dynamics is well-defined and unitary are unitarily equivalent. In what follows, we will
assume the use of the particular choice of a and b coincident with Eq. (64). As a counterexample to the
previous cases with unitary evolution, consider a system of infinitely many harmonic oscillators with
imaginary frequency of the type (5). In this case, it is possible to show the nonexistence of sequences a

and b satisfying (56) such that the dynamics is unitarily implemented. The ‘wrong sign’ of the squared
frequency is also responsable for the failure of the unitarity of the time evolution in more complicated
systems, such as minimally coupled massless scalar fields evolving in de Sitter spacetime [55].

Note that the annihilation operators are given by the derivatives
a‘ ¼ �a‘
o

oq‘
and, hence, the vacuum state W0 2 Ha satisfying a‘W0 ¼ 0 for all ‘ 2 X is given by the unit constant
functional W0ðqÞ ¼ 1 up to multiplicative phase. The states with finite number of particles, which
are obtained as the image of any polynomial in the creation operators acting on the vacuum state, de-
fine a common, invariant, dense domain of analytic vectors for the configuration and momentum
operators (55), so that their essential self-adjointness is guaranteed and, hence, the existence of un-
ique self-adjoint extensions (see Nelson’s analytic vector theorem in [56]).

From the Bogoliubov transformations (60), and proceeding as in the one-dimensional case (44), one
easily computes the evolution of the vacuum state,
Uðt; t0ÞW0 ¼ hW0 jUðt; t0ÞW0i exp �1
2

X
‘2X

B‘ðt0; tÞ
A‘ðt0; tÞ

a�2‘

!
W0 ; ð65Þ
with
jhW0 jUðt; t0ÞW0ij ¼
Y
‘2X

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jA‘ðt0; tÞj

p : ð66Þ
Due to the unitary implementability of the dynamics, the square summability of the sequence
ðB‘ðt0; tÞ=A‘ðt0; tÞ : ‘ 2 XÞ and the convergence of

P
‘2X log jA‘ðt0; tÞj are guaranteed and, hence, the ac-

tion of Uðt; t0Þ is well defined over states with finite number of particles. The phase of the expectation
value (66), though being irrelevant to answer most of the physical questions, can be explicitly calcu-
lated once a quantum Hamiltonian has been fixed. The Hamiltonian verifies Eq. (20) and coincides
with the operator directly promoted from the classical expression (54) modulo an arbitrary t-depen-
dent real term proportional to the identity which encodes the choice of Uðt; t0Þ, i.e.,
HðtÞ ¼ 1
2

X
‘2X

P2
‘ þ j‘ðtÞQ 2

‘ þ 2#‘ðtÞ1
� �

;

where the sequence #‘ðtÞ 2 C0ðIÞ; ‘ 2 X, is usually employed to avoid the appearance of infinite phases.
Analogously to the one-dimensional case, when the dynamics is unitarily implementable, we define
the time evolution propagator through the relation
Uðt; t0ÞWð ÞðqÞ ¼
Z
C

Kab q; t; q0; t0ð ÞWðq0Þdlaðq0Þ ;
where a straightforward calculation formally provides
Kab q; t; q0; t0ð Þ ¼
Y
‘2X

ffiffiffiffiffiffiffi
2p
p

ja‘j exp
i
2

b‘
a‘

q2
0‘ �

�b‘
�a‘

q2
‘

� �� �
K‘ q‘; t; q0‘; t0ð Þ exp �i

Z t

t0

ds#‘ðsÞ
� �

;

ð67Þ
with K‘ denoting the propagator (22) associated with the one-dimensional oscillator of squared fre-
quency j‘ðtÞ. The reader may wish to compare this expression with Eq. (25) corresponding to a single
oscillator. This formula coincides with the one obtained in [57] when restricted to generic finite
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dimensional and time-dependent linear Hamiltonian systems. For the sequences (64), Eq. (67) pro-
vides the expectation value
hW0 jUðt; t0ÞW0i ¼
Y
‘2X

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jA‘ðt0; tÞj

p exp i r‘ðt; t0Þ �
Z t

t0

ds#‘ðsÞ
� �� �

;

with
r‘ðt; t0Þ ¼ �
1
2

arctan
j‘js‘ðt; t0Þ � j‘j�1 _c‘ðt; t0Þ

c‘ðt; t0Þ þ _s‘ðt; t0Þ

!

for times t close to t0. For the Minkowskian free fields, as in the one-dimensional case, the phases
r‘ðt; t0Þ can be exactly canceled for all ‘ 2 Z n f0g just by defining a normal ordered quantum Hamil-
tonian, which amounts to choosing #‘ðtÞ ¼ �j‘j=2. In general, however, it is not possible to eliminate
them. For the Gowdy cosmologies, attending to the fact that the c‘ and s‘ functions tend to those cor-
responding to the Minkowskian case for large values of j‘j, it is easy to check that normal ordering al-
lows only the cancelation of the phases at high frequencies, with #‘ðtÞ 	 �j‘j=2 as j‘j ! þ1.

Since we are dealing with systems of infinite number of uncoupled oscillators, one would expect
that the analysis developed in Section 3 for a single oscillator would allow us to factorize the evolution
operator in the form
Uðt; t0Þ ¼ T�1
q ðtÞRqðt; t0ÞTqðt0Þ ; ð68Þ
where, given a sequence qðtÞ ¼ ðq‘ðtÞ : ‘ 2 XÞ of solutions to the auxiliary Ermakov–Pinney equations
€q‘ þ j‘ðtÞq‘ ¼ 1=q3

‘ , the TqðtÞ and Rqðt; t0Þ operators are univocally characterized up to phases by their
action on annihilation and creation operators,
T�1
q ðtÞa‘TqðtÞ¼i b‘�a‘q‘ðtÞ�

a‘�b‘
q‘ðtÞ

� ja‘j2 _q‘ðtÞ
� �

a‘þ i �a‘�b‘ q‘ðtÞ�
1

q‘ðtÞ

� �
� �a2

‘
_q‘ðtÞ

� �
a�‘ ;

R�1
q ðt;t0Þa‘Rqðt;t0Þ¼ cos

Z t

t0

ds
q2
‘ ðsÞ

� �
� iðja‘j2þjb‘j

2Þsin
Z t

t0

ds
q2
‘ ðsÞ

� �� �
a‘� ið�a2

‘ þ �b2
‘ Þsin

Z t

t0

ds
q2
‘ ðsÞ

� �
a�‘ ;
and similarly for a�‘ . Again, the resulting unitary evolution operator should be independent of the par-
ticular choice of q since, as we have shown above, the propagator does not depend on it. However,
even in the case of Uðt; t0Þ being well-defined as unitary operator, the factorization (68) may be ill-de-
fined. This is, in fact, the case for free fields evolving in Minkowskian and Gowdy-type spacetimes, as
we will prove below. Obviously, this does not prevent us from defining another well-defined factor-
izations for Uðt; t0Þ different from (68). A particularly convenient choice is the one made in [26] for
the 3-torus Gowdy model. Calculations developed there can be translated essentially unchanged into
the remaining Gowdy spatial topologies and the Minkowskian case (see the Appendix A). Here, how-
ever, we are interested in the original factorization due to its implications for the search of semiclas-
sical states. According to [45], the necessary and sufficient condition for TqðtÞ to be unitary for each
value of t is given by
X

‘2X
ja‘b‘ q‘ðtÞ � 1=q‘ðtÞð Þ � a2

‘
_q‘ðtÞj2 < þ1 ; 8 t 2 I : ð69Þ
Similarly, it is straightforward to show that Rqðt; t0Þ is unitarily implementable if and only if
X
‘2X

					ða2
‘ þ b2

‘ Þsin
Z t

t0

ds
q2
‘ ðsÞ

� �				
2

< þ1 ; 8ðt; t0Þ 2 I � I : ð70Þ
Eq. (64) for quantum free fields in Minkowskian and Gowdy-type spacetimes lead us to conclude
that conditions (69) and (70) are not satisfied and, hence, neither TqðtÞ nor Rqðt; t0Þ are unitary in those
systems. In the case of Rqðt; t0Þ, this conclusion follows readily, irrespective of qðtÞ. For TqðtÞ, a neces-
sary condition for (69) to be satisfied is given by
X

‘2X
jq‘ðtÞ � 1=q‘ðtÞj

2
< þ1 () lim

j‘j!þ1
q‘ðtÞ ¼ 1 ; 8 t 2 I ;
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where we have taken into account the fact that the real sequence ðq‘ðtÞ : ‘ 2 XÞ is positive and
bounded for all t. According to Eq. (12), this implies s‘ðt; t0Þ 	 sin Cðt; t0Þ as j‘j ! þ1, where Cðt; t0Þ
is a nonzero function which depends on the system and whose form we do not need to specify. This
is in conflict with the asymptotic behavior of s‘ðt; t0Þ for the systems under study, given by
s‘ðt; t0Þ 	 0 as j‘j ! þ1 for all ðt; t0Þ 2 I � I.

5.3. Semiclassical states

The explicit expression of the quantum unitary evolution for the single harmonic oscillator as a
product of unitary operators (see Theorem 3 in Section 3) turned out to be very useful to construct
semiclassical states for some relevant one-dimensional dynamical systems. In particular, as stated
in (31), the operator TqðtÞ transforms the Lewis invariant (30) into the time independent free Hamil-
tonian (29). However, as we have shown in Section 5.2, there are obstructions that arise when dealing
with systems of infinite oscillators—particularly, the possible nonunitarity of TqðtÞ—making the appli-
cation of the techniques developed in Section 4 particularly difficult. In order to avoid these difficul-
ties, we will probe an alternative procedure to construct semiclassical states that takes advantage of
the unitary implementability of the quantum time evolution. We start by constructing the analogs of
the minimal wave packets of the one-dimensional harmonic oscillator. Given a square summable se-
quence z ¼ ðz‘ : ‘ 2 XÞ 2 ‘2ðCÞ, consider the state
UðzÞ :¼ e�kzk
2=2 exp

X
‘2X

z‘a�‘

!
W0 2 Ha ; ð71Þ
where the vacuum state W0 corresponds in this context to z ¼ 0, and kzk ¼
P

‘2Xjz‘j
2. Vectors defined

in this way appear as coherent superpositions of states with arbitrary number of particles. We then
introduce the annihilation and creation operators in the Heisenberg picture corresponding to evolu-
tion backwards in time,
a‘ðt0; tÞ :¼Uðt; t0Þa‘ U�1ðt; t0Þ ¼ A‘ðt; t0Þa‘ � B‘ðt; t0Þa�‘ ;
a�‘ ðt0; tÞ :¼Uðt; t0Þa�‘ U�1ðt; t0Þ ¼ �B‘ðt; t0Þa‘ þ A‘ðt; t0Þa�‘ ;
satisfying the Heisenberg algebra for all ðt; t0Þ 2 I � I. Here, A‘ðt; t0Þ and B‘ðt; t0Þ are the Bogoliubov
coefficients defined in (61) and (62), respectively. We then evolve the states (71) in the Schrödinger
picture, obtaining
UðzÞðt; t0Þ :¼ Uðt; t0ÞUðzÞ ¼e�kzk
2=2Uðt0; tÞ exp

X
‘2X

z‘a�‘

!
W0

¼e�kzk
2=2 exp

X
‘2X

z‘a�‘ ðt0; tÞ
!

Uð0Þðt; t0Þ ;
with a‘ðt0; tÞUðzÞðt; t0Þ ¼ z‘U
ðzÞðt; t0Þ;8 ‘ 2 X, and Uð0Þðt; t0Þ ¼ Uðt; t0ÞW0. By definition, the one-

parameter family of states obtained in this way verifies the Schrödinger equation with initial condition
UðzÞ, and is closed under time evolution as well, Uðt2; t1ÞUðzÞðt1; t0Þ ¼ UðzÞðt2; t0Þ. The states UðzÞðt; t0Þ
satisfy the properties stated in the following theorem.

Theorem 6. Let z ¼ ðz‘ : ‘ 2 XÞ 2 ‘2ðCÞ and t0 2 I. The position and momentum expectation values in the
state UðzÞðt; t0Þ ¼ Uðt; t0ÞUðzÞ satisfy
qH‘ðt; t0Þ ¼ UðzÞðt; t0Þ Q ‘U
ðzÞðt; t0Þ

		 ED
¼ 2c‘ðt; t0ÞReða‘z‘Þ þ 2s‘ðt; t0ÞReðb‘z‘Þ ;

pH‘ðt; t0Þ ¼ UðzÞðt; t0Þ P‘U
ðzÞðt; t0Þ

		 ED
¼ 2 _c‘ðt; t0ÞReða‘z‘Þ þ 2_s‘ðt; t0ÞReðb‘z‘Þ ;
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where ðqH‘; pH‘Þ is the classical solution (14) determined by the Cauchy data ðq‘; p‘Þ ¼ 2Reða‘z‘Þ;ð
2Reðb‘z‘ÞÞ at time t0. Moreover, the mean square deviations of the position and momentum operators with
respect to the evolved state UðzÞðt; t0Þ satisfy
Fig. 3.
UðzÞðt; t
quantu
Fig. 2 fo
x ¼ j‘j
DUðzÞðt;t0ÞQ ‘ ¼ a‘A‘ðt; t0Þ þ �a‘B‘ðt; t0Þ
		 		 ; DUðzÞðt;t0ÞP‘ ¼ b‘A‘ðt; t0Þ þ �b‘B‘ðt; t0Þ

		 		 ;

irrespective of z.

Remark 7. Let us consider the Gowdy models. As a consequence of the unitary implementability of
the dynamics (63), we have Bðt; t0Þ 2 ‘2ðCÞ and, hence, jA‘ðt; t0Þj 	 1 as j‘j ! þ1. We then obtain
(see Fig. 3)
DUðzÞðt;t0ÞQ ‘ 	 ja‘j ¼
1ffiffiffiffiffiffiffiffi
2j‘j

p ; DUðzÞðt;t0ÞP‘ 	 jb‘j ¼
ffiffiffiffiffi
j‘j
2

r
when j‘j ! þ1 : ð72Þ
For fixed values of t0, these asymptotic behaviors converge uniformly in t for time intervals away
from the classical singularities. Note that these behaviors are the same that one would have
expected to obtain if it had been possible to suitably extend the study developed in Section 4
to field theories. We then conclude that the UðzÞðt; t0Þ vectors are coherent states far enough from
the singularities. For the 3-torus model, the sequence z 2 ‘2ðCÞ is subject to satisfy a global con-
straint remaining on the system, given by

P
‘2Znf0g‘jz‘j

2 ¼ 0. In the Minkowskian case, expressions
(72) are valid for all ‘ 2 Z n f0g.
6. Conclusions

In this paper, we have revised the unitary implementability of the quantum dynamics of a time-
dependent harmonic oscillator (TDHO) and used the theory of invariants in order to define suitable
semiclassical states for some relevant systems, such as the vertically driven pendulum or Gowdy-like
oscillators. In particular, we have analyzed some important issues related to the associated Ermakov–
Pinney equation, clarifying the need to introduce it as a natural way to obtain an evolution operator
valid for all values of the time parameter. We must emphasize again that other elections different from
the auxiliary Ermakov–Pinney equation may be problematic because of the singular behavior of the
resulting evolution operator. We have shown that the Feynman propagator, usually derived by making
use of more complicated path-integration techniques, can be obtained in a straightforward way within
this scheme. The resulting formula has then been applied to calculate transition amplitudes, the insta-
bility of the vacuum state, and semiclassical states. Most of the calculations regarding the quantum
Asymptotic behavior of the variances of the field and momentum operators Q ‘ and P‘ for the states
0Þ; t0 < t 2 ð0;pÞ, at high frequencies (limit ‘! þ1) for the 3-handle and 3-sphere Gowdy models. Note the purely
m behavior of these states as t approaches the classical singularities. These graphics can be considered as the limit of
r large frequencies. The asymptotic behavior for the 3-torus case is similar to the one represented in Fig. 1, identifying
for each mode.
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evolution can be performed just by taking the classical dynamics into account, except for the presence
of a phase that depends on the election of the quantum Hamiltonian. Nevertheless, this phase is irrel-
evant to answer all relevant physical questions such as the calculation of probability amplitudes or the
evolution of quantum observables. It is important to remark that this phase, in contrast with the sit-
uation for the well-known TIHO system, cannot be eliminated in all cases by considering normal or-
dered Hamiltonians.

Although we have concentrated our discussion on the quantum TDHO, our results can be easily ex-
tended to another interesting cases. For instance, our study is also applicable to the harmonic oscilla-
tor driven by an external, nonstationary, perturbative force characterized by a linear term in the
position operator,
HðtÞ ¼ 1
2

P2 þ jðtÞQ 2
� �

þ f ðtÞQ ; f 2 C1ðIÞ :
Indeed, this Hamiltonian can be transformed into the Hamiltonian (21) just by introducing an f-
dependent Glauber displacement operator [21,58].

Finally, we have extended the study of the unitary evolution of a single quantum harmonic oscil-
lator to systems of infinite number of uncoupled oscillators with time-dependent frequency, con-
cretely, to the quantum field theory in Minkowskian space and the Gowdy cosmological models,
providing a rigorous definition of the propagator. Here, the impossibility of unitarily implementing
some symplectic transformations turns out to be an obstacle to generalize the construction of semi-
classical states through the eigenstates of the Lewis invariant [9]. Nevertheless, we have shown that
the unitary implementability of the dynamics in appropriate Schrödinger representations allows us
to define suitable semiclassical states for these systems. In the case of the Gowdy cosmologies, they
can be used to probe the existence of large quantum gravity effects in several ways. For instance,
one may construct suitable regularized operators to represent the (three- or four-dimensional)
metric of these models by using arguments similar to those employed in the linearly polarized Ein-
stein–Rosen waves [59–61] and the Schmidt model [13]. Calculating the expectation values of these
operators in the coherent states, one may deduce the additional conditions (if any) that the se-
quences z 2 ‘2ðCÞ (see Theorem 6 in Section 5) should satisfy in order to admit an approximate
classical behavior. It is also important to analyze if the metric quantum fluctuations are relevant
for all states.

In addition, one may proceed as in [62] by appropriately promoting the quadratic invariant
ð4ÞRabcd

ð4ÞRabcd into a quantum mechanical operator. According to that reference, one should be able
to unambiguously fix the operator order by requiring that the expectation values of this quantity in
the coherent states exactly reproduce the classical results far from the singularities. In analogy with
the results of [62], even if the expectation values in other states (such as linear combinations of coher-
ent states) give nonclassical results, it is expected that the classical singularities persist in all cases.
This physical consideration is supported by the purely quantum behavior of the uncertainties of the
field and momentum operators in the coherent states at the classical spacetime singularities.

The most natural way to extend the analysis developed in this article consists in considering gen-
eric nonautonomous quadratic Hamiltonians which contain the time-dependent harmonic oscillators
as particular cases. These systems can be analyzed from the perspective of some recent works on this
subject (see [63–65]) in which Lie systems in quantum mechanics are studied from a geometrical
point of view, developing methods to obtain the time evolution operators associated with time-depen-
dent Schrödinger equations of Lie-type. These techniques may be successfully applied to infinite-
dimensional quadratic Hamiltonian systems by following a functional description similar to the one
performed in this article. In particular, the different resulting factorizations for the time evolution
operators may be especially useful to define alternative families of semiclassical states for these
systems.
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D. G. Vergel also wishes to thank Prof. J. Mourão for his hospitality at the Instituto Superior
Técnico (Lisbon), and acknowledges the support of the Spanish Research Council (CSIC) through
an I3P research assistantship. This work is also supported by the Spanish MICINN research grant
FIS2008-03221.
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Appendix A. Factorization of the evolution operator

In this appendix, we briefly summarize the construction of a well-defined factorization for the evolu-
tion operators of Minkowskian free fields and Gowdy cosmologies. The reader is referred to Section 5 to
revise the notation and definitions. A particularly useful way to proceed is to factorize Uðt; t0Þ as [26]
Uðt; t0Þ ¼ Dqðt; t0ÞRqðt; t0ÞSqðt; t0Þ ;

with
Dqðt; t0Þ :¼ D�1
q ðtÞDqðt0Þ ;

Sqðt; t0Þ :¼ D�1
q ðt0ÞS�1

q ðtÞTqðt0Þ ;
Rqðt; t0Þ :¼ T�1

q ðt0ÞRqðt; t0ÞTqðt0Þ ;
where DqðtÞ and SqðtÞ are displacement and squeeze operators of the type defined in Section 3.2, in
such a way that
D�1
q ðt;t0Þa‘Dqðt;t0Þ¼ 1þ ija‘j2

_q‘ðtÞ
q‘ðtÞ

�
_q‘ðt0Þ
q‘ðt0Þ

� �� �
a‘þ i�a2

‘

_q‘ðtÞ
q‘ðtÞ

�
_q‘ðt0Þ
q‘ðt0Þ

� �
a�‘ ; ð73Þ

S�1
q ðt;t0Þa‘Sqðt;t0Þ¼ i b‘�a‘

q‘ðt0Þ
q‘ðtÞ

�a‘�b‘
q‘ðtÞ
q‘ðt0Þ

þ ja‘j2
_q‘ðt0Þ
q‘ðt0Þ

q‘ðtÞ
q‘ðt0Þ

�q‘ðt0Þ
q‘ðtÞ

� �� �
a‘

þ i�a‘ �a‘
_q‘ðt0Þ
q‘ðt0Þ

� �b‘

� �
q‘ðtÞ
q‘ðt0Þ

�q‘ðt0Þ
q‘ðtÞ

� �
a�‘ ; ð74Þ

R�1
q ðt;t0Þa‘Rqðt;t0Þ¼ cos

Z t

t0

ds
q2
‘ ðsÞ

� �
þ i ða‘�b‘þb‘�a‘Þ _q‘ðt0Þq‘ðt0Þ� ja‘j2 _q2

‘ ðt0Þþ
1

q2
‘ ðt0Þ

� ���

�jb‘j
2q2

‘ ðt0Þ
�

sin
Z t

t0

ds
q2
‘ ðsÞ

� ��
a‘

þ i 2�a‘�b‘ _q‘ðt0Þq‘ðt0Þ� �b2
‘q

2
‘ ðt0Þ� �a2

‘
_q2
‘ ðt0Þþ

1
q2
‘ ðt0Þ

� �� �
sin

Z t

t0

ds
q2
‘ ðsÞ

� �
a�‘ ;

ð75Þ
and similarly for a�‘ . Here, the solutions q‘ to the EP equations are conveniently selected as follows. For
the Minkowskian free fields we choose q‘ðtÞ ¼ 1=

ffiffiffiffiffi
j‘j

p
; for the 3-torus Gowdy model, we take
q‘ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pt
2

J2
0ðj‘jtÞ þ Y2

0ðj‘jtÞ
� �r

; ð76Þ
whereas for the 3-handle and the 3-sphere Gowdy models we choose
q‘ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin t

2
pP2

‘ ðcos tÞ þ 4
p
Q2
‘ ðcos tÞ

� �s
: ð77Þ
Solutions (76) and (77) have the asymptotic expansions
q‘ðtÞ ¼ 1=
ffiffiffiffiffi
j‘j

p
þ O j‘j�3=2

� �
; _q‘ðtÞ ¼ CðtÞ=j‘j5=2 þ O j‘j�7=2

� �
;

as j‘j ! þ1. Here, CðtÞ is a function of time which depends on the spatial topology and whose form we
do not need to specify. It is then straightforward to check the unitary implementability of the trans-
formations (73)–(75) in the Hilbert space by following the arguments employed in Section 5.2.
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