
This is a postprint version of the following published document: 

Barbero G., J. F., Prieto, J. & S. Villaseñor, E. J. 
(2014): Hamiltonian treatment of linear field 
theories in the presence of boundaries: a 
geometric approach. Classical and Quantum 
Gravity, 31 (4), 045021.

DOI: 10.1088/0264-9381/31/4/045021

© IOP Publishing Ltd , 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/288497213?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://dx.doi.org/10.1088/0264-9381/31/4/045021


Hamiltonian treatment of linear field theories 
in the presence of boundaries: a geometric 

approach

J Fernando Barbero G1,2,4, Jorge Prieto3 and Eduardo J S Villaseñor2,3

1 Instituto de Estructura de la Materia, CSIC, Serrano 123, E-28006 Madrid, Spain
2 Grupo de Teorı́as de Campos y Fı́sica Estadı́stica, Instituto Universitario Gregorio
Millán Barbany, Universidad Carlos III de Madrid, Unidad Asociada al IEM-CSIC
3 Instituto Gregorio Millán, Grupo de Modelización y Simulación Numérica,
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Abstract

The

 

purpose

 

of

 

this

 

paper

 

is

 

to

 

study

 

in

 

detail

 

the

 

constraint

 

structure

 

of

 

the

 

Hamiltonian

 

description

 

for

 

the

 

scalar

 

and

 

electromagnetic

 

fields

 

in

 

the

 

presence

 

of

 

spatial

 

boundaries.

 

We

 

carefully

 

discuss

 

the

 

implementation

 

of

 

the

 

geometric

 

constraint

 

algorithm

 

of

 

Gotay,

 

Nester

 

and

 

Hinds

 

with

 

special

 

emphasis

 

on

 

the

 

relevant

 

functional

 

analytic

 

aspects

 

of

 

the

 

problem.

 

This

 

is

 

an

 

important

 

step

 

toward

 

the

 

rigorous

 

understanding

 

of

 

general

 

field

 

theories

 

in

 

the

 

presence

 

of

 

boundaries,

 

very

 

especially

 

when

 

these

 

fail

 

to

 

be

 

regular.

 

The

 

geometric

 

approach

 

employed

 

in

 

the

 

paper

 

is

 

also

 

useful

 

with

 

regard

 

to

 

the

 

interpretation

 

of

 

the

 

physical

 

degrees

 

of

 

freedom

 

and

 

the

 

nature

 

of

 

the

 

constraints

 

when

 

both

 

gauge

 

symmetries

 

and

 

boundaries

 

are

 

present.
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1. Introduction

The study of field theories defined on manifolds with boundaries is an important problem from
a physical point of view. Most real physical systems, in particular those used in experiments, are

4 Author to whom any correspondence should be addressed.
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contained in spatial regions the boundaries of which play an important role in the determination
of their physical configurations and in the way they interact with external agents.

In the case of general relativity boundaries are of particular interest. For example, the
study of the asymptotics of the gravitational field requires the introduction of a boundary at
infinity and the thorough consideration of the mathematical and physical properties of the
gravitational field induced upon it. Many properties of the spacetimes of general relativity are
characterized, precisely, as quantities computed on this type of asymptotic boundary [1]. Other
types of boundaries have also been used. For example the membrane paradigm of black hole
physics [2] introduces an inner spacetime boundary to model many properties of black holes
and their interaction with electromagnetic fields. In the context of loop quantum gravity a
special type of inner boundaries—the isolated horizons—[3, 4] have been used to model black
holes and study their quantization. The resulting picture has been very useful with regard to
the derivation of the Bekenstein–Hawking area law [3–7] and the study of black hole entropy.

The Hamiltonian description of gravitational theories (with or without matter) in the
presence of boundaries has received some attention in the past. We would like to mention, for
instance, the work by Nester and collaborators on Hamiltonian boundary terms, quasi-local
conserved quantities and boundary conditions for gravitational systems and electromagnetism
[8]. It is also worth mentioning the use of covariant Hamiltonian methods in the isolated
horizon framework in [6, 7]; an approach inspired in the ideas put forward by Wald and
collaborators (see, for instance, [9]) in the study of the definition of conserved quantities in
gravitational theories.

The standard Hamiltonian formulation of field theories with boundaries has also been
considered in the literature, in particular regarding the interpretation of boundary conditions
as constraints. This has an obvious importance for quantization as constraints must be
incorporated in one way or another. Numerous investigations about this problem have appeared
in the literature; see for example [4, 6, 10–17] and references therein. Some of these works,
in particular those devoted to study the integrability (existence and uniqueness problems) of
the Yang–Mills equations in bounded domains, take into consideration the relevant functional
analytic issues [16, 17]. However the details of the Hamiltonian formulation, in particular its
systematic derivation and the role of the constraints, are missing. These kind of questions, on
the other hand, have been addressed by other authors for simpler field theories [10, 11]. The
problem with these papers is that they consider these issues from a rather formal point of view
that avoids the discussion of important mathematical points. We feel that this precludes the
correct identification of the physical degrees of freedom and the geometric classification of
the constraints, in particular the role of boundary conditions. It is the purpose of this paper to
fill in these gaps.

We will consider two types of field theories in the presence of boundaries: free scalar
fields and electromagnetism (a gauge theory). Although scalars provide the simplest field
theories, their careful study is useful in order to highlight a number of non-trivial issues
associated with infinite dimensional systems. In particular, the fact that the symplectic form—
one of the main elements of the Hamiltonian formulation—is weakly non-degenerate, the
necessity to precisely describe the domains of the Hamiltonian vector fields that define the
dynamics (very specially, their closure in the appropriate topologies), and the interpretation
and classification of the constraint manifolds. These functional analytic details play a crucial
role in the geometric constraint algorithm for systems with an infinite number of degrees of
freedom [18]. The electromagnetic field requires extra care in its treatment because it has
a (degenerate) presymplectic form. It is hence useful in order to study issues related to the
presence of gauge symmetries. The fact that both models are linear, partially simplifies the
analysis that we carry out here, however, we feel that the correct understanding of these cases

2



is a necessary first step toward the consideration of more complicated models such as nonlinear
field theories in the presence of boundaries (Yang–Mills, general relativity, brane models,...).

The interplay between the presence of boundaries and gauge symmetries is an interesting
subject—that actually motivates part of the present work—because it seems natural to interpret
boundary conditions as constraints on the field configurations. Constraints in the Hamiltonian
formulation come in different guises that receive different treatments, in particular with regard
to quantization. Here the classification of constraints as second or first class plays an important
role. This classification originates in the celebrated Dirac algorithm [19]. Although this method
provides a convenient way to deal with mechanical systems with a finite number of degrees of
freedom it is much harder to use for field theories, in particular, if functional analytic issues
have to be taken into account. In the late sixties and seventies, these difficulties lead to an effort
to achieve a geometric (i.e. intrinsic, coordinate independent, and global) understanding of
Hamiltonian systems that culminated in the development of the Gotay–Nester–Hinds (GNH)
geometric constraint algorithm [18, 20, 21] that we will use in the present paper. This approach
has many advantages because it provides a very clear geometric point of view that makes it
possible to incorporate, in a natural way, analytic aspects that are important both for regular and
singular systems. In particular the relevant functional spaces can be identified in a systematic
way in each step of the algorithm. It also generalizes the Dirac algorithm in some respects, for
instance, its starting point is (M, ω, α) where (M, ω) is a presymplectic manifold and α is
one-form that defines the dynamics (usually, α is the exterior derivative of the Hamiltonian).
Hence, it can be used not only to deal with the standard Hamiltonian formulation, where
M is taken to be the primary constraint submanifold, but also leads to a purely symplectic-
Lagrangian approach that may be useful for some physical applications [18, 20, 21].

The structure of the paper is the following. After this introduction, section 2 is devoted to
the study of the scalar field subject to Dirichlet and Robin boundary conditions. In section 3
we study the electromagnetic fields in the presence of boundaries subject to several important
types of boundary conditions. We will carefully discuss here the constraint manifolds—where
the boundary conditions play a central role—and their classification as first or second class.
We end the paper in section 4 with the discussion of the main results and our conclusions. For
completeness we provide several appendices where relevant background material is explained
in some detail for the convenience of the reader. A review of the GNH algorithm is given in
appendix A. Appendix B introduces the functional spaces that are used throughout the paper
and fixes notation. Appendix C compiles the proofs of several results that are necessary for
the implementation of the GNH algorithm for the electromagnetic field. Finally, appendix D
discusses the abstract wave equation [22], which provides the framework for a wide class of
free field theories, in particular those studied in the present paper.

2. The scalar field in the presence of boundaries

This section is devoted to the detailed study of the free scalar field in a bounded space region.
By free we mean that the dynamics is given by the (linear) wave equation. The presence of
boundaries requires the careful consideration of the conditions that the fields must satisfy
on them in order to guarantee that their evolution is completely determined by initial data.
As mentioned in the introduction, one of the goals of this paper is to clarify the possible
interpretation of boundary conditions as constraints. To this end it is necessary to use the
appropriate mathematical tools. In the present case these issues can be satisfactorily addressed
within the framework provided by the differential geometry of infinite dimensional manifolds,
in particular those modeled on Banach and Hilbert spaces. The geometric interpretation of
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the constraint manifolds, and their classification according to the traditional first/second class
division, will require the discussion of a number of relatively subtle functional analytic issues
that are not relevant for finite dimensional mechanical systems and, for this reason, are usually
neglected in formal approaches to this subject.

In the following we will separately consider the variational and the Hamiltonian
descriptions of the dynamics of the systems that we study. Before doing so we establish
the basic set up for the problem. To this end let us consider R

n endowed with the Euclidean
metric5 ei j (and covariant derivative ∇i such that ∇ie jk = 0) and the corresponding volume
n-form that we denote as vol� . Let us take an open, connected, bounded region � ⊂ R

n with
a smooth boundary6 ∂�.

The scalar fields that we are interested in are real functions with domain �. The
configurations of the system that we want to study will be scalar fields i.e. real functions
subject to smoothness conditions that originate in the fact that they are required to be solutions
(classical or weak) to partial differential equations (PDE’s) involving both time and space
derivatives. We will consider Dirichlet and Robin boundary conditions (the Neumann boundary
conditions are contained in the latter).

Our starting point will be the Dirichlet Lagrangian7 LD : H1
f (�) × L2(�) → R, defined

by

LD(Q,V ) = 1
2 〈V,V 〉L2 − 1

2 〈�∇Q, �∇Q〉�L2 , (2.1)

and the Robin Lagrangian LR : H1(�) × L2(�) → R, given by

LR(Q,V ) = 1

2
〈V,V 〉L2 − 1

2
〈�∇Q, �∇Q〉�L2 +

∫
∂�

(
AQ|∂� + B

2
Q2|∂�

)
vol∂�, (2.2)

where

〈u1, u2〉L2 :=
∫

�

u1u2 vol�, 〈�u1, �u2〉�L2 :=
∫

�

�u1 · �u2 vol�.

The domains that we have chosen are the ‘largest’ natural ones with the appropriate
mathematical structure, in particular they are Hilbert manifolds such that the Lagrangians are
smooth functions on them. Here and in the following Hs(�) denotes the s-Sobolev–Hilbert
space on � and

H1
f (�) := {u ∈ H1(�) : u|∂� = f }

where u|∂� denotes the image of the trace operator γ acting on u (see appendix B). The trace
γ : H1(�) → L2(∂�) is a bounded operator that, restricted to continuous functions gives
their boundary values [24]. Notice that f must be an element of the image of γ and H1

f (�) is
also an affine Hilbert space (it is a closed affine subspace of a Hilbert space). We will take the
functions A, B ∈ C∞(∂�) and require B � 0 for technical reasons that will be clear later. If
A = B = 0 the LR reduces to the Neumann Lagrangian LN : H1(�) × L2(�) → R, hence we
will not discuss this case separately.

The preceding Lagrangians describe non-homogeneous boundary conditions. No
generality is lost in the analysis that we present here by restricting to the homogeneous
case, hence in the following we will take f = 0 for the Dirichlet case and A = 0 for the Robin
one.

5 The results of the paper can be easily generalized to curved spatial manifolds. We will refrain from doing so here
as this generalization does not change our conclusions regarding the treatment of boundary conditions.
6 We restrict ourselves to the C∞ case but most of our results can be extended, with minor modifications, to manifolds
with less regular boundaries, for example Lipschitz [23].
7 We are using the Minkowski metric with signature (+, −,−, −).
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We introduce the manifold domains that we use in the following (see appendix A). First,
as the L2(�) scalar product plays a central role in the definition of the Lagrangian, it is natural
to start by choosing Q = L2(�) as configuration space. However, the term 〈�∇Q, �∇Q〉�L2 in
the Lagrangian forces us to restrict ourselves to a manifold domain D of L2(�) where the
derivatives are well defined and belong to L2(�). This leads us to consider DD = H1

0 (�) and
DR = H1(�) for the Dirichlet and Robin cases, respectively. Hence, the velocity phase spaces
have the form TDDQ = H1

0 (�) × L2(�) and TDRQ = H1(�) × L2(�).

2.1. Dirichlet boundary conditions

We will study the dynamics of a free scalar field defined on a bounded domain � ⊂ R
n of the

type specified above subject to boundary conditions of the Dirichlet type:

�̈ − �� = 0 in (t1, t2) × � (2.3)

� = 0 in (t1, t2) × ∂� (2.4)

�(t1) = Q1, �(t2) = Q2. (2.5)

where Q1, Q2 ∈ H2(�) ∩ H1
0 (�).

2.1.1. Variational approach. The action is defined on the space of curves

CD(Q1, Q2, [t1, t2]) = {� ∈ C0([t1, t2], H2(�) ∩ H1
0 (�)) ∩ C1([t1, t2], H1

0 (�))

∩C2([t1, t2], L2(�)) : �(ti) = Qi, i = 1, 2}
with tangent spaces at � ∈ CD(Q1, Q2, [t1, t2]) of the type

T�CD(Q1, Q2, [t1, t2]) = CD(0, 0, [t1, t2]).

The tangent vectors δ ∈ T�CD are sometimes referred to as variations.
The action SD : CD(Q1, Q2, [t1, t2]) → R is given by

SD(�) =
∫ t2

t1

LD(�(t), �̇(t)) dt = 1

2

∫ t2

t1

dt
∫

�

(�̇2 − �∇� · �∇�) vol�.

In this domain the action SD is differentiable [25]. The differential of SD can be computed in
a straightforward way as

dSD(�) · δ = d

dλ

∣∣∣∣
λ=0

S(� + λδ) =
∫ t2

t1

dt
∫

�

(�̇ δ̇ − �∇� · �∇δ) vol�

=
∫

�

�̇(t2)δ(t2) vol� −
∫

�

�̇(t1)δ(t1) vol�

+
∫ t2

t1

dt
∫

�

(−�̈ + ��)δ vol� −
∫ t2

t1

dt
∫

∂�

(�n · �∇�δ)|∂� vol∂�, (2.6)

where �n · �∇� denotes the (outward) normal derivative of � at the boundary of �. In the space
of curves that we are considering we have

dSD(�) · δ =
∫ t2

t1

dt
∫

�

(−�̈ + ��)δ vol� = −
∫ t2

t1

〈�̈(t) − ��(t), δ(t)〉L2 dt,

where we have used δ(t)|∂� = 0 and δ(t1) = δ(t2) = 0. Hence, the condition dSD(�) · δ = 0
for all the vectors δ ∈ T�CD implies that

�̈ − �� = 0 in (t1, t2) × �.

Notice that the Dirichlet boundary conditions have been incorporated by choosing the
appropriate domain for the action, in this case CD. In fact, if we replace H1

0 (�) by H1(�)

in the definition of CD the critical points of the action would satisfy the wave equation with
Neumann conditions originating from the surface integrals appearing in (2.6).
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2.1.2. Hamiltonian approach. We will show that the Hamiltonian dynamics of the scalar field
with Dirichlet boundary conditions takes place in the second class (generalized) submanifold

ND = (H2(�) ∩ H1
0 (�)) × H1

0 (�)

of the weakly symplectic manifold (MD, ωD), where

MD = ND = H1
0 (�) × L2(�)

and ωD is the pullback to MD of the strong, canonical, symplectic form on L2(�) × L2(�).
The (uniquely defined) Hamiltonian vector field that gives the dynamics of the system is

XD : ND → TND = ND × MD : X (Q, P) = ((Q, P), (P,�DQ)).

Here �D : H2(�) ∩ H1
0 (�) → L2(�) denotes the scalar Dirichlet Laplacian.

In the following we will use the GNH algorithm described in appendix A. The first element
that we need is the fiber derivative. In the present case, and taking into account that the domain
of the Lagrangian is H1

0 (�)×L2(�), we have that FLD : H1
0 (�)×L2(�) → L2(�)×L2(�)∗

FLD(Q,V ) = (Q, 〈V, ·〉L2 ) ∈ L2(�) × L2(�)∗.

As L2(�)∗ is isomorphic, according to Riesz’s theorem, to L2(�) we consider FLD :
H1

0 (�) × L2(�) → L2(�) × L2(�) given by FLD(Q,V ) = (Q,V ), in other words FLD is
simply the inclusion of H1

0 (�)×L2(�) into L2(�)×L2(�). The primary constraint manifold
is M1 := H1

0 (�) × L2(�) understood as a generalized submanifold of L2(�) × L2(�) in the
sense that its topology is not the induced one but the natural one for H1

0 (�) × L2(�).
The space L2(�)× L2(�) carries a canonical, strongly non-degenerate, symplectic form8

given by

�(Q, P)((q1, p1), (q2, p2)) = 〈q1, p2〉L2 − 〈q2, p1〉L2

where Q, P, qi, pi ∈ L2(�). The pullback ω := FL∗
D� of � to M1, that we must use in the

GNH algorithm, is weakly symplectic

ω(Q, P)((q1, p1), (q2, p2)) = 〈q1, p2〉L2 − 〈q2, p1〉L2

with Q, qi ∈ H1
0 (�) and P, pi ∈ L2(�).

The Hamiltonian HD : M1 → R is

HD(Q, P) = 1
2 (〈P, P〉L2 + 〈�∇Q, �∇Q〉�L2 )

and its differential dHD : M1 → L(M1, R) is given by

dHD(Q, P)(q, p) = 〈P, p〉L2 + 〈�∇Q, �∇q〉�L2

for q ∈ H1
0 (�) and p ∈ L2(�).

Vector fields on M1 are maps

X : M1 → M1 × M1 : (Q, P) �→ ((Q, P), (XQ(Q, P), XP(Q, P))).

It is immediate to get

(iXω)(Q, P)(q, p) = 〈XQ, p〉L2 − 〈q, XP〉L2 .

We have to find now a submanifold M2 with smooth injective immersion M2
j2→ M1 such

that the equation

(iXω − dH)|j2(M2) = 0

8 This is so (see [26]) because L2(�) is a Hilbert space and, hence, is reflexive.
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can be solved. This is equivalent to considering (iXω − dH)|j2(M2 )(q, p) = 0 for all
(q, p) ∈ M1. This last condition is

〈P, p〉L2 + 〈�∇Q, �∇q〉�L2 = 〈XQ, p〉L2 − 〈q, XP〉L2 , ∀(q, p) ∈ H1
0 (�) × L2(�). (2.7)

This is a linear, non-homogeneous equation for (XQ, XP). At this point we have to find
out the conditions that (Q, P) ∈ H1

0 (�) × L2(�) must satisfy in order to guarantee that the
equation can be solved and then obtain its most general solution.

The best way to proceed is to start by considering q = 0, so that (2.7) becomes
〈P − XQ, p〉L2 = 0 for all p ∈ L2(�). We deduce two things from this last equation: the
first is that XQ is fixed to be XQ(Q, P) = P as a consequence of the Hahn–Banach theorem.
The second is that, as XQ is required to be an element of H1

0 (�), P itself must be restricted to
be in H1

0 (�).
By taking now p = 0 we are led to solve the equation 〈�∇Q, �∇q〉�L2 = −〈q, XP〉L2 for

all q ∈ H1
0 (�). As the right-hand side is the scalar product 〈q, XP〉L2 we need to find

out the conditions that Q ∈ H1
0 (�) must satisfy to guarantee that the left-hand side can

also be written as the L2(�) scalar product of an element of L2(�) and q (remember
that XP ∈ L2(�)). It is straightforward to see that the right condition is to require that
�∇Q ∈ �H(div, �) or, equivalently, Q ∈ H1(�,�) (see appendix B), so that in order to guarantee
the solvability of the equation we must take Q ∈ H1(�,�) ∩ H1

0 (�). This allows us to write
〈�∇Q, �∇q〉�L2 = −〈�Q, q〉�L2 and the equation that we must solve becomes 〈�Q − XP, q〉L2 = 0
for all q ∈ H1

0 (�). By using now that H1
0 (�) is dense in L2(�), extending the previous

condition by continuity to L2(�), and employing the Hahn–Banach theorem we conclude that
XP(Q, P) = �Q ∈ L2(�). It is important to mention at this point that in the case of manifolds
� with smooth boundary H1(�,�) ∩ H1

0 (�) = H2(�) ∩ H1
0 (�), hence, in the following, we

will take Q ∈ H2(�) ∩ H1
0 (�).

At this stage we have found that

M2 := (
H2(�) ∩ H1

0 (�)
) × H1

0 (�)

and a Hamiltonian vector field given by

(XQ, XP) : M2 → M1, (Q, P) �→ (P,�Q).

We have to obtain now M3 = {m ∈ M2 : X (m) ∈ TmM2}. To this end we need to compute

M2 = cl(j2M2) = clH1
0 ×L2

((
H2 ∩ H1

0

) × H1
0

) = clH1
0

(
H2 ∩ H1

0

)× clL2 H1
0 = H1

0 × L2 = M1.

It is obvious that clL2 H1
0 = L2 because the smooth functions with compact support C∞

0 (�)

are a subset of H1
0 (it is actually dense by the definition of H1

0 ) and C∞
0 (�) is dense in

L2(�). Likewise, as C∞
0 (�) ⊂ H2(�) ∩ H1

0 (�) and C∞
0 (�) is dense in H1

0 , we conclude
that clH1

0
(H2 ∩ H1

0 ) = H1
0 and, hence, M2 = H1

0 × L2. Now it is straightforward to see that
for every m ∈ M2 we have X (m) ∈ TmM2, that is, for (Q, P) ∈ (H2 ∩ H1

0 ) × H1
0 we have

(P,�Q) ∈ H1
0 × L2. We conclude, then, that M3 = M2 and the GNH algorithm stops giving

N := M2.
Several comments are in order now. The first one is about the condition of tangency of the

Hamiltonian vector field X (Q, P) = (P,�Q) to the closure of M2 in the GNH algorithm. It
is well known that, in the absence of boundaries, the GNH algorithm with the requirement of
strict tangency does not stop because, in each step, one is forced to introduce Sobolev spaces
of increasingly higher order of regularity [20]. In the presence of boundaries one finds, in
addition, a sequence of conditions on the boundary of the spatial manifold of the type

�kQ
∣∣
∂�

= 0,�kP
∣∣
∂�

= 0, k ∈ N ∪ {0}. (2.8)
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This means that the final description for the states (Q, P) would require the introduction of the
Fréchet manifold C∞(�) × C∞(�) (with the countable collection of semi-norms inherited
by its definition as the intersection

⋂∞
k=0 Hk(�)) and, in addition, an infinite set (2.8) of

subsidiary conditions at the boundary (this set of conditions is discussed in [27] for the case of
the wave and heat equation). It is possible to argue at this point that the previous infinite chain
of conditions is actually what one would find by using a geometrized version of the standard
Dirac algorithm.

The second comment is that the integral curves of the field X are solutions to the first
order equations

Q̇ = P

Ṗ = �Q

with initial data (Q0, P0) ∈ (H2(�)∩H1
0 (�))×H1

0 (�): Notice that, in the previous equation,
� = �D is just the Dirichlet Laplacian �D : H2(�)∩H1

0 (�) → L2(�). These equations lead
immediately to Q̈ − �Q = 0 and are equivalent to (2.3)–(2.5) (see appendix D where, in this
specific case, D(−�D) = H2(�) ∩ H1

0 (�) and D(
√−�D) = H1

0 (�)). Notice also that the
vector field X has been completely fixed by the GNH algorithm, i.e. there is no arbitrariness
in its determination, hence, in this case the boundary conditions do not imply the existence of
gauge symmetries in the system, as expected. From a geometric point of view it is important
to mention that the submanifold M2

j2→ M1 is second class because ker(�) = {0}. Finally, it
is possible to show (see [27] and equations (D.2), (D.3) of appendix D) that the vector field is
integrable and defines a C0-flux in M2, with the tangents to the integral curves belonging to
M2 = M1.

2.2. Robin boundary conditions

We study now the dynamics of a free scalar field defined on a bounded domain of � ⊂ R
n

subject to boundary conditions of the Robin type:

�̈ − �� = 0 in (t1, t2) × �

�n · �∇� = B� in (t1, t2) × ∂�

�(t1) = Q1, �(t2) = Q2.

with Q1, Q2 ∈ H2(�).

2.2.1. Variational approach. The action is defined on the space of curves

CR(Q1, Q2, [t1, t2]) = {� ∈ C0([t1, t2], H2(�)) ∩ C1([t1, t2], H1(�))

∩C2([t1, t2], L2(�)) : �(ti) = Qi, i = 1, 2}
with tangent spaces at � ∈ CR(Q1, Q2, [t1, t2]) given by

T�CR(Q1, Q2, [t1, t2]) = CR(0, 0, [t1, t2]).

The action SR : CR(Q1, Q2, [t1, t2]) → R is

SR(�) =
∫ t2

t1

LR(�(t), �̇(t)) dt

= 1

2

∫ t2

t1

dt
∫

�

(�̇2 − �∇� · �∇�) vol� + 1

2

∫ t2

t1

dt
∫

δ�

B�2|∂� vol∂�.

8



In this domain the action SR is differentiable. The differential of SR at such � acting on a
vector δ ∈ T�CR(Q1, Q2, [t1, t2]) can be computed in a straightforward way as

dSR(�) · δ =
∫ t2

t1

dt
∫

�

(�̇δ̇ − �∇� · �∇δ) vol� +
∫ t2

t1

dt
∫

δ�

B�δ|∂� vol∂�

=
∫ t2

t1

dt
∫

�

(−�̈ + ��)δ vol� +
∫ t2

t1

dt
∫

∂�

(B� − �n · �∇�)δ
∣∣
∂�

vol∂�

=
∫ t2

t1

〈−�̈(t) + ��(t), δ(t)〉L2(�) dt +
∫ t2

t1

〈B�(t) − �n · �∇�(t), δ(t)〉L2(∂�) dt,

where �n · �∇� denotes the (outward) normal derivative of � at the boundary of � and we have
used δ(t1) = δ(t2) = 0. Hence, the condition dS(�) · δ = 0 for all the vectors δ implies that

�̈ − �� = 0 in (t1, t2) × �, (2.9)

�n · �∇�(t)|∂� = B�(t)|∂�. (2.10)

The first condition (2.9) is obtained by considering variations δ(t) ∈ H1
0 (�) ⊂ H1(�). Once

this necessary condition is obtained the second set of equations (the boundary conditions 2.10)
come from variations with δ(t) ∈ H1(�) (that may not vanish at ∂�). Notice that the Robin
boundary conditions appear now as conditions on the critical points of the action (variational
equations) and are not incorporated in the functional space CR (as happened in the Dirichlet
case). It is also worth pointing out that the Neumann boundary conditions correspond to the
choice B = 0.

2.2.2. Hamiltonian approach. We will show now that the Hamiltonian dynamics of the scalar
field with Robin boundary conditions takes place in the second class (generalized) submanifold

NR = H2
∂ (�) × H1(�), H2

∂ (�) := {Q ∈ H2(�) : (BQ − �n · �∇Q)|∂� = 0},
of the weakly symplectic manifold (MR, ωR), where

MR = N R = H1(�) × L2(�)

and ωR is the pullback to MR of the strong, canonical, symplectic form on L2(�) × L2(�).
The Hamiltonian vector field

XR : NR → TN R = NR × MR : X (Q, P) = ((Q, P), (P,�RQ))

is defined in terms of the scalar Robin Laplacian �R : H2
∂ (�) → L2(�).

We study the Hamiltonian formulation by using the GNH algorithm. The fiber derivative
is now FLR : H1(�) × L2(�) → L2(�) × L2(�)∗

FLR(Q,V ) = (Q, 〈V, ·〉L2 ) ∈ L2(�) × L2(�)∗.

As we did before, we identify L2(�)∗ with L2(�) and consider FLR : H1(�) × L2(�) →
L2(�) × L2(�). By doing this FLR is the inclusion of H1(�) × L2(�) into L2(�) × L2(�).
The primary constraint manifold is M1 := H1(�) × L2(�) understood as a generalized
submanifold of L2(�) × L2(�).

The pullback of the canonical symplectic form of L2(�) × L2(�) to M1 is the weakly
symplectic form given by

ω(Q, P)((q1, p1), (q2, p2)) = 〈q1, p2〉L2 − 〈q2, p1〉L2 ,

with Q, qi ∈ H1(�) and P, pi ∈ L2(�). The Hamiltonian HR : M1 → R is

HR(Q, P) = 1
2 (〈P, P〉L2(�) + 〈�∇Q, �∇Q〉�L2(�) + 〈bQ, bQ〉L2(∂�))
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where we have made use of the fact that B � 0 to write −B = b2 with b � 0. It is important
to notice that this condition on B guarantees the non-negativity of the Hamiltonian. Also, as
we are considering B ∈ C∞(∂�) we also have b ∈ C0(∂�).

The differential dHR : M1 → L(M1, R) is given by

dHR(Q, P)(q, p) = 〈P, p〉L2(�) + 〈�∇Q, �∇q〉�L2(�) − 〈BQ, q〉L2(∂�)

for q ∈ H1(�) and p ∈ L2(�). As before, if we denote the vector fields on M1 by

X : M1 → M1 × M1 : (Q, P) �→ ((Q, P), (XQ(Q, P), XP(Q, P))),

it is immediate to get iXω

(iXω)(Q, P)(q, p) = 〈XQ, p〉L2 − 〈q, XP〉L2 .

We have to find now a submanifold M2 with smooth injective immersion j2 : M2 → M1

such that the equation

(iXω − dH)|j2(M2) = 0

can be solved. This is equivalent to considering (iXω − dH)|j2(M2 )(q, p) = 0 for all
(q, p) ∈ M1. This last condition is

〈P, p〉L2(�) + 〈�∇Q, �∇q〉�L2(�) − 〈BQ, q〉L2(∂�) = 〈XQ, p〉L2(�) − 〈q, XP〉L2(�),

for all (q, p) ∈ H1(�)×L2(�). This equation cannot be solved in general for arbitrary values
of (Q, P) ∈ H1(�) × L2(�). A direct reasoning, that parallels the one used in the case of the
Dirichlet boundary conditions, tells us that XQ = P with P ∈ H1(�). Furthermore we must
require Q ∈ H2(�) where, as before, we have made use of the regularity of the boundary ∂�

to trade the Sobolev space H1(�,�) for H2(�) (see chapter 5 of [28]). The condition that
remains to be solved is

〈−�Q, q〉L2(�) − 〈BQ − �n · �∇Q, q〉L2(∂�) = −〈q, XP〉L2(�) ∀q ∈ H1(�).

From this it is obvious that XP = �Q and also that (BQ − �n · �∇Q)|∂� = 0. Hence we have
that M2 := H2

∂ (�) × H1(�) where

H2
∂ (�) = {Q ∈ H2(�) : (BQ − �n · �∇Q)|∂� = 0}.

With the induced topology, H2
∂ (�) is a closed linear subspace of H2(�) and, hence, a Hilbert

space. At this stage we have found that

M2 = H2
∂ (�) × H1(�),

(XQ, XP) : M2 → M1 : (Q, P) �→ (P,�Q).

We have to obtain now M3 = {m ∈ M2 : X (m) ∈ TmM2} . To this end we need to
compute

M2 = cl(j2M2) = clH1×L2

(
H2

∂ × H1
) = clH1 (H2

∂ ) × clL2 H1 = H1 × L2 = M1.

It is obvious now that clL2 H1 = L2 because C∞
0 (�) ⊂ H1 and C∞

0 (�) is dense in L2(�).
The argument to prove that clH1 H2

∂ = H1 is slightly more subtle and goes as follows. Let
us consider the following scalar product in H1(�)

〈〈u, v〉〉H1(�) = 〈u, v〉L2(�) + 〈bu, bv〉L2(∂�) + 〈�∇u, �∇v〉�L2(�)

with associated norm denoted as |||v|||H1(�). It is straightforward to prove the equivalence of
the norms ||| · |||H1(�) and || · ||H1(�) because ‖v‖2

H1(�)
� |||v|||2H1(�)

, and

|||v|||2H1(�)
= ‖v‖2

H1(�)
+ ‖bv|∂�‖2

L2(∂�)
� ‖v‖2

H1(�)
+ (max

∂�
b)2‖v|∂�‖2

L2(∂�)

� ‖v‖2
H1(�)

+ (max
∂�

b)2‖γ ‖2‖v‖2
H1(�)

= (
1 + (max

∂�
b)2‖γ ‖2)‖v‖2

H1(�)
,
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as a consequence of the compactness of ∂� and the continuity of the trace operator. Now the
subspace H2

∂ (�) will be dense in H1(�) iff (H2
∂ (�))⊥ = {0} (with respect to the scalar product

〈〈·, ·〉〉H1(�)). In order to compute (H2
∂ (�))⊥ we take an orthonormal basis of eigenstates uk,

k ∈ N, of the Laplace operator with Robin boundary conditions and eigenvalues −λ2
k , and

make use of the known fact that for sufficiently regular ∂� these eigenfunctions are smooth,
i.e. uk ∈ C∞(�), ∀k ∈ N. The condition

0 = 〈〈uk, v〉〉H1(�) = 〈uk, v〉L2(�) + 〈buk, bv〉L2(∂�) + 〈�∇uk, �∇v〉�L2(�)

= (
1 + λ2

k

)〈uk, v〉L2(�) + 〈buk, bv〉L2(∂�) +
∫

∂�

v�n · �∇uk

= (
1 + λ2

k

)〈uk, v〉L2(�) + 〈buk, bv〉L2(∂�) −
∫

∂�

b2vuk

= (
1 + λ2

k

)〈uk, v〉L2(�),

for all k ∈ N implies v = 0 and we conclude that (H2
∂ (�))⊥ = {0} so that clH1 H2

∂ = H1. We
have then M3 = M2 , and the GNH algorithm stops giving N := M2.

As before, the integral curves of the Hamiltonian vector field X (Q, P) = (P,�RQ)

reproduce the evolution given by the wave equation with Robin boundary conditions.
In particular, the conditions discussed for the abstract wave equation (equations (D.2),
(D.3) in appendix D) are satisfied in this specific case where D(−�R) = H2

∂ (�) and
D(

√−�R) = H1(�). Finally, the submanifold M2
j2→ M1 is, again, a second class

submanifold of (M1, ω).
We would like to mention here that, if we require strict tangency in the GNH algorithm,

we get the following infinite chain of conditions on the boundary of the spatial manifold

(B�kQ − �n · �∇�kQ)
∣∣
∂�

= 0, (B�kP − �n · �∇�kP)
∣∣
∂�

= 0, k ∈ N ∪ {0}, (2.11)

and additional regularity conditions on the fields: Q, P ∈ ∞
k=1 Hk(�) = C∞(�).

3. The electromagnetic field in the presence of boundaries

We study now the electromagnetic field defined on a bounded region. The main difference
between this example and the case of the scalar field discussed in the preceding section is the
presence of a gauge symmetry. We will explore here how the boundary changes the constraint
analysis for the system. We will follow the same scheme used in the discussion of the scalar
field and consider different types of boundary conditions that are the natural generalizations
of the Dirichlet and Neumann ones (see [8] for other interesting choices). In particular the
Dirichlet case has a clear physical interpretation as it corresponds to the perfect conductor
boundary conditions. This is dealt with by a suitable choice of domain for the Lagrangian. The
Neumann boundary conditions, on the other hand, behave as those of the scalar Robin case in
the sense that the Hamiltonian GNH analysis provides additional conditions on the boundary
values of the fields. Of course we will find also the expected constraints associated with the
usual gauge symmetry of electromagnetism.

The electromagnetic field will be represented by a U (1) connection on the 4-manifold
[t1, t2] × �, we will restrict ourselves to connected manifolds � with boundary and, hence,
represent them as a one-form field A : [t1, t2]×� → 1([t1, t2]×�). For ease of comparison
we will use the metric to transform one-forms into vectors fields and use a 3-vector notation
in the following.

We will consider two types of Maxwell Lagrangians, LD : H1
∂ (�) × L2(�) → R and

LN : H1(�) × L2(�) → R given by

LD,N (Q,V ) = 1
2 〈�V , �V 〉�L2 + 〈�∇Q⊥, �V 〉�L2 + 1

2 〈�∇Q⊥, �∇Q⊥〉�L2 − 1
2 〈�∇ × �Q, �∇ × �Q〉�L2 .
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The preceding Lagrangians are defined in a fixed inertial frame of the Minkowski spacetime
and we are using the notation

L2(�) := L2
⊥(�) × �L2(�), H1(�) := H1

⊥(�) × �H(curl, �)

H1
∂ (�) := H1

0⊥(�) × �H0(curl, �).

The different functional spaces that we use in this section are described in appendix B.
As in the case of the scalar field, the configuration space is taken to be Q := L2(�). The

presence of derivatives in some terms of the Lagrangian forces us to consider the manifold
domains DD := H1

∂ (�) and DN := H1(�) and, hence, LD,N : TDD,NQ → R.

3.1. The perfect conductor boundary conditions

We will study here the dynamics of the electromagnetic field on a bounded domain � ⊂ R
3,

with a smooth boundary, subject to the perfect conductor boundary conditions. In terms of
A = (A⊥, �A), the Maxwell equations are

�̈A + �∇Ȧ⊥ − ��A + �∇(�∇ · �A) = �0 in (t1, t2) × �

�∇ · (�̇A + �∇A⊥) = 0 in (t1, t2) × �

�n × �A = �0 in (t1, t2) × ∂�

A⊥ = 0 in (t1, t2) × ∂�
�A(t1) = �Q1, A⊥(t1) = Q⊥1, �A(t2) = �Q2, A⊥(t2) = Q⊥2

with �Qi ∈ �H2
∂ (curl, �) and Q⊥i ∈ H2

⊥(�) ∩ H1
0⊥(�).

3.1.1. Variational approach. The action is defined on the space of curves

CD(Q1, Q2, [t1, t2]) = {
A ∈ C0

D([t1, t2], �) ∩ C1
D([t1, t2], �)

∩ C2
D([t1, t2], �) : A(ti) = Qi, i = 1, 2}}

where

C0
D([t1, t2], �) := C0

(
[t1, t2],

(
H2

⊥(�) ∩ H1
0⊥(�)

) × �H2
∂ (curl, �)

)
,

C1
D([t1, t2], �) := C1

(
[t1, t2], L2

⊥(�) × (�H0(curl, �) ∩ �H(div, �))
)
,

C2
D([t1, t2], �) := C2

(
[t1, t2],�L2(�)

)
.

The tangent spaces at A ∈ CD(Q1, Q2, [t1, t2]) are TACD(Q1, Q2, [t1, t2]) = CD(0, 0, [t1, t2]).
The action SD : CD(Q1, Q2, [t1, t2]) → R is given by

SD(A) =
∫ t2

t1

LD(A(t), Ȧ(t)) dt

=
∫ t2

t1

(
1

2
〈�̇A, �̇A〉�L2 + 〈�∇A⊥, �̇A〉�L2 + 1

2
〈�∇A⊥, �∇A⊥〉�L2 − 1

2
〈�∇ × �A, �∇ × �A〉�L2

)
dt.

The differential of SD at A acting on a vector δ ∈ TACD(Q1, Q2, [t1, t2]) can be computed in a
straightforward way as

dSD(A) · δ =
∫ t2

t1

dt
∫

�

(−δ⊥(�A⊥ + �∇ · �̇A) + �δ · (��A − �̈A − �∇(�∇ · �A) − �∇Ȧ⊥)) vol�,

where we have used that δ⊥(t) ∈ H1
0⊥(�) and �δ(t) ∈ �H0(curl, �) for each t ∈ [t1, t2].

Hence, the condition dSD(A) · δ = 0 for all the vectors δ ∈ TACD implies
�̈A + �∇Ȧ⊥ − ��A + �∇(�∇ · �A) = 0 in (t1, t2) × �

�∇ · (�̇A + �∇A⊥) = 0 in (t1, t2) × �.

These are just the Maxwell equations in � subject to the perfect conductor boundary conditions
in ∂� introduced in the definition of the domain for the action (and the Lagrangian).
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3.1.2. Hamiltonian approach. We will show that the Hamiltonian dynamics of the
electromagnetic field with perfect conductor boundary conditions takes place in the first
class (generalized) submanifold

ND := {
(Q, �P) : Q⊥ ∈ H1

0⊥(�), �Q ∈ �H2
∂ (curl, �), �P ∈ �H0(curl, �) ∩ �H(div, �), �∇ · �P = 0

}
of the presymplectic manifold (MD, ωD), where

MD = H1
∂ (�) × �L2(�)

and ωD is the pullback to MD of the strong, canonical, symplectic form on L2(�) × L2(�).
The class of Hamiltonian vector fields that defines the dynamics of the system is given by

XD : ND → TND = ND × MD : (Q, �P) �→ ((Q, �P), ((XQ⊥(Q, �P), �XQ(Q, �P)), �X�P(Q, �P)))

where

�XQ(Q, �P) = �P − �∇Q⊥, �X�P(Q, �P) = −�∇ × �∇ × �Q,

and XQ⊥(Q, �P) is any (continuous) function.
As in the previous cases, we study the Hamiltonian formulation with the help of the GNH

algorithm. The fiber derivative FLD : H1
∂ (�) × L2(�) → L2(�) × L2(�)∗ is given by the

expression

FLD(Q,V ) = (Q, 〈�V + �∇Q⊥, proj(·)〉�L2 ) ∈ H1
∂ (�) × L2(�)∗,

where proj(a, �a) = �a. As in the case of the scalar field, we will use the Riesz representation
theorem to swap L2(�)∗ for L2(�) in which case the fiber derivative becomes

FLD(Q,V ) = (Q, (0, �V + �∇Q⊥)) ∈ H1
∂ (�) × L2(�).

The image of H1
∂ (�) × L2(�) under the fiber derivative is

M1 := H1
∂ (�) × ({0} × �L2(�)) ∼= H1

∂ (�) × �L2(�).

The pullback to M1 of the canonical symplectic form in L2(�) × L2(�) is

ω(Q, �P)((q1, �p1), (q2, �p2)) = 〈�q1, �p2〉�L2 − 〈�q2, �p1〉�L2

with (Q, �P), (qi, �pi) ∈ H1
∂ (�) ×�L2(�). Notice that, at variance with the scalar field case, this

symplectic form is degenerate on the primary constraint submanifold M1.
The energy is now

HD ◦ FLD(Q,V ) = 1
2 〈�V , �V 〉�L2 + 1

2 〈�∇ × �Q, �∇ × �Q〉�L2 − 1
2 〈�∇Q⊥, �∇Q⊥〉�L2 ,

and the Hamiltonian HD : M1 → R and its differential are given by

HD(Q, �P) = 1
2 〈�P, �P〉�L2 − 〈�P, �∇Q⊥〉�L2 + 1

2 〈�∇ × �Q, �∇ × �Q〉�L2

dHD(Q, �P)(q, �p) = 〈�P, �p〉�L2 − 〈�∇Q⊥, �p〉�L2 − 〈�P, �∇q⊥〉�L2 + 〈�∇ × �Q, �∇ × �q〉�L2 .

Vector fields on M1 are maps X : M1 → M1 × M1 : (Q, �P) �→
((Q, �P), (XQ(Q, �P), �X�P(Q, �P))) and, hence,

iXω(Q, �P)(q, �p) = 〈�XQ(Q, �P), �p〉�L2 − 〈�X�P(Q, �P), �q〉�L2 .

We have to find now a submanifold M2 with smooth injective immersion j2 : M2 → M1

such that the equation

(iXω − dH)|j2(M2) = 0

can be solved. In order to do this we have to find the general solution to the equation

〈�XQ, �p〉�L2 − 〈�X�P, �q〉�L2 = 〈�P − �∇Q⊥, �p〉�L2 − 〈�P, �∇q⊥〉�L2 + 〈�∇ × �Q, �∇ × �q〉�L2
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for all ((q⊥, �q), �p) ∈ H1
∂ ×�L2. We have to find first the conditions on (Q, �P) that guarantee that

the previous equation can be solved and then get the solutions for the vector field (XQ, �X�P).
This defines the submanifold

M2 := {(Q, �P) : Q⊥ ∈ H1
0⊥(�), �Q ∈ �H2

∂ (curl, �), �P ∈ �H0(curl, �) ∩ �H(div, �), �∇ · �P = 0}
that is obtained as follows.

• Consider first the case q⊥ = 0 and �p = �0. This forces us to take �Q ∈ �H2
∂ (curl, �) and then

solve (using the boundary conditions and Green’s theorem in the form (B.1))

−〈�X�P, �q〉�L2 = 〈�∇ × �Q, �∇ × �q〉�L2 = 〈�∇ × �∇ × �Q, �q〉�L2 , ∀�q ∈ �H0(curl, �),

to get �X�P = −�∇ × �∇ × �Q, which is always in �L2.
• We consider now the situation where q⊥ = 0 and �q = �0 and find �XQ = �P − �∇Q⊥. As

�XQ ∈ �H0(curl, �) we require that �P − �∇Q⊥ ∈ �H(curl, �) and �n × (�P − �∇Q⊥)|∂� = 0.
However, Q⊥ ∈ H1

0⊥(�) implies that �∇Q⊥ ∈ �H(curl, �) and the condition Q⊥|∂� = 0
implies �n × �∇Q⊥|∂� = 0. This means that the constraint �n × (�P − �∇Q⊥)|∂� = 0 is
equivalent to �n × �P|∂� = 0 and, hence, we will require that �P ∈ �H0(curl, �).

• Finally, if �q = �p = �0 the condition 〈�P, �∇q⊥〉�L2 = 0 implies that 0 = �∇ · �P ∈ L2(�) and,
hence �P ∈ �H0(curl, �) ∩ �H(div, �) satisfying the additional condition �∇ · �P = 0. In this
process the component XQ⊥ is left arbitrary.

We have then found the continuous vector field X : M2 → M2 × M1 given by

�XQ(Q, �P) = �P − �∇Q⊥,

�X�P(Q, �P) = − �∇ × �∇ × �Q

and XQ⊥ : M2 → H1
0⊥ any arbitrary continuous function.

We have to check now if the vector fields obtained in the previous step are tangent to the
closure of M2 in M1. If this is so the GNH algorithm terminates because we would have
M3 = M2. We will see that this is the case. First, notice that (see appendix C)

M2 = clM1 (M2)

= clH1
∂

(
H1

0 (�) × �H2
∂ (curl, �)

) × cl�L2 ({�P ∈ �H0(curl, �) ∩ �H(div, �)) : �∇ · �P = 0})
= H1

∂ (�) × (
�L2

hD
(�) ⊕ �L2

TD
(�)

)
.

We have to find those points (Q, �P) ∈ M2 for which the vector field X is tangent to M2,
i.e. such that

XQ⊥(Q, �P) ∈ H1
0⊥(�),

�XQ(Q, �P) = �P − �∇Q⊥ ∈ �H0(curl, �),

�X�P(Q, �P) = −�∇ × �∇ × �Q ∈ �L2
hD

(�) ⊕ �L2
TD

(�).

These conditions are satisfied in the whole of M2. The first two can be trivially checked
whereas the last one is proved in appendix C. We see then that the GNH algorithm stops. We
have identified the submanifold M2 where the dynamics is well defined as well as the form
of the Hamiltonian vector fields whose integral curves give the dynamics of the system.

The presence of arbitrary functions in X signals the existence of gauge symmetries. In
fact, the (generalized) submanifold M2

j2→ M1 of (M1, ω) is a first class submanifold. In
order to see this we have to check that TM⊥

2 ⊂ j2∗(TM2), where

TM⊥
2 := {Z ∈ TM1|M2 : ω|M2 (Z,Y ) = 0,∀Y ∈ j2∗(TM2)}.
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To this end we show that

Z ∈ TM⊥
2 ⇔ ZQ⊥ ∈ H1

0⊥(�), �Z�Q ∈ �∇H1
0 (�) ⊂ �H2

∂ (curl, �), �Z�P = �0 ∈ �CD(�)

where
�CD(�) := {�P ∈ �H0(curl, �) ∩ �H(div, �) : �∇ · �P = 0}.

The vector fields Y ∈ j2∗(TM2) can be thought of as maps

Y : M2 → M2 × M2 : (Q, �P) �→ ((Q, �P), (YQ(Q, �P), �Y�P(Q, �P))),

that is, (Q, �P) ∈ M2, YQ⊥(Q, �P) ∈ H1
0⊥, �Y�Q(Q, �P) ∈ �H2

∂ (curl, �) and �Y�P(Q, �P) ∈ �CD(�),
whereas vector fields Z ∈ TM1|M2

are now maps

Z : M2 → M2 × M1 : (Q, �P) �→ ((Q, �P), (ZQ(Q, �P), �Z�P(Q, �P)))

with (Q, �P) ∈ M2, ZQ⊥(Q, �P) ∈ H1
0⊥, �Z�Q(Q, �P) ∈ �H(curl, �) and �Z�P(Q, �P) ∈ �L2(�). The

condition that defines TM⊥
2 is

ω(Q, �P)((ZQ, �Z�P), (YQ, �Y�P)) = 〈�Z�Q, �Y�P〉�L2 − 〈�Z�P, �Y�Q〉�L2 = 0,

for all the possible values of the fields Y written above. This leads to the following two
conditions

〈�Z�P, �Y�Q〉�L2 = 0, ∀�Y�Q ∈ �H2
∂ (curl, �),

〈�Z�Q, �Y�P〉�L2 = 0, ∀�Y�P ∈ �CD(�).

The first one implies that �Z�P = �0 because �C∞
0 (�) is dense in�L2(�) and �C∞

0 (�) ⊂ �H2
∂ (curl, �).

The second condition implies that �Z�Q ∈ �C⊥
D = �L2

LD
= �∇H1

0 . Finally there is no condition on

ZQ⊥. As �0 ∈ �CD(�) it only remains to check that �∇H1
0 ⊂ �H2

∂ (curl, �). This amounts to
showing that for every ϕ ∈ H1

0 (�), �∇ϕ ∈ �H2(curl, �), and the trace (�n × �∇ϕ)|∂� is defined
and it is zero. It is straightforward to prove that this is indeed the case.

Finally we note that if we demand strict tangency in the GNH algorithm, we get the
following infinite chain of conditions at the boundary of the spatial manifold (and regularity
conditions for the fields that render the following expressions well defined):

Q⊥|∂� = 0, �∇ · �P = 0 (3.1)

�n × (�∇×)2k �Q
∣∣
∂�

= �0,�n × (�∇×)2k �P
∣∣
∂�

= �0, k ∈ N ∪ {0}. (3.2)

3.2. Neumann boundary conditions

We will study here the dynamics of the electromagnetic field on a bounded domain � ⊂ R
3

subject to boundary conditions that generalize the Neumann boundary conditions for the scalar
field:

�̈A + �∇Ȧ⊥ − ��A + �∇(�∇ · �A) = �0 in (t1, t2) × � (3.3)

�∇ · (�̇A + �∇A⊥) = 0 in (t1, t2) × � (3.4)

�n · (�̇A + �∇A⊥) = 0 in (t1, t2) × ∂� (3.5)

�n × (�∇ × �A) = �0 in (t1, t2) × ∂� (3.6)

�A(t1) = �Q1, A⊥(t1) = Q⊥1, �A(t2) = �Q2, A⊥(t2) = Q⊥2 (3.7)

with �Qi ∈ �H2(curl, �) and Q⊥i ∈ H1
⊥(�).
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3.2.1. Variational approach. The action is defined on the space of curves

CN (Q1, Q2, [t1, t2]) = {
A ∈ C0

N ([t1, t2], �) ∩ C1
N ([t1, t2], �)

∩ C2
N ([t1, t2], �) : A(ti) = Qi, i = 1, 2}}

where

C0
N ([t1, t2], �) := C0([t1, t2], H2(�)),

C1
N ([t1, t2], �) := C1([t1, t2], L2

⊥(�) × (�H(curl, �) ∩ �H(div, �))),

C2
N ([t1, t2], �) := C2([t1, t2],�L2(�))

and we have used the notation H2(�) := H2
⊥(�) × �H2(curl, �). The tangent spaces at

A ∈ CN (Q1, Q2, [t1, t2]) are TACN (Q1, Q2, [t1, t2]) = CN (0, 0, [t1, t2]).
The action SN : CN (Q1, Q2, [t1, t2]) → R is given by

SN (A) =
∫ t2

t1

LN (A(t), Ȧ(t)) dt

=
∫ t2

t1

(
1

2
〈�̇A, �̇A〉�L2 + 〈�∇A⊥, �̇A〉�L2 + 1

2
〈�∇A⊥, �∇A⊥〉�L2 − 1

2
〈�∇ × �A, �∇ × �A〉�L2

)
dt,

and is differentiable in its domain. The differential of SN at A acting on a vector δ ∈
TACN (Q1, Q2, [t1, t2]) is

dSN (A) · δ =
∫ t2

t1

dt
∫

�

( − δ⊥(�A⊥ + �∇ · �̇A) + �δ · (��A − �̈A − �∇(�∇ · �A) − �∇Ȧ⊥)
)

vol�,

+
∫ t2

t1

dt
∫

∂�

δ⊥(�n · (�̇A + �∇A⊥))|∂� vol∂� +
∫ t2

t1

dt
∫

∂�

�δ · (�n × �∇ × �A)|∂� vol∂�.

Hence, the condition dSN (A) ·δ = 0 for all the vectors δ ∈ TACN implies equations (3.3)–(3.7).

3.2.2. Hamiltonian approach. We will show that the Hamiltonian dynamics of the
electromagnetic field with Neumann conditions takes place in the first class (generalized)
submanifold

NN := {(Q, �P) ∈ H2(�) × (�H(curl, �) ∩ �H0(div, �)) : �∇ · �P = 0, �n × (�∇ × �Q)|∂� = �0}
of the presymplectic manifold (MN, ωN ), where

MN = H1(�) × �L2(�)

and ωN is the pullback to MN of the strong, canonical, symplectic form on L2(�) × L2(�).
The class of Hamiltonian vector fields that defines the dynamics of the system is given by

XN : NN → TN N = NN × MN : (Q, �P) �→ ((Q, �P), ((XQ⊥(Q, �P), �XQ(Q, �P)), �X�P(Q, �P)))

where

�XQ(Q, �P) = �P − �∇Q⊥, �X�P(Q, �P) = −�∇ × �∇ × �Q,

and XQ⊥(Q, �P) is any (continuous) function.
In order to make use of the GNH algorithm, let us consider first the fiber derivative

FLN : H1(�) × L2(�) → L2(�) × L2(�)∗ given by the expression

FLN (Q,V ) = (Q, (0, �V + �∇Q⊥)) ∈ H1(�) × L2(�),

where we have used the Riesz representation theorem to identify L2(�)∗ and L2(�). The
image of H1(�) × L2(�) under the fiber derivative is

M1 := H1(�) × ({0} × �L2(�)) ∼= H1(�) × �L2(�).
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The pullback of the canonical symplectic form in L2(�) × L2(�) to M1 is

ω(Q, �P)((q1, �p1), (q2, �p2)) = 〈�q1, �p2〉�L2 − 〈�q2, �p2〉�L2

with (Q, �P), (qi, �pi) ∈ H1(�) × �L2(�). The energy is now

HN ◦ FL(Q,V ) = 1
2 〈�V , �V 〉�L2 + 1

2 〈�∇ × �Q, �∇ × �Q〉�L2 − 1
2 〈�∇Q⊥, �∇Q⊥〉�L2 ,

and the Hamiltonian HN : M1 → R and its differential are given by

HN (Q, �P) = 1
2 〈�P, �P〉�L2 − 〈�P, �∇Q⊥〉�L2 + 1

2 〈�∇ × �Q, �∇ × �Q〉�L2

dHN (Q, �P)(q, �p) = 〈�P, �p〉�L2 − 〈�∇Q⊥, �p〉�L2 − 〈�P, �∇q⊥〉�L2 + 〈�∇ × �Q, �∇ × �q〉�L2 .

Vector fields on M1 are maps X : M1 → M1 × M1 : (Q, �P) �→
((Q, �P), (XQ(Q, �P), �X�P(Q, �P))) and, hence,

iXω(Q, �P)(q, �p) = 〈�XQ(Q, �P), �p〉�L2 − 〈�X�P(Q, �P), �q〉�L2 .

We have to find now a submanifold M2 with smooth injective immersion j2 : M2 → M1

such that the equation

(iXω − dHN )|j2(M2 ) = 0

can be solved. In order to do this we have to find the general solution to the equation

〈�XQ, �p〉�L2 − 〈�X�P, �q〉�L2 = 〈�P − �∇Q⊥, �p〉�L2 − 〈�P, �∇q⊥〉�L2 + 〈�∇ × �Q, �∇ × �q〉�L2

for all ((q⊥, �q), �p) ∈ H1(�) × �L2(�). The conditions for (Q, �P) that guarantee that the
previous equation can be solved and the solutions for the vector field (XQ, �X�P) are obtained by
following the same steps that we have detailed in the case of the Dirichlet boundary conditions.
We get the submanifold

M2 := {(Q, �P) ∈ H2(�) × (�H(curl, �) ∩ �H(div, �)) : �∇ · �P = 0,

�n · �P|∂� = 0,�n × (�∇ × �Q)|∂� = �0},
where H2(�) = H1

⊥(�)× �H2(curl, �), and the continuous vector field X : M2 → M2 ×M1

is given by

�XQ(Q, �P) = �P − �∇Q⊥,

�X�P(Q, �P) = − �∇ × �∇ × �Q

with XQ⊥ : M2 → H1
⊥ an arbitrary continuous function.

We check now that the vector fields obtained in the previous step are tangent to the closure
of M2 in M1. To this end we must first compute (see appendix C)

M2 = clM1 (M2) = H1(�) × (
�L2

hN
(�) ⊕ �L2

TN
(�)

)
,

and then find the points (Q, �P) ∈ M2 such that the field X is tangent to M2. i.e. such that

XQ⊥(Q, �P) ∈ H1
⊥(�)

�XQ(Q, �P) = �P − �∇Q⊥ ∈ �H(curl, �)

�X�P(Q, �P) = −�∇ × �∇ × �Q ∈ �L2
hN

(�) ⊕ �L2
TN

(�).

These conditions hold for (Q, �P) ∈ M2, hence the GNH algorithm stops at this stage. The
only non-trivial condition to check is the third (which is proved in appendix C).

We end this section by showing that the generalized submanifold M2
j2→ M1 is first

class, as in the case of the Dirichlet boundary conditions. Proceeding as before we first show
that

Z ∈ TM⊥
2 ⇔ ZQ⊥ ∈ H1

⊥(�), �Z�Q ∈ �∇H1(�) ⊂ �FN (�), �Z�P = �0 ∈ �CN (�)
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where

�CN := {�P ∈ �H(curl, �) ∩ �H(div, �) : �∇ · �P = 0,�n · �P|∂� = 0},
�FN := {�Q ∈ �H2(curl, �) : �n × (�∇ × �Q)|∂� = 0}.

The two conditions that must be satisfied now are

〈�Z�P, �Y�Q〉�L2 = 0, ∀�Y�Q ∈ �FN (�),

〈�Z�Q, �Y�P〉�L2 = 0, ∀�Y�P ∈ �CN (�).

The first one implies that �Z�P = �0 because �C∞
0 (�) is dense in �L2(�) and �C∞

0 (�) ⊂ �FN (�).
The second condition implies that �Z�Q ∈ �C⊥

N = �L2
NL = �∇H1. There is no condition on ZQ⊥. As

�0 ∈ �CN (�) we just have to check that �∇H1 ⊂ �FN (�), which is straightforward. Hence, we
can conclude that TM2 is first class9.

We end this section by noting that, if we demand strict tangency in the GNH algorithm,
we get the following infinite chain of conditions at the boundary of the spatial manifold (and
regularity conditions for the fields that render the following expressions well defined):

�∇ · �P = 0, �n · �P
∣∣
∂�

= 0

�n · (�∇×)2k �Q
∣∣
∂�

= 0, �n · (�∇×)2k �P
∣∣
∂�

= 0, k ∈ N (3.8)

�n × (�∇×)2k+1 �Q
∣∣
∂�

= �0, �n × (�∇×)2k+1 �P
∣∣
∂�

= �0, k ∈ N ∪ {0}.

4. Conclusions

The main result of the paper is the rigorous analysis of the Hamiltonian formalism for scalar
and electromagnetic fields in the presence of boundaries. By using the GNH algorithm we
have been able to provide a precise description of the infinite dimensional manifolds where
the dynamics is defined and the Hamiltonian vector fields the integral curves of which define
the time evolution for these systems. These type of results complement the traditional analysis
of the PDE’s describing the dynamics of these models (the wave and Maxwell equations with
appropriate boundary conditions, see, for example [28]) and mesh nicely with them. We have
gained a clear and rigorous understanding of the meaning and interpretation of the physical
degrees of freedom by identifying the functional spaces for the field configurations. Although
we have only considered simple bounded regions with sufficiently smooth boundaries the
methods that we have used can be extended to less regular boundaries and/or unbounded
regions. This may be helpful to understand classical and quantum field theories in these types
of domains and other, more complicated, field theories in the presence of boundaries, in
particular general relativity.

The (generalized) constraint submanifolds that we have found crucially depend on
the boundary conditions that define each of the models. The details of their obtention highlight
the similarities and differences between the different models and provide an instructive
perspective on the incorporation of boundaries to more complicated systems that we plan
to exploit in the future. From a geometric point of view these submanifolds have been found
to be second class in the case of the scalar field and first class for the electromagnetic field.
This is an intrinsic characterization with an invariant geometric (i.e. coordinate independent)
meaning.

9 Notice that, strictly speaking, TM⊥
2 �⊂ j2∗TM2 because of the component ZQ⊥ ∈ H1

⊥(�) �⊂ H2
⊥(�). This minor

problem can be easily solved in several ways, for example modifying the manifold domain DN by allowing only fields
Q⊥ ∈ H2

⊥(�) or generalizing the first class condition to TN⊥ ⊂ TN := TN |N .
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The geometric point of view that we are emphasizing here, specifically the structure of the
Hamiltonian vector fields and the Hodge decomposition, provides a natural description of the
reduced phase space of the electromagnetic field. In particular, the points ((�Qh, �QT ), (�Ph, �PT ))

of the reduced phase space correspond to the transverse and harmonic sectors of the Hodge
decomposition (associated with the specific boundary conditions). In all the cases the evolution
equations reduce to

�̇QT = �PT , �̇PT = −�∇ × �∇ × �QT = ��QT , �̇Qh = �Ph, �̇Ph = �0

where the Laplacian corresponds to the boundary conditions used. The general features of
these equations are discussed in appendix D in the general context provided by the abstract
wave equation. In practice it is convenient to work with a parametrization in terms of the
eigenfunctions and eigenvalues of the Laplace operator. This description provides a natural
avenue to the Fock quantization of these models. It is important to mention, however, that
the eigenvalues and eigenvectors of the Laplacian in the presence of sufficiently irregular
boundaries present peculiarities that are absent in the case of the regular boundaries that we
have considered here. This is a generalization of the present work that may lead to interesting
results when these types of models are quantized. Another type of generalization can be
obtained by considering general spatial Riemannian manifolds and not just subsets of R

3. We
expect that the methods used here can be used to understand these more complicated systems.

We want to add several comments regarding the GNH algorithm. The starting point in
the description of the systems that we have considered is the domain of the Lagrangian. The
GNH algorithm for ordinary mechanical systems with a finite number of degrees of freedom
has a simple and clear geometric meaning and basically consists in checking the tangency
of the vector field that defines the dynamics of the system to a certain submanifold of the
manifold domain of the cotangent bundle where the full dynamics is defined. If the algorithm
is directly generalized to field theories (with an infinite number of degrees of freedom) with the
requirement of strict tangency of the vector fields, some complications may appear—actually
they do appear—even for such simple systems as the scalar field. One is already mentioned in
Gotay’s thesis [20] and, in essence, it is the fact that the algorithm leads to a submanifold of
the original domain of the Lagrangian that is the intersection of an infinite countable collection
of submanifolds. When no boundaries are present these are just higher order Sobolev spaces
whereas in the presence of boundaries one gets, in addition, an infinite chain of boundary
conditions. The subtlety in this case is that the final manifold is not Banach but just a Fréchet
manifold which, from a mathematical point of view, makes things harder (many theorems have
been proved only in the context of Banach manifolds). In any case it is not impossible that one
can work in these types of functional spaces.

The solution to this difficulty incorporated in the GNH algorithm is to relax the condition
of strict tangency and accept tangency to the closure of the submanifolds that appear in
the process of determining the Hamiltonian dynamics. This approach obviously reduces to the
standard one for systems with a finite number of degrees of freedom but is different in the
infinite dimensional case. In the examples considered in the paper (as well as in the absence of
boundaries for scalar and electromagnetic fields) it leads to the halting of the GNH algorithm in
a few steps. From a practical point of view the main difficulty introduced by this generalization
is the need to explicitly determine the closures of the submanifolds given by the algorithm.
This task relies on a sufficient knowledge of the functional spaces involved.

The GNH algorithm provides the Hamiltonian description but, especially for field theories,
the problem of the integrability of the Hamiltonian vector fields is both hard and important.
The standard example in this respect is provided by the ‘Euclidean scalar field’ (obtained
by substituting the Lorentz metric for the Euclidean metric or switching the sign in the
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〈�∇Q, �∇Q〉�L2 term of equations (2.1) and (2.2). Although there are no obstructions to the
implementation of the GNH algorithm—one gets a constraint submanifold and a Hamiltonian
vector field—it is known that the problem of getting the integral curves is ill posed [20]. This
result is closely related to the fact that the field equation in this case reduces to the Laplace
equation for which the initial value problem is ill posed. In the cases considered in the paper
the Hille–Yoshida theorem, as well as the general arguments about the abstract wave equation
discussed in appendix D (see equation (D.2)), provide ways of checking the actual existence
of integral curves.

Finally we want to mention that the original GNH algorithm can also be employed within
the so-called symplectic-Lagrangian approach that provides an interesting description of the
dynamics in the tangent bundle of the configuration space. In the case of the models discussed
in this paper this point of view is essentially equivalent to the Hamiltonian picture that we
have explored in detail, however, it may be significantly different for other type of systems
and may provide an interesting alternative approach to understand their classical and quantum
behavior.
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Appendix A. General framework

The goal of this appendix is to describe, in some detail, the general framework that we use in
the paper. As mentioned in the introduction, field theories with an infinite number of degrees
of freedom must be described with the help of infinite dimensional manifolds. Here, following
[20], we will use Banach manifolds (see appendix B). Many mathematical subtleties in this
case stem precisely from the need to use these infinite dimensional spaces.

A.1. The Hamiltonian approach and the GNH algorithm

The road from the Lagrangian to the Hamiltonian frameworks in classical mechanics—as
explained in the standard textbooks—is a well-trodden one. By defining a suitable momentum
variable and performing a Legendre transform, one arrives at the Hamiltonian formulation
where the equations of motion take a pleasingly simple canonical form and the dynamics is
encoded in a single function, the Hamiltonian.

Hamiltonian dynamics is defined in the cotangent bundle T ∗Q of the configuration space.
For Banach manifolds T ∗Q carries a canonical, weakly non-degenerate, symplectic form
� ∈ 2(T ∗Q) i.e. such that the vector bundle map

� : T (T ∗Q) → T ∗(T ∗Q) : X �→ �(X ) = iX�

is injective. When � is a linear bundle isomorphism the symplectic form is said to be strongly
non-degenerate. This happens if Q is reflexive and, in particular, for finite dimensional
mechanical systems [26]. Notice, however, that even if Q is reflexive (as in the examples
that we consider in the paper) it may be unavoidable to work in a manifold domain of Q.
This means that the phase space will actually be of the form T ∗

DQ = ⋃
Q∈D T ∗

QQ ⊂ T ∗Q and,
hence, the symplectic form that one has to use (the pullback of the canonical form in T ∗Q to
T ∗
DQ) will generically be only weakly non-degenerate.
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From a geometric point of view [29], the transition from the Lagrangian to the Hamiltonian
formulations is carried out by means of the so-called fiber derivative FL of the Lagrangian L:

FL : TDQ → T ∗
DQ, w �→ FL(w),

defined by

〈v|FL(w)〉 := d

dt

∣∣∣∣
t=0

L(w + tv)

where 〈· | ·〉 is the natural pairing between elements of TQ and T ∗Q over the same base point.
The fiber derivative is used to define the canonical momenta and the Hamiltonian. In fact, when
it exists, the Hamiltonian H can be written in a purely geometric, coordinate independent, way
as

H ◦ FL(w) = 〈w|FL(w)〉 − L(w), w ∈ TDQ ⊂ TQ.

For the so-called regular (hyperregular) systems the fiber derivative is a local (global)
diffeomorphism. In the remaining cases the Lagrangian is said to be singular.

In order to obtain a Hamiltonian description of the dynamics defined by a given Lagrangian
one would naively consider the following two steps.

• The determination of the Hamiltonian vector field X ∈ X(T ∗
DQ) associated with the

Hamiltonian of the system. This is obtained as the solution to the equation

iX� = dH, (A.1)

where iX denotes the interior product of X and �.
• The obtention of the integral curves of X that describe the time evolution of the system

(by projection onto the configuration space Q).

In the case of finite dimensional, (hyper)regular, mechanical systems equation (A.1) is
rather trivial because the domain of the Hamiltonian is T ∗Q and the canonical symplectic
form can be easily seen to be strongly non-degenerate. However, for singular finite systems
this is usually not the case because the domain of the Hamiltonian is a proper subset of T ∗Q
and, hence, the pullback of the canonical symplectic form to it may be degenerate. As a
consequence, the resolution of (A.1) requires some attention.

A common situation that one encounters in regular field theories is that the symplectic
form in T ∗

DQ is only weakly non-degenerate. In this case one must study if the one-form dH
lies in the range of the � map in order to be able to solve equation (A.1). If it does not, a
possible approach to the problem is to restrict (A.1) and define the Hamiltonian dynamics
of the system in an appropriate subset of the phase space. This is part of the content of the
algorithm10 developed by Gotay, Nester and Hinds in [18, 21] to deal with a wide class of field
theories.

Before we discuss it, some comments are in order. If the range of the fiber derivative
FL(TDQ) is a proper submanifold of T ∗

DQ, according to its definition, the Hamiltonian

H : FL(TDQ) ⊂ T ∗
DQ → R

is only defined there. FL(TDQ) is known in the literature as the primary constraint manifold
and is the starting point of the algorithm developed by Dirac in [19]. An important element
in Dirac’s approach to the quantization of constrained systems was his insistence in working
in the full phase space T ∗Q. His main idea was to find conditions (constraints) defining

10 Although, as we have mentioned in section 1, the original algorithm is developed to be used in a more general
context, it can be easily adapted to the usual Hamiltonian framework, as we discuss here, by following the ideas
introduced in [20].
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physical configurations, turn a certain generalization of the Poisson brackets (the so-called
Dirac brackets) into commutators, quantize the constraints and select appropriate physical
states by considering their kernels. The insistence on working in the full phase space required
the extension of the Hamiltonian from the primary constraint surface to the full T ∗Q. This
can usually be done in many ways. It is actually advantageous to consider a large family of
possible extensions and then restrict them, if necessary, to guarantee the consistency of the
dynamics on an appropriate subset of the primary constraint manifold. In practice, this is done
by choosing a particular extension of the Hamiltonian and adding to it a linear combination
of independent functions, all of them vanishing on this primary constraint manifold, with
arbitrary coefficients (usually referred to as ‘Lagrange multipliers’).

The approach that we will follow—based in the Gotay–Nester–Hinds (GNH) algorithm—
will be slightly different, definitely more geometrical, and global. Our goal will not be a Dirac-
like description in the full phase space but, rather, the identification of a suitable geometric
domain in T ∗

DQ (in practice, a new phase space) where the dynamics is well defined, together
with the identification of the vector fields whose integral curves will give the time evolution
of the system. This is enough for the description of the reduced phase space and is a possible
starting point for quantization.

GNH algorithm for infinite dimensional systems. Let us consider (M, ω, dH) where
M = FL(TDQ) ⊂ T ∗

DQ, ω is the pullback of the canonical symplectic form in T ∗Q to M,
and H : M → R the Hamiltonian. We will assume M1 := M to be a Banach manifold
modeled on a Banach space F1 and also that

M2 := {
m ∈ M1 : dH(m) ∈ TmM�

1

} ⊂ M1,

can be endowed with a Banach manifold structure, with model Banach space F2, such that
the inclusion j2 : M2 → M1 is smooth (with the topologies on M1 and M2 given by the
respective Banach manifold structures). Notice that, although M2 ⊂ M1 as sets, in general
the topology of M2 is not the induced topology from M1. Hence, in general, M2 is not an
embedded submanifold of M1. As in the finite dimensional case, the definition of M2 must
be understood as the solvability condition for X in the equation

iXω − dH = 0. (A.2)

The solutions X : M2 → TM1 to (A.2) satisfy X (m) ∈ Tj2(m)M1. Now, there may be points
m ∈ M2 for which X (m) �∈ Tj2(m)M2 ⊂ Tj2(m)M1. Here M2 := clM1 ( j2M2) ⊂ M1 is the
topological closure of j2M2 in M1, that we will assume to be an embedded submanifold of
M1. If this is the case, we will say that the vector field X does not define first order evolution
equations on M2, and we will further restrict the set of points and the possible vector fields to

M3 := {
m ∈ M2 : dH(m) ∈ TM2

�}
,

where

TM2 := TM2| j2(M2 ) ⊂ TM1, TM2
�

:= �
(
TM2

) ⊂ �(TM1).

We will assume that M3 can be endowed with a Banach manifold structure, with model
Banach space F3, such that the inclusion M3

j3−→ M2 is smooth. In general, given the Banach
manifolds Mk, with Banach model spaces Fk, we will assume that

Mk+1 := {m ∈ Mk : dH(m) ∈ TMk
�}

can be endowed with Banach manifold structures with model Banach spaces Fk+1 in such a
way that

Mk+1
jk+1−→ Mk

jk−→ · · · j3−→ M2
j2−→ M1
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is a chain of smooth injective immersions ji : Mi → Mi−1. Here we have used the notation

TMk := TMk|j2◦···◦jk(Mk ) ⊂ TM1, TMk
�

:= �
(
TMk

) ⊂ �(TM1)

where Mk := clM1 (j2 ◦ · · · ◦ jk(Mk)) ⊂ M1.
If it exists, the smallest n � 1 such that Mn+1 = Mn �= ∅ provides the maximal

generalized submanifold N := Mn ⊂ M, with smooth inclusion j = j2 ◦ · · · ◦ jn, and the
(generically non-unique) vector fields X : N → TN ⊂ TM that constitute the Hamiltonian
description of the system. If it does not, the system may be inconsistent or one could be forced
to define the dynamics outside the class of Banach manifolds. We will not need to consider
these situations in the present paper.

Geometric classification of the constraint submanifolds. The generalized submanifold
N j→ M of the presymplectic manifold (M, ω) given by the GNH algorithm consists
of those states which are physically realizable. The intrinsic classification of the constraint
submanifolds of a presymplectic manifold was developed by Tulczyjew [30] and Sniatycki
[31]. This classification scheme generalizes the local classification of the submanifolds of a
strongly symplectic manifold given by Dirac in terms of constraint functions. In particular,
in this classification, constraint submanifolds can be first class, second class, isotropic,
Lagrangian or mixed. For the purpose of the present paper the following definitions are
helpful

• First class submanifolds: N j→ M is said to be a (generalized) first class submanifold of
a presymplectic manifold (M, ω) if TN⊥ ⊂ TN .

• Second class submanifolds:N j→ M is said to be a (generalized) second class submanifold
of a presymplectic manifold (M, ω) if TN⊥ ∩ TN = {0}.

Appendix B. Functional spaces used in the paper: a compilation of important
results

Throughout this paper, following [20], the term generalized submanifold of a given Banach
manifold M refers not only to embedded submanifolds (see, for example [32, 33]) but also to
any pair (N ,N j→ M) (with smooth j) which is a Banach immersed submanifold, a manifold
domain or a submanifold domain.

(i) N j→ M is a Banach immersed submanifold of M if both j and j∗ are injective and
j∗(TN ) splits in TM.

(ii) N j→ M is a manifold domain of M if both j and j∗ are injective and have dense range.
(iii) N j→ M is a submanifold domain ofM ifN = clM(j(N )) is an embedded submanifold

of M and (N , j) is a manifold domain of N .

We compile in this appendix the definitions and the properties of the functional spaces
used in the paper. A useful reference where many of these results appear is [23]. In the
following, � ⊂ R

n is an open set with smooth enough boundary.

• C∞
0 (Rn) is the space of infinitely differentiable functions in R

n with compact support.
• C∞

0 (�) is the space of infinitely differentiable functions with compact support in �. We
will denote �C∞

0 (�) := C∞
0 (�)n.

• C∞
0 (�) := { f |� : f ∈ C∞

0 (Rn)}
• L2(�) is the Hilbert space of square integrable functions on � (with respect to the Lebesgue

measure vol�) with the usual scalar product denoted as 〈·, ·〉L2(�) or 〈·, ·〉L2 when there is
no possibility of confusion. For clarity we will use the notation L2

⊥(�) when we refer to
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the ⊥ components of the fields in the understanding that this is just L2(�). We will also
denote �L2(�) := L2(�)n. In this case the scalar product is given by

〈�u,�v〉�L2 =
∫

�

�u · �v vol�.

It is important to remember that C∞
0 (�) is dense in L2(�), i.e. clL2C∞

0 (�) = L2(�).
• H1(�) is the Sobolev space of once differentiable functions on � with scalar product

given by

〈u, v〉�H1 = 〈u, v〉L2 + 〈�∇u, �∇v〉�L2 .

This is a Hilbert space.
An important operator when considering boundaries and boundary conditions, as we do
in this paper, is the so-called trace operator (denoted here by γ ). This is the unique, linear
and continuous extension of the mapping u �→ u|∂� defined on C∞

0 (�) as an operator γ

from H1(�) into L2(∂�).
• H1

0 (�) = clH1C∞
0 (�). This is a proper subspace of H1(�). By definition C∞

0 (�) is dense
in H1

0 (�). This space is precisely the kernel of the trace operator defined before. We will
use the notation H1

0⊥(�) as explained above.

We introduce now several functional spaces defined with the help of the div and curl
operators that are specifically needed to study the electromagnetic field (from now on n = 3):

• �H(div, �) := {�Q ∈ �L2(�) : �∇ · �Q ∈ �L2(�)}. This is a Hilbert space with the scalar
product given by

〈�Q1, �Q2〉�H(div) = 〈�Q1, �Q2〉�L2 + 〈�∇ · �Q1, �∇ · �Q2〉L2 .

A trace-like operator can be defined in this space (see theorem 2.5 of [23]). This is the
linear and continuous extension of the mapping �Q �→ (�n · �Q)|∂� defined on �C∞

0 (�) as an
operator from �H(div, �) into H−1/2(∂�). Here �n denotes the exterior unit normal to the
boundary.
For every �v ∈ �H(div, �) and every u ∈ H1(�) we have the useful Green’s formula

〈�∇ · �v, u〉�L2(�) + 〈�v, �∇u〉�L2(�) = 〈(�n · �v)|∂�, u|∂�〉L2(∂�) =
∫

∂�

(�v · �n)u vol∂�

(see theorem 2.5 of [23]). Here vol∂� denotes the volume form induced on ∂� by the
Euclidean metric in R

3. The traces used in the previous formula are properly defined in
the respective spaces. Notice the inclusion �H1(�) := H1(�)3 ⊂ �H(div, �).

• �H0(div, �) := cl�H(div)
�C∞

0 (�). By definition �C∞
0 (�) is dense in �H0(div, �).

The map �Q �→ (�n · �Q)|∂� is continuous, hence, since �H0(div, �) is a closed subspace of
�H(div, �), it is a Hilbert space.
�H0(div, �) can be characterized as the kernel of the trace operator defined in �H(div, �),
i.e.

�H0(div, �) = {�Q ∈ �H(div, �) : (�n · �Q)|∂� = �0}.
This means, in particular that �H0(div, �) is a proper subset of �H(div, �).

• H1(�,�) := {Q ∈ H1(�) : �Q ∈ L2(�)} = {Q ∈ L2(�) : �∇Q ∈ �H(div, �)}.
An important property of this space associated with the Laplace operator is that if � is
compact with smooth boundary then H1

0 (�) ∩ H1(�,�) = H1
0 (�) ∩ H2(�) (see [28],

theorem 1.3, chapter 5).
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• �H(curl, �) := {�Q ∈ �L2(�) : �∇ × �Q ∈ �L2(�)}. This is a Hilbert space with the scalar
product given by

〈�Q1, �Q2〉�H(curl) = 〈�Q1, �Q2〉�L2 + 〈�∇ × �Q1, �∇ × �Q2〉�L2 .

There is a trace-like operator that can be defined in this space (see theorem 2.11 of [23]).
This is the linear and continuous extension of the mapping �Q �→ (�Q × �n)|∂� defined on
�C∞

0 (�) as an operator from �H(curl, �) into �H−1/2(∂�). Here �n denotes the exterior unit
normal to the boundary.
For every �v ∈ �H(curl, �) and every �u ∈ �H1(�) we have

〈�∇ × �v, �u〉�L2(�) − 〈�v, �∇ × �u〉�L2(�) = 〈(�v × �n)|∂�, �u|∂�〉�L2(∂�) =
∫

∂�

�u · (�v × �n) vol∂�.

This is a useful form of the Green’s formula that allows us to perform ‘integrations by
parts’ when needed (see theorem 2.11 of [23]).
Another useful Green’s formula (see theorem 3.31 of [34]) is the following: for every
�v ∈ �H(curl, �) and every �u ∈ �H(curl, �) we have

〈�∇ × �v, �u〉�L2(�) − 〈�v, �∇ × �u〉�L2(�) = −〈(�v × �n)|∂�, (�n × �u)|∂� × �n〉�L2(∂�). (B.1)

Notice that the traces used in the previous formulas are properly defined in the respective
spaces and also the inclusion �H1(�) ⊂ �H(curl, �).

• �H0(curl, �) := cl�H(curl)
�C∞

0 (�). By definition �C∞
0 (�) is dense in �H0(curl, �).

The map �Q �→ (�Q × �n)|∂� is continuous, hence, since �H0(curl, �) is a closed subspace of
�H(curl, �), it is a Hilbert space.
�H0(curl, �) can be characterized as the kernel of the trace operator defined in �H(curl, �),
i.e.

�H0(curl, �) = {�Q ∈ �H(curl, �) : (�Q × �n)|∂� = �0}.

• �H2(curl, �) := {�Q ∈ �L2(�) : �∇ × �Q ∈ �L2(�), �∇ × �∇ × �Q ∈ �L2(�)},
= {�Q ∈ �H1(curl, �) : �∇ × �∇ × �Q ∈ �L2(�)},
= {�Q ∈ �H1(curl, �) : �∇ × �Q ∈ �H1(curl, �)}.

This is a Hilbert space endowed with the scalar product

〈�Q1, �Q2〉�H2(curl) = 〈�Q1, �Q2〉�L2 + 〈�∇ × �Q1, �∇ × �Q2〉�L2 + 〈�∇ × �∇ × �Q1, �∇ × �∇ × �Q2〉�L2 .

In this space we have the traces �Q �→ (�Q ×�n)|∂� and �∇ × �Q �→ ((�∇ × �Q) ×�n)|∂� . These
are continuous operators in �H2(curl, �).

• �H2
∂ (curl, �) := {�Q ∈ �H2(curl, �) : (�n × �Q)|∂� = �0} = �H2(curl, �) ∩ �H0(curl, �).

Owing to the continuity of the trace used in its definition, this is a closed subspace of
�H2(curl, �) and, hence, a Hilbert space too.

Appendix C. Additional mathematical details for the electromagnetic field

In the main body of the paper we study the electromagnetic field with two types of boundary
conditions: the relative and absolute boundary conditions [28] that we refer to as Dirichlet
and Neumann boundary conditions respectively. These are not the most general ones but are
natural, physically important and sufficient to illustrate the points that we want to discuss in
the present article.

A vector field �u defined in � satisfies Dirichlet (relative) boundary conditions if

�n × �u|∂� = �0, �∇ · �u|∂� = 0.
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Similarly, a vector field �v satisfies Neumann (absolute) boundary conditions if

�n · �v|∂� = 0, �n × (�∇ × �v)|∂� = �0.

As in the main text |∂� denotes the action of the trace operators and, of course, the vector
fields must be defined in functional spaces where the traces make sense.

The implementation of the GNH algorithm requires the analysis of the closures of certain
(generalized) submanifolds. This is crucial, in particular, to find out if the algorithm stops. In
the case of electromagnetism, this kind of analysis is greatly facilitated by the use of the Hodge
decomposition associated with the vector Laplace operators corresponding to the boundary
conditions. It is also useful to consider orthonormal bases defined by the eigenstates of the
different Laplace operators (in fact, these can be used to derive the Hodge decomposition).
A comprehensive account of these results can be found in [28] in the more general setting of
arbitrary differential forms in Riemannian manifolds with boundary.

The Hilbert space �L2(�) can be written as an orthogonal direct sum as

�L2(�) = �L2
hD

(�) ⊕ �L2
TD

(�) ⊕ �L2
LD

(�) = �L2
hN

(�) ⊕ �L2
TN

(�) ⊕ �L2
LN

(�).

Here the subindexes D and N denote the Dirichlet and Neumann boundary conditions and
h, T and L refer to the harmonic, transverse and longitudinal parts. The latter are defined as
follows:
�L2

hD
(�) = span{�uk : λ(D)k = 0}, �L2

hN
(�) = span{�vk : λ(N)k = 0},

�L2
TD

(�) = clL̄2 (span{�∇ × �∇ × �uk : λ(D)k �= 0}), �L2
TN

(�) = clL̄2 (span{�∇ × �∇ × �vk : λ(N)k �= 0}),
�L2

LD
(�) = clL̄2 (span{�∇(�∇ · �uk) : λ(D)k �= 0}), �L2

LN
(�) = clL̄2 (span{�∇(�∇ · �vk) : λ(N)k �= 0}),

where {�uk : k ∈ N} and {�vk : k ∈ N} are orthonormal bases of eigenvectors11 of the Dirichlet
and Neumann vector Laplacians,

�D�uk = −λ2
(D)k�uk, �N�vk = −λ2

(N)k�vk,

and −λ2
(D,N)k their corresponding eigenvalues (notice that ��Q := �∇(�∇ · �Q)− �∇ × �∇ × �Q). For

∂� regular enough, �uk,�vk ∈ �C∞(�). The �L2 orthogonality of the subspaces appearing in the
preceding decompositions follows from straightforward computations that take into account
the relevant boundary conditions. It is well known that the dimension of the harmonic subspaces
�L2

hD
(�) and �L2

hN
(�) is finite. We will denote by {�u (h)

k : k = 1, . . . , a} and {�v (h)

k : k = 1, . . . , b}
our bases for �L2

hD
(�) and �L2

hN
(�), respectively. On the other hand, if λ(D,N)k �= 0, we can

decompose

�uk = �u (L)

k + �u (T )

k := −λ−2
(D)k

�∇(�∇ · �uk) + λ−2
(D)k

�∇ × �∇ × �uk,

�vk = �v(L)

k + �v(T )

k := −λ−2
(N)k

�∇(�∇ · �vk) + λ−2
(N)k

�∇ × �∇ × �vk.

Whenever �u (L,T )

k �= �0 and �v (L,T )

k �= �0, it is straightforward to prove that the transverse and
longitudinal vector fields �u (L,T )

k and �v (L,T )

k are also eigenvectors of the Dirichlet and Neumann
Laplacians with eigenvalues −λ2

(D,N)k, respectively. Hence, the Hilbert subspaces �L2
h, �L2

T and
�L2

L can be generated in terms of harmonic, transverse and longitudinal Laplace eigenvectors
as follows:

�L2
hD

(�) = span
{
�u(h)

k : k = 1, . . . , a
}
, �L2

hN
(�) = span

{
�v (h)

k : k = 1, . . . , b
}
,

�L2
TD

(�) = clL̄2

(
span

{
�u (T )

k : k ∈ N
})

, �L2
TN

(�) = clL̄2

(
span

{
�v(T )

k : k ∈ N
})

,

�L2
LD

(�) = clL̄2

(
span

{
�u (L)

k : k ∈ N
})

, �L2
LN

(�) = clL̄2

(
span

{
�v(L)

k : k ∈ N
})

.

11 Although it is not strictly necessary to introduce modes, they provide a convenient physical picture of the
electromagnetic field in bounded media.
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It is also possible (and convenient) to characterize these spaces without mentioning the spectra
of the Laplace operators. For example, it is straightforward to show that

�L2
LN

(�) = �∇H1(�),

�L2
TN

(�) ⊕ �L2
hN

(�) = (�∇H1(�))⊥ = {�v ∈ �L2(�) : �∇ · �v = 0,�n · �v|∂� = 0},
�L2

LD
(�) = �∇H1

0 (�),

�L2
TD

(�) ⊕ �L2
hD

(�) = (�∇H1
0 (�))⊥.

We discuss now, in turn, the closures of the relevant sets appearing in the analysis
of the GNH algorithm for the Dirichlet and Neumann boundary conditions in standard
electromagnetism. The procedure that we will use is a generalization of the one followed
for the scalar field. It is important to notice, nonetheless, the need to introduce the right
functional spaces (associated, in particular, with the curl and divergence operators) and the
fact that the Hodge decomposition is non-trivial in this case.

C.1. Dirichlet boundary conditions

C.1.1. Submanifold closure. The only non-trivial closure in this case is cl�L2 (�CD(�)) where

�CD(�) = {�P ∈ �H0(curl, �) ∩ �H(div, �) : �∇ · �P = 0}
= {�P ∈ �H(curl, �) ∩ �H(div, �) : �∇ · �P = 0,�n × �P|∂� = �0}.

First, notice that �u (h,T )

k ∈ �CD(�) for all k. Hence

�L2
hD

(�) ⊕ �L2
TD

(�) ⊂ cl�L2 (�CD(�)).

If we show now that �L2
LD

⊂ �CD(�)⊥, we can conclude that cl�L2 (�CD(�)) = �CD(�)⊥⊥ ⊂
(�L2

LD
)⊥ = �L2

hD
(�) ⊕ �L2

TD
(�) and, hence,

cl�L2 (�CD(�)) = �L2
hD

(�) ⊕ �L2
TD

(�).

This is straightforward because, for all �P ∈ �CD(�), we have

〈�P, �∇(�∇ · �uk)〉�L2 = 〈−�∇ · �P, �∇ · �uk〉�L2 +
∫

∂�

(�n · �P)(�∇ · �uk)|∂� vol∂� = 0,

where we have used the fact that �∇ · �P = 0 and �uk satisfies the Dirichlet boundary conditions.

C.1.2. Tangency of vector fields. Let
�RD := {�∇ × �∇ × �Q : �Q ∈ �H2

∂ (curl, �)} = {�∇ × �∇ × �Q : �Q ∈ �H2(curl, �),�n × �Q|∂� = �0}.
We will show that

�RD ⊂ �L2
hD

(�) ⊕ �L2
TD

(�).

First notice that, for all �∇ × �∇ × �Q ∈ �RD,

〈�∇ × �∇ × �Q, �∇(�∇ · �uk)〉�L2 =
∫

∂�

(�∇ × �Q) · (�n × �∇(�∇ · �uk))|∂� vol∂� = 0

because the Dirichlet boundary conditions imply (�n × �∇(�∇ · �uk))|∂� = �0. Therefore
�L2

LD
(�) ⊂ �R⊥

D ⇒ cl�L2 ( �RD) ⊂ �L2
LD

(�)⊥ = �L2
hD

(�) ⊕ �L2
TD

(�)

and we can conclude
�RD ⊂ �L2

hD
(�) ⊕ �L2

TD
(�).
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C.2. Neumann boundary conditions

In this case there are two non-trivial closures to compute:

cl�L2 (�CN ) := cl�L2{�P ∈ �H(curl, �) ∩ �H(div, �) : �∇ · �P = 0,�n · �P|∂� = 0},
cl�H(curl)(

�FN ) := cl�H(curl){�Q ∈ �H2(curl, �) : �n × (�∇ × �Q)|∂� = 0}.

The first is similar to the computation performed in the Dirichlet case; it suffices to
exchange �uk by �vk. By proceeding this way we get

cl�L2 (�CN ) = �L2
hN

(�) ⊕ �L2
TN

(�).

In order to compute cl�H(curl)(
�FN ) we start by pointing out that all the eigenstates of the

Neumann Laplacian �vk belong to �FN . Then, if �v ∈ �F⊥
N we have that

0 = 〈�v,�vk〉�H(curl) = 〈�v,�vk〉�L2 + 〈�∇ × �v, �∇ × �vk〉�L2 = 〈�v,�vk + �∇ × �∇ × �vk〉�L2

for every �vk. The condition 〈�v,�vk + �∇ × �∇ × �vk〉�L2 = 0 implies

〈�v,�v (h)

k 〉�L2 = 〈�v,�v(T )

k 〉�L2 = 〈�v,�v(L)

k 〉�L2 = 0

for all �v (h,T,L)

k so that �v = �0. We conclude then

cl�H(curl)(
�FN ) = �H(curl, �).

C.2.1. Tangency of vector fields. Let
�RN := {�∇ × �∇ × �Q : �Q ∈ �H2(curl, �),�n × (�∇ × �Q)|∂� = �0}.

Then, for all �∇ × �∇ × �Q ∈ �RN ,

〈�∇ × �∇ × �Q, �∇(�∇ · �vk)〉�L2 =
∫

∂�

�∇(�∇ · �vk) · (�n × (�∇ × �Q)|∂� vol∂� = 0,

where we have used �n × (�∇ × �Q)|∂� = �0. Therefore
�L2

LN
(�) ⊂ �R⊥

D ⇒ cl�L2 ( �RN ) ⊂ �L2
LN

(�)⊥ = �L2
hN

(�) ⊕ �L2
TN

(�)

and we can conclude
�RN ⊂ �L2

hN
(�) ⊕ �L2

TN
(�).

Appendix D. The abstract wave equation

The wave equation plays a central role in the description of the dynamics of field theories in
Physics12. This fact is more than a useful analogy because it is possible to introduce and study
an abstract wave equation that encompasses many relevant linear models [22]. This means
that in addition to having the possibility of considering many different kinds of fields (scalar or
vector fields, for instance) we can also discuss, in the same setting, all the different boundary
conditions that they must satisfy. These conditions are important input needed to describe the
relevant physics and from a mathematical point of view they are necessary to have well posed
problems.

The mathematical ingredients of the construction that we give in this appendix are the
following.
12 This is the case, for example, for waves in elastic media as well as in theories with a more ‘fundamental’ flavor
such as electromagnetism, the only basic interaction described by a free theory.
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• A real, separable, Hilbert space H with scalar product 〈· , ·〉H. In all relevant examples
this space will be of the form L2(�, E ) where � is a finite dimensional manifold with a
sufficiently smooth boundary (for example piecewise smooth). E is a finite dimensional
vector bundle on � equipped with a Riemannian metric (in the present paper we always
have E = � × R

n and we use the Euclidean metric.)
• A Laplace-like operator. Specifically a non-negative, unbounded, self-adjoint operator13

−�C defined on an appropriate dense domain of H. An important issue here is related
to the different topologies involved. On one hand we have the natural topology in H.
Furthermore, the domain must be endowed with a topology of its own in such a way that
−�C becomes continuous14. This topological space will be denoted as D(−�C). This
topology is not the one induced by that of H. In order to have the possibility of considering
the set D(−�C) as a topological subspace of H we introduce a continuous, injective
immersion j : D(−�C) → H and think of the immersed domain as the image under j.
When there is no danger of confusion we will denote this topological subspace of H either
as j(D) or D. Notice also that cl(j(D(−�C))) = H. In the following we will need to
consider also the square root of −�C and its domain—that differs from both D(−�C) and
H. This new domain is endowed also with a specific topology. We will have the following
chain of continuous injective immersions

D(−�C)
j2−→ D( −�C)

j1−→ H.

The relationship between the different inclusion maps is now cl(j2(D(−�C))) =
D(

√−�C) and cl(j1(D(
√−�C))) = H. Notice that j = j1 ◦ j2.

• The following decomposition must be true H = ker(−�C)⊕ range(−�C) where ⊕ is the
direct orthogonal sum (with respect to the scalar product 〈· , ·〉H) and ker(−�C) is finite
dimensional. A natural class of operators satisfying these conditions are the so-called
Fredholm operators.

We can write now the wave equation as

�̈ − �C� = 0 (D.1)

supplemented with appropriate initial conditions. This is an evolution equation in the Hilbert
space H. Its solutions are, hence, curves in H parametrized by the time variable t ∈ [t1, t2] (�̈
denotes, as usual, the second derivative with respect to t). Some regularity conditions on the
curve � must be imposed. These are:

� ∈ C2([t1, t2],H) ∩ C1([t1, t2],D( −�C)) ∩ C0([t1, t2],D(−�C)).

The conditions � ∈ C2
(
[t1, t2],H

)
and �(t) ∈ D(−�C) for t ∈ [t1, t2] guarantee the existence

of �̈ and −�C� as elements in H. The remaining conditions � ∈ C0
(
[t1, t2],D(−�C)

)
and

� ∈ C1
(
(t1, t2),D(

√−�C)
)

are much less obvious and, in fact, can only be understood
a posteriori as necessary conditions to guarantee the integrability of (D.1). This issue can
be understood by invoking the Hille–Yoshida theorem or, alternatively, by considering the
integrability of the Hamiltonian vector field that describes the dynamics. The preceding
requirements imply that the initial conditions must have the form �(t0) = Q0 ∈ D(−�c) and
�̇(t0) = V0 ∈ D(

√−�c).

13 The subindex in the symbol �C is introduced to remind the reader of the fact that boundary conditions must be
taken into account and are a fundamental part of the mathematical definition of the operator.
14 The domain D of a unbounded operator A in a Hilbert space H can be endowed, for example, with the graph
topology defined by the norm ||x||D := ||x||H + ||Ax||H. With respect to this topology the operator A : D → H is
obviously continuous.
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It is useful to rewrite the wave equation (D.1) as a first order system. A natural way to do
that is the following(

Q̇
V̇

)
=

(
0 I

�C 0

) (
Q
V

)
.

The curves (Q(t),V (t)) provide solutions �(t) = Q(t) to (D.1) and also their time derivatives
�̇(t) = V (t). This equation can be interpreted as the equation for the integral curves of the
linear vector field X : D(−�C) × D(

√−�C) → D(
√−�C) × H given by

X (Q,V ) = (V,�CQ).

Notice that the domain and the range of the vector field are not the same. As written,
this field is continuous because we are using the natural topologies of D(−�C) and
D(

√−�C). On the other hand if the domain D(−�C) × D(
√−�C) is seen as the subset

j(D(−�C))×j1(D(
√−�C)) ⊂ H×H (with the induced topology) this field is not continuous.

This type of behavior is characteristic of field theories and does not appear in mechanical
systems with a finite number of degrees of freedom.

The integral curves of X (Q,V ) can be written in closed form as(
Q(t)
V (t)

)
=

(
1 t
0 1

) (
�kerQ0

�kerV0

)

+
(

cos
√−�Ct (

√−�C)−1 sin
√−�Ct

−(
√−�C) sin

√−�Ct cos
√−�Ct

) (
�ranQ0

�ranV0

)
. (D.2)

In this expression (Q0,V0) ∈ D(−�C) × D(
√−�C) are the initial data for the field and its

first time derivative. The operators �ker and �ran are the orthogonal projectors associated with
the orthogonal decomposition H = ker(−�C)⊕ range(−�C). The functions of the Laplacian
�C appearing in (D.2) are defined with the help of the spectral theorem. We want to emphasize
here that (D.2) is not a formal expression but, in fact, the actual solution to the problem. In
particular it is valid for all the boundary conditions leading to Laplacian operators satisfying
the conditions that we have made explicit above.

Let us discuss now some important regularity features of the solution (D.2). First of all,
these curves are defined and continuous in the domain D(−�C) ×D(

√−�C). However, it is
important to notice that the tangent vectors(

Q̇(t)
V̇ (t)

)
=

(
0 1
0 0

) (
�kerQ0

�kerV0

)

+
( − sin

√−�Ct (
√−�C)−1 cos

√−�Ct
−(

√−�C) cos
√−�Ct − sin

√−�Ct

) (√−�C�ranQ0√−�C�ranV0

)

(D.3)

are not contained (in general) in D(−�C) × D(
√−�C) but rather in the closure

cl(j2D(−�C) × j1D( −�C)) = D( −�C) × H.

Strictly speaking they are not tangent to the domain of the vector field but, rather, to its closure
as defined above. Again this phenomenon is characteristic of field theories and does not show
up in mechanical systems with a finite number of degrees of freedom.

We close this appendix with several comments. First we want to point out that although
the continuity of the integral curves can be proved by relying on the explicit form of the
solution that we have obtained, it is actually a consequence of powerful results such as the
Hille–Yoshida theorem that applies to more general equations than the ones discussed here.
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The usual way to arrive at a first order formulation is to derive the vector field from a
geometric (symplectic) approach, such as the Hamiltonian formulations obtained by using the
Dirac or GNH algorithms. These methods provide the Hamiltonian vector fields—whenever
they exist—associated with the field equation under consideration. It is important to realize
that the existence of these fields does not necessarily imply the existence of integral curves
with reasonable smoothness properties. In fact, the reason why we have required −�C to be
non-negative is related to this fact. It is well known, for example, that the change −�C by
�C turns the wave equation into an elliptic problem. The Hamiltonian vector field in this case
is simply X (Q,V ) = (V,−�CQ) and is perfectly well defined in the same functional spaces
used above, however its integral curves are ill defined.
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