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Abstract

We discuss two different types of issues concerning the quantization of Einstein–
Rosen waves. First we study in detail the possibility of using the coherent states 
corresponding to the dynamics of the auxiliary, free Hamiltonian appearing in the description 
of the model to study the full dynamics of the system. For time periods of arbitrary length 
we show that this is only possible for states that are close, in a precise mathematical sense, to 
the vacuum. We do this by comparing the quantum evolutions defined by the auxiliary and 
physical Hamiltonians on the class of coherent states. In the second part of the paper we 
study the structure of n-point functions. As we will show their detailed behavior differs 
from that corresponding to standard perturbative quantum field theories. We take this 
as a manifestation of the fact that the correct approximation scheme for physically 
interesting objects in these models does not lead to a power series expansion in the relevant 
coupling constant but to a more complicated asymptotic behavior.

1. Introduction

Einstein–Rosen (ER) waves [1] provide a very interesting toy model to discuss several issues
relevant for the quantization of general relativity [2–17]. The reason behind this is the
possibility of exactly describing the dynamics of the system both classically and quantum
mechanically. This is true even after coupling some types of matter fields—massless scalars—
to the gravitational degrees of freedom [14, 15]. The main purpose of this paper is to discuss
two different issues. The first is related to the problem of finding semiclassical states for the
dynamics of the system, the second is to discuss the structure of important physical objects:
the n-point functions of the model.
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A Hamiltonian description of ER waves shows that the dynamics of this system is rather
interesting owing to some unexpected features of the model. Probably the most striking one is
that the Hamiltonian is bounded both above and below. This is a direct consequence of the fact
that it can be written as a bounded function of the Hamiltonian for a free field theory [18, 19].
The origin of this free Hamiltonian can be traced back to the asymptotic behavior chosen for
the metric at infinity (in the (2+1)-dimensional sense explained in [18]). It is possible to gain a
lot of information on the classical and quantum dynamics of the system by taking advantage of
this functional dependence mentioned above. For instance, the quantization can be carried out
by using a Fock Hilbert space defined by the auxiliary free Hamiltonian. This is so because the
spectral theorem allows us to define the physical Hamiltonian once we construct the auxiliary
one in a suitable Hilbert space.

The first issue that we want to discuss here is related to the definition of semiclassical states
for the full dynamics and the possibility of using those corresponding to the free auxiliary
Hamiltonian as an approximate substitute. Coherent states play a very important role for
systems of coupled Harmonic oscillators—including free field theories that can be readily
interpreted as models consisting of an infinite number of them. They display a very interesting
behavior because they somehow bridge the gap between states with a purely quantum behavior
and classical solutions to the equations of motion. For example, even though they display the
characteristic dispersion of position and momentum observables, coherent states are minimal
in the sense that the Heisenberg inequalities are saturated. Also the mean values of position
and momenta evolve according to the classical equations of motion. For this reason coherent
states can be considered as the best semiclassical states for linear systems. In the context of ER
waves, the large quantum gravity effects discovered by Ashtekar in [5] (see also [6–8]) were
analyzed by using coherent states. The main result in [5] is that if one considers a coherent
state �C for the quantum scalar field that describes the local degrees of freedom of an ER wave
and computes the relative uncertainties ��C

O/〈O〉�C
of a certain relevant observable O—that

can be interpreted as the quantum counterpart of a metric component of the ER waves—one
gets huge uncertainties even for coherent states with low (but no-zero) occupation number3

‖C‖2 when C is peaked around a not too low value of the energy. Here, we want to discuss,
from a dynamical point of view, the usefulness of coherent states as bona fide semiclassical
states. As we will see, the class of coherent states cannot be considered as semiclassical for
the dynamics of the system and hence the behavior discussed in [5–8] is, in fact, rather natural
from our point of view. The results of this paper should be considered as complementary to
those presented in [5–8].

The problem of finding semiclassical states for systems different from the harmonic
oscillator is a very difficult one whose general solution is not known (in fact, even for such
important systems as the hydrogen atom no such states have been found to date). As a
consequence of this it is natural to expect that no coherent states—in the traditional sense—
exist for the dynamics of the ER waves (in fact this is a consequence of a simple exercise
that can be carried out for the one-dimensional harmonic oscillator [20]). What we want to
study here is to what extent the coherent states that do exist for the auxiliary dynamics can be
used to derive meaningful information for quantum ER waves. To this end, we will compare
the states obtained by evolving a coherent state �C for the free Hamiltonian at a certain time
t0 = 0 both with the auxiliary dynamics U0(t) and the full physical dynamics4 U(t). We do
this by considering ‖U0(t)�C −U(t)�C‖, and the projection of U(t)�C on the coherent state
�Ct

labeled by the classical evolution of the classical initial data C. We do this both for small

3 Written in terms of the classical initial data C.
4 Note that we can use the same Hilbert space to describe the auxiliary and the full dynamics because the physical
Hamiltonian is a function of a free Hamiltonian.
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and large values of t. As we will see it is possible to quantify the periods of time where free
coherent states remain approximately coherent for the full dynamics. We will also show that
for large values of t their distance becomes as large as possible (for orthogonal states).

A second set of questions that we want to address concerns the relationship between the
exact quantization of ER waves and standard perturbative approaches. As the system can
be exactly solved it is possible to devise efficient approximation schemes to extract physical
information about it. We have done this in the recent past to discuss, for example, issues
related to microcausality [10, 12, 13]. The main lesson that we have learnt from this type
of analysis is that the asymptotic behavior of physically interesting objects is not captured
by simple power series expansions in terms of the relevant coupling constant. Here we give
an alternative way to understand this by looking at n-point functions. These are the building
blocks used in standard perturbative analysis in QFT to obtain the S-matrix and discuss such
important issues as renormalizability. As we will see the structure of n-point functions is such
that one cannot expect a simple perturbative series to appear and, hence, the non-standard
asymptotic behaviors found in previous works are natural in this setting.

The paper is organized as follows. After this introduction we discuss in section 2 the
basic material needed to describe the canonical reduced phase space for the model. Section 3
is devoted to the construction of the one-particle Hilbert space for the auxiliary Hamiltonian.
Section 4 deals with the Fock quantization and the quantum dynamics of the system. We
discuss several issues related to the definition of coherent states for the free auxiliary dynamics
of the model in section 5. We also study the asymptotics, both for small and large times, of
some functions that measure the deviation of the states evolved with the full dynamics with
respect to the states obtained by evolving the same quantum initial data with the free, auxiliary,
dynamics. The main point discussed in section 6 is the structure of the n-point functions. They
can be exactly written in closed form. At every relevant order n we uncover a mixing property
that characterizes their structure and shows that we are dealing with an interacting theory
despite the fact that the main building block in its construction is a free model. We end
with the conclusions and an appendix that summarizes some technical results concerning the
asymptotic expansions that appear in the main body of the paper.

2. Canonical reduced phase space

Einstein–Rosen waves describe vacuum solutions to the Einstein equations5 R
(4)
ab = 0 for a

symmetry reduction of general relativity consisting of spacetimes of the form
(
R

4, g
(4)
ab

)
with

four-dimensional metrics g
(4)
ab having two hypersurface orthogonal, commuting, spatial Killing

vector fields. The isometry group of these spacetimes is R × U(1) and the metrics are regular
at a symmetry axis. If we use a single global coordinate chart (x, y, z, t) on R

4 it is possible
to take these Killing fields as (∂/∂z)a and (∂/∂σ )a: = x(∂/∂y)a − y(∂/∂x)a . The cylindrical
coordinates naturally associated with the previous Cartesian coordinates allow us to write the
four-dimensional metric in the form

g
(4)
ab = eγ−φ[−e−γ∞(dt)a(dt)b + (dr)a(dr)b] + r2 e−φ(dσ)a(dσ)b + eφ(dz)a(dz)b,

where −∞ < t < ∞, 0 < r =
√

x2 + y2, 0 < σ < 2π,−∞ < z < ∞ and the symmetry
axis lies at r = 0. In the previous expression γ (t, r) = γ (t,

√
x2 + y2) and φ(t, r) =

φ(t,
√

x2 + y2) are smooth functions6 of (t, x, y) ∈ R
3, and γ∞(t): = limr→∞ γ (t, r). Note

5 Here and in the following we use Penrose’s abstract index notation.
6 These conditions guarantee the smoothness of the axially symmetric scalar function at r = 0. In the following
when we talk about smoothness in the axis we will refer to this condition.

3



that eφ is the norm of the translational Killing field (∂/∂z)a . The time coordinate t is chosen
in such a way that the vector field (∂/∂t)a is an asymptotic (for large r) unit Killing vector
field for all the (2+1)-dimensional metrics of the form

gab = eφ
(
g

(4)
ab − eφ(dz)a(dz)b

) = −eγ−γ∞(dt)a(dt)b + eγ (dr)a(dr)b + r2(dσ)a(dσ)b (2.1)

defined on the space of orbits of the translational Killing vector field. This choice makes sense
[4] because, under certain fall-off conditions for the fields γ and φ, the Einstein equations
imply that γ∞ is time independent and non-negative. The value of

2π(1 − e−γ∞/2) ∈ [0, 2π) (2.2)

represents the deficit angle of the asymptotically conical, (2+1)-dimensional metrics,
belonging to the class defined by (2.1). We want to remark at this point that when γ∞ = 0 this
deficit angle vanishes and, hence, the asymptotic behavior is exactly given by the auxiliary
Minkowskian background metric

ηab = −(dt)a(dt)b + (dr)a(dr)b + r2(dσ)a(dσ)b. (2.3)

This background metric will play an important role in the following.
As we have mentioned above, the Einstein field equations R

(4)
ab = 0 force γ∞ to be

constant in t whereas the function γ can be obtained in terms of φ (see, for example, [4, 15]).
In particular, once we fix some Cauchy data (Q, P ) for φ at some initial time t = t0 (say,
t0 = 0), we can compute the quantity

γ∞ = 1

2

∫ ∞

0
(P 2(r) + Q′2(r))r dr,

that will be seen to be a constant of motion under the dynamics defined by the Hamiltonian
given below—solve for φ(t, r) as a solution to the Einstein equations with initial data

φ(0, r) = Q(r), eγ∞/2φ̇(0, r) = P(r) r ∈ [0,∞)

and, finally, obtain

γ (t, r) = 1

2

∫ r

0
(eγ∞ φ̇2(t, s) + φ′2(t, s))s ds.

As we can see, the local physical degrees of freedom of the ER waves are described by a scalar
field φ.

The dynamics induced by the Einstein equations on the field φ that we have just described
admits a well-known Hamiltonian formulation [4] for which the Cauchy surfaces are the level
surfaces of the asymptotic Minkowskian time coordinate t. In order to describe it let us first
introduce C ⊂ C∞(R2), the linear space whose points are smooth real functions on R

2 with
rapid decay that depend on (x, y) ∈ R

2 through r =
√

x2 + y2 ∈ [0,∞). The asymptotic
conditions for the Cauchy data Q(r) and P(r) can be relaxed both at r = 0 and r → ∞. This
is important for the classical viewpoint but is irrelevant for the Fock quantization considered
in this paper in the sense that the Fock space of quantum states turns out to be insensitive
to the detailed choice of these asymptotic conditions. The canonical reduced phase space of
the Einstein–Rosen waves ϒ = (P, ω), with points generically denoted as (Q, P ) ∈ ϒ , is
defined by endowing P = C × C with the standard (weakly) symplectic structure

ω((Q1, P1), (Q2, P2)): =
∫ ∞

0
(Q2(r)P1(r) − Q1(r)P2(r))r dr. (2.4)
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The description of the classical dynamics in ϒ is done in the form of an autonomous
Hamiltonian system (ϒ, ω, h) with a Hamiltonian h : ϒ → R that is defined in terms of
the quadratic (free) auxiliary Hamiltonian7

h0(Q, P ) := γ∞(Q, P ) = 1

2

∫ ∞

0
(P 2(r) + Q′2(r))r dr

through a non-polynomial map

h(Q,P ) = 2 − 2 exp
(− 1

2h0(Q, P )
)
. (2.5)

Note that, in view of (2.2), h(Q,P ) can be interpreted (up to a π factor) as the deficit angle of
the metrics (2.1). The Hamilton equations derived from this non-quadratic Hamiltonian are

Q̇ = e−h0(Q,P )/2P, Ṗ = e−h0(Q,P )/2�Q,

where � denotes the Laplacian � : C → C acting on axially symmetric functions as

(�F)(r): = F ′′(r) +
F ′(r)

r
.

Note that the 1/r term in the previous expression originates in the axial symmetry of the
system.

3. The one-particle Hilbert space adapted to the asymptotic structure

This section is devoted to the construction of the one-particle Hilbert space that we will later
use to build the Fock space where the quantization of this system will take place. We start
by pointing out that the Laplacian operator introduced above can be extended to a densely
defined operator � = −� on L2([0,∞), r dr). The operators � and

√
� are self-adjoint and

non-negative. As usual8 it can be employed to define a complex structure J : ϒ → ϒ on the
canonical phase space according to9

J

(
Q

P

)
: =

(
0 −1/

√
�√

� 0

) (
Q

P

)
. (3.1)

This complex structure is the restriction to the axisymmetric case of the standard complex
structure adapted to the Poincaré symmetry of the background metric (2.3). It can be used to
construct a complex vector space ϒJ whose points are exactly the same as the points of ϒ and
the multiplication by complex numbers10 x + iy ∈ C is defined by

(x + iy)(Q,P ) := x(Q,P ) + yJ (Q,P ).

It is possible to combine now ω and J to define a positive-definite sesquilinear form

〈·, ·〉J : ϒJ × ϒJ → C,

〈(Q1, P1), (Q2, P2)〉J = 1

2
ω(J (Q1, P1), (Q2, P2)) − i

2
ω((Q1, P1), (Q2, P2)),

7 We use units such that c = h̄ = 8G3 = 1, where G3 denotes the effective Newton constant per unit length in the
direction of the symmetry axis.
8 Here we closely follow the ideas developed in [21].
9 In order to make sense of J it is necessary to restrict the domain of � � 0 so that 1/

√
� is well defined. To this

end it suffices to consider functions F(x, y) such that their Fourier transform f (w1, w2) vanishes in a neighborhood

of zero. This guarantees that
√

w2
1 + w2

2f (w1, w2) and f (w1, w2)/

√
w2

1 + w2
2 are of rapid decay and smooth, even

at (w1, w2) = (0, 0), when f (w1, w2) is chosen smooth and of rapid decay. We will implicitly use this domain when
needed. Note however that there are many functions that can be used to describe physical situations, for example the

Gaussian e−x2−y2
, that do not satisfy this restriction.

10 Here x, y ∈ R. As usual i = √−1 is the imaginary unit.
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providing us with a scalar product on ϒJ . The one-particle Hilbert space HJ of the ER waves
is the Cauchy completion of (ϒJ , 〈·, ·〉J ).

There is another useful construction of the one-particle Hilbert space that uses ϒC—the
C-vector space obtained from ϒ by considering complex functions in CC ⊂ C∞([0,∞), C)

with the standard multiplication by complex scalars—as the starting point. In order to see this
we note that the complex structure (3.1) can be diagonalized in ϒC. In fact, the vectors

(C,∓i
√

�C) ∈ ϒC, C ∈ CC,

are eigenvectors of J corresponding to the eigenvalues ±i. Hence we can write ϒC as the
direct sum ϒC = ϒ+ ⊕ ϒ− where

ϒ±: = {(C,∓i
√

�C) ∈ ϒC|C ∈ CC}.
It is clear that ϒ+ ∩ ϒ− = {0} and ϒ̄+ = ϒ− where

(C,∓i�1/2C) := (C,±i�1/2C).

If we take a point (Q, P ) ∈ ϒ there exists a unique C ∈ CC, given by

C = 1
2

(
Q + i�− 1

2 P
)
,

such that

(Q, P ) = (C,−i
√

�C) + (C,−i
√

�C). (3.2)

From equation (3.2) it is easy to see that given the first component C = 1
2 (Q + i�− 1

2 P)

of (C,−i
√

�C) ∈ ϒ+; the other can be then computed without any ambiguity. Hence, the
one-particle Hilbert space HJ can be equally well described in terms of the complex functions
C by using the following identification11 κ : HJ → H

C = κ(Q,P ): = 1
2 (Q + i�− 1

2 P), (3.3)

(Q, P ) = κ−1C = (C + C,−i
√

�(C − C)). (3.4)

The map κ is adapted to the complex form J in the sense that if κ(Q,P ) = C then
κ◦J (Q,P ) = iC. According to the previous discussion we can build a Hilbert space

H = {C : ‖C‖2 = 〈C,C〉 < ∞},
defined with the help of the scalar product

〈C1, C2〉 := 1

2
ω(Jκ−1C1, κ

−1C2) − i

2
ω(κ−1C1, κ

−1C2),

that is equivalent to the one-particle Hilbert space HJ . The complex structure in H is diagonal
(JC = iC for all C ∈ H). At variance with the situation concerning the spaces ϒ± (for which
ϒ̄+ = ϒ−), if we work with H the operator is a conjugation in H, that is, H is an antilinear

map from H to H satisfying C = C.
There are several mathematical structures that are easier to handle in H than in HJ . For

example, the classical Hamiltonian that describes the dynamics of the Einstein–Rosen waves
can be written now in terms of the scalar product and the operator � given above by noticing
that

h0(κ
−1C) = ‖� 1

4 C‖2 = 〈C,
√

�C〉
h(κ−1C) = 2 − 2 exp(−〈C,

√
�C〉/2).

11 At this point, H is just a linear space of complex functions C(r) that will become a Hilbert space once a scalar is
introduced.
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It is interesting to point out here that the scalar product 〈·, ·〉 on H can be written in terms of
the usual L2([0,∞), r dr) product

〈C1, C2〉L2 :=
∫ ∞

0
C1(r)C2(r)r dr

as 〈C1, C2〉 = 2〈C1,
√

�C2〉L2 . This allows us to show that � is self-adjoint in H. This can
be seen by using the mode decomposition introduced at the end of subsection 3.2 that allows
us to write � as a multiplication operator.

3.1. Classical dynamics in the one-particle Hilbert space

Let us consider now the dynamics of the scalar field defined by the auxiliary free Hamiltonian

h0(Q, P ) = 1

2

∫ ∞

0
(P 2(r) + Q′2(r))r dr = 〈C,

√
�C〉 (with C = κ(Q,P ))

in the one-particle Hilbert space H. To this end we first write the free (linear) Hamilton
equations in terms of the fields C,

Ċt = −i
√

�Ct, with initial data C0 = C at t = 0. (3.5)

The self-adjointness of � in H allows us to write the general solution C0
t to equation (3.5) as

the action of the unitary operator exp(−it
√

�) on the initial data C, i.e.

C0
t = exp(−it

√
�)C.

If C0
αt = exp(−it

√
�)Cα denotes the evolution from t = 0 to an arbitrary time t of some

initial data that we label as Cα , the unitary character of the classical evolution in H implies
that 〈

C0
1t , C

0
2t

〉 = 〈C1, C2〉 for all t ∈ R.

In particular the norms of the states remain constant in time.
The nonlinear dynamics defined by (2.5) on the reduced phase space of the Einstein–

Rosen waves can also be described in the one-particle Hilbert space H. The solution Ct at
time t to the field equations with initial data C at t = 0 can be written now as

Ct = exp(−it e−h0(κ
−1C)/2

√
�)C. (3.6)

Note that Ct depends on the initial data C in a nonlinear way. Hence, if we denote by C1t , C2t

and C(1+2)t the solutions corresponding to the initial data C1, C2 and C1 + C2 it is clear that
C(1+2)t �= C1t +C2t . From (3.6) it is also evident that the evolution does not preserve the scalar
product on H i.e.

〈C1t , C2t 〉 �= 〈C1, C2〉. (3.7)

However, it is easy to see from (3.6) that

‖Ct‖ = ‖C‖ for all t ∈ R.

This is not in conflict with (3.7) because Ct does not depend linearly on C.
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3.2. Mode decomposition

In the following we will find it convenient to work with a suitable mode decomposition adapted
to the axial symmetry of our system. Given any F ∈ C or CC, we will use the following Fourier
integral representation12:

F(r) = 1√
2

∫ ∞

0
f (w)J0(wr) dw,

related to the two-dimensional Fourier transform

(FF)(w) = (FF)
(√

[b]w2
1 + w2

2

) = 1

2π

∫
R

2
F(

√
x2 + y2) e−i(xw1+yw2) dw1 dw2,

according to f (w) = √
2w(FF)(w). The functions f (w)/w, where w =

√
w2

1 + w2
2, belong

to the class of C∞(R2) in the two real variables (ω1, ω2) with rapid decay. Note that with
these conventions f (0) = 0. The action of the operator

√
� can be written in a nice way in

this Fourier representation

(
√

�F)(r) = 1√
2

∫ ∞

0
wf (w)J0(wr) dw.

The mapping κ connecting the (Q, P ) and C descriptions of the one-particle Hilbert space
also has a simple expression in this representation. In fact, given

Q(r) = 1√
2

∫ ∞

0
q(w)J0(wr) dw, P (r) = 1√

2

∫ ∞

0
p(w)J0(wr) dw

then C = κ(Q,P ) (we will say that C and (Q, P ) are κ-related) if it can be written as

C(r) = 1√
2

∫ ∞

0
c(w)J0(wr) dw,

with

c(w) = 1

2

(
q(w) +

ip(w)

w

)
.

Finally the scalar product of the one-particle Hilbert space H simplifies to

〈C1, C2〉 =
∫ ∞

0
c1(w)c2(w) dw, ‖C‖2 =

∫ ∞

0
|c(w)|2 dw,

and also the free Hamiltonian can be written in the simple form

h0(κ
−1C) =

∫ ∞

0
w|c(w)|2 dw.

4. Fock quantization and quantum dynamics

The one-particle Hilbert space H allows us to construct the Hilbert space Fs(H) used in
standard approaches to the quantization of Einstein–Rosen waves as the symmetric Fock
space

Fs(H) =
∞⊕

n=0

H⊗sn with H0: = C,

12 Here J0 denotes the zeroth-order Bessel function of the first kind.
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where H⊗sn denotes the symmetrized tensor product of n copies of H. We will write the inner
product in Fs(H) in the form 〈·|·〉.

Following the rules of second quantization [22] we extend certain operators from H to the
symmetric Fock space Fs(H). If we are given a unitary operator exp(iA) : H → H written
in terms of a self-adjoint operator A : D(A) ⊂ H → H, with domain D(A), we can promote
them to the Fock space Fs(H). In particular, there exists a self-adjoint operator

d�(A) : D(d�(A)) ⊂ Fs(H) → Fs(H)

and a unitary operator �(i exp(A)) such that

�(i exp(A)) = exp(i d�(A)) : Fs(H) → Fs(H).

The operator d�(A) is called the second quantization of A and is defined by

d�(A): =
∞⊕

n=0

A(n)

where

A(0): = 0,

A(n): = A ⊗ I ⊗ · · · ⊗ I + I ⊗ A ⊗ · · · ⊗ I + · · · + I ⊗ I ⊗ · · · ⊗ A

and I denotes the identity operator on H. In particular we can use this procedure to construct
the free auxiliary Hamiltonian. This is defined in the one-particle Hilbert space in terms of√

� according to

h0(Q, P ) = h0(κ
−1C) = 〈C,

√
�C〉.

Also, the classical evolution in H is described in terms of the unitary operator exp(−it
√

�).
Hence, the second quantization of exp(−it

√
�) and

√
� will give us the free quantum unitary

evolution and the free quantum Hamiltonian. Explicitly, the auxiliary free Hamiltonian13 H0

is defined on Fs(H) as

H0: = d�(
√

�),

and the quantum evolution operator is given by

U0(t): = �(exp(−it
√

�)) = exp(−it d�(
√

�)) = exp(−itH0). (4.1)

Note that, given C⊗n ∈ H⊗sn the action of the free Hamiltonian H0 can be read from the
formula

(H0C
⊗n)(r1, . . . , rn) = 1

2n/2

∫
[0,∞)n

(
n∑

i=1

wi

)
n∏

j=1

c(wj )J0(wj rj ) dwj .

Furthermore, note that H0|H = √
� and hence, if C ∈ H ⊂ Fs(H) belongs to the domain of

H0, we have14

〈C|H0C〉 =
∫ ∞

0
w|c(w)|2 dw = h0(C).

In order to make sense of the quantum counterpart of the full (physical) classical
Hamiltonian (2.5) we make use of the quantum free Hamiltonian H0 and the functional
relation between the free and physical classical Hamiltonians h0 and h. In particular

h(Q,P ) = E(h0(Q, P )) := 2 − 2 exp(−h0(Q, P )/2),

13 We use a lowercase h0 to denote the Hamiltonian quadratic form in the one-particle Hilbert space and H0 for the
free quantum Hamiltonian operator in the Fock space.
14 In the following we use h0(C) to refer to h0(κ

−1C).
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where E : [0,∞) → [0, 2) is the function

E(x) := 2 − 2 exp(−x/2). (4.2)

The spectral theorems then guarantee that the operator

H := E(H0)

is a well defined self-adjoint operator on Fs(H). It is important to note that H is not the
second quantization of any self-adjoint operator on H. In particular, in spite of the fact that
the restriction of H to the one-particle Hilbert space satisfies H |H = E(

√
�), the quantum

Hamiltonian H �= d�(E(
√

�)). Hence the unitary operator evolution

U(t) = exp(−itH)

generated by H is not the second quantization of any unitary operator on the one-particle Hilbert
space. This is not a surprise because, as we have discussed in section 2, the full classical
dynamics is not even described by a linear operator in H. Finally, it is important to point out
that the n-particle subspaces H⊗sn of the Fock space are stable under the quantum evolution
generated by H. At first sight this might seem striking because classical ER waves are not
stationary spacetimes and, in principle, one would expect particle creation effects. However,
the asymptotic conditions [4] used to derive the Hamiltonian formulation discussed in section 2
restrict the class of ER waves considered here to those metrics that are asymptotically
Minkowskian in its (2+1) formulation (2.1). In this context it is possible to use the preferred
Fock quantization associated with the Minkowskian metric (2.3) for which the particle creation
effects are absent.

5. Coherent states

As we have discussed in section 2, a vector in the one-particle Hilbert space C ∈ H can be
thought of, through the identification (3.3) and (3.4), as the Cauchy data (Q, P ) at a given
time for the scalar field that describes the degrees of freedom of an ER wave. It is well known
that there exists a family of quantum states �C ∈ Fs(H), parametrized by C ∈ H, that behave
semiclassically under the free auxiliary evolution. These are the coherent states

�C = e−‖C‖2/2
∞⊕

n=0

1√
n!

C⊗n,

where C⊗0 = 1 ∈ C and C⊗n ∈ H⊗sn denotes the tensor product of n copies of the vector
C ∈ H. Note that ‖�C‖ = 1 irrespectively of the value of ‖C‖. The scalar product of two
coherent states �C1 and �C2 can be expressed in terms of the scalar product in the one-particle
Hilbert space as

〈�C1 |�C2〉 = exp
(− 1

2‖C1 − C2‖2 + i Im〈C1, C2〉
) ;

in particular

|〈�C1 |�C2〉| = exp
(− 1

2‖C1 − C2‖2) > 0, for all C1, C2 ∈ H.

The inner product 〈�C1 |�C2〉 never vanishes but |〈�C1 |�C2〉| decreases when we increase the
distance between the Cauchy data C1 and C2. The class of coherent states is closed under the
free dynamics defined by (4.1),

U0(t)�C = exp(−itH0)�C = �exp(−it
√

�)C = �C0
t
.

In other words, at any given time t the free quantum evolution of the coherent state associated
with the Cauchy data C is just the coherent state associated with the classical time evolution
of these Cauchy data.
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For the full evolution the situation is, on the other hand, quite different because in this
case, if C �= 0, the time evolution defined by the full physical Hamiltonian H is such that

U(t)�C = exp(−itH)�C �= �Ct
= exp(−it e−h0(C)/2H0)�C.

As we can see U(t)�C does not give the coherent state labeled by the classical solution Ct .
Furthermore an argument similar to that presented in [20] for the Harmonic oscillator shows
that U(t)�C , with C �= 0, does not belong to the class of coherent states. The case C = 0 is
special because the coherent state �0 = 1 ⊕ 0 ⊕ 0 ⊕ · · · ∈ Fs(H) is both the Fock vacuum
and the vacuum for the Hamiltonian H. It satisfies H�0 = 0 and hence U(t)�0 = �0.

In the following we will give a quantitative measure of how the time evolution of the free
coherent states deviates from the behavior that one would naturally demand for a bona fide
coherent state. First, we will study the function

DC(t) := ‖U0(t)�C − U(t)�C‖2

= 2〈�C |(1 − cos(t (E(H0) − H0)))�C〉

= 2 − 2 e−‖C‖2
∞∑

n=0

1

n!
〈C⊗n| cos(t (E(H0) − H0))C

⊗n〉

that explicitly measures the distance between the states obtained by evolving a given coherent
state with the free and the full dynamics. Second, we will consider the function

PC(t) := 〈�Ct
|U(t)�C〉 = 〈�C | exp(it (e−h0(C)/2H0 − E(H0)))�C〉

= e−‖C‖2
∞∑

n=0

1

n!
〈C⊗n| exp(it (e−h0(C)/2H0 − E(H0)))C

⊗n〉

that tells us how the full evolution of a coherent state defined by some Cauchy data deviates
from the coherent state associated with the full classical evolution of the same initial data. This
is done by studying the projection of one state onto the other. In particular we will consider the
short- and long-time limits of DC(t) and PC(t). The short-time limit will give us information
about how fast a coherent state of the auxiliary free dynamics ceases to be semiclassical. The
large-time limit will lend us some information about how far from each other these states are
if we let them evolve for a sufficiently long time.

5.1. Asymptotic behavior for short times

The behavior of these functions for short times can be obtained from the following result that
can be easily derived by using a Taylor expansion.

Let C ∈ D(�n) ⊂ H, then

DC(t) = 2
n∑

k=0

(−1)k+1t2k

(2k)!
〈(H0 − E(H0))

2k〉�C
+ O(t2n+2),

PC(t) =
n∑

k=0

(it)k

k!
〈(e−h0(C)/2H0 − E(H0))

k〉�C
+ O(tn+1),

where, as usual, 〈O〉� = 〈�|O�〉 denotes the expectation value of the observable O in the
normalized state �. There are several cases that we have to analyze separately

DC(t) = t2〈(E(H0) − H0)
2〉�C

+ O(t4).

Re(PC(t)) = 1 − t2

2
〈(e−h0(C)/2H0 − E(H0))

2〉�C
+ O(t4).

Im(PC(t)) = t〈e−h0(C)/2H0 − E(H0)〉�C
+ O(t3).
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First we see that DC(0) = 0 and PC(0) = 1. Also, as expected, the short-time asymptotic
behavior is controlled by the energy E(H0). For DC(t) we see that, as long as we choose
states �C such that 〈(E(H0) − H0)

2〉�C
is small the values of DC(t) will be approximately

zero (they behave as a constant times t2). In an analogous way, those states giving a small
value for 〈e−h0(C)/2H0 − E(H0)〉�C

will force PC(t) to remain close to one for a longer period
of time.

5.2. Asymptotic behavior for long times

The study of the asymptotic behavior for t → ∞ is not as straightforward as the previous one
and requires some work. In this case we will use the stationary phase method to obtain the
sought for asymptotic behaviors. In the following it will be useful to work with finite sums
instead of infinite series so, for each N ∈ N, we start by defining the truncations

DC(t,N) := 2 − 2 e−‖C‖2
N∑

n=0

1

n!
〈C⊗n| cos(t (E(H0) − H0))C

⊗n〉,

PC(t, N) := e−‖C‖2
N∑

n=0

1

n!
〈C⊗n| exp(it (e−h0(C)/2H0 − E(H0)))C

⊗n〉.

These functions DC(t,N) and PC(t, N) involve a finite number of terms and approximate the
corresponding DC(t) and PC(t) uniformly15 in t. This means that if we fix a certain element
C ∈ H and ε > 0 there exists a natural number NC(ε) ∈ N such that

|DC(t) − DC(t,NC(ε))| < 2ε |PC(t) − PC(t, NC(ε))| < ε

irrespective of the value of t. These results allow us to work with the approximations given
by DC(t,N) and PC(t, N).

Let us first consider the asymptotic behavior of the squared distance DC(t). If C(r) is a
continuous function given by the expression

C(r) = 1√
2

∫ ∞

0
c(w)J0(wr) dw ∈ H

the approximations provided by DC(t,N) have the following asymptotic behavior for t → ∞
(see appendix A):

DC(t,N) ∼ 2 − 2 e−‖C‖2 − Bc e−‖C‖2
�

(
βc + 1

2

)
cos

(π

4
(βc + 1)

) (
4

t

) βc+1
2

, (5.1)

where Bc and βc � 2 are real numbers depending on the chosen state C(r). As we can see
DC(t,N) approaches 2 − 2 e−‖C‖2

as 1/
√

t3 (or faster). The distance remains small when
‖C‖ → 0 (i.e. when C is close, in the ‖·‖-norm, to the value 0 ∈ H that labels the Fock vacuum
state �0) and it approaches its maximum value16 when ‖C‖ → ∞ (due to the exponential
decay in ‖C‖2 this limit is reached very fast).

Finally let us consider PC(t). In this case, for a continuous C ∈ H, the approximations
PC(t, N) have the following asymptotic behavior:

PC(t, N) = e−‖C‖2
+

1√
t

exp(it�(C))F (C,N) + O(1/t),

where

�(C): = (h0(C) + 2) e−h0(C)/2 − 2

15 The auxiliary mathematical results presented in this section are proved in the appendix.
16 For unit orthogonal vectors the maximum valued of the norm of their difference is

√
2.
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and F(C,N) is a fixed factor that depends on C and N. They can be obtained by applying
the stationary phase method as explained in the appendix. The main conclusion that we draw
from the asymptotic analysis that we have carried out in the large-time limit t → ∞ is that the
coherent states corresponding to the free dynamics do not behave as semiclassical states for
the dynamics defined by the full Hamiltonian of the system as soon as ‖C‖ ∼ 1. In particular
the quantum evolution U(t)�C of the coherent state defined by the initial data C, with
‖C‖ � 1, and the coherent state �Ct

labeled by the classical evolution of C become almost
orthogonal for large times.

6. Quantum field operators and n-point functions

The main purpose of this section is to look at the problem of quantizing Einstein–Rosen waves
and related models from a perturbative perspective. This is an interesting issue because we
have an exact quantization in our hands and, hence, we can compare exact results with those
obtained by suitable approximations. In fact, as we have discussed elsewhere [10, 12, 13],
if we use asymptotic methods to extract the physical behavior of the model in terms of
the relevant coupling constant (related to the Planck length) we are led to behaviors that
cannot be captured by the power series expansions that one expects to get from a perturbative
approach. The n-point functions play a very important role in quantum field theory. In fact,
for the standard physical models, they are the key ingredients to construct relevant physical
quantities such as the S-matrix. We will try here to study the structure of the n-point functions
and compare them with those obtained from familiar QFT’s such as QED. As we will see
the structure of these Green functions is not the standard one corresponding to interactions
defined by field-dependent potential terms. This gives us a different perspective concerning
the failure of standard perturbative treatments to deal with the types of QFT’s considered in
this paper.

In the following we will use creation and annihilation operators a∗(C) and a(C)

respectively. These are labeled with vectors C ∈ H in the one-particle Hilbert space introduced
in section 3. They satisfy the usual commutation relations

[a(C1), a
∗(C2)] = 〈C1, C2〉Id,

where Id denotes the identity operator on Fs(H). The conjugation ¯ : H → H introduced
above allows us to define subspaces of H consisting of purely real or imaginary vectors

HR: = {C ∈ H|C = C}, HI: = {C ∈ H|C = −C}.
They are related by the equality

HI = iHR.

Now, given f ∈ HR, we can define the field and momentum operators φ(f ) and π(f ) in terms
of annihilation and creation operators

φ(f ): = a(f ) + a∗(f ) = a(f ) + a∗(f ),

π(f ): = a(if ) + a∗(if ) = −ia(f ) + ia∗(f ).

They satisfy the commutation relations

[φ(f1), π(f2)] = 2i〈f1, f2〉Id.

It is possible to introduce a single operator ϒ(C), labeled by C = 1
2 (Q + i�− 1

2 P), to describe
both the field and its canonically conjugate momentum

ϒ(C) := a(C) + a∗(C)

= 1
2 (a(Q) + a(i�− 1

2 P) + a∗(Q) + a∗(i�− 1
2 P))

= 1
2 (φ(Q) + π(�− 1

2 P)).
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The commutation relations for these operators are simply given in terms of the symplectic
form (2.4) by

[ϒ(C1), ϒ(C2)] = −iω(C1, C2)Id.

We study now the (Heisenberg image) time evolution of the ϒ(C) from an initial instant
of time t = 0 to a generic time t both under the free auxiliary dynamics and the full dynamics
introduced above.

Free dynamics. In this case we can immediately see that

ϒ0(t, C): = U−1
0 (t)ϒ(C)U0(t) = exp(itH0)ϒ(C) exp(−itH0) = ϒ

(
C0

t

)
,

where C0
t = exp(−it

√
�)C is the free classical evolution of the Cauchy data defined by C.

The fact that the free dynamics can be written in such simple terms reflects in the form of the
n-point functions F 0

n defined as the vacuum expectation values of products of ϒ0(t, C) for
different instants of time and

F 0
n (t1, C1; t2, C2; . . . ; tn, Cn) = 〈ϒ0(t1, C1)ϒ

0(t2, C2) · · ·ϒ0(tn, Cn)〉�0

= 〈
ϒ

(
C0

1t1

)
ϒ

(
C0

2t2

) · · ·ϒ(
C0

ntn

)〉
�0

.

In fact, it is well known that

F 0
2n+1(t1, C1; t2, C2; . . . ; t2n+1, C2n+1) = 0

and F 0
2n(t1, C1; t2, C2; . . . ; t2n, C2n) can be written in terms of two-point functions F 0

2 (ti , Ci;
tj , Cj ). For example the four-point function is given by

F 0
4 (t1, C1; t2, C2, t3, C3; t4, C4) = F 0

2 (t1, C1; t3, C3)F
0
2 (t2, C2; t4, C4)

+ F 0
2 (t1, C1; t4, C4)F

0
2 (t2, C2; t3, C3)

+ F 0
2 (t1, C1; t2, C2)F

0
2 (t3, C3; t4, C4).

Full dynamics. Let us discuss now the evolution defined by the full Hamiltonian of the system.
In this case the (Heisenberg) time evolution of the operators ϒ(C) is given by

ϒ(t, C) := U−1(t)ϒ(C)U(t) = exp(itH)ϒ(C) exp(−itH).

The unitarity of the time evolution implies that the (equal-time) commutation relations between
the ϒ(C) operators are independent of t,

[ϒ(t, C1), ϒ(t, C2)] = −iω(C1, C2)Id.

However, at variance with the free evolution, it is now clear that

ϒ(t, C) �= ϒ(Ct) = ϒ(exp(−it e−h0(κ
−1C)/2

√
�)C)

because in this case the classical dynamics

Ct = exp(−it e−h0(κ
−1C)/2

√
�)C

has a nonlinear dependence on the initial data C. This also means that it is not possible to find
any Bogoliubov relation of the form

U−1(t)a(C)U(t) = a(AtC) − a∗(BtC), for all t,

for any pair of operators At and Bt defined on the one-particle Hilbert space. It is important
to note at this point that, despite the naive expectation, we have that

U−1(t)a(C)U(t) �= a(exp(itE(
√

�))C).

14



In fact the real situation is the following. The time evolution of the annihilation and creation
operators a∗(C) and a(C) is given by expressions17 of the form

a(t, C): = U−1(t)a(C)U(t) = exp(−it e−H0/2 ⊗ E(
√

�)right)a(C), (6.1)

a∗(t, C): = U−1(t)a∗(C)U(t) = a∗(C) exp(it e−H0/2 ⊗ E(
√

�)left). (6.2)

This can be easily proved by using the identities

[a(C),Hn
0 ] = Hn

0 a(�
n
2 C) − Hn

0 a(C)

or equivalently

a(C)Hn
0 = Hn

0 a(�
n
2 C).

In the previous formulae (6.1) and (6.2) we have used a notation that tries to convey the
interplay between the C’s that label the operators and the Hilbert space states upon which they
act. Given a n-particle state V ∈ H⊗sn, with Fourier coefficients v(w1, . . . , wn), the vector

exp(−it e−H0/2 ⊗ E(
√

�)right)a(C)V ∈ H⊗s (n−1)

has the following Fourier coefficients:

√
n

∫ ∞

0
exp(−it e−(w1+···+wn−1)/2E(w))c(w)v(w,w1, . . . , wn−1) dw.

This mixing, due to the interaction present in the system, introduces important complications
in the computation of n-point functions for n > 2 and makes it quite different from the free
case.

The n-point functions for the Einstein–Rosen waves considered here are defined as

Fn(t1, C1; t2, C2; . . . ; tn, Cn): = 〈�0|ϒ(t1, C1)ϒ(t2, C2) · · ·ϒ(tn, Cn)�0〉.
Owing to the fact that we are dealing with an effectively interacting model these n-point
functions behave very differently from the free case ones. The two-point function can be very
easily computed in this case

F2(t1, C1; t2, C2) = 〈�0|a(t1, C1)a
∗(t2, C2)�0〉 = 〈a∗(t1, C1)�0|a∗(t2, C2)�0〉

= 〈exp(it1E(
√

�))C1| exp(it2E(
√

�))C2〉
=

∫ ∞

0
exp(i(t2 − t1)E(w))c1(w)c2(w) dw.

These two-point functions have been studied in detail in [12, 13]. Note that when the coupling
constant of the model18 G = G3h̄ is reintroduced (G = G3 in units h̄ = 1) it appears in non-
polynomial form through the expressions involving the function E defined in (4.2), explicitly
E(w) = 1

4G
(1 − e−4Gw). This is a distinctive feature of the model that ultimately leads to

behaviors that cannot be written as powers of the coupling constants. Likewise, the four-point
function can be obtained in a direct way and is given by

F4(t1, C1; t2, C2; t3, C3; t4, C4) = 〈a∗(t2, C2)a
∗(t1, C1)�0|a∗(t3, C3)a

∗(t4, C4)�0〉
+ F2(t1, C1; t2, C2)F2(t3, C3; t4, C4),

but, at variance with the situation for the free four-point function, F4 cannot be written as a
sum of products of two-point functions. The difference lies in what we call a mixing term

〈a∗(t2, C2)a
∗(t1, C1)�0|a∗(t3, C3)a

∗(t4, C4)�0〉
17 These have been derived in a slightly different form in [10].
18 G3 is the effective Newton constant per unit length in the direction of the symmetry axis.
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that cannot be written as a product of two-point functions. Explicitly,

〈a∗(t2, C2)a
∗(t1, C1)�0|a∗(t3, C3)a

∗(t4, C4)�0〉

=
∫ ∞

0

(∫ ∞

0
c2(w2)c4(w2) exp(i(t4 − t2 e−w1/2)E(w2) + it3 e−w2/2E(w1))) dw2

)

× c1(w1)c3(w1) exp(−it1E(w1)) dw1

+
∫ ∞

0

(∫ ∞

0
c2(w2)c3(w2) exp(i(t3 − t2) e−w1/2E(w2)) dw2

)

× c1(w1)c4(w1) exp(i(t4 − t1)E(w1)) dw1.

We will refer to this situation by saying that this last term has a mixing order of four. Note
again the non-trivial behavior of this function in terms of the coupling constant of the model.

Finally it can be shown in general that F2n+1 = 0 whereas the 2n-point functions

F2n(t1, C1; . . . ; t2n, C2n)

= 〈�0|a(t1, C1)(a(t2, C2) + a∗(t2, C2)) · · · (a(t2n−1, C2n−1)

+ a∗(t2n−1, C2n−1))a
∗(t2n, C2n)�0〉

always have a term with maximal mixing order of 2n. In every case there are two extreme
situations as far as the mixing order of the different terms is concerned. On the one hand19 we
can have 〈

�0

∣∣∣∣∣
n∏

k=1

a(t2k−1, C2k−1)a
∗(t2k, C2k)�0

〉
=

n∏
k=1

F2(t2k−1, C2k−1; t2k, C2k)

that can be written as a product of two-point functions. On the other hand〈
�0

∣∣∣∣∣
n∏

k=1

a(tk, Ck)

2n∏
s=n+1

a∗(ts, Cs)�0

〉
=

〈
n∏

k=1

a∗(tk, Ck)�0

∣∣∣∣∣
2n∏

s=n+1

a∗(ts, Cs)�0

〉

is maximally mixed (in fact the mixing order is higher than the maximum present for 2(n−1)-
point functions).

7. Conclusions

We have studied the quantization of Einstein–Rosen waves in the reduced phase space obtained
by imposing the asymptotic flatness condition of [18] and using an asymptotic, unit, timelike,
Killing vector field to parametrize the time evolution. We have discussed two different types of
issues that are relevant to understand quantum Einstein–Rosen waves. The first issue that we
have considered is related to the semiclassical limit of the system. Specifically we have studied
to what extent the coherent states corresponding to the free auxiliary dynamics of the model
can be thought of as semiclassical states under the evolution defined by the full non-quadratic
Hamiltonian. The conclusion that we draw from our analysis is that for short periods of time
(with a length determined by the Hamiltonian H0 as expected on general grounds) the free
coherent states can, indeed, be considered as semiclassical. In the long-time limit we recover
from a dynamical point of view the results of Ashtekar [5] about the existence of large quantum
effects in the system. Specifically we see that the free coherent states �C with low occupation
number (‖C‖ ∼ 1) do not behave semiclassically and it gets worse and worse for larger values

19 With the aim of simplifying some expressions we will use the following notation for products of operators∏n
k=1 Ak : = A1A2 · · ·An.
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of ‖C‖. We have discussed this by studying the distance and the mutual projections of certain
states obtained by considering the different time evolutions relevant in the model (the auxiliary
one given by H0 and the full physical one). If we consider the squared distance, as a function
of time, between the states obtained by evolving coherent states with the auxiliary evolution
and the full evolution we see that it approaches the value 2 − 2 exp(−‖C‖2). If ‖C‖ is very
small this distance remains small whereas it becomes significant once ‖C‖ ∼ 1. Finally
for larger values of ‖C‖ the distance approaches the maximum value for orthogonal states.
Similar conclusions can be reached by studying suitable projections. We want to emphasize
that we have not proved the impossibility of finding good semiclassical states for the model
but only that not all the semiclassical states for the free auxiliary model can be considered as
such for the full dynamics. An interesting open problem is to find a sufficiently large class
of semiclassical states representing classical ER waves corresponding to arbitrary Cauchy
data C.

A second point that we have studied is the mathematical structure of the n-point functions.
The main reason to do this is to get some information about the possible perturbative analysis
of the system. We have seen that the structure of the n-point functions is different from that
corresponding to a free QFT. This is noteworthy because the formalism that we have used
here relies on the fact that our model can be conveniently described in terms of an auxiliary
free model. The structure of the n-point functions, for which we are able to give closed
form expressions, displays the distinctive features of an interacting model because they cannot
be written simply in terms of two-point functions. Also the type of non-local interaction
underlying the model shows up in the detailed form of these objects that differ from those
obtained for familiar systems where the interaction is just given by a field-dependent potential.
This is compatible with the known fact (discussed elsewhere) that the asymptotic approach to
the study of physical observables for this model leads to expansions in terms of the relevant
coupling constant (that can be interpreted as an effective Planck length) that are incompatible
with any power series [13, 14].

We want to conclude by remarking that the present model can be exactly solved. In fact
the exact evolution operator and their matrix elements can be exactly written. This means,
in particular, that there is no need to separately consider the n-point functions to construct
physical objects such as the S-matrix. Of course n-point functions are interesting objects with
important physical interpretations (see [10, 15]) so it makes sense to understand how they can
be obtained as we have done here.

Acknowledgments
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Appendix A. Asymptotic expansions

This appendix contains the proofs of several results used to obtain the asymptotic behavior of
DC(t) and PC(t) in the large t asymptotic limit studied in subsection 5.2. We will write them
in the form of propositions.
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Proposition A.1. Given C ∈ H and ε > 0 there is a number NC(ε) ∈ N, independent of
t ∈ R, such that

|DC(t) − DC(t,NC(ε))| < 2ε

and

|PC(t) − PC(t, NC(ε))| < ε.

The proof is based on the fact that it is always possible to find NC(ε) ∈ N in such a way
that

e−‖C‖2
∞∑

n=NC(ε)

1

n!
‖C‖2n < ε;

and hence,

|DC(t) − DC(t,NC(ε))| =
∣∣∣∣∣2 e−‖C‖2

∞∑
n=NC(ε)

1

n!
〈C⊗n| cos(t (E(H0) − H0))C

⊗n〉
∣∣∣∣∣

� 2 e−‖C‖2
∞∑

n=NC(ε)

1

n!
|〈C⊗n| cos(t (E(H0) − H0))C

⊗n〉|

� 2 e−‖C‖2
∞∑

n=NC(ε)

1

n!
‖C⊗n‖ · ‖ cos(t (E(H0) − H0))C

⊗n‖

� 2 e−‖C‖2
∞∑

n=NC(ε)

1

n!
‖C⊗n‖2 = 2 e−‖C‖2

∞∑
n=NC(ε)

1

n!
‖C‖2n < 2ε.

We also have

|PC(t) − PC(t, NC(ε))| =
∣∣∣∣∣e−‖C‖2

∞∑
n=NC(ε)

1

n!
〈C⊗n| exp(it (e−H0(C)/2H0 − E(H0)))C

⊗n〉
∣∣∣∣∣

� e−‖C‖2
∞∑

n=NC(ε)

1

n!
|〈C⊗n| exp(it (e−H0(C)/2H0 − E(H0)))C

⊗n〉|

� e−‖C‖2
∞∑

n=NC(ε)

1

n!
‖C⊗n‖ · ‖C⊗n‖ = e−‖C‖2

∞∑
n=NC(ε)

1

n!
‖C‖2n < ε.

This result allows us to work with the truncations given by DC(t,N) and PC(t, N).

Proposition A.2. Let

C(r) = 1√
2

∫ ∞

0
c(w)J0(wr) dw ∈ H,

and let us assume |c(w)|2 = Bcw
βc + O(wβc+2) (w → 0+), with Bc �= 0 and βc � 2 real

constants depending on the state C. Then the approximations DC(t,N) satisfy, in the limit
t → ∞,

DC(t,N) ∼ 2 − 2 e−‖C‖2 − Bc e−‖C‖2
�

(
βc + 1

2

)
cos

(π

4
(βc + 1)

) (
4

t

) βc+1
2

.

As a consequence, DC(t,N) approaches 2 − 2 e−‖C‖2
as (1/t)3/2 or faster.
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This result follows from

DC(t,N) = 2 − 2 e−‖C‖2
N∑

n=0

1

n!
AC

n ,

where AC
0 : = 1 and

AC
n := 〈C⊗n| cos(t (E(H0) − H0))C

⊗n〉

=
∫

[0,∞)n
cos

⎛
⎝t

⎛
⎝ n∑

j=1

wj − E

⎛
⎝ n∑

j=1

wj

⎞
⎠

⎞
⎠

⎞
⎠ |c(w1)|2 · · · |c(wn)|2 dw1 · · · dwn

= 1

2

∫ ∞

0
exp(it (z − E(z)))Gn(z, C) dz +

1

2

∫ ∞

0
exp(−it (z − E(z)))Gn(z, C) dz.

In the last integral we have performed the following change of variables:

(w1, . . . , wn−1, wn) �→ (w1, . . . , wn−1, z), where z =
n∑

j=1

wj,

and defined the functions Gn(z, C) as

Gn(z, C) :=
∫

∏n−1
k=1[0,z−∑k−1

j=1 wj )

∣∣∣∣∣∣c
⎛
⎝z −

n−1∑
j=1

wj

⎞
⎠

∣∣∣∣∣∣
2

n−1∏
k=1

|c(wk)|2 dw1 · · · dwn−1.

These behave, in the z → 0 limit, as Gn(z, C) ∼ Bn
c zn(βc+1)−1 with Bc and βc � 2 real

constants that depend on the state that we have chosen to start with (note that, as we pointed
out in subsection 3.2, the Fourier coefficients c(w) satisfy c(0) = 0). Hence, the stationary
phase method [23] gives the following asymptotics for AC

n , n � 1, in the t → ∞ limit:

AC
n (t) ∼ Bn

c

2
�

(
n(βc + 1)

2

)
cos

(
π

4
(n(βc + 1))

) (
4

t

) n(βc+1)

2

.

We conclude that the main contribution to the asymptotic expansion of DC(t,N) is given by
2 − 2 e−‖C‖2(

AC
0 + AC

1

) = 2 − 2 e−‖C‖2(
1 + AC

1

)
. This way we finally get (5.1).

Proposition A.3. If C ∈ H (regular enough) then PC(t, N) satisfies the identity

PC(t, N) = e−‖C‖2
+

exp(it�(C))√
t

F (C,N) + O(1/t) (t → ∞),

where

�(C): = (h0(C) + 2) e−h0(C)/2 − 2

and F(C,N) is a function that depends only on C and N ∈ N.

The proof is a straightforward application of the stationary phase method [23] to

〈C⊗n| exp(it (e−h0(C)/2H0 − E(H0)))C
⊗n〉 =

∫ ∞

0
exp(it (e−h0(C)/2z − E(z)))Gn(z, C) dz

=
√

4π eh0(C)/4Gn(h0(C), C)
exp

(
it�(C) + iπ

4

)
√

t
+ O(t−1), n � 1.

Note that

〈C⊗0| exp(it (e−h0(C)/2H0 − E(H0)))C
⊗0〉 = 1.
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