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We use the combinatorial and number-theoretical methods developed in previous

work by the authors to study black hole entropy in the new proposal put forward by

Engle, Noui and Pérez. Specifically we give the generating functions relevant for the

computation of the entropy and use them to derive its asymptotic behavior including

the value of the Immirzi parameter and the coefficient of the logarithmic correction.

PACS numbers: 04.70.Dy, 04.60.Pp, 02.10.Ox, 02.10.De

In this brief note we want to study some of the physical consequences that follow from
the black hole entropy definition proposed, in the context of loop quantum gravity, by Engle,
Noui and Pérez in [1]. The main reason to do this is to check wether this new definition
satisfies the obvious physical requirement of reproducing the Bekenstein-Hawking formula
for large black holes. Without going into the details of the theoretical foundations of this
new proposal, this analysis can be seen as a straightforward consistency check. We also
want to obtain corrections to this formula that can be eventually compared with equivalent
results found in different approaches [2, 3, 4, 5]. An additional reason to perform this study
is to show the power of the combinatorial methods developed by the authors in [6, 7, 8, 9].

The problem of interest can be enunciated in the following way [1]. Given a value of the
black hole area aH = 4πγℓ2

Pκ (where κ ∈ N is the level of the SU(2) Chern-Simons theory
on the horizon,1 ℓP denotes the Planck length, and γ the Immirzi parameter), we have to
determine the number of states labeled by spins j1, . . . , jn satisfying an inequality of the
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type

aH − ǫ ≤ 8πγℓ2
P

n
∑

p=1

√

jp(jp + 1) ≤ aH + ǫ (1)

or alternatively, following the prescription given in [4],

8πγℓ2
P

n
∑

p=1

√

jp(jp + 1) ≤ aH . (2)

Each of these lists gives a contribution to the entropy equal to the dimension of the Hilbert
space HCS(j1, . . . , jn) of the Chern-Simons theory associated with the fixed choice of spins jp

at each puncture p of the horizon. When the Immirzi parameter satisfies |γ| ≤
√

3 the space
HCS(j1, . . . , jn) coincides with the invariant subspace of the tensor product of the irreducible
SU(2) representations [jp] labeled by those spins and hence

dim[HCS(j1, . . . , jn)] = dim[Inv(⊗p[jp])] . (3)

Here we will restrict ourselves to |γ| ≤
√

3. Therefore, once the number dim[Inv(⊗p[jp])] is
computed, the entropy can be directly obtained as its logarithm.

The problem of determining the lists of spins satisfying a condition of the form
∑n

p=1

√

jp(jp + 1) = a for a given value of a has been already discussed in the literature

[6]. In the following we use units such that 8πγℓ2
P = 1. In previous proposals an addi-

tional constraint, the so called projection constraint involving the sum of spin components
∑

p mp = 0, must be satisfied (see [6] and references therein for additional details). The

role of the projection constraint is played now by the invariance condition (3). In order to
take it into account it is convenient to find first a suitable generating function giving this
number for a given list of spins j1, . . . , jn. In the following we will work with integer labels
kp = 2jp. Since the result that we will find is closely related to the one corresponding to the
Ghosh-Mitra (GM) counting [5], we will carry the study of both proposals in parallel2. The
dimension of the relevant invariant subspace can be derived from the scalar product of the
characters χk of the representations [k/2] of SU(2) as

dim[Inv(⊗k[k/2]nk)] = 〈χ0 |
∏

k

χnk

k 〉SU(2) =
1

π

∫ 2π

0

dθ sin2 θ
∏

k

(

sin(k + 1)θ

sin θ

)nk

= − 1

2πi

∮

C

dz

z

(z − z−1)2

2

∏

k

(

zk+1 − z−k−1

z − z−1

)nk

,

where we have considered the tensor product of nk representations of spin k/2 for the
different values of k considered. Here C is the unit circle in the complex z-plane defined by
z = eiθ, θ ∈ [0, 2π).

The previous formula should be compared with the one giving the number of solutions of
the projection constraint for the GM counting that can be obtained in a similar fashion as

2 Though the main results concerning the application of our methods to the GM counting have already

appeared in the literature [6], some new details are provided here for the first time.
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the number of irreducible representations –taking into account multiplicities– that appear
in the direct sum decomposition of the tensor product ⊗p[kp/2]. This is given by

|rep(⊗k[k/2]nk)| =

∞
∑

l=0

〈χl |
∏

k

χnk

k 〉SU(2) =
1

2π

∫ 2π

0

dθ
∏

k

(

sin(k + 1)θ

sin θ

)nk

=
1

2πi

∮

C

dz

z

∏

k

(

zk+1 − z−k−1

z − z−1

)nk

.

The expressions given above allow us to identify the generating functions for the numbers
that we want to obtain, namely

dim[Inv(⊗k[k/2]nk)] = [z0]

(

−(z − z−1)2

2

∏

k

(

zk+1 − z−k−1

z − z−1

)nk

)

,

|rep(⊗k[k/2]nk)| = [z0]

(

∏

k

(

zk+1 − z−k−1

z − z−1

)nk

)

,

where [z0]F (z) denotes the coefficient of the z0 term of the Laurent expansion of F (z) around
z = 0. As in previous work, one has to take into account the relevant factors associated to the
possible reordering of the j-labels in every ‘admissible’ list of spins where, here, admissible
refers to the condition that they must satisfy an equality of the type

∑n
p=1

√

jp(jp + 1) = a.

By proceeding as in [7] we get the following black hole generating functions

GENP(z; x1, x2, · · · ) = −(z − z−1)2

2

(

1 −
∞
∑

i=1

∞
∑

α=1

(

zki
α+1 − z−ki

α−1

z − z−1

)

x
yi

α

i

)−1

, (4)

GGM(z; x1, x2, · · · ) =

(

1 −
∞
∑

i=1

∞
∑

α=1

(

zki
α+1 − z−ki

α−1

z − z−1

)

x
yi

α

i

)−1

. (5)

The integer numbers ki
α and yi

α appearing above are defined as follows: For each squarefree
positive integer pi the pairs (ki

α, yi
α), labeled by α ∈ N, are solutions to the Pell equation

(k + 1)2 − piy
2 = 1. In both cases, ENP and GM, [z0][xq1

1 · · ·xqr

r ] G(z; x1, x2, · · · ) provides
the number of black hole states corresponding to a fixed area value a such that 2a =
q1
√

p1 + · · · + qr
√

pr, where qi ∈ N0 and pi are squarefree positive integers [7].
The last step requires us to take into account the inequality appearing in the definition of

the entropy (1). The way to do this is to use Laplace-Fourier transforms as in [8, 11]. This
is done by performing the substitution xi = e−s

√
pi/2 and z = eiω in the previously obtained

generating functions (4) and (5). By doing this we are left with complex functions on the
variables (s, ω) ∈ Ω × [0, 2π), where Ω ⊂ C is certain region on the complex s-plane that
can be easily determined. Explicitly,

PENP(s, ω) := GENP(eiω; e−s
√

p1/2, e−s
√

p2/2, · · · )

= 2 sin2 ω

(

1 −
∞
∑

k=1

sin((k + 1)ω)

sin ω
e−s

√
k(k+2)/2

)−1

, (6)

PGM(s, ω) := GGM(eiω; e−s
√

p1/2, e−s
√

p2/2, · · · )

=

(

1 −
∞
∑

k=1

sin((k + 1)ω)

sin ω
e−s

√
k(k+2)/2

)−1

. (7)
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Notice that the only difference between (6) and (7) is a prefactor 2 sin2 ω. The functions
P (s, ω) defined above can be used to compute the entropy S(a) of a black hole of area a in
the form

S(a) = log

(

1

(2π)2i

∫ 2π

0

dω

∫ x0+i∞

x0−i∞
ds s−1 easP (s, ω)

)

, (8)

where x0 is any real number satisfying that, for all ω ∈ [0, 2π), all the singularities of
fω(s) = P (s, w) are confined to the band Re(s) < x0 of the complex s-plane. These formulas
count the states corresponding to areas in the interval (0, a] defined in (2). From these
one can immediately obtain the number of states in the interval (a − ǫ, a] and check that,
asymptotically, both numbers grow in exactly the same way.

We end by discussing the asymptotic behavior of the entropy described by the formulas
(6), (7), and (8). First notice that, by using arguments similar to the ones appearing in [8],
one can show that for both (6) and (7) the pole γ̃ > 0 responsible for the leading order in
the asymptotic behavior (the one with the largest real part) is defined by

∞
∑

k=1

(k + 1) e−γ̃
√

k(k+2)/2 = 1 . (9)

This means that the entropy in the new proposal indeed grows linearly with area and the
value of the Immirzi parameter needed to reproduce the Bekenstein-Hawking law coincides
with the one derived by Ghosh and Mitra γ = γ̃/(2π) = 0.274067 · · · <

√
3. On the other

hand the logarithmic corrections for both models are different, in fact we get

SENP(a) =
a

4ℓ2
P

− 3

2
log(a/ℓ2

P ) + O(1) , SGM(a) =
a

4ℓ2
P

− 1

2
log(a/ℓ2

P ) + O(1) .

The reason behind this difference is the prefactor 2 sin2 ω. In the vicinity of the largest real
pole γ̃ (corresponding to ω = 0) defined by (9) the poles of the integrand in the Laplace-
Fourier transform given above can be approximated as

s̃ = γ̃ − α̃ω2 + O(ω4)

where α̃ > 0 is a constant. In a neighborhood of ω = 0 we have sin2 ω ∼ ω2 so the asymptotic
behavior of the entropy for the new proposal [1] is thus given by

SENP(a) ∼ log

(

eγ̃a/(8πγℓ2
P

)

∫ ε

−ε

dω ω2 exp(−αω2a/ℓ2
P )

)

∼ log

(

eγ̃a/(8πγℓ2
P

)

∫ ∞

−∞
dω ω2 exp(−αω2a/ℓ2

P )

)

∼ a

4ℓ2
P

− 3

2
log(a/ℓ2

P ) + O(1) ,

where α = α̃/(8πγ) > 0. In the Ghosh-Mitra case we have instead

SGM(a) ∼ log

(

eγ̃a/(8πγℓ2
P

)

∫ ε

−ε

dω exp(−αω2a/ℓ2
P )

)

∼ log

(

eγ̃a/(8πγℓ2
P

)

∫ ∞

−∞
dω exp(−αω2a/ℓ2

P )

)

∼ a

4ℓ2
P

− 1

2
log(a/ℓ2

P ) + O(1) .
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As we see the reason why the logarithmic correction in the Ghosh-Mitra case has a −1/2
coefficient is the absence of the ω2 factor in the previous integral.

A point of warning is needed here. As explained in [8] the accumulation of the real
parts of the poles of the integrands in (8) may change the asymptotic behavior despite the
fact that the exponential growth is well described by the pole with the largest real part.
This means that the interesting substructure found in [12] may be present here too. In fact
numerical computations for small black holes using both the brute force approach described
in [12], or a numerical implementation of the number theoretic methods encoded in the
generating functions given above, show that the model considered here displays the same
kind of interesting substructure in the entropy found in other instances. These computations
also confirm the values of the Immirzi parameter and the −3/2 coefficient of the logarithmic
term given by the new proposal of [1].
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