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Abstract
This article discusses and explains the Hamiltonian formulation for a class of
simple gauge invariant mechanical systems consisting of point masses and
idealized rods. The study of these models may be helpful to advanced
undergraduate or graduate students in theoretical physics to understand, in a
familiar context, some concepts relevant to the study of classical and quantum
field theories. We use a geometric approach to derive the Hamiltonian for-
mulation for the model considered in the paper: four equal masses connected
by six ideal rods. We obtain and discuss the meaning of several important
elements, in particular, the constraints and the Hamiltonian vector fields that
define the dynamics of the system, the constraint manifold, gauge symmetries,
gauge orbits, gauge fixing, and the reduced phase space.

Keywords: gauge symmetries, Hamiltonian formulation, singular mechanical
models

1. Introduction

Gauge field theories play a central role in the description of the fundamental interactions of
physics. A popular way to present the concept of gauge invariance is based on the idea of
turning global symmetries into local ones, involving arbitrary functions, through the intro-
duction of the so called gauge fields. In many contexts gauge theories are defined, more or
less explicitly, precisely as those obtained by following this procedure. Their physical
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usefulness hinges upon the possibility of finding observables that are insensitive to the
presence of these arbitrary elements; i.e. the identification of suitable gauge invariant func-
tions of the dynamical variables.

An indirect consequence of the introduction of local symmetries is the fact that the field
equations become singular. This singularity manifests itself as the impossibility to solve for
some of the second order time derivatives of the fields in terms of the other objects present in
the equations of motion. An associated effect is the possible appearance of arbitrary functions
in their solutions (notice, though, the existence of singular systems such as the Proca field for
which no arbitrariness shows up). From this perspective gauge theories are a particular
instance of the more general models described by singular Lagrangians (i.e. those leading to
singular Euler–Lagrange equations).

The traditional way to deal with singular Lagrangians and the canonical quantization of
the physical models defined by them relies on the ideas developed by Dirac [1]. A key feature
of the algorithm introduced by him to get the Hamiltonian formulation for these systems is the
appearance of constraints, i.e. conditions that the canonical variables must satisfy at all times
during the evolution. The quantized version of the phase space functions that represent these
constraints is a key element in Dirac’s approach.

A common and widespread misconception is to think that gauge theories must neces-
sarily involve fields, reparametrizations and changes of coordinates or reference frames. The
purpose of this paper is to show that the dynamics of simple mechanical systems, consisting
of a finite number of point particles connected by ideal rods, can display gauge behavior. In
order to make our presentation as pedagogical as possible we will focus on a specific
example, consisting of four equal masses connected by six rods, and compare it with the
quintessential gauge theory: electromagnetism (EM). We will analyze in detail the Lagrangian
and Hamiltonian formulations for the particular model considered here. As we will show our
example mimics some of the crucial features of EM and is richer in some sense, in particular
regarding its Hamiltonian formulation.

The best way to understand the essence of Dirac’s construction is in geometric terms. A
very clear perspective on this issue was provided by Gotay, Nester and Hinds (GNH) [2, 3] so
we will use their method. Instead of giving an abstract description of the GNH algorithm we
will introduce it as we perform the actual computations for our model. In our opinion the
present paper will serve the dual purpose of clarifying some of the concepts behind gauge
systems in a very simple setting (constraints, gauge orbits, gauge symmetry, gauge fixing,
reduced phase space...) and also provide a pedagogical introduction to the Hamiltonian
description of singular systems.

The structure of the paper is the following. After this introduction we will start to study in
section 2 a particular, but representative, model that displays the gauge behavior that we want
to discuss: four particles connected by six rods. Section 3 will be devoted to obtaining the
Hamiltonian formulation for this system in a neat way by using geometric methods inspired in
the GNH algorithm. The paper ends in section 4 with a short discussion.

A comment is in order here; in order to make the paper accessible to advanced under-
graduate students we are not assuming any prior knowledge of differential geometry on the
part of the reader (only standard multivariate calculus), however, we will mention by name
some of the relevant geometric objects to justify their use and show their logical connection
with the concepts discussed in the paper. We will gloss over several technical points that can
be skipped in a first approach to this subject. Readers interested in the geometrization of
classical dynamics are referred to the comprehensive treaty by Abraham and Marsden [4].
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2. The four particle model

Singular finite dimensional dynamical systems have been considered in some detail in the
literature (models displaying different pathological behaviors can be found, for instance, in
the book by Henneaux and Teitelboim [5]). The main drawback of the usual examples is their
rather artificial character, i.e. they do not describe systems with a simple physical inter-
pretation. One of the goals of this paper is to provide one such example. We base our
approach on the possibility of considering some constraint forces as dynamical variables on a
par with the standard (generalized) coordinates. The other central idea is to reproduce, to
some extent, the behavior of hyperstatic systems4 in a dynamical situation.

The simplest model that we could discuss would be a system of two point masses
connected by two ideal rods (massless and completely rigid). It is obvious that the force
exerted by each rod is undetermined: only their sum can have a physical meaning. Similar
arrangements with an arbitrary number N of rods or other collinear models display the same
kind of behavior. We will discard them here for two main reasons: they are somehow trivial
on one hand (i.e. the N-rod model with two masses) or non-generic in a concrete sense
(collinear systems are infinitesimally flexible in the parlance of [6]). Furthermore, the natural
representation of our model, inspired in graph theory, can be generalized to the study of the
dynamics of more interesting and non-trivial examples but is not suitable for systems with
collinear rods.

Our model consists of four equal masses in a triangular arrangement (the fourth mass is
placed at the barycenter) connected by six rods as shown in figure 1. The system is con-
strained to move in the plane. Notice that the structure is rigid and remains so even after
removing one of the rods. We take the following Lagrangian

 
∑ ∑= ∥ ∥ − ∥ − ∥ −
∈ ∈

( ) ( )L q v m q ℓq v v q q, , ,
1

2

1

2
, (2.1)i i j i i j

i

i

i j
i j i j i j{ , } { , }

2

{ , }
{ , }

2
{ , }
2

where our notation makes use of the graph labels associated with our system according to the
numbering shown in figure 1. Here the sets of vertices and edges are respectively given by
 = …{1, , 4} and  = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}. We denote the
length of the i j{ , } edge as ℓ i j{ , } (see figure 1 for their values). The positions and velocities of
the particles are represented by qi and vi respectively. Each of the configuration variables q i j{ , }

is a Lagrange multiplier enforcing the condition that the length of the edge i j{ , } is ℓ i j{ , }. These
conditions are holonomic constraints (i.e. velocity independent) and, hence, can be introduced
in the Lagrangian in this simple way without modifying the Newtonian equations of motion.
The velocities associated with the q i j{ , } are denoted as v i j{ , }.

We pause for a moment to compare L with other well known Lagrangians, in particular
the one describing the free electromagnetic field given by

∫= + + − × ×   ( )( ) ( ) ( )L A V A AA V V V A A x, , ,
1

2
· ( ) · ( ) d . (2.2)EM 0 0 0 0

Here A and A0 are functions5 on 3 that denote the vector and scalar potentials respectively
with the corresponding velocities being V and V0. As we can see L and LEM share some
features, for instance, the velocities associated with some of the dynamical variables (q i j{ , } and
A0) do not appear. Although the introduction of the terms involving q i j{ , } in L may seem as an

4 These are structures for which the equations of statics do not suffice to determine all the internal forces.
5 Their dependence on the spatial coordinates can be roughly understood as the presence of a continuous index in
analogy with the index ∈i that labels the particles in our model.
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artificial complication they are, in fact, similar to the ones involving A0 in LEM. We exploit
this analogy in the present paper.

The Euler–Lagrange equations derived from the Lagrangian L give

∑= − − ∈
∼

( )m q iq q q¨ , , (2.3)i
j i

i j i j{ , }

∥ − ∥ = ∈ℓ i jq q , { , } , (2.4)i j i j
2

{ , }
2

where the ∼j i notation means that the sum extends over all vertices j connected with the
fixed vertex i.

Notice that each term− −q q q( )i j i j{ , } in the rhs of equation (2.3) can be interpreted as the
force exerted on the particle i by the rod connecting it with particle j because the sum of these
terms is the force acting on the ith particle. As there are no terms involving q̈ i j{ , } the system is
singular. It is easy to show the existence of families of solutions to these equations that
depend on a free function but describe the same physics. Consider for instance

=t aq ( ) (0, 0), (2.5 )1

ω ω= −t ℓ t ℓ t bq ( ) ( sin , cos ), (2.5 )2

ω π ω π= − − −t ℓ t ℓ t cq ( ) ( sin( 2 3), cos( 2 3)), (2.5 )3

ω π ω π= − + +t ℓ t ℓ t dq ( ) ( sin( 2 3), cos( 2 3)), (2.5 )4

and

= = =q t q t q t f t a( ) ( ) ( ) ( ), (2.6 ){1,2} {1,3} {1,4}

ω= = = −( )q t q t q t m f t b( ) ( ) ( )
1

3
( ) , (2.6 ){2,3} {2,4} {3,4}

2

where f(t) is an arbitrary function of time and ω a real parameter. It is straightforward to
check that these functions satisfy equations (2.3) and (2.4). Notice that the motion of each
particle is perfectly determined, which implies that the force acting on each of them also is.
However, the force exerted by each rod is not completely determined. This is exactly what

Figure 1. The four masses of magnitude m are connected with six rigid rods to form an
equilateral triangle of side ℓ 3 . The central mass is placed at the barycenter of the
triangle.
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happens in gauge theories: some magnitudes are arbitrary to a certain degree but there are
‘physical functions’ of them (observables) that are not arbitrary.

The constraints (2.4) imply that we cannot freely choose initial positions for all the
particles in the system. They also imply that the velocities cannot be arbitrary either6. A set of
conditions that the velocities must satisfy can be obtained by differentiating equation (2.4):

− − = ∈( ) ( ) i jq q q q· ˙ ˙ 0, { , } . (2.7)i j i j

At this point a simple procedure to obtain all the possible conditions on the configuration
variables and velocities suggests itself: keep on differentiating and using, when possible, the
equations of motion and the constraints already obtained to determine if new independent
conditions appear. Although this method can actually be implemented in the present case7

there are two reasons not to do so. The first is that it is somehow difficult to find out when the
procedure stops. The second is that we are interested in the Hamiltonian formulation
(necessary, for example, to attempt the canonical quantization of our system à la Dirac).

3. The four particle model: the Hamiltonian picture

We obtain now the Hamiltonian formulation for our system by using a method inspired in the
GNH algorithm [2]. The first step to get the Hamiltonian formulation for a mechanical model
from its Lagrangian is to define the canonical momenta and write the generalized velocities in
terms of them. Singular systems are identified, in practice, as those for which this is not
possible. One might hastily conclude that the Hamiltonian formulation does not exist in this
case; however, a quick look at the equations of motion suggests a possible way out: the fact
that the positions of the particles and their velocities are subject to constraints such as (2.4) or
(2.7) could mean that the proper space to define the Hamiltonian dynamics is not the ‘full
phase space’ Γ consisting of all the generalized positions qi, q i j{ , } and momenta pi, p i j{ , } but
rather an appropriate subset of it. The definition of the canonical momenta = ∂ ∂p L v from
the Lagrangian L given by equation (2.1), can be interpreted as a map (known in the technical
literature [4] as the fiber derivative) Γ→FL: 28 defined by

↦ ∂ ∂ ∂ ∂ =( ) ( ) ( )q v q L L v q mq v q v q v, , , , , / , / , , , 0 . (3.1)i i j i i j i i j i i j i i j i{ , } { , } { , } { , } { , }

As the momenta p i j{ , } are zero, the image under FL of a curve t q t t q tq q( ( ), ( ), ˙ ( ), ˙ ( ))k i j k i j{ , } { , }

must be contained in the so called primary constraint submanifold of Γ given by

  ≔ ∈ ≔ = ∈{ }( )q p p i jq p, , , : 0, { , } . (3.2)i i j i i j i j i j0 { , } { , }
28

{ , }
(0)

{ , }

It is, hence, natural to look for a Hamiltonian description defined only on 0 or an
appropriate subset of it. 0 can be viewed as 22 with coordinates qq p( , , )i i j i{ , } .

The evolution of the system in Hamiltonian form is given by the integral curves para-
meterized by time t q t t p tq p( ( ), ( ), ( ), ( ))i i j i i j{ , } { , } of a vector field = X XX X X( , , , )q pq pi i j i i j{ , } { , }

.
These are given by the first order differential equations

= = = =q X p Xq X p X˙ , ˙ , ˙ , ˙ . (3.3)i i j q i i j pq q{ , } { , }i i j i i j{ , } { , }

6 The velocity field for a rigid solid has a very specific form that determines the actual freedom to choose the initial
velocities of the particles.
7 The Lagrangian symplectic approach [3] would provide the rigorous geometric implementation of this procedure.
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The vector field X is obtained by using a construction that involves the Hamiltonian H and an
important geometric object: the symplectic form Ω.

The usual prescription to obtain a Hamiltonian (based on performing a Legendre
transform) cannot be applied to this example but a simple extension of it can be used on 0.
In the present case this amounts to ignoring the p q̇i j i j{ , } { , } terms to get

 
∑ ∑= ∥ ∥ + ∥ − ∥ −
∈ ∈

( ) ( )H q
m

q ℓq p p q q, ,
1

2

1

2
. (3.4)i i j i

i
i

i j
i j i j i j{ , }

2

{ , }
{ , }

2
{ , }
2

Although this function is defined in principle only on 0 it can be trivially extended to Γ as
=H q p H qq p q p( , , , ) ( , , )i i j i i j i i j i{ , } { , } { , } .

The inhomogeneous linear equation that would determine X if the system were non-
singular is8

Ω − =HX 0, (3.5)

where the 28 entries of ΩX (defined by the linear action of Ω on X) are real functions on the
phase space and H denotes the 28-dimensional gradient of H. The geometric structure of Γ
is such that a specific symplectic form Ω with the required properties (non-degeneracy among
them) can always be built—hence the word canonical. A famous theorem by Darboux [4]
proves that it is always possible to find a coordinate system covering a large enough part of Γ
(an open set) where Ω can be written in matrix form as

−× ×

× ×

⎛
⎝⎜

⎞
⎠⎟

I

I

0

0
. (3.6)

14 14 14 14

14 14 14 14

This is actually the reason why elementary treatments avoid discussing the determination of
the vector field X from the Hamiltonian through the solution of (3.5): when Ω takes the
previous form the equations for the integral curves of X are the textbook Hamilton equations.
The Hamiltonian treatment of singular systems requires in an unavoidable way the explicit
consideration of the symplectic structure. This is why we mention it here.

Given that the dynamics in our example must be confined to 0 ( =p 0i j{ , } ), we can
work as if this was the full phase space, in particular, try to find Hamiltonian vector fields

= =X XX X X( , 0) ( , , , 0)qq pi i j i{ , }
, i.e. tangent to 0 and defined only there. Acting on these

vectors equation (3.5) becomes

ω − =X H( ) 0, (3.7)
0

where ω is the 22 × 22 degenerate matrix

ω =
−× × ×

× × ×

× × ×

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

I

I

0 0

0 0 0

0 0
. (3.8)

8 8 8 6 8 8

6 8 6 6 6 8

8 8 8 6 8 8

The action of ω on X that we need in order to solve equation (3.7) is

ω = −( )X X 0 X, , . (3.9)p q6i i

8 This form is enough for our needs in this paper. A more rigorous way to write this equation requires the use of
differential forms and related concepts.
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The gradient on 0 is ≔ ∂ ∂ ∂ ( , , )qq pi i j i{ , }
, hence,

∑= − ∥ − ∥ −
∼


⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( )H q ℓ

m
q q q q

p
,

1

2
, . (3.10)

j i
i j i j i j i j

i
{ , }

2
{ , }
2

The equations (3.7) constitute a linear, inhomogeneous system so, generically, some
condition must be satisfied by the inhomogeneous term for the system to be solvable. It may
also happen that only part of the unknowns (the components of X in this example) are fixed
after solving it. In the present case we easily obtain

= ∈
m

iX
p

, , (3.11)i
qi

∑= − − ∈
∼

( )q iX q q , , (3.12)
j i

i j i jp { , }i

 = ∥ − ∥ − ≕ ∈ℓ i jq q0 , { , } . (3.13)i j i j i j
2

{ , }
2

{ , }
(1)

As we can see equation (3.7) cannot be solved on the whole of 0 but only in the part of it
where condition (3.13) is satisfied. Let us call this subset 1, i.e.

   ≔ ∈ = ∈{ }( )q i jq p, , : 0, { , } . (3.14)i i j i i j1 { , } 0 { , }
(1)

The components of X must have the form given by equations (3.11) and (3.12). Notice that
the components Xq i j{ , }

remain arbitrary at this stage. Now, if the vector field X , with the form
just obtained, were tangent to 1 we would have succeeded in finding an appropriate
submanifold of the phase space where we can define the Hamiltonian dynamics of our
singular system. This can be shown by checking if the directional derivative X i j{ , }

(1) of  i j{ , }
(1)

along X vanishes. In this case we have

 = − − ≕ ( ) ( )m
q q p p

2
· , (3.15)X i j i j i j i j{ , }

(1)
{ , }
(2)

which implies that X is only tangent to 1 at the points satisfying  = 0i j{ , }
(2) . These define the

new submanifold

   ≔ ∈ = ∈{ }( )q i jq p, , : 0, { , } . (3.16)i i j i i j2 { , } 1 { , }
(2)

The conditions  = 0i j{ , }
(2) are necessarily independent of (3.13) as they involve the momenta

pi. It is interesting at this point to pause for a moment to understand their meaning. First of all,
as the system is contained in the plane, it is obvious that

ω− − = ⇔ − = − ∈( ) ( ) ( )R i jq q p p p p q q· 0 , { , } , (3.17)i j i j i j i j i j{ , }

where R is a counterclockwise rotation of π 2 and ω i j{ , } are real coefficients. If we select three
of the particles in the system (say, 1, 2 and 3) and add the expressions given in equation (3.17)
for =i j{ , } {1, 2}, {2, 3} and {1, 3} we immediately see that ω ω ω ω= = = m:{1,2} {2,3} {1,3}

with ω ∈ . Considering the remaining triangles in the graph associated with the system we
get ω ω= mi j{ , } for every ∈i j{ , } , that is, the constraints  = 0i j{ , }

(2) are equivalent to the
existence of a real parameter ω such that

ω− = − ∈( )m R i jp p q q , { , } . (3.18)i j i j
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As in the present case the velocities are just the momenta divided by m these last conditions
are equivalent to saying that the velocities correspond to those of the particles of a rigid body
(with an angular velocity given by ω).

The way to proceed is obvious now, compute





∑ ∑= ∥ − ∥ − − − + − −

≕
∼ ∼

 ( ) ( ) ( )m
q qp p q q q q q q q q

1
· ( ) ·

,

(3.19)

X i j i j
k i

i k i j i k
k j

j k i j j k

i j

{ , }
(2) 2

{ , } { , }

{ , }
(3)

and check if the conditions  = 0i j{ , }
(3) for ∈i j{ , } provide additional constraints. On the

submanifold 2 these conditions can be written in the form




∑ω − = ∈
∈

m
ℓ

ℓ
M q i j2 0, { , } , (3.20)

i j

k l
i j

k l
k l

2 { , }
2

2
{ , }

{ , }
{ , }

{ , }

where, by using the geometry of the system (see figure 1), the matrix = MM ( )i j
k l

{ , }
{ , } can be

seen to be

=

− −
− −
− −

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
M

4 1 1 3 3 0
1 4 1 3 0 3
1 1 4 0 3 3

3 3 0 12 3 3
3 0 3 3 12 3
0 3 3 3 3 12

. (3.21)

The entries of M are labeled in the order {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4} and {3, 4}. The
rank of M is 5 and its kernel is spanned by the vector = − − −u ( 3, 3, 3, 1, 1, 1)T . It is
straightforward to see that the conditions given by (3.20) are a compatible system of
equations for the q i j{ , } where we can solve for any five of them in terms of the remaining one.
The solutions of (3.20) can be parameterized, for example, in the form

λ λ ω λ= = = = = = − + ∈ q q q q q q
m

,
3 3

, . (3.22){1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

2

At this point we have the submanifold

   ≔ ∈ = ∈{ }( )q i jq p, , : 0, { , } . (3.23)i i j i i j3 { , } 2 { , }
(3)

We need to check again if the vector field X is tangent to 3 by requiring  = 0X i j{ , }
(3) , i.e.

∑ ∑

∑ ∑

∑ ∑

= − − − − −

+ − − − − −

+ − − − − −

∼ ∼

∼ ∼

∼ ∼

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

m X m X

q q

q q

q q q q q q q q

p p q q p p q q

q q p p q q p p

0 · ( ) ·

3 · ( ) 3 ·

· ( ) · . (3.24)

k i

q i j i k
k j

q i j j k

k i
i k i j i k

k j
j k i j j k

k i
i k i j i k

k j
j k i j j k

{ , } { , }

{ , } { , }

i k j k{ , } { , }

By using again the geometry of the system and (3.18) we can write (3.24) in the form

 
∑ ∑ω+ = ∈

∈ ∈

M X N q i j E2 3 0, { , } , (3.25)
k l

i j
k l

q

k l
i j

k l
k l

{ , }
{ , }

{ , }

{ , }
{ , }

{ , }
{ , }k l{ , }
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where the matrix = NN ( )i j
k l

{ , }
{ , } is

=

− −
− −

− −
− −

− −
− −

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
N

0 1 1 1 1 0
1 0 1 1 0 1
1 1 0 0 1 1
1 1 0 0 3 3

1 0 1 3 0 3
0 1 1 3 3 0

. (3.26)

This is a linear inhomogeneous system of equations for the Xq i j{ , }
components of the

Hamiltonian vector field X . No new constraints appear now as compatibility conditions
because =u N 0T . We can then solve for the functions Xq i j{ , }

to finally get

Ξ Ξ= = = = = = −X X X X X X,
3

, (3.27)q q q q q q{1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

where we have used equation (3.22) and Ξ is an arbitrary real function on 3. The algorithm
stops here because there are no more conditions on the canonical variables and we have been
able to solve for the components of the vector field X satisfying the tangency conditions and
the basic equation (3.7). The final submanifold given by the algorithm is

     Γ= ∈ = = = = ∈{ }( )q p i jq p, , , : 0, { , }

(3.28)

i i j i i j i j i j i j i j3 { , } { , } { , }
(0)

{ , }
(1)

{ , }
(2)

{ , }
(3)

and the 3-tangent vector field is given by (3.11), (3.12), (3.27).
We check now that we get the dynamics described by the original equations of motion

(2.3) and (2.4). Indeed the equations for the integral curves of the Hamiltonian vector field X
are

= ∈m iq p˙ , , (3.29)i i

∑= − − ∈
∼

( )q ip q q˙ , , (3.30)i
j i

i j i j{ , }

Ξ= = =q q q˙ ˙ ˙ , (3.31){1,2} {1,3} {1,4}

Ξ= = = −q q q˙ ˙ ˙ 3, (3.32){2,3} {3,4} {2,4}

with initial conditions satisfying the constraints

   = = = ∈i j0, { , } . (3.33)i j i j i j{ , }
(1)

{ , }
(2)

{ , }
(3)

As we can see equations (3.29) and (3.30) imply (2.3). The constraint  = 0i j{ , }
(1) is equivalent

to (2.4) and the remaining constraints are necessary for the consistency of the dynamics (in
particular to choose good initial data). As we can take Ξ to be an arbitrary function on 3

and the initial data for the q i j{ , } must satisfy (3.22), the solutions to (3.31) and (3.32) must
have precisely the form given by equations (2.6a), (2.6b).

The presence of the arbitrary function Ξ in the Hamiltonian vector field X is directly
related to the gauge symmetry of our system. Suppose that we pick a point P0 on the
submanifold 3, make several different choices of Ξ, compute the integral curves of the
resulting X starting from P0 at t0 and take the points of these curves corresponding to the
same later value of the time parameter >t t0. From a physical point of view these config-
urations should be considered as equivalent (they certainly are, both regarding the positions of
the particles and the forces acting on them at each instant of time). This leads us to the
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definition of gauge orbits as constituted by all the points in phase space reachable from
allowed initial data after a certain fixed time by making any possible choice of the arbitrary
part of the Hamiltonian vector field defining the dynamics9. In order to avoid the redundant
description of equivalent physical configurations two options are available: gauge fixing and
the introduction of the reduced phase space. We briefly describe them in turn.

A popular way to select the arbitrary components of the Hamiltonian vector field X
(encoded in Ξ) is through gauge fixing. In our example this amounts to selecting the value of
the force exerted by one of the rods. This can be realized physically by substituting one of
them by a spring of fixed rest length (or even removing one rod). By introducing, for instance,
the additional gauge fixing condition  ≔ =q 0{1,2} we build a submanifold G of 3 and
fix Ξ by demanding  = 0X . This immediately gives Ξ = 0 and removes the arbitrariness in
the evolution.

The reduced phase space is the abstract space of gauge orbits endowed with the
appropriate geometric structures (in particular a symplectic form and an appropriate restric-
tion of the Hamiltonian vector fields defining the dynamics [3]). In the present case—but not
in generic gauge theories such as EM, Yang–Mills or general relativity—it can be obtained by
relying on the original idea by Lagrange to avoid constraint forces by working with appro-
priate ‘generalized coordinates’ and writing the Lagrangian in terms of the kinetic and
potential energy. Here the appropriate coordinates are the position of the center of mass

∈ x y( , ) 2 and an angle θ, i.e. a point on the unit circle 1. The Lagrangian is

θ = + +θ θ( )( )L x y v v v m v v mv, , , , , 2
3

2
. (3.34)R x y x y

2 2 2

The system in this form is not singular, the Hamiltonian is

θ = + +θ θ( ) ( )H x y p p p
m

p p
m

p, , , , ,
1

8

1

6
(3.35)R x y x y

2 2 2

giving the unique Hamiltonian vector field

≔ =θ
θ

θ

⎛
⎝⎜

⎞
⎠⎟( )X X X X X X X

p

m

p

m

p

m
, , , , ,

4
,

4
,

3
, 0, 0, 0 . (3.36)R x y p p p

x y

x y

It is important to mention that the reduced phase space, whose points are of the form
θ θx y p p p( , , , , , )x y , is non-trivial as a manifold. Indeed it has the form Γ = × ×  ( )R

2 1 3

and, hence, is not isomorphic to a Euclidean space.

4. Comments

As we have shown it is possible to define simple mechanical models that behave as gauge
systems in a non-trivial way (some trivial examples can be found, for instance, in [5]). The
main ideas are to implement the indeterminacy characteristic of hyperstatic structures in a
dynamical setting and introduce constraint forces as explicit dynamical variables. The
equations of motion for simple models consisting of point particles connected by ideal rods
mimic the most important features of gauge theories. In this sense they provide a useful finite
dimensional analogue of gauge field theories and help as good pedagogical models to discuss
other important issues such as quantization (both in the Dirac approach and by using path
integral methods). It is important to mention, nonetheless, that a concrete implementation of

9 Gauge orbits can be characterized also geometrically by considering the degenerate directions of the ‘pulled back’
symplectic form [3].
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these mechanical systems would not be subject to any indeterminacy in the individual forces
exerted by the rods as a consequence of their elastic properties. In this sense the gauge
behavior that we have discussed is a feature of the equations of motion in the simplified
setting where the elastic properties of the rods are neglected. As far as we can see there is no
analogue of this phenomenon in the standard gauge field theories.

We have discussed the obtention of the Hamiltonian description of the model by using a
geometric approach. An interesting exercise is to derive the same results by following the
standard method proposed by Dirac and based on the use of Poisson brackets. In our opinion
the GNH approach that we have followed is both conceptually clean and easier to use. Had
we not stopped to discuss the meaning of the conditions that we have been obtaining, the
computation of the Hamiltonian vector field and the constraints for our model could have
been written in one page. The description of the submanifold in the full phase space where the
dynamics takes place is very economical: it is seen as an algebraic manifold defined by the
vanishing of simple polynomials in the canonical variables. This means, in particular, that it is
defined globally in a coordinate independent way. The key concept in the obtention of the
relevant manifold where the dynamics is defined and the Hamiltonian vector field is tangency.
This is both conceptually simple and easy to implement in practice.

An interesting problem for the reader would be to consider the same system after
removing one rod. In this case no gauge invariance remains despite the fact that the
Lagrangian is still singular. This example can help in further clarifying the relationship
between singular Lagrangians and the presence of gauge symmetries.

Finally, though it may sound trivial in a sense, we would like to point out that we have
adapted our notation to the graph naturally associated with our system. This approach may be
useful to study the dynamics of more complicated models because the basic form of the
constraints that we have obtained should generalize readily. Some of them may even be
interesting as they would provide a novel way to study the rigidity of frames (a field where
there are still open problems) and the dynamics of complex structures such as flexible
polyhedra.
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