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Summary
Fusion research is motivated by the dilemma between the dramatic increase of en-
ergy demands and the limitation of total energy storage on earth. Thermal nuclear
fusion has been developed addressing to this issue, along with many other ways of
exploring new energy source and it is considered to be one of the most promising new
energy sources for sustainable development of human civilization. Toroidal magnetic
configurations are the main magnetic fusion research field. There are mainly three
different types of toroidal magnetic configurations:

• The first type is tokamaks. Tokamaks are considered to be the most advanced
toroidal configurations with most of the magnetic field being in the toroidal
direction. The toroidal field is generated by external coils and the poloidal field
is generated by both the plasma current induced externally and the bootstrap
current generated by plasmas. The safety factor q in tokamaks is typically
above 2.

• The second type is stellarators. Stellarators feature complex coil design be-
cause the helical magnetic field is generated by external coils only. This makes
it free of plasma current so that stellarators are free of current driven insta-
bilities, which makes one of the biggest advantages for stellarators. However,
stellarators suffer some drawbacks like low β value and complex design and
manufacturing of field coils. The q profile is usually below 1.

• The third type is reversed field pinches (RFPs). It has similar design with
tokamaks. The magnetic field, however, is dominated by the poloidal compo-
nent in the plasma edge. In fact, part of the toroidal field is generated via
the so-called dynamo mechanism. Consequently, it could couple higher plasma
current than tokamaks. The q profile is below 1 and becomes negative in the
plasma edge.

One of the main challenges for toroidal magnetic configurations is to maintain high
plasma confinement properties. Particles and energy are constrained on the flux
surfaces with losses via radial transport process across the nested flux surfaces.
Transport study has been intensively carried on tokamaks on one dimension with
the assumption of toroidal symmetry. Indeed, the design of tokamaks is to achieve
toroidal symmetry. However, in real experiments, error fields or MHD activities
could distort the magnetic surfaces, leading to the increase of transport properties.
Among those factors, magnetic islands, being resistive MHD tearing modes, exist
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commonly in all fusion devices. The formation of magnetic islands relates to the
reconnection process of magnetic field lines and this makes the system intrinsically
three dimensions. This dissertation presents the transport related study on both
RFPs and stellarators.
RFX-mod is currently the biggest RFPs in the world. It is capable of coupling up to
2 MA plasma current and the first observation of the so-called Quasi-Single Helicity
(QSH) state has been done on RFX-mod. The dynamo mechanism is related to the

nonlinear interactions between the helical magnetic field and the velocity
〈
ṽvv × b̃bb

〉
,

which enters into Ohm’s law and plays a role of effective electric field. This mecha-
nism, used to be sustained by the overlap of saturated magnetic islands in Multiple
Helicity state, has been theoretically predicated that it can be sustained by only one
single tearing mode and it is named Single Helicity state (SH). Experimentally, how-
ever, SH has never been observed. Nonetheless, an intermediate state, Quasi-Single
Helicity state has been observed on all RFP devices under proper plasma discharge
conditions. QSH appears periodically in RFP plasma discharges. It features the
inner-most mode growing dominantly (dominant mode), with the rest of the modes
(secondary modes) staying at low amplitude. Further experiments reveal the exis-
tence of three sub-states in one QSH cycle, named Double Axes state (DAx), Single
Helical Axis state (SHAxn) and SHAxw with n and w indicating narrow and wide
thermal structure. The transport study has been carried out on the three sub-states
of QSH. Specifically speaking, the work has been carried out on a selected database
containing 208 cases of electron temperature profiles obtained from Thomson scatter-
ing diagnostic on RFX-mod. An automatic routine called TeGrA has been developed
to get the information of the thermal gradient. For the first time, a complete com-
parison on thermal properties among these three sub-states has been presented. The
role of dominant mode and secondary modes has also been studied.
What is more, the transport study on these three sub-states has been preliminary
carried out using a transport code named Multiple Axes Solver (MAxS). Transport
study benefits the availability of many well-developed 1.5D transport codes. They
are capable of dealing with transport issues with only one single axis. In the case of
DAx, however, two magnetic axes bring difficulties and for which, the code MAxS
has been developed and benchmarked with ASTRA. The good agreement between
these two codes in the benchmark results gives us confidence to move to multiple
axis situations. The preliminary results confirmed the results of thermal gradients
mentioned above.
And the last part of RFX work is to calculate the total energy confinement time. In
this part, an improved method, considering the real shape of the helical flux surfaces
has been adopted with the help of code SHEq. The result shows that the total energy
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confinement time increases up to 40% from DAx to SHAxw. This result indicates
that the plasma enters into more ordered state with the evolution of these three sub-
state and this is confirmed by looking into the global dynamo parameter (1−F )/Θ,
which slightly decreases within this evolution process.
For the study on stellarators, the work has been carried on TJ-II stellarator, located
in Madrid, Spain. Stellarators poses no toroidal symmetry by its nature. Thus, the
neoclassical fluxes are much higher than ones in tokamaks. It has been reported by
D. Lópz-Bruna that the magnetic islands in TJ-II play a role of transport barrier
and they also modify the local electric field in the vicinity of magnetic islands. Thus,
the associated E×B drift plays a role in L-H transition. This modification on radial
electric field is considered that it is due to the modification of non-ambipolar fluxes
induced by the presence of magnetic islands. K. C. Shaing has demonstrated that in
tokamaks, in the vicinity of magnetic islands, the non-ambipolar fluxes are modified
due to the increase of toroidal plasma viscosity and this in turn, leads to the modifi-
cation of local electric field. Here we adopt the theory developed by Shaing despite
of the fact that the theory is derived for tokamaks. The reason is that the physics
behind is the that the presence of magnetic island increases the toroidal viscosity
which valid both in tokamaks and stellarators. Nonetheless, a geometry factor for
stellarators is applied because the neoclassical transport is much higher in stellara-
tors due to its geometry than in tokamaks.
The study on Shaing’s theory presents some interesting results. First of all, we con-
sider the steady state situation, i.e., ∂E/∂t = 0. Thus the electric field is obtained
from ambipolarity condition Γi = Γe. The results shows that at both high (above 250
eV) and low (below 105 eV) ion temperature, the ambipolar electric field has only
one root and in between of these two values, three roots appears. Besides, the fluxes
become ambipolar when the ratio between ion and electron temperature Ti/Te = 0.3.
What is more, decreasing the ratio Ti/Te leads to a sign change of ambipolar electric
field, from positive to negative. Meanwhile, the amplitude of electric field also in-
creases. Finally, the plasma density also plays a role in the ambipolar electric field.
By increasing the plasma current at a certain percentage, the three-root zone disap-
pears.
Next step, we consider the time evolution of electric field. Here we apply Shaing’s
formula in ASTRA, together with both Kovrizhnykh’s model and Beidler’s model.
The simulations are performed on a ECRH plasmas in TJ-II. The flux is calculated
as Γ = Γneoclassical + Γisland. Here ΓNeoclassical is the ’background’ flux and it is gen-
erated by either of the two neoclassical models mentioned above. First of all, we
only take Shaing’s model and the result shows that local electric field appears only
in the vicinity of magnetic islands. This is true because far from magnetic islands,
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the fluxes are intrinsically ambipolar in tokamaks and thus no radial electric field
appears. Afterwards, both neoclassical models are applied, together with Shaing’s
model. The results shows some differences between these two neoclassical models,
indicating that the choice of background flux could play a role in the modification
process. What is more, the simulations on NBI plasmas in TJ-II shows that the
modification effect due to the presence of magnetic islands is always positive.
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1Toroidal Magnetic Confinement

The human civilization tends to grow exponentially within the last decays,
at the same pace of energy usage efficiency and information transporta-
tion speed. This brings us the dilemma between the dramatically increased
energy demand and the limited energy storage. Hence, effects has been
made to find new energy sources, among which, the thermal nuclear fu-
sion is considered to be the most promising one. For the past 60 years,
fusion plasmas becomes more and more close to be realized commercially.
However, the main issue, energy confinement, remains lower than the
target due to the fast energy and particle loss. Fusion energy is consid-
ered to be the most promising way of producing energy and great effects
have been devoted to the research work of magnetic confinement fusion.
This chapter describes the current energy issue as well as a brief introduc-
tion on the toroidal magnetic configurations. Also both ideal and resistive
MHD theory has been presented to describe the equilibrium. The dynamo
mechanism in reversed field pinches is discussed and finally, descriptions
on both RFX-mod and TJ-II stellarators have been presented.

1.1 Energy Issue and Plasma Fusion

Looking back to the history of human civilization, it is obvious to see that it is the
efficiency of energy consumption and the efficiency of information transportation that
determines the level of our civilizations. With the development of our society, the
usage of energy increases dramatically, as one could see from Figure 1.1, in which
the time trace of energy consumption is listed from year 1965 to year 2015. The
total consumption increases up to 3.5 times and it is going to increases more in the
following decades. The total energy we could use, however, is finite. Nowadays,
we are strongly relying on the so-called traditional energy sources like oil, gas and
coal, which are, unfortunately nonrenewable meaning that once they are consumed,
there will be no more left(or it will takes too long to recover). The increasing needs
for energy are conflicting with the fact of finite energy storage and this brings us a
very urgent issue: finding a sustainable way for our civilization. Among countless
solutions proposed, the most reasonable one is to find new energy sources and this
is being put into practice, as one could see in Figure 1.1. There are many new
energy source being explored and used currently but the percentage still remains low
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10 Toroidal Magnetic Confinement

compared with the traditional ones.
Among those new energy sources, nuclear fusion is considered to be on of the most
promising in long time term. First of all, the fuels for fusion are nearly ’beyond
limit’ in the foreseen future. There is huge amount of deuterium (D), one of the
isotopes of element hydrogen (H), in sea water and tritium (T), another isotope, can
be self-sustained during fusion reactions. Secondly, fusion brings no CO2 emission,
which is considered to be the main reason responsible for green house effect. Thirdly,
there is hardly any danger compared with nuclear fission.
The main principle of nuclear fusion is to find a way to ”fuse” two nucleus into one
and during this process, there should be a mass loss∆m and in most cases, ∆m > 0,
through which certain amount of energy will be released according to Einstein’s
equation: E = ∆mc2. This huge amount of energy per unit of fuel weight, compared
with other ways of energy sources, can be afterwards transformed into electricity. In
order to achieve fusion, particles must overcome the repelling Coulomb force which
raises the requirement of seeking a way to heat particles up to a sufficiently high
energy within sufficiently long time to compensate the energy dispassion. With such
high energy, particles like hydrogen, deuterium, etc. will stay excited state in which
the electrons are no longer bounded by the nucleus. This new matter state is named
plasma, the fourth state of matter after solid, liquid and gas.
Fusion is probably the second most efficient ”power plant” prototype in our universe.
Our energy source, the sun, is working as a nuclear fusion power plant. The nuclei
are pulled together by the huge gravitational force due to the huge mass the sun
has. This naturally happened fusion reaction, unfortunately cannot be adopted on
earth because there is no way to create such huge amount of mass and control its
behavior. There are several ways under consideration for the use of fusion. The first
one, inertial fusion, is the one adopted by National Ignition Facility (NIF), USA. It is
designed to achieves inertial fusion by means of giving particles enough energy within
very short time, thanks to the 192 high power lasers. The simultaneous high power
lasers arriving at the fuel target, which is a near perfect sphere, can generate high
pressure and push the fuel sphere inwards. During this process, the fuel particles
reaches fusion condition within a time so short that they can not be repelled from
each other and thus fusion reaction takes place.
A more intuitive way, considering that the fuel is charged particles, uses magnetic
field to confine the plasmas. The concept of magnetic confinement for fusion research
is the first fusion idea proposed by Russian scientists and now it is the most popular
way of fusion research worldwide. The condition of achieving fusion, proposed by
Lawson, is related to three plasma parameters: plasma density n(m−3), plasma
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Figure 1.1: World wide energy use between year 1965 and 2015. The data is from
British Petroleum.

temperature Te(KeV ) and confinement time τE(s):

nTeτE > 5× 1021 m−3 ·KeV · s (1.1)

The confinement time is defined as the ratio between internal energy (U) and input
power (P):

τE = U/P (1.2)

From Equation 1.1 it is clear to see that the requirement of fusion is to sustain
sufficient large density plasmas at high temperature within sufficient long time. This
brings us two main topics: plasma confinement and heating. In principle, any two
elements before Fe could have fusion reaction under proper conditions. However, to
make story easier, we need to start with the easiest one, i.e. the one with the biggest
reaction cross-section. Figure 1.2 shows the cross section of three different fusion
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Figure 1.2: Reaction cross section of three typical fusion reactions: D-D, D-T and
D-H3

e . This figure is generated using the formulas presented in Ref [1].

reactions:

D +D → H3
e (0.82MeV ) + n(2.45MeV )

D + T → H4
e (3.5MeV ) + n(14.1MeV )

D +H3
e → H4

e (3.6MeV ) + p(14.7MeV )

And it is clear that the D − T reaction has the biggest reaction cross section at a
relatively low temperature (∼ 50keV ). Moreover, one of the products from D − T
reaction is helium (He) with 3.5 MeV energy, which is considered to be the critical
heating source for self-sustained fusion reaction through the so-called α (H4

e ) heating
process.
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1.2 Toroidal Magnetic Configurations

There have been several configurations proposed and studied for magnetic confine-
ment. They are, depending on the configurations, linear devices and toroidal devices.
Linear devices are not suitable for fusion due to end loss issue. By intuition, a toroidal
devices without open ends could solve this problem. However, a toroidal device with
only toroidal field still suffers bad plasma confinement due to the particle drifts in-
duced by the curvature and gradient of the magnetic field. In order to overcome this
issue, a rotational transform ι is introduced to the design of toroidal configurations.
The rotational transform measures the winding properties of the field lines.
There are mainly two types of toroidal magnetic configurations categorized by how
magnetic field is generated. Tokamaks and Reversed Field Pinches (RFPs), as the
magnetic field is generated by both external coils and plasma current, belongs to
pinch family. The toroidal field in tokamaks is generated by external coils and the
poloidal component is generated by the plasma current, which is induced by the
primary transform. In advanced tokamak scenario, however, most of the poloidal
field component is generated by the so-called ’bootstrap’ current which is induced
by the density gradient. Nevertheless, the disadvantage for tokamak configuration
is that it suffers a limitation of plasma current due to plasma instability. Conse-
quently, extra heating method besides Ohmic heating is needed for plasma fusion in
tokamaks. RFPs, however, can sustain very high plasma current and this makes it
to be considered a potential fusion device with only Ohmic heating. On the other
hand, the generation of plasma current needs a time variation of magnetic field which
is sustained by the primary transform. This time variation makes the devices, on
some level, not in steady state. To overcome this problem, a toroidal configuration
which all the field components are generated by external coils is introduced. This
device is the so-called stellarators. Figure 1.3 shows a sketch of these two families.
In the left graph, the red coils aligned toroidally are the toroidal field coils and the
green helical ones are helical field coils. In the right graph, the red cylinder in the
device center is the primary transformer. The red coils aligned toroidally are the
toroidal field coils and the two green ones in the top and bottom of the device is
the vertical stabilization coils. The stabilization coils are introduced because due to
the existence of Shafranov shift in toroidal devices, the plasma position needs to be
optimized in order to avoid touches between magnetic field and the first wall. The
stellarator shows a much more complicated magnetic coil design than one in pinch
family. Consequently, the manufacture process for magnetic coils are more complex
for stellarators than for pinches. On the other hand, due to lack of plasma current
in stellarators, it is almost free of disruptions.



14 Toroidal Magnetic Confinement

Figure 1.3: Sketch of two types of toroidal magnetic configurations. The left figure
represents stellarator family and the right one represents pinch family. The stel-
larators have complicated coil designs while coils used in pinch family have simpler
shape.

The magnetic field designed to confine plasmas in a toroidal configuration contains
two component: the poloidal component and the toroidal component. The corre-
sponding coordinate system is the so-called toroidal coordinate system (r,θ,φ), de-
fined in Figure 1.4. r is the radial coordinate, θ and φ are the poloidal and toroidal
angles, respectively. The equilibrium magnetic field has both toroidal and poloidal
components and they are linked by the so-called safety factor q. In cylindrical ap-
proximation, it is defined as:

q(r) = − r

R0

Bφ(r)

Bθ(r)
(1.3)

The safety factor is introduced to describe the winding of magnetic field lines: how
many poloidal turns a field line completes before it complete one toroidal circle. Its
inverse quantity is the rotational transform ι/2π = 1/q.

1.3 Ideal MHD

A large variety of plasma properties, such as the magnetic equilibria or several in-
stabilities can be described by a fluid model called Magnetohydrodynamics (MHD).
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Figure 1.4: A sketch of magnetic coordinate. R0 is the major radius, a is the minor
radius, r is the radial coordinate, θ is the poloidal angle and φ is the toroidal angle.
The magnetic surfaces share one axis at which r = 0.

It contains the fluid equations as well as Maxwell equations. The fluid equations can
be derived from Maxwell-Vlasov equation, which is kinetic description of plasmas,
by taking different order of velocity moments for distribution functions. The ideal
MHD equations, with zero plasma resistivity, are:

Moment Equations:





Mass ∂ρ/∂t+∇ · (ρuuu) = 0

Momentum ρ(∂uuu/∂t+ uuu · ∇uuu) = −∇P + JJJ ×BBB

Energy
d

dt
(p/ργ) = 0

Maxwell Equations:





Gauss′s Law ∇ ·BBB = 0

Gauss′s Law ∇ ·EEE = q/ε0

Ampere′s Law ∇×BBB = µ0JJJ

Faraday′s Law ∂BBB/∂t = −∇×EEE
Ohm′s Law EEE + uuu×BBB = 0

Where ρ is the mass density, uuu is the flow velocity, P is the pressure, JJJ is the
current, BBB is the magnetic field, EEE is the electric field, q is the charge, ε0 is the
vacuum permittivity and µ0 is the vacuum permeability. The basic assumptions
used to derive ideal MHD equations are:
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• Quasineutrality

• Plasma typical length � Larmor radius

• Typical frequency � Cyclotron frequency

• Zero resistivity and viscosity

• No trapped particles (no neoclassical effects)

Here the Larmor radius is the gyration radius of charged particles along a field line
and it is given as ρ = mv⊥/q|B| with m the particle mass, v⊥ the velocity component
perpendicular to the field line, q is the charge of particles and B is the modulus of
magnetic field. To study time evolution of perturbations, any physical quantity A
could be written as A = A0 + A1 with A0 � A1. In equilibrium state, which is
required by steadily operated fusion devices, we have: ∂A0/∂t = 0 and uuu = 0. Thus
the equilibrium condition could be easily obtained from the 8 equations mentioned
above:

JJJ ×BBB = ∇P (1.4)

Equation 1.4 shows that a plasma equilibrium is sustained by the force balance be-
tween JJJ × BBB and the pressure gradient ∇P . Moreover, it also shows that both
plasma current and the magnetic field lies on a surface defined by constant pressure.
This can be easily approved by applying dot product of JJJ and BBB on Equation 1.4
respectively. These surfaces with constant gradient are the so-called flux surfaces.
Charged particles which follow the field lines are thus bonded on the surfaces and the
radial energy or particle loss are significantly reduced and the only loss is due to the
collisions between particles. The field lines are winding on the flux surfaces in the
helical direction. A sketch of flus surfaces, helical field line as well as the gyration of
a charged particle along one magnetic field line is shown in Figure 1.5. The yellow
torus represents the flux surfaces and the black helical lines represents the magnetic
field lines which lies on the surfaces. The small winding along the center field line
represents the gyration motion of a charged particle. Note that the gyration is not
in the correct scale rather than a sketch.

The shape of the magnetic surfaces varies with the magnetic field condition and
it always has the Shafranov shift due to the toroidal configuration. The Shafranov
shift is induced by the toroidicity in the sense that on one flus surface, the area in
high field side SH is smaller than in low field side SL and thus a net force towards
low field side is generated: P (SL−SH). Figure 1.6 shows a sketch of Shafranov shift
in circular plasmas. The black circle is the vacuum chamber and the red circle repre-
sents the equilibrium plasma cross-section. The shift between the vacuum chamber
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Figure 1.5: A sketch of flus surfaces, field lines (black helical) and the gyration of
a charged particle along one magnetic field line (the black half spring in the center,
not in scale with the torus) is presented.

center and the plasma equilibrium center ∆(r) is the Shafranov shift. This simplified
model shows that all the flus surfaces are shifted towards low field side and since in
general the Shafranov shift depends on r, the value is different for each flux surfaces.
The existence of Shafranov shift leads to a different metric tensor compared to the

concentric circle configuration and this brings complicity in transforming between
Cartesian coordinate and flux coordinate. For quantities which are function of flux
surfaces like the temperature, density, current, etc., the use of flux coordinates al-
lows one write simpler equations to study various phenomena such as stability and
transport. Moreover, things could get more complicated if the topology of magnetic
field is modified further by other phenomena.

1.4 Resistive MHD

In the framework of ideal MHD, the main assumption is that the plasma resistivity
is zero. The consequence is that the plasma topology remains unchanged. However,
even a small, non-zero plasma resistivity could change the field topology and this
introduces further complexity into the metric. The theory considering a finite plasma
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Figure 1.6: A sketch of Shafranov shift in a circular plasma. φ is the toroidal
direction, ∆r is the Shafranov shift.

resistivity is called resistive MHD. Here we consider the plasma with a non-zero
resistivity η. The corresponding Ohm’s law is:

EEE + vvv ×BBB = ηJJJ (1.5)

Together with Faraday’s Law and∇×BBB = µ0JJJ , using the vector relation∇×∇×A =
∇(∇ · A)−∇2A, the induction equation is obtained:

∂BBB/∂t = (η/µ0)∇2BBB +∇× (vvv ×BBB) (1.6)

This The dimensionless form of induction equation is thus:

∂BBB/∂t̂ = (1/Rm)∇̂2BBB + ∇̂ × (v̂vv ×BBB) (1.7)

Where t̂ = tVA/L, ∇̂ = L∇, v̂vv = vvv/VA and L is the typical plasma length. Rm =
µLVA/η is the so-called Reynolds number and it is also referred to as the Lundquist
number S = τR/τA where τR ∼ µ0L

2/η is the characteristics resistive diffusion time
and τA ∼ L/VA is the Alfvén time. The Lundquist number is a quantity indicating
how far the plasma is from the ideal MHD, i.e., when S → ∞, the plasma is close
to ideal MHD. On the right side of induction equation, there are two parts. When
the resistivity η → 0, the induction equation becomes to the form ideal MHD. The
plasma moved with the field lines. When (1/Rm)∇̂2BBB > ∇̂ × (v̂vv×BBB), the induction



1.4. Resistive MHD 19

5.2 Magnetic relaxation and reconnection 143

B

Fig. 5.2. Magnetic islands.

think of the fiel lines as stretched strings; the tension in them has been reduced
because breaking and reconnecting allows them to contract around the island axes.
The stored (potential) energy in the fina configuratio is less than in the original
configuration The null-points of the magnetic fiel defin O-points, at the axes of
the magnetic islands, and X-points, at the intersections of the separatrix.
Some dissipation is essential for any system to attain a lower energy state from

its initial state by a relaxation process and Taylor (1974) provided a mathematical
basis for this by applying a modificatio ofWoltjer’s theorem to plasmas with small
but finit resistivity. As discussed in Section 4.3.4, Woltjer showed that the helicity,
K =

∫

V A · B dτ , of an ideal plasma is invariant when the integral is taken over
the volume V of a closed system. It follows that K is conserved for every volume
enclosed by a flu surface, i.e. every infinitesima flu tube. This amounts to an
infinit set of integral constraints ensuring a one-to-one correspondence between
initial and fina flu surfaces. Clearly, this no longer holds in a plasma with finit
resistivity since the continual breaking and reconnecting of fiel lines destroys the
identity of infinitesima flu tubes. Taylor’s hypothesis states that only the helicity
associated with the total volume of the plasma is conserved. This replaces an
infinit set of constraints by a single constraint and allows the system access to
lower energy states which in ideal MHD are forbidden. It means, also, that the fina
state of the plasma is largely independent of its initial conditions. Indeed a feature
of certain toroidal discharges is that after an initial, violently unstable phase, the
discharge relaxes to a grossly stable, quiescent state which depends only on a few
external parameters and not on the history of the discharge. The characteristics
of reversed fiel pinches, in particular, may be interpreted on the basis of Taylor’s
hypothesis. By contrast, relaxation does not play such a prominent role in tokamaks
on account of the strong toroidal magnetic field
Assuming that the plasma is contained by perfectly conducting walls the only

flu surface that retains its identity is the plasma boundary. Taylor argued, there-

Figure 1.7: A typical magnetic island is presented. The field lines reconnect and the
topology of magnetic field changes.

equation becomes a diffusion equation of the field lines.
One of the most important result from resistive MHD is the so-called tearing mode.
The magnetic perturbations, in general tend to bend the magnetic field lines. This
bending effect increases the magnetic field energy. This is true as long as the wave
vector of the perturbation kkk is not perpendicular to the field lines: kkk · BBB 6= 0. In
such conditions, the magnetic perturbations play a positive role in stabilization of
magnetic field by increase the magnetic energy. However, this stabilization effect
vanishes when kkk · BBB = 0. In cylindrical approximation, kkk ≡ kkk(r) = (kr, kθ, kφ).
With the wave length in poloidal direction λθ = 2πr/m and in toroidal direction
λφ = 2πR/n, the wave vector in these two directions are: kθ = m/r and kφ = n/R.
Hence, the unstable condition is:

kkk ·BBB =
m

r
Bθ +

n

R
Bφ = 0 (1.8)

Recall the defination of safety factor q, the equation 1.8 can be written as:

q(r) = − r
R

Bφ

Bθ

= −m
n

(1.9)

Now we arrives a critical point that the unstable positions are ones where the mode
number m and n are rational numbers. The result of tearing mode is that it modifies
the magnetic topology through reconnection process of magnetic field lines. Figure
1.7 shows a typical magnetic island after reconnection of field lines. The reconnection
of field lines occurs in the resonant position and the topology of magnetic field thus
changed. The existence of magnetic islands distorted the nested flux surfaces and
gives rise of three dimensional properties of the transport process.
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1.5 Equilibrium in RFPs: the Dynamo

Mechanism

In a typical RFP discharge, the poloidal component of the magnetic field (Bθ) is
comparable with toroidal component (Bφ) in amplitude and Bθ dominants in the
outer region where Bφ reaches zero value and changes sign. This magnetic configu-
ration is quite different from ones in tokamaks where toroidal field Bφ is much larger
than poloidal field Bθ. Moreover, the safety factor profile in RFPs features q < 1
and its sign changes in the edge. A typical magnetic field profiles with poloidal and
toroidal components are shown in Figure 1.8(a), plotted as a function of the radius
normalized by minor radius a of the poloidal cross-section. The corresponding q
profile in RFX-mod is shown in Figure 1.8(b). This unique q profile, different from
the one in tokamaks (q > 1), leads to the possibility of many MHD tearing modes,
as the symbol dots shown in Figure 1.8(b). In the plasma center, tearing modes
resonant and overlap with each other, breaking the nested flux surfaces, leading to
a degradation of plasma confinement with increased transport properties.
The edge reversal of toroidal magnetic field is a self-organized behavior, by means of
so-called dynamo mechanism which is related to the non-linear interactions of MHD
tearing modes. To be more specific, the non-linear interactions between resonant

modes generate a non-zero part of
〈
ṽvv · b̃bb

〉
in Ohm’s law with symbol 〈· · · 〉 meaning

average value, playing a role of effective electric field. The none zero
〈
ṽvv · b̃bb

〉
con-

nects between toroidal current and poloidal current and as a consequence, part of
the poloidal current is generated by the toroidal current through the dynamo mech-
anism.
A physical picture of the dynamo mechanism is presented in order to get a better
understanding. A RFP discharge is presented in Figure 1.9, with magnetic (upper
graph) and current (lower graph) profiles along the normalized minor radius. The
vertical dashed line represents the radial location of the reversal point, where the
toroidal field Bφ reaches zero. It is clear to see that at the the value of poloidal
current jjjθ is not zero. By checking the induction equation and Ohm’s law in the
reversal location: ∂BBB/∂t = −∇×EEE and EEE + vvv ×BBB = ηηηJJJ , one obtains EEEθ = 0 and
EEEθ = ηηηJJJθ. The following result JJJθ = 0 disagrees with the discharge profile. In fact,
the poloidal current at the reversal location is not generated by ∂BBBφ/∂t. Instead, it
is generated through the dynamo mechanism mentioned above.
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Figure 1.8: (a). A typical magnetic field profile in a RFX disachrge is presented with
both poloidal (in blue) and toroidal (in red) components, with the black herizontal
line representing BBB = 0. The amplitude of poloidal field dominants in the edge and
the toroidal field changes sign near the edge. (b). The corresponding safety factor q
profile is presented as a function of the minor radius normalized by the minor radius.
The circle markers on the curve are the corresponding resonant MHD modes with
the horizontal line indicating q = 0.

Taylor Relaxation Theory

The first explanation of the RFP configuration was proposed by J. Brian Taylor [2].
The main principle of his theory is that plasma are seeking the minimum energy by
neglecting the pressure and velocity:

W =

∫

V

B2

2µ0

dV (1.10)

The constrain comes along is that the system has constant magnetic helicity:

K =

∫

V

AAA ·BBBdV (1.11)
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Figure 1.9: A model for one RFP plasma discharge. The profiles of two magnetic
field components Bφ and Bθ are presented in the upper graph, plotted as a function
of the normalized minor radius. The two corresponding current density profiles jjjφ
and jjjθ are presented in the lower graph.

where AAA is the vector potential defined as BBB = ∇×AAA. It is true that the magnetic
helicity is conserved in non-resistive plasmas. When it comes to resistive plasmas,
K is considered to be approximately constant if the variation of K is much slower
than the magnetic energy variation[3].
By checking the force balance equation: J × B = ∇P = 0, one obtains a force free
system with J = µB, with µ a constant. In cylindrical configuration, the solutions
are Bessel functions for J0 and J1:





Br(r) = 0

Bθ(r) = B0J1(µr)

Bz(r) = B0J0(µr)

The above mentioned theory developed by Taylor shows that the plasma behavior
seems only to be affected by the global parameters. Hence, before further discussion,
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we define two global plasma parameters: reversal parameter F = Bφ(a)/ 〈Bφ〉 and
pinch parameter Θ = Bθ(a)/ 〈Bφ〉 with Bθ(a) and Bφ(a) the poloidal and toroidal
magnetic field in the edge, respectively. The symbol 〈· · · 〉 indicates the volume
average. The comparison between Taylor’s theory and the experimental data shows
a disagreement, especially in the plasma edge. A modified theory, adopting a non-
constant µ along the normalized minor radius r/a as well as considering a non-zero
pressure, shows a good agreement with experimental data.
The dynamo effect has been shown that it is a global RFP plasma behavior. This
self-organized plasma behavior allows the plasma current which flows in toroidal
direction, flows in the poloidal direction and part of the toroidal field is thus generated
by the toroidal plasma current through this mechanism. The contribution of the
toroidal magnetic field via dynamo mechanism can be expressed as:

〈Bφ〉 = 〈Bφ,dynamo〉+Bφ(a) (1.12)

〈Bφ,dynamo〉 is the average paramagnetic toroidal field self-generated through dynamo
mechanism. Hence, this quantity is an indicator for the dynamo mechanism. One
can easily get:

(1− F )/Θ = 〈Bφ,dynamo〉 /Bφ(a) (1.13)

So the quantity (1− F )/Θ is the dynamo parameter for RFP plasmas.

1.6 Experimental Devices

The thesis work has been carried on two machines: the RFX-mod and the TJ-
II stellarator. Here brief descriptions together with main diagnostics of these two
toroidal configurations are presented.

Revered Field eXperiment

The Reversed Field eXperiment modified (RFX-mod) is currently the largest RFP in
the world, located in Padova, Italy. It has a major radius of R = 1.99m and a minor
radius of a = 0.459m. It is capable to reach plasma current up to 2 MA. Figure
1.10 shows the bird view of the device. One of the most innovations in RFX-mod is
the new feedback control system based on 192 active saddle coils covering the whole
plasma volume (4 poloidally and 48 toroidally). This new feedback system functions
to suppress the radial magnetic perturbations. Here a brief description of diagnostics
on RFX-mod is present.
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Figure 1.10: A birdview of the RFX-mod device, located in Padova, Italy.

• Magnetic diagnostics. Four Rogowski coils between the vacuum vessel and the
shell for measurement of toroidal magnetic flux as well as plasma current. (8
toroidal and 6 poloidal voltage loops for measurements of flux variations.) 192
pick-up coils, distributed along 48 toroidal directions and 4 poloidal directions,
measure toroidal and poloidal components of magnetic fields. 192 saddle probes
distributed the same as the pick-up coils, measuring the radial component of
the field, coupled to the active control coils.

• Tomographic reconstruction [4]. It is meant for the reconstruction of the
poloidal emissivity map. The diagnostic is composed by 3 vertical fans each
with 19 lines of sight and 1 horizontal fan with 21 lines of sight. The total 78
lines of measurements almost entirely cover the plasma cross section.

• Thomson scattering diagnostic [5]. It features spacial resolution of 84 points
along the diameter of the vacuum chamber. The laser path lays on the mid-
plan (poloidal angle θ = 0(π)) with toroidal angle φ = 82.5◦. The maximum
capacity per discharge is around 20:25 pulses.

• A multi-chord interferometer [6, 7]. It measures the electron density averaged



1.6. Experimental Devices 25

along 14 lines of sight. The measurement is performed measuring the phase
variation induced in a CO2 laser beam (λ = 5.4µm) that passes through the
plasma.

• Spectroscopic diagnostics [8]. It measures line intensities of radiation emitted
by main gas and by impurities, in order to calculate their influxes at the edge,
the toroidal flow of the plasma and the effective charge.

• Soft-X Rays multi-filter diagnostic [9]. It is used for measuring electron tem-
perature at the center of the plasma by means of comparing SXR emissions
measured by differently filtered silicon detectors. It allows a higher time resolu-
tion with respect to the Thomson scattering, but with a lower spatial resolution;
4 chords with different filter thicknesses (40 µm, 75 µm, 100 µm, 150 µm) are
used in order to measure temperature in a wider range of emission levels.

• an integrated system of internal sensors (ISIS) [10], which includes poloidal and
toroidal arrays of 139 magnetic pick-up coils and 97 electrostatic (Langmuir)
probes (used to measure and correlate fluctuations of electric and magnetic
fields), and 8 calorimetric sensors.

TJ-II Stellarator

TJ-II stellarator flexible Heliaca under operation in CIEMAT, Madrid, Spain. It
has a major radius R = 1.5m and minor radius a = 0.22m. The magnetic field
on axis is up to 1.2T . Figure 1.11 shows a perspective view of TJ-II. In TJ-II,
the magnetic trap is obtained by means of various sets of coils that completely
determine the magnetic surfaces before plasma initiation. The toroidal field is created
by 32 coils. The three-dimensional twist of the central axis of the configuration is
generated by means of two central coils: one circular and one helical. The horizontal
position of the plasma is controlled by the vertical field coils. The combined action of
these magnetic fields generate bean-shaped magnetic surfaces. The heating systems
are: Electron Cyclotron Resonant Heating, Neutral Beam Injection (NBI), Electron
Bernstein Wave Heating. The fueling systems are Gas puff, NBI and Pellet injector.
There are both passive and active diagnostic systems installed on TJ-II. Here listed
briefly the main diagnostic systems installed on TJ-II. The main passive diagnostics
are:

• A set of magnetic field diagnostic. There are two straight arrays of Mirnov
coils and one poloidal array with 15 coils. The mirnov coils are with cylindrical
shape and they measure the position of plasmas. Besides, there are two sets
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of Rogowski coils installed to measure the poloidal magnetic flux. Also two
internal diamagnetic loops are installed to provide the toroidal loop voltage.

• Electron Cyclotron Emission [11]. Electron temperature profiles are measured
at TJ-II by means of a 16 channel heterodyne radiometer, covering the fre-
quency range 50-60 GHz, corresponding to the second harmonic of electron
cyclotron emission (ECE) in X-mode polarization at a magnetic field of 0.95 T
on the plasma axis.

• Soft X-rays. The TJ-II multichannel soft X-ray system consists of 5 cam-
eras with 16 channels each, allowing tomographic reconstruction of the plasma
emissions

• Bolometry. Three 20-channel pinhole cameras, monitoring the same poloidal
section and used for tomographic reconstructions of the total plasma emissivity.

• Four spectroscopy system: 1. Multichannel system with nine-channel, high-
resolution, spectroscopic diagnostic system for measurements of ion impu-
rity temperature and poloidal rotation via passive emission spectroscopy. 2.
Toroidal rotation measurement. 3. Vacuum ultraviolet spectrometer (VUV)
spectroscopy, covers wavelength from 20 to 300 nm on the purpose of obtaining
the impurity ion temperature as well as its time evolution. 4. Charge exchange
recombination spectroscopy.

• Charge Exchange Spectroscopy. It is used to obtain the ion temperature profile,
assuming a Maxwellian energy distribution function.

• Fast Camera is installed for various studies like turbulence, dust, 2-dimensional
electron and ion temperature imaging.

The main active diagnostics are:

• Interferometry [12] contains two parts: the microwave interferometer located
at φ = 264.4◦. The probing beam has an inclination of 18.7◦ with respect to
the vertical and a frequency of 140 GHz, corresponding to a wavelength of λ
= 2.14 mm. There is also a two-color interferometry (CO2 with 10.6 µm and
NdYAG with 1.064 µm) provides the line integrated density.

• The reflectometry contains three parts: an amplitude modulation reflectom-
etry system [13]; a fast frequency hopping reflectometer [14] and a doppler
reflectometer [15]. The amplitude modulation reflectometry is used for density
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Figure 1.11: A sketch of TJ-II stellarator is presented.

profile measurement with a temporal resolution of 2 ms. The fluctuation reflec-
tometer works in the frequency range between 33-50 GHZ and it was used to
study the velocity shear layer and the radial position of its origin. Doppler re-
flectometer, located at φ = 337◦ measures plasma density fluctuation velocities
and their wave number spectra. The spacial resolution of doppler reflectometer
is about r/a = 0.6 : 0.9 with a the minor radius. The perpendicular wavenum-
ber can be selected between k⊥ = 3 and 15cm−1.

• Heavy ion beam probe [16] has been installed for measurements of plasma elec-
tric potential, electron density and poloidal magnetic field component. These
quantities are measured at one plasma location and it can scan through the
plasma cross-section.

• Two Langmuir probe system [17] installed at position φ = 38.2◦, R = 134cm
and position φ = 195◦ for plasma potential and plasma density measurements.
Also it can provides turbulence information. Several designs of the probe can
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be mounted into the system like a rake probe, a multi-pin probe and a biasing
probe.

• Thomson scattering diagnostic [18] located at φ = 14.5◦. It provides electron
temperature, density and pressure profiles in a single discharge.



2Three Dimensional Transport Induced
by the Presence of Magnetic Islands

Transport is a common phenomenon in fusion devices. The transport
is induced by the collisions between particles and through which, mass,
momentum and energy are transferred. Consequently the transport phe-
nomenon strongly affects the plasma confinement properties. The trans-
port study in toroidal symmetry configurations with nested flux surfaces
like tokamaks or helical symmetry with nested flux surfaces like stellara-
tors can be treated on 1.5 dimensional level. The kinetic quantities like
temperature, density are functions of flux surfaces and thus they can be
averaged over the radial and poloidal directions. However, the existence of
magnetic islands in above mentioned devices breaks the symmetry as well
as nested flux surfaces, giving rise a three dimensional transport pro-
cess. In RFPs, similar situation with many tearing modes resonating also
brings up three dimensional transport problems. This chapter describes
the three dimensional transport induced by the presence of magnetic is-
lands. General descriptions on both neoclassical transport and stochastic
transport theory are also presented.

2.1 Neoclassical Transport

Neoclassical transport is a theory describing the transport process due to Coulomb
collisions in quiescent state, considering the field inhomogeneity of field lines induced
by the toroidicity of the configuration. Compared with classical transport theory,
it considered the complex geometry of the field, which gives rise to more complex
particle orbits and drifts than Larmor radius and gyration motion of charged parti-
cles. Here we introduce the main particle drifts induced by the toroidicity in toroidal
magnetic configurations developed within the framework of neoclassical transport
theory. First of all, applying Faraday’s law:

∇×BBB = µ0jjj (2.1)

we have the toroidal magnetic field:

BBBφ = µ0j/(2πr)eeeφ (2.2)

29
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This is the dominant part in tokamaks and it is inverse proportional to the radius
r. jjj is the total poloidal current following in the coils, r is the radius from the
toroidal geometry center and eeeφ indicates the toroidal direction. Now consider the
first adiabatic invariant, magnetic moment µ = mv2

⊥/2B, the Larmor radius, ρ =
mv⊥/|q|B becomes:

ρ = (2mµ/B)1/2
/
q (2.3)

Where q is the charge carried by particles. Clearly, Larmor radius varies as the
magnetic field strength changes. The Larmor radius is smaller in high field side than
one in low field side. Accordingly, particles follows a much bigger orbit than Larmor
radius. This new particle orbit is named as banana orbit, as its poloidal projection
is like a banana. Figure 2.1 shows the particle trajectory on poloidal plan. Particle
trajectories within this banana orbit is named trapped particles and particles who can
exploring the whole plasma volume, i.e., the poloidal cross-section of their trajectories
are complete circles. The boundary between trapped and passing particles is shown
in velocity phase space in Figure 2.2. The gray shadow is the trapped region and
the white region is the passing region. The critical angle θc defines the boundary.
The fraction f of the trapped particles is f = cos θc ≈ a/R = ε. Here ε is the inverse
respect ratio defined as the ratio between minor radius a and major radius R. This
banana orbit particle trajectory followed is caused by the non-uniformity of magnetic
field in toroidal configurations. Note that the Figure 2.2 shows a situation with no
density gradient, i.e., the trapped particles between two neighboring banana orbits
are equal. However, in a toroidal magnetic configurations, there exists the density
gradient, which gives rising the unbalance of trapped particles between adjacent
banana orbits. This will leads to momentum transfer between trapped particles and
passing particles and consequently a net toroidal current is formed and this is the
so-called bootstrap current. In advanced tokamak scenario, the bootstrap current
could take a significantly part of the whole toroidal plasma current (in ITER, the
designing is up to 70%).

Besides the banana orbit, another effect caused by this field non-uniformity leads
to a particle drift motion:

vvvd =
µ

q

BBB ×∇BBB
BBB2

(2.4)

The direction of this drift velocity depends on the sign of the particle charge. Conse-
quently, it leads to a charge separation and a local vertical electric field is naturally
appears. With the presence of the local electric field, another particle drift motion,
deducted from momentum equation easily, will occur:

vvvd = (EEE ×BBB) /B2 (2.5)
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Figure 2.1: A sketch of banana orbit on the poloidal projection in tokamaks. This
figure is from Reference [19].
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Figure 2.2: Velocity space showing the trapped-passing boundary. The critical angle
θc defines the so-called loss cone which is the white space.
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This drift motion is towards outwards, which could leads to serious degradation of
plasma confinement. A rotational transform of the field lines, ι thus is realized in
order to average this vertical charge separation. It is defined as the poloidal angle
when particles complete one toroidal circle divided by 2π:

ι

2π
=
dψ

dΦ
=

1

q
=

n

m
(2.6)

Where q is the safety factor, m and n are the poloidal and toroidal mode number, ψ
and Φ are poloidal and toroidal magnetic flux, respectively, defined as follows:

ψ =

∫∫

SSSψ

BBB · dSSS

Φ =

∫∫

SSSφ

BBB · dSSS

Where SSSψ and SSSφ are the area with its vector in the poloidal and toroidal direction,
respectively.
The third important particle drift is the so-called curvature drift, which is generated
by the curvature of field lines. A particle moves along a curved path, there is a
centrifugal force, which in turned generates this particle drift in a magnetic field. It
is defined as:

vvvd = mvvv2
‖(BBB × (BBB ×∇)BBB)/eB4 (2.7)

By far we defined two kinds of particle drifts which commonly exist in fusion plasmas.
These drifts enters the flux function, whose time evolution is:

∂A/∂t = ∇ · (Γ) + S (2.8)

Where A is particle density (particle transport) or energy density (energy trans-
port), Γ = D∇A is the particle or energy flux with D the diffusion coefficient,
and S is the source or sink. Note here the non compressive assumption is taken
(∇ · (vvvA) = 0). For a tokamak case, a sketch of diffusion coefficient D versus the
normalized collision frequency ν∗ = ν/ωb with ωb the bounce frequency, is presented
in Figure 2.3. The banana region is when ν∗ 6 1 and this region is called low col-
lisionality region. Particles in this region complete many banana orbits before they
collide with each other. Here the bounce frequency ωb = v/(Rq) is the frequency for
trapped particles to complete the banana orbit.
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Figure 2.3: Diffusion coefficient D is plotted in log-log scale, as a function of colli-
sionality ν∗. The solid line represents the neoclassical transport and the dashed line
represents the classical transport. This plot is valid in magnetic configurations with
toroidal symmetry. It starts with banana region, in which the collision frequency is
lower than bounce frequency. Particles within this region are trapped inside of the
banana orbit.

2.2 Stochastic Transport

In RFP plasmas, many MHD tearing modes resonating at the same time, nested
flux surfaces no longer exist due to their overlapping. Thus, the transport in RFPs
is dominated by stochastic transport. Here a rather simple description of stochas-
tic transport theory, considering collisionless plasmas, developed by Rechester and
Rosembluth [20] is presented. The model describes the parallel transport in plasmas
with destroyed magnetic surfaces due to many resonating modes.
First of all, the magnetic field is written as BBB = BBBz +BBBθ+δBBB, with the perturbation
part:

δBBB =
∑

m,n

bbbm,n(r) exp[i(mθ − nz/R)] (2.9)

m and n are the wave numbers in poloidal and toroidal direction, respectively. The
shape of magnetic surfaces described with each harmonics is the magnetic island,
which has been discussed in the previous section.
When many modes resonate at the same time, magnetic surfaces conserve if the
Poincaré plot on a poloidal cross-section shows smooth curves. Starting from one
poloidal plane at a fixed toroidal angle and following one field line, if the intersec-
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tions between the field line and the poloidal plane forms into a smooth, closed curve,
the magnetic surfaces exist. On the other hand, if the intersections are randomly
distributed in the whole area, then the magnetic surfaces are destroyed [21].
Consider a small area with radius of r0 in a plane z = const and map it by solving
the two equations dr/dz = Br/Bz, rdθ/dz = Bθ/Bz. This magnetic mapping is area
preserving, as a consequence of ∇ ·BBB = 0. There are two possible evolutions of this
process. The first one is that the circle will move as a whole and also it will deform
its shape stretching in one direction and contracting in the other. An analytical
expression for continuous mapping is: r0(z) = r0 exp(z/rc) where rc is the correla-
tion length with its one possible expression rc = πR/ ln(πs/2) when poloidal mode
number m is fixed. Here s is the so-called stochasticity parameter. Such behavior is
called stochastic instability of trajectories. The width of the area δ will exponentially
decrease in order to conserve the total area: δ(z) = r0 exp(−z/Lc). This evolution
process is shown in Figure 2.4. The average squared radial displacement of the ares
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almost independently. The distance L„=L, in(r/
ml, ) plays the role of a correlation length for the
area. At this stage of the evolution the area looks
very complicated, as depicted in Fig. 1. It can
be shown that the average squared radial displace-
ment of the area can be described by a diffusion
formula

L is the distance in the z direction with L»L„,
and D„ is given by the quasilinear formula'

All processes of mapping are strictly reversible,
but because the width of the area becomes extra-
ordinarily small, any small spreading due to mo-
tion perpendicular to the field lines can be of
great importance as we will see later. The pre-
cise mathematics and all details can be found in
a good review on the subject. '
Let us turn now to the subject of this Letter:

electron heat transport in a braided magnetic
field. We note parenthetically that mass trans-
port will be limited by ambipolar potentials which
we will not consider here.
Suppose that in some small region we mark in-

stantaneously a number of electrons and then
watch for the time evolution of their radial dis-
tribution. Since the radial spreading of test
electrons is a Brownian process, the radial ther-
mal conductivity will be given by y„=((Ar)') /2t,
where ((hr)') is the mean square of the radial
displacements of electrons during the time inter-
val t. We will determine g„ in two limits: "col-
lisionless, "when the collisional mean free path
X is bounded by Hv/y„» A.» L„and collisional,
when X«L, . [We will make a number of simpli-
fying assumptions and not attempt to give detailed

numerical coefficients. ]
Consider the collisionless case. We assume

that guiding-center trajectories coincide with
the field lines. Instead of considering many dis-
crete particles, we visualize just one "particle"
which is spread over some initial area of the di-
mension x, (electron gyroradius) with equal prob-
ability. Then parallel motion along the field
lines produces a contiguous mapping of the area.
We may treat collisions as a discrete process
which takes place periodically with the time in-
terval v. As a result of collisions, the parallel
velocity of the particle will change its direction
or remain the same with equal probability. Also
the whole area will instantaneously diffuse radi-
ally a distance r, (or an electron "banana" width
in the toroidal case). The latter process models
the perpendicular jump of the guiding center at
the time of collision.
Let us start our experiment. Initially, we have

a small circle of radius r, . It moves before col-
liding a distance A. =vr along the trajectory, map-
ping into a complicated thin region of the kind
drawn in Fig. 1(c), with the width 5 =r, exp(- A./
L,). The average squared displacement of its ele-
ments in a radial direction is equal to ((hr)')
=2D„A.. The collision now increases the width of
this area to r, . We can now cut our area into a
large number of small square pieces of the size
x, and proceed in exactly the same way as in the
first step; see Fig. 1(c). Because for the colli-
sionless case r, »6(A), each of these new ele-
ments will evolve on the second step almost in-
dependently from its previous history. Obviously,
the spreading of our area in the radial direction
is similar to a random walk and the diffusion co-
efficient is given by

X, = &(&&)') /27 =D.gv ~

(a)

(c)
FIG. 1. The evolution of area mappirg.

This formula does not depend on collision fre-
quency in spite of the importance of collisional
spreading. "
It is instructive to compare this case with the

similar evolution without any perpendicular mo-
tion. Suppose that the particle reverses its pa-
rallel velocity after the first collision. Then the
second-step area will map exactly back to the
initial small circle. Obviously, the only way for
it to expand in the radial direction is to diffuse
collisionally along the field line. During a time
t» 7, the average squared distance moved by a
particle in the z direction is I.' =g~~t. We have
introduced here the usual classical parallel con-

Figure 2.4: A sketch of area mapping in multiple modes resonating magnetic field.

can be described as: 〈
(δr)2

〉
= 2LDst (2.10)

L is the distance in the ζ direction with L� Lc0 = Lc ln(rmr0). Dst is given:

Dst(r) = πR
∑

m,n

|bm,n(r)|2
B2
z

δ

(
m

g(r)
− n

)
(2.11)

The function g(r) describes the locations of resonant surfaces and it is equivalent to
Equation 1.9.
Now consider the time evolution of electrons in a small region. Being a Brownian
process, the radial spreading process has its thermal conductivity as χr = 〈(∆r)2〉 /2τ
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with τ the time interval and ∆r the radial displacement within this time interval.
This is equivalent to collisionless condition, which brings us the thermal conductivity
in radial direction:

χr =
〈
(∆r)2

〉
/2τ = 2LDst/2τ = Dstv (2.12)

The thermal conductivity in a stochastic field is proportional to the ion thermal
velocity v = (2Ti/mi) instead of the collision frequency. Also it is proportional to
the sum of all the modes, which is shown in the expression of Dst(r) above. The
stochastic transport in RFPs are the dominant transport process due to the overlap
of resonant modes. This mechanism has been studied and discussed in the study of
thermal properties in Quasi-Single Helicity state on RFX-mod, presented in Chapter
4.

2.3 Three Dimensional Transport due to the

Presence of Magnetic Islands

Transport theory deals with the particle and energy flow inside of the plasma and
it is one of the critical point for thermal nuclear fusion. Transport phenomenon,
depending on the direction of mass/energy flow, can be divided into parallel and
perpendicular transport, with its direction respect to magnetic field. In toroidal
configurations with preserved nested flux surfaces, perpendicular transport, although
very small compared with parallel transport, is the one who plays an important role
in plasma confinement properties. This is not valid in configurations where nested
flux surfaces are broken. In this case, the field lines fill in the whole plasma volume
and the ’radial’ transport is dominated by the parallel one.
Confinement in toroidal magnetic configurations with nested flux surfaces strongly
depends on the constrain of radial particle or energy transport across the magnetic
surfaces. Field inhomogeneity is the fundamental reason for the radial transport
within the framework of neoclassical transport theory. For tokamaks, the existence
of nested flux surfaces indicates the kinetic quantiles are functions of the flux surface
labels. Temperature and density on one flux surfaces can be considered constant
due to very high parallel motion of charged particles. The transport study has
been intensely carried out on 1.5 dimensional level due to the possession of toroidal
symmetry. Here 1.5 dimensional means 2 dimensional (poloidal (θ) and radial (r)
directions) quantities averaged over the magnetic flux surfaces. This simplification
significantly reduced the calculation task because now the problem is simplified to
one dimensional.
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Despite of lacking axisymmetry, for stellarators, transport work has also been carried
out on 1.5 dimensional level due to the possession of nested flux surfaces. And finally
for RFPs, due to lack of nested flux surfaces, transport processes are dominated by
stochastic transport.
In real magnetic configurations, however, the commonly existed magnetic islands,
i.e., the resonant MHD tearing modes rises intrinsically three dimensional aspect of
transport study. In tokamaks and stellarators, nested flux surfaces are distorted in
vicinity of magnetic islands. This brings two main issues for transport study:

• No monotonic coordinate could be defined to describe the whole plasma volume.
With presence of magnetic islands, there are two zeros in flux coordinate, one is
the original magnetic axis and the second one is the center of magnetic islands.

• The distorted flux surfaces break the toroidal symmetry (tokamaks) or helical
symmetry (stellarators), leading to non-closed banana orbit of trapped particles
drifting outwards. This effect is essentially induced by the increase of toroidal
viscosity and the consequence is that it increases the radial particle drifts.

This dissertation is focused on the transport study with the presence of magnetic
islands. The thesis work has been carried on two toroidal configurations: RFX-mod
and TJ-II. To be more specific, this work contains the following two parts:

• The first part is the thermal property study as well as transport study on three
sub-states within Quasi-Single Helicity state (QSH) on RFPs. QSH state has
been observed on all RFP devices under proper plasma conditions. It reveals
a better confinement regime compared to multiple helicity state. The thermal
structure with high electron temperature in QSH features a bean-shaped heli-
cal structure. There are three sub-states, named Double Axes (DAx), Single
Helical Axis (SHAxn) and SHAxw with n and w indicating narrow and wide
thermal structure. This part has been dedicated to the study of characteriza-
tion on thermal properties of these three sub-states. A complete comparison
between these three sub-states has been firstly studied. This part has been
carried out on a selected database obtained from RFX-mod [22], the largest
RFP devices on operation in Padova, Italy. The detailed results are presented
in Chapter 4.
The transport study on these three substates has been carried out to solve the
multiple magnetic axis issue and for this purpose, a multi-domain scheme, di-
viding the whole plasma volume into three separated regions has been studied.
Monotonic coordinate can be defined in each of the three separated regions
and consequently, the transport equation can be solved in each region. The
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interface between these three region is the so-called separatrix and it is the
connection for solving the transport in the whole plasma volume. A routine
named Multiple Axes Solver has been developed and benchmarked with code
ASTRA. Preliminary transport study with the help of MAxS has also been
performed. This part is presented in both Chapter 3 and 4.

• The second part has been carried on TJ-II [23], a stellarator device in CIEMAT,
Madrid. This part is focused on the transport modification in the vicinity of
magnetic islands, using the Neoclassical Toroidal Viscosity (NTV) developed
by K. C. Shaing [24]. It has been reported that magnetic islands plays a role
of transport barrier [25] and also it modifies the local electric field [26]. The
original theory developed by K. C. Shaing is focused on the toroidal plasma
viscosity induced by axisymmetry breaking effect due to the presence of mag-
netic islands in tokamaks. The same equations, with an extra geometry factor,
are adopted due to the fact that the distortion effect induced by magnetic is-
lands is similar in tokamaks and stellarators. The geometry factor is applied
because that the non-ambipolar fluxes in stellarators are much higher than in
tokamaks. A general description on the theory of NTV is presented in Chapter
5. The application of this theory on TJ-II plasmas has been carried out. The
detailed results and discussions are presented in Chapter 6.





Part II

Thermal Properties and Transport
Study on Three Sub-states in QSH
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3Quasi-Single Helicity and Multiple
Domain Scheme

Quasi-Single Helicity state has been observed on RFX-mod firstly and
confirmed by other RFP devices afterwards. It shows a better confinement
regime compared with multiple helicity state. This chapter presents the
description of QSH state as well as its three sub-states. Moreover, the
tool for transport study in multiple magnetic axes situations has also been
developed and tested, based on the concept of multiple domain scheme,
which is also presented.

3.1 Multiple Helicity and Quasi-Single Helicity

In RFX discharges with low plasma current IP < 1MA, due to unique safety fac-
tor profile q < 1, many MHD modes saturated intrinsically, producing superposing
magnetic islands and giving rise to a chaotic magnetic field in the plasma core. This
chaotic magnetic field leads to high transport in the center with very limited confine-
ment properties. Indeed, the electron temperature in such states shows a flat profile
with low amplitude in the center and this is named as Multiple Helicity (MH) state.
On the other hand, the nonlinear interactions between these modes gives rise a part
in Ohm’s law acting as effective electric field, via the average interactions between

velocity and field pertubation
〈
ṽvv × b̃bb

〉
. This is called dynamo mechanism mentioned

in Chapter 3. Compared with other fusion devices like tokamaks, RPFs in MH states
shows a big gap due to the bad plasma confinement properties.
Nevertheless, it has been theoretically predicated with 3-dimensional MHD simula-
tions [27, 28] that one single helical mode could sustain the dynamo effect and this
state is named Single Helicity state (SH). This shows a promising future for RFPs
in fusion research since nested flux surfaces are preserved inside of the single helical
mode and radial transport could be significantly reduced compared with MH state.
Experimentally, however, SH state has never been observed while an intermediate
state, with enhanced plasma confinement properties has been observed in RFX-mod
and further been confirmed on all RFP machines[29, 30]. This new regime which ap-
pears periodically in the high plasma current discharges (IP > 1MA in RFX-mod)
is Quasi-Single Helical (QSH) state, with active control of radial magnetic perturba-
tions [22, 31]. A typical discharge with IP > 1MA in RFX-mod is shown in Figure

41
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3.1. The upper graph is the time evolution of the plasma current and the lower one
is the time evolution of the toroidal magnetic tearing mode spectrum in which the
red line represents the m=1, n=-7 mode, whose amplitude dominants the spectrum
periodically during the discharge and the blue line represents the rest of the modes

(secondary modes) defined as bsec =
[∑−17

n=−8(b1,n
φ )2

]1/2
(in this thesis the toroidal

mode number -8:-17 is used). The duration time of one cycle increases with the
increase of the plasma current [32]. A typical mode spectrum of both QSH and MH
are presented in Figure 3.2. One could see that modes shows a comparable amplitude
in MH while in QSH, there is a single mode dominating the spectrum.
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Figure 3.1: A typical discharge in RFX-mod. (a): plasma density. (b): plasma
current. (c): The time evolution of toroidal magnetic component bφ with red line
representing the dominant mode (m=1,n=-7) and the blue line representing the
secondary modes (m=1, n=8:17).
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Figure 3.2: Typical toroidal field bφ spectra (2ms averaged value) for m=1 mode
against the toroidal mode number n. The blue spectrum is for MH state and the red
one is for QSH state.

3.2 Three Sub-States in QSH

There are three sub-states in one cycle of QSH state. One cycle of QSH begins
with the most inner mode starting to grow, while the rest of the modes remains
at a low amplitude, forming one dominant magnetic island with a separatrix. A
bean-shaped thermal structure with narrow, off-axis electron temperature structure
spontaneously formed in the island center. This first stage is named Double Axes
state (DAx) in the sense that there are two magnetic axes existing at the same
time. Afterwards, the dominant mode grows further, reaching the threshold on
which a magnetic topological transition takes place: the X point of the dominant
mode anneals with the original magnetic axis and the O point of the dominant mode
survives as the new magnetic axis. During this process, the bean-shaped thermal
structure remains relatively unchanged: narrow and off-axis. This is the second stage
and it is named Single Helical Axis state (SHAxn) with the subscribe n meaning
narrow thermal structure. When the dominant mode grows up to 4% of the edge
magnetic field, the high electron temperature structure usually evolves from off-axis
in SHAxn into a wider profile enclosing the geometrical axis. This third sub-state
is named as SHAXw state with the subscribe w indicating wide thermal structure.
The three sub-states of QSH are shown in Figure 3.3. The lower three figures d, e,
f, are electron temperature profiles measured with an 84-point Thomson scattering
diagnostic [5] in each sub-state. The upper three figures a, b, c, are the corresponding
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Te contour plots, calculated with the magnetic equilibrium reconstruction produced
by the code SHEq [33], thanks to the fact that temperature, in QSH states, is a
flux function [31]. Both DAx and SHAxn feature narrow and off-axis Te thermal
structure. The SHAxw, on the other hand, has a wide thermal structure in the
plasma core.
The transition from MH to QSH features a bean-shaped thermal structure with high
electron temperature forming in the center of the plasma sustained by the existence
of the so-called electron internal transport barrier (eITB)[34] with significantly low
thermal diffusivity. This critical region should be studied in order to understand the
physics of QSH states. Accompanied with the thermal evolution, MHD modes also
shows an interesting evolution, partially in their amplitude. A thermal gradient study
as well as a preliminary transport study, based on 208 selected electron temperature
profiles obtained from Thomson scattering has been performed to understand the
role of dominant mode and secondary modes in the time evolution of 3 sub-states in
QSH and the results are shown in the following chapter.

3.3 Multiple Domain Scheme

Transport research benefits of the availability of several well-developed 1.5D trans-
port codes, which have been widely used in single axis magnetic configuration for
decades while it is beyond their capability to treat situations with the presence of
magnetic islands due to the fact that it is impossible to find a monotonic coordi-
nate to describe the whole plasma volume. Indeed, in plasma configurations with
multi-axes, a monotonic radial coordinate is undefinable in the whole plasma volume,
which, together with the correct metrics (the spatial derivative of the volume and the
first element of the metric tensor, denoted as V ′ and G1, respectively), are essential
to solve the transport equations:

3

2
ne
∂Te
∂t

+
1

V ′
∂Γe
∂ρ

= Se (3.1)

where ne and Te are the electron density and temperature, Γe = −V ′G1neχ∂Te
/
∂ρ

is the energy flux, χ is the thermal diffusivity and Se is the energy source.
Facing this issue, a new approach, named Multiple Axes Solver (MAxS), capable of
studying transport under multi-axis configuration is developed and tested on RFX-
mod. Figure 3.4 shows a sketch of a poloidal cross-section of a magnetic field with
the presence of a magnetic island. The 3 regions are: Region I, the circular plasma
containing the original magnetic axis; Region II, the magnetic island containing its
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Figure 3.3: Three sub-states: (a) DAx, (b) SHAxn and (c) SHAXw are presented.
The black horizontal lines in the contour plots represents the Thomson scattering
laser path and ones in the lower 3 plots are the width of the thermal structure.

own axis and Region III, the outer region in the plasma edge. The red line represents
the separatrix, which is a thin layer around the magnetic island and it features high
stochasticity. In each of the 3 zones, monotonic coordinate ρ could be well defined
and the temperature could also be considered as a function of ρ in each zone, which
will be demonstrated later. The separatrix region is the interface between the three
zones, which has very small volume compared with the three zones. Hence, there
is assumed to be no heat source nor sink in the separatrix region. What is more,
due to the stochastic property of the separatrix, the transport is high so that the
electron temperature is uniform everywhere inside of the separatrix. The main steps
for MAxS are:

• Make initial ’guess’ for thermal diffusivity χ in each zones and set the proper
boundary conditions.



46 Quasi-Single Helicity and Multiple Domain Scheme

• Evolve transport equations in three zones until the temperature profiles remains
unchanged. Then get the fluxes from three zones, namely ΓI , ΓII and ΓIII .

• These fluxes enters into separatrix and evolve according to ∂Tsep/∂t = (2/3ne)[(ΓI+
ΓII + ΓIII)/Vsep].

• If ∂Tsep/∂t ≤ 103eV/s then break. The consequente χ profiles are the ones we
are seeking.

• If ∂Tsep/∂t ≤ 103eV/s then go back to step 2, adjusting the χ profile via the
genetic algorithm.

The chart flow of code MAxS is presented in Figure 3.5.
MAxS have been developed and benchmarked with a well know 1.5 dimensional

Figure 3.4: A sketch of poloidal cross section of a magnetic field with the presence
of a magnetic island. The red line represents the separatrix.

transport code ASTRA [35]. The benchmark has been carried based on two SHAxn
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• the transport equation is solved in each zone: at the first step the code requires a guess for Te(ρ), which 
is also used to set Tsep(t=0), and the thermal diffusion coefficient profile. The thermal fluxes crossing the 
boundaries of zone I, zone II and zone III (ΓI, ΓII, ΓIII) are computed according to the selected 
parametrization of the diffusivity and pinch terms; 

• the heat flux balance is obtained when a stationary solution is reached: if the fluxes are not balanced, 
the separatrix temperature evolves: the evolution of Tsep(t) is computed explicitly solving the local heat 

transport equation and neglecting the volume sources: 
!$%&'
!( ' (

))+
*-+,-++--+++.

/%&'
. In this equation, Vsep is 

the volume of the cell containing the separatrix; 
• the calculated Tsep is the new boundary condition for the next step of transport equation integration. 

The simulation run until the balancing of the thermal fluxes in the separatrix region is achieved and the 
separatrix temperature becomes stationary (convergence to stationary solution). In case of evolutive 
simulation, there are no convergence criteria and the simulation ends after a prescribed number of time 
steps. 

The flow chart of MAxS is:  

 
 

Introduction. 

An electron heat transport simulation has been performed with MAxS on LHD in presence of magnetic 
islands.   

To run the simulation, MAxS needs a minimum set of input data for each plasma zone: 

• Metrics:  
o monotonic radial coordinate ρ 

o g
11

 = ∇ρ ⋅∇ρ 
o V′ = 3435 

• Kinetic profiles:  
o n

e
(ρ) 

Compute T123 with explicit 
method (∆5 ≅ 10-89 to 

prevent numerical instability) 
!$%&'
!( ' (

))+
*-+,-++--+++.
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Figure 3.5: Flow chart of code MAxS.

cases obtained in RFX-mod. The quantities ρ, Te(ρ), V ′ and G1 are provided by
code SHEq. The main principle is to let these two codes to find the best thermal
diffusivity profile which promises the best fit between simulated and real electron
temperature profile. For MAxS, the selection of χ profile is done by hand while for
ASTRA, it is done automatically using Genetic Algorithm, which is implemented
in RFX, generates a serials of ”best choices”, also named confidence interval (CI’s).
The result of benchmark between these two codes is shown in Figure 3.6. The upper
graphs are the two electron temperature profiles from experiment (blue stars), best
fit solution from MAxS (red solid line) and the CI’s from ASTRA (gray shadow).
The lower two graphs are the corresponding thermal diffusivity profiles from MAxS
(red solid line) and from ASTRA (gray shadow). The result shows a good agreement
in both the electron temperature profiles and the thermal diffusivity profiles between
MAxS and ASTRA, which gives confidence for MAxS to perform further transport
study. Moreover, the Genetic Algorithm has also been implemented into MAxS for
further work.
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Figure 3.6: Benchmark between MAxS and ASTRA applying two SHAxn cases in
RFX-mod. The upper figures are the electron temperature profiles (green stars) from
Thomson scattering and the simulated electron temperature profile from MAxS (red
line). The gray shadow is the acceptable range obtained from ASTRA.

3.4 Flux Coordinate

The coordinate system adopted by MAxS is the radial flux coordinate.The equilib-
rium quantities and the eigenfunctions are obtained solving the force balance equa-
tion in toroidal geometry with a perturbative approach. The basic equations are:

∇ ·BBB = 0 ∇×BBB = µ0JJJ JJJ ×BBB = ∇P = 0 (3.2)

A physical quantity ξ could be written as the equilibrium part plus the perturbation:
ξ(r, θ, φ) = ξ0(r) + ξ1(r) where ξ0 � ξ1. By taking the Fourier analysis on the
pertubation ξ1, one have:

ξ(r, θ, φ) = ξ0(r) +
∑

m,n

|ξm,n
1 | exp i(mθ − nφ) (3.3)
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Figure 3.7: (a) A typical electron temperature from SHAxw state as a function of
the radius is presented using the symbol of dot while the solid line represents the
normalized helical flux function ρ.(b) The same electron temperature profile as in
(a), presented as a function of ρ with two colors representing the two sides between
the ρmin. The green dash line represents the location and Te value for the top and
foot of the eITB, which is obtained from TeGrA routine.

Write quantities in forms of Equation 3.3 and substitute into Equation 3.2, a set of
partial differential equations is obtained, with boundary conditions from experimen-
tal data.
The next step is to map electron temperature over the flux surfaces, under the as-
sumption that the kinetic quantity, such as electron temperature, is a monotonic
function of the helical flux in one axis condition. A typical electron temperature
profile, measured in SHAxw state is presented in Figure 3.7(a), as a function of the
radius r. There is one flat region with high electron temperature in the core and on
both sides of the flat region, there are two temperature gradients, marked as the gray
shadow which are eITB regions. The width of the eITB is denoted as ∆rFoot,R(L)

with subscript Foot meaning the foot of the gradient and R(L) meaning the two
regions located in the right and left side. The width of the flat top is denoted as
∆rTop, which is also shown in Figure 3.7(a). The Te profile is split into two parts,
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marked as blue and red, by a vertical green line which corresponds to the minimum
value of the square root of the normalized helical flux ρ =

√
Φ/Φ0 where Φ is the

helical flux defined as Φ = mΨ0 − nF0 + mψm,n − nfm,n with m,n the poloidal and
toroidal mode number, Ψ0, F0 are the equilibrium poloidal and toroidal magnetic
flux. The ψ, f are the poloidal and toroidal magnetic flux of the dominant mode. Φ0

is the helical flux on the plasma edge [33]. Using ρ as a new radial coordinate, the
result of Te remapping along ρ shown in Figure 3.7(b) indicates the kinetic quantity
Te can be described as a function of the normalized helical flux. Figure 3.8 shows
results of a remapping done in a DAx case, in which both the core region and the
island region are detected by Thomson scattering system.

• (a). Contour plot of the helical flux at Thomson scattering angle, with the thick
red curve representing the separatrix. There are four intersections between the
separatrix and mid plan (θ = 0) and their locations are marked with four
dashed black vertical lines. The three vertical lines represents the location of
maximum or minimum of the helical flux, red for magnetic island region and
blue for the core region.

• (b). The normalized helical flux ρ is plotted versus the geometrical redius.
There are two separated island regions detected by Thomson scattering, shown
as the two red curves, together with one core region, marked as blue. The
two black curves are the outer regions. The horizontal black line represents
the sepatratrix. The four vertical dashed black lines are the corresponding
intersections shown in graph a.

• (c). The electron temperature, measured by Thomson scattering diagnostic, is
plotted versus the geometrical radius. The red color indicates the island region,
the blue color indicates the core region and the black color indicates the outer
region.

• (d). Remapped electron temperature in island region is plotted versus ρ. The
remapping is to build the relations between Te and ρ, through the information
of the radial distribution. The pink color represents the right side and the
green color represents the left side.
(e). The remapped electron temperature in the core region.
(f). The remapped electron temperature in the outer region.

The minimum helical flux doesn’t reach value zero is due to the face that the Thomson
scattering laser did detect, in fact most of the cases it cannot, the island center.
This brings the fact that the electron temperature measured cannot show the whole
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structure. Nonetheless, the information of the thermal gradient can be, at least
partially reflected via the Te profiles obtained. Meanwhile, most of the Te points
measured in experiments are in outer region. This leads to the problem that the
points in island region sometimes are not enough to perform an automatic algorithm
for gradient analysis in flux coordinate. Hence, the thermal properties are, in the
following chapter, performed and discussed in the geometrical coordinate.



52 Quasi-Single Helicity and Multiple Domain Scheme

Figure 3.8: Electron temperature remapped on the flux surfaces in a DAx state.
Vertical dashed black lines represent the location of separatrix intersected by mid
plan at Thomson scattering angle φ = 82.5◦. The vertical thin lines represents the
local maximum or minimum of the helical flux (red for island region and blue for
the core region). (a). Contour plot for the helical flux on the poloidal cross-section
at Thomson scattering toroidal angle. The horizontal line represents the Thomson
scattering laser path and the thick red curve represents the separatrix. (b). The
normalized helical flux plotted versus the geometrical radial, zoomed at the island
region. The horizontal line represents the separatrix, intersected with the curve with
four intersections, marked with the dashed black line. There are two parts belongs
to magnetic island, marked with red. The blue part is the core region and the two
black part on both side of the profile represents the outer region. (c). The Thomson
scattering profile versus radius of vacuum vessel. The colors represents different
regions. (d), (e) ,(f). The results of remapping in island (d), core (e) and outer
region (f). The pink represents left side and the green represents the right side.



4Thermal Properties of Three sub-states
in QSH state

The Quasi-Single Helicity state has shown a better confinement regime
compared with multiple helicity state. Here the thermal properties, with
the help of a routine named TeGrA, as well as the preliminary energy
transport, with the help of MAxS, study are presented. The behavior of
thermal gradients respect to both dominant and secondary modes are pre-
sented and discussed within the framework of stochastic transport theory.
In the end, the energy confinement time is evaluated within these three
sub-states.

4.1 Thermal Gradient Analysis

This chapter presents the study on the thermal properties of three sub-states in QSH.
The work is based on a selected database contains 208 electron temperature profiles
obtained from Thomson scattering diagnostic in QSH state whose signal path lies
in the middle plane at the poloidal angle θ = 0◦ and toroidal angle φ = 82.5◦. The
angle between the Thomson scattering laser path and the line going through the
maximum thermal width is between -35◦ and 35◦ in order to be sure to not miss the
highest temperature region in the plasma. The database was further selected based
on the density range from 2.5 to 3.5 with unit of 1019m−3 and the plasma current
varies from 1.2MA to 1.5MA.
A gradient automatic analysis (TeGrA) routine, capable of extracting the positions
as well as Te value of the foots and tops of the eITB, has been developed. The
TeGrA routine, in general, has the same procedure for all the Te profiles with minor
differences between peaked Te profile and flat ones. TeGrA is based on the principle
that the left and right of the eITB foot should share the same Te value, which is
equivalent to the assumption that Te is a function of ρ. The basic algorithm for
TeGrA are:

• Get the original Te(r) profile.

• Get the mean value of the Te(r) profile, TMe .

• For top analysis, update the Te(r) profile with Te(r) > (1 − x1)TMe with 0 <
x1 < 1, a parameter to be decided based on the profiles.
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• Repeat step 2 on the updated Te(r) profile until the value of TMe doesn’t change
anymore and the final value of TMe is the value of Te(top) with its corresponding
value of r being the r(top).

For foot analysis, similar steps are applied with a difference in step 2 which is Te <
(1 + x2)TMe , where x2 > 1. The main steps of routine TeGrA are shown in Figure
4.1.

Applying TeGrA routine on the selected database, the absolute value for left and
right gradients of the electron temperature could be easily obtained, denoted as ∇TLe
and ∇TRe . The minimum values of the two gradients are shown in Figure 4.2, as a
function of the toroidal component of the dominant mode b1,−7

φ normalized to the
edge magnetic field B(a). The error bar is estimated as follows:

δ∇Te/∇Te =
√∑

(δTe/Te)2 +
∑

(δr/r)2 (4.1)

Where δTe and δr are the error of electron temperature and the corresponding radial
errors obtained from experiments. There are two clear points of transition between
substates: the first one is between DAx and SHAxn states when the normalized
dominant mode b1,−7

φ /B(a) ≈ 2%, and the second one is between SHAxn and SHAxw
where b1,−7

φ /B(a) ≈ 4%. Furthermore, with the increase of the normalized dominant
mode, the minimum temperature gradient decreases. This result might give us a hint
of a local increase of energy transport and this might play a role in energy confinement
time behavior and this is confirmed by the priliminary transport study results using
MAxS, which is shown in Figure 4.3. Indeed, with the increase of the dominant
mode, the minimum thermal diffusivity χ increases. Here it is worth mentioning
that in Ref [36], a thermal gradient oscillation has been observed below 2 keV/m
around b1,−7

φ /B(a) ≈ 4% on the flat top of one QSH cycle. This result is agreed with

Figure 4.2, in which there are both SHAxn and SHAxw around b1,−7
φ /B(a) ≈ 4%.

Moreover, the evolution of the thermal structures is also studied. The width of the
thermal structure, WTe = ∆rTop + ∆rFoot,R + ∆rFoot,L, has been reported a sudden
change from SHAxn to SHAxw in Ref [37]. Here we look into the evolution of ∆rFoot
and ∆rtop separately. The minimum value between ∆rFoot,L and ∆rFoot,R, ∆rmFoot,
shows a continuous increase from DAx to SHAxn,w as a function of the normalized
dominant mode. This is shown as empty symbols in Figure 4.4. ∆rTop shows a
sudden jump in its amplitude (solid symbols in Figure 4.4) from SHAxn to SHAxw.
This indicates that the sudden jump in WTe reported in Ref [37] is due to the growth
of the top region in Te profile rather than the gradient width ∆rFoot.
Finally, the value of Te,Top, Te,Foot and ∆Te = Te,top−Te,Foot are calculated and shown
in Figure 4.5. The value of Te,Foot slightly decreases within these three states. An
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Figure 4.1: The main steps for routine TeGrA.
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Figure 4.2: The minimum temperature ∇Tmine between ∇TLe and ∇TRe is presented
as a function of the dominant mode normalized by the edge magnetic field.

explanation is that the foot of the gradient is expanding towards outer region where
electron temperature is lower. The top value, however, shows an increase trend
from DAx to SHAxn and decreases in SHAxw. Consequently, the value ∆Te slightly
increases from DAx to SHAxn and then decreases in SHAxw.
The results shown above confirmed that the thermal structure enlarges within these
three sub-states as the dominant mode increases. However, the thermal gradient
decreases as the dominant mode increases. In order to check if this peculiar thermal
gradient behavior is related to the stochastic transport in RFPs, we investigated the

behavior of secondary modes, defined as bsec =
(∑

n=−8:−17 b
2
1,n

)1/2
. Figure 4.6 shows

the minimum gradient versus the secondary modes normalized to the edge field.
The plot shows a clear separation between the group of SHAxn and DAx structures,
that occurs when the secondary modes are higher than 0.85%, and the SHAxw, that
occurs when the secondary modes is lower than 0.85%. In DAx and SHAxn group, the
thermal gradient tends to increase with the decrease of the secondary modes. This
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Figure 4.3: Preliminary results of transport study is presented.

trend agrees with stochastic transport in RFP plasmas. The steepness of the gradient
suddenly decreases in the SHAxw group. Such last behavior can be understood in
the light of the analyses presented in Ref [37]. In such paper it is shown that the
transition from narrow to wide thermal structures is related to the stabilization of
the subdominant, m=1, n=-8,-9 modes, whose amplitude is significantly reduced
in SHAxw state. In particular the m=1, n=-8 mode, which usually is the highest
among secondary modes, in such states becomes comparable to higher n modes. The
widening of structures is then attributed to the decrease of stochasticity produced
by such two modes, which allows the region enclosed by the resonance radii, where
the temperature is usually flat due to the high transport, to host the eITB gradients.
This conclusion is supported by the result that, while the DAx and SHAxn gradients
form internally to the m=-1, n=-8 mode resonance radius, SHAxw gradients form
between m=-1, n=-8,-9 mode resonance radii. Since the SHAxw gradients develop
more externally than the others, they are supposed to be more sensible to the field
stochastization produced by higher n modes, being near to their resonance radii.
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Figure 4.4: The maximum value of the gradient width ∆rmaxFoot (empty symbols) and
∆rTop (solid symbols) plotted as a function of the normalized dominant mode. The
foot shows a continuous growth while there is a sudden jump between SHAxn and
SHAxw.

This last element could explain why such gradients are less steep than the DAx and
SHAxn ones although the secondary modes are the lowest ones.
So far we know that both dominant mode and secondary modes play a role in setting
thermal gradient in eITB region. In both DAx and SHAxn groups, the thermal
gradients are, on certain levels, negatively correlated with both dominant mode and
secondary modes. While in SHAxw group, the thermal gradients does not share the
same behavior pattern. Now we investigate the weight of setting thermal gradients
due to dominant mode and secondary modes, which is shown in Figure 4.7. In DAx
state, thermal gradients show an increase trend with decrease of the ratio bsec/b

1,−7
φ

while in both SHAxn and SHAxw, the thermal gradients are positively correlated with
the value of bsec/b

1,−7
φ . This result could be explained by the stochastic reduction

by separatrix. In DAx state where there is separatrix, the thermal gradients are
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Figure 4.5: The top and foot value of Te and the difference ∆Te are shown as a
function of the normalized dominant mode.
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Figure 4.6: The minimum gradient is plotted as a function of the secondary modes. In
both DAx and SHAxn, the thermal gradient increases with the decrease of secondary
modes, indicating a stochastic transport in both sub-states. While when it comes
to SHAxw, the thermal gradient shows a sudden decrease. This change indicates a
reduced stochastic transport properties from DAx/SHAxn to SHAxw.

maintained by the reduction of stochastic transport by the existence of the separatrix
as well as the stabilization due to the secondary modes. After the disappearance of
the separatrix, the thermal gradients, still benefiting the stabilization of secondary
modes, suffers more from the increases of stochastic transport due to the expulsion
of separatrix.
The behavior of thermal gradients discussed above are localized in the eITB region.
To further understand the global confinement properties in QSH states, the total
energy confinement time is investigated in the following section.
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Figure 4.7: Minimum thermal gradient is plotted as a function of bsec/b
1,−7
φ .In DAx

group, the thermal gradients shows a negative correlation with respect to the value
of bsec/b

1,−7
φ while in both SHAxn and SHAx−w groups, the thermal gradients show

a positive correlation, instead.

4.2 Energy confinement time

Energy confinement time is calculated as:

τ =
3

2

∫

V

KBn(Te + Ti)dV
/

(Pin) (4.2)

where KB is the Boltzmann constant, n is the electron density, Ti is the ion tem-
perature and Pin is the input power. Concerning the volume information, a more
detailed approach, considering the correct shape of the non-axisymmetric flux sur-
faces is adopted with the helical reconstruction of magnetic field using SHEq. Also,
all the profiles used here (Te, Ti and n) are remapped over the helical flux surfaces
based on the same reconstruction. In this way, a more precise energy confinement
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time is obtained. The density profiles are assumed to have this shape:

n = 0.8n0

[
1− (r/a)10

]
+ 0.2n0 (4.3)

where n0 is the plasma density in the core. This is due to the fact that in RFX-mod,
the shape of the density profile is mainly ruled by the density level, by an interplay
of stochastic transport, electrostatic transport and source effects[38, 39].
Also the ion temperature is assumed to be the same as electron temperature. Note
that this assumption only affects the absolute value of the energy confinement time.
The confinement time, plotted as a function of the normalized dominant mode, is
shown in Figure 4.8(a). In DAx states, the average confinement time is around
1.4ms. It increases to 1.7ms in SHAxn and eventually in SHAxw, confinement time
arrives at around 2ms. The increase of the confinement time indicates a less chaotic
plasma in SHAxw than in DAx. This is confirmed by looking into the global dynamo
parameter: (1−F )/Θ. From Figure 4.8(b) it can be seen that the dynamo parameter
slightly decreases with the increase of the normalized dominant mode, which means
that from DAx to SHAxw, the plasma goes into more ordered states.

Figure 4.8: (a): Total energy confinement time as a function of normalized dominant
mode. The mean value increases from around 1.4ms in DAx up to around 2ms
in SHAxw. (b): The dynamo effect (1 − F )/Θ decreases with the increase of the
normalized dominant mode.
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4.3 Thermal Gradient after Remapping

As mentioned above, the database was selected based on the angle range of -35◦

and 35◦. The above mentioned results are based on the experimental data. Here we
briefly present the results after rotating the angle to be 0, i.e., the maximum thermal
structure width lies on the mid plan. The rotation is based on the principle that
after rotation, the minimum helical flux lies on the mid-plane. The definition of the
helical flux function Φ, containing both the equilibrium flux and the dominant mode
flux:

Φ = Φ0 + Φ̃ sin(mθ − nφ+ φ0) (4.4)

Where Φ0 is the equilibrium flux function, Φ̃ is the amplitude of the m=1, n=-7
mode flux and φ0 is the phase of the dominant mode. The minimum helical flux lies
on the mid-plane thus becomes:

mθ − nφ+ φ0 = −π/2 (4.5)

If the minimum helical flux lies on the high field side, then θ = π. If the minimum
helical flux lies on the low field side, then θ = 0. Depending on these two differ-
ent situations, the correct toroidal angle which should be used for rotation is thus
obtained. The rotation proceeds as follows:

• Get the information of eITB gradients, i.e., four critical locations of the eITB:
rRFoot, r

L
Foot, r

R
Top, r

L
Top and two critical temperatures: T Tope and T Foote .

• Get the helical flux function ΦTS on the Thomson Scattering toroidal angle
φTS = 82.5◦.

• Interpolate the helical flux values on the four radial positions of the eITB
mentioned in step 1, being ΦTS

Foot,R, ΦTS
Toot,L, ΦTS

Top,R and ΦTS
Top,L.

• Obtain the new helical flux function Φnew at a new toroidal angle calculated
based on the rotation principle mentioned above.

• Find the new four radial locations via the four helical flux values obtained in
the previous step.

• Using the new radial locations, together with the temperature values obtained
in step 1, the new thermal gradients, after rotation are thus calculated.

An example of rotation, performed in a DAx state, is presented in Figure 4.9. Graph
(a) and (b) are the contour plots of the helical fluxes before and after rotation,
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respectively. Graph (c) shows the helical flux on the mid-plane versus the geometrical
radius. Red lines indicate before rotation and blue lines indicate after rotation. The
vertical lines are the locations of the thermal gradients obtained from TeGrA. Note
that in DAx cases, one needs to pay attention that the remap should perform within
the island region because for the same χ value, there might be another point in the
core region. Also one may notice that the χmin does not reach 0, this should be the
reason that the grid to obtain the value of χ is not dens enough.

Figure 4.9: An example of rotation is presented. (a), The contour of helical flux at
Thomson scattering angle. (b), the contour of helical flux after rotation. (c), The
corresponding helical flux along mid-plane before (red) and after (blue) rotation. The
vertical lines represent the location of the thermal gradients obtained from TeGra.

The reason why we performed TeGrA on the Thomson scattering angle rather
than on the actual line of maximum thermal width is to reduce the errors induced
by the remapping process. As we mentioned in Chapter 3, The remapping suffers
some lack of accuracy in DAx cases and in single axis situations, even the remapping
results are acceptable, the extra error induced by remapping is hard to evaluate.
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Nevertheless, here we neglect the errors induced by the remapping process, only
considering the error induced by TeGrA, and did the calculations on the remapped
grid in machine coordinate and the results shows a good agreement with the results
shown above in the sense that they both shows the same statistical trend. Here we
present the ’new’ results in Figure 4.10. The thermal gradients as well as the thermal
structure widening behaviors the same as ones obtained in the previous sections.



66 Thermal Properties of Three sub-states in QSH state

Figure 4.10: Thermal properties after rotation. (a), the minimum thermal gradients
versus the normalized dominant mode. (b), The minimum thermal gradients versus
the normalized secondary modes. (c) The minimum thermal gradients versus the
ratio between secondary modes and the dominant mode. (d), The maximum thermal
gradient width ∆rmaxFoot (empty symbols) and the top width of the thermal structure
∆rTop (solid symbols) versus the normalized dominant mode.



Part III

Radial Electric Field in Vicinity of
Magnetic Island in TJ-II
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5Enhanced Radial Transport due to
Toroidal Viscosity in Tokamaks

Plasma confinement property is one of the most important issue for fu-
sion research. The goal of fusion reactor is to achieve fusion by confining
plasmas within sufficient long time. Thanks to the existence of nested
magnetic flux surfaces, the radial particle transport processes are strongly
suppressed. Nonetheless, the radial transport is sill one of the main parti-
cle and energy loss in fusion plasmas. This chapter discuss the situation
of distorted magnetic surfaces due to the existence of magnetic islands.
More specifically, the enhanced radial transport in vicinity of magnetic
islands due to the enhanced toroidal viscosity is presented.

5.1 Symmetry Breaking Effect: Enhanced Radial

Transport

Tokamak is a toroidal magnetic fusion device featuring toroidal symmetry. Charged
particles are bonded on the flux surfaces with small loss via radial transport process
across the magnetic flux surfaces. This is true within neoclassical transport theory
and the magnetic configuration poses perfect toroidal symmetry. Particle fluxes are
intrinsically ambipolar:

Γi = Γe (5.1)

Also the guiding center trajectories of particles are closed banana orbit on poloidal
cross-section. However, in real tokamak operation, the presence of error fields or
MHD activities could break the toroidal symmetry, which leads to the increase of
toroidal viscosity. Consequently, the banana orbits are not closed any more and
particles are drifting outwards. An enhanced radial particle transport is thus induced
by the symmetry broken.
Recall the banana region in Figure 2.3, which is a linear relation between particle
diffusivity D11 and collision frequency ν in log-log scale, it is modified into three
regions according to different collision frequency: ν,

√
ν and 1/ν. A log-log scale

plot of particle diffusivity versus collisionality is shown in Figure 5.1, for magnetic
configurations with no toroidal symmetry (perturbed tokamaks or stellarators). This
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Figure 5.1: A log-log sketch of particle diffusivity D11 is presented as a function
of the collisionality ν∗. This figure shows only the low collisionality region, i.e.,
ν∗ 6 1. There are three regions grouped according to different collisionaltiy regions:
ν,
√
ν and 1/ν. This figure is valid for tokamaks with broken toroidal symmetry and

stellarators who doesn’t poses any toroidal symmetry.

will leads to non-ambipolar fluxes and a local electric field is thus generated:

∂EEE/∂t = Γe − Γi (5.2)

It may play a role in plasma confinement properties by means of EEE×BBB plasma drift,
which is considered to play an important role in L − H transition by reducing the
size of turbulence structure in the plasma edge.
Magnetic islands, i.e., MHD tearing modes, exist in resistive plasmas on the resonant
surfaces. It modifies the magnetic topology and breaks the toroidal symmetry by
distorting the nested magnetic flux surfaces. Thus, the presence of magnetic island
leads to an increase of radial transport. In vicinity of magnet island, non-ambipolar
flux appears and this leads to the formation of local radial electric field. In the follow-
ing section, the methodology of neoclassical transport theory is presented to derive
non-ambipolar flux with toroidal symmetry broken due to the presence of magnetic
islands in tokamak configurations. There are two approached for neoclassical fluxes,
being moment approach and kinetic approach and it has been shows that the non-
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ambipolar flux origins in the appearance of toroidal viscosity [24] (see Appendix 6.10).

5.2 Radial Electric Field in Vicinity of Magnetic

Island in Tokamaks

There are at least two mechanisms which can affect the toroidal viscosity. The first
one is the electromagnetic torque induced by the interaction between the islands and
the wall or error fields [40] and a detailed work has been carried out by A. J. Cole,
etc. in Ref [41]. The second one is the plasma viscosity induced by the distortion
of the magnetic surface in the vicinity of the islands. Here we present the theory
developed by K. C. Shaing, focused on the second mechanism.
To begin with, the proper coordinate system should be introduced. Since we are
dealing regions in vicinity of magnetic islands, it is better to use a coordinate centered
in the O-point of a magnetic island. Figure 5.2 shows a contour with constant
helical flux function Ψ = ψ − χ/q with ψ the the unperturbed equilibrium poloidal
flux function, q the safety factor and χ the toroidal flux function. The main idea

ticle distribution, vd is the particle drift velocity, !!"
"#/qs is the helical angle, qs is the safety factor q at the
rational surface where the island is centered, $ is the helical
flu function, C( f ) is the Coulomb collision operator, and
fM is the Maxwellian distribution. A schematic diagram of a
magnetic island is shown in Fig. 1. The radial surface label
of constant $ is shown. The bounce averaged drift speed in
the %! direction is

&vd•%!'b!"(I/M)*(+$/+,*(B0"%"/B *

#(+J/+$*/(+J/+E *, (3*

where I!RBt , R is the major radius, Bt is the toroidal mag-
netic fiel strength, B!!B!, M is the mass, ) is the gyro-
frequency, , is the unperturbed equilibrium poloidal flu
function, and E is the particle energy. The second adiabatic
invariant J!" d" v # is

J!16(-B./M *1/2/E(0*"(1"02*K(0*1 , (4*

where .!2s$(%3w)($̄$cosm!)1/2, 2s is the inverse as-
pect ratio evaluated at the rational surface, 3w
!/2(qs)2,̃/(qs!Brs)11/2/R is the width of the island divided
by the major radius, ,̃ is the perturbed poloidal flu due to
the existence of the island, qs!!dq/dr evaluated at the ratio-
nal surface, rs is the radius of the rational surface, $̄ is the
normalized helical flu function define as the ratio of the
helical flu function to (",̃), m is the poloidal mode num-
ber of the island, - is the magnetic moment, E(0) and K(0)
are the complete elliptic integrals of the second kind and firs
kind, 02!(E"-B0"e4$-B0.)/(2-B.), e is the elec-
tric charge, and 4 is the electrostatic potential. The quantity
J is calculated based on the magnetic fiel model B!B0(1
". cos "), valid in the vicinity of a magnetic island.7 With J
given in Eq. (4*, we obtain

&vd•%!'b!"(I/M)*(+$/+,*(B0"%"/B */-B0(2E/K

"1 *+./+$"e4!1 , (5*

where 4!!+4/+$ . For a large aspect tokamak where .
&1, the EÃB drift dominates the &vd•%!'b drift away from
the island separatrix for thermal particles when e4/T51.
Here, T is the plasma temperature. For simplicity we assume
that the EÃB drift speed dominates the &vd•%!'b drift
speed. This assumption removes the possibility of forming
super-bananas which are caused by the cancellation of the
%B drift and the EÃB drift so that &vd•%!'b50. Note that
because 02 is a function of ! through its dependence on 3w ,
it is possible that trapped particles can be collisionlessly de-
trapped or the circulating particles can be trapped collision-
lessly when 02 is close to 1. We will ignore such a possibil-
ity, i.e., we neglect the 3w dependence after we obtain the
radial drift speed from it. This is equivalent to expanding J in
terms of 3w . Neglecting both of these effects, namely, super-
banana and collisionless trapping/detrapping, will not affect
the radial electric dependence in the transport fluxes The
bounce averaged radial drift speed is

&vd•%$'b!(I/M)*(+$/+,*(B0"%"/B */-B0(2E/K

"1 *+./+!1 . (6*

It is obvious that Eq. (2* is a complex partial differential
equation with complete elliptical integrals as coefficients To
make progress, we approximate K5(6/2)(1$02/4$¯)
and E5(6/2)(1"02/4$¯) for the trapped particles where
02'1. With these approximations, we have (2E/K"1)51
"02. Note that this approximation is not accurate at or close
to the boundary where 02 is unity, as expected. However,
this approximation is consistent with our purpose, since we
neglect the possibility of the collisionless trapping and de-
trapping that can occur when 02 is close to unity. The bounce
averaged collision operator is

&C( f *'b!(7/B */+(J-+ f /+-*/+-1/(+J/+E *. (7*

Since 02 is a more convenient pitch angle parameter, +/+- in
Eq. (7* can be approximated by +/+-5"(1/2-.)+/+02.
Because we neglect the ! dependence in 0, &C( f )'b is not a
function of ! either, except through the distribution f itself.
With this approximation, the solubility constraint is dramati-
cally simplified as will be clear later.

Now we solve Eq. (2* in the regime where the collision
frequency is less than the EÃB drift frequency in the %!
direction. We expand Eq. (2* in terms of this small param-
eter. The lowest order equation is

&vd•%!'b+ f 0 /+!$&vd•%$'b+ fM /+$!0, (8*

and the next order equation is

&vd•%!'b+ f 1 /+!!&C( f 0*'b , (9*

where f 0 and f 1 are the lowest order and the next order
perturbed particle distribution functions. Because we only
keep the EÃB drift in &vd•%!'b and neglect the ! depen-
dence in 0, the solubility constraint in Eq. (9* is simplifie to

$ d! f 0 /(+$/+,*!0. (10*

Note that the extra +$/+,!1"q/qs factor in Eq. (10* is
from &vd•%!'b . Integrating Eq. (8* we obtain

FIG. 1. A schematic diagram of a magnetic island. The constant $ contour
is shown here. The helical angle ! is similar to the polar angle in this
diagram.
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Figure 5.2: A schematic diagram of a magnetic island. The constant Ψ contour is
shown.

is to solve the non-ambipolar equation in vicinity of magnetic islands described in
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Equation 5.2. The particle fluxes, by definition, is obtained as:

Γ =

∫
dvvvfvvvd · ∇Ψ (5.3)

vvv is the particle velocity, vvvd is the drift velocity, f is the particle distribution function
and ∇Ψ indicates the radial direction. The theory is to obtain the distribution
function f through solving the kinetic equation. The theory focused on the vicinity
of magnetic islands and has the following assumptions:

• Large aspect ratio devices. In this condition, the E×B drift velocity is higher
than ∇B drift and curvature drift. So the drift velocity could be approximately
VE×B.

• The size of the drift orbit is δr rVdr/VE×B where r is the radius and Vdr is the
radial drift speed due to both ∇B and curvature drift. The physical meaning
of this condition is to neglect the formation of supper banana orbit [42, 43].

• The process of trapping-detrapping process is neglected, i.e., the amount of
particles inside of banana orbits is constant.

Guiding Center Description of Drift Kinetic Equation

The neoclassical toroidal viscosity developed by K. C. Shaing adopts the kinetic
description, which starts with the guiding center description of drift kinetic equation.
The general kinetic equation for charged particles is:

∂f

∂t
+ vvv · ∇f + aaa · ∂f

∂vvv
= C(f) (5.4)

Where C(f) is the Coulomb collision operator and aaa, the acceleration, is given by
the Lorentz force:

aaa ≡ aaa (xxx,vvv, t) =
e

m

[
EEE(xxx, t) +

1

c
vvv ×BBB(xxx, t)

]
(5.5)

The equation 5.4 could be summarized as:

∂f

∂t
+
dzi

dt

∂f

∂zi
= C(f) (5.6)
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where zi satisfies the transformation of (xxx,vvv) → (z1, · · · , z6). Each guiding center
can be specified by its position, magnetic moment and energy: (xxx, µ, U). Adopting
this guiding center coordinate, equation 5.4 could be reformed as:

∂f

∂t
+ vvvgc · ∇f +

dU

dt

∂f

∂U
+
dµ

dt

∂f

∂µ
= C(f) (5.7)

Where vvvgc is the guiding center velocity and it is dominated along BBB:

vvvgc = bbbv‖ +O(δ) (5.8)

With bbb = BBB/B. The higher order is vvvgc = bbbv‖ + vvvd + Oδ2, where vvvd is the drift
velocity and it is given by:

vvvd = vvvE +
1

Ω
bbb×

(
µ

m
∇B + v2

‖κκκ+ v‖
∂bbb

∂t

)
(5.9)

Where Ω is the groradius of charged particles. The theory is to solve the linear
version of Equation 5.7 by expressing the particle distribution f as

f = fM + f1 (5.10)

where fM is the equilibrium Maxwellian distribution function and f1 is the perturbed
distribution function. Thus, we have C(f) = C(f1). The zero order of equation 5.7
would be:

v‖bbb · ∇f0 = C(f0) (5.11)

The solution is f0 = fM(Ψ) for an unperturbed tokamak and f0 = fM(Ψ, α) for an
perturbed tokamak and stellarator , where α is the helical angel.
The first order of the drift kinetic equation is:

v‖bbb · ∇f1 + vvvd · ∇f0 = C(f1) (5.12)

The physics in the non axis symmetric system is governed by the bounce averaged
drift kinetic equation, which eliminates the information along the magnetic field.
The bouncing average is defined as:

〈·〉b =

∮
dθ(·)BBB0/|v‖|

/∮
dθBBB0/|v‖| (5.13)

For the passing particles the integral is performed between 0 and 2π and for the
trapped particles the integral is performed between −θc to θc instead. Taking the
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bounce average of Equation 5.12, v‖bbb · ∇f1 could be annihilated (see Appendix 6.8)
and Equation 5.12 becomes:

〈vvvd · ∇α〉b
∂f0

∂α
+ 〈vvvd · ∇Ψ〉b

∂f0

∂Ψ
= 〈C(f0)〉b (5.14)

In order to solve Equation 5.14, a subsidiary ordering is adapted:
In the case of 〈vvvd · ∇α〉b ∂f0

/
∂α ∼ 〈C(f0)〉b > 〈vvvd · ∇Ψ〉b ∂f0

/
∂Ψ, which implies the

drift orbit is much smaller than the characteristic length of the plasma, equation
5.14 yields to:

〈vvvd · ∇α〉b
∂f00

∂α
= 〈C(f00)〉b (5.15)

And the solution is f00 = fM . The next order equation in the subsidiary ordering is:

〈vvvd · ∇α〉b
∂f01

∂α
+ 〈vvvd · ∇Ψ〉b

∂fM
∂Ψ

= 〈C(f01)〉b (5.16)

In order to solve equation 5.16, the relative strength of the toroidal(helical) drift
frequency and the collision frequency should be examined.

• The toroidal(helical) drift frequency is much smaller than the colision fre-
quency. Equation 5.16 reduces to:

〈vvvd · ∇Ψ〉b
∂fM
∂ψ

= 〈C(f01)〉b (5.17)

The bounced averaged radial drift velocity is [44]:

〈vvvd · ∇Ψ〉 = 8
I

Ω

∂Ψ

∂ψ

√
µB0

M∆

(
EEE − KKK

2

)
∂∆

∂α
(5.18)

Where M is the mass, KKK and EEE are complete eliptic intergrals of the first
and second kind, respectively, and ∆ = εs ± δW (Ψ̄ + cosmα)1/2 with εs the
inverse aspect ratio evaluated at the resonant surface, δw is the island width
rW normalized by the major radius and Ψ̄ is the helical flux function normalized
by perturbed poloidal flux function ψ̃. The argument of the complete elliptic
integrals is κ2 = (E−µB0− eΦ +µB0∆)/2µB0∆. For particles trapped in the
toroidal magnetic well, κ2 < 1 and for circulating particles κ2 > 1.
With a pitch angle scattering Coulomb collision operator, Equation 5.17 can
be easily integrated once to obtain:

∂f0

∂κ2
=
µB0

ν
∆
∂fM
∂Ψ

IB0 · ∇θ
MΩB0

∂Ψ

∂ψ

∂∆

∂α

∫ κ2
0
dκ2(2EEE −KKK)

[EEE − (1− κ2)KKK]
(5.19)
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The flux surface averaged transport fluxes Γ =< NVVV ·∇Ψ >f is thus obtained:

Γ = −C1

2

(Innn0 · ∇θ)2

M7/2Ω2

(
q′s
qs
rw

)2

m2δW ε
3/2
s

F (Ψ̄)
√

1 + Ψ̄

K(κf )

∫
dWW 5/2 1

ν

∂fM
∂Ψ
(5.20)

WhereN is the plasma density, VVV is the flow velocity, <>f indicates flux surface

average, C1 = 0.884, W = Mv2/2, F (Ψ̄) =
∮
dα(sinmα)2(∆/εs)

3/2/
√

Ψ̄ + cosmα,
I = RBt and κ2

f = 2/(1 + Ψ̄).

• When the collision frequency decreases further,〈C(f01)〉b < 〈vvvd · ∇α〉b, equation
5.16 reduces to:

〈vvvd · ∇α〉b
∂f010

∂α
+ 〈vvvd · ∇Ψ〉b

∂fM
∂Ψ

= 0 (5.21)

and

〈vvvd · ∇α〉b
∂f011

∂α
= 〈C(f010)〉b (5.22)

The bounce averaged drift speed in the ∇α direction is:

< vvvd · ∇α >b= −(I/MΩ)(∂Ψ/∂ψ)(BBB0 · ∇θ/B)(∂J/∂Ψ)/(∂J/∂E) (5.23)

Here E is the particle energy and J =
∮
dθv‖ is the second adiabatic invariant:

J = 16(µB∆/M)1/2[EEE(κ)− (1− κ2)KKK(κ)] (5.24)

Applying Equation 5.24, the helical drift velocity after bounce average is thus:

< vvvd · ∇α >b= −(I/MΩ)(∂Ψ/∂ψ)(BBB0 · ∇θ/B)[µB(2EEE/KKK − 1)∂∆/∂Ψ− eΦ′]
(5.25)

Where Φ′ = ∂Φ/∂Ψ. The radial drift speed after bounce average, neglecting
the super banana and trapping-detrapping process, is:

< vvvd · ∇Ψ >b= −(I/MΩ)(∂Ψ/∂ψ)(BBB0 · ∇θ/B)[µB(2EEE/KKK − 1)∂∆/∂α] (5.26)

Applying these condition, we could obtain the distribution function f010:

f010 = −(µB0/eΦ
′)(1− κ2)[(±δW )(Ψ̄ + cosmα)1/2 ± C1]∂fM/∂Ψ (5.27)
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With C1 = −(π/2)(1 + Ψ̄)1/2/KKK(κf ) is the integration constant. The corre-
sponding particle flux is:

Γ = −(π/ < g1/2 >)

∫
dα

∫
dE(νqs/MB∆)[(∂Ψ/∂ψ)

× (BBB0 · ∇θ/B)∂fM/∂Ψ]−1

∫ 1

0

dκ2J(∂f0/∂κ
2)2 (5.28)

Where < g1/2 >=
∫
dθ
∫
dα/∇Ψ×∇α · ∇θ.

By far, we have already obtained the formula of particle fluxes with presence of mag-
netic islands. These equation contains complex integrals, which brings the difficulty
to study. In Chapter 6, the simplified equations, based on the cylindrical approx-
imation are presented. The justification of transfer from tokamak to stellarator is
discussed. The study on this model, using the TJ-II stellarator parameters is also
presented.



6Radial Electric Field on TJ-II

This chapter presents the study of enhanced radial electric field induced
by the existence of magnetic islands in TJ-II stellarators, whose mecha-
nism is that the toroidal plasma viscosity is increased by the distortion
of magnetic flux surfaces induced by magnetic islands. The naturally ex-
isted magnetic islands in stellarators have been reported that they plays
a role of the formation of internal thermal transport barriers as well as
the modification of local radial electric field, which is considered to play
a critical role in the so-called L-H transition by the EEE ×BBB shear. This
experimentally observed radial electric field needs to be reproduced in the-
ory in order to get a better understanding.
The theory adoped here is developed by K. C. Shaing and it was devel-
oped in tokamak plasmas who pose toroidal symmetry. Here the same
equations with minor modifications has been used in TJ-II plasmas. The
validation of the theory in stellarators is discussed and the results are
presented.

6.1 Magnetic Islands in TJ-II

The magnetic islands in stellarators, which are current free devices, is produced by
coils rather than plasma current. The natural presence of magnetic islands plays
similar role compared ones in tokamaks. Low order rational surfaces are found to
ease the formation of internal transport barriers both, in tokamaks and in helical
devices [45, 46, 47, 48], and the transition to High confinement mode (H-mode) in
helical devices [49, 50, 51, 52]. These results have been interpreted in terms of local
changes in the radial electric eld and zonal ow development near low order rational
surfaces which may result in a reduction of plasma turbulence [53, 54, 55]. In Ref
[26], the modification of local radial electric field in TJ-II has been reported. This
modification is associated with the change of the non-ambipolar fluxes, which enters
into the time evolution of electric field ∂E/∂t = Γe − Γi. K. C. Shaing explained
this phenomenon in tokamak cases [24, 44] whose main principles are presented in
Chapter 5. The main idea is that the existence of magnetic islands distorts the
nested flux surfaces, giving rise to the toroidal plasma viscosity. This effect shares
the common features in all fusion devices so that the same effects is induced in
stellarators by the presence of magnetic islands. Here we adopt Shaing’s theory for

77
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TJ-II analysis.
First of all, two typical ι profiles, characterized by two different resonant location is
shown in Figure 6.1. Unlike the big magnetic islands in RFPs, the magnetic island

Figure 6.1: Cross section of the vacuum flux surfaces in two magnetic configurations
of the TJ-II Heliac and corresponding ι profiles. The resonance ι = 8/5 is located
in ρ = 0.56 in configuration labeled 96 47 63 (left), while it shifts to ρ = 0.76 in
configuration 100 44 64 (right). The circled crosses indicate the section of the central
conductors, which are protected from the plasma by the hard core.

in TJ-II are small. So in the flux equations, we neglect the T ′/T in vicinity of
magnetic islands. There are two points which should be clarified in order to justify
the validation of Shaing’s theory in stellarators:

• First of all, the neoclassical transport particle flux in stellarators is much higher
than in tokamaks. This is true for stellarators with no transport optimization.
The reason for this phenomenon is that the banana orbit is much bigger in stel-
larators than in tokamaks because there is no toroidal symmetry in the former
one. Nevertheless, it is also worth mentioning that the optimized stellarators
has much smaller particle fluxes by reducing the banana orbit [56]. TJ-II is a
stellarator with no transport optimization so in order to ’compensate’ the flux
difference between tokamak and stellarator due to different geometry, a factor
big = 1000 is multiplied to the flux equations.

• Secondly, one of the assumption in the theory developed by K. C. Shaing
is that it neglects the effect of super banana. Super banana is caused by
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Particle orbits in stellarators

Following a field-line around a tokamak the magnetic field
strength is approximately sinusoidal

In a classical stellarator, there is another harmonic

|B |

along field line

Stellarator

As in a tokamak, particles can be passing or trapped due to
toroidicity

There are also particles which get trapped in local minima

Dr Ben Dudson Magnetic Confinement Fusion (11 of 23)

Figure 6.2: Magnetic field strength |B| in tokamaks (dashed line) and stellarators
(solid line) along field line is presented. There are many local magnetic wells exist
in stellarators.

local trapped particles due local magnetic well. Particles trapped in the super
banana cannot explore the whole field. Instead, they are trapped either on the
high field surfaces (upper surfaces) or on the low field surfaces (lower surfaces).
Such situation will let them directly drift out because there is no cancellation
effect between EEE ×BBB and ∇B any more. In stellarators, local magnetic well
commonly exists, which is shown in Figure 6.2. Hence, this assumption might
be not valid for stellarator. Nevertheless, it has been proved that including the
super banana does not change the dependence of the particle flux on the radial
electric field [57]. Here this effect is not considered, but it should be checked in
the future since the super banana effect should be much higher in TJ-II than
in tokamaks.

6.2 Flux Equation for Region ν and 1/ν

From here on, we discuss the flux equations derived by Shaing, in cylindrical ge-
ometry. As mentioned in Chapter 5, there are mainly three sub-regions in the low
collisionality region: ν,

√
ν and 1/ν. For ν and 1/ν region, Shaing presented equa-

tions which could well describe these two regions [58]:

Γν = −C · (0.22Nν)

(
eT

eBr

)2(
δW
ωE

)2

ε−1/2G(Ψ̄) (6.1)

Γ1/ν = −C · 0.5
(
N

ν

)(
eT

eBr

)2

(RBP )2

(
q′srW
qs

)2

(mδW )2ε3/2H(Ψ̄) (6.2)
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Γ = −C · N (cT/eBr)2 (ν/ε)(RBP )2(q′srW/qs)
2(mδW )2ε1/2

ω2
E(RBP )2(q′srW/qs)

2m2/[0.22G(Ψ̄)] + (ν/ε)2/[0.5H(Ψ̄)]
(6.3)

The basic quantities are: N is the electron density, ν is the collision frequency, c is
the speed of light, T is the electron temperature, P = NT is the plasma pressure, Φ is
the electric potential, e is the electron charge, B is the magnetic field. a is the minor

radius, R is the major radius, m is the poloidal mode number. rW =
√

2q2
s ψ̃
/

(q′sBrs)

is the island width, δW = rW/R, ωE = cEΨ/(Br) is the E × B angular speed with
EΨ = −dΦ/dΨ, ε = a/R is the reversed aspect ratio. q′s = dq/dr evaluated as the
resonant surface. P ′ = dP/dΨ and Φ′ = dΦ/dΨ. Ψ is the helical flux function
centered at the magnetic island O point.
Equation 6.3 is the combined equation which could well reproduce Equation 6.1
and Equation 6.2 with the common factor C = (P ′/P + eΦ′/T ), assuming T ′/T = 0
because of the small islands in TJ-II. Here the function G(Ψ̄) is related to the first and
second elliptical integrals and essentially it is a function that defines the location of
the island region. Hence, for simplicity reason, here we use a Gaussian distribution
function to replace it. The same technique is applied for the H(Ψ̄) function and
X(Ψ̄) functions (presented later). Applying Equation 6.3, one could see the result of
reproduction from Figure 6.2. The two graphs are the log-log scale plots of particle
diffusivity D

i(e)
11 versus the normalized collision frequency. The superscript i and e

represents ions and electrons. The black and blue dashed lines are for ν and 1/ν
regions. The black gray vertical lines represents the boundary below which the ν
region is valid. The thine vertical red and blue lines represents the value of ion and
electron ν∗, respectively. The red curves are produced by Equation 6.3. The results
show a good agreement with Equation 6.1, 6.2 and Equation 6.3.
The boundary between ν and 1/ν is defined as:

νeff < ωE(RBP )(q′srW/qs) (6.4)

With νeff = ν/ε is the effective collision frequency defied as the ration between
collision frequency ν and the revered aspect ratio ε.
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Figure 6.3: Using TJ-II parameters, the combined function(in red) could well repro-
duce the two separated functions in ν(dashed black line) and 1/ν(dashed blue line)
regions. The thick gray vertical line represents the critical ν∗ which indicates the
end of ν region. The red vertical dashed line is the electron collisionality and the
blue dashed one is the ion collisinality.

6.3 Equation for
√
ν and the complete Flux

Euqation

For the
√
ν region, applying the equation from Ref [59], we could get the follow

equation:

Γ√
ν = −C · 0.1√ν (cT/eBr)2 δ2W

√
BPRm (−q′rW/q)

0.5 |ωE|−1.5 X(Ψ̄) (6.5)

For the complete equation which could describe the whole ν,
√
ν and 1/ν regions(equivalent

to ν∗ < 1), first we simplify the separate flux function as:

Γν = −C ·Kν · (ν)
Γ√

ν = −C ·K√
ν · (1/ν)

Γ1/ν = −C ·K1/ν · (
√
ν)

and the corosponding coefficient Kν , K√
ν , K1/ν are:

Kν = 0.22N(cT/eBr)2(δW/ωE)
2ε−1/2G(Ψ̄)

K√
ν = 0.1 (cT/eBr)2 δ2W

√
RBPm (q′srW/q)

0.5 |ωE|−1.5 X(Ψ̄)

K1/ν = 0.5N(cT/eBr)2(RBP )
2(q′srW/qs)

2(mδW )2ε3/2H(Ψ̄)
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Using these notation we present the complete transport equation for ν∗ < 1 region,
including ν,

√
ν and 1/ν regions:

Γ = −C · KνK√
νK1/ν · ν

(K√
ν +Kν ·

√
ν)(K1/ν +K√

ν · ν1.5)
(6.6)

The comparison between Equation 6.3 and 6.6 is shown in Figure 6.4. The green
dashed line represents the

√
ν region and it shares one common point with the black

solid line from Equation 6.3 and the gray vertical line from Equation 6.4. The red
solid line is from Equation 6.6. It is clear to see that when collisionality reaches

√
ν,

the value of D11 is.
Now we used this complete equation to compare tokamak with stellarators. Using

- - - - - --
-
-
-
-

- - - - --
-
-
-
-

Figure 6.4: Comparison between equation 6.3(black, solid) and equation 6.6(red,
solid). The dashed green line represents the

√
ν. It is clear to see that the green line

and black line has a common point which also belongs to the gray vertical line which
is the end of ν region. The vertical red and blue dashed lines are the collisionality
for electrons and ions, respectively.

Equation 6.6, one needs to justify that it suits the situation for tokamaks and also for
stellarators. Using the Figure in Ref[60] as the standard TJ-II D11−ν∗ diagram and
applying the same plasma parameters in Equation 6.6, the comparison is obtained
and shown in Figure 6.5. The black figure is from Ref [60]. The red line represents
electrons and the blue line represents ions. Note that the geometry factor big = 1000
has been multiplied to Equation 6.6.
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Figure 6.5: Comparison between Equation 6.6 multiplied by 1000 (colored lines with
|Er| = 2300V/m) and the TJ-II data as well as tokamak cases. The black background
figure is from Ref [60]. The solid black lines are for electrons and the dashed ones are
for ions. From top to bottom with eΦ/T = 0, 1, 2, 5, 10. The thick solid and dashed
black lines are corresponding curves to the equivalent tokamak. The red and blue
lines represents electrons and ions, respectively.
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Quantity Value
N(m−3) 0.36× 1019

Te(eV ) 350
Ti(eV ) Te/3
BT (T ) 0.995
B(T) 1
R(m) 1.5
a(m) 0.2
m 5
n 8
q 1/[1.551 + 0.05238r − 0.07569(r/a)2 + 0.12862(r/a)3]

Table 6.1: A typical TJ-II plasma parameter.

6.4 Discussions on the Complete Equation

Unit Analysis

The flux equations mentioned above is derived from Γ = 〈NV · ∇Ψ〉 with 〈· · · 〉
represents the flux surface average. This definition leads to a different flux unit
[B]/(lt) since ∇Ψ has a unit of [B]l which is different from 1. Secondly, P ′ =
dP/dΨ, Φ′ = dΦ/dΨ and EΨ = −dΦ/dΨ will have units which doesn’t have physical
meaning. So here one coordinate transformation is needed to convert the equations
in order to use the physical quantities with international units. One may apply
dr/dΨ = (dr/dΨP )(dΨP/dΨ) = [(2πBPR)(q′srW/qs)]

−1 on the flux equations to get
there. Note that this ’extra’ step is due to the choice of coordinate. The three
coefficient Kν , K√ν and K1/ν are:

Kν = 0.22(dr/dΨP )−2N(cT/eBr)2(δW/ωEr)
2ε−1/2G(Ψ̄) (6.7)

K√ν = 0.1(dr/dΨP )−1.5 (cT/eBr)2 δ2
W

√
RBPm (q′srW/q)

0.5 |ωEr |−1.5 X(Ψ̄) (6.8)

K1/ν = 0.5N(cT/eBr)2(RBP )2(q′srW/qs)
2(mδW )2ε3/2H(Ψ̄) (6.9)

Where ωEr = cEr/Br = −(c/br)(dΦ/dr). Together with the common factor C =
(dr/dΨP )(1/P ·dP/dr+1/T ·dΦ/dr) and the complete flux equation Γ = (dr/dΨ)Γr,
Γr indicating the flux with unit of 1/(l2 · t), (q′srW/q) disappears in those three
coefficient.
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Validation of the collision frequency region

As this theory is derived from the ”low” collision frequency region, meaning the
ν∗i,e = νi,e/ωb,(i,e) < 1 with ν the collision frequency and ωb = vth/qR the bounce
frequency. This condition leads to a collision frequency limit:

Te > 2.22× 10−9
√
Ne ln Λe (6.10)

Ti > 1.86× 10−9Z2µ−1/4
√
Ni ln Λi (6.11)

With νe = 2.91 × 10−12Ne ln ΛeT
−3/2
e , νi = 4.80 × 10−14Z4µ−1/2Ni ln ΛiT

−3/2
i , Z is

the ion charge state, µ = mi/mp where mi is the ion mass expressed in the proton
mass mp. ln Λe,i is the Coulomb logarithm for electron and ion.
Given the Coulomb logarithm doesn’t change much, it is clear to see that the ion
and electron temperature has a lower limit respect to a given plasma density.

Scan of the Er

As one could see from the two equations, the Γν depends on the radial electric field
Er. In order to see the function of the Er, a scan of the Er value, which could
see from Table 6.1 , is shown in Figure 6.6 based on a typical TJ-II plasma with
its parameters: n = 1019, T = 300eV , B = 1T . It is obvious to see that since
the D11(1/ν) doesn’t depend on electric field, the D11(ν) curve decreases as the Er
increases and the cross point between the two curves moves in the positive direction
of collision frequency.

Effect on radial electric field Er from different plasma
parameters

• q′srW/qs. This parameter is not in the particle flux equation, as one could
see from the discussion in the unit analysis 6.4. However, the island width
rW is a function of q′. If the magnetic island width rW is fixed, then particle
diffusivity D11 doesn’t depend on the parameter q′srW/qs. Therefore, changing
this parameter will lead to the same D11 and Er. The reason this parameter is
irrelevant to both D11 and Er is because it comes from the choice of the flux
coordinate system and when we calculate the flux, one should convert back to
machine coordinate so this factor disappears.

• Island width rW . As one could see from Equation 6.6, the island width, which
is inside of δW = rW/R, is an universal parameter of the particle flux. The
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Figure 6.6: Radial electric field Er scan in a typical TJ-II plasma. The red vertical
dashed line is the electron collisionality and the blue one is the ion collisionality.
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three coefficients Kν,
√
ν,1/ν have common dependence on δW , which justify the

comment before. Hence, the island width could only affect the absolute value
of the separated particle flux in each region while as for the radial electric field
Er which is the root of equation of Γe − Γi = 0, is independent of the island
width and this is confirmed by the simulation results.

• Poloidal mode number m. The poloidal mode number, especially the low m
number islands, in principle, should have big impact on the radial electric field.
Here the impact of poloidal mode number is investigated. The poloidal mode
number is functional when the collision frequency is in the

√
ν or 1/ν regions, as

one could see from the diffusivity equations. The simulations are performed on
the same TJ-II plasma parameters used before and the result is shown in Figure
6.7. Strangely, changing the mode number does not change the value of radial
electric field. The reason is that the electric field in these three calculations
are around -300 V/m and using this value to back check in Figure 6.6, we find
that roughly both electrons and ions are all in 1/ν region and thus the mode
number doesn’t play a role in the charge balance equation.

-400 -300 -200 -100 0 100 200

-1×1050

-5×1049

0

5×1049

m=2
m=3
m=5

Figure 6.7: Estimate the effect of poloidal mode number m on the radial electric
field, using the plasma parameter listed in Table 6.1.
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• Scan of Ti. This section is to investigate the effect of Ti/Te on radial electric
field. The excises are done based on the same plasma parameters presented
in Table 6.1 with the only exception of electron temperature Te=350eV . The
value of Γe−Γi is plotted as a function of both Er and Ti, shown in Figure 6.8.
The contour line which has the value of zero is where the root(s) of equation
Γe − Γi lies on, i.e., the solution of ambipolar electric field. At the region Ti <
105eV , there is single, positive ambipolar electric field. When ion temperature
increases between 105 eV and 250 eV , three ambipolar electric field appears
with the middle one usually the unstable one [61]. And in the region with
Ti > 250eV , single, negative ambipolar electric field appears. Finally, one
interesting point around Ti = 105eV should be pointed out. At this point, the
electric field is zero, meaning the fluxes Γe = Γi fulfill the ambipolar condition.
This phenomenon is further studied below.

• Investigate the effect of Ti/Te on the ambipolar electric field. This time we
make scans on both electron and ion temperatures and we calculated the value
of ambipolar electric field, by solving the equation Γe = Γi. The result of these
scans are shown in Figure 6.9.

There is a vertical contour line with its value Er = 0 around Ti/Te ≈ 0.3.
This means ambipolar fluxes generates in vicinity of magnetic islands under
the condition of Ti/Te = 0.3. This can be easily proved. Let us take the charge
balance equation Γe − Γi = 0 with the condition of Er = 0. One could easily
get the solution:

(Ti/Te)
7/2 ≈ 60.42 (ln Λe/ ln Λi) (6.12)

where ln Λe and ln Λi are the Coulomb logarithm for electrons and ions, respec-
tively. The value of ln Λe/ ln Λi, despite of depending on the value of electron
and ion temperature as well as the plasma density, has tiny change around the
value 1.1. So the solution to Γe − Γi = 0 with Er = 0 is Ti/Te ≈ 0.3. This
confirmed the observation of Er = 0 around Ti = 1 − 5 eV in Figure 6.9. In
that case, the ratio Ti/Te = 105/350 ≈ 0.3.

• Here the effect of plasma density on the ambipolar electric field is investigated.
As the plasma density increases a factor of 50%, one root solution appears in all
Ti/Te region, which is shown in Figure 6.10. The same Er = 0 point appears,
which has been shown in Figure 6.9.

From the discussion above, we know that the ambipolar electric field disappears
when Ti/Te ≈ 0.3. This results shows that the modification effect due to magnetic
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Figure 6.8: The solution for electric field under steady state assumption. The plasma
parameters used is presented in Table 6.1 with electron temperature modified to 350
eV. The contour line with Er = 0 is the solution for ambipolar conditions. With
ion temperature below 105 eV, single positive electric field appears. As the ion
temperature increases, three electric field solutions, one negative and two positive,
appear. The middle solution is unstable [61]. And finally, when the ion temperature
increases above 250 eV, single negative ambipolar electric field appears.

islands disappears and the fluxes are ambipolar. What is more, if we increase the
ratio between ion and electron temperature, the electric field changes its sign from
positive to negative and its amplitude also increases (neglecting the unstable ones in
the middle). Finally, the plasma density also plays a role of island modification effect.
The unstable ambipolar electric field region disappears with an increase of plasma
density (in our case, 50% increases on plasma density shows the disappearance of non-
stable Er region). These studies have been performed on an steady state situation
∂E/∂t = 0, which suffers lack of time evolution process. In the next section, this
model has been implemented into ASTRA and the preliminary results are presented
and discussed.
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Figure 6.9: The solution for electric field under steady state assumption. The plasma
parameters used is presented in Table 6.1. With a fixed electron temperature, the
solution of ambipolar electric field is positive in low ratio of Ti/Te < 0.3 and negative
in high ratio of Ti/Te > 0.3. When the ratio between ion and electron temperature
equals 0.3, the ambipolar electric field equals zero, which is shown as the vertical
line at Ti/Te.

6.5 Preliminary Results Using ASTRA

The above mentioned theory is adopted in ASTRA via Γ = ΓNeoclassical+Γisland. The
plasma parameters used here is presented in Figure 6.11 and the plasma is obtained
with electron cyclotron heating (ECRH). The island width is assumed to be 0.5cm.
First of all, the theory is tested on a tokamak case, i.e., ΓNeoclassical = 0 for different
island locations. The result is shown in Figure 6.12. The radial electric field in
tokamaks changes its sign depends on different locations of the resonant positions.
It is positive in both ρ = 0.48 and ρ = 0.65. When the resonant position moves
outwards, reaching ρ = 0.82, the electric field shows positive on the inner side and
negative on the other side. Thus, a electric shear generated. With further outer
moving, arriving at ρ = 0.94, the electric field becomes negative. Also it it clear that
the electric field only appears around the resonant location. This is true because in
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Figure 6.10: The solution for electric field under steady state assumption. The
plasma parameters used is presented in Table 6.1 with 150% plasma density and
electron temperature Tee=350eV. At all ion temperatures, the ambipolar electric field
only has one solution, as indicated by the 0 coutour line. When the ion temperature
is below 100 eV, the ambipolar electric field is positive and above this value, it is
negative.

tokamaks, regions far away from the vicinity of resonant surfaces, the electron and
ion fluxes are intrinsically ambipolar.
Secondly, a neoclassical model developed by Koverizhnykh [62] is included as the

background of the neoclassical transport, together with Shaing’s model. The result
is presented in Figure 6.13. The smooth line represents the background profile, i.e.,
generated only by Kovrizhnykh’s model. The three ’bumps’, located in the inner
and outer regions, are one generated with also Shaing’s formula. The inner two
results shows a positive results with either enhancement or decrease effect on the
background profile. In the outer region, however, the electric field is negative and it
shows a enhancement on the background profile.
And finally, another neoclassical transport model developed by Beidler [63] is applied
as the background transport, together with Shaing’s model. The result is presented
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Figure 6.11: The parameters of ECRH plasma in TJ-II. The blue solid line represents
the electron density and the dashed blue line represents the ion density. The red
solid line represents the electron temperature and the dashed one represents the ion
temperature. This parameters are used in the following calculations in ASTRA.

in Figure 6.14. Unlike the results shown in Figure 6.13, the modification on the
electric profile using Beidler’s model shows always enhancement effect. The most
inner resonant position shows a big decrease effect on the background and the most
outer one shows a increase effect. These two positions agrees with the one shown
in Koverizhnykh’s model. However, the middle resonant position, shows a decrease
effect which is different from the one in Koverizhnykh’s model.

From the preliminary results shown above, we begin to understand the theory
proposed by Shaing. The island effect will effect the background electric field, both
increase and decrease. Also the sign of electric field due to modification really differs
from one model to another. Another important thing needs to emphases is that so
far, all the excises are done in ECRH plasmas.
Besides this ECRH plasmas, an NBI plasma in TJ-II is also used to test this model.
The plasma density is around 1.2×1019m−3, the central electron and ion temperatures
are 0.35keV and 0.15keV , respectively. The same island width as well as the locations
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Figure 6.12: Electric field profiles with scan of resonant positions in tokamak pa-
rameters. Four different island locations have been applied in ASTRA with Shaing’s
model. Four positions are marked at normalized flux labels ρ = 0.48, 0.65, 0.820.94,
respectively.

are used here, adopting 1. Kovrizhnykhs model together with Shaing’s model; 2.
Beidlers model with Shaing’s model. The results are shown in Figure 6.15. The
left graph is obtained using both Kovrizhnykh’s model and Shaing’s formula. The
left one is obtained using both Beidler’s model and Shaing’s formula. The smooth
line represents the background radial electric field and the ’bumps’ are the extra
contribution from Shaing’s theory. Clearly, the background radial electric field profile
is always negative and the contribution from Shaing’s theory is always positive.
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Figure 6.13: Electric field profiles obtained from Kovrizhnykh’s model, together with
Shaing’s model is presented as a function of the normalized flux surface label. The
smooth line represents the background of neoclassical transport, i.e., the profile gen-
erated only by Kovrizhnykh’s model. The three ’bumps’ are the results when Shaing’s
model is applied. In the inner locations, the electric field is positive with enhance-
ment or decrease of the background electric field. In the outer region, however, the
electric field is negative and it shows an enhancement of the background electric field.
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Figure 6.14: Electric field profiles obtained from Beidler’s model, together with
Shaing’s model is presented as a function of the normalized flux surface label. The
smooth line represents the background of neoclassical transport. The three ’bumps’
are the results with Shaing’s model. In this case all three resonant positions shows
a positive electric contribution from Shaing’s model and only the edge one shows an
enhancement of the background electric field.
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Figure 6.15: Two simulations performed with different neoclassical models together
with Shaing’s formula in NBI plasma obtained in TJ-II. The left graph is obtained
using both Kovrizhnykh’s model and Shaing’s formula. The left one is obtained
using both Beidler’s model and Shaing’s formula. The smooth line represents the
background radial electric field and the ’bumps’ are the extra contribution from
Shaing’s theory. Clearly, the background radial electric field profile is always negative
and the contribution from Shaing’s theory is always positive.

6.6 Summary

The magnetic islands in TJ-II stellarators have been reported to play a role of modi-
fying the local radial electric field, which in turn, could play a role in L-H transition.
The main principle of this phenomenon is that the existence of magnetic islands
distorted the flux surfaces, which increases the plasma viscosity. It has been shown
by Shaing that in tokamaks, for trapped particles, toroidal viscosity indeed plays a
role of modifying the non-ambipolar neoclassical transport in vicinity of magnetic
islands. Here we adopted his formulas in TJ-II plasmas to study the modification of
radial electric field in vicinity of magnetic island.
From tokamaks to stellarators, there is a big difference and one need to adjust this
transformation. One of the issue is that in stellarators, there is no toroidal symme-
try so that usually the neoclassical transport is much higher than one in tokamaks.
Hence, a factor of 1000 is applied to the flux function and this modification shows a
reasonable result compared with the experimental data. Secondly, Shaing’s formula
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did not include super banana orbit. The validation of this assumption should be
further checked in stellarators.
The preliminary study shows that the presence of magnetic island indeed modifies
the radial electric field. In ECRH plasmas, the modification varies with the choice
of ’background’ neoclassical transport model, as well as the location of the magnetic
islands. In NBI plasmas, however, the modification due to magnetic islands is always
positive.
The formulas used here need to be studied and modified in the future in the sense
that the factor big = 1000 we applied is just a rough assumption. Also the su-
per banana effect, as mentioned above should be studied further. And finally,
the interactions between Shaing’s model and other neoclassical model is not sim-
ply Γ = Γbackground + Γisland. The interactions between the two models should be
further studied.
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6.7 Ideal MHD
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6.8 Flux Surface Average

The flux surface average of a function F is defined as follows:

〈
F

〉

s

=

∫
Fdθdψ

√
g∫

dθdψ
√
g

(6.13)

If we consider the toroidal symmetry and substitute
√
g = 1

/
(B · ∇θ)we have:

〈
F

〉

s

=

∫
Fdθ

/
B · ∇θ∫

dθ
/
B · ∇θ (6.14)

The orbit average of a function F is defined as follows:

〈
F

〉

o

=

〈
FB
/
|u|
〉

s〈
B
/
|u|
〉

s

=

∫
FBdθ

/
(|u|B · ∇θ)∫

Bdθ
/

(|u|B · ∇θ) =

∫
Fdθ

/
(|u|n · ∇θ)∫

dθ
/

(|u|n · ∇θ) (6.15)

So if we take the orbit average in the form of

〈
u∇F

〉

o

, we have:

〈
u∇F

〉
o

=

∫
n|u|∇Fdθ

/
(|u|n · ∇θ)∫

dθ
/

(|u|n · ∇θ) =

∫
n · (∂F/∂θ∇θ)dθ

/
(n · ∇θ)∫

dθ
/

(|u|n · ∇θ) =

∫
dθ∂F/∂θ∫

dθ
/

(|u|n · ∇θ)
(6.16)

The bounce condition is:

f+(θ = ±θb, λ, ω) = f−(θ = ±θb, λ, ω) (6.17)

so the average is: 〈
u∇F

〉
o

= 0 (6.18)

6.9 Magnetic Field Strength in Tokamaks

∇×B = µ0

(
J + ε0

∂E

∂t

)
(6.19)

with ∂E/∂t ≈ 0, we have: ∮

S

Bdl = µ0J (6.20)
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which leads to

B =
µ0J

2πr
(6.21)

Here r is the distance from the toroidal center of the machine to the position which
the calculation is performed.
For the magnetic field in the center of the plasma(geometry center), r = R, where R
is the major radius, we have B0 = µ0J/2πR.
For any position r, here r is the poloidal local radius related to the magnetic axis,
we have:

B =
µ0J

2π
∣∣∣~r + ~R

∣∣∣
(6.22)

So we have:
B

B0

=
r∣∣∣~r + ~R
∣∣∣

(6.23)

where
∣∣∣~r + ~R

∣∣∣ =
√

(r2 +R2 + 2rR cos θ). Define ε = r/R So we could get:

f(ε) =
1√

1 + ε2 + 2ε cos θ
(6.24)

And one could perform Taylor expansion to the 1st order at ε = 0:

f(ε) =
∞∑

n=0

f(0)(n)

n!
(ε− 0)n = f(0) + f(0)′ · ε

= 1−
[

1

2

(
ε2 + 1 + 2ε cos θ

)−3/2
(2ε+ 2 cos θ)

]

ε=0

· ε

= 1− ε · cos θ (6.25)

So the magnetic field strength |BBB| = B0(1− ε cos θ)

6.10 Non-Ambipolar FLux and Toroidal

Viscosity

Moment Approach

In this part, Hamada coordinate [64] (V, θ, ζ) is adopted with V the volume enclosed
inside the magnetic surfaces, θ the poloidal angle and ζ the toroidal angle. The
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magnetic field can be represented as

BBB = ψ′∇V ×∇θ − χ′∇V ×∇ζ (6.26)

Where χ is the poloidal flux and ψ is the toroidal flux. The prime denotes d/dV .
The Jacobian is: √

g = (∇V ×∇θ · ∇ζ) = 1 (6.27)

The particle flux is Γ = nv and its flux surface averaged in the direction of ∇χ is:

Γχ =

〈
nv · ∇χ

〉
(6.28)

The momentum equation is:

nm
∂v

∂t
= ne

(
E +

1

c
v×B

)
−∇p−∇ · ↔π (6.29)

Where
↔
π is the plasma viscosity. Taking the B × ∇χ component of the steady-

state momentum equation and using With (B×∇χ)
/
B2 = (Bt ·B) B

/
B2 − Bt,

E×B · ∇χ = E ·B×∇χ and Ic = Bt ·B:, we have:

Γχ = 〈nv · ∇χ〉 =

〈
nc

E×B · ∇χ
B2

〉
+
〈 c

eB2
B×∇χ ·

(
∇p−∇ · ↔π

)〉
(6.30)

Using a vector identity:

Bt =
(Bt ·B) B

B2
− B×∇χ

B2
(6.31)

We could obtain:

Γχ =

〈
nc

EB · ∇χ
B2

〉
+
〈 c

eB2
B×∇χ ·

(
F1 −∇p−∇ ·

↔
π
)〉

=

〈
E ·
[

Bt ·B
B2

−Bt

]〉
+

〈
c

e

[
(Bt ·B) B

B2
−Bt

]
·
(
F1 −∇p−∇

↔
π
)〉

=

〈
ncE ·B Ic

B2

〉
− 〈ncE ·Bt〉+

c

e

〈
B · F1Ic
B2

〉
− c

e

〈
B · ∇pIc
B2

〉
− c

e

〈
B · ∇ · ↔πIc

B2

〉

− c

e
〈F1 ·Bt〉+

c

e
〈Bt · ∇p〉+

c

e

〈
Bt · ∇ ·

↔
π
〉

(6.32)
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The non-axisymmetric flux is

ΓNA =
e

c

(
〈Bt · ∇p〉+

〈
Bt · ∇ ·

↔
π
〉)

(6.33)

In Hamada coordinates, 〈Bt · ∇p〉 = 0 for any non-axisymmetric torus and only〈
Bt · ∇ ·

↔
π
〉

contributes to non-axisymmetric partical flux ΓNA.

The Pfirsch-Schluter flux
ΓPS (6.34)

The banana-plateau flux

ΓBP = −c
e

〈
B · ∇ · ↔πIc

B2

〉
(6.35)

The classical flux
ΓCL (6.36)

The residual E×B flux

ΓE = nc 〈E ·B〉 〈Ic〉〈B2〉

(
1− 〈Ic〉〈B2〉

〈B2〉
〈Ic〉

V ′

4π2q

)
(6.37)

The flux associated with the moving velocity of the toroidal magnetic flux surface

Γg = nc 〈E ·B〉
(

V ′

4π2q
− 〈E ·Bt〉

)
(6.38)

Note that the ΓE, Γg are usually ignored and the ΓPS is not in the banana regime.
Also the ΓBP is the parallel viscous force part and goes to zero after solving the
bounced average of the kinetic equation.

Kinetic approach

The definition for the neoclassical particle flux is:

Γχ =

〈∫
dvfvd · ∇χ

〉
+

〈
nc

E(A) ×B

B2

〉
(6.39)

with vvvd = −v‖bbb × ∇(v‖/Ω) [65], the ∇χ direction component is thus: vd · ∇χ =
(v‖/B)∇ ·

[ (
(v‖/Ω)

)
B×∇χ

]
, we have:

Γχ =

〈∫
dvfv⊥ · ∇χ

〉
=

〈∫
dvf

v‖
B
∇ ·
[
B2
(v‖

Ω

)(B×∇χ
B2

)]〉
(6.40)
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Using a vector identity:

Bt =
(Bt ·B) B

B2
− B×∇χ

B2
(6.41)

Γχ = −
〈∫

dvf
(v‖
B

)
∇ ·
(
v‖B

2Bt

Ω

)〉
+

〈∫
dvf

(v‖
B

)
∇ ·
[(

v‖B
2Bt

Ω

)(
Ic
B2
− 〈Ic〉〈B2〉

)]〉

+

〈∫
dvf

(v‖
B

)
∇ ·
[(

v‖B
2Bt

Ω

) 〈Ic〉
〈B2〉

]〉
+

〈
nc

E(A) ×B

B2

〉
(6.42)

The non-axisymmetric flux ΓNA is

ΓNA = −
〈∫

dvf
(v‖
B

)
∇ ·
(
v‖B

2Bt

Ω

)〉
(6.43)

This is equivalent to Equation 6.33 from the momentum approach, which indicates
the non-axisymmetric flux is due to the toroidal viscosity.
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Milligen, F Castejón, E Ascaśıbar, L Eliseev, et al. Electron internal transport
barrier formation and dynamics in the plasma core of the TJ-II stellarator.
Plasma physics and controlled fusion, 46(1):277, 2003.
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