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Abstract

Robust estimation of Gaussian Graphical models in the high-dimensional setting is
becoming increasingly important since large and real data may contain outlying obser-
vations. These outliers can lead to drastically wrong inference on the intrinsic graph
structure. Several procedures apply univariate transformations to make the data Gaus-
sian distributed. However, these transformations do not work well under the presence
of structural bivariate outliers. We propose a robust precision matrix estimator under
the cellwise contamination mechanism that is robust against structural bivariate out-
liers. This estimator exploits robust pairwise weighted correlation coefficient estimates,
where the weights are computed by the Mahalanobis distance with respect to an affine
equivariant robust correlation coefficient estimator. We show that the convergence rate
of the proposed estimator is the same as the correlation coefficient used to compute the
Mahalanobis distance. We conduct numerical simulation under different contamination
settings to compare the graph recovery performance of different robust estimators. Fi-
nally, the proposed method is then applied to the classification of tumors using gene
expression data. We show that our procedure can effectively recover the true graph
under cellwise data contamination.
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1 Introduction

We consider the problem of estimating high-dimensional undirected graphs when the data

possibly contains anomalies that are difficult to visualize and clean. Given n independent

samples of a p-dimensional random vector X = (X1, . . . , Xp), we can represent the lin-

ear dependency between variables by an undirected graph. The conditional dependence

structure of the distribution can be represented by a graphical model, G = (V,E), where

V = {1, . . . , p} is the set of nodes and E the set of edges in V × V . The undirected graph

establishes that if the variables Xi and Xj are connected, then they are adjacent (Lauritzen,

1996). Statistically, we can measure linear dependencies by estimating partial correlations

to infer whether there is an association between a pair of variables, conditionally on the

rest of them. Furthermore, we can relate the nonzero entries in the precision matrix, de-

noted by Ω = (ωij), with the nonzero partial correlation coefficients (Edwards, 2000). This

procedure is known as covariance selection and is widely used to identify the conditional

independence restrictions in an undirected graph (Dempster, 1972). In particular, under a

Gaussian distribution, the nonzero entries of the precision matrix imply that each pair of

variables is conditionally dependent when controlling for the rest of them. These are known

in the literature as Gaussian Graphical Models (GGMs) (Lauritzen, 1996).

In a high-dimensional framework, the estimation of Ω is not straightforward because of

the lack of a pivotal estimator such as the empirical covariance matrix. Moreover, when

the dimension p is larger than the number of available observations, the sample covariance

matrix is not invertible. And even when the ratio p/n is approximately (but less than)

one, the sample covariance matrix is badly conditioned and its inverse tends to amplify

the estimation error, which can be observed by the presence of small eigenvalues (Ledoit

and Wolf, 2004). From the asymptotic point of view, when both n and p are large (i.e.

p = O(n)), the sample covariance matrix is not a consistent estimator (El Karoui, 2008). To

deal with this problem, several covariance selection procedures have been proposed based

on the assumption that Ω is mostly composed by zero elements. This suggests that even

when p = O(n) the dimension of the problem may still be tractable since the number of
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edges will grow more slowly than the number of observations (Meinshausen and Bühlmann,

2006).

Several precision matrix estimators have been proposed in the literature. Meinshausen

and Bühlmann (2006) propose the neighborhood selection procedure that consistently esti-

mates sparse high-dimensional graphs by estimating a lasso regression for each node in the

graph. Peng et al. (2009) present a procedure that simultaneously performs neighborhood

selection for all variables to estimate joint sparse regressions, applying an active-shooting to

solve the lasso. Yuan (2010) replaces the lasso regression with a Dantzig selector. Liu and

Wang (2012) propose an asymptotically tuning-free procedure that estimates the precision

matrix in a column-by-column fashion. Zhou et al. (2011) propose an estimator for the

precision matrix base on an `1 regularization and thresholding to infer a sparse undirected

graphical model. Ren et al. (2015) propose a nodewise regression approach to obtain as-

symptotically efficient estimation of each entry of the precision matrix under sparseness

conditions.

Penalized likelihood methods have also been introduced for estimating sparse precision

matrices. Yuan and Lin (2007) propose to estimate the precision matrix by penalizing

the log-likelihood function. Convex and fast algorithms were developed by Banerjee et al.

(2008) and Friedman et al. (2008). Friedman et al. (2008) propose the Graphical lasso

(Glasso) procedure to estimate sparse precision matrices fitting a modified lasso regression

to each variable and solving the problem by a coordinate descent algorithm. Lam and

Fan (2009) and Fan et al. (2009) propose methods to diminish the bias imposed by the

`1 penalty by introducing a non-convex SCAD penalty. Cai et al. (2011) estimate preci-

sion matrices for both sparse and non-sparse matrices, without imposing a specific sparsity

pattern solving the dual of an `1 penalized maximum likelihood problem. Consistency of

penalized likelihood procedures were also explored. Rothman et al. (2008) estimate conver-

gence rates under the Frobeniuos norm and Yuan and Lin (2007), Ravikumar et al. (2008)

and Ravikumar et al. (2011) estimate convergence rates for subgaussian distributions.

One of the main drawback of the popular estimation procedures is that they are not
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well suited to handle noisy data (contaminated by outliers). The existing approaches to

estimate the precision matrix and recover the support of the GGM use as input the em-

pirical covariance matrix. The empirical covariance and correlation matrix estimates are

very sensitive to the presence of multidimensional outliers (Alqallaf et al., 2002). The vi-

olation of the Gaussian assumption may result in poor recovery of the GGM and biased

estimation of the precision matrix (see Finegold and Drton, 2011; Liu et al., 2012; Sun

and Li, 2012). In the high-dimensional setting, the fraction of perfectly observed rows may

be very small. If all components of a row have an independent chance of being contami-

nated, then the probability that a case is perfectly observed is small. Alqallaf et al. (2009)

propose a contamination model where the contamination in each variable is independent

from other variables (i.e. componentwise outliers). It generalizes the classical Tukey-Huber

row-wise contamination model (see Tukey, 1962; Huber et al., 1964) and allows for cellwise

contamination that can be applied to explain the contamination mechanism in Microarrays

experiments (see Troyanskaya et al., 2001; Liu et al., 2003). The cellwise contamination

model lacks the affine equivariant property. Henceforth, existing approaches for robust

covariance estimation such as M-estimates (Maronna, 1976), Minimum Volume Ellipsoid

(MVE) and Minimum Covariance Determinant (MCD) estimators (Rousseeuw, 1985, 1984)

and the Stahel-Donoho (SD) estimators (Stahel, 1981; Donoho, 1982), may not be reliable

in high-dimensional data sets since the operations to compute affine equivariant estimates

tend to propagate the effect of multivariate outliers. Also, these estimators downweight

contaminated observations to reduce their influence, which produces a significant loss of

information when n < p.

To deal with outliers in high-dimensional data sets, many procedures construct robust

covariance and correlation matrices by using pairwise robust correlation coefficients. Liu

et al. (2009) propose to apply a univariate monotone transformation to make the data

Gaussian distributed. Then, a robust precision estimator of the correlation matrix can be

computed from the transformed data. The estimated correlation matrix is plugged into

the existing parametric procedures (the Graphical Lasso, CLIME, or graphical Dantzig Se-
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lector) to obtain the final estimate of the inverse correlation matrix and the graph. Liu

et al. (2012) and Xue et al. (2012) propose to estimate the unknown correlation matrix

with robust nonparametric rank-based statistics Spearman’s rho and Kendall’s tau. Fine-

gold and Drton (2011) propose to use multivariate t-distribution for more robust inference

of graphs. However, there is not a direct relationship between the zero elements on the

estimated precision matrix and the conditional independences when a t-distribution is as-

sumed. Sun and Li (2012) propose a robust estimator of the GGM through `1-penalization

of a robustified likelihood function. Öllerer and Croux (2015) and Loh and Tan (2015) pro-

pose robust precision matrix estimation under the cellwise contamination setting. These

methods estimate robust pairwise scatter covariance using rank-based statistics and plug

them into the existing parametric procedures. Öllerer and Croux (2015), and Loh and Tan

(2015) analyze the breakdown property of the Graphical lasso and CLIME.

The robust correlation matrix based on univariate transformations to achieve normality

are not robust under the presence of structural bivariate outliers which could lead to a

misleading graph support recovery. We propose an approach to robustly estimate a Gaus-

sian Graphical Model when there is cellwise contamination in the data. Following the

idea of Khan et al. (2007), we estimate robust correlation coefficients applying a bivariate

winsorization to the data given an affine equivariant robust correlation coefficient. This

transformation allows us to identify bivariate outliers. The proposed correlation matrix is

plugged into a parametric procedure to compute the precision matrix. We show that the

bivariate winsorized pairwise correlation coefficient converges to the true parameter at the

same rate as the affine equivariant correlation coefficient. This result suggests that if the

robust correlation coefficient estimator, which is used to winzorize the data, converges to

the true parameter at the optimal parametric rate, then the bivariate winsorized correla-

tion matrix achieves the optimal parametric rate of convergence in terms of both precision

matrix estimation and graph recovery.

Finally, we perform simulation studies and show that under different contamination set-

tings our procedure outperforms the normal-score based nonpararnomal estimator proposed

5



by Liu et al. (2009) and the nonparanormal SKEPTIC proposed by Liu et al. (2012). We

also apply our procedure to the classification of tumors using gene expression data. We show

that our procedure achieves good classification performance. The empirical results suggest

that, by using bivariate winsorization on the data based on some affine equivariant robust

correlation estimate, we can efficiently recover the GGM under cellwise contamination.

The rest of the article is organized as follows. In the next section we briefly review

the cellwise contamination model and the existing approaches to estimate robust precision

matrices. In Section 3 we present the winsorized correlation matrix estimator, which is

able to identify structural bivariate outliers under the cellwise contamination mechanism.

In Section 4 we present a theoretical analysis of the method. In Section 5 we present

numerical results on simulated data under different contamination mechanisms. Section 6

presents the results based on real data where the problem is the classification of tumors

using gene expression data. Finally, we discuss the connections to existing methods and

possible future directions.

2 Problem Setup

In this Section we consider the problem of estimating a high-dimensional undirected graph

when the data possibly contains anomalies that are difficult to visualize and clean. A robust

statistic must be able to efficiently model the bulk of data points, be resistant to model

deviations, and to perform well under the correct model. The performance of a robust

estimator can be analyzed with contamination or mixture models. We introduce a general

contamination model able to capture properties of high-dimensional outliers, gross errors

or missing values, among other perturbed observations. In high-dimension, the fraction of

perfectly observed rows may be very small. To deal with this issue, Alqallaf et al. (2009)

propose a contamination model where the contamination in each variable is independent

from other variables (i.e. componentwise outliers).

Suppose the random vector X = (X1, . . . , Xp) has a multivariate Gaussian distribution
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with mean µ and correlation matrix Γ = (ρij). The linear dependency between variables

are represented by an undirected graph G = (V,E), where V = {1, . . . , p} is the set of nodes

and E the set of edges in V × V . The contamination model can be written as follows:

Y = (I −B)X +BZ (2.1)

where I is a p × p identity matrix, Z ∈ Rp an arbitrary random vector and B is the

contamination indicator matrix:

B =


B1 0 · · · 0

0 B2 · · · 0
...

...
. . .

...

0 0 · · · Bp

 (2.2)

and each Bj is a Bernoulli random variable with P (Bj = 1) = ε.

The classical contamination setting or row-wise contamination model, proposed by

Tukey (1962) and extended by Huber et al. (1964), assume that B1, . . . , Bp are fully de-

pendent P (B1 = B2 = . . . = Bp) = 1. Then, the observed variable Y is a mixture of

two independent distributions. Under this model a fraction (1 − ε) of the rows are multi-

variate Gaussian distributed and a fraction ε are outliers. Furthermore, the percentage of

contaminated cases is preserved under affine equivariant transformations.

But the Tukey-Huber model does not adequately represent the reality of many multi-

variate high-dimensional data sets. This model assumes that the majority of the cases are

not contaminated. When p > n, downweighting an entire case may be inconvenient. The

main drawback is that the probability of a perfectly observed row became very small when

the number of variables increases (i.e. p = O(n)).

Alqallaf et al. (2009) propose an alternative model where the contamination in each

variable is independent from other variables (i.e. componentwise outliers). In this model,
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the variables B1, . . . , Bp are independent:

P (B1 = 1) = . . . = P (Bp = 1) = ε (2.3)

Then, the probability of an outlier occurring in the each variable is the same. In this model

the probability that a row is not contaminated is (1 − ε)p, which decreases with p. This

model allows for cellwise contamination and is denoted by fully independent contamination

model.

The fully independent contamination model lacks of affine equivariance. Under the

cellwise contamination, each column has on average (1 − ε) of clean observations. Then,

linear combinations of these columns produce an increment in the number of contaminated

cases (i.e. outlier propagation). Henceforth, in the high-dimensional setting, robust affine

equivariant methods are not robust against propagation of outliers.

Under the cellwise contamination model, a robust estimation of the precision matrix Ω

can be obtained by plugging a robust correlation matrix estimator, denote by Γ̂, into the

following `1-regularized log-determinant program (see Öllerer and Croux, 2015; Loh and

Tan, 2015):

Ω̂ = argmin
Ω�0

{tr(ΩΓ̂)− logdet(Ω) + λ ‖ Ω ‖1,off} (2.4)

where λ > 0 is the regularizing constant of the off-diagonal `1 regularizer

‖ Ω ‖1,off :=
∑
i6=j
|ωij | for i, j = 1, . . . , p (2.5)

Ravikumar et al. (2011) show that, for any positive λ and Γ̂ with strictly positive diagonals

elements, the problem has a unique solution and the resulting matrix is positive definite

(i.e. Ω̂ � 0).

Classical approaches for robust scatter estimation such as M-estimates (Maronna, 1976),

Minimum Volume Ellipsoid (MVE) and Minimum Covariance Determinant (MCD) esti-

mators (Rousseeuw, 1985, 1984) and the Stahel-Donoho (SD) estimators (Stahel, 1981;

8



Donoho, 1982), are not well suited when the contamination mechanism operates on individ-

ual variables (columns) rather than individual cases (rows). Under cellwise contamination

each column in the data table contains on average a fraction of ε contaminated observa-

tions. Classical affine equivariant estimators apply linear combination of the columns on

the original data. This spreads the contamination in one of the cells of an observation over

all its components.

To deal with high-dimensional cellwise outliers, Alqallaf et al. (2002) propose to use

coordinated wise outlier insensitive transformations to estimate pairwise scatter estimates.

These procedures operate one variable at a time and guarantee the protection against outlier

propagation.

Let Y(1), . . . ,Y(n) be a sample of size n where Y(k) = (Y
(k)

1 , . . . , Y
(k)
p )T ∈ Rp for k =

1, . . . , n. Let’s assume that there exists an appropriate score function, denoted by fi(Yi),

that preserves monotone ordering and commute with permutations of the components of

(Y
(1)
i , . . . , Y

(n)
i ). Huber (2011) defines the pairwise robust correlations coefficients through

the Person correlation coefficient computed on the outlier free univariate transformed data.

To estimate the robust pairwise correlation matrix, Liu et al. (2009) propose the non-

paranormal model where the random vector Y = (Y1, . . . , Yp)
T is replaced by the trans-

formed variable f(Y) = (f1(Y1), . . . , fp(Yp))
T such that f(Y) is multivariate Gaussian with

mean zero and correlation matrix denoted by Γnpn.

Let F̂i(t) = 1
n+1

∑n
k=1 I(Y

(k)
i ) be the scaled empirical cumulative function of Yi. To

estimate the nonparanormal transformation, Liu et al. (2009) define the coordinated wise

transformation function f̂i(t) = Φ−1
(
Tδn [F̂j ]

)
where Φ−1(·) is the standard Gaussian quan-

tile function and Tδn is a winsorization operator defined as

Tδn(y) =


δn if F̂i(y) < δn

y if δn ≤ F̂i(y) ≤ (1− δn)

(1− δn) if F̂i(y) > (1− δn),

(2.6)
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where δn = 1
4n1/4

√
πlogn

is a truncation parameter. The nonparanormal estimate of the

correlation matrix is computed as follows

ρ̂npnij =
1
n

∑n
k=1 f̂i(Y

(k)
i )f̂j(Y

(k)
j )√

1
n

∑n
k=1 f̂

2
i (Y

(k)
i ) ·

√
1
n

∑n
k=1 f̂

2
j (Y

(k)
j )

. (2.7)

Then, the precision matrix nonparanormal estimator is computed by plugging Γnpn into

the `1 log-determinant program (2.4). Liu et al. (2009) establish convergence rate for

estimating the precision matrix in the Frobenious and spectral norm when p is restricted

to a polynomial order of n.

Liu et al. (2012) show that rate of convergence of the nonparanormal estimator is not

optimal. Liu et al. (2012) and Xue et al. (2012) present an alternative procedure that

applies rank based methods to estimate the pairwise correlation matrix without computing

explicitly the marginal transformations. This approach is called the nonparanormal SKEP-

TIC and achieves the optimal parametric rate of convergence in terms of both precision

matrix estimation and graph recovery.

Let r
(k)
i be the rank of Y

(k)
i among Y

(1)
i , . . . , Y

(n)
i and r̄i = 1

n

∑n
k=1 r

(k)
i = n+1

2 . The

Spearman’s rho statistics can be computed as follows

ρ̂ρij =

∑n
k=1(r

(k)
i − r̄i)(r

(k)
j − r̄j)√∑n

k=1(r
(k)
i − r̄i)2

∑n
k=1(r

(k)
j − r̄j)2

. (2.8)

The nonparanormal model implies that (fi(Yi), fj(Yj)) follows a bivariate normal distribu-

tion with correlation parameter ρnpnij . A classical result due to Kendall and Gibbons (1990)

and Kruskal (1958) shows that ρnpnij = 2sin
(
π
6ρ

ρ
ik

)
. Henceforth, the correlation matrix of

the nonparanormal model can be alternatively computed as follows:

ρ̂Sij =

2sin(π6 ρ̂
ρ
ij) for i 6= j

1 for i = j
(2.9)
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Liu et al. (2012) show that when the data contamination is low, the nonparanormal

estimator is slightly more efficient than the nonparonormal SKEPTIC. But when the con-

tamination increases the later siginificantly outperforms the normal-score based estimator

proposed by Liu et al. (2009).

The main drawback of the univariate outlier insensitive transformations is their lack

of robustness against structural outliers (see Alqallaf et al., 2009). This type of outliers

can only be handled via robust affine equivariant methods. In the next section we propose

an alternative robust pairwise correlation coefficient estimator that apply robust affine

equivariant methods to the bivariate data. This method applies a bivariate winsorization

that shrinks observations to the border of a tolerance ellipse so that outlying observations

are appropriately downweight to obtain a robust correlation coefficient estimate that allows

for protection against structural bivariate outliers.

3 The Proposed Winsorized Correlation Matrix

In this section, we propose to estimate the precision matrix by computing an affine equiv-

ariant transformation to the bivariate data. This transformation takes into account the ori-

entation of the bivariate data and allows for protection against structural bivariate outliers.

Then, a pairwise correlation matrix is computed from the outlier free bivariate transformed

data. The resulting correlation matrix is plugged into the `1 log-determinant divergence

optimization problem defined in (2.4).

To obtain a correlation estimator that is robust against structural bivariate outliers we

could apply affine equivariant bivariate M estimators (Maronna, 1976). However, in the

high-dimensional setting we require fast robust correlation estimates. Following the idea

of Khan et al. (2007), we estimate the robust correlation coefficients applying a bivariate

winsorization to the bivariate data given an affine equivariant robust correlation coefficient.

In order to compute a correlation matrix that is robust against bivariate outliers, we are

going to use reweighted robust pairwise estimators of scatter, where the weights are com-
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puted by the Mahalanobis distance with respect to an affine equivariant robust correlation

estimator.

Let the vector XJ = (Xi, Xj)
T , for i, j = 1, . . . , p, follow a bivariate Gaussian distribu-

tion with mean µJ = (µi, µj), covariance σ2
J = (σ2

i , σ
2
j ) and correlation matrix ΓJ . Let’s

compute the squared population Mahalanobis distance as follows

d2
k =

(
Y

(k)
i − µi
σi

,
Y

(k)
j − µj
σj

)
(ΓJ)−1

(
Y

(k)
i − µi
σi

,
Y

(k)
j − µj
σj

)T
. (3.1)

We define the following weights

wk(d
2
k) =


√
c2/d2

k if d2
k > c2

1 if d2
k ≤ c2

(3.2)

where c2 is given by Pr(χ2
2 > c2) = ε and ε is the proportion of outliers we want to control

assuming that the majority of the data follows a bivariate Gaussian distribution.

Assuming we observe the vector of bivariate observations Y
(k)
J =

(
Y

(k)
i , Y

(k)
j

)T
for

i, j = 1, . . . , p and k = 1, . . . , n, the following Proposition, due to Cerioli (2010), refers to

the distribution of the Mahalanobis distance of the observations for which wk = 1.

Proposition 1. The distribution of Y
(k)
J conditioned on wk = 1 is a truncated bivariate

Gaussian distribution with

E(Y
(k)
J |wk = 1) = µJ and Cor(Y

(k)
J |wk = 1) = κ−1

ε ΓJ (3.3)

where

κε =
1− ε

P (χ2
2 > χ2

2,1−ε)
. (3.4)
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If we denote wε =
∑n

k=1wk and

(µ̂εi , µ̂
ε
j) =

(
1

wε

n∑
k=1

wkY
(k)
i ,

1

wε

n∑
k=1

wkY
(k)
j

)

(σ̂εi , σ̂
ε
j ) =

( κε
wε − 1

n∑
k=1

wk(Y
(k)
i − µ̂εi )2

)1/2

,

(
κε

wε − 1

n∑
k=1

wk(Y
(k)
j − µ̂εj)2

)1/2


ρ̂εij =
κε

wε − 1

n∑
k=1

wk

(
Y

(k)
i − µ̂εi
σ̂εi

)(
Y

(k)
j − µ̂εj
σ̂εj

)
,

(3.5)

then Γ̂εJ = (ρ̂εij) and wε/n = (1 − ε) + Op(1/
√
n) and it follows that E(µ̂εJ) → µJ and

E(Γ̂εJ)→ ΓJ .

A direct result from Proposition 1 is that we can obtain consistent estimators of µJ

and ΣJ applying a bivariate winsorization to the observations of Y
(k)
J . To obtain robust

estimates against two-dimensional structural outliers we propose to estimate the Maha-

lanobis distance using some affine equivariant robust correlation coefficient. To do that, we

can define n bivariate standardized observations

(
Y

(k)
i −µ̂0i
σ̂0
i

,
Y

(k)
j −µ̂0j
σ̂0
j

)
where µ̂0

i is a robust

scale estimate and σ̂0
i is a robust location estimate. Now let Γ̂0

J = (ρ0
ij) be a robust and

affine equivariant correlation estimator of the correlation matrix ΓJ . We will use Γ̂0
J as a

diagnostic tool to identify two-dimensional structural outlying observations. If the initial

robust estimator reflects the bulk of data, then the outlying observation will have a large

Mahalanobis distance and the outlying observations could be downweighted in order to

minimize their influence. We define the Mahalanobis distance estimate as follows:

d2
k,Γ̂0

J

=

(
Y

(k)
i − µ̂0

i

σ̂0
i

,
Y

(k)
j − µ̂0

j

σ̂0
j

)
(Γ̂0
J)−1

(
Y

(k)
i − µ̂0

i

σ̂0
i

,
Y

(k)
j − µ̂0

j

σ̂0
j

)T
. (3.6)

We propose two estimators to compute the correlation matrix Γ̂0
J and to perform the

bivariate winsorization. First, we apply the Adjusted Winsorization proposed by Khan et al.

(2007). This approach takes into account the quadrants relative to the coordinatewise
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medians and considers two tuning constants to perform univariate winsorization of the

data. A larger tuning constant c1 is used to winsorize the points lying in the two diagonally

oppose quadrants that contains most of the standardize data. A smaller tuning constant

c2 is used to winsorize the remaining data. We set c1 = 2 and c2 =
√
hc1 where h = n2/n1,

n1 is the number of observations in the major quadrants and n2 = n − n1. The adjusted

winsorization is then defined as (see Khan, 2006)

Ψ(Yi, Yj) =


(
ψc1

(
Yi−µ̂0i
σ̂0
i

)
, ψc1

(
Yj−µ̂0i
σ̂0
i

))
if

(
Yi−µ̂0i
σ̂0
i

)(
Yj−µ̂0j
σ̂0
j

)
≥ 0(

ψc2

(
Yi−µ̂0i
σ̂0
i

)
, ψc2

(
Yj−µ̂0i
σ̂0
i

))
if

(
Yi−µ̂0i
σ̂0
i

)(
Yj−µ̂0j
σ̂0
j

)
< 0,

(3.7)

where ψc(y) = min{max{−c, y}, c} is a non-decreasing symmetric function and c1 and c2 are

previous constants. Then, the correlation coefficient estimator ρ̂0
J is obtained by computing

the Pearson correlation on the adjusted winsorized data. In the second alternative, we

compute Γ̂0
J using the Spearman’s rho as in equation (2.9). This approach is denoted by

Spearman’s Winsorization.

Therefore, given an affine equivariant robust correlation estimator Γ̂0
J (i.e. Adjsuted

Winsorized correlation coefficient or Spearman’s rho), we estimate the robust Mahalanobis

distance as in equation (3.6), then the outlier-free bivariate transformed data is computed

as follows

ΨW (Y
(k)
i ) =


√
c2/d2

k,Γ̂0
J

(
Y

(k)
i −µ̂0i
σ̂0
i

)
if d2

k,Γ̂0
J

> c2

Y
(k)
i −µ̂0i
σ̂0
i

if d2
k,Γ̂0

J

≤ c2,

(3.8)

where c2 is given by P (χ2
2 > c2) = ε and ε is the proportion of outliers we want to control

assuming that the majority of the data follows a bivariate Gaussian distribution.

Given the observations (Y
(k)

1 , . . . , Y
(k)
p )T , the winsorized correlation matrix Γ̂W = (ρ̂Wij )

is obtained by computing the Pearson correlation coefficient with respect to the bivariate

winsorized data. The robust precision matrix is estimated by plugging the winsorized

correlation matrix ΓW into the `1 log-determinant divergence (2.4).
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To show how the bivariate winsorization works under cellwise contamination, we simu-

late data from a bivariate Gaussian distribution where the correlation is set equal to -0.8.

We select n = 1000 and generate 5 structural bivariate outliers. Figure 1, Panel (a), shows

the scatter plot of contaminated data. Figure 1, Panel (b), shows the scatter plot when we

apply the non-paranormal transformation (see Liu et al., 2009). The non-paranormal trans-

formation shrinks the correlation outliers to the boundary of a square. However, it does

not take into account the orientation of the data and the effect of the structural outliers is

not significantly downweighted. In Figure 1, Panel (c), we observe that the bivariate trans-

formation shrinks the outliers to the boundary of an ellipse of equal Mahalanobis distance.

Henceforth, the influence of the bivariate outliers, when we compute the robust correlation

coefficient, is appropriately downweighted.

(a) Contaminated data (b) Nonparanormal transformation (c) Bivariate Winsorization

Figure 1: Illustration of nonparanormal tranformation and bivariate winsorization under

bivariate contamination.

In the next section we state some analytical properties of the bivariate winsorized pair-

wise scatter estimate is the same as the affine equivariant robust correlation estimates used

to compute the Mahalanobis distance. This result suggests that if the initial robust corre-

lation coefficient estimate converges to the true parameter at the optimal parametric rate,
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then the winsorized precision matrix achieves the optimal parametric rates of convergence

in terms of both precision matrix estimation and graph recovery.

4 Analytical Properties

In this section we establish some analytical properties for the proposed bivariate winsorized

correlation estimator. The main conclusion drawn from the theoretical results is that the

location and scatter estimates computed from the bivariate winsorized data have the same

rate of convergence as the affine equivariant robust location and pairwise scatter estimates

used to compute the Mahalanobis distance.

Let Y
(1)
J , . . . ,Y

(n)
J be independent bivariate random vectors that follow a distribution

in an elliptical family with density

f(yJ) = det(ΓJ)−1/2h

((
Yi − µi
σi

,
Yj − µj
σj

)T
(ΓJ)−1

(
Yi − µi
σi

,
Yj − µj
σj

))
(4.1)

where h : [0,∞) → [0,∞) is assumed to be known. Under the assumption that the vector

YJ = (Yi, Yi)
T is bivariate Gaussian distributed, the function h corresponds to h(r) =

(2π)er/2. Moreover, we assume the following smoothness conditions on the function h:

(H1) h is continuous differentiable.

(H2) h has finite fourth moment:
∫

(yTJyJ)2h(yTJyJ)dyJ <∞.

Let θ̂
0

= (µ̂0
i , µ̂

0
j , σ̂

0
i , σ̂

0
j , ρ̂

0
ij) denote robust and affine equivariant estimators of location

and scatter. We will use these estimates as diagnostic tool to identify structural bivariate

outliers. Let d̂2
k be the Mahalanobis distance computed as in (3.6). We apply the bivariate

transformation in (3.8) and we compute the bivariate winsorized correlation estimator ρ̂Wij .

Let w : [0,∞) → [0, 1] be the function defined in (3.2), that satisfies the following

condition

(W) w is bounded and of bounded variation and almost everywhere continuous on [0,∞).

16



We study the asymptotic behavior of ρ̂Wij as n → ∞. Let θ∗ = (µi, µj , σi, σj , ρij) de-

noted the true vector of parameters. Assuming that the estimates θ̂
0

are affine equivariant

and consistent in probability (i.e. θ̂
0 → θ∗ in probability), the next Theorem analyzes

the asymptotic properties of the bivariate winsorized correlation coefficient. The proof fol-

lows the analysis for reweighted estimators of multivariate location and scatter of Lopuhaä

(1999).

Theorem 1. Let Y
(1)
J , . . . ,Y

(n)
J be independent bivariate random vectors with parameter

vector θ∗ = (µi, µj , σi, σj , ρij) which are assumed to have density function defined in (4.1).

Suppose that w : [0,∞) → [0, 1] satisfies (W) and h satisfies (H1) and (H2). Let θ̂
0

be

affine equivariant and consistent estimate in probability of θ∗. Then,

ρ̂Wij − c1ρij = op(1/
√
n) + op(θ̂

0−θ∗) +
1

n

n∑
k=1

{
w(d2

k)

(
Y

(k)
i − µi
σi

)(
Y

(k)
j − µj
σj

)
− c1ρij

}
,

(4.2)

where the constant c1 is given by

c1 = π

∫ ∞
o

w(r2)h(r2)r3dr > 0. (4.3)

Proof. Theorem 1 can be proved by adapting the proof in Lopuhaä (1999). The Maha-

lanobis distance can be written as a function of the vector θ. Thus, we define the following

functions

Ψ1(yJ ,θ) = w
(
d2(θ)

)
yJ

Ψ2(yJ ,θ, t) = w
(
d2(θ)

)
(yJ − t)(yJ − t)T .

(4.4)

We define the bivariate adjusted winsorization estimates of location and covariance as

follows

µ̂WJ =
1

n

n∑
k=1

w
(
d̂2
k

)
Y

(k)
J

Σ̂W
J =

1

n

n∑
k=1

w
(
d̂2
k

)
(Y

(k)
J − µ̂WJ )(Y

(k)
J − µ̂WJ )T .

(4.5)
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Then, µ̂WJ and Σ̂W
J can be written as:

µ̂WJ =

∫
Ψ1(yJ ,θ)dPn(yJ)

Σ̂W
J =

∫
Ψ2(yJ ,θ, µ̂

W
J )dPn(yJ),

(4.6)

where Pn denotes the empirical measure corresponding to Y
(1)
J , . . . ,Y

(n)
J .

Moreover, estimates in (4.6) can be written as:∫
Ψ1(yJ , θ̂

0
) =

∫
Ψ1(yJ , θ̂

0
)dP (yJ) +

∫
Ψ1(yJ ,θ

∗)d(Pn − P )(yJ)

+

∫ (
Ψ1(yJ , θ̂

0
)−Ψ1(yJ ,θ

∗)
)
d(Pn − P )(yJ),

(4.7)

Suppose that ΣJ = B2 where B belongs to the class of positive definite symmetric

matrices. Let µ̂0
J = (µ̂0

i , µ̂
0
j )
T and Σ̂0

J = B2
n be affine equivariant location and scatter

estimates such that (µ̂0
J −µJ , Bn−B) are consistent in probability. Then, using the result

in Lopuhaä (1999) the first term in the right-hand side of (4.7) is c0(µ̂0
J − µJ) + op(µ̂

0
J −

µJ , Bn −B) and the third term is op(1/
√
n). The second term is equal to:

∫
Ψ1(yJ ,θ

∗)d(Pn − P )(yJ) =
1

n

n∑
k=1

w(d2
k)(Y

(k)
J − µJ). (4.8)

This proves the expansion for µ̂WJ :

µ̂WJ −µJ =
1

n

n∑
k=1

w(d2
k)(Y

(k)
J −µJ)+c0(µ̂0

J−µJ)+op(1/
√
n)+op(µ̂

0
J−µJ , Σ̂0

J−ΣJ) (4.9)
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the constants are given by

c0 = 2π

∫ ∞
o

w(r2)[h(r2) + h′(r2)r2]rdr (4.10)

c1 = π

∫ ∞
o

w(r2)h(r2)r3dr > 0. (4.11)

In a similar way, using that the expansion of µ̂WJ implies that µ̂WJ → µJ , it can be

shown that∫
Ψ2(yJ , θ̂

0
, µ̂WJ ) = c1ΣJ + c2{tr(B−1(Bn −B))ΣJ + 2B−1(Bn −B)ΣJ}

+
1

n

n∑
k=1

{w(d2
k)(Y

(k)
J − µJ)(Y

(k)
J − µJ)T − c1ΣJ}

+ op(1/
√
n) + op(µ̂

0
J − µJ , Bn −B, µ̂WJ − µJ),

(4.12)

where B−1(Bn −B) = (Bn −B)B−1 = An, An is op(1) and the constant c2 is given by

c2 = π

∫ ∞
o

w(r2)

[
r2h(r2) +

r4

2
h′(r2)

]
rdr. (4.13)

Finally, let define the vector of standardized observations ŷJ =

(
Y

(k)
i −µ̂Wi
σ̂Wi

,
Y

(k)
j −µ̂Wj
σ̂Wj

)T
The bivariate winsorized correlation matrix can be define as:

Γ̂WJ =

∫
Ψ2(ŷJ ,θ)dPn(ŷJ). (4.14)

Using the result in (4.12) we obtain (4.2).

Theorem 1 shows that the bivariate winsorized correlation estimate of ρij works as well

as the affine equivariant robust estimator ρ̂0
ij used to identify structural bivariate outliers.

Hence, if ρ̂0
ij converges at a rate slower than

√
n, then the bivariate winsorized estimator

ρ̂Wij converges to c1ρij at the same rate.

We propose to use the correlation coefficient based on adjusted winsorization and the
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Spearmans’ rho as diagnostic tool to estimate the Mahalanobis distance and obtain robust-

ness against two-dimensional outliers. Khan (2006) shows that under certain regularity

condition, the correlation coefficient based on adjusted winsorized data is consistent and

asymptotically normal. Liu et al. (2012) and Xue et al. (2012) show that the Spearman’s

rank correlation estimate is consistent and converge to ρij with the optimal parametric

rate.

Regarding the precision matrix estimator, Ravikumar et al. (2008) and Ravikumar et al.

(2011) study the sufficient condition on the estimated correlation matrix in order to achieve

the optimal parametric rate in high-dimension. A sufficient condition to ensure consistency

and graph recovery of the precision matrix estimator, at the minimax optimal rate, is

given by the condition that the robust correlation matrix estimate Γ̂ converges to the true

correlation matrix Γ at the optimal parametric rate (see Liu et al., 2012; Xue et al., 2012).

The following Lemma, adopted from Ravikumar et al. (2011), shows that if the bivariate

winsorized correlation coefficient works as well as the usual sample correlation estimator

based on uncontaminated data, then the bivariate winsorized correlation estimate achieves

the optimal parametric rate.

Lemma 1. Assume there exists a constant C such that the robust bivarite winsorized cor-

relation coefficient estimator satisfies the following concentration bound

Pr(|ρ̂Wij − ρij | > ε) ≤ 4exp(−Cnε2) (4.15)

for any ε ∈ (0, C−1/2).

Let denote by d = maxj
∑

i6=j Iωij 6=0 to be the maximal degree over the underlying

graph corresponding to Ω and by A the support set of the off-diagonal elements in Ω.

Moreover, we define by KΓ =‖ Γ ‖∞= maxi
∑

j |ρij | to be the matrix `∞ norm of the true

correlation matrix Γ, the matrix HAA = [Ω−1⊗Ω−1]AA and the parameter KH =‖ H−1
AA ‖∞.

The following Theorem shows that is we plug a robust estimate of the correlation matrix,

that achieves the optimal parametric bound in (4.15), into the Graphical Lasso algorithm
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(Friedman et al., 2008), then the precision matrix estimate achieves the optimal rate of

convergence in term of both precision matrix estimation and graph recovery.

Theorem 2. If there exists a constant κ ∈ (0, 1) such that ‖ HAcA(HAA)−1 ‖`∞< 1 − κ.

Let Ω̂W be the unique solution of the log-determinant program (2.4) with regularization

parameter λn = 8
κ

√
log4n
Cpτ for some τ > 2. Then, if the sample size is lower bounded as

n >
log
(
4/max{C−1/2, 6(1 + 8κ−1)d max{KΓKH ,K

3
ΓK

3
H}}

)
Cp2τ

, (4.16)

then with probability greater than 1 − 1/pτ−2 we have that the estimated Ω̂W satisfies the

elementwise-`∞ bound:

‖ Ω̂W − Ω ‖∞≤ {2(1 + 8κ−1)KH}

√
log4n

Cpτ
. (4.17)

Moreover, the corresponding estimated edge set Ê is a subset of the true set of edges E and

includes all edges (i, j) with |ωij | > {2(1 + 8κ−1)KH}
√

log4n
Cpτ .

If we consider that KΓ, KH and κ remain constant as a function of (n, p, d), we can

obtain an asymptotic bound for the elementwise-`∞ norm ‖ Ω̂W − Ω ‖∞≤ O
(√

log4n
Cpτ

)
.

Assuming the concentration bound in Lemma 1, Theorem 2 can be prove by adapting the

proof presented in Ravikumar et al. (2011).

From the theoretical results, we observe that if the affine equivariant robust correlation

coefficient estimate ρ̂0
ij converges to ρij in probability at the optimal parametric rate, then

the bivariate winsorized correlation coefficient ρ̂W converges at the same rate as ρ̂0. Thus,

if we plug the estimated correlation matrix Γ̂W into the parametric Graphical lasso, the

robust precision matrix estimate based on bivariate winsorized data achieves the optimal

minimax rate under the same conditions that when the data is not contaminated.
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5 Empirical Performance in Simulated Data

In this section we analyze the empirical performance of the proposed methods through

simulated data using different contamination mechanisms. We focus on the performance

of the precision matrix estimators when we plug-in a robust correlation matrix onto the

`1 log-determinant divergence function. To do that, we use the Graphical lasso algorithm

proposed by Friedman et al. (2008) to solve the convex optimization problem in (2.4). In

particular we consider the following correlation matrix estimates: “Adjusted Winsoriza-

tion”, for the pairwise correlation matrix estimator using bivariate winzorization when the

correlation coefficient used to compute the Mahalanobis distance is estimated with the

adjusted winsorized data. “Spearman Winsorization”, for the pairwise correlation matrix

estimator using bivariate winzorization when the Mahalanobis distance is computed using

the Spearman’s rho. “Sample Correlation”, for the empirical correlation matrix. “npn”

is the winsorized normal-score nonparanormal estimator from Liu et al. (2009). Finally,

“npn-SKEPTIC” represents the non-paranormal SKEPTIC using Spearman’s rho from Liu

et al. (2012).

5.1 Simulation Framework

We present simulation experiments to examine the performance of the proposed methods

to estimate the precision matrix under different contamination mechanisms. We consider

two different specifications for the population precision matrix Ω:

1. AR(1) Model: ωii = 1, ωi,i+1 = ωi−1,i = 0.4 and 0 otherwise.

2. Erdös-Rényi random graph: Ω = D(A+ (|λmin(A)|+ 0.2)Ip)D where A is a zero di-

agonal matrix where aij = 0.3a, such that a is independently generated and Bernoulli

distributed with probability 0.01 and λmin(A) is the minimum eigenvalue of matrix A.

D is a diagonal matrix with dii = 1 for i = 1, . . . , p/2 and dii = 3 for i = p/2+1, . . . , p.

The matrix is standardized to have unit diagonals.
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We assume that the random vector X = (X1, . . . , Xp)
T is Gaussian distributed with mean

zero and covariance matrix Σ = Ω−1. We study the performance of the precision matrix

estimator under the fully independent contamination model:

Y = (I −B)X +BZ (5.1)

assuming that the variables B1, . . . , Bp are independent:

P (B1 = 1) = . . . = P (Bp = 1) = ε (5.2)

We follow Öllerer and Croux (2015) and we study two contamination mechanisms. In the

first contamination mechanism we assume that Z is multivariate Gaussian distributed with

mean µzi = 10 for i = 1, . . . , p and covariance matrix Σz = Ω−1. In the second contamination

mechanism we assume that Z is multivariate Gaussian distributed with mean µzi = 10 for

i = 1, . . . , p and covariance matrix Σz = 0.2Ip. We robust standardized the data using the

median as a robust location estimator and the median absolute deviation as a robust scale

measure. We set the sample size n = 100 and the dimension p = {90, 200}. We select three

values for the probability that a variable is contaminated in model (5.1): ε = {0, 0.05, 0.1}.
We generate 100 replicates for each simulation experiment.

To evaluate the performance of the proposed methods we study specific assessment mea-

sures to evaluate numerical performance and support recovery. To compare the numerical

performance, we compute the Mean Squared Error (MSE) between Ω and Ω̂, given by the

expectation of the squared of the Frobenius norm:

MSE(Ω̂) = E(‖ Ω̂− Ω ‖2F ). (5.3)

Moreover, we evaluate the performance of the estimator Ω̂ with the expected value of the

Likelihood Ratio Test (LRT), measured by E(LRT(Ω̂)), where LRT(Ω̂) is the likelihood
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ratio distance computed as

LRT(Ω̂) = tr(Ω̂(Ω)−1)− log(det(Ω̂(Ω)−1))− p. (5.4)

Small values of either the MSE and LRT imply a better performance of the method in

estimating the true precision matrix (see Danilov et al., 2012).

To study the support recovery we use specificity, sensitivity, and Mathews correlation

coefficient (MCC) criteria. Let TP be the true non-zero elements and TN be the true

zero elements estimated by Ω̂. Let FP be the false non-zero elements and FN be the false

zero elements estimated by Ω̂. The classification performance measures are then defined as

follows:

Specificity =
TN

TN + FP
Sensitivity =

TP

TP + FN
(5.5)

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(5.6)

To select the optimal tuning parameter λ∗ in the log-determinant divergence problem,

we choose the Bayesian Information Criteria (BIC):

λ∗ = argmin
λ>0

{
−log(det(Ω̂)) + tr(Ω̂Γ̂) + h

log(n)

2n

}
(5.7)

where h is the number of non-zero off-diagonal elements in Ω̂, and Γ̂ the robust correlation

estimate. The BIC has shown to have satisfactory performance for selecting the regulariza-

tion parameter and for estimating the precision matrix (see Wang et al., 2007; Chen and

Chen, 2008).

5.2 Simulation Results

We present detailed analysis based on numerical simulations under the first contamination

mechanism for the two proposed specifications of Ω.

Regarding the support recovery under the first contamination mechanism, Panel (a) of

24



Figures 2 and 3 illustrate the overall performance of different plug-in correlation estimates

to robustly estimate the precision matrix under the first contamination mechanism for the

full path of regularization parameters. For clean data, when the probability that a variable

is contaminated is zero (i.e. ε = 0), the performance of the robust precision matrix estimates

is similar to “Sample Correlation”. Under contamination, the performance of the different

estimates change. Panel (b) and Panel (c) of Figures 2 and 3 show that under cellwise

contamination (i.e. ε = 0.05 and ε = 0.10), “Sample Correlation” becomes very sensitive

to the presence of cellwise outliers. When ε = 0.05, we observe that the support recovery

of “Adjusted Winsorization” and “Spearman Winsorization” performs slightly better than

the robust estimates based on univariate outlier insensitive transformations. When ε = 0.10

the precision matrix estimates based on bivarite winsorization significantly outperform the

non-paranormal SKEPTIC proposed by Liu et al. (2012) and the winsorized normal-score

nonparanormal from Liu et al. (2009).

Tables 1 and 2 show the results for the numerical performance for the optimal regular-

ization parameter under the first contamination mechanism when the precision matrix is

specified as in the AR(1) Model and Erdös-Rényi random graph, respectively. For clean

data, the “Sample Correlation” sightly outperforms the robust plug-in estimators. The per-

formance of the estimates based on bivariate winsorization is comparable with that of the

empirical correlation matrix. Also, they slightly outperform the non-paranormal SKEPTIC

and the winsorized normal-score nonparanormal estimator. When the probability that a

variable contains outliers is positive, “Sample Correlation” performs very poorly in terms

of efficiency on the precision matrix estimation. We observe that the robust estimators of

the precision matrices have similar performance in terms of the expected likelihood ratio

test and the mean squared error as the contamination increases. The similarity in their

numerical performance is related with the fact that the BIC criteria selects models that

contain a large number of false negatives.

Regarding the second contamination specification, simulation results can be sent upon

request. Under this contamination mechanism the performance of the bivariate winsorized
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(a) ε = 0 (b) ε = 0.05 (c) ε = 0.10

(d) ε = 0 (e) ε = 0.05 (f) ε = 0.10

Figure 2: AR(1)-Model Specification. ROC curves under the first contamination mechanism
over 100 replications.
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(a) ε = 0 (b) ε = 0.05 (c) ε = 0.10

(d) ε = 0 (e) ε = 0.05 (f) ε = 0.10

Figure 3: Erdös-Rényi Specification. ROC curves under the first contamination mechanism
over 100 replications.
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estimates to recover the true GGM, for the AR(1) Model and Erdös-Rényi random graph,

confirms the insights of the first contamination mechanism.

As a summary, simulation results show that bivariate winsorization have better sup-

port recovery performance in comparison with rank-based procedures. In general, both

“Adjusted Winsorization” and “Spearman Winsorization” have satisfactory overall numer-

ical performance properties. In terms of which method should be used, we observe that

“Adjusted Winsorization” is slightly more efficient than “Spearman Winsorization” when

the uncontaminated data is Gaussian distributed. This is due to the fact that the Spear-

man’s rho is computed using univariate rank transformations, while adjusted winsorization

operates directly on the data.

Table 1: AR(1)-Model Specification. Numerical performance under the first contamination
mechanism over 100 replications with standard deviation in brackets.

ε = 0 ε = 0.05 ε = 0.10
p LRT MSE LRT MSE LRT MSE

Spearman Winzorization 90 13.468 15.964 19.701 22.455 26.902 34.092
(0.597) (0.736) (0.657) (0.728) (0.190) (0.196)

200 32.592 40.122 57.933 82.646 60.349 76.702
(0.859) (1.014) (0.233) (0.240) (0.249) (0.254)

Adjusted Winsorization 90 13.374 15.849 19.518 22.249 26.773 35.061
(0.593) (0.732) (0.663) (0.737) (0.133) (0.136)

200 34.799 44.587 57.844 82.555 60.059 78.421
(0.862) (1.010) (0.247) (0.254) (0.193) (0.196)

Sample Correlation 90 12.446 13.980 27.646 34.239 27.668 34.269
(0.558) (0.689) (0.057) (0.047) (0.003) (0.018)

200 32.348 39.813 60.731 79.059 61.431 77.764
(0.855) (1.014) (0.047) (0.030) (0.024) (0.009)

npn 90 13.784 16.363 25.734 36.320 26.587 34.873
(0.586) (0.707) (0.174) (0.179) (0.178) (0.185)

200 33.369 41.086 57.883 82.594 59.479 79.909
(0.875) (1.028) (0.241) (0.248) (0.166) (0.171)

npn-SKEPTIC 90 13.566 16.093 25.467 37.259 26.041 35.457
(0.621) (0.757) (0.160) (0.165) (0.210) (0.218)

200 35.219 45.080 57.251 84.174 58.483 81.026
(0.853) (0.997) (0.261) (0.268) (0.212) (0.219)
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Table 2: Erdös-Rényi Specification. Numerical performance under the first contamination
mechanism over 100 replications with standard deviation in brackets.

ε = 0 ε = 0.05 ε = 0.10
p LRT MSE LRT MSE LRT MSE

Spearman Winzorization 90 10.118 10.168 13.537 13.274 17.953 17.082
(0.410) (0.464) (0.535) (0.526) (0.893) (0.588)

200 32.129 43.434 36.125 45.066 37.976 43.658
(0.752) (0.482) (0.825) (0.365) (0.746) (0.254)

Adjusted Winsorization 90 10.083 10.126 13.381 13.131 17.767 16.956
(0.407) (0.463) (0.537) (0.532) (0.904) (0.599)

200 33.693 45.995 35.99 44.988 37.846 43.603
(0.712) (0.425) (0.834) (0.375) (0.764) (0.261)

Sample Correlation 90 10.049 10.093 22.758 22.771 23.213 22.234
(0.400) (0.455) (0.311) (0.135) (0.105) (0.038)

200 32.073 43.405 39.995 49.502 39.996 46.808
(0.746) (0.492) (0.132) (0.035) (0.030) (0.010)

npn 90 10.273 10.360 16.016 16.690 20.239 20.525
(0.412) (0.456) (0.633) (0.509) (0.757) (0.436)

200 35.589 48.757 37.265 46.883 38.834 46.321
(0.667) (0.353) (0.702) (0.299) (0.533) (0.184)

npn-SKEPTIC 90 10.863 11.661 15.281 16.770 19.267 20.637
(0.455) (0.482) (0.585) (0.493) (0.800) (0.499)

200 35.283 48.508 36.977 48.104 38.317 47.387
(0.691) (0.370) (0.697) (0.314) (0.648) (0.229)

6 Robust Cancer Classification based on Gene Expression

Data

Microarrays experiments have being widely used to study the behavior of genes under

various conditions. Microarrays raw data consist of image files and is subject to different

preprocessing steps (Wu and Irizarry, 2007). First, probe intensities are adjusted for optical

noise or nonspecific binding. Then, the data is adjusted to remove systematic bias due to

different experimental designs. This task is often called normalization. As a result, gene

expression data is often subject to numerous sources of experimental and preprocessing

errors (Daye et al., 2012) and it may contain outliers. Moreover, the violation of the

Gaussian assumption can lead to bias in the recovery of the true undirected graph and
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estimation of the precision matrix.

In this section we focus on the performance of robust precision matrices estimators

for the classification of tumors using gene expression data. The different estimators are

compared using two gene expression profile studies. For each study the data have being

preprocessed, including image analysis of the microarray probe intensities, normalization

and selection of differential expressed genes.

For an observed gene expression profile k we write the cellwise contamination model in

the following form (see Alqallaf et al., 2002):

Y(k) = (I −B)X(k) +BZ(k) for k = 1, . . . , n (6.1)

where Y(k) denotes the observed gene expression vector of p genes in mRNA sample k.

The unobservable random vector of gene expression levels X(k) is assumed to be Gaussian

distributed, Z(k) ∈ Rp is an arbitrary random vector and B is the contamination indicator

matrix where P (B1 = 1) = . . . = P (B1 = 1) = ε (i.e. the probability of an outlier

occurring in the each gene is the same). The mRNA samples belong to T known tumor

classes, so a class label t(k) ∈ {1, . . . , T} can be predicted from the expression profiles

Y(k) = (Y
(k)
i , . . . , Y

(k)
p )T .

Based on the robust estimate of the precision matrix of the gene expression levels, we

apply a linear discriminant analysis (LDA) to predict tumor classes. The different predictors

are compared based on randomly splitting the data into training and testing sets. From

the training set, we compute the robust center, scale and precision matrix estimates. For

the test data we compute the linear discriminant score as follows

δt(Y
(k)) = −1

2
log(det(Ω̂))− 1

2
d2(Y (k), µ̂t, Ω̂) + logπ̂t, (6.2)

where π̂t is the proportion of subjects in group t in the training set, µ̂t the within class

mean estimate, Ω̂ the precision matrix estimate for the whole training set and d2(·) is the
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squared Mahalanobis distance. The classification rule is

t̂(Y (k)) = argmax δt(Y
(k)) for t = 1, . . . , T. (6.3)

To perform model selection for λ we use 5-fold cross validation on the training data. Next,

we analyze the performance of the bivariate winsorized precision matrix for the classification

of tumors from gene expression datasets.

6.1 Analysis of Breast Cancer Data

We apply the procedure to evaluate gene expression profiling to breast cancer patients data

to predict who may achieve pathological complete response (pCR). Using normalized gene

expression data of patients in stages I-III of breast cancer data analyzed by Hess et al.

(2006), we aim to predict response stated to neoadjuvant (preoperative) chemoterapy of

patients with pathological complete response (pCR) and with residual disease (RD). The

importance of analyzing the subject response to neoadjuvant (preoperative) chemoterapy,

resides in the fact that complete eradication of all invasive cancer (i.e. pCR) is associated

with long-term cancer free survival.

The data set consist of 22,283 gene expression levels of 133 subjects, with 34 pCR and

99 RD, respectively. We follow the analysis scheme proposed by Fan et al. (2009) and Cai

et al. (2011). The data is randomly split into the training and testing set, and we repeat

this procedure 100 times. The testing set is formed by randomly selecting 5 pCR subjects

and 16 RD subjects (approximately 1/6 subjects in each group). The remaining subjects

form the training set. From the training set, a Wilcox singed-rank test is performed to

select the 113 most significant genes.

Table 3 displays the average classification performance and the number of missclassified

pCR subjects (Test Set Error) for each precision matrix estimator. We observe that “Sample

Correlation” has the worst performance in predicting the pCR subjects in comparison

with the robust precision matrix estimates. The overall classification performance measure
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by MCC criteria shows that “Adjusted Winsorization” outperforms the other procedures.

From the results, we observe that the bivariate winsorized estimators improve over “npn”

and “npn-SKEPTIC” in terms of the sensitivity and MCC, while all of them give similar

specificity.

Table 3: Comparison of average pCR classification errors over 100 replications with standard
deviation in brackets.

Sensitivity Specificity MCC Test Set Error # of edges
Spearman Winzorization 0.558 0.816 0.366 0.246 2039.340

(0.198) (0.092) (0.202) (0.080) (87.990)
Adjusted Winsorization 0.556 0.814 0.360 0.247 2006.820

(0.196) (0.085) (0.189) (0.073) (90.722)
Sample Correlation 0.512 0.813 0.317 0.259 1891.240

(0.215) (0.089) (0.222) (0.080) (90.703)
npn 0.540 0.816 0.345 0.250 2185.910

(0.212) (0.082) (0.220) (0.081) (78.147)
npn-SKEPTIC 0.528 0.821 0.341 0.249 1978.700

(0.214) (0.086) (0.225) (0.081) (76.069)

6.2 Analysis of Leukemia Data

The Leukemia dataset comes from a study of gene expression in two types of acute leukemia:

acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), and was described

by Golub et al. (1999). It has been shown that is critical for determining the chemotherapy

regime to obtain discriminating tumor tissues between ALL and AML. Gene expression

levels were measured using Affymetrix high-density oligonucleotide arrays. The raw data set

consists of 6,817 gene expression levels of 38 bone marrow samples (27 ALL and 11 AML).

The data was preprocessed and reduced to a subset of 3,051 with the most differential gene

expression values.

The preprocessed data is randomly split into the training and testing set, and we repeat

this procedure 100 times. The training set is formed by randomly selecting 25 cases and the

testing set by randomly selecting 13 tissue samples. The training set is formed by 18 ALL

samples and 7 AML samples. From the training set, a Wilcox singed-rank test is performed
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Table 4: Comparison of average leukemia classification errors over 100 replications with
standard deviation in brackets.

Sensitivity Specificity MCC Test Set Error # of edges
Spearman Winzorization 0.870 0.959 0.841 0.063 380.410

(0.195) (0.070) (0.191) (0.074) (29.026)
Adjusted Winsorization 0.903 0.956 0.860 0.057 382.290

(0.179) (0.071) (0.174) (0.069) (31.672)
Sample Correlation 0.887 0.961 0.857 0.057 379.120

(0.197) (0.070) (0.183) (0.071) (30.951)
npn 0.797 0.926 0.743 0.107 360.470

(0.232) (0.092) (0.199) (0.081) (23.916)
npn-SKEPTIC 0.760 0.927 0.717 0.115 352.370

(0.255) (0.091) (0.236) (0.091) (17.170)

to select the 50 most significant genes.

Table 4 displays the average classification performance and the number of missclassified

tumor samples for each precision matrix estimator. The bivariate winsorized estimate

based on adjusted winsorization has the better overall performance measure by MCC. We

see that “Adjusted Winsorization” and “Spearman Winsorization” outperforms “npn” and

“npn-SKEPTIC” in Sensitivity and MCC. In terms of Specificity all estimators have good

performance in estimating false negatives. When we compare the rank-based procedures we

observe that the winsorized normal-score nonparanormal estimator has better performance

than the non-paranormal SKEPTIC estimator. This is due to the fact that when the

contamination is low the “npn” is slightly more efficient than the nonparanormal SKEPTIC

(see Liu et al., 2012).

7 Conclusions

In this article we have presented a method to robustly estimate a Gaussian Graphical model

when the data contain outliers. Several authors, including Liu et al. (2009) and Liu et al.

(2012), have proposed robust estimators for the precision matrix in the high-dimensional

setting. These methods are based on univariate outliers insensitive transformations to
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achieve normality. These transformations guarantee the protection against outlier propa-

gation. However, they are not robust under the presence of structural bivariate outliers

which may lead to misleading graph support recovery. Our approach is able to handle

structural bivariate outliers while protecting against outlier propagation.

We estimate a high-dimensional and sparse robust precision matrix by plugging a robust

correlation matrix estimate into a constraint `1 log-determinant divergence. We estimate

the robust correlation matrix applying robust affine equivariant methods to the bivari-

ate data and compute robust pairwise weighted correlation estimates, where the weights

are computed by the Mahalanobis distance with respect to an affine equivariante robust

correlation estimate. The proposed transformation applies a bivariate winsorization that

shrinks observations to the border of a tolerance ellipse so that outlying observations are

appropriately downweight to obtain a robust correlation estimate against two-dimensional

structural outliers.

We analyze the analytic properties of the proposed bivariate winsorized pairwise scat-

ter estimate and show that the rate of convergence is the same as the affine equivariant

estimates used as a diagnostic tool to identify outlying observations. Furthermore, we

show that if the initial robust affine equivariant correlation coefficient converges to the true

correlation at the optimal parametric rate, then the bivariate winsorized precision matrix

estimate achieves the optimal parametric rate in highdimensions.

Finally, we conducted extensive numerical simulations under different contamination

settings to compare graph recovery performance of different robust estimators. We show

that the proposed precision matrix estimate is robust against structural bivariate outliers

and works well under the cellwise contamination model. The numerical simulations show

that the bivariate winsorized transformation outperforms the existing rank-based methods

when we aim to recover the support of Ω. Moreover, the proposed methods were then ap-

plied to the classification of tumors using gene expression data and we obtained satisfactory

and promising prediction results.

There are several future directions of research. First, it would be interesting to derived

34



specific concentration bounds for the Spearman’s bivariate winsorization and the adjusted

bivariate winsorization correlation coefficient. The performance of the bivariate winsorized

estimate could also be studied under alternative precision matrix estimators such as CLIME

(Cai et al., 2011), neighborhood selection with the lasso (Meinshausen and Bühlmann,

2006) and neighborhood Dantzig selector (Yuan, 2010). Also, we would like to establish

the breakdown properties of the pairwise weighted correlation estimates under the cellwise

contamination model. It would be important to determine the breakdown properties of the

Graphical lasso when the bivariate winsorized correlation matrix is plugged into the `1 log-

determinant divergence. Moreover, the proposed bivariate winsorized correlation coefficient

could be used to perform robust correlation screening to deal with ultrahigh-dimensional

data (see Li et al., 2012). Finally, it would be possible to study the bivariate outliers

detection approach to estimate high-dimensional and sparse undirected graphs under more

general elliptical distributions such as the multivariate t−distributions and nonparanormal

models.

SUPPLEMENTARY MATERIAL

R script for Adjusted Winsorization R script cor.hub containing code to estimate the

bivariate winsorized correlation matrix using adjusted winsorization describe in the

article. (.R file)

R script for Spearman Winsorization R script cor.spearman containing code to esti-

mate the bivariate winsorized correlation matrix using Spearman’s rho describe in

the article. (.R file)
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