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1. Introduction

The patent system is a major instrument for articulating government innovation policy.

Patent rights are expected to provide incentives for innovation and to foster the diffusion of

knowledge. Economists, legal scholars and policy advisors, however, have long questioned the

effectiveness and efficiency of the patent system in reaching these goals (see, e.g., Federal Trade

Commission, 2003). First, awarding monopoly rights as a reward for innovation involves the

obvious deadweight loss and rent-seeking costs associated with monopolies (Nordhaus, 1969;

Boldrin and Levine, 2013). Furthermore, it is unclear whether patents help or hinder the dif-

fusion of knowledge and, ultimately, the generation of further innovation. On the one hand,

historical evidence shows that the use of patent protection encouraged the geographical diffu-

sion of innovations in the chemical industry (Moser, 2011) and the exchange of ideas in markets

for technology (Lamoreaux and Sokoloff, 1999). On the other hand, increased fragmentation of

ownership rights among firms, combined with the recombinant nature of new knowledge, may

lead to steep increases in the transaction costs associated with transferring patent-protected

knowledge (Heller and Eisenberg, 1998), thus hampering its diffusion. Recent research on the

impact of patents on subsequent innovation is also inconclusive. While Galasso and Schanker-

man (2015) provide evidence of substantial increases in citations of patents that are invalidated

by courts, Sampat and Williams (2015) show that patents on genes do not hinder subsequent

related innovations.

Complementing this debate on patents and the diffusion of knowledge, this article studies

an indirect, albeit important, mechanism through which patents may affect the circulation of

knowledge: inventor mobility. Since Arrow (1962, p. 615) noted that “mobility of personnel

among firms provides a way of spreading information,” economists have identified labor mobility

as a key conduit through which knowledge spillovers occur. In this respect, the mobility of the

R&D personnel responsible for technological advances is particularly relevant. Previous research

has documented the inter-firm transfer of technical knowledge following inventor moves (Almeida

and Kogut, 1999; Maliranta et al., 2009; Singh and Agrawal, 2011). Therefore, understanding

the causal relationship between patent protection and inventor mobility will allow us to have a

more complete picture of the role of patents in the diffusion of knowledge.

We explicitly explore the effect of patenting on the career moves of the inventors responsible

for the underlying innovations. Following the existing literature on intellectual property (IP)

rights, we hypothesize a negative effect of patents on inventor mobility. Patents grant their

owners (usually the employer of the inventor) a time-limited right to prevent others from using

a given technology. Consequently, they restrict the amount of knowledge that an inventor

can effectively use following a move to a new employer (Kim and Marschke, 2005; Agarwal

et al., 2009). Furthermore, by conferring monopoly power over a given technology, patent rights

increase the value of retaining the creators of that technology in the implementation phase.

This makes the human capital of inventors with (issued) patents more specific to their current

employers and makes them less likely to move.

Testing the aforementioned hypothesis poses an important methodological challenge. Since

patented innovations are inherently different from non-patented ones (as their inventors are also

likely to be), a simple comparison of inventors who patent with those who do not might lead to
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conclusions that only mirror the underlying dissimilarities. First, the firm decision to apply for

patent protection depends on the characteristics of the given innovation (see Criscuolo et al.,

2015), which may also reflect certain attributes of the human capital of its inventor(s). Second,

the decision to apply for a patent is likely to be affected by the dynamism of the inventor

labor market, as suggested by Kim and Marschke (2005). Moreover, the applications that are

finally granted patents are a selected group of innovations, namely, those that imply sufficient

advancement in the state of the art according to the patent office requirements (i.e., novelty

and non-obviousness of the inventive step). These requirements are arguably more likely to

be achieved by talented inventors. Hence, a straightforward comparison between patented and

non-patented innovations is not appropriate.

We investigate the effect of patenting on inventor mobility by comparing the trajectories

of inventors with different numbers of issued patent (among those with a given number of

applications filed). In order to estimate the causal relationship, we use variation in leniency

across patent examiners as a source of exogenous variation in granted patents. Patent examiner

leniency has been recently used as an instrumental variable to estimate the effect of patents

on subsequent cumulative innovation (Sampat and Williams, 2015) and on venture capital–

backed startup success (Gaulé, 2015; Farre-Mensa et al., 2017). The validity of this instrument

is supported by interviews with employees of the United States Patent and Trademark Office

(USPTO) regarding the allocation of patent applications to examiners (Cockburn et al., 2003;

Lemley and Sampat, 2012), as well as by our own exogeneity tests.

Our empirical analysis is based on the career trajectories of 69,136 inventors who filed their

first patent application with the USPTO between 2001 and 2012. By identifying individual

inventors’ career moves from patent application data, our results point to a negative effect

of patenting on mobility. In particular, one additional patent granted (due to a “lucky” ex-

aminer assignment) decreases an inventor’s probability of changing employers by 25 percent.

This negative effect increases to 42 percent for “discrete” technologies (such as pharmaceuti-

cals and chemicals), where individual inventions are more clearly linked to marketable products

and patent rights protect them more effectively (Cohen et al., 2000). On the other hand, the

estimated effect is much weaker in “complex” technologies (such as electronics), where a given

product is typically associated with many potentially patentable elements, meaning that an indi-

vidual patent confers less protection on the final product. Overall, these results suggest that, by

providing firms with monopoly power over a given technology, patents make the human capital

of the creators of the underlying innovation more specific to the current employer. Additional

tests show that the negative effect of patenting on mobility is stronger for inventors with fewer

co-authors and for inventors working outside the technological core of their firm, suggesting

that patents play a stronger role in the absence of other sources of firm-specific human capital.

Finally, and consistent with our specific human capital hypothesis, we document that patents

most steeply decrease the mobility of inventors to firms that work in the same core technological

areas as their current employers.

The results of our study provide new insights into several domains. First, we contribute to

research on knowledge diffusion and inventor mobility by showing that the institutional effect

of the patent offices on mobility is not neutral. Scholars have traditionally relied on patent
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data to examine the impact on mobility of institutional factors such as trade-secret laws or non-

compete contracts (Fallick et al., 2006; Marx et al., 2009; Png and Samila, 2015) and inventors

characteristics such as productivity (Hoisl, 2006; Palomeras and Melero, 2010). However, little is

known about whether and how the mobility of those employees is itself affected by patents. Our

study aligns with recent work by Agarwal et al. (2009) and Ganco et al. (2015), who show that the

degree of litigiousness of patent-holding firms is related to the amount of knowledge that moving

inventors can effectively transfer and, consequently, to inventor turnover rates. In this respect,

our paper provides evidence on the causal role that patent grants play in the overall process.

Second, our paper adds a dimension to the ongoing debate over the role of patents in innovation

policy. The design of a patent system is expected to address the tradeoff between the incentive

to innovate and the diffusion of knowledge. Our results suggest that, by reducing the inter-firm

mobility of inventors, patents may preclude the transmission not only of formally protected

knowledge but also of tacit technical and organizational knowledge. The findings also imply

that patents may shift incentives to invest in inventive skills from the employee-inventors to the

patent-holding employers. Finally, our results have an important methodological implication.

Many research questions in the area of innovation have traditionally been addressed using data

on granted patents, from mobility studies to knowledge spillover estimations and co-inventor

network analyses. Our evidence indicates that future research should take into account the

effect of patent grants on the behavior of inventors and subsequent knowledge flows in order to

avoid potentially biased results.

2. Background

The thesis of this article is that patent grants make the human capital of inventors more

specific to their employers. It builds upon the idea that patent rights provide their owners with

an increased ability to protect their intellectual assets and, consequently, to obtain a monopoly

over the underlying technology.1 In addition, the labor contracts of R&D workers typically

include provisions by which employers retain property rights over their employees’ inventions.

This implies that patents effectively constrain the inventor from freely using that protected

knowledge. The consequences for mobility, however, are not straightforward.

The first element to take into account is the balance of incentives of current employers and

rivals to bid for the inventor. Consider first the author of an innovation that, because of a

lack of patent rights, is only weakly protected. On the one hand, the ability of competitors to

replicate the invention would be clearly enhanced by employing the original inventor. Thus, they

have incentives to poach her. On the other hand, the current employer may also have strong

incentives to retain the inventor in order to secure monopoly profits by preventing her from

moving to a competitor. The joint-profit effect (Budd et al., 1993) suggests that, in the absence

of strong property rights, incumbents will have stronger incentives than their rivals to bid for

their inventors, unless their products are differentiated enough in the market (Fosfuri et al.,

1Survey evidence gathered by Cohen et al. (2000) suggests that firms may prefer alternative mechanisms of
protection, such as secrecy or lead time, over patents in a wide range of settings. Our study considers the universe
of inventions for which an application for patent protection has been filed. Therefore, it seems reasonable to
assume that applicants in this population expect to obtain an increase in protection from a granted patent.
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2001).2 Suppose that the incumbent now increases the protection of an innovation by obtaining

a patent. To the extent that property rights prevent the unauthorized commercial exploitation of

technological replicas by rivals, patents will eliminate the above-mentioned strategic incentives

to either poach inventors (rivals) or retain them (incumbents) because rivals cannot use the

inventors’ knowledge for replication and incumbents do not need to retain the inventor to secure

monopoly profits. Thus, the appropriation effect of patent grants on inventor mobility may

be positive or negative, depending on the degree of differentiation among the products of the

incumbent and its rivals. In a non-differentiated market, the incumbent’s incentives to retain

the inventor disappear with (strong) patents, so mobility increases with respect to a situation

without property rights. In a differentiated market, rivals’ incentives to poach the inventor tend

to disappear with patents, and thus, mobility decreases with respect to a situation without

patents.

A second important element to consider is the relevance of the inventors’ knowledge for the

successful implementation of an innovation by a patent holder. While patents may allow their

holders to obtain monopoly profits when bringing the innovation to the market, the involvement

of the inventor in implementation activities can enhance the exploitation of this monopoly power.

This makes the human capital of inventors effectively complementary to patent protection. The

development of an innovation into an actual product (or process) ready to be launched in the

market (or internally implemented) is not a trivial task, and it usually benefits considerably

from the involvement of the creator(s) of the innovation. In a study of licensing contracts for

patented inventions in the biomedical industry, Hegde (2014) reports the use of clauses specifying

the complementary knowledge that should be transferred to the licensee along with the patent

in order to successfully develop the innovation. Some of these clauses explicitly require the

personal involvement of the inventor in the process, as well as monetary compensation for their

effort. These cases illustrate the importance of non-codified knowledge for the implementation

of patented technologies, particularly the involvement of their creators. Maurseth and Svens-

son (2015) provide further evidence suggesting the importance of the inventor’s involvement in

successfully bringing an innovation to market using a sample of commercially exploited patents

generated by small firms. This evidence indicates that inventors are inputs in the implementa-

tion of their innovation and that they are especially valuable when the latter is patent protected.

According to this complementarity effect, therefore, patents increase the internal value of the

inventor to the patent holder, generating some firm-specific human capital and decreasing the

probability that inventors switch employers.

In sum, we expect patents to reduce inventor mobility to the extent that they confer

monopoly power that can only be fully exploited by keeping the inventor in-house (comple-

mentarity effect) and that alternative employers develop sufficiently differentiated products (ap-

propriation effect). In empirical terms, previous related research suggests that the relationship

between property rights protection and mobility may go in this direction. Kim and Marschke

(2005) provide evidence that innovative firms tend to file for patent protection more in contexts

2In a non-differentiated market, an incumbent’s incentives to maintain a monopoly situation (as opposed to
a duopoly one) will be greater than or equal to those of rivals seeking duopoly profits. As noted by Fosfuri
et al. (2001), however, this is not necessarily the case if there is some product differentiation or if the intensity of
competition is low.
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with highly dynamic R&D labor markets. However, they do not specifically study the direction

of the effect of patents on mobility. In a related study, Ganco et al. (2015) find that the out-

bound mobility of the inventors of patented innovations is significantly lower in innovative firms

with strong reputations for patent litigation. Outside the realm of patent enforcement, Png and

Samila (2015) show that the mobility of qualified workers is lower in U.S. states with stronger

enforcement of trade-secret laws.

If patents have a detrimental effect on inventor mobility because their human capital becomes

relatively more valuable to their current employer, we should expect that the impact on mobility

is heterogeneous across contingencies. First, our argument that the negative effect of patents on

mobility is caused by the monopoly power they confer implies that the size of the impact should

differ with the effectiveness of patent protection across technology fields. Both the appropriation

effect (resulting from changes in the balance of incentives to poach and retain the inventor) and

the complementarity effect (arising from the role of the inventor in the implementation of the

innovation) will be more intense when patents offer stronger protection. Therefore, the negative

effect of patents on mobility will be more pronounced in settings of higher patent effectiveness.

Second, we expect other sources of inventors’ firm-specific human capital to act as substitutes

for patent protection. Workers’ firm-specific skills are tied to a particular firm and have limited

applicability to outside firms. This results in a lower relative outside value of employees’ human

capital in the labor market and leads to a lower probability of turnover (Becker, 1962). In

particular, patents operate as a source of specificity of an inventor’s human capital by creating

a legally induced gap between the inside and the outside value of her skills that reduces her

probability of moving. We expect this effect to be weaker when other sources of complementarity

(either legally or technically induced) with the current employer make an inventor’s skills firm

specific. The reason is that if an inventor’s skills are already firm specific, she will be unable

to fully apply her skills at a new employer, even if the underlying knowledge is not patented.

In contrast, when the inventor’s skills are general and can be readily applied to alternative

employers, patent protection should have a larger negative effect on mobility.

Third, obtaining a patent may affect different types of inter-firm moves differently. Inventors

may be induced to leave their companies for a variety of reasons, and replicating their innovations

elsewhere may be only one of them. The above discussion of how patents affect the balance of

bids to appropriate the knowledge associated with the innovation only concerns firms that are

close enough in the technological space to be able to implement this technology. Firms that are

technologically distant can also be considered alternative employers of the focal firm’s inventors,

but they are less likely to be interested in the specific innovation than are technologically close

competitors. Hence, the appropriation effect of patents on mobility will be weaker for moves to

technologically distant employers. On the other hand, the complementarity effect will reduce

the probability of moving to any alternative employer, since it only concerns the internal value

of the employment relationship between the inventor and the patent-holder. Thus, we expect

that even if patents reduce inventor mobility to both technologically distant and technologically

close firms, the effect will be more pronounced for moves to the latter group of employers as

long as they market sufficiently differentiated products.
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3. Description of the data

Our paper combines data from several sources. Our starting point is the USPTO Patent

Examination Research (PatEx) dataset, which sources its information from the public Patent

Application Information Retrieval (PAIR) database. PAIR contains detailed information on

patent applications filed with the USPTO. For each application, it includes characteristics such

as the filing date, application type, patent class and subclass codes and current application

status, as well as data about the examination, such as the identity of the assigned examiner

and the “art unit” to which he belongs. From this dataset, we identify every original utility

patent application filed between 2001 and 2012, which totaled 3.6 million applications. We

are constrained to this time period due to data availability. The PAIR dataset contains data

only on applications that have been published (i.e., that are open to public scrutiny), and

it was not until late 2000 that applications were made public before a patent was granted

following the implementation of the American Inventors Protection Act (AIPA). This means

that since November 2000, publication happens regardless of whether the patent is granted,

whereas previously, only applications that were eventually issued patents were published. As

Graham et al. (2015) report, PAIR has very good coverage (95%) of regular utility filings from

2001 to 2012 (after that, truncation due to the publication lag affects coverage).3

We next turn to the information available from the USPTO Patent Assignment Dataset,

since the PAIR database does not identify the assignee (i.e., the firm) responsible for filing the

patent. Before September 2012, the USPTO considered the inventor to be the owner of a patent

application. However, inventors typically have contractual obligations to transfer ownership

to their employer. In order to do so, it was necessary to submit a chain of title from the

original owner (i.e., the inventor) to the assignee (i.e., the firm) to the patent office so that the

legal assignment could be made.4 The dataset tags those assignments, allowing us to identify the

assignee and the presumed employer of an inventor. From our original set of patent applications,

we identify 2.8 million applications that were re-assigned from the inventors to the employers.

Thereafter, we use data from the PatentsView initiative (www.patentsview.org) to identify

the inventors listed in our sample of applications and compile their career histories. This dataset

contains the results of the disambiguation algorithm specific for inventor data provided in Li

et al. (2014) and Balsmeier et al. (2015), which allows the robust identification of individual

inventors across patent applications (since 2001) and granted patents (since 1976).5 Through

these data, we can identify 2.1 million disambiguated individual inventors.

This initial set of inventors is substantially reduced due to the restrictions we impose. First,

we focus our analysis on inventors who filed their first patent application between 2001 and

3The remaining 5% of applications corresponds to two categories: those that were abandoned before the 18-
month publication lag and those that opted out of pre-grant publication (thus relinquishing the possibility of
international protection) and for which patents were not eventually granted (Graham et al., 2015). According
to these authors, who had access to internal USPTO application records, the applications covered by PatEx are
very similar to the population of USPTO applications.

4See 37 CFR 3.71 (pre-AIA), 35 U.S.C. 261 and Marco et al. (2015) for details.
5We are grateful to the PatentsView team for sharing this data with us. PatentsView is supported by the

Office of the Chief Economist at the USPTO, with additional support from the U.S. Department of Agriculture
(USDA). The PatentsView platform was established in 2012 and is a collaboration among the USPTO, USDA,
Center for the Science of Science and Innovation Policy at the American Institutes for Research, University of
California, Berkeley, Twin Arch Technologies, and Periscopic.
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2012. This sample represents a selection of inventors who are in their early careers, that is, in

the ten first years (at most) of inventive activity. We select these inventors for two main reasons.

Primarily, the initial steps of an inventor’s career are more likely to be affected by the outcome

of one or a few patent applications. Thus, if an effect of patents on mobility exists, it will be

more clearly detected among inventors beginning their careers. Moreover, regression to the mean

in random processes eliminates variation in average patent examiner leniency among inventors

with a large number of applications. Thus, our identification strategy would be less effective for

the subpopulation of very experienced inventors. Accordingly, we select only inventors with no

prior patenting experience before our sample period (i.e., before 2001).

Second, given our aim to detect the impact of the decision of the patent office, we focus

on inventors who receive at least one decision on an application during our sample period. In

particular, we require that they receive a first decision on their application prior to 2012 in order

to ensure that we have at least a nine-month window in which to observe mobility for the last

cohort in the data.6

Third, given our interest in employee inventors, we further restrict our sample to inventors

who started their careers (as measured by their patent filings) at a company. In order to capture

them, we select applications assigned to originating firms included in the Standard and Poor’s

(S&P) Capital IQ database, which provides the names and transactions (such as mergers and

acquisitions) for the most extensive set of public and privately held U.S. firms (to the best of

our knowledge). In order to match the firm names from Capital IQ with the assignee names,

we first apply the name standardization procedure used in the NBER patent data project.7 We

then run the Jaro-Winkler algorithm (developed to assist in the disambiguation of names in the

U.S. Census) to correct for typos and misspellings, grouping together records with an overlap

of 90% or higher. Finally, we keep the final list of standardized assignee names that coincide

exactly with firm names in Capital IQ.

Following the previous literature, we infer inventor mobility based on a change in the assignee

between two consecutive applications (see, e.g., Almeida and Kogut, 1999; Trajtenberg et al.,

2006; Marx et al., 2009; Singh and Agrawal, 2011; Ganco et al., 2015). This approach has

a number of acknowledged limitations (Palomeras and Melero, 2010; Ge et al., 2016). First,

an inventor’s career can only be tracked if she is included repeatedly in patent applications.

Otherwise, she is censored out of the sample. One potential concern is that inventors whose

applications have not been granted may be less likely to apply again in the future.8 To the

extent that this attrition effect concerns similarly moving inventors and stayers, it would not

affect our estimation of the relationship between patent grants and mobility. A more serious

concern is that differences among firm patenting policies lead inventors that switch employers

to differ from stayers in their probability of being included in a future application. After all,

applying for patents is to a large extent a firm-level decision, and there may be substantial

heterogeneity among firms in the intensity of patent use. All the inventors in our population

have, by definition, been included in a patent application by their initial employers. Thus, it

6Note that our observation period effectively runs until September 2012 when the previously mentioned legal
process to reassign ownership from inventors to their firms was changed.

7See https://sites.google.com/site/patentdataproject.
8For example, while 50.6% of individuals whose first patent application was not granted never filed an applica-

tion again, the corresponding percentage decreases to 44.4% for individuals whose first application was granted.
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is natural to expect that all of them are initially employed by a firm with relatively high levels

of patent intensity and that moving inventors will switch, on average, to less patent-intensive

employers. This would imply that that our overall mobility rates would be underestimated and,

more importantly, that our estimated effect of patent grants on mobility would be subject to

attenuation bias. We address this issue in Section 5.3.

Second, identifying inventors through the names that appear in patent documents may lead

to misclassification errors. We mitigate them by using the disambiguation algorithm provided

by Balsmeier et al. (2015). As remarked by Ge et al. (2016), other potentially important sources

of misclassification in tracking mobility with patent data are the inability to detect the exact

point in time at which a move takes place (not problematic for our study), and the recording as

moves of contract R&D, collaborations, mergers or acquisitions. We address this last problem by

imposing some restrictions in order to consider a change in assignee as an actual move: (i) we do

not consider changes in the assignee that imply returns to an original employer in less than one

year from the supposed move under the assumption that they probably reflect contract research

or collaborations; and (ii) we do not consider apparent changes in employers due to mergers

and acquisitions, which are detected through information provided by Capital IQ. The existence

of some remaining misclassification error is unavoidable due to the nature of the large-scale

representative sample used in our study.

Thus, our final sample consists of inventors who started their research lives at one of our

identified Capital IQ firms during the period 2001-2011 and who receive a first decision on a

patent application prior to 2012. We track inventors from their first application until they

move or until their last application (during the sample period) with the originating firm. The

resulting dataset comprises 69,136 first-time inventors employed by 2,883 originating firms that

filed 404,016 patent applications during the sample period. In total, we detect 13,984 first-

employer changes for those inventors, averaging 0.20 moves per inventor.

4. Econometric modeling strategy

4.1. Baseline specification

To identify how the approval of an inventor’s patent application affects subsequent mobility,

we estimate the likelihood that an individual changes her employer between application year t

and application year t + 1, conditional on not having moved at t. We use a linear probability

model to estimate the hazard that an inventor moves:

Probabilityit (Yi,t+1 = 1) = α+ β Patents grantedit + γ Zit + δ Si + εit, (1)

where i indexes inventors, and t is an ordinal index of application year (i.e., t=1 refers to the

first year in which the inventor files an application, t=2 corresponds to the second year when

she files an application, etc.). The dependent variable, Yi,t+1, is an indicator that equals one if

an inventor moves between t and t+1. Note that we consolidate the information on applications

on an annual basis, so our measure of mobility records whether the inventor changed employers
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at least once during that observation window. Our main variable of interest, Patents grantedit,

is the total number of patents issued to inventor i up to (and including) spell t. The vector Zit

contains a range of time-variant covariates. First, and most importantly, Zit contains the total

number of applications filed by inventor i up to spell t. We also condition on the time elapsed

since the inventor’s first decision year, allowing mobility decisions to be shaped by seniority.

To account for sectoral differences in mobility rates, we include indicators for six non-exclusive

NBER categories in which applications are classified. Finally, Si represents the year in which

the inventor receives her first decision from the patent office. This cohort indicator controls for

the fact that inventors entering later in the panel have less time to move than do those entering

earlier. We cluster standard errors at the inventor level.

4.2. Identification strategy

As discussed in the introduction, an important concern is that β will likely be biased upwards,

since it captures the combined impact of patents granted and omitted inventor characteristics.

For example, inventors of higher quality are more likely to be the authors of inventions that

meet USPTO criteria for approval.9 Since those inventors are also more likely to be hired away

(Palomeras and Melero, 2010), this may confound any true causal effect. To overcome this

identification challenge, we use examiner leniency as an instrument for whether an inventor’s

applications are approved by the patent office and estimate Eq. (1) using a two-stage least

squares (2SLS) approach (see Gaulé, 2015; Sampat and Williams, 2015; Farre-Mensa et al.,

2017). This instrument was first proposed by Sampat and Williams (2015) based on the work

of Lemley and Sampat (2012) and Cockburn et al. (2003) on the processes and outcomes of

patent examination at the USPTO. We next describe this process to illustrate the rationale for

the instrument.

4.2.1. Rationale for the instrument: The examination process

Patent examiners at the patent office are key figures in the examination process of a patent

application. Their decisions determine eventual approval or rejection. Recent studies suggest

that the odds of receiving a patent depend on the characteristics of the particular examiner

assigned to the application (Lemley and Sampat, 2012; Frakes and Wasserman, 2016). In their

sample, Lemley and Sampat (2012) find an 11-percentage-point difference in the grant rate

between the least and the most experienced examiners who check applications related to a given

technology. Frakes and Wasserman (2016) report differences in the odds of patent approval by

examiner cohort (i.e., the year in which they were hired), which they attribute to differences in

the training received that mirrored patent office policies at that time. There is also evidence

that certain characteristics of granted patents differ by examiner.10 Cockburn et al. (2003)

and Lichtman (2004) acknowledge that patent examination is not a mechanical process and,

9The USPTO assesses whether applications should be granted patents based on the following five criteria:
patent eligibility (35 U.S.C. 101), novelty (35 U.S.C. 102), non-obviousness (35 U.S.C. 103), usefulness (35 U.S.C.
101), and an application that satisfies the disclosure requirements (35 U.S.C. 112).

10In a small and very selective sample (180 granted patents brought to the Court of Appeals at the end of the
nineties), Cockburn et al. (2003) note that characteristics such as prior citations introduced by the examiner,
citations received afterwards and the odds of being declared invalid by the courts vary with the characteristics of
the examiners.

10
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therefore, examiners necessarily enjoy some discretion in how they conduct the examination

and determine its outcome. Nevertheless, the allocation of applications to examiners at the

USPTO follows certain structured steps that guarantee virtually random assignment within a

given technological area (Cockburn et al., 2003; Lemley and Sampat, 2012).

At the USPTO, patent applications are received by a central office, where they are assigned

an application number, a patent class and subclass codes and allocated accordingly to one of

the art units in charge of the examination process. Art units are groups of examiners that spe-

cialize in a given set of technologies (there are more art units than patent classes but fewer than

subclasses). Once a patent is allocated to an art unit, a supervisory patent examiner (SPE)

receives the application and assigns it to a specific examiner. Each art unit is an independent

administrative division and has discretion in how work is organized, including how applications

are allocated to examiners. Interviews with patent examiners conducted by Lemley and Sam-

pat (2012) reveal that supervisory examiners make most final decisions on the assignment of

applications to examiners on a quasi-random basis (e.g., according to docket management needs

or following arbitrary rules, such as the last digit of the application number). There is no evi-

dence from these interviews that SPEs engage in any substantive evaluation of applications in

order to detect their patent-worthiness. Therefore, it is unlikely that they assign applications

to certain examiners according to such characteristics. Both Lemley and Sampat (2012) and

Sampat and Williams (2015) show that patent applications assigned to lenient and strict patent

examiners have similar observable characteristics at the time of application (number of pages,

family size and number of claims). In Appendix A.1, we replicate this exercise for other relevant

pre-determined factors, such as the size of the applicant firm or references to the patent and

non-patent literature submitted in the application. Our results do not show a significant rela-

tionship between these factors and examiner leniency. Hence, the evidence at hand suggests that

the assignment of applications to examiners can be reasonably assumed to be essentially random

within a given art unit. Consequently, we follow Sampat and Williams (2015), Gaulé (2015), and

Farre-Mensa et al. (2017) in using examiner leniency as an instrument for application approval.

4.2.2. The instrument: Average Examiner Leniency

Our objective is to obtain an instrumental variable for the number of applications granted to

an inventor up to a given point in time. We start by operationalizing examiner leniency at the

application level. In the spirit of Gaulé (2015), we compute time-varying measures of leniency

as follows:

Ejkat =
Grantskat − 1(Grantj = 1)

Reviewskat − 1
(2)

and

Ujat =
Grantsat − 1(Grantj = 1)

Reviewsat − 1
, (3)

where Ejkat is the approval rate of examiner k in art unit a assigned to review patent application

j submitted at time t. Reviewskat and Grantskat are the numbers of applications examiner k has
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reviewed and granted, respectively, in art unit a in the same application year as j.11 Similarly,

Ujat is the approval rate of art unit a and is constructed as the share of reviewed applications filed

in the same year as application j that were granted by art unit a, excluding the focal patent.12

The difference between Ejkat and Ujat is hence the relative leniency faced by an inventor who

files patent application j in year t assigned to examiner k within art unit a. For a single patent

application, the corresponding examiner relative leniency, Ejkat −Ujat, is a suitable instrument

for whether that application is granted. However, we are interested in obtaining an instrument

for the inventor’s total number of applications granted up to a given time. We account for this

by averaging Ejkat − Ujat across all patents applied for by inventor i up to year t:

Lit =
1

nit

nit∑
j=1

(Ejkat − Ujat). (4)

Unlike previous literature using examiner leniency as an exogenous source of variation in

granted patents, our study averages leniency at the inventor level. This allow us to obtain an

instrument for an inventor’s stock of granted patents13, but prevent us from using within-art-unit

technology fixed effects in our main specifications. In Appendix A.2, we provide some evidence

suggesting that this is not a concern.

5. Patent grants and inventor mobility

5.1. Descriptive statistics

Table 1 provides descriptive statistics for the main variables used in this study. The unit

of observation in our analysis is the inventor–application year. Accordingly, the figures indicate

that, on average, 11% of inventors change employers between two application years. Inventors

are, on average, responsible for 2.2 granted patents.

11Given that there may be concerns about measurement error in leniency when the set of applications is small,
we define some threshold values (10, 20, and 50) and experiment with considering only cases for which the number
of reviewed applications per examiner, year and art unit exceeds these thresholds. If anything, results are stronger
with these restrictions.

12Note that our instrument differs from that proposed by Gaulé (2015) in two respects. First, while the author
considers the overall approval rate of an examiner, we follow Sampat and Williams (2015) and Farre-Mensa et al.
(2017) in adjusting for each art unit. Our reason for doing so is that in our sample period, on average, 39% of
examiners reviewed patent applications for multiple art units in the same year. Second, our equations differ in
the denominator, since we use the number of patent applications reviewed rather than the number of applications
filed. Nothing hinges on the use of the leniency measure in Gaulé (2015), however.

13All the main results of this paper are robust to considering only inventor mobility in the spell after the first
application decision. The specific analysis showing this is available upon request from the authors.
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Table 1
Descriptive statistics

Variable Mean SD Min Median Max Observations
Move 0.11 0 0 1 131,485
# of patents issued 2.2 3.7 0 1 136 131,485
# of applications filed 7.7 11.1 1 4 305 131,485
Examiner leniency 0.004 0.09 -0.86 0.01 0.74 131,485
Years since 1st decision 3.0 2.0 1 2 11 131,485
# of co-inventors 11.0 12.4 0 7 226 131,485
# of uspc classes 2.9 2.4 1 2 49 131,485
% of applications in firm’s core 0.30 0.39 0 0 1 131,485
# of applications per firm 1,263 1,776 1 449 7,803 131,485
Enforceability index -0.72 1.7 -4.2 -0.07 1.6 47,611

5.2. Baseline specification

Table 2 provides the main results. In column 1 of Table 2, we begin with the OLS estimates

of the baseline specification relating mobility to the number of patents granted and additional

controls. We find a weak, positive and significant correlation between patent grants and mobility.

This relationship cannot be interpreted as causal, however. As argued above, there are reasons

why we should expect unobservable factors to affect both the extent to which inventor’s patent

applications are approved by the USPTO and subsequent mobility.

Moving to the instrumental variable approach, column 2 presents the first stage in which

we regress the number of patents issued on examiner leniency (and all other controls). As

expected, the instrument is positive and highly significant: a one standard deviation increase in

the leniency of the examiner assigned to review an inventor’s patent application is associated

with a seven-percentage-point increase in the number of patents issued for the average inventor.

The first-stage F -statistic of the excluded instrument is large (796) and well above the rule of

thumb for weak instruments (see, e.g., Stock and Yogo, 2005), indicating that the instrument

explains a substantial part of the variation in granted patents. Column 3 reports the result

from the second-stage regressions estimating Eq. (1), with the main variable of interest replaced

with the fitted value of # of patents issued from the first-stage regression. The coefficient is

strongly negative and significant at the 1% level. The point estimate implies that an exogenous

increase in one successful patent application reduces the probability of moving by 2.8%, which

represent a 25% decrease over the conditional sample probability of 11%. This is a result of

economic significance. The substantial difference between the OLS and IV estimates highlights

the importance of controlling for the endogeneity of patent grants and indicates a strong positive

correlation between # of patents issued and the disturbance in the mobility equation, inducing

a large upward bias if we treat USPTO decisions as exogenous.

For the ease of estimation and interpretation, we use linear probability models as our main

specifications throughout the paper. In column 4 of Table 2, however, we report the results from

a probit model where we implement the instrumental variable estimator by using the control

function method (see Blundell and Powell, 2004). This leads to qualitatively and quantitatively

similar results for the coefficients on # of patents issued and, hence, supports the reasonableness

of our linear 2SLS model approximations of the average partial effects as suggested, for example,

by Wooldridge (2014).

Overall, these instrumental variable specifications provide strong evidence that patents cause,

on average, a decrease in the subsequent mobility of early-career inventors. This result suggests
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that patents make the human capital of inventors more specific to their employers. In the next

subsection, we provide a series of robustness checks to address alternative explanations, while

in Section 6, we provide additional evidence on the heterogeneity of the estimated effect to

strengthen our interpretation.

Table 2
Patent grants and inventor mobility

Base Controlling for endogeneity

OLS 2SLS Probit
Estimation method OLS (1st st.) (2nd st.) (2nd st.)

# of pats
Dependent variable Move issued Move Move

(1) (2) (3) (4)
# of patents issued 0.001∗∗∗

(0.000)
Examiner leniency 1.705∗∗∗

(0.060)
# of patents issued (instr.) -0.028∗∗∗ -0.022∗∗∗

(0.006) (0.005)
Years since 1st decision (L) 0.038∗∗∗ 1.310∗∗∗ 0.077∗∗∗ 0.069∗∗∗

(0.002) (0.014) (0.008) (0.006)

First decision year FE Yes∗∗∗ Yes∗∗∗ Yes∗∗∗ Yes∗∗∗

# of applications filed FE Yes∗∗∗ Yes∗∗∗ Yes∗∗∗ Yes∗∗∗

Technological class FE Yes∗∗∗ Yes∗∗∗ Yes∗∗∗ Yes∗∗∗

First-stage F -statistic 796

N = 131, 485. Number of inventors: 69,136. Number of firms: 2,883.
Estimation period is 2001–2011. Robust standard errors are clustered by
inventor (in parentheses). Column (4) displays the average marginal effects
from a probit model with endogenous regressors. ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01.

5.3. Robustness checks

In this section, we briefly summarize a variety of tests that allow us to confirm the robustness

of our main finding. Results are reported in Appendix A.3.

First, in column 1 of Table A3, we estimate a specification that incorporates fixed effects at

a more fine-grained technology level. In our main specification, we use the six broad (one-digit)

NBER technology fields, whereas in this specification we include fixed effects that capture the

37 (two-digit) NBER sub-categories. The estimated coefficient on patent grants is identical to

the baseline coefficient.

Second, we check to what extent our estimated coefficient of interest may be subject to

attenuation bias. As suggested in Section 3, this would be the case if moving inventors were

less likely to apply for new patents than stayers. We replicate the main analysis, presented

in Table 2, for the sub-sample of inventors who obtained at least one decision on their patent

applications relatively early in our sample (i.e., prior to 2007). For this group of inventors, the

observation window is longer and, therefore, censoring is less likely (we have at least a 5-year

time window to observe another application). While 46.2% of first-time inventors are excluded

from our main sample because they are only observed once, this percentage is reduced to 26.8%

for this sub-sample. The results for this sub-sample are reported in column 2 of Table A3 and

are qualitatively and quantitatively similar to those of our baseline estimatation.

Third, we address the concern that our results could be driven by the sub-sample of inventors

whose employers went out of business. If patents affect firm survival (as suggested by Farre-
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Mensa et al., 2017), we could be detecting purely mechanical moves following inventors’ patent

rejections (i.e., moves motivated by their employer’s bankruptcy). In column 3 of Table A3, we

report the results of a restricted analysis wherein we consider only moves away from source firms

that have at least one patent filed in the years after the registered employer change. Restricting

the analysis to this sub-set of moves produces nearly identical results to those of our baseline

estimation.

Fourth, we examine whether the estimated effect of patent grants on inventor mobility is

monotonic. To check this, we include the instrumented squared term of # of patents issued

in our model. As column 4 of Table A3 shows, the quadratic term is close to zero and not

statistically significant, whereas the linear term remains negative and significant, with a point

estimate that is substantially higher than the baseline estimate.

Fifth, one might worry that the effect we observe of patents on mobility is driven by the

threat of litigation posed by a few patent holders. As Ganco et al. (2015) note, patent holders

vary in their ”toughness” in IP litigation, which is correlated with the probability that an

inventor exits the firm. To account for this difference, we include the lagged three-year moving

sum (i.e., from t − 1 to t − 3) of the number of patent infringement lawsuits filed by the focal

employer (Litigiousness) in the main specification. We obtain this information from the Patent

Litigation Docket Reports (publicly available through the USPTO website), which contains all

patent litigation cases reported by U.S. district courts to the USPTO between 1963 and 2015. In

column 5 of Table A3, we can observe that the coefficient on # of patents issued remains identical

to the baseline coefficient, while the coefficient on Litigiousness is negative and significant (as

expected from prior research). We also interact the effect of patents on mobility with the proxy

for IP toughness. In column 6 of Table A3, we report a negative but non-significant interaction

and an estimated coefficient on patent grants of a very similar magnitude to that of the baseline

estimate. Hence, patent rights decrease inventor mobility even for employers with low litigation

profiles.

Finally, in our last robustness test, we extend the concept of patent protection beyond the

granted/non-granted dichotomy and focus on the number of approved claims as a more fine-

grained measure of this concept: the scope of the patent. Because of our reliance on examiner

leniency as an instrumental variable for patent approval, it is likely that the results presented in

Table 2 represent local average treatment effects of an additional granted patent for the group of

inventors producing innovations around the margin of approval and rejection. This analysis of

the effect of approved claims allows us to evaluate the effect of a marginal increase in the scope

of protection, which may happen at any point on the distribution of patentability. Each claim in

a patent document describes in technical terms a different element of the protected technology.

As Lanjouw and Schankerman (2001) state, patent claims delimit the boundaries of the legal

protection conferred by the patent. A larger set of claims implies that the patent covers a broader

share of the technological space. Non-granted patents obviously have no approved claim, and an

increasing number of claims implies an increasing scope of protection for the patent holder. The

applicant’s incentive is to make claims that are as broad as possible in the application, as the

examiner can limit these claims during the examination process (Lanjouw and Schankerman,

2001). The scope of patent protection is therefore affected by the examination process and is
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influenced by examiner leniency. More lenient examiners not only grant more patents but also

allow a larger number of claims per patent (Cockburn et al., 2003; Lemley and Sampat, 2012).

Consequently, examiner leniency can also be used as an instrumental variable to estimate the

effect of a broader scope of patent protection on inventor mobility.

Table A4 presents the estimated effect of the average number of approved claims granted per

application on an inventor’s likelihood of moving. The number of claims can be readily obtained

from patent documents and is available from USPTO datasets. The results are qualitatively

similar to those of the analysis of patents granted. Column 2 indicates that examiner leniency

is also a strong instrument for approved claims. Column 3 presents the second stage, with

a negative and significant coefficient estimate on Avg. # of claims issued, suggesting that a

one-unit increase in the number of approved claims reduces the probability of moving by 0.3

percentage points – a 2.8% relative decrease in the probability of leaving. To examine the extent

to which these results are driven by the fact that non-granted patents have zero approved claims,

we repeat the analysis for the sub-sample of granted patents. As the coefficient from the last

column of Table A4 shows, the estimated relationship between approved claims and mobility

remains negative and significant.14 Overall, these results suggest that the main finding of this

paper, i.e., the negative effect of patent protection on inventor mobility, is robust to considering

the effect of patent scope, a more fine-grained measure of patent protection than patent grants.

Consequently, they indicate that the estimated effect is not driven by a subset of inventors whose

creations lie around the approval threshold but that it is a more general phenomenon.

6. Heterogeneous impact of patent grants

The previous section documents a negative effect of patent protection on inventor mobility,

which is consistent with the idea that patent rights make the human capital of inventors specific

to their employers. In this section, we explore several sources of heterogeneity in the relationship

between patent grants and mobility in order to evaluate the existence of further evidence sup-

porting that proposition. We first examine variations in the effect across technology areas. By

drawing on the distinction between discrete and complex technologies outlined by the existing

literature, we assess whether the negative effect of patenting on mobility is more pronounced for

discrete technologies, where patents arguably provide stronger protection. Second, we explore

the role of different sources of firm specificity affecting an inventor’s stock of human capital. We

examine whether in such cases patents play a less important role as a mechanism that turns

inventor’s knowledge into firm-specific capital and, thus, affect mobility less intensely. Finally,

we examine whether patenting makes an inventor especially less likely to move to firms that are

technologically similar to her current employer.

6.1. Variation across technology fields

Our argument is that the negative effect of patents on mobility presented in the previous

section should be particularly strong in contexts where patents are more effective. The tradi-

14The results from this last piece of evidence, however, have to be interpreted with caution, since excluding
inventors without granted patents from the analysis is likely to induce some sample selection bias.
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tional dichotomy between complex and discrete technologies is particularly useful in this respect.

Mansfield (1986) and Levin et al. (1987) find that patenting is a key strategy for appropriating

returns to R&D in pharmaceuticals and chemicals, while it is less important in most other indus-

tries. Cohen et al. (2000) push this issue further and suggest that these differences are linked to

the nature of the technology and to the physical characteristics of the products. Their rationale

is that the number of patentable elements in a product importantly affects the way patents are

used and, in turn, the degree to which they contribute to effective protection. In discrete indus-

tries, new products typically build on a few clearly identifiable features. Hence, only one or a

few patents are required to achieve effective protection against imitation. This is the case in the

pharmaceutical and chemical industries, where compounds are typically adequately protected

by single patents. In contrast, new products in complex industries, such as electronics, require

inputs from numerous complementary components, typically protected by patents held by an ar-

ray of third parties. This makes the protection conferred by a single patent on a new component

inherently less valuable, since it is necessary to have or acquire the rights on other proprietary

elements to bring a new product to market. For these reasons, patents are reported to be less

effective against imitation in complex product industries relative to alternatives such as secrecy,

lead time or complementary capabilities (Cohen et al., 2000).15 Therefore, we should observe

that the negative impact of patents on inventor mobility is stronger in discrete (compared to

complex) technology fields.

In order to empirically identify the technology field for each patent application, we rely on

the NBER categorization. As there is no widely accepted classification that links those cate-

gories to discrete or complex technology areas, we focus on the clear-cut cases identified in the

prior literature. Following Levin et al. (1987) and Cohen et al. (2000), we classify chemicals

(category 1) and drugs (sub-category 31) as discrete and computers and communications (cat-

egory 2), medical instruments (sub-category 32), biotechnology (sub-category 33) and electric

and electronics (category 4) as complex technology fields.16 We then aggregate this information

at the inventor–application year level and construct two time-variant dummy variables, Discrete

and Complex, that equal one if the inventor’s largest share of applications up to spell t belongs

to discrete or complex technology classes, respectively, and zero otherwise.17 In our sample, the

average mobility rate between two application years is 13% for inventors in discrete areas and

10% for those in complex areas.

15This claim is also line with the results of econometric studies that attempt to quantify the private value of
patent protection across sectors (see, e.g., Lanjouw, 1998; Arora et al., 2008).

16Traditionally, biotechnology was classified as discrete due to its intrinsic technological characteristics. How-
ever, the possibility of patenting gene fragments since the late nineties contributed to the fragmentation of the
patent rights needed for the commercialization of a product in this area (Cohen et al., 2000). Thus, following
recent papers, such as Galasso and Schankerman (2015), we classify biotechnology as complex. The results are
robust to the exclusion of biotech as a complex field.

17Because some technological areas are neither complex nor discrete, some 19,234 inventor-year observations
are not assigned to either category.
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Table 3
Technological areas

Estimation method: 2SLS Discrete and
Sample All Discrete Complex complex
Dependent variable: Move (1) (2) (3) (4)
# of patents issued (instr.) -0.027∗∗ -0.054∗∗∗ -0.022∗∗ -0.020∗∗

(0.011) (0.014) (0.009) (0.009)
# of patents issued -0.026 -0.034∗

× Discrete (instr.) (0.018) (0.019)
# of patents issued 0.008
× Complex (instr.) (0.014)

Discrete 0.070∗∗ 0.063∗

(0.032) (0.035)
Complex 0.008

(0.029)

N 131,485 23,991 88,260 110,330
# of inventors 69,136 13,632 46,498 58,296
# of firms 2,883 1,277 1,823 2,523

Wald χ2 2.96∗

Estimation period is 2001–2011. Robust standard errors are clustered by in-
ventor (in parentheses). All regressions control for the number of years since
inventor’s first decision (log), as well as fixed effects for the number of appli-
cations filed by the inventor and the year of inventor’s first decision. Wald
tests for differences in coefficients between # of patents issued x Discrete and
# of patents issued x Complex. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

We examine the impact of patents on mobility by technology field using the instrumental

variable discussed above. Column 1 of Table 3 provides the estimates obtained using the full

sample. Specifically, we augment Eq. (1) by including two instrumented interaction terms to

capture how different appropriability regimes alter the effect of patents on inventor mobility. The

coefficient on the first interaction term, # of patents issued x Discrete, is large and negative,

while that of # of patents issued x Complex is small and positive, although neither is statistically

significant. The corresponding Wald test indicates, however, that these two coefficients are

statistically significantly different from one another. These findings indicate, as predicted, that

the negative effect of patents on inventor mobility is stronger when inventors’ patent filings are

concentrated in discrete technologies instead of complex fields. Columns 2 and 3 present the

results of estimating our baseline 2SLS model separately for the subsamples of inventors working

mainly in complex technologies and those working mainly in discrete fields. The results show

that the effect of patent grants is large, negative and significant among inventors whose main

expertise lies in a discrete technology field, whereas it is smaller among inventors in complex

areas. One additional patent granted is expected to reduce the probability of moving by 2.2%

for inventors in a complex field (a 22% decrease over the conditional sample probability of 10%)

and by 5.4% for those in a discrete field (a 42% decrease over the conditional sample probability

of 13%). Finally, column 4 provides estimates using the combined sub-samples and interacting

# of patents issued with Discrete. Consistent with the previous findings, the coefficient on the

interaction term is negative and significant at the 10% level.

6.2. Other sources of firm-specific human capital

A second analysis considers the extent to which different sources of an inventor’s firm-specific

human capital shape the effect of patents on mobility. In particular, our arguments suggest that

the effect will be less negative when other types of human capital firm specificity are already in
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place, and it will be more intense otherwise. To explore this question, we look at cases in which

the inventor’s knowledge becomes more valuable when implemented in collaboration with that

of other inventors in the company or in conjunction with some of the current employer’s key

assets. We also analyze whether the effect of patents is attenuated in the presence of another

legally induced source of firm specificity: non-compete covenants.

In the context of innovation studies, the literature suggests two potential sources of firm

specificity for inventors’ human capital. First, Hayes et al. (2006) argue that firm specificity

derives from complementarities with the firm’s other workers. In particular, by learning to work

with each other over time, individual employees develop a stock of human capital that is specific

to co-workers and difficult to re-build with others. In the context of invention generation, Jaravel

et al. (2015) show that inventors who experience an unexpected death of a co-inventor face large

and long-lasting losses in earnings and productivity. Thus, strong collaborative relationships

such as those established in teams of inventors imply that each individual needs complementary

knowledge from other inventors to extract the maximum value of her own knowledge. This

makes departure decisions more costly for the inventor and reduces her relative attractiveness

to outside employers, since competitors that aim to replicate a body of knowledge must hire

away the whole team (Palomeras and Melero, 2010). Therefore, we expect the negative impact

of patent grants on mobility to be more intense for solo inventors than for inventors with many

co-authors.

A second source of firm-specific human capital is suggested by Lazear (2009), who notes

that most specific human capital is, in fact, a combination of general purpose skills applied in

a combination that is specific to the firm. Innovative companies tend to establish technologi-

cal trajectories linked to their core competences, with accompanying patterns of standardized

routines and procedures (Nelson and Winter, 1982; Hoetker and Agarwal, 2007). This implies

that the particular combination of skills used by inventors working in the company’s core areas

is especially idiosyncratic to the firm and, therefore, difficult to transfer.18 Thus, we expect

that the negative impact of patent grants on mobility is larger for inventors working outside the

firm’s core technologies than for inventors employed in the firm’s core.

We empirically explore the effects of the above-mentioned sources of firm-specific skills by

using the following proxies: (i) the natural logarithm of (one plus) the number of unique co-

inventors with whom an inventor has worked in her applications up to t and (ii) the percentage

of her patent applications that fall in the firm’s core technology areas. Following Song et al.

(2003), we consider a technology area part of the core if its corresponding patent class appears

with a frequency greater than 10% in the firm’s application portfolio (over the entire sample

period). We control in these regressions for the inventor’s degree of specialization (captured by

the number of different patent classes into which her applications fall) and firm size (proxied

by the number of applications filed by the firm in that year), which are relevant controls to

18The firm specificity of core skills is illustrated by the following example. In 1970, Intel planned to invest
in developing the first semiconductor DRAM (dynamic random access memory), the 1-kilobit 1103. Despite its
economic attractiveness, Intel’s engineers were seriously concerned about the potential negative consequences of
developing knowledge and skills specific to DRAM technology. As noted by Gordon Moore, then CEO of Intel,
“[t]here was a lot of resistance to semiconductor technology on the part of the core memory engineers. The
engineers didn’t embrace the 1103 until they realized that it wouldn’t make their skills irrelevant” (Cogan and
Burgelman, 1989, p. 2-3).
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consistently estimate the effect of co-inventors and core areas.

Table 4 presents the results of the interactions between sources of firm specificity and patent

grants on mobility. The first column reproduces the baseline model to which we add the variables

and controls mentioned in this subsection. We are interested in the interactions between the

variables capturing the firm specificity of skills and the number of patents the inventor has

been granted. In columns 2 and 3, we add these (instrumented) multiplicative terms separately.

Column 4 shows the results for the full model. As expected, the figures from the interaction

effects in columns 2 to 4 show that the negative impact of patent grants on mobility is most

intense for solo inventors and for inventors working outside the firm’s core technologies.

Table 4
Firm-specific human capital: patent grants, co-inventors and core technologies

Estimation method: 2SLS
Dependent variable: Move (1) (2) (3) (4)
# of patents issued (instr.) -0.030∗∗∗ -0.072∗∗∗ -0.046∗∗∗ -0.075∗∗∗

(0.007) (0.021) (0.010) (0.021)
# of patents issued 0.021∗∗∗ 0.015∗

× # of co-inventors (L) (instr.) (0.007) (0.008)
# of patents issued 0.041∗∗ 0.035∗

× % of applications in firm’s core (instr.) (0.018) (0.018)
# of co-inventors (L) 0.000 -0.043∗∗∗ 0.002 -0.031∗

(0.002) (0.016) (0.002) (0.017)
% of applications in firm’s core -0.045∗∗∗ -0.044∗∗∗ -0.123∗∗∗ -0.112∗∗∗

(0.003) (0.003) (0.034) (0.035)
# of uspc classes (L) -0.022∗∗∗ -0.017∗∗∗ -0.009 -0.007

(0.004) (0.003) (0.006) (0.006)
# of applications per firm (L) -0.016∗∗∗ -0.017∗∗∗ -0.016∗∗∗ -0.017∗∗∗

(0.001) (0.001) (0.001) (0.001)

N = 131, 485. Number of inventors: 69,136. Number of firms: 2,883. Estimation period
is 2001–2011. Robust standard errors are clustered by inventor (in parentheses). All
regressions control for the number of years since inventor’s first decision (log), fixed effects
for the number of applications filed by the inventor, the technology field and the year of
inventor’s first decision. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

We also consider the role of non-compete contracts as a related mechanism that increases

the firm specificity of inventors’ human capital. Non-competes are contractual clauses included

in labor contracts that explicitly prevent employees from working for a competitor within a

certain time window, typically two years, in case of termination of the labor relationship with

the current employer. These covenants are a particular case of trade secret law, which aims

to safeguard critical information (both technical and non-technical) that firms decide to keep

secret. Non-compete contracts are prevalent among R&D workers and have been found to reduce

inventor mobility in states that enforce them (Marx et al., 2009). U.S. jurisdictions, however,

differ in their degree of enforcement of these covenants. Courts have sometimes understood that

employees cannot be forbidden to seek jobs in the industry in which they have expertise. In

California, for instance, non-competes are practically unenforceable (Gilson, 1999). Thus, the

substitutability argument suggests that patents should discourage mobility, especially in states

in which non-compete covenants are not enforced.

To examine whether our results differ according to the level of enforcement of non-competes

in the corresponding state, we rely on the enforceability index compiled by Starr (2016). We use

the inventor address provided in patent filing for the geographical allocation of inventors to U.S.

states. Because this information is not available for all inventors in our dataset, we examine a

sub-sample of 25,439 inventors from 1,511 firms.
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Table 5
Firm-specific human capital: patent grants and non-compete enforceability

Estimation method: 2SLS Non-enforcing Enforcing
Sample All All All All states states All
Dependent variable: Move (1) (2) (3) (4) (5) (6) (7)
# of patents issued (instr.) -0.034∗∗∗ -0.034∗∗∗ -0.034∗∗ -0.034∗∗ -0.045∗∗ -0.031∗∗ -0.043∗∗∗

(0.011) (0.011) (0.015) (0.015) (0.021) (0.013) (0.002)
# of patents issued 0.001 0.002
× Enforceability index (instr.) (0.005) (0.005)

Enforceability index -0.009∗∗∗ -0.010
(0.003) (0.013)

# of patents issued 0.011
× Enforcing states (instr.) (0.014)

Enforcing states -0.072∗∗

(0.036)

State FE Yes∗∗∗

N 47,611 47,611 47,611 47,611 10,031 37,580 47,611
# of inventors 25,439 25,439 25,439 25,439 5,480 20,152 25,439
# of firms 1,511 1,511 1,511 1,511 635 1,183 1,511

Estimation period is 2001–2011. Robust standard errors are clustered at the state level (in parentheses). All regres-
sions control for the number of years since inventor’s first decision (log), fixed effects for the number of applications
filed by the inventor, the technology field and the year of inventor’s first decision. Enforceability scores for each state
are from Starr (2016). Non-enforcing states are California and North Dakota. Since non-competes are enforceable in
the state where the employee is located, we use information on inventor’s location from the last patent application
prior to observing the outcome. Since this information is not available for all inventors, the number of observations is
lower in this analysis. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

In column 1 of Table 5, we re-estimate Eq. (1) on this sub-sample. The coefficient on # of

patents issued is -0.034 and significant at the 1% level. In column 2, we add the enforceability

index, and we observe that mobility rates decline with the strength of non-compete enforcement,

as in Marx et al. (2009). In columns 3 through 7, we then re-estimate the effect of patent grants

on mobility by including their interaction term (and state-level fixed effects) and splitting the

sample into clearly non-enforcing states (i.e., California and North Dakota) and the rest. Though

the estimated effect of patenting on mobility is smaller for enforcing states than for non-enforcing

ones, the difference (as captured by the interaction terms) is not statistically significant.

In sum, the evidence presented in this section regarding the relationship between patent

rights and other sources of firm-specific human capital is not conclusive. While patent protec-

tion has the strongest effect as a retention mechanism for inventors without many co-authors

and inventors outside the technological core of the company, we do not observe a similar substi-

tutability pattern between patents and non-compete contracts.

6.3. Similarity between hiring and focal firms

Our last test of heterogeneous effects concerns different types of inter-firm moves. The com-

plementarity of patent rights with the human capital of the corresponding inventors is expected

to affect all type of moves. However, the appropriation effect resulting from the impact of patent

rights on the balance of incentives to hire or retain inventors will only be relevant for technolog-

ically similar firms capable of implementing the innovation. Thus, the negative effect of patent

grants on mobility observed in this study should more intensely affect moves to alternative

employers in the technological vicinity of the current employer than moves to technologically

distant firms, which have little chance of implementing an inventor’s innovations.

To test this prediction, we characterize inter-firm technological similarity using a measure
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that captures whether the hiring and focal firms overlap in terms of core technologies. Using

the same definition of a firm’s core technology area used in Section 6.2, we create a categorical

variable that is set to 0 when the inventor stays at the focal firm, to 1 when she leaves and at

least one of the core technology domains of the two firms is identical; and to 2 when she leaves

and there is no overlap in core areas. We then estimate a multinomial logit model that allows

us to capture the effect of patent grants on the relative probability of each type of move.19

Table 6 shows the relative risk ratios that result from the analysis. As the first two columns

show, one additional patent issued reduces the relative risk that an inventor moves to both

technologically overlapping and non-overlapping employers with respect to the omitted “stay”

option (both relative risks are multiplied by a factor smaller than one after a patent grant).

This is consistent with the complementarity effect of patents on inventor mobility, which drives

down the probability of all types of moves. A comparison of the size of the estimated ratios

suggests, as predicted, that the effect is more intense for moves to employers with overlapping

core technologies than for all other employers. The last column of Table 6 shows the relative risk

ratios corresponding to the choice between the two types of moves, with moving to employers

with no core technological overlap as the reference category. As expected, the figures indicate

that an additional patent grant significantly decreases the relative risk that a moving inventor

switches to a technologically similar employer instead of switching to an unrelated one.20 This is

consistent with the existence of an appropriation effect that concerns exclusively technologically

close employers.

Table 6
Technological core of the hiring firm and the inventor’s previous firm

Core Non-core Core
Move Move Versus
Versus Versus Non-core

Dependent variable Stay Stay Move
Estimation method: Multinomial Logit (1) (2) (3)
# of patents issued (instr.) 0.694∗∗∗ 0.849∗∗∗ 0.816∗∗

N = 131, 485. Number of inventors: 69,136. Number of firms: 2,883.
Estimation period is 2001–2011. Robust standard errors are clustered
by inventor (in parentheses). All regressions control for the number of
years since inventor’s first decision (log), fixed effects for the number of
applications filed by the inventor, the technology field and the year of
inventor’s first decision. Coefficients are expressed in terms of relative
risk ratios. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

7. Discussion and conclusion

In this study we investigate the effect of patent protection on the mobility prospects of inven-

tors. We argue that, by making inventors’ knowledge more specific to their current employers,

patent grants decrease inter-firm mobility.

In order to test this idea, we examine the impact of obtaining a patent on the mobility

19Again, we used the control function approach proposed by Blundell and Powell (2004) and Wooldridge (2014)
to correct for the endogeneity of issued patents with the average examiner leniency instrument in the multinomial
logit model.

20In unreported extensions, we distinguish between a hiring firm whose core technology overlaps with the
mobile inventor’s own technological expertise (instead of her previous employer’s core technology) to categorize
moves. Replicating the specification of Table 6 for the alternative categorization produces similar results to those
presented here.
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patterns of the inventors involved in applications. Since inventions that result in granted and

not granted patents are expected to be inherently different, we adopt an instrumental variables

approach to estimate the effect of patenting on inventors’ mobility. In particular, and following

previous literature, we use variations in the granting rates of patent examiners within an art

unit (leniency) as an exogenous source of variation in patent grants. We analyze the early

careers of employee inventors who apply for patents in the USPTO for the first time between

2001 and 2012. Our results indicate that patenting does cause a substantial decrease in the

mobility of inventors in their early careers, suggesting that patent grants make human capital

more specific to the inventor’s current employer. Additional evidence provides further support

for this hypothesis: (i) the negative effect of patents on mobility is particularly strong in discrete

technologies, where patent protection is more effective, (ii) patents have a less negative effect

on mobility when other sources of firm specificity are present. In particular, complementarities

with co-inventors and employer’s assets make an inventor’s knowledge set more difficult to

transfer outside the company, and (iii) patents make inventors especially less likely to move to

technologically close alternative employers (compared to technologically distant ones). Among

several other robustness tests, we extend the concept of patent protection from patent grants

to the number of approved claims. The results of this analysis suggest that the appropriation

effect is present over the whole population of patent applicants and not only for those producing

innovations in the margin of approval and rejection.

One element of markets for inventors that our study does not address is the potential role of

patents as signals of inventor ability. Previous findings in the labor economics and innovation

literatures suggest that patents could reveal information about inventive skills. Patents have

been frequently argued to work as signals of firm quality in situations of asymmetric informa-

tion in entrepreneurial finance markets (Long, 2002; Hsu and Ziedonis, 2013; Conti et al., 2013).

Analogously, patents could act as signals in the labor market for highly skilled employees, where

employers are particularly likely to enjoy private information about the ability of their workers

(Schönberg, 2007). By providing a signal to the labor market about the quality of the inventors

responsible for the innovation, patent documents could decrease the amount of private infor-

mation held by current employers and thus increase inventor mobility. Our empirical strategy,

however, is based on a comparison of patent filings that have been granted and those that have

not. Since the immense majority of filings are public, we would expect signaling effects to be

mainly associated to patent application events and not to grant events. Indeed, it is at the time

of the publication of the application when the information about the innovation and its inventors

is released to the market. Thus, it is conceivable that the negative effect of patent grants on

inventor mobility is preceded by a positive effect of applications due to signaling effects.

Notwithstanding the previous caveat, the evidence presented in this paper indicates that

patent protection makes the human capital of inventors more firm specific and, therefore, lowers

the likelihood of moving. This result has important public policy implications. First, it sug-

gests that patents, despite making public some codified knowledge, may have a growth-reducing

effect by hampering the diffusion of tacit know-how. By inducing lower mobility rates, they

may reduce the spread of non-codified knowledge associated with the protected technology and,

more generally, of other know-how not related to the replicability of a specific innovation. Fur-
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thermore, this appropriation-induced reduction in mobility may also contribute to an inefficient

allocation of inventor’s skills. Evidence from Hoisl (2007) shows that inventors tend to experi-

ence productivity increases when they switch firms, suggesting that career moves are frequently

motivated by employer-employee match improvements. To the extent that patents discourage

mobility, they will also inhibit these efficiency improvements. Aditionally, our results also sug-

gest that patents generate a shift in incentives to invest in human capital from the employees

(i.e., the inventors) to their employers (i.e., the patent holders). This shift may encourage some

efficient investments in training that might not have been otherwise carried out by the inventors

themselves because of financial constraints or risk considerations.

Last but not least, our findings bring to light an important methodological issue. If patent

grants affect the mobility prospects of the authors of the inventions, tracking inventors’ careers

through their issued patents (as most studies have done until now) introduces a downward bias

in the detection of mobility. This bias may expand to analyses of causes and consequences of

mobility as well. To avoid it, further studies at the inventor level should take into account both

patent applications and grants.
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Appendix for
“The Effect of Patent Protection on Inventor Mobility”

This Appendix provides additional material to the results presented in “The Effect of Patent

Protection on Inventor Mobility.” In Section A.1, we present evidence that supplement the

picture that the assignment of applications to examiners is plausibly random. In Section A.2,

we discuss and report robustness checks for the first stage estimates. In Section A.3, we report

the results of the robustness tests referred in section 5.3 of the article. Descriptive statistics for

variables used in this Appendix are presented in A.4.sta

A.1. Investigating selection

The details of the examination process described in Section 4.2 of the article suggest that

patent applications are assigned to examiners quasi-randomly within art units. Here, we provide

further evidence that our proposed instrument (at the patent level) satisfies the exclusion restric-

tion. For this restriction to hold, examiner leniency should only be related with inventor mobility

through its influence on the probability that her patent application is granted. Therefore, we

aim to test whether there is any correlation between the characteristics of patent applications

(at the time of filing) that can be related with the likelihood that their authors move firms and

our measure of examiner leniency (at the patent level). As discussed by Lemley and Sampat

(2012), the assessment of whether a certain type of inventions are assigned to examiners with a

certain leniency is challenging for two reasons: (i) it is difficult to identify variables that at the

time of application would capture the characteristics of the underlying invention and (ii) much

of the front-page information contained in patent documents is not available for applications.

One of the most important characteristics of patent applications that can affect the probabil-

ity of their inventors to move is the value of the underlying innovation, since it is correlated with

the inventors’ ability (Palomeras and Melero, 2010; Ganco et al., 2015). Though the most com-

mon measure to proxy for value of patented innovations (e.g. citations received) is not available

at the time of application and, therefore, is not useful for our purposes, there is an alternative

proxy for value that it is available at filing. This is the patent family size, i.e. the number

of jurisdictions in which the application is filed. Because of the substantially higher costs of

filing, one expects that applicants are more likely to seek broad international protection only if

the invention is economically relevant (Putnam, 1996). Prior literature provides evidence that

family size is correlated with a quality index of patents (Lanjouw and Schankerman, 2004), the

likelihood that a patent will be granted (Guellec and van Pottelsberghe de la Potterie, 2000) and

the economic value of patent rights (Harhoff et al., 2003). We define a patent family in terms

of patent equivalents, using as our measure of family size the number of unique jurisdictions in

which the focal U.S. patent application was filed at the time of application and protecting the

same invention. We construct this measure using the algorithm described in Martinez (2010)

on the data extracted from the Worldwide Patent Statistical Database (Patstat, April 2012

edition). We are able to recover this information for all of our patent applications filed between

2001 and 2011 provided that, by January 2012, they were made public (patent applications are
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made public after 18 months from application or at the resolution date if this happens before).

The final sample results in 329,666 observations for which we have non-missing values for exam-

iner leniency and application data. We report the results of the OLS regression of family size on

examiner leniency (as described in subsection 4.2.2) in Column 1 of Table A1. We use art-unit

fixed-effects in order to control for potential patterns regarding family size across technologies.

We find that the key coefficient on examiner is small (0.003) and insignificant (p-value = 0.877),

suggesting that more lenient examiners are unlikely to be systematically assigned more valuable

patent applications.

Another used measure for value of (potentially) patented innovations is the number of back-

ward references. A relatively high number of references to previous patents and non-patent

literature may indicate innovations of relatively high value, although this is not entirely unam-

biguous (see Harhoff et al., 2003). Given the importance of cited prior art in later litigation, the

idea is that an applicant who seeks to protect a more valuable invention might have incentives

to delineate the patent claims by inserting more references to prior art. Note that U.S. patent

law imposes a duty of candor on patent applicants to disclose to the Patent Office any infor-

mation that is “material” to the issuance of the patent (see 37 C.F.R. 1.56). A failure to do so

may render the resulting patent unenforceable. We use then the number of applicant-submitted

references to patent and non-patent literature at the time of filing available in Patstat. This

data is only available though for the subset of applications that are eventually issued as patents.

Also in this case, results suggest that there is no clear evidence that more lenient examiners get

assigned applications that could protect potentially more valuable innovations.

Finally, we test whether there might be selection based on applicants’ size, since this may

be a factor that could influence the likelihood of inventors to move. We use as a proxy for size

the number of patent applications the applicant filed in the previous year. The last column of

Table A1 report an insignificant coefficient on examiner leniency.

Table A1
Examiner relative leniency and application characteristics

Applicant PAT Applicant NPL Applicant APP
Dependent variable Family size References References Volumet−1

Estimation method: OLS (1) (2) (3) (4)
Examiner leniency 0.003 0.433 0.223 -37.600

(0.022) (0.347) (0.271) (26.413)

Filing year FE Yes∗∗∗ Yes∗∗∗ Yes∗∗∗ Yes∗∗∗

Art unit FE Yes∗∗∗ Yes∗∗∗ Yes∗∗∗ Yes∗∗∗

N 329,666 164,832 164,832 341,007
# of examiners 9,855 7,629 7,629 9,918

Estimation period is 2001–2011 in columns 1 to 3 and 2002–2011 in columns 4 and 5.
Robust standard errors are clustered by examiner (in parentheses). ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01.

A.2. Robustness tests for the first stage results

In this Appendix, we test whether our measure of examiner leniency (at the patent level)

may be driven by technological effects within an art unit. Even though art units correspond

to quite delimited technological areas, there may be subareas within an art unit that differ in

the patentability of their applications. We can only distinguish these technological sub-areas by
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looking at the classes and subclasses to which the application is assigned to. Though art units

are typically a more fine-grained classification of technologies (there are more art units than tech-

nological classes), in some cases there may co-exist different classes or, more frequently, different

subclasses in an art unit (see https://www.uspto.gov/web/patents/classification). Therefore,

we want to rule out that part of the variation in the measured leniency across examiners may

be due to the variation in grant rates across technological (sub)classes within an art unit. This

issue is particularly important because we do not conduct our analysis at the patent level but

at the inventor level (i.e., we aggregate our relative leniency measure over the applications filed

by a given inventor up to a given moment of time), and therefore we cannot include (sub)class

fixed-effects in our empirical specifications. We explore whether the aforementioned techno-

logical effects may be a concern for our measure of examiner leniency by testing whether the

correlation between examiner leniency and patent grant varies substantially when we include

more fine-grained technological controls. Table A2 contains the results from this robustness test.

Column 1 contains the baseline correlation between examiner leniency and patent grant without

introducing any technological control. Note that our examiner leniency measure is constructed

relative to the art unit and year [see Eq. (2) and (4) of the paper]. This is why we obtain a very

similar coefficient when we introduce fixed effects by art unit and year (column 2). Column 3

introduces art unit, year and class fixed effects, in order to control for the effects of classes that

either expand over different art units or that share the art unit with another class. Next, we

control for the most stringent fixed effects, at the art-unit, year and sub-class level (note that

sub-classes are nested in classes). Across all these more stringent specifications, the correlation

of examiner leniency and patent grant does not present substantial variations with respect to

the baseline model, suggesting that our leniency measure is not the result of differences in the

patentability across technological areas inside an art unit.

Table A2
Technology classification, examiner leniency and patent grants

Dependent variable: Patent grant
Art unit × Art unit ×

Art unit × USPC class × Sub-class ×
Technology FE included None Filing year Filing year Filing year
Estimation method: OLS (1) (2) (3) (4)
Examiner leniency 0.737∗∗∗ 0.736∗∗∗ 0.720∗∗∗ 0.741∗∗∗

(0.008) (0.006) (0.006) (0.011)

N = 353, 976. Number of examiners: 10,142. Number of art-units: 626. Number of
USPC classes: 413. Number of sub-classes: 41,898. Estimation period is 2001–2011.
Robust standard errors are clustered by examiner (in parentheses). ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.

A.3. Other robustness tests

In this section, we present additional regression results corresponding to the robustness tests

referred in Section 5.3 of the article.
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Table A3
Patent grants and inventor mobility–Miscellaneous robustness tests

Estimation method: 2SLS 1st dec. Active
Sample All up to 2006 firms All All All
Dependent variable: Move (1) (2) (3) (4) (5) (6)
# of patents issued (instr.) -0.028∗∗∗ -0.021∗∗∗ -0.029∗∗∗ -0.044∗∗ -0.028∗∗∗ -0.026∗∗∗

(0.006) (0.008) (0.006) (0.019) (0.006) (0.008)
# of patents issued 0.002
× # of patents issued (instr.) (0.002)

Litigiousness -0.001∗∗ 0.008
(0.001) (0.019)

# of patents issued -0.003
× Litigiousness (instr.) (0.007)

Refined (2-digit) Tech class FE Yes∗∗∗

N 131,485 69,069 130,082 131,485 131,485 131485
# of inventors 69,136 36,403 68,065 69,136 69,136 69,136
# of firms 2,883 2,115 2,471 2,883 2,883 2,883

Robust standard errors are clustered by inventor (in parentheses). All regressions control for the number
of years passed since inventor’s first decision (log), and fixed effects for the number of applications filed
by the inventor and the year of inventor’s first decision. Technology field fixed effects use six categories
in columns 2 through 6, and 37 sub-categories in column 1. Litigiousness is defined as the moving sum
of the number of unique patent infringement lawsuits initiated by the source firm from year t − 1 to
year t− 3 (see Ganco et al., 2015). ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table A4
Claims and inventor mobility

Sample All All All Patents Patents Patents
Estimation method OLS OLS 2SLS OLS OLS 2SLS

(1st st.) (2nd st.) (1st st.) (2nd st.)
Avg. # of Avg. # of

Dependent variable Move claims iss. Move Move claims iss. Move
(1) (2) (3) (4) (5) (6)

Avg. # of claims issued -0.001∗∗∗ 0.000
(0.000) (0.000)

Examiner lenciency 18.075∗∗∗ 12.415∗∗∗

(0.355) (0.426)
Avg. # of claims issued (instr.) -0.003∗∗∗ -0.002∗∗

(0.001) (0.001)

First-stage F -statistic 2,721 566

N = 131, 485 (111, 921 in column 4–6). Number of inventors: 69,136 (57,926 in column 4–6). Number
of firms: 2,883 (2,567 in column 4–6). Estimation period is 2001–2011. Robust standard errors are
clustered by inventor (in parentheses). All regressions control for the number of years passed since
inventor’s first decision (log), and fixed effects for the number of applications filed by the inventor
and the year of inventor’s first decision. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

A.4. Descriptive statistics of appendix variables

Table A5
Descriptive statistics (Robustness tests)

Variable Mean SD Min Median Max Observations
Application-level characteristics
Family size 1.5 1.7 0 1 27 329,666
Applicant PAT references 4.3 13.4 0 0 105 164,832
Applicant NPL references 1.5 8.2 0 0 99 164,832
Applicant APP volumet−1 1,261 1,840 0 427 7,803 341,007

Inventor-level characteristics
Litigiousness 0.79 1.5 0 0 10 131,485
Avg. # of claims issued 12.6 8.9 0 11.5 248 131,485
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