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UNIVERSIDAD CARLOS III DE MADRID

Abstract

Doctorado en Plasmas y Fusién Nuclear

Departamento de Fisica

Studies on electromagnetic turbulence and edge
phenomena in fusion plasmas

by Adriana Martin de Aguilera

The magnetic well depth if one of the principal actors when the stability of a confined
plasma is analysed. It is the main stabilising mechanism in the TJ-II stellarator, as
this is an almost shearless device. This and TJ-II's ability for changing the currents
of its coils make the Spanish stellarator a perfect candidate for magnetic well studies.
This thesis presents an exhaustive study on plasma performance and stability under
theoretically unstable magnetic well conditions. NBI-heated reproducible plasmas were
successfully produced even for the most stability adverse conditions and a link between

the Alfén Eigenmodes and magnetic well depth was found.

Visible light emission at the plasma edge of the JET tokamak has been studied with an
intensified fast visible camera since the installation of its ITER-Like Wall. A method
to characterize the evolution of ELMs in the divertor and relate the recorded signal
with other diagnostics at JET has been developed. A large Matlab library orientated to
treat and share the data produced by the intensified fast visible camera has been made

available to the users of this diagnostic.
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Chapter 1

Introduction

This Agreement [...] aims to strengthen the global response to the threat
of climate change, in the context of sustainable development and efforts to

eradicate poverty, including by:

(a) Holding the increase in the global average temperature to well below 2°C
above pre-industrial levels and to pursue efforts to limit the temperature
increase to 1.5°C above pre-industrial levels, recognizing that this would

significantly reduce the risks and impacts of climate change;

(b) Increasing the ability to adapt to the adverse impacts of climate change
and foster climate resilience and low greenhouse gas emissions develop-

ment, in a manner that does not threaten food production;

(c) Making finance flows consistent with a pathway towards low greenhouse

gas emissions and climate-resilient development.

Paris Agreement, Article 2 Paris, 11 December 2015 [1]

Global warming is one of the most challenging threats humanity will face during the
rest of the 21st century. Nowadays, skepticism regarding the rise of temperatures since
the 19th century as a consequence of combined action of natural climate variability and
pollution from human activities is small [2]. As it was stated in the United Nations
Framework Convention on Climate Change that took place in Paris in December 2015

[1], solving this problem demands deep changes in the international energetic scheme,
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involving a drastic reduction in the use of fossil fuels (coal, gas and oil), the main source

of Greenhouse Gases.

Although wind and solar energy are expected to help to reduce drastically these emissions
by 2050 [3] and other renewable energy sources, such as geothermal and marine energies,
present promising prospects to significantly contribute to the global capacity for power
generation in the future [4] they demand, still, large research investments to reduce
their costs and to develop storage systems that allow one to overcome their intermittence.
Otherwise, it will take them decades to overcome fossil fuels as the planet’s main source of

energy and effectively reduce the Greenhouse Gases (GHG) emission to the atmosphere.

On the other hand, nuclear fission power plants are among the lowest GHG emitters
energy producers [5]. In 2014 9,9% of the energy consumed in the Organisation for
Economic Co-operation and Development (OECD) countries was nuclear [6] but, despite
their enhanced safety, nuclear fission technologies lack of public acceptance due to waste
handling, weapons proliferation [7] or the risk of major accidents, as if has been the case
after the catastrophe in Fukushima [8]. Also the limited availability of the minerals [9]
used for fuelling enforces the idea that nuclear fission is not only a risky, but a temporary

solution to the problem of global warming.

Some consideration about the negative impact of energy waste in our society is needed,
but global access to reliable, sustainable and affordable energy sources is a key prereq-
uisite for social and economic development. It is Science’s responsibility to provide a
clean and safe energy source that guarantees this development but also reduces human
interferences in the Earth’s climate. All this will have to happen in a world that, by
2050, is expected to consume two or three [10] times the energy it uses today. In search
for it we have to look up to the sky, wonder where do the stars get their energy from,

and challenge ourselves to master their source of power.

Stars are fuelled by nuclear reactions that involve the fusion of light nuclei into a heavier
one [11]: the joint mass of the initial elements is slightly bigger than the mass of the
product and this difference is released as its kinetic energy [12]. For such a reaction to
take place, the reactant nuclei have to be close enough to overcome their electrostatic
repulsion in order to allow the nuclear strong force to be the predominant interaction

between them. This can only be achieved when:
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1 Cross section for several fusion reactions
10 ;5--' EE I e S

o(T) (barns)

10—3;3 : /. o | . ;E;_D"'T

E /o H=——D+D j

) =——D+'He ]

o ——T+T

| = D+°Li
p|+6Li

10 10°

Incident particle kinetic energy (keV)

FIGURE 1.1: Cross sections versus temperature for some relevant fusion reactions.
The data for these curves has been taken from the ENDF B-VII database https:
//wuw-nds.iaea.org/exfor/endf .htm

e the nuclei’s kinetic energy is higher than the electrostatic repulsion, meaning that

they have to be at very high temperatures;

e the amount of available ions is such that the probability of collisions to happen
is relevant, which equals to saying that high density is required for a plasma to

contain fusion reactions;
e particles are confined for a time significantly longer than the required for this

collisions to happen.

Fig. 1.1 shows the energy conditions at which relevant cross sections for the following

fusion reactions can be obtained.
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D+ T — *He(3.5MeV)+n (14.1 MeV)
D+ D — 3He(0.82MeV)+n (2.25 MeV)
— T (1.01 MeV) + p (3.02 MeV)
D +3He — *He(3.6 MeV) +p14.7 MeV
T+7T — “He+2n+11.3 MeV
D +5Li — 2%He+ 22.4 MeV
p+°%Li — “‘He(1.7 MeV)+ 3He (2.3 MeV)

The Lawson Triple Product must exceed a given number (also called Lawson Criterion)
[13]
nTtg >1,5-10*" keV -s-m™3 (1.1)

establishes numerically these three conditions for a fusion reaction to produce as much
energy as it requires to be started and sustained. Eq. 1.1 expresses this numeric thresh-
old for the most favourable fusion reaction (as represented in Figure 1.1): the one that

combines Deuterium (2H) and Tritium (*H) to produce Helium (*He) and a neutron.

Once one solves the most obvious problem (how to reach these thermonuclear tempera-
tures), the key issue of fusion arises: when, at millions of degrees of temperature, physical
contact between the gases and any other material would mean the destruction of the
latter and the dilution of the plasma, how can the mixture of gases be confined? Stars
are so massive that gravity does the work for them, holding the fuel and the reaction to-
gether; but that approach cannot be used in a reactor that will only need milligrammes
of fuel to operate. Fusion reactions take place when the gas is fully ionised, that is, when
it reaches the plasma state. A plasma is an ionised gas where separation between ions
and electrons produces electric fields that affect its particle flows, giving rise to currents

and magnetic fields (this is normally called collective behaviour).

Two approaches for achieving plasma confinement are under study nowadays: inertial
confinement, which explores the possibility of inducing fusion in a millimetre-sized pel-
let of fuel by the micro-implosions induced by a high-power laser or particle beam; and

magnetic confinement, which exploits the electromagnetic nature of plasma to trap these
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charged particles in the lines of an intense toroidal magnetic field, which inhibits per-
pendicular transport and drives the hot particles away from any material walls. In this

model, the pressure (p = nT) gradient is counter balanced by the Lorentz force:
—Vp+jixB=0 (1.2)

where j is the plasma’s electric current and B is the external magnetic field. Eq. 1.2
illustrates the first order of local equilibrium required to obtain confinement. The elec-
tromagnetic nature of the plasma, which is the reason that allows its confinement by
magnetic vessels, has also a side effect: interaction between the plasma, specially its

outermost region, with the wall of this vessel is unavoidable.

This work is devoted entirely to the study of magnetically confined plasmas, which will
be the only ones considered in this thesis. There are two main different conceptual
designs to achieve this kind of confinement: the tokamak, which uses the plasma’s
induced electric current to produce part of the confinement magnetic field; and the
stellarator, that avoids the generation of such a current and produces the magnetic trap
through external electromagnets. A more detailed description of both approaches will
be presented further in this thesis, as work on two of these devices, JET (tokamak) and

TJ-1I (stellarator), has been carried out.

One of the main goals of this thesis is to contribute to a better understanding of magnetic
confinement, to lead to a technological improvement of it. In order to get this, we’'ve
turned our view on two topics: experimental testing of the flexibility of one of the
stability factors in stellarators, the magnetic well; and the study of turbulent transport
and other edge phenomena occurring in plasmas that affect greatly the equilibrium

described by Eq. 1.2.

This thesis is presented in three blocks. The first one tries to compile everything that the
author has considered necessary to understand the experiments and results presented in
the second part. A final block analyses the results to offer some conclusions. This way
Chapter 2 reminds some of the rudiments of Plasma Physics for a better understanding
of Chapter 3, which presents the characteristics and differences of tokamaks and stel-
larators, paying special attention to the physical phenomena that have been studied in
them and the technical details of the experimental devices where the presented exper-

iments have been developed. To finish the introductory materials, Chapter 4 describes
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the Physics behind the key diagnostics to this research and the specific tools employed

in the course of these works.

After that, two groups of results will be presented: firstly, everything related with
the magnetic well scan experiment perfomed in TJ-II (Chapters 5-6); and then, in
Chapter 7, we will analyze the edge phenomena recorded by the intensified fast visible
camera on JET. An extra Appendix A references the coding works required for all the
analysis presented in Chapter 7. Finally, Chapter 8 lays all the findings accomplished
in the course of these years, attempts to look for physical explanations to the observed
phenomena, and points the remaining questions opened by this work. All the references
are ordered as they appear an external links for their consulting are provided in all the

available cases.



Chapter 2

Plasma Physics

The present Chapter provides a glimpse of the complexity one faces when describing
plasma systems. Collective behaviour has already been mentioned as one of the main
characteristics of plasmas, arising as a consequence of its electromagnetic features and
the fact that a plasma can be described as a fluid. Establishing the theoretical funda-
mentals required to describe them and their confinement is essential before we move any

further into this research.

2.1 Quasineutrality

Quasineutrality is such a fundamental property of plasmas that taking some time to
refresh the concept is in order. It addresses the fact that any charge or electric potential
introduced in a plasma is shielded by it, creating a sphere beyond which, global neutrality
is approximately maintained. The radius of this sphere is Debye’s length Ap and it gives
an estimation of radius scale in which no net charge can be found. This phenomenon will
be of great interest in Chapter 4 when we present Langmuir probes, one of the diagnostics
used in the course of this research, as this diagnostic involves physical contact between

a electrode and the plasma.

Debye’s length can be estimated assuming that the plasma is in a near-equilibrium
state, being the Maxwell-Boltzmann distribution an appropriated way to describe the
probability for a particle (with a ¢ charge) to be in a specific state of energy. Using

the conversion factor 1 eV = 11600 K to avoid including Boltzman’s constant in all the

9
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equations by writing temperature in energy units (we will operate this way from now on),
when one takes kinetic and potential energy into account, the Boltzmann distribution

function fj; looks like:

n

/fMd’Umdvydvz =n fuy=-—"gexp[— (mv?/2 + q¢) /T = no explgd/ T
(\/ 2771),5)

(2.1)

One of these equities will be required for each species, ions and electrons, contained

in the plasma. When temperature for both species is much larger than their potential

energy, a Taylor expansion can be used:

N = Neo €xp[qo/T| — n >~ ny <1 + C]j?) (2.2)
When all this is taken into Poisson equation
2 2 1+ ZT./T;
V2 = & (n, — Zny) = e 1+ ZTE/T) 4 (2.3)
€0 eole
it can be solved easily:
1/2
q 1 eole
¢(r) 47r60reXp( r/Ap) b <eneoo (1—|—ZT8/T1')> (2.4)

where Ap gives the limit distance at which individual charges are shielded, this means,

when the plasma reaches quasineutrality.

R(m) n.(m™®) T.(ev) B(T) Ap(m) rg(m) rj(m)

Interestellar gas 10'6 108 1 1010 10! 10° 108
Earth’s ionosphere | 10° 101! 101 3.107° 1072 101 10°
Solar corona 108 1013 102 1079 1072 104 10°

Fusion experiment 1 10 —10%° 102 -10* 1-5 104 104 1073

TABLE 2.1: In order of magnitude: size, electron density, electron tempera-

ture, magnetic field intensity, Debye lenght and Larmor radious for electrons and

ions. See http://www2.warwick.ac.uk/fac/sci/physics/research/cfsa/people/
erwin/teaching/px3841/calculator/#info_rl for more.

For any statistical description to make sense, the amount of particles contained inside the
Debye sphere must be high. Tab. 2.1 summarises temperature, density and size values
of natural and laboratory plasmas [14]. For fusion plasmas this number of particles

(normally called the plasma parameter) is Np ~ 107, while Ap is in the order of microns.
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If this condition is not satisfied, then the gas is not in plasma state, but an assembly of

independent charged particles.

2.2 Describing plasmas

When facing the problem of describing a plasma system, one of the first questions that
arises is which description should one use, either kinetic or a fluid theory. A plasma
is a hot gas of ionised particles so, will it behave as a N amount of classical charged
particles or will the gas’ fluid nature be predominant? The answer lies in between: both
approaches are essential for a full understanding of the physical processes that take
place in this kind of systems. There are even hybrid descriptions, where ions are treated

kinetically and electrons as a fluid.

2.2.1 Plasma as a collection of single particles

In a magnetically confined plasmas, ions and electrons will be immerse in a complex
combination of magnetic and electric fields, so their motion equations will be subjected
to the electromagnetic forces described by Maxwell equations. Understanding the tra-
jectories that these particles will follow is crucial to get a good confinement. The most
common way to describe such motions is to assume that the external fields are uniform
in space and constant in time and then add the corrections that arise from adding these

dependencies.

e Uniform magnetic field: gyro-motion. The equation of motion of any charged
particle in presence of an uniform magnetic field parallel to its velocity (we shall

call this direction z) is given by Lorentz equation:

d%v, . (g¢B 2,0
dez2 m z

d2’uy _ ﬁ 2
dez — m Uy

The solution to this system of equations is a helical movement along the z direction

F=mi=qixB — (2.5)

where the Larmor radius

\/ vl + v
__ve v (2.6)

e T Tl B/m
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12

is the radius of this helix. When the distances considered inside the plasma are
larger than r;, and the times much longer than the time required to complete one
of these gyro-periods, the particle’s trajectories can be described by their gyro-
centres. This gyro-motion is much smaller for electrons than for ions, since the
latter have larger mass and slower velocities. For a magnetically confined plasma
with temperature of 1keV, ril“tmns ~ 10™* m and riLO”S ~ 5-1073 m. See Tab.

2.1 for more typical values.

Uniform magnetic and electric fields: E x B drift. When an uniform electric
field is added, Eq. 2.5 becomes mv = q (E + U X E) The velocity’s perpendicular
component to B , v, , will behave exactly as it is described in Eq. 2.5. The presence

of E affects the guiding-centre velocity as

— —

. ~ FExB ~
vgc:va—i— 52 E’UHb—i- ExB (2.7)

This E x B drift doesn’t depend on charge or mass, so it affects the same way all

the particles in the plasma, stretching and pulling the helix’s circumferences.

Inhomogeneous magnetic field: VB drift. For a magnetic field changing
in scales much larger than rp, an asymptotic expansion can be used to compute
. When one assumes that the magnetic field changes perpendicularly to its own
direction, like B = Byce, + (7" — Tye,i) VBe, can be taken into Eq. 2.5. The
resulting correction to the gyro-centre velocity is

1 B x VB

Uvp = E5U1r (2.8)

which changes with the particle’s charge and makes the Larmor radius dependant

on the magnetic field, causing a current transverse to B.

Curvature drift. When B is homogeneous in module but presents a R, curvature
muv

2
radious, it will exert a centrifugal force on the particle Fi.; = R—c”é} that will add

another correction to the velocity:

mvﬁ éc X g
qB* R?

—

VR =

(2.9)

In fact this kind of curvature always involves a radial dependence in the modulus

(normally By %), so Eqgs. 2.8 and 2.9 will always appear combined.
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2.2.2 Plasma as a fluid

Although the single particle approach that we have introduced in Subsec. 2.2.1 is a
powerful tool, able to describe many experimental features of plasma (as will be shown,
for example, in Sec. 2.3), a fluid description is necessary to address the complexity of
the plasma systems. Magnetohydrodynamics (MHD) aims to focus on the magnetic field

topology of magnetically confined plasmas and was developed by Hannes Alfvén.

To begin this description, like every fluid would, plasma needs a continuity equation to

express how the number of particles only changes when there is a flux and a source:

on
a—i—V (ni) =S (2.10)

where 4 represents the average velocity () and S is the source and/or sink term given
by edge ionisation and core fuelling. In a plasma system Eq. 2.10 will be fulfilled by

mass and charge.

The distribution function f(Z,¥), with n(%) = [ f(&, ¥)d®v, addresses the probability of
finding a particle at the point & with the velocity ¥. While moving along the direction
x;, the particle’s velocity can have components on any direction: this freedom demands
the use of tensors in our description. This way, the rate of momentum exchange can

be expressed as

8(""““ = — ZJ 1 %ﬂ:jﬂjm. In a fluid, this momentum exchange is,

in fact, the pressure, so it turns out that a pressure tensor will be required to describe

plasmas as fluids:
Pij = mn((vi — wi)(vj — u;)) = mn({vivj) — uiu;) (2.11)

where u; = (v;). If f(Z,¥) describes a Maxwellian distribution, Eq. 2.11 becomes a
diagonal matrix. P;; = nTj;, although temperature can still depend on direction. The

non diagonal terms appear due to viscosity.

Z 8(nu,u3)
) ox;

Taking all directions into account, moment interchange is 8(mnu7 = — Ez azl
Then substituting into Lorentz equation (Eq. 2.5) and using the connective derivative,

one gets the momentum balance that will be referred as the equations of motion of the

13
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individual fluids.

—»a - D_’ - . - —
mn (au (- V)Ua) = mn' =ng(E+ iy x B)~ V- Po—Y Fop  (212)
B

The ratio of momentum loss due to collisions is proportional to relative velocity between
the particles and the fluid @ — u,. If the collision frequency between two particles a and

B is vag, then the ratio of momentum loss for an element of volume due to collisions is

—

R.3 = —manayag(ﬁa — 1_1:5) (2.13)

and should be added to Eq. 2.12 as the source/sink term. Obviously, momentum

conservation implies Ry 3 = —Rg .

Equations of state are also necessary to describe the heat flow by stabilishing a rela-
tionship between pressure, density and temperature. For isothermal compressions the
form p = Cn” can describe adiabatic processes slower than collisionality. For faster
cases, anisotropy appears and components parallel and perpendicular to the magnetic

field must be taken into account.

’U2
po=mn(L) =n(wB ()= L =0 (2.14)
= m”<“ﬁ> — J=oyL (2.15)

Where p is the magnetic moment and Eq. 2.14 expresses its invariability in time.
Combining all these expressions with Maxwell equations, assuming charge neutrality
(n; = ne ~ n) and considering one single fluid (e.g. meaning for density p = n;M +
nem ~ n(M + m) =~ nM), MHD equations can be formulated (they can be found in
several textbooks like [15] or [14]).

If the ion’s Larmor radius is small compared with the fluid’s characteristic motion length
(r,/L < 1), pression gradient and magnetic forces have similar magnitude and Ohm’s
Law can be written as

-

E+ixB=uvj (2.16)
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where v represents resistivity. Assuming quasineutrality, Eq. 2.16 leads to the co