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A novel frequency dependent model based on trigonometric 
functions for a magnetorheological damper

Maria Jesus L. Boada - Beatriz L. Boada - Vicente Diaz

Abstract: In this paper, a novel frequency 
dependent MR damper model based on 
trigonometric functions is proposed. The model 
presents the following advan-tages in 
comparison with other previously proposed 
models: (1) it is based on algebraic functions 
instead of differential equations, so that it does 
not present convergence problems when noisy 
inputs from exper-imental measurements are 
used; (2) the number of parameters is 
reasonable, so that it makes the model 
computationally efficient in the context of 
parameter identification and (3) the model has to 
take into account the variation of the parameters 
as a function, not only of the applied current but 
also of the frequency of excitation. Experimental 
results confirm that the proposed frequency 
dependent MR damper model improves the 
accuracy of the model in force simulation.

Keywords: Magnetorheological damper � 
Frequency dependent model � Trigonometric 
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1 Introduction

Nowadays, magnetorheological (MR) dampers are

receiving significant attention in applications of

vibration isolation due to the controllable character-

istics of MR fluid [17, 25, 27]. An MR damper is a

semi-active device that contains a hydraulic fluid

whose viscosity is controllable upon the application of

an external magnetization field. MR dampers contain

suspensions of micron-size, magnetizable particles in

an oil-based fluid. In the presence of magnetic fields,

these fluid particles become aligned with the field,

dramatically increasing the fluid viscosity as an

effective damping. Along with their variable damping

force, MR dampers have been shown to have very low

response times, fault-safe and low power-consumption

[7, 13]. However, a major drawback is their inherent

non-linear and hysteretic dynamics. In this case, it is

necessary to develop an appropriate control strategy

which is practically implementable when an accurate

model for MR dampers is available [21].

There are several MR damper models proposed in

the literature, in order to describe their non-linear and

hysteretic responses [3, 4, 8, 14, 16, 28]. One of the

most extensively used models to describe the non-
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linear hysteretic behaviour of a MR damper is the

Bouc-Wen model, proposed by Spencer et al. [24].

This model proposes first-order differential equations

to desscribe the response of anMR damper over a wide

range of loading under a voltage. In this case, the force

of the MR damper is expressed as:

f ¼ c1 _yþ k1 x� x0ð Þ ð1Þ

_y ¼ azþ c0 _xþ k0ðx� yÞ
c0 þ c1

ð2Þ

_z ¼ �c _x� _yj jz zj jn�1 �b _x� _yð Þ zj jn þA _x� _yð Þ ð3Þ

where _x is the piston velocity, x is the piston

displacement, a is the Bouc–Wen model parameter

related to the MR material yield stress, k1 is

Fig. 1 Influence of the parameters of the model a Parameter C, b Parameter D, c Parameter B, d Parameter k, e Parameter c
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accumulator stiffness, c1 is the dash-pot damping

coefficient, k0 is present to control the stiffness at large

velocities, c0 is the viscous damping observed at larger

velocities, z is the hysteretic deformation of the model,

y is an internal dynamical variable and A, b and c are
the Bouc–Wen model parameters. Spencer et al. [24]

define the parameters a, c0 and c1 as the linear function
of the efficient voltage, u, in order to predict the

behaviour of the MR damper for a fluctuating mag-

netic field:

a ¼ aa þ abu ð4Þ

c0 ¼ c0a þ c0bu ð5Þ

c1 ¼ c1a þ c1bu ð6Þ

To accommodate the dynamics involved in the MR

fluid reaching rheological equilibrium, the following

first order filter is employed to calculate efficient

voltage:

_u ¼ �gðu� vÞ ð7Þ

where v is the applied voltage for current generation.

A total of 14 parameters need to be adjusted in order

to fit the model response to experimental data.

Fig. 2 Scheme of modelling for MR damper

Fig. 3 Damper test machine
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One of the main problems in the Bouc–Wen model

is the evaluation of its characteristic parameters. To

solve this problem different optimization techniques

such as sequential quadratic programming algorithm

[7], genetic algorithms [12, 22, 29] or charged system

search optimization algorithm [26] are used to

estimate the parameters that characterize the hystere-

sis behaviour of the MR damper. However, due to

infinite solution space, these techniques demand high

computational costs in order to generate the required

parameters, which still cannot characterize the hys-

teresis behaviour of the MR damper accurately.

Moreover, the state z is not accessible to measure-

ments and the only available data are the input x and

the output f [10]. Therefore, this model is only used in

applications where an accurate model is required. The

Bouc–Wen model can usually be integrated using

multistep or Runge–Kutta methods with adaptive

stepsize [5]. In this case, there could be convergence

problems with noisy inputs, i.e., when experimental

data are used to fit the model response. In order to

overcome this problem, different algebraic models

have been proposed, such as the Kwok model. Kwok

et al. [13] proposed a model that makes use of a

hyperbolic tangent function to represent the hysteresis,

and linear functions to represent the viscous stiffness:

f ¼ c _xþ kxþ azþ f0 ð8Þ

z ¼ tanhðb _xþ dsignðxÞÞ ð9Þ

where c and k are the viscous and stiffness coefficients,

a is the scale factor of the hysteresis, z is the hysteretic
variable given by the hyperbolic tangent function and

f0 is the damper force offset.

The model contains only a simple hyperbolic

tangent function and is computationally efficient in

the context of parameter identification. Results have

shown that the Kwok model was able to model

responses of the MR damper and the errors were

generally less than those from the Bouc–Wen model

[13]. In both models, the parameters are identified for

each combination of frequency of excitation and

applied current. Afterwards, these parameters are

fitted by polynomial functions as the only functions

of the applied current. Nevertheless, the damping

force will increase when the frequency of excitation

increases. This means that theMR damper can respond

to vibrations with different frequencies at almost the

same force. As the parameters of the previous models

are only functions of the applied current, the effect of

the frequency is untraceable. In this paper, we propose

a novel MR damper model in which parameters

depend not only on the applied current, but also on the

frequency of excitation.

2 Proposed MR damper model

Although the Kwok model has been shown to be

adequate to estimate the response of an MR damper, it

is necessary to continue research in order to propose

new MR damper models, which are able to provide

improved representation of the MR damper response.

Development of an accurate mathematical model of

the MR damper plays a key role in the implementation

of an appropriate control strategy. In this work, a novel

model based on algebraic equations is proposed to

Fig. 4 Experimental MR damper curves for different levels of

applied current at: a frequency = 2 Hz and

b frequency = 6 Hz
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estimate the non-linear and hysteretic response of a

MR damper. The proposed model is intended to have

the following characteristics:

• The model has to improve the representation of the

MR damper response in comparison with previ-

ously developed MR damper models.

• The model has to balance the best fit with the

number of parameters.

• The model has to be based on algebraic equations

in order not to present convergence problems even

using noisy inputs. This could be a problem if

experimental data are used to fit the parameters.

• The model has to take into account the variation of

the parameters as a function of not only the applied

current, but also the frequency of excitation.

In the literature, models have been proposed based

on trigonometric functions through which responses

of mechanical elements have been described [1].

One of the best known is Pacejka’s Magic Formula

[19] which predicts the non-linear behaviour of a

tyre with a great precision. Pacejka’s Magic For-

mula is based on 6 fitting parameters. Nevertheless,

this model is not able to model hysteretic behaviour.

For this reason, it is necessary to modify Pacejka’s

Magic Formula to add the term ksingð€xÞ. The term c _x

is also added in order to define the slope of the curve at

the two ends of the hysteresis. Experimental results

show that the curvature factor parameter from the

original Pacejka’s Magic Formula is approximately a

constant with a value of 0.1 in the proposed

MR damper model. Taking into account these

considerations, the proposed MR damper model,

based on a modified version of Pacejka’s model, is

formed by 7 parameters and is given by the following

equations:

f ¼ Dsin Ctan�1 u� ksign €xð Þð Þ
� �

þ c _xþ Sv ð10Þ

u ¼ Bvel þ 0:1 tan�1 Bvelð Þ
� �

ð11Þ

Bvel ¼ Bð _xþ ShÞ ð12Þ

where D, C, B, k, c, Sh and Sv are the parameters of the

model €x, _x and x are the piston acceleration, velocity

and displacement, respectively; k is the magnitude of

the hysteresis; Sh and Sv are the horizontal and vertical

Fig. 5 a Experimental and estimated position data, b estimated

velocity and c estimated acceleration for an input current of

0.6 A and frequency of 2 Hz using Kalman filter

Table 1 Lower and upper bounds for a current of 0 A and

frequency of 2 Hz

Parameter D C B Sh Sv k c

Lower bound 0.15 0.7 0.005 -17 0 1.2 0.00025

Upper bound 0.2 1.0 0.1 10 0.5 0.8 0.00035
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offset values, respectively; C is the shape factor which

determines the shape of the peak; D is the peak factor;

and BCDþ c represents the slope of the force at low

velocities. The influence of the parameters of the

model is depicted in Fig. 1.

The model parameters (D, C, B, Sh, Sv, k and c) are

identified for each combination of applied current and

frequency of excitation using genetic algorithms

(parameter identification). Then, these parameters

are grouped and fitted by neural networks as functions

of applied current and frequency of excitation (pa-

rameter generalization). In real applications, the

frequency of excitation can be calculated by measur-

ing the velocity and the displacement of the MR

damper piston [11]. Figure 2 shows the scheme of

modelling for an MR damper.

3 Experimental setup

In order to validate the model developed in the

previous section, an MR damper RD––1005–3 com-

mercialized by Lord Corporation [15] is used. Exper-

imental data are obtained from our laboratory with a

damper test machine which is shown in Fig. 3. In the

test machine, a hydraulic actuator is employed to drive

the MR damper from sinusoidal displacement cycles

with an amplitude of 16 mm in the 2–8 Hz frequency

range. In the 2–6 Hz frequency range, the applied

current was from 0 to 1.6 A with increment of 0.2 A.

For a frequency of excitation of 8 Hz and applied

currents above 0.8 A, the experimental data were not

accurate enough, and did not give the desired plots.

Therefore, the experiments were restricted to a

maximum applied current of 0.8 A for this frequency

of excitation.

The damper stroke was positioned at its centre

before the test was carried out in order to avoid the

extreme positions of the damper stroke. The damper

test machine is equipped with a displacement sensor to

measure the displacement x of the MR damper piston

and a load cell to measure the output force f . The

signals x and f are sampled at the rate 1 kHz. Figure 4

shows a series of typical response curves for the MR

damper for the tests corresponding to 2–6 Hz, respec-

tively. As observed, in the range of small velocities the

force variation displays significant hysteretic beha-

viour, while for large velocities the force varies almost

linearly with the velocity. These two distinct rheolog-

ical regions over which dampers operate are known as

the pre-yield and the post-yield regions [9]. As the

current increases, the force required to yield the fluid

increases and produces behaviour associated with a

plastic material in parallel with a viscous damper.

Before the maximum damper velocity is reached, the

force overshooting phenomenon is observed. This

phenomenon is believed to be caused by fluid inertia

after the fluids yields and the fluid begins to flow [30].

Note that the non-zero mean force produced by the

MR damper is due to the accumulator.

Experimental results show the variability of theMR

damper response, not only with the input current, but

also with the frequency of excitation. In order to

estimate the force exerted by the damper from the

Table 2 MS errors for proposed and Kwok models

Current

(A)

Frequency of excitation (Hz)

2 4 6 8

Proposed

model

Kwok

model

Proposed

model

Kwok

model

Proposed

model

Kwok

model

Proposed

model

Kwok

model

0 2.6610-4 3.0410-4 7.5610-4 5.6910-4 0.0021 0.0017 0.0063 0.0062

0.2 0.0022 0.0027 0.0009 0.0011 0.0062 0.0066 0.0087 0.0085

0.4 0.0048 0.0053 0.0037 0.0044 0.0052 0.0064 0.0121 0.0122

0.6 0.0032 0.0051 0.0034 0.0055 0.0095 0.0110 0.0130 0.0137

0.8 0.0061 0.0085 0.0103 0.0131 0.0118 0.0123 0.0146 0.0209

1.2 0.0077 0.0104 0.0074 0.0091 0.0156 0.0176 – –

1.6 0.0146 0.0185 0.0184 0.0233 0.0147 0.0167 – –
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model, it is necessary to know not only the applied

current, but also the velocity and acceleration of the

MR damper piston. Although there are some proto-

types for an integrated relative velocity sensor [18], at

present, the best option it is to estimate both variables.

3.1 Damper velocity and acceleration estimation

from sampled position data by Kalman filter

The simplest solution to estimate the velocity and

acceleration of the MR damper piston from sampled

position data is to use the finite difference (FD)

method. The velocities and accelerations are calcu-

lated through the following expressions [2]:

_xk ¼
xk � xk�1

T
ð13Þ

€xk ¼
xk � 2xk�1 þ xk�2

T2
ð14Þ

Then, the results are filtered using a low-pass filter.

The main problem is that this method does not achieve

suitable results. The Kalman filter has been shown to

be an adequate candidate to estimate the velocity and

acceleration from position data [20]. This filter is a

mathematical tool that is used for stochastic estimation

from noisy sensor measurements. The nonlinear

system governed by the nonlinear stochastic differ-

ence equations can be written as:

xkþ1 ¼ fk xk; uð Þ þ wk ð15Þ

yk ¼ hk xk; uð Þ þ vk ð16Þ

where xk is the state vector, u is the input vector, wk is

the process noise vector, yk is the measurement vector

and vk is the measurement noise vector. wk and vk are

assumed to be white, zero mean and uncorrelated:

Fig. 6 Parameter identification errors a from proposed model,

b from Kwok model

Fig. 7 Comparison between the experimental (solid lines) and

estimated (dashed lines) responses with fitted parameters from

proposed model and with applied current ranged from 0 to 1.6 A

and frequency of 2 Hz
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wk �N 0;Qkð Þ ð17Þ

vk �N 0;Rkð Þ ð18Þ

whereQ and R are the covariance matrices describing

the second-order properties of the state and measure-

ment noise. For the particular case of

velocity and acceleration estimation from displace-

ment data, the discrete-time system can be written as

[20]:

xkþ1

_xkþ1

€xkþ1

2

4

3

5 ¼
1 T T2=2
0 1 T

0 0 1

2

4

3

5
xk
_xk
€xk

2

4

3

5þ
T3=6
T2=2
T

2

4

3

5 ð19Þ

yk ¼ xk þ vk ð20Þ

where T is the sample time period and the covariance

matrices are:

Q ¼ 200

T5=20 T4=8 T3=6
T4=8 T3=6 T2=2
T3=6 T2=2 T

2

4

3

5 ð21Þ

R ¼ 0:12

1þ _xk
ð22Þ

The Kalman filter is summarized as the following

recursive equations:

1. The prediction of the state given by:

~xkjk�1 ¼ A~xk�1jk�1 þBuk ð23Þ
2. The predicted error covariance is computed as:

Pkjk�1 ¼ APk�1jk�1 A
T þQ ð24Þ

3. The Kalman gain is calculated by:

Kx ¼ Pkjk�1 þHT HPkjk�1 H
T þ R

� ��1 ð25Þ
4. The state estimation is updated with measurement

yk:

Fig. 8 Comparison between the experimental (solid lines) and

estimated (dashed lines) responses with fitted parameters from

proposed model and with applied current ranged from 0 to 1.6 A

and frequency of 6 Hz

Fig. 9 Comparison between the experimental (solid lines) and

estimated (dashed lines) responses with fitted parameters from

proposed model and with applied current ranged from 0 to 0.8 A

and frequency of 8 Hz
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~xkjk ¼ ~xkjk�1 þKx yk �H~xkjk�1

� �
ð26Þ

5. Finally, the error covariance is updated:

Pkjk ¼ I�KxHð ÞPkjk�1 ð27Þ

In Fig. 5 the experimental and estimated position data

(a), estimated velocity (b) and estimated acceleration

(c) for an input current of 0.6 A and frequency of 2 Hz

using the Kalman filter are shown.

4 Results and discussion

The results obtained for parameter identification and

parameter generalization steps, as is shown in Fig. 2,

are presented in this section.

4.1 Parameter identification

Genetic algorithms (GAs) are a heuristic search and

optimization technique inspired by natural evolution.

The genetic algorithm repeatedly modifies a popula-

tion of individual solutions called chromosomes. At

each step, the genetic algorithm selects individuals

from the current population to be parents and uses

them to produce children for the next generation by

means of the evaluation of an objective function

(fitness function). The cycle of evolution is repeated

until a desired termination criterion is reached. This

criterion can be set by the number of evolution cycles,

or the amount of variation of individuals between

different generations, or a predefined value of fitness.

The best chromosome generated during the search is

Fig. 10 Parameter identification results (solid lines) and

polynomial fitted (dashed line) from proposed model versus

the applied current for different frequencies. a Parameter D,

b Parameter C, c Parameter B, d Parameter Sh, e Parameter Sv,

f Parameter k, g Parameter c
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the final result of the genetic algorithm. GAs have

been successfully applied to a wide range of real-

world problems of significant complexity. Their

advantages are that:

• They are particularly well-suited to multidimen-

sional global search problemswhere the search space

potentially contains the multiple local minimum;

• a basic GA does not require extensive knowledge

of the search space, reducing computing time; and

• GAs seek good solutions and combine them in

order to obtain better solutions.

In this work, GeneticAlgorithmToolbox forMatlab

was used. The parameters to be identified are D, C, B,

Sh, Sv, k and c, hence, the chromosome becomes

Ci ¼ Di;Ci;Bi; Shi; Svi;ki; ci
� �

i ¼ 1; . . .;N ð28Þ

where N is the population size. The population type,

which specifies the type of the input to the fitness

function, is chosen as a double vector. After analysing

the influence of the model parameters on the shape of

the damper force–velocity curve (Fig. 1), the lower

and upper bounds of all parameters are defined from

the experimental MR damper curves. As an example,

Table 1 represents the lower and upper bounds for a

current of 0 A and frequency of 2 Hz. In order to

obtain the optimal values for the parameters of the

proposedmodel, the fitness function is evaluated as the

mean-square error between the experimental and

estimated damper forces:

Fig. 10 continued
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ffitness ¼
1

N

XN

i¼1

Fi
exp � Fi

est

� 	2
ð29Þ

where Fexp is the measured or experimental force, Fest

is the force estimated by the proposed model, and N is

the number of experimental measurements.

Nonlinear constraints are also defined to limit the

feasible search region:

mð1� 15%Þ\BCDþ c\mð1þ 15%Þ ð30Þ

where m is the slope at low velocities.

Mean-Squared Error results of the proposed model

are given in Table 2 and Fig. 6. In order to validate the

proposed model, errors are compared with the errors

obtained from the Kwok model [13]. It can be

observed that errors from the proposed model have

smaller values than the Kwok model. Figures 7, 8 and

9 compare the force–velocity obtained by the

experimental test for the frequencies of 2, 6 and

8 Hz with those modelled by the proposed model. The

examination of these figures reveals that there is

excellent agreement between the simulation and the

experimental results.

4.2 Parameter generalization

A literature survey indicates that in most of the

previously developed models, the variation of the

identified parameters for different supplied currents is

modelled by polynomial functions [12, 13, 23].

According to this, relationships between the averaged

values of the identified parameters of the proposed

model and the supplied current are given by the

following expressions (Fig. 10):

D ¼ �0:8226i2 þ 2:1713iþ 0:1532 ð31Þ

Fig. 11 Comparison between the experimental and estimated

responses from proposed model with polynomial fitted param-

eters (frequency independent model) for an applied current

ranged from 0 to 1.6 A and frequency of 2 Hz

Fig. 12 Comparison between the experimental and estimated

responses from proposed model with polynomial fitted param-

eters (frequency independent model) for an applied current

ranged from 0 to 1.6 A and frequency of 6 Hz
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C ¼ �0:7485i2 þ 1:6884iþ 0:5544 ð32Þ

B ¼ 0:0047i2 � 0:0101iþ0:0125 ð33Þ

Sh¼ �8:1556i2 þ 20:321i� 9:452 ð34Þ

Sv ¼ �0:0726i2 þ 0:1931iþ 0:0397 ð35Þ

k ¼ 0:4617i2 � 1:0508iþ 1:1351 ð36Þ

c ¼ 0:0005iþ 0:0007 ð37Þ

Figures 11, 12 and 13 show the results from the

polynomial fitting as functions of the supplied current.

Examination of these figures reveals significant

disagreement between the results of the proposed

frequency independent model (polynomial fitting) and

the experimental ones. The results show a significant

dependency, not only with the current but also with the

frequency. Dominguez et al. [6] proposed a modified

Bouc–Wen model where the frequency of excitation

and applied current have been incorporated as vari-

ables to the model. Although an excellent agreement

between the simulated results from the model and the

Fig. 13 Comparison between the experimental and estimated

responses from proposed model with polynomial fitted param-

eters (frequency independent model) for an applied current

ranged from 0 to 0.8 A and frequency of 8 Hz

Fig. 14 Comparison between the experimental and estimated

responses from proposed model with neural fitted parameters

(frequency dependent model) for an applied current ranged from

0 to 1.6 A and frequency of 2 Hz

Table 3 Mean squared error of the neural networks train

Parameter D C B Sh Sv k c

MSE 2.2610-23 3.3810-21 1.1210-7 3.3410-20 7.6710-20 1.9610-20 3.8110-8

12



experimental results was demonstrated, the number of

parameters to fit is high (20 parameters); this may

cause difficulties in their identification. To solve this

problem, in this work, the use of neural networks to

model the parameters identified from the optimization

algorithm as functions of applied current and fre-

quency of excitation is proposed.

Neural networks (NN) have been effectively

applied to model complex systems due to their good

learning capability. The goal of neural network

training is to iteratively update the network weights

to minimize the learning error. Among NN architec-

tures, a class of Multi-Layer Perceptron (MLP) has

become themost popular architecture, due to its ability

to model simple, as well as complex, functional

relationships. The MLP is composed of layers of

nodes: input layer, output layer and a number of

hidden layers. Typically, one hidden layer is sufficient

for most practical applications. As for the number of

nodes in each layer, the number of input layer nodes is

equal to the dimension of the input vector, the number

of output nodes is usually equal to the dimension of the

output vector and the number of hidden nodes is

usually decided using trial and error. The estimated

output, ~yi, can be expressed as

~yi ¼ Fi

Xq

j¼1

Wijfi
Xp

k¼1

wjkuk þ wj0

!

þWi0

" #

ð38Þ

where Fi and fi ði ¼ 1; 2; . . .;mÞ are the activation

functions of the output and hidden layers, respectively;

Wij andwjk (j = 1,2,���,q; k = 1,2,���,p) are the weights
of the output and hidden layers, respectively; and Wi0

and wj0 are the bias of the output and hidden layers,

respectively; p is the size of the input vector u; q is the

size of the hidden nodes; andm is the dimension of the

output vector. The hyperbolic tangent sigmoid is

Fig. 15 Comparison between the experimental and estimated

responses from proposed model with neural fitted parameters

(frequency dependent model) for an applied current ranged from

0 to 1.6 A and frequency of 6 Hz

Fig. 16 Comparison between the experimental and estimated

responses from proposed model with neural fitted parameters

(frequency dependent model) for an applied current ranged from

0 to 0.8 A and frequency of 8 Hz
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selected as activation function in the hidden layer. The

set of parameters to learn is w = {Wij, wjk, Wi0, wj0}.

MLP utilizes a supervised learning technique called

backpropagation for training the network that mini-

mizes the error function. Here, the network training

function trainlm of Neural Networks Toolbox for

Matlab has been used. This function updates weight

and bias values according to Levenberg–Marquardt

optimization:

wkþ1 ¼ wk � JTJþ lI
� ��1

JTe ð39Þ

where l is the learning rate, J is the Jacobian matrix

that contains first derivatives of the network errors

with respect to the weights and biases, and e is a vector

of Mean Squared normalized Errors (MSE) defined as:

e ¼ 1

N

XN

l¼1

yl � ~ylð Þ2 ð40Þ

where N is the number of patterns; and yl is the target

output. Here, seven neural networks have been

defined, each one corresponding to an identified

parameter. The inputs are the applied current and the

frequency of excitation. The size of the hidden layer is

9. The performance of the neural networks after

training is depicted in Table 3.

Figures 14, 15 and 16 show neural networks are an

adequate candidate for modelling the relationship

between the parameters and the current and frequency.

Comparison between Mean-Squared Error results

from the polynomial fitting (frequency independent

model) and neural fitting (frequency dependent

model) is shown in Table 4.

5 Conclusions

This paper presents a novel frequency dependent

model for an MR damper. The proposed model is

based on trigonometric functions, which have been

shown to be adequate candidates for predicting the

behaviour of mechanical systems. Results have shown

the estimated model satisfactorily emulates the hys-

teretic and inherent non-linear behaviour of the MR

damper. There are significant advantages gained by

this new method concerning previous proposed mod-

els. In comparison with the Bouc–Wen model, the

most commonly-used model, only seven model

parameters have to be identified, decreasing the

complexity and increasing the efficiency of the

identification problem. Unlike MR damper models

based on differential equations, the proposed model

does not have convergence problems when noisy in-

puts from experimental measurements are used.

Neural networks are used to model the relationship

between the model parameters and the applied current

and frequency of excitation. Finally, experimental

data are used to illustrate the effectiveness of the

proposed model. Results confirm that the proposed

frequency dependent MR damper model improves the

accuracy of the model in force simulation.

Table 4 MS Errors for proposed model from polynomial fitted parameters (frequency independent model) and neural fitted

parameters (frequency dependent model)

Current

(A)

Frequency of excitation (Hz)

2 4 6 8

NN Polynomial NN Polynomial NN Polynomial NN Polynomial

0 0.0005 0.0014 0.0042 0.0011 0.0026 0.0097 0.0109 0.0613

0.2 0.0025 0.0245 0.0015 0.0034 0.0071 0.0074 0.0129 0.034

0.4 0.0048 0.0517 0.0038 0.0083 0.0078 0.0129 0.0123 0.0426

0.6 0.0098 0.0841 0.0045 0.0115 0.0152 0.015 0.0819 0.0888

0.8 0.0065 0.0583 0.0109 0.0166 0.0198 0.0202 0.1059 0.0567

1.2 0.0081 0.0493 0.0088 0.0133 0.0171 0.0589 – –

1.6 0.0147 0.0712 0.0242 0.0242 0.0164 0.0477 – –

14



Acknowledgements Authors gratefully acknowledge the

funds provided by the Spanish Government through the

CICYT Projects TRA2008-05373/AUT and TRA2011-28548-

C02-01.

References

1. Balamurugan L, Jancirani J, Eltantawie MA (2014) Gen-

eralized magnetorheological (MR) damper model and its

application in semi-active control of vehicle suspension

system. Int J Automot Technol 15(3):419–427

2. Belanger PR (1992) Estimation of angular velocity and

acceleration from shaft encoder measurements. In: Pro-

ceedings of the 1992 IEEE international conference on

robotics and automation, 1992. pp 585–592

3. Boada M, Calvo J, Boada B, Diaz V (2011) Modeling of a

magnetorheological damper by recursive lazy learning. Int J

Non-Linear Mech 46(3):479–485

4. Choi SB, Han YM (2005) Hysteretic behavior of a mag-

netorheological fluid: experimental identification. Acta

Mech 180(1):37–47

5. Dimian M, Andrei P (2014) Mathematical models of hys-

teresis. Noise-driven phenomena in hysteretic systems.

Springer, Berlin, pp 1–63

6. Dominguez A, Sedaghati R, Stiharu I (2006) A new

dynamic hysteresis model for magnetorheological dampers.

Smart Mater Struct 15(5):1179

7. Dyke SJ, Spencer BF Jr, Sain MK, Carlson JD (1996)

Modeling and control of magnetorheological dampers for

seismic response reduction. Smart Mater Struct

5(5):565–575

8. Gamota DR, Filisko FE (1991) Dynamic mechanical studies

of electrorheological materials: moderate frequencies.

J Rheol 35:399–425

9. Giuclea M, Sireteanu T, Stancioiu D, Stammers CW (2004)

Model parameter identification for vehicle vibration control

with magnetorheological dampers using computational

intelligence methods. Proc Inst Mech Eng, Part I J Syst

Contr Eng 218(7):569–581

10. Ikhouane F, Rodellar J (2005) On the hysteretic Bouc–Wen

model. Nonlinear Dyn 42(1):79–95

11. Jahromi AF, Bhat RB, XieWF (2015) Frequency dependent

spencer modeling of magnetorheological damper using

hybrid optimization approach. Shock Vib 2015:8

12. Kwok NM, Ha QP, Nguyen MT, Li J, Samali B (2007)

Bouc–Wen model parameter identification for a MR fluid

damper using computationally efficient GA. ISA Trans

46(2):167–179

13. Kwok NM, Ha QP, Nguyen TH, Li J, Samali B (2006) A

novel hysteretic model for magnetorheological fluid dam-

pers and parameter identification using particle swarm

optimization. Sens Actuators A 132(2):441–451

14. Li Z, Zheng J, Koo JH, Wang J (2013) An improved poly-

nomial dynamic model of a magnetorheological fluid

damper under impact loading. In: Proceedings of the SPIE

8688, active and passive smart structures and integrated

systems, vol. 86881C

15. Lord Corporation (2015) http://www.lord.com/

16. Metered H, Bonello P, Oyadiji S (2015) Nonparametric

identification modeling of magnetorheological damper

using chebyshev polynomials fits. SAE Int J Passeng Cars

Mech Syst 2(1):1125–1135

17. Min CK, Lee HJ, Cho SW, Lee IW (2007) Modified energy

dissipation algorithm for seismic structures using magne-

torheological damper. KSCE J Civil Eng 11(2):121–126

18. Nehl TW, Betts JA, Mihalko LS (1995) An integrated rel-

ative velocity sensor for real time damping applications. In:

Industry applications conference, 1995. Thirtieth IAS

annual meeting, IAS’95, vol. 1, pp 484–491

19. Pacejka H (2012) Tire and vehicle dynamics, 3rd edn.

Elsevier, Amsterdam

20. Puglisi L, Saltaren R, Garcia-Cena C (2015) On the velocity

and acceleration estimation from discrete time-position

signal of linear encoders. J Control Eng Appl Inform

17(3):30–40

21. Segla S, Orecny M (2014) Balance control of semiactive

seat suspension with elimination of dynamic jerk. Procedia

Eng 96:419–427

22. Sireteanu T, Giuclea M, Mitu AM (2010) Identification of

an extended Bouc–Wen model with application to seismic

protection through hysteretic devices. Comput Mech

45(5):431–441

23. Spaggiari A, Dragoni E (2012) Efficient dynamic modelling

and characterization of a magnetorheological damper.

Meccanica 47(8):2041–2054

24. Spencer B, Dyke S, Sain M, Carlson J (1997) Phenomeno-

logical model for magnetorheological dampers. J EngMech

123(3):230–238

25. Strecker Z, Mazrek I, Roupec J, Klapka M (2015) Influence

of MR damper response time on semiactive suspension

control efficiency. Meccanica 50(8):1949–1959

26. Talatahari S, Kaveh A, Rahbari NM (2012) Parameter

identification of Bouc–Wen model for MR fluid dampers

using adaptive charged system search optimization. J Mech

Sci Technol 26(8):2523–2534

27. Wang W, Song Y (2012) Nonlinear vibration semi-active

control of automotive steering using magneto-rheological

damper. Meccanica 47(8):2027–2039

28. Wereley N, Pang L, Kamath G (1998) Idealized hysteresis

modeling of electrorheological and magnetorheological

dampers. J Intell Mater Syst Struct 9(8):642–649

29. Xiaomin X, Qing S, Ling Z, Bin Z (2009) Parameter esti-

mation and its sensitivity analysis of the MR damper hys-

teresis model using a modified genetic algorithm. J Intell

Mater Syst Struct 20:2089–2100

30. Yang G, Jung HJ, Spencer BF, Carlson JD (2004) Dynamic

modeling of large-scale magnetorheological damper sys-

tems for civil engineering applications. J Eng Mech

9:1107–1114

15

http://www.lord.com/

	Página en blanco



