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Abstract

Robot locomotion is concerned with providing autonomous locomotion capabilities to mobile
robots. Most current day robots feature some form of locomotion for navigating in their environ-
ment. Modalities of robot locomotion includes: (i) aerial locomotion, (ii) terrestrial locomotion,
and (iii) aquatic locomotion (on or under water). Three main forms of terrestrial locomotion are,
legged locomotion, limbless locomotion and wheel-based locomotion. A Modular Robot (MR),
on the other hand, is a robotic system composed of several independent unit modules, where,
each module is a robot by itself. The objective in this thesis is to develop legged locomotion
in a humanoid robot, as well as, limbless locomotion in modular robotic configurations. Taking
inspiration from biology, robot locomotion from the perspective of robot’s morphology, through
evolution, and through learning are investigated in this thesis.

Locomotion is one of the key distinguishing characteristics of a zoological organism. Almost
all animal species, and even some plant species, produce some form of locomotion. In the past
few years, robots have been “moving out” of the factory floor and research labs, and are becoming
increasingly common in everyday life. So, providing stable and agile locomotion capabilities for
robots to navigate a wide range of environments becomes pivotal. Developing locomotion in
robots through biologically inspired methods, also facilitates furthering our understanding on how
biological processes may function.

Connected modules in a configuration, exert force on each other as a result of interaction
between each other and their environment. This phenomenon is studied and quantified, and then
used as implicit communication between robot modules for producing locomotion coordination
in MRs. Through this, a strong link between robot morphology and the gait that emerge in it is
established.

A variety of locomotion controller, some periodic-function based and some morphology
based, are developed for MR locomotion and bipedal gait generation. A hybrid Evolutionary
Algorithm (EA) is implemented for evolving gaits, both in simulation as well as in the real-world
on a physical modular robotic configuration. Limbless gaits in MRs are also learnt by learning
optimal control policies, through Reinforcement Learning (RL).
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Resumen

En robdtica, la locomocion trata de proporcionar capacidades de locomocién auténoma a robots
moviles. La mayoria de los robots actuales tiene alguna forma de locomocién para navegar en su
entorno. Los modos de locomocion robotica se pueden repartir entre: (i) locomocion aérea, (ii)
locomociodn terrestre, y (i) locomocién acuatica (sobre o bajo el agua). Las tres formas basicas
de locomocidn terrestre son la locomocion mediante piernas, la locomocioén sin miembros, y
la locomocién basada en ruedas. Un Robot Modular, por otra parte, es un sistema robético
compuesto por varios médulos independientes, donde cada mddulo es un robot en si mismo.
El objetivo de esta tesis es el desarrollo de la locomociéon mediante piernas para un robot
humanoide, asi como el de la locomocién sin miembros para varias configuraciones de robots
modulares. Inspirandose en la biologia, también se investiga en esta tesis el desarrollo de la
locomocién del robot segln su morfologia, gracias a técnicas de evolucién y de aprendizaje.

La locomocioén es una de las caracteristicas distintivas de un organismo zoologico. Casi
todas las especies animales, € incluso algunas especies de plantas, poseen algun tipo de
locomocion. En los ultimos anos, los robots han “migrado” desde las fabricas y los laboratorios
de investigacion, y se estan integrando cada vez mas en nuestra vida diaria. Por estas razones,
es crucial proporcionar capacidades de locomocion estables y agiles a los robots para que
puedan navegar por todo tipo de entornos. El uso de métodos de inspiracion biolégica para
alcanzar esta meta también nos ayuda a entender mejor como pueden funcionar los procesos
biolégicos equivalentes.

En una configuracién de moédulos conectados, puesto que cada uno interacciona con su
entorno, los médulos ejercen fuerza los unos sobre los otros. Este fendmeno se ha estudiado y
cuantificado, y luego se ha usado como comunicacién implicita entre los moédulos para producir
la coordinacién en la locomocién de este robot. De esta manera, se establece un fuerte vinculo
entre la morfologia de un robot y el modo de andar que este desarrolla.

Se han desarrollado varios controladores de locomocion para robots modulares y robots
bipedos, algunos basados en funciones periddicas, otros en la morfologia del robot. Un algoritmo
evolutivo hibrido se ha implementado para la evolucién de locomociones, tanto en simulacion
como en el mundo real en una configuracion fisica de robot modular. También se pueden
generar locomociones sin miembros para robots modulares, determinando las politicas de
control éptimo gracias a técnicas de aprendizaje por refuerzo.
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Se presenta en primer lugar en esta tesis el estado del arte de la rob6tica modular, en-
focandose en la locomocidn de robots modulares, los controladores, la locomocion bipeda y la
computacién morfoldgica. A continuacion se describen cinco configuraciones diferentes de robot
modular que se utilizan en esta tesis, seguido de cuatro controladores de locomocién. Estos
controladores son el controlador heterogéneo, el controlador basado en funciones periédicas, el
controlador homogéneo y el controlador basado en la morfologia del robot.

Se desarrolla como parte de este trabajo un controlador de locomocion lineal, periddico,
basado en features, para la locomocion bipeda de robots humanoides. Los parametros de
control se ajustan primero a mano para reproducir un modelo cart-table, y el controlador se
evalla en un robot humanoide simulado. A continuacion, gracias a un algoritmo evolutivo,
la optimizacion de los parametros de control permite desarrollar una locomocién sin modelo
predeterminado.

Se desarrolla como parte de esta tesis un enfoque sobre algoritmos de Embodied Evolucion,
en otras palabras el uso de robots modulares fisicos en la fase de evolucién. La implementacién
material, la configuracién experimental, y el Algoritmo Evolutivo implementado para Embodied
Evolucién, se explican detalladamente.

El trabajo también incluye una vision general de las técnicas de aprendizaje por refuerzo y
de los Procesos de Decision de Markov. A continuacién se presenta un algoritmo popular de
aprendizaje por refuerzo, llamado Q-Learning, y su adaptacién para aprender locomociones
de robots modulares. Se proporcionan una implementacién del algoritmo de aprendizaje y la
evaluacién experimental de la locomocién generada.
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cHAPTER 1

Introduction, problem definition and goals

Scouring for the definition of the word robot, one can come across several different definitions.
Some of which are,

“A machine controlled by a computer that is used to perform jobs automatically.” - Cam-
bridge Dictionary

“A machine capable of carrying out a complex series of actions automatically, especially
one programmable by a computer” - Oxford Dictionary

“A real or imaginary machine that is controlled by a computer and is often made to look
like 2 human or animal” - Merriam-Webster

“A robot is a mechanical or virtual artificial agent, usually an electromechanical machine
that is guided by a computer program or electronic circuitry, and thus a type of an embedded
system.” - Wikipedia

In general, a robot can be defined as an electromechanical system that can be programmed
to: (i) either be controller remotely by a human operator, (ii) or to perform a set of predefined
actions, (iii) or to take actions based on its sensory input, such that it physically effects its
surrounding, explicitly. One could then argue that a washing machine or a modern day air-
condition can fall into this category, and so, the task of defining a robot is non-trivial.

The field of Mobile Robotics is concerned with automatic machines that have locomotion
capabilities. Any machine that can move around in its environment, either controlled remotely

1



2 Chapter 1. Introduction, problem definition and goals

or autonomously, can be categorized as a mobile robot. In contrast, industrial robots, which
have multi-articulated arms connected to a fixed base, are stationary robots. Robot Locomo-
tion is concerned with proving a robot the ability to move from one place to another, which is
ﬁ)mplished by manipulating its body with respect to the environment. Three basic modalities
of locomotion in land based mobile robotics include: (i) wheel-based locomotion, (ii) legged
locomotion and (iii) limbless locomotion. Wheeled robots are the most energy efficient for
navigating on flat surfaces, but lack the ability to navigate in rough or uneven terrains (e.g.:
stairs). Legged robots, on the other hand, have the potential to navigate in unstructured
environment, they do not need a special infrastructure to operate in, and they are very well
suited to interact with and navigate in human environment (e.g.: home, office, theme-park,
mall, etc.). While limbless robots are robots that mimic creeping/crawling gaits of worms,
insects, serpents, etc. Limbless robots can be useful in applications involving unforeseen and
inaccessible environments, like under collapsed buildings, inside narrow pipes, on sand dunes,
etc., where wheeled and legged robots fail to operate.

1.1 Problem definition

The main objective of this thesis is to develop locomotion controllers for limbless robots and a
legged robot. Specifically, to develop controllers for creeping/crawling gaits in 2D robots, and
bipedal walking gait in a humanoid robot.

Locomotion in general, whether gallop of a horse, flapping wings of a bird, or bipedal
walking of a human, can be seen as repetitive and coordinated movement of limbs, through
which the desired gait emerges. In limbless organisms like caterpillar and snake species,
locomotion comes about as a result of coordinated bilaterally-symmetrical-muscle-contractions
and through coordinated undulation of muscles, respectively. In robots, locomotion can be seen
as coordinated actuation of joint actuators related to locomotion (e.g.: Limb joints of a humanoid
robot).

The problem tackled in this thesis involves bringing about the needed coordination in joint
actuations, which produces a stable gait in the respective robot. One way of achieving this task
is to explicitly model joint trajectories, based on the kinematic structure of the target robot, which
is the traditional approach towards robot locomotion. However, in this thesis, biologically inspired
approaches towards robot locomotion are taken.

Two different robot platforms, one for limbless locomotion and the other for bipedal gait, used
in this thesis are presented in the following subsection.

1.1.1 Robot

The target platforms used in this thesis are Modular Robot (MR)s and a simulated humanoid
robot. Limbless gaits are evaluated on different modular robotic configurations, while bipedal
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walking gait is evaluated on a simulated humanoid robot.

1.1.1.i Modular Robots

A MR is a system composed of several unit modules which, provided self-reconfigurable capabil-
ity, can autonomously change its morphology. Each module, in a modular robotic configuration,
is a robot which has its own actuator, computation unit, sensors, power unit, and connectors to
physically connect to two or more modules. A single module, due to its simplicity, is limited in its
capability. But several modules connected together to form a bigger robotic organism/configura-
tion, is capable of performing more complex tasks. An advantage of a modular robotic system is
its ability to change its morphology to suit the task at hand. Also, if one or a few modules in a
robotic configuration fail, they can be easily replaced with another module, and the cost of the
entire system can be bought down by mass producing unit modules.

In this thesis, Y1 MR, which is the creation of Juan Gonzalez-Gomez [Gonzalez-Gomez,
2008] is used. As could be seen in Figure 1.1, a ¥71 module has an open-ended cube shape,
and it is made up of two three-dimensional (3D) 'U’ shaped objects connected together to form
an hinge. The module has a dimension of . 1-Degree of Freedom (DOF),
and a rotational range of . A Futaba 3003 servomotor is used as the module’s actuator.
Locomotion controllers are evaluated both on simulated and real MRs. The simulator used is
OpenRAVE [Diankov and Kuffner, 2008], which is an open source, Open Dynamics Engine (ODE)
based physics robotic simulator.

The module’s hinges are parallel to the ground surface when the actuatoris at | ).
At a negative angle, the module's hinge rotates in anti-clock direction, and in clockwise direction,
at a positive angle (Figure 1.2).

Figure 1.1: ¥1 module (a) Real and (b) Simulated versions.

1.1.1.ii Humanoid Robot

A humanoid robot is a robot with its body shape built to resemble that of the human body.
A humanoid design is mainly for the purpose of integrating the robot with human tools and
environments, in which case, navigating human environments such as home, office, hospitals,
malls, etc. becomes important.
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N

(a) (b) (c)

Figure 1.2: ¥1 module while actuated at (a) . (b) and (c)

In this thesis, a simulated version of the third edition of the, Humanoid for Open Architecture
Platform (HOAP-3) robot (Figure 1.3) is used for bipedal walking gait. The HOAP-3 series of
humanoids as a platform for research in bipedal locomotion, human robot collaboration and
whole-body control, is developed by Fujitsu Automation, Japan.

Figure 1.3: HOAP-3 robot Source: http: // robots. uc3m. es/ index. php/HOAP3

The HOAP-3 robot weighs , stands tall, and has 28 DOFs. Kinematic structure
of the robot is as shown in Figure 1.4.
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Figure 1.4: Kinematics structure of HOAP-3. Source: htip: // robots. uc3m. es/ indez. php/HOAP3

1.2 Motivation

Motivation for the research conducted during the development of this thesis comes from biclogy.
Both, the locomotion itself, as well as the methods used for developing locomotion in robots are
biclogically-inspired.

1.2.1 Locomotion

In biclogy, locomotion is one of the main distinguishing characteristic for differentiating animals
from plants. Animals use locomotion for a variety of reasons, including for finding food, a mate, a
suitable habitat, or to escape from predators. For many animals, their ability to survive depends
strongly on their locomotion capabilities, and so, natural selection has shaped their method
and mechanism of locomotion, based on the animal and their environmental constraints. For
example, migratory animals that travel vast distances annually, in search of food and breeding
grounds, usually have gaits that cost very little energy per unit distance traveled. On the other
hand, animal species that move quickly for the purpose of hunting down prey, or for escaping
from predators, are more likely to have energetically expensive, but very fast gaits.

Typical robot applications involve jobs that are either dull, dirty or dangerous for humans.
Robots used as companions and/or pets is another huge application domain under robotics.
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Irrespective of the application, an important capability most robots need to possess to be
functional, is locomotion. Many robots designed and built today, directly draw inspiration from
humans, as well as other animal morphologies, with the purpose of assisting — if not replacing —
humans in day to day life. Given the importance of locomotion in animals of all kinds, locomotion
is a key feature that most robots need to possess. Furthermore, robot locomotion can also
be used for studying and testing hypothesis concerning human and animal locomotion, from a
biomechanics perspective.

1.2.2 Methodology
In biology, terms Morphology, Evolution, and Learning are defined as follows,

Morphology: Study of the form and structure of organisms and their specific structural
features.

Evolution: Change in heritable characteristics of bioclogical populations over successive
generations.

Learning: The act of acquiring new, or modifying and reinforcing, existing knowledge,
behaviors, skills, values, or preferences, and may involve synthesizing different types of
information.

A newborn calf learns to stand up in about 30 minutes, and to walk and run in just a few
hours after birth. A toddler learns to crawl, and eventually learns to walk in about 8 to 18
months time from birth. A good question to then ask would be: how much of this behavior
(crawling/walking/running) is evolved (genetically-coded) versus learnt, and what influence does
the morphology of the organism has on the produced gait? Some literature like [Alexander,
2003] attempt to answer this question.

Author of [Gatesy and Biewener, 1991] study bipedal gait in ground-dwelling bird species,
and compare it with human bipedal gait, based on difference in morphologies between species.
Relation between small morphological variance and performance in the form of gait speed,
distance traveled and time of travel, in newborn garter snake species, is studied in [Arnold and
Bennett, 1988].

Evolution of locomotion in anthropoid primates has been studied in [Ryan et al., 2012].
The authors compare fossils of 16 specimen to analyze evolutionary changes in locomotor
adaptations in anthropoid primates over the last 35 million years. When land dwelling mammals
re-entered the ocean, some 60 million years ago, they had to adapt their morphology and
locomotion for the new ecology through evolution, resulting in the current day aquatic mammal
species. A study on evolution of cost efficient swimming in marine mammals is presented
in [Williams, 1999].

In [Adolph et al., 1997], authors study learning of crawling and walking behavior in infants.
Tests of infants going up and down slopes were conducted longitudinally from the first week of
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crawling, until several weeks after they begin to walk. This study suggests that there are no
transfer of learnt knowledge over the transition from crawling to walking, but instead, infants
learn all over again, how to cope with slopes from an upright position. The study also concludes
that learning is online, rather than a simple association between a particular locomotor response

to a particular slope.

1.3 Goals and Scope

It is evident from studies in biology, that locomotion of an organism is influenced/shaped: (i) by
aspects of its morphology, (i) through evolution, and (jii} by learning. Traditionally, the problem of
robot locomotion is tackled in a top-down approach. That is, for a particular gait to emerge, first
the kinematic structure of the robot is considered, based on which, joint trajectories are modeled
through inverse-kinematics. Objectives of this thesis are as follows,

Study how morphology of a robot can influence its locomotion, and develop locomotion
controllers for two-dimensional (2D) modular robotic configurations that are morphology
dependent.

Use algorithms that are based on biological evolution for evolving gaits in both legged and
limbless robots in simulation, as well as to evolve a gait on a physical modular robotic
configuration in the real-world.

Use learning algorithms inspired by behaviorist psychology, for learning gaits in modular
robotic configurations, in an online fashion.

Each of the three approaches towards locomotion followed in this thesis are explained further
in the following subsections.

1.3.1 Morphological Computation

The phenomena observed in bioclogical systems that take advantage of their morphology to
conduct computations needed for a successful interaction with their environments, is termed
Morphological Computation. With respect to robots, Morphological Computation refers to
outsourcing of computation needed for controlling the robot, to morphology and material property
of the robot.

In Modular Robot (MR)s, which are physically connected multi-robot systems that have an
embodiment, modules exert forces on one another when actuated. These forces come about as
a result of physical interaction between modules, and between modules and their environment,
as a function of the morphology of the robotic configuration. So, an objective of this thesis is
to, on one hand investigate what effects morphology of a modular robotic configuration has on
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its locomotion, and on the other hand to develop locomotion controllers that are morphology
dependent and which can adapt to changes in robot morphology.

1.3.2 Evolutionary Robotics

Evolutionary Robotics is a field of research that employs a process analogous to natural
evolution for generating robot controllers that adapt to their environment, all without needing
direct programming by humans. The generation and optimization of robot controllers are based
on evolutionary principles of blind variations, and survival of the fittest. Although typically applied
for creating control system for robots, less frequent, Evolutionary Robotics (ER) methods are
also applied for generating robot morphologies, as well as for co-evolving control systems and
robot morphology simultaneously [Lipson and Pollack, 2000], [Bongard and Pfeifer, 2003].

A common practice in ER is to evolve the controller in simulation and then transfer the
evolved controller on to a physical robot. There exists a reality gap in this method because
not every single aspect of the physical world and the robot can be modeled accurately in the
simulation environment. So, the evolved behavior in simulation may not transfer well onto a real
robot. Embodied Evolution is a ER method, where evolution is performed on the physical robot,
so as to close the reality gap that exist between simulation environment and the real-world.

Objectives of this thesis, from an ER perspective are to: (i) optimize locomotion controllers
through evolution, for both limbless gaits in modular robotic configurations, as well as bipedal
gait in the humanoid robot, (ii) evolve a gait on a physical modular robotic configuration, through
Embodied Evolution (EE).

1.3.3 Reinforcement Learning

Reinforcement Learning is an area under Machine Learning (ML) inspired by behaviorist
psychology in humans and animals. Reinforcement Learning (RL) deals with the problem of
getting an agent to act in the world, so as to maximize its rewards. For example, consider
teaching a dog a new trick, where you cannot tell it what to do or not to do, but you can only
reward or punish it, if it does the right or wrong thing respectively. The agent (dog in this case)
has to figure out what it did that made it get the reward or the punishment, which is known as the
credit assignment problem.

An objective in this thesis, from the learning perspective, is to use RL method to train Modular
Robot (MR)s to locomote. To do so only by rewarding them (in a computational sense) whenever
they take a step forward in the right direction, or by punishing them whenever they either take a
step backward, flip over or stay standstill.
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1.4 Structure of the PhD

The following PhD thesis is structured as follows. First, in chapter 2, page 11, current state-
of-the-art in the fields of MR, particularly related to MR locomotion and controllers, bipedal
locomotion and Morphological Computation are reviewed.

In chapter 3, page 45, five different modular robotic configurations used in this thesis are
explained first, followed by four different locomotion controllers for MR locomotion developed
in this thesis are presented. The first two controllers are heterogeneous and periodic-function
based locomotion controllers, while the next two are homogeneous and morphology based
locomotion controllers.

In chapter 4, page 87, a feature based linear periodic locomotion controller for bipedal gait in
humanoid robots is presented. Control parameters are first hand-tuned to replicate a cart-table
model based gait, and the same is evaluated on the simulated humanoid robot. Then, a walking
gait is evolved by optimizing control parameters through Evolutionary Algorithm (EA).

In chapter 5, page 105, an Embodied Evolution (EE) approach for evolving gaits in physical
modular robotic configurations is presented. The hardware implementation, experimental setup
for EE, and the EA implemented, are all explained in detail in this chapter.

In chapter 6, page 133, first an overview of RL and Markov Decision Process (MDP) are
provided. Then, a popular RL algorithm called Q-Learning, and an adaptation of it for the
purpose of learning locomotion in MRs are presented. Implementation of the learning algorithm
and evaluation results of the learnt gait are provided to close this chapter.

Finally, the thesis is concluded in chapter 7, page 159.
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CHAPTER 2

State-of-the-art

Introduction

As presented in the Introduction chapter, the aim of the work presented in this PhD thesis is
locomotion in MR, and bipedal gait in a humanoid robot. In this chapter, first an introduction to
the field of MR is provided, followed by review of a wide range of MR platforms in the literature.
Then, some of the most common gaits developed in MR are reviewed, followed by a review on
a wide range of locomotion controller in MR. Some work related to bipedal gait in huamnoid
robots, and Morphological Computation in the field of robotics are also reviewed in this chapter.

2.1 Modular robotics

A Self-Reconfigurable Modular Robot can be defined as an aggregation of the following
definitions,

Module: A piece or a set of pieces that are repeated in a construction of any kind, to make
it easier, regular and economical.

Modular Robot: A robotic system formed out of independent unit modules.

Reconfigurable/Multi-Configurable Modular Robot: A MR system wherein modules
can be (manually) connected to each other in multiple ways to form robots of varying
morphologies.

11
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Self-Reconfigurable Modular Robot: A reconfigurable MR that has the ability to inde-
pendently change its morphology through self-reconfiguration.

So a Self-Reconfigurable Modular Robot (SBMR) is a system that is composed of sev-
eral independent unit modules, which are robots themselves, and has the ability to change
its morphology through self-reconfiguration. Each module in such a system would have its
own computation unit, actuator(s), sensor(s), power supply and two or more connectors to
physically connect to other modules. A single module, due to its relative simplicity, is limited in
its capability. But several modules connected together to form a bigger robotic organism (or a
robotic configuration), is capable of performing more complex tasks. An advantage of a SRMR
system is its ability to change its morphology to suit the task at hand. Also, if one or a few
modules in the configuration fail, then they can be easily replaced with another module, and the
cost of the entire system can be bought down by mass producing unit modules.

MRs based on their configurable capabilities, can be classified into: reconfigurable or
multi-configurable, self-reconfigurable, self-assembling, metamorphic and self-replicant systems.
Reconfigurability refers to the property of a system to be configured in different ways, without
considering the means of reconfiguration. Self-reconfigurable robots are those that are able to
change their configuration on their own, while in manually configurable robots the reconfiguration
has to be done externally (i.e. by an operator). Metamorphic robots are those that are composed
of one kind of repeated module that is able to change its shape. Most reconfigurable robots
are also metamorphic. Self-assembling robots have the ability to independently come together
to form into a bigger entity. In most cases, self-assembling robots are also self-reconfigurable,
with the ability to change their morphology. Self-replicating robots are those that have the ability
to make copies of themselves — provided they have the necessary modules — by their own
means.

Based on the architecture of the configuration, a MR can be broadly classified into lattice-type,
chain-type and hybrid-type architectures. Lattice-type architectures have units that are arranged
and connected in some regular space-filling two-dimensional (2D) or three-dimensional (3D)
patterns, such as a 2D grid, or cubic or hexagonal grid. Control and motion in lattice-type are
executed in parallel, and they usually offer simpler computational representation that can be
more easily scaled to complex systems. In lattice-type systems locomotion is achieved through
continuous self-reconfiguration, where each module has the ability to move independently in
the configuration. Locomotion in lattice-type systems gives the notion of modules flowing on
the ground, which is visually similar to locomotion of an amoeba, or to that of a puddle of water
flowing on a flat surface.

Chain-type (or tree-type) architectures have units that are connected together in a string
or tree topology. This chain or tree can fold up to become space filling, but the underlying
architecture is serial. Chain-type architectures can reach any point in 3D space, and are
therefore more versatile, but are more computationally difficult to represent and analyze. In a
chain-type system locomotion is achieved by controlling the Degree of Freedom (DOF) actuator(s)
of individual modules in a fixed configuration.
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Hybrid-type architectures have features from both lattice-type and chain-type architectures.
Many of the more recent MRs can be classified as hybrid-type systems because they can be
configured both as chain-type structures and lattice-type structures.

A modular robotic configuration can either be composed of homogeneous modules, where
all the unit modules are identical, or with heterogeneous modules. In an heterogensous MR
system, a robotic configuration could be composed of two or more kinds of modules, where each
type of module is designed for a specific task.

2.1.1 The origins

The origin of modular multi-configurable robots is known to have started in 1990 with Cellular
Robotic System (CEBOT) [Fukuda and Kawauchi, 1990], from Nagoya University, a dynamically
configurable robot (Figure 2.1) that has the capability of self-organizing, self-evolution and func-
tional amplification’. It is composed by many robotic units, called cells, with a simple function.
CEBOT can reconfigure the whole system depending on the given task and environment, and
organize collectively, as a system demonstrating Swarm Intelligence. The concept of CEBOT is
based on biological multi-cellular organisms. This research project included mutual communica-
tion between cells, optimum dynamic knowledge allocation among cells, reconfiguration strategy
of the system and Artificial Life concepts such as modeling cooperative behavior in ant swarms.
This project addressed many interesting research problems such as dynamic decentralized
planning, dynamic distributed and coordinated control systems, as well as hardware systems.
Experiments in automated reconfiguration were carried out, but the robot didn't have the ability
to self-reconfigure, as a manipulator arm was required to do so.

Figure 2.1: Cellular Robotic System (CEBOT). Source: [Fukuda and Kawauchi, 1990]

The history of Modular Robot (MR) can be traced back to 1972, when the Active Cord
Mechanism (ACM) [Hirose, 1993] was created. It was the first robot using the principles of a

! Ability of a system to coordinate together to accomplish tasks that cannot be achieved by individual units
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serpentine locomotion, mimicking the gait of an actual snake. It was created by S. Hirose at the
Tokyo Institute of Technology, and it could move at a speed of appraximately 40 cm/sec. The
entire length of the robot was 2m, and it had 20 joints. Each joint consists of servo-mechanisms
that can bend to the left and right. To make contact with the ground, casters were installed along
the length of the body, and characteristics were added that make it easy to slide in the direction
of the torso and difficult to slide in the orthogonal direction of the body length.

Locomotion in this robot was achieved by sending sinusoidal control signals to the head joint
servo, followed by a phase-shifted sinusocidal signal to the following joint, and so on to all the
joints from the head to the tail of the robot. This resulted, in the body as a whole, propelling
forward by sending a wave from the head to the tail of the robot, and the torso of the robot
sliding over the floor with the help of the the passive caster-wheels. This principal of locomotion
corresponds to that of the swimming motion of an eel. Although in its origin version, ACM cannot
be classified as a modular multi-configurable robot, it was a milestone during its development. In
the last version (ACM-R5) each joint unit has a CPU, battery and motors, so that they can operate
independently. Through communication lines each unit exchanges signals and automatically
recognizes the total number of units from the head to tail. In the latest version, operators can
remove, add, and exchange units freely and they can operate ACM-RS5 flexibly according to
situations. It can operate both on the ground and in water undulating its long body. The evolution
of ACM is as seen in Figure 2.2.

Figure 2.2: Active Cord Mechanism: (a) Version Ill, (b) R3, (¢) R4 and (d) R5. Source: hitp: // uuw.
ezpo2izz. com/ automation2ize/ 1822 st3 university/default. him

2.1.2 Chain-type

Chain-type architecture is the most common architecture type found among systems in the early
years of Modular Robot (MR). Locomotion in a chain-type systems are achieved by controlling
actuator(s) of individual modules in a fixed configuration. Some of the most common MRs in
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the literature, from the early years to the most recent design, are reviewed in the following
subsections.

2.1.2.i PolyBot

PolyBot [Yim et al., 2000] [Yim et al., 2001] [Yim et al., 2007] is the evolution of PolyPod from
year 1997 ( 2.3a). It is made up of many repeating modules. Each module is virtually a robot on
its own, having a computer, a motor, sensors and the ability to attach to other modules. In some
cases, power is supplied off-board and passed from module to module. These modules attach
together to form chains, which can be used as an arm, leg or a finger, depending on the task at
hand.

PolyBot has gone through many variations with three basic generations. The evolution of the
main module is as seen in Figure 2.3b. PolyBot features several different configurations (snake,
wheel, quadruped, etc), a multi-master/multi-slave structure in a multi-threaded environment,
with three layers of communication protocol (MDCN) and a Attribute/Service Model.

(b} Module versions

Figure 2.3: PolyBot Sowrce: hitp://spectrum. iece. org/ robotics/ industrial-robots/
modular—robots

2.1.2.ii CONRO

The CONRO Self-Reconfigurable Modular Robot (SRMR)?2 [Castano et al., 2000] [Castano et al.,
2002] [Shen et al., 2002] was developed by P. Will et al., at the University of Southern California.
It is made of a set of connectable modules (Figure 2.4). Each module is an autonomous unit

2



16 Chapter 2. State-of-the-art

that contains batteries, one STAMP Il micro-controller, two motors, four pairs of IR transmitter-
s/receivers and four docking connectors to allow connections with other modules. Of the four
connectors, each module has one male connector, used to connect to other modules, and three
female connectors, to which other modules can connect to.

A distributed control mechanism inspired by the concept of hormones in biological systems is
developed for controlling CONRO modular robotic organisms. Hormones are special messages
that can trigger different actions in different modules. They can be used to coordinate locomotion
and reconfiguration in the context of limited communication and dynamic network topologies. An
automatic docking system through SMA-triggered locking/releasing mechanisms is developed
as part of the CONRO project.

Figure 2.4: Different configurations of CONRQO. Source: htip: //wvuw. i51. edu/ robots/ conro/

2.1.2.iii Molecubes

Molecubes?® [Zykov et al., 2005], developed by V. Zykov and H. Lipson at Cornell University, is a
metamorphic robot made up of a series of modular cubes, each containing identical machinery
and the complete computer program for replication (Figure 2.5). The cubes have electromagnets
on their faces that allow them to selectively attach to eachother, as well as detach from one
another, and a complete robot consists of several cubes linked together. Each cube is divided
into two halves along the diagonal, which allows a robot composed of many cubes to bend,
reconfigure and manipulate other cubes. For example, a tower of cubes can bend itself over at a
right angle to pick up another cube ( 2.5a).

2.1.2.iv Symbricator

Symbricator* [Kernbach et al., 2011a] [Kernbach et al., 2011b] [Matthias et al., 2012] [Russo
et al., 2012] [Schlachter et al., 2012] is a heterogeneous, SBRMR platform developed mainly at
the Institute of Parallel and Distributed Systems, University of Stuttgart, and at the Institute for
Process Control and Robotics, Karlsruhe Institute of Technology, as part of European funded
projects Symbrion and Replicator. As part of this five year project, three distinct MR platforms,

3
4
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(c) Third version

Figure 2.5: Molecubes. Source: [Zykov ef al, 2005]

namely Backbone, Active Wheel and Scout, were developed (Figure 2.6), with each platform
designed for a special purpose in the end mission.

The research objectives of the Symbricator (Symbrion + Replicator) project was to investigate
reconfigurability, adaptability and learn-ability in modular robotic organisms on one hand, and to
investigate evolvability of symbiotic® systems, and analogies to biclogical systems with respect
to long-term and short-term evolution, on the other hand.

The Backbone platform has an open ended cube shape, and has 1-Degree of Freedom (DOF)
for three-dimensional (3D) locomotion. It has a very strong brushless drive capable of lifting
several connected modules, and is specialized for 3D locomotion. Each individual module can
also perform locomotion in two-dimension (2D), in all four directions, using a pair of specialized
screw-driver wheels. Connected modules can also move in two-dimensional (2D) using these
wheels. In this platform, each module has four symmetric, genderless docking elements for
connecting to other modules, and some basic sensors for perceiving its environment.

The Active Wheel platform is designed with the main functionality of transportation task in
mind. It is able to carry and transport a modular robotic organism made up of several Backbone
and Scouf modules, in an energy efficient manner. This platform has two symmetric arms
connected at the hinge, which can rotate in the range of . Two omni-directional wheels
are attached at the end of each arm, which provides 2D locomotion capabilities for this platform.
There are two docking elements on the hinge, which can be used to connect other modules.
Each docking element can rotate independently, and has two separate motors for this.

The Scout platform is similar in shape to the Backbone platform, but it is designed for the

5 Symbiosis: Close and ofien long-term interaction between two or more different biological species
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purpose of fast locomotion for exploration. This platform has tracks for fast 2D locomotion
on rough terrain. It has extra sensors compared to the other two platforms, for sensing and
exploration task. It has two laser-camera systems on its front and rear, for far and short-range
obstacle detection. It also has a motor for 3D locomotion, but the motor is not as powerful as
the one present in the Backbone platform, as the main purpose of this platform is not macro-
locomotion, but exploration. Four docking units are available to connect to other modules, and
the docking unit on the left side has a separate motor for rotating between . These
modules are best suited to be placed on the outer edge of a modular robotic organism, as it
would then not have too many modules to lift for 3D locomotion, and can use the extra sensors
for sensing the environment.

All three heterogeneous modular robotic platforms have some homogeneous elements, one
of them being the common docking mechanism, required for connecting any combination of
different types of modules to form a larger multi-robotic organism. A docking design called
Cone Bolt Locking Device (CoBolLD) is employed for the docking units, which is genderless,
symmetric and can handle misalignment. The docking unit also provides wired communication
and energy sharing between connected modules. As one of the main research goals of this
project is energy sharing mechanism between connected modules, a unified energy sharing
system is commonly implemented in all three platforms.

(b) Backbone (c) Scout

Figure 2.6: Symbricator modules. Source: [Kernbach et al., 2011b]

2.1.2v Microtub

Microtub [Brunete et al., 2012b] is an heterogeneous modular multi'configurable microrobot
developed at the Technical University of Madrid (UPM). It is composed of different types of active
modules (ones that are able to move) and passive modules (ones that have to be acted upon).
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Different types of modules that have been developed under this project is as shown in Figure 2.7.
Diameter of each module is only 27 mm, and thickness of some parts is less than 1 mm.

The camera/contact module is used for environment information acquisition, needed for
detecting holes, breakages and cracks in the pipes. It is also used as a contact sensor to detect
if the microrobot is facing an obstacle. The rotation module has 2-DOF, that allows the module
to rotate in vertical and horizontal planes. A set of these modules put together can perform an
undulating (snake-like) locomotion. The support and extension modules are used to perform
inchworm like locomotion (move forward and turn right and left). Finally, the helicoidal module
was designed to be a fast-drive module that is able to push other modules forward or in reverse
directions.

To assemble the modules together, a common interface has been built. This interface allows
for mechanical and electrical connections between the modules. Each module includes an
electronic control board that performs the following tasks: control of actuators and sensors,
communications, auto-protection and adaptable motion, self-orientation detection, and low-level
embedded control.

|
] Support Rotation
Camera Rotation Support Extension Helicol

Figure 2.7: Microtub modules. Source: [Brunete et al., 2012b]

2.1.3 Lattice-type

In lattice-type architecture, modules connect their docking interfaces at points to form virtual
cells of some regular grid-structure. This network of docking points can be compared to atoms in
a crystal and the grid to the lattice of that crystal. Usually few units are sufficient to accomplish a
reconfiguration step. A much simpled mechanical design and computational representation is
allowed in lattice-type architecture. Reconfiguration planning, in lattice-type architecture, can be
scaled to complex systems, much easily.

2.1.3.1 Cross-Cube and Cross-Ball

Cross-Cube [Meng et al., 2010] and Cross-Ball [Meng et al., 2011] were developed at the
Stevens Institute of Technology, mainly for studying self-reconfiguration in Modular Robot (MR).
These platforms were used to study how Self-Reconfigurable Modular Robot (SRMR) can adapt
in dynamic environments by changing their morphologies.

Cross-Cube is a SRMR developed in a robot simulator using a real-time physics engine
PhysX (Figure 2.8). Each module in a Cross-Cube robot is a cubic structure having its own
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(b) Parallell and Diagonal movements

Figure 2.9: Cross-Ball Module. Source: [Meng et al,, 2011]

computing and communication resource and actuation capability. Each module can perceive its
local environment using on-board sensors, and communicate with neighboring modules. Each
Cross-Cube module consists of a core and a shell. The core is a cube with six universal joints.
Each joint can be attached to or detached from the joints of its neighboring modules. The axis of
each joint can be actively rotated, extended, and returned to its default direction. Basic module
movements include rotating, climbing, and parallel movements.

Cross-Ball is a new lattice-based, three-inch diameter sphere SRMR design, that is currently
under development at the Stevens Institute of Technology (Figure 2.9). Its major features
include: several flexible reconfiguration capabilities such as rotating, parallel and diagonal
movements, so that various three-dimensional (3D) configurations can be constructed; a flexible
and robust hardware platform for SEMRs using complex self-reconfiguration algorithms, such
as the morphogenetic control algorithm developed for MRs introduced in [Meng et al., 2010];
and the mobility of each individual module to simplify the configuration process under certain
scenarios and potential applications to swarm robotics. It consists of three main components: an
arm system in the middle and two spherical halves on the sides. The two spherical halves can
rotate according to the arm system. Three pairs (six) of genderless attachment mechanisms
are equipped in three orthogonal directions, with each attachment of a pair placed opposite
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to each other. Using the rotary arm and side clasp, a module is capable of three types of
self-reconfiguration motions: rotating, parallel and diagonal movements.

2.1.4 Hybrid-type

Hybrid-type architecture takes advantages of both chain-type and lattice-type architectures.
Control and mechanism are designed for lattice-type reconfiguration, in addition to allowing a
module to reach any point in the configuration space. Some of the most recent designs are of
Hybrid-type architecture, which are reviewed in the following subsections.

2.1.4.i UBot

UBot [Zhao et al., 2011] [Liu et al., 2012] (Figure 2.10) is a novel Self-Reconfigurable Modular
Robot (SRMR) system made of autonomous robotic modules at the State Key Laboratory of
Robotics and System of Harbin Institute of Technology. Each robotic module is made up of a
simple structure and 2-Degree of Freedom (DOF). A group of connected modules are able to
change their configuration by changing their local connections, and has functionality of a robotic
system which is capable of generating complicated motions for accomplishing a large variety
of tasks, such as: transportation, exploration, inspection, construction and in-situ resource
utilization.

Multimodal locomotion and self-reconfiguration are the basic and essential capabilities for
a SRMR system, and UBot achieves these by combining the advantages from chain-type and
lattice-type systems. Each UBot module is a cubic structure, based on a universal joint with two
rotational DOF and four connecting surfaces that can connect to or disconnect from adjacent
modules. The smart structure and the reliable connecting mechanism of the modules make the
robot flexible enough to perform both multimodal locomotion and self-reconfiguration. UBot can
perform locomotion in the modes of quadruped, chain and loop configurations. Besides, the
system can self-reconfigure from one configuration to another (e.g.: Quadruped configuration to
chain configuration).

UBot presents a new sensor module for SRMR system, and a novel docking method for
precise docking between modules. The sensor module is designed with the same external
dimensions as active and passive modules. In order to maintain functional consistency, the
connecting surfaces are equipped with hook holes and electrical contacts to connect and
communicate with active modules. The sensor module is installed inside with a wireless CCD
vision sensor, four linear Hall sensors, infrared distance sensors and acceleration sensor. The
automated docking progress has three steps: visual prepositioning process, precise positioning
through hall sensors and crawling and self-locking by the hook-type connecting systems.
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(b) Caterpiflar gait ({c) Quadruped gait

Figure 2.10: UBot. Source: [Fhao et al., 2011]

2.1.4.ii SMORES

Self-assembling MOdular Robot for Extreme Shape-shifting (SMORES)E [Davey et al., 2012]
is a SAMR developed at the University of Pennsylvania with the goal of realizing a universal
Modular Robot (MR). It uses five identical motors to achieve a module with 4-DOF (Figure 2.11),
three active docking connectors, and module movement that can utilize lattice, chain and mobile
module movement strategies. SMORES modules can drive upright and upside down, and move
by themselves to connect with other modules. SMORES is designed to emulate connection point
arrangements and DOF of many existing systems like Polybot, CONRO and Superbot, amongst
others.

SMORES has one passive and three active docking ports. Active docking ports control the
attachment process, and passive ports only provide a physical space for a neighboring module to
connect to. All connectors on the module are genderless. Power is on-board and communication
between modules is achieved wirelessly, so docking connections are needed only for mechanical
attachment. On-board processing is done by an mbed micro-controller that is based on the NXP
LPC1768, with a 32-bit ARM Cortex-M3 core running at 96MHz. Wireless data transmission
between modules and a central controller is achieved with X-Bee radio transmitter/receivers.
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Figure 2.11: SMORES Module. Source: [Davey et al., 2012]

2.1.4.ii

{(Modular Mobile Multirobot) [Wolfe et al., 2012] is a design for a low-cost MR based
on a previous design [Kutzer et al., 2010] developed at the Johns Hopkins University. The
modules are self-mobile, with three independently driven wheels that also serve as connectors
(Figure 2.12). The new connectors can be automatically operated, and are based on stationary
magnets coupled with mechanically actuated ferromagnetic yoke pieces. Extensive use of plastic
castings, laser-cut plastic sheets, and low-cost motors and electronic components are made in
developing this platform. Modules interface with a host PC via Bluetooth radio. An off-board
camera, along with a set of modules and a control PC form a corwvenient, low-cost system for
rapidly developing and testing control algorithms for self-reconfiguration.

To reduce cost, on board sensing is minimized through the use of external imaging. Multiple
robots can operate in an arena observed by an overhead camera. A real-time program running
in MATLAB interfaces to the camera over Universal Serial Bus (USB) port and to each robot
in the arena via Bluetooth. Special absolute encoder markings on the perimeter of wheels
are used to provide high-accuracy measurement of wheel angles. The processor used is an
Atmel ATmega328 running Arduino firmware. Serial commands are parsed, and then motion
commands are sent to three PIC18F1320 microprocessors with a Step/Direction interface. Each
PIC performs closed-loop position and/or speed control on the motors, counts encoder pulses,
and outputs a Pulse Width Modulation (PWM) signal for the motor driver. The estimated cost of
the system is only 190%.

2.1.4.iv Roombots

Roombots (RB) [Sproewitz et al., 2009] [Sprowitz, 2010] were developed at the Swiss Federal
Institute of Technology in Lausanne (EPFL) to form the basis for self-reconfigurable furniture
(Figure 2.13). RB were designed to facilitate a single module to autonomously travel, through
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(a) Example of complex laftice and chain struc- (b) Detail of the module
fures

Figure 2.12: @ . Source: [Wolfe et al., 2012]

self-reconfiguration, to any position on a two-dimensional (2D) grid. Here a module can travel
on a 2D grid through a sequence of attachments and detachments between the module and
the connection mechanism of the grid structure. The design also ensure to overcome concave
edges in 30, by using only 3-DOF per module.

A single RB module is composed of two cube-like elements, each with an edge length of
110 mm. Each module has three continuous rotational DOF, and up to ten four-way symmetric,
hermaphrodite Active Connection Mechanisms (ACM) connectors, allowing RB modules to
autonomously connect to and disconnect from other RB modules and the grid structures. A RB

module weighs about 1.4 kg. Any joint of a RB module can deliver sufficient torque to lift an
additional RE module.

Figure 2.13: Roombots. Source: [Bonardi et al., 2012]

2.1.5 Locomotion

Locomotion in Modular Robot (MR)s is achieved through coordinated action of individual modules.
In chain-type MRs, locomotion is achieved through continuous actuation of it's Degree of Freedom
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(DOF) motors, whereas in lattice-type, locomotion comes about as a result of continuous self-
reconfiguration. Gait produced by a modular robotic configuration depends on the morphology
of the configuration. Gaits ranging from creeping and crawling gaits, achievable in limbless
modular robaotic configurations, through walking and rolling gaits achievable in more complicated
two-dimensional (2D) and three-dimensional (3D) configurations are reviewed in the following
subsections.

2.1.5.i Limbless locomotion

Modular robotic configurations that lack limbs, such as linear configurations, use their body to
generate the propulsive force needed for locomotion. Three different limbless gaits that utilize
module’'s DOF motors in linear configurations have been surveyed in the following subsections.

Caterpillar gait

Caterpillar gait is the most common gait in all of chain-type MRs [Kurokawa et al., 2003], [Stey
et al., 2003], [Brunete et al., 2012b], [Gonzalez-Gomez and Boemo, 2005], [Gonzalez-Gomez,
2008]. It has been implemented in virtually all the modular robotic platforms discussed in
subsection 2.1.2, page 14. It is a one-dimensional (1D) gait inspired by the crawling locomotion
of a biological caterpillar. The robot can move either in forward or backward directions on a
straight line, and it is commonly implemented in linear modular robotic configurations. The gait
is achieved by oscillating only the pitch-axis actuator(s) of connected modules, with consistent
phase-shift in oscillation between consecutive modules (Figure 2.14). This produces a traveling
wave along the length of the configuration, which results in propelling the robot forward in the
direction of the traveling wave. Negating the phase-shift values of the oscillating modules, results
in the linear robot moving in the opposite direction.
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Figure 2.14: Phaserelation between consecutive modules in a Enear configuration to produce Caterpillar
gait. Source: [Gonzalez-Gomez, 2008]

Lateral-shift

This is a 2D gait, and can be implemented in linear configurations with alternating — pitch-axis
(vertical oscillation) and yaw-axis (horizontal oscillation) — actuators, along the length of the
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configurations. Lateral-shift gait is inspired by and replicates locomotion of sidewinder snake
species. This gait is achieved by oscillating both pitch-axis actuators and yaw-axis actuators of
the configuration, but here phase-shift in oscillating modules are separate for the two sets of pitch-
axis and yaw-axis actuators. There exists consistent phase-shift between consecutive pitch-axis
actuators, as well as between consecutive yaw-axis actuators (Figure 2.15). Amplitude, offset
and phase parameter of the oscillation determines the shape, direction and speed of the gait.
Lateral-shift gait is demonstrated in [Stey et al., 2003], [Brunete et al., 2012b], [Gonzalez-Gomez
and Boemo, 2005] and [Gonzalez-Gomez, 2008].

Figure 2.15: Phaserelalion between pitch-axis {vertical osdillation) and yaw-axis (horizontal oscillation)
actuators in a linear configuration, for producing lateral-shift gait. Source: [Gonzalez-Gomez, 2008]

Inchworm

Extension \%

uoisuedxg

(a) Support module

(c) Inchworm configuration

Figure 2.16: Microtub inchworm gait modules and configuration. Source: [Brunete et al., 2012b]

Inchworm gait is achieved in linear configurations by contracting and elongating the length of
the configuration. In [Brunete et al., 2012b], inchworm gait inside pipes of varying diameters
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has been implemented in the heterogeneous multi-configurable MR Microtub, using two kinds
of modules: support module (Figure 2.16a), and extension module (Figure 2.16b). Support
module, the outer surface of which is partially rubber, when actuated expands outward, firmly
holding the module to the inner-surface of the pipe. It is a passive module, as in, it does not by
itself propel the robot, but aids in doing so. The extension module, which has a linear actuator,
when actuated can both extend and rotate in the yaw-axis. The gait is achieved by connecting
at least one extension module in between two support modules (Figure 2.16¢). Sequence of
action in such a configuration to achieve inchworm gait is as follows,

1. Rear support module is actuated, expanding and holding the surface of the pipe, while the
front support module is released.

2. The center extension module is extended, pushing the robot forward.
3. Front support module is actuated, while the rear support module is released.

4. The center extension module is contracted, pulling the robot forward.

In [Wang et al., 2009] the authors have studied kinematics of the gait of a biological inchworm,
and replicated the same on a linear modular robotic configuration with suction cups. Two kinds
of modules are used: joint modules (Figure 2.17a) with 1-DOF actuator in pitch-axis, and
attachment modules (Figure 2.17b) with an active suction cup for attaching the module to
vertical surface. A linear configuration is formed by connecting three joint modules serially, along
with two attachment modules at either end (Figure 2.17c). Here, locomotion is achieved by
first activating the upper attachment module, holding the configuration on the vertical surface,
while releasing the lower attachment module, and at the same time contracting the length of
the configuration by actuating all three joint modules. Then by activating the lower attachment
module, while releasing the upper attachment module, and actuating the joint modules to extend
the length of the configuration, pushing the robot upward.

In [Russo et al., 2012] inchworm gait has also been achieved in a linear configuration
containing three Scout modules (Figure 2.18). The gait is achieved by repeating cycles of
contraction and elongation of the body length of a linear configuration, through coordinated
actuation of module’s DOF actuators. Here, unlike in the previous two cases, the gait has been
demonstrated on horizontal surface, in open-air.

2.1.5.ii Walking locomotion

In biological terms, walking is a gait in which at least one foot is kept in contact with the ground
at all times during locomotion. Configurations in which modules span 2D surface of the ground
plane, during locomotion, can be classified as 2D configurations, while configurations with
modules spanning 3D space can be classified as 3D configurations. Common walking gaits in
2D and 3D configurations found in the literature are as reviewed in the following subsections.
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Figure 2.17: Inchworm modules and configuration. Source: [Wang et al, 2009]

Figure 2.18: Inchworm configuration using three Scout modules, performing inchworm gait {a) start
position, (b) and (c) contraction, (d) elongation. Source: [Russo et al, 2012]

2D walker

In[Russo et al., 2012] five Scout modules are used in a 2D quadruped configuration (Figure 2.19),
where four modules form limbs of the quadruped, while the fifth module is the torso module,
holding the rest of the modules together. Here, each limb has one rotational DOF in the pitch-
axis, and locomotion in any direction on a 2D plain is achievable in this configuration. The
quadruped can move in forward and backward directions at a speed of , and the authors
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have experimentally proven its ability to climb over obstacles high and at a slope of

Figure 2.19: Scout 2D quadruped configuration performin fourdegged locomotion. Source: [Russo et al.,
2012]

3D walker

3D quadruped configurations have been presented in [Stoy et al., 2002] and [Pouya et al., 2010],
where each limb has two rotational DOF. Each limb has one hip-joint, that oscillate in the
pitch-axis, and one knee-joint, that oscillate in the roll-axis. Here, each limb needs to coordinate
with other limbs in the configuration — Inter-limb coordination — as well as joints within a limb
(hip joint and knee joint) needs to coordinate with each other — Intra-limb coordination — to
produce walking gait. Spine modules in these configuration oscillate in the yaw-axis, enhancing
the produced gait. In [Stoy et al., 2002], an hexapod configuration is created by appending the
guadruped configuration with an extra spine module and two limb modules (Figure 2.20). Similar
to the 2D walker, walking gait is achieved in these configurations when diagonal set of limbs
oscillate in phase, while maintaining a phase-difference between the two sets of limbs.

(b) Hexapod

Figure 2.20: CONRO modules configured as quadruped and hexapod walker. Source: [Stoy et al,, 2002]
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An H-Walker is a 3D quadruped with multiple DOF limbs presented in [Shen et al., 2006]
and [Kurokawa et al., 2003]. Here the spine module is static, used only for connecting the limb
modules together (Figure 2.21).

Figure 2.21: M-Tran modules in H-Walker configuration. Source: [Kurokawa et al., 2003]

2.1.5.ii Rolling/Wheel-based locomotion
Rolling-track

Rolling-track gait can be achieved in a loop configuration, which is formed by connecting the
two end modules of a linear configuration to each other, closing the loop. An example of a
loop configuration is as seen in Figure 2.22. Experiments on this gait has been done in [Stay
et al., 2003], [Shen et al., 2006], [Chiu et al., 2007], with loop configurations of varying sizes.
Loop configurations, depending on the number of modules, can take the shape ranging from
an hexagon to a circle. Locomotion in this configuration is achieved by continuously changing
the shape of the configuration, by squeezing and realizing the shape of the loop. In [Chiu et al.,
2007] steep slope-climbing with a loop configuration has been demonstrated, where the loop is
collapsed to maintain a low center of gravity.

Helicoidal

In [Brunete et al., 2012b] authors have described experimenting with helicoidal gait on the
heterogeneous chained robot MictoTub. The gait is achieved in linear configuration with a
special module composed of two parts: a body and a rotating head ( 2.23a). When the head is
continuously rotated, it pushed the body of the robot forward in a helicoidal motion. This gait has
been tested inside vertical and horizontal narrow pipes, and in open air. This gait is very fast, but
only locomotion in 1D is possible.
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Figure 2.22: CONRO modules in closed-loop configuration. Source: http: //wuw. isi. edu/ robots/

conro/ proto. html
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Figure 2.23: Helicoidal module and gait Source: [Brunete et al., 2012b]

Differential drive

Differential drive is a two-wheeled drive system, where each wheel is actuated independently.
Direction and rotation of locomotion comes about as a result of the speed and direction of rotation
of the two independently controlled wheels. In [Kernbach et al., 2011c], track based, screw drive
based and omnidirection-wheel based differential drive locomotion has been implemented in
Scout, Backbone and Active Wheel MRs respectively (Figure 2.24), which gives independent
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locomotion capability for individual modules, as well as macro-locomotion as part of a larger
robotic organism.

A Scouf module has two independently driven tracks on either sides (left and right) of its
quasi-cubic shaped chassis, which gives it the ability to move forward, backward, turn right,
turn left and to rotate on its own axis. The tracks are differentially driven, and provides Scout
module the ability to move around independently on rough terrain, climb over small obstacles,
pass over small holes and scale slopes of up to incline. In a multi-robot configuration mode,
several Scout robots connected in a linear configuration, can coordinate together to produce
linear-track-gait; resembling a multiple bogie train.

Two cylindrical screw drives placed in the front-bottom and rear-bottom side of the quasi-
cubic chassis are used for independent locomaotion in the Backbone MR. Two motors control the
screw drives independently, and through differential drive, locomotion in forward, reverse, left
and right directions, along with turning left and right are possible. Screw drives are mainly used
for independent locomotion of a Backbone module in its environment, and for alignment during
docking procedure between two modules, but it can also be used for macro-locomotion in multi-
robot configuration mode (e.g.: In a Backbone modules based linear Caterpillar configuration,
lateral movement for avoiding an obstacle can be achieved through coordinated actuation of
screw drives of all the modules in the configuration).

Omnidirection-wheels have small disks around the circumference of the wheel, which can
passively roll in the direction perpendicular to the rotational direction of the wheel. An Active
Wheel module has two pairs of omnidirection-wheels, placed perpendicular to each other, and
four motors independently controlling the four wheel. This gives an Acfive Wheel module the
ability to independently move forward, reverse, right, left, turn right and left, rotate on its own
axis, move on an arc, and also move in complex trajectories on a 2D plane through accurately
controlling the four independent motors. Through coordinated actuation of omnidirection-wheels
on multiple Active Wheel modules in a multi-robot configuration, the robot organism can move on
2D surface for transporting connected Scout and Backbone modules from one place to another.

I..
(a) Scout (b) Backbone (c) Active Whee/

Figure 2.24: Scout, Badkbone and Active Wheel modules with fracks, screw driver and omnidirection-
wheels respectively. Source: [Kernbach et al., 2011b]

In [Davey et al., 2012] authors have implemented a wheel based differential drive system
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in Self-assembling MOdular Robot for Extreme Shape-shifting (SMORES) MR for modules to
move independently on relatively flat surfaces. The wheels, which also holds docking ports on its
surface, are on the right and left sides of the cubic shape chassis of the module. Each module
can move forward, reverse, turn left and right, and rotate on its own axis. This locomotion is
necessary for modules to aggregate and align for self-assembly.

2.1.5.iv Self-reconfiguration based locomotion

In lattice-type MRs, locomotion is achieved through continuous self-reconfiguration. In a lattice
structure, when modules at one end of the grid, by continuously connecting to and disconnecting
with other modules on the outer edge of the structure, move to the other end of the grid, this
results in the displacement of the entire structure. This kind of locomotion gives the notion of
modules flowing on the ground, which is visually similar to locomotion of an amoeba, or to that
of a puddle of water flowing on a flat surface.

In [Meng and Jin, 2011] lattice-type MR Cross-cube modules are continuously reconfigured
to produce flowing locomotion. An advantage of this locomotion is that a configuration can
morph its shape to avoid obstacles, or to move through narrow passage. In [Bonardi et al., 2012],
Roombots (RB) modules move on a 2D grid, from an initial position to the goal position on the
grid, through self-reconfiguration. Modules connect to the 2D grid surface, where each grid cell
has a connector similar to those on the module. A module connected to a grid cell, through its
DOF motor actuation, can reach its neighboring cell, then connect to that cell and disconnect
from the previous cell. In this way, a module can move from cell to cell on a grid, moving from an
initial to the goal location.

2.1.6 Controller

As per the literature, controllers in modular robotics are generally used for controlling locomotion
and self-reconfiguration. These controllers can be broadly classified into Central Control (CC)
type and Distributed Control (DC) type. In a CC type controller, individual modules in a configu-
ration, receive high-level control signals from either a master module or from an external source.
On the contrary, in a DC type controller, each module computes its own control signal, based
on its sensor readings and inter-module communication. Homogeneity is another aspect of
controllers in Modular Robot (MR), where if all the modules in a configuration has the exact same
controller, then it is called as homogeneous controller, and non-homogeneous or heterogeneous
otherwise. Scalability of a controller determines its ability to continue to function without any
modifications, as the number of modules in the configuration grows.
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2.1.6.i Locomotion Controllers

A wide variety of locomotion controllers for MR can be found in the literature. Some controllers
are based on control theory, while many others are biologically influenced. Several of the
locomotion controllers from the early days on MR, to more recent controllers are reviewed in the
following subsections.

Gait-table controller

In [Y¥im et al., 2000] Mark Yim and colleagues propose a gait control table for caterpillar and
rolling-track locomotion in Polybot MR, where each column of the table represents the action
of a module in the configuration. So each row would then be a set of actions for the entire
robotic configuration, at a certain point in time. Each module would have the entire gait control
table, making the controller homogeneous. A master module would then communicate with the
rest of the modules to synchronize the transition from one row to the next, making it a central
controller. If the number of modules in the configuration changes, then gait table has to be
modified accordingly, which means that the controller is not scalable.

Cellular Automata

Lal et al. in [Lal et al., 2006] have implemented a Cellular Automata model for controlling
locomotion of a five limbed star-shaped MR (Figure 2.25), where rules are evolved for controlling
the actuator of each module, distributedly, based on the state of the module’s actuator, and that
of its immediate neighboring modules’ actuators, in the previous time step.

Figure 2.25: The Brittle Star MB, with five limbs and six modules per limb. Source: [Lal et al, 2006]
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Hormone inspired controller

Shen et al. have used a biologically inspired method called Digital Hormone Method [Shen et al.,
2000], [Shen et al., 2002] for adaptive communication of state information between modules,
based on which a module can decide an action from a predefined gait-table, which results in the
emergence of locomotion. A particularly interesting aspect of this work is that if the configuration
of the robotic organism changes, or if one or some modules fail, with adaptive communication,
the gait is adapted to suit the change in configuration. Digital Hormones have been successfully
implemented on two different modular robotic platforms, CONRO [Castano et al., 2000], [Castano
et al., 2002] and Superbot [Salemi et al., 2006]. In this control model, there is no central master
module, and so it is a DC. Also, the controller is homogeneous and scalable.

Sinusoidal controller

Gonzalez-Gomez et al. demonstrate in [Gonzalez-Gomez and Boemo, 2005] how simple
sinusoidal oscillators can be used on minimal configuration MRs, with two and three modules,
for generating locomotion in one-dimension (1D) and two-dimension (2D) respectively, and
in [Zhang et al., 2009] they study locomotion of two different kinds of caterpillar gaits, from a
kinematic perspective, and replicate the same on linear configuration MRs, again using simple
sinusoidal oscillators. The controller here is distributed, but without any communication between
modules for coordination. So time synchronization between modules is achieved by the internal
clock of the module’s computing unit, and so the user needs to ensure booting all the modules at
the same time. The controller is scalable, but not homogeneous since control parameters are
predetermined based on the position of the module in a given configuration.

Role-based controller

In [Stey et al., 2003] Stoy et al. propose a role-based controller for locomotion in CONRO
[Castano et al., 2000] [Castano et al., 2002] MR. A role-based controller consists of an oscillatory
function, with a period T, which calculates the joint-angles of the module. Every time a module
has completed a specific fraction d of period T, a message is sent to its children modules. When
a module receives a message from its parent module, it resets its T to 0, making its action
sequence delay by d compared to its parent. This delay introduces a phase-shift of —
radians to the module’s joint angle(s) sequence, and thus the needed coordination between
modules to produce the intended gait. This mechanism works in chain-type configurations for
producing caterpillar, sidewinder and rolling-track gaits, where all the modules have to perform
the same sequence of actions, albeit starting at different points in time.

For producing more complex quadruped and hexapod walking gaits in legged modular robotic
configurations, modules have to perform different sequence of actions based on their location in
the configurations (e.g.: Spine-module and leg-module in a quadruped configuration would have
to perform different sequence of actions). So, to facilitate this, role-based controller is further
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enhanced in [Stoy et al., 2002] by adding a role-selection mechanism, a set of different oscillatory
functions and a set of different delays . In the enhanced controller, a module chooses its
role based on the role of its parent controller, the connector of the parent module it is connected
to, a set of its connectors connecting it to children modules, and the role of its children modules.
The authors demonstrate the scalability of the controller by applying the same controller on
both a six-module quadruped configuration, as well as on a nine-module hexapod configuration
— which is conceived by adding an extra spine-module and two additional leg-modules to the
quadruped configuration — and successfully producing walking gaits in both the configurations.
The controller is distributed as there isn't a single central module used for synchronization, as
well as homogeneous since all the modules have the exact same controller.

Central Pattern Generator

In [Spriwitz et al., 2008] ljspreet et al. at the Biorobotics Laboratory, Swiss Federal Institute of
Technology in Lausanne (EPFL), have used Central Pattern Generator (CPG) [ljspeert, 2008] for
producing locomotory oscillations on their modular robotic platform YaMoR [Moeckel et al., 2005]
(Figure 2.26), among other robotic platforms. In [Pouya et al., 2010] they have tried similar CPGs
for producing both oscillation and rotation in Degree of Freedom (DOF) actuators of their second
generation modular robotic platform Roombots (RB) [Sproewitz et al., 2009] [Sprowitz, 2010].
CPGs are specialized neurons found in the spinal cord of vertebrates, that have the ability to
produce rhythmic output without rhythmic sensory or central input. Mathematical model of CPGs
used for controlling locomotion in MRs are usually one or two CPG neurons per module, which
are coupled in different ways, based on the configuration, with similar neurons of other modules
in a given configuration. CPGs were first successfully used on a modular robotic platform by
Kamimura et al. in [Kamimura et al., 2003], where they use it for producing oscillations for
adaptive locomotion on their M-TRAN MR.

(a) Yamor mod- (b} Linear configuration {¢) Quadruped configuration
ule

Figure 2.26: Yamor MAR. Source: hitp: //biorob. epfl. ch/ cms/ page—3637T. himl

The CPG based controller is of distributed control type, as there isn't a single module
responsible for coordination among modules, but modules synchronize their action based on
actions of other connected modules in a distributed manner. An important aspect of CPG
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based controller is how CPG of one module is coupled with CPGs of other modules in a
given configuration. This coupling is based on the morphology of the configuration, so it is
fixed and predetermined. Control parameters of a CPG differs from module to module, based
on the module’s position in the configuration. So this controller can neither be classified as
homogeneous nor as scalable.

Heterogeneous layered controller

Brunete et al. in [Brunete et al., 2012a] have developed a multi-layered control architecture for
the heterogeneous multi-configurable MR Microtub. The control architecture consists of three
layers: high-level central controller (CC), low-level behavior-based embedded controller and
a middle-level heterogeneous interpreter connecting the high-level and low-level controllers.
The CC is behavior-based as well, and controls the modular robotic configuration as a single
entity, collecting sensory information from modules, processing it and sending situation and
action commands to the modules. It also acts as a planner and helps modules synchronize their
actions. The CC can either be off-board on an external PC, as it was in [Brunete et al., 2012a],
or on-board as a part of one of the modules.

The low-level controller is a set of individual behaviors, which allows the module to react
in real-time, independent of the CC. Examples of low-level behavior control include sensing
and acting on external and internal stimuli, such as detecting an obstacle and adapting the
shape accordingly to avoid the obstacle, and turning off an actuator on sensing overheating,
respectively. Other behaviors include controlling the module’s actuator for producing locomotion,
communicating with connected modules, etc.

The heterogeneous middle-level layer acts as an interpreter between the CC and the low-level
controller. Control commands sent by the CC are identical to all the modules, which themselves
are heterogeneous. So when a high-level command is received by a module, it is processed
by its middle-level interpreter, and translated to module specific instructions. Similarly, when
a module needs to send a message to the CC or other modules, this too is handled by the
middle-level interpreter.

The layered controller is semi-distributed, as some low-level actions can be taken by the
module in real-time, independent of the CC, but high-level control commands and synchronization
are still controlled by the CC. It is heterogeneous because middle-level and low-level controllers
are module specific, but scalable because of the semi-distributed and layered architecture of the
controller.

Artificial Neural Network based controller

Lal et al. in [Lal et al., 2008] have implemented an Artificial Neural Network (ANN) model
as a locomotion controller for their six legged brittle star MR, where each module is modeled
as a neuron in a fully connected ANN. Neurons sum their weighted input stimulus, which is
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the actuator’'s phase angle that they share locally or globally based on their location in the
configuration, and use a sinusoidal activation function to determine the next step. The authors
have used Genetic Algorithm (GA) for evolving optimal synaptic weight vector of the ANN.

This controller is distributed and homogeneous, as all the modules decide their own action,
and each module start with the same initial parameters. The parameters of the ANN (synaptic
weights) are learned for the specific morphology of the robot, through evolution. By extending the
size of the robot, either by increasing the number of legs or by increasing the number of modules
in each leg, through a similar evolutionary process, new gaits for the modified configuration can
be learned, making the controller scalable as well.

2.1.6.ii Self-reconfiguration Controllers

Self-reconfiguration is an important aspect of a Self-Reconfigurable Modular Robot (SRMR),
which gives it the ability to change its morphology to suit its environment and/or current task.
In lattice-type and hybrid-type SRMR, locomotion is achieved through the process of self-
reconfiguration.

Morphogenesis inspired controller

In [Meng and Jin, 2011] Meng et al. have proposed a hybrid-hierarchical-layered controller for
self-reconfiguration, inspired by biological multi-cellular morphogenesis. Morphogenesis is a
biological process through which the shape of an organism is determined. During the stage
of embryonic development of an organism, genes contained in individual cells are expressed,
resulting in various cellular functions. This expression of genes is regulated by proteins produced
by the same gene or by other genes in the cell, or by other genes in neighboring cells, through
intra-cellular or inter-cellular diffusion, forming a complex web of Gene Regulatory Network
(GRN). In this work, the authors consider a module equivalent to a biological cell, connected to
other modules to form a multi-cellular organism.

The controller consists of three layers: pattern generation layer, pattern formation layer
and low-level hardware dependent layer. The first layer responsible for generating the pattern
(modular robotic configuration) is a rule-based controller, where a pattern is represented as a
three-dimensional (3D) grid occupancy graph, and encoded as a lookup-table. Based on the
environmental constraints and task at hand, by following a set of rules, modules can modify this
table to bring about a change in the pattern. For example, when an individual module senses an
obstacle in the environment through its local sensor, it can diffuse this information in the network
through communication, to bring about a global change in the pattern.

Once a target pattern is set or adapted in the lookup-table, modules can then act inde-
pendently to converge to the global pattern. By setting any of the modules as the origin in
the occupancy graph, modules can then localize themselves in the configuration through local
communication. Based on the relative position and the desired target pattern, modules can then
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produce and diffuse different kinds of proteins through local communication. This is the pattern
formation, second layer of the hierarchical controller. A module can produce and diffuse positive
proteins to attract modules to occupy one of its empty neighboring space in the grid, or negative
proteins to empty one of its neighboring space. The third layer is hardware specific, and controls
the module's actuator and connectors for self-reconfiguration.

The proposed controller has successfully been tested on Cross-cube [Meng et al., 2010]
MRs, in a physics based simulator. The controller is distributed, as modules decide their
action independently based on their sensory information, and through local communication with
neighboring modules. It is homogeneous, as all the modules have the exact same controller.
In the article, the authors have also experimentally proven the scalability of the controller by
successfully testing it on varying-size configurations.

Motor primitives based controller

Bonardi et al. in [Bonardi et al., 2012] have proposed a locomotion controller for the RE [Sproewitz
et al., 2009] [Sprowitz, 2010] MR, achieved through self-reconfiguration. Locomotion in this
context refers to the process of a RB module moving from an initial position to a goal position on a
two-dimensional (2D) grid. Each grid position contains an Active Connection Mechanisms (ACM)
connector, similar to the ones on the RB modules (Figure 2.27).

Each module has three continues rotational DOF, through which a module can translate
by a distance of one unit on the grid. Each such action, leading a module to translate by one
grid unit, is termed as an Atomic Motor Primitive (AMP). Due to the kinematic constraints of
the module, a module can translate to only two out of eight possible neighboring positions on
the grid. So, to move to any of the eight possible neighboring grid positions, a module needs to
perform a set of AMPs, and a concatenation of one or more such AMPs is termed Composed
Motor Primitive (CMP).

D* algorithm is used as a high-level planner for planning a path for the module to travel
between the initial and the goal position on the grid. A low-level planner is proposed which, based
on the path found by the D* algorithm, decomposes the path into a set of CMPs to traverse
the path. Both the high and the low-level controllers take static obstacles (e.g.: Other modules)
into consideration while planning. The proposed planner, due to the kinematic constrains of the
module, does not have a solution for every possible grid-world configuration containing obstacles.
If the planner finds a set of CMPs, it is not necessarily optimal either.

The authors have successfully tested the controller, both in simulation and on the real robot.
In simulation, fixed size grid-world with fixed and random size and number of obstacles, along
with random initial and goal positions were generated. Out of 300 total experiments, the authors
report a success rate in the planner finding a path from the initial to the goal position. All
the experiments in the article have been performed with a single RB module, so it cannot be
determined if the controller is distributed or central, homogeneous or heterogeneous, and if it is
scalable.
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Figure 2.27: A single RB module in a 2D grid world, where each grid contains an ACM connector.
Source: [Bonardi et al., 2012]

2.2 Humanoids locomotion

Humanoid locomotion is an ongoing topic under robot locomotion, and a wide range of ap-
proaches towards bipedal locomotion can be found in the literature. Some approaches such
as [Kajita et al., 2003], [Wieber, 2006], [Gonzalez-Fierro et al., 2014] and [Monje et al., 2013]
make use of reduced models for obtaining the dynamics, while several other approached such
as [Nagasaka et al., 1999], [Yamane and Nakamura, 2003] and [Khatib et al., 2004] make use of
a distributed mass formulation. While many of these approaches are based on Zero Moment
Point (ZMP) controllers, an interesting alternative is based on bipedal locomotion through CPGs.

CPGs, as reviewed in section 2.1.6.i, page 36, are specialized neurons found in the spinal
cord of vertebrates, that have the capability of producing rhythmic output without rhythmic
sensory or central input. It has been hypothesized that during animal locomotion, there is a feed-
forward mechanism that activates muscles using signals generated by the CPGs. Locomotion in
humanoid robots based on CPGs have been successfully implemented in [Shan and Nagashima,
2002] and [Endo et al., 2008]. In [Or, 2010], a CPG controller is combined with a ZMP controller,
to obtain a stable bipedal gait. Authors of [Shan et al., 2000] proposed a CPG controller, where
weights of the CPG are optimized optimized through GA. Here fitness function is formulated as a
combination of ZMP, altitude of the robot and walking speed, with the ZMP component implicithy
ensures stability. Authors of [Nakanishi et al., 2004] present another CPG based approach,
where stable bipedal gait trajectories are generated based on human demonstrations.

Another parallel and interesting approach towards bipedal locomotion in humanoid robots
involves obtain prerecorded data from human bipedal walking and then transfer the locomotion
behavior on to a robot. In [Mombaur et al., 2010] Mombaur et.el, have used inverse optimal
control on motion capture data of human bipedal walking, and have successfully implemented it
on the Humanoid Robotics Platform (HRP)-2 platform [Kaneko et al., 2002]. In [Morimoto and
Atkeson, 2007], the authors have implemented a Reinforcement Learning (RL) algorithm for
bipedal walking, in which the robot learns how to appropriately modulate observed gait pattern
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for producing a stable gait. In [Miura et al., 2009], bipedal walking and turning locomotion are
implemented on the HRP-4C humanoid robot. It is achieved by adapting gait parameters such
as step length, gait speed, rotational angle during turn, etc., of the human motion capture data.

2.3 Morphological Computation

The term Morphological Computation was coined by Chandana Paul [Paul, 2006], and it refers
to outsourcing of computation to morphology and material property of an agent. Traditionally,
intelligence and cognition have been associated solely with the brain of an agent, without taking
into consideration its body and morphology. But some articles like [McGeer, 1990], [lida and
Pfeifer, 2004] have shown that intelligence can arise as a result of interaction between the brain,
body and the environment the agent is embedded in.

2.3.1 Passive dynamic walking

One on the earliest and a classical example of Morphological Computation was demonstrated
by Tad McGeer [McGeer, 1990] with the passive dynamic walker, which is a mechanical system
that can walk down an inclined ramp with a slope of a certain degree, without any actuator,
power-supply, sensing or computation. In a sense, this agent is completely brain less, and the
behavior of walking is produces solely based on its morphological properties, which is specifically
tailored to produce the walking behavior. Energy requirement for walking in this design is minimal,
as walking is produced solely by gravitation, and the walking gait produced seems very human
like.

The drawback of the passive dynamic walker is that the conditions in which it operates, also
called as its ecological niche, is very narrow. It means that the passive dynamic walker would
cease to operate if anything in its environment or its morphology, like the slope on the ramp or the
material property of its feet, respectively, is changed. Denise, an augmented passive dynamic
walker with actuators, power supply and controller, was created by Martijn Wisse [Wisse, 2004]
at Techinical University of Delft. Morphology of Denise was adapted to walk on level surface,
and the emerged walking gait was very human like and in-turn very energy efficient.

2.3.2 Puppy

Puppy [lida and Pfeifer, 2004], a quadruped robot, built at the Artificial Intelligence lab, University
of Zurich, mimics the morphology of a canine. Puppy has four limbs, and twelve joint (four each
at the shoulder/hip, elbow/knees and ankle) in total. There are eight standard digital servomotors
at the shoulder/hip and elbow/knee joints, and the ankle joints are connected via passive springs.
A simple sinusoidal position controller was applied to each of the four shoulder/hip joints, wherein
the motor commands for the two shoulder joints are symmetrical, and the motor commands for
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(a) The classic passive (b) Denise
dynamic walker
Figure 2.28: Passive dynamic walkers. Source: http://ruina. tam. cornell. edu/research/
topics/ robots/ index. php

the two hip joints are symmetrical as well. The elbow/knee joints are fixed to a constant position,
and the ankle joints are passive. When evaluated by placing the robot on the ground, the robot
displays a running gait, which is a result of the morphology of the robot (its shape and the
passive spring joints), controller (parameters of the sinusoidal controller) and the environment
(friction of the ground surface and gravity) the robot interacts with.

Figure 2.29: The quadruped robot Puppy. Source: [lida and Pfeifer, 2004]

2.3.3 WalkNet

Studies of insect locomotion [Cruse, 1990] [Cruse et al., 2002] has shown that the coordination
between legs of an insect during walking, comes about as a result of coupled local neural
circuits, and that there is no central controller that coordinates the legs during walking. When an
insect, standing on the ground, tries to move forward by pushing one of its legs backward, as a
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consequence of its embodiment, there is force applied on the rest of the stationary legs, and
this information, in the form of joint angle measurement, can be used by the insect as a form
of global communication between legs for producing locomotion, even without there existing a
central controller that coordinates leg movements. Inspired by this, a distributed neural network
architecture for controlling a six legged robot was developed [Dirr et al., 2003]. This is a very
strong example of Morphological Computation, as the communication, and in turn the needed
coordination between legs for locomotion, comes about as a result of the interaction between
the insect and its environment.
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CHAPTER 3

Locomotion Controllers for Modular Robots

Introduction

One of the goals of the work presented in this thesis is to develop locomotion controller for
Modular Robot (MR) through morphology, evolution and learning. In this chapter, locomotion
in MR through morphology is presented. First, five different modular robotic configurations
used for testing locomotion controller in the rest of the thesis are presented. Kinematics and
gaits achievable in each of the five configurations are explained. Two classes of controllers are
presented in this chapter: periodic function based controllers and morphology based controllers.

Two kinds of periodic function based locomotion controllers are presented: Sinusoidal
controller and Fourier controller. Sinusoidal oscillators as locomotion controllers for MRs have
been previously implemented in [Gonzalez-Gomez and Boemo, 2005] and [Zhang et al., 2009].
To set as a benchmark for comparing with other controllers developed in this thesis, sinusoidal
controllers are implemented and evaluated on all of the five modular robotic configurations. The
second controller under this category is the Fourier controller, which is developed as part of this
thesis, and is based on Fourier series.

Morphology refers to the form and structure of a biological organism, and in the context of
MRs, it refers to the topology of the modular robotic configuration. Under morphology based
locomotion controllers category, two kinds of controllers are developed: an Artificial Neural
Network (ANN) based controller and an inverse sine function based controller. Although the
parameters of all four controllers presented in this chapter are optimized through Genetic
Algorithm (GA), locomotion through evolution is presented in a later chapter (chapter 5, page
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105).

3.1 Robot configurations

Y1 MR is the platform used in this thesis for all the experiments concerning MR locomation. Two
Y1 modules can be connected together in several different ways, and each module can be con-
nected to at most four other modules. Connection mechanism supported by Y7 modules is very
basic, and only static connections between modules are possible, making self-reconfiguration
among modules not possible. Modules can be connected to each other either using nuts and
bolts, or using zap-straps.

During the course of this thesis, simulated versions of five different modular robotic con-
figurations have been experimented with. Gaits achievable by each robotic configuration has
been studied by applying simple phase-differed sinusoidal oscillators to modules in a given
configuration. In the following subsections, each configuration has been described in detail.

3.1.1 Minibot

This is a two-module, one-dimensional (1D) configuration (Figure 3.1), wherein modules are
connected to each other in series, and according to [Gonzalez-Gomez and Boemo, 2005] this is
the smallest possible configuration that can produce locomotion. Only locomotion in 1D can be
achieved in this configuration, wherein the robot can either move in forward or backward/reverse
directions. Applying simple sinusoidal oscillators to modules, with predefined phase-difference
{ ), produces a caterpillar gait that resembles a traveling sine-wave. The phase-difference
determines the direction of locomotion, with the robot moving in the direction of the module
that has a negative phase-difference with respect to the other module. Locomotion cannot be
achieved in this configuration if the phase-difference between modules is either around  or
around

Head Tail

Figure 3.1: Two module Minibot configuration.

3.1.2 Tripod

This is a three-module symmetric configuration, wherein modules are connect to each other at an
angle of . as shown in Figure 3.2. It is a two-dimensional (2D) configuration and it can move



3.1. Robot configurations 47

on a 2D surface in three possible directions, as well as rotate on its own axis. When modules are
applied with sinusocidal oscillators, with two modules oscillating in phase and the third module
oscillating with a phase-difference of , the robot moves in the direction of the
module oscillating out of phase, and in the opposite direction if . When no
two modules oscillate in phase, while phase-difference between pairs of adjacent modules is

(E.g. , , ), the robot rotates on its own axis in clockwise
direction.

Figure 3.2: Three-module Tripod configuration.

3.1.3 Quadropod

The Quadropod configuration is an extension of the Tripod configuration, which has an additional
module, and the angle between modules is (Figure 3.3). It is a symmetric two-dimensional
(2D) configuration, which can move in eight possible directions on a 2D surface, depending on the
phase-difference between oscillating modules. If two opposite modules oscillate in phase, while
the other two modules oscillate with a phase-difference of , then the robot
moves in the direction perpendicular to the modules oscillating in phase. If two pairs of adjacent
modules oscillate in phase, with a phase-difference between these pairs (E.g.

and }, then the robot moves in the direction diagonal to itself. When no two
modules oscillate in phase, while phase-difference between pairs of adjacent modules is
(E.g. \ \ \ ), the robot rotates on its own axis in
clockwise direction.

M1 e Mz

Ma Mz

Figure 3.3: Four-module Quadropod configuration.
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3.1.4 Y-bot

The Y-bot configuration, as shown in Figure 3.4, is an extension of the Tripod configuration, which
is conceived by adding an additional Y7 module (Tail) to one of the three modules of the Tripod
configuration, which then becomes the Spine module. Locomotion in two-dimension (2D) is
possible with this configuration, although only locomaotion in one-dimension (1D) is being focused
on in this work. When modules are applied with phase-differed sinusoidal oscillators such that
there is increasing phase-difference between modules, starting from that Head modules to the
Tail module, while the two Head modules oscillate in phase (E.g.

\ ), the robot moves in the direction of the Tail module. The mbc-t
moves in the opposite direction, if this case is reversed (i.e.

; ).

Head Right

Headuss

Figure 3.4: Y-bot configuration.

3.1.5 Lizard

Spineyr Spine:z

imba
Figure 3.5: Lizard configuration with four Limb modules and two Spine modules.

Lizard, as shown in Figure 3.5, is a six module configuration that has four Limb modules
and two Spine modules. This configuration is formed by connecting two Tripod configurations
together, and then rotating the Spine modules by and respectively, along the roll-axis
of the configuration. This makes the two halves of the robot — considering modules .

, and , 8s one half, and modules \ and as the other half —
mirror images of each other. When modules in this configuration are actuated with phase-differed
sinusoidal oscillators, as presented in Table 3.1 (which are derived empirically), it results in a
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quadruped walking gait, resembling that of a lizard. The two spine modules wiggle side to side
with a phase-difference between them ', while the limb modules move up and down, resulting in
a walking gait.

| Module || Phase Angle |

Table 3.1: Phaserelation between module pairs in a Lizard configuration with respect to the module
Limb-1.

3.2 Periodic function locomotion controllers

Locomotion in general, whether gallop of a horse, flapping wings of a bird, or bipedal walking of a
human, can be seen as repetitive and coordinated movement of limbs, through which the desired
gait emerges. Looking at locomotion as a collection of oscillators, phase-relation between these
oscillators determines the generated gait. So, in this section, two different periodic functions —
Sinusoidal function and Fourier series — are implemented as locomotion controllers for Modular
Robot (MR)s.

3.2.1 Sinusoidal controller

In this thesis, a class of locomotion controller for Modular Robot (MR)s have been developed. To
analyze locomotion of each of the five modular robotic configurations, and to set a benchmark
for comparing other locomotion controllers, that are present in the rest of the thesis, we first
implemented a sinusoidal controller. Sinusoidal controller for MR locomotion has been previously
investigated in [Gonzalez-Gomez, 2008], but with a focus on linear modular robotic configurations,
and by hand-tuning oscillation parameters. In this work, we applied a sinusocidal oscillator per
module Equation 3.1, and oscillation parameters are optimized through Evolutionary Algorithm
(EA).

(3.1)

! Although the control signal to the two spine modules are identical, they oscillate with a phase-difference of
between them, since the two modules are connected as mirror images of each other.
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where is the total number of modules in the configuration, is the amplitude, is
the frequency, is the phase and  is the offset of the oscillator for the  module in the
configuration.

Each module is controlled independently by Equation 3.1, with amplitude and offset of its
oscillation determined by parameters and respectively. Oscillation frequency is common
among all modules in a given configuration. Phase-shift of a module's oscillation is determined
by the parameter , and relative difference in phase-shift value among modules determines the
emerged gait in the robotic configuration. To test this control model, each of the five configurations
are setup in the simulation environment individually, starting with a set of random control
parameters, and optimal control parameters are evolved through EA. For each configuration, a
random set of fifty candidate solutions are initialized, where each candidate solution is a vector
of all the oscillation parameters for all the modules in the given configuration. So, for the case
of Minibot configuration with two modules, each candidate solution consisted of two amplitude
parameters ., two offset parameters . ., two phase-shift parameters

. , and one frequency parameter . The range for each parameter to be optimized is
set to values as shown in Table 3.2. Each candidate solution is evaluated for a period of \
with the objective function for parameter optimization being the absolute distance between the
start and the finish position of the robot, at the end of the evaluation.

| Parameter || Min. | Max. |

Table 3.2: Range of sinusoidal controller parameters for optimization.

For parameter optimization through EA, a combination of Genetic Algorithm (GA) and
Evolutionary Strategy (ES) has been implemented, which is further explained in subsection 5.3.1,

page 125.

3.21.i Evaluation
Post evolution, best performing individuals of the final generation for each of the five configura-

tions are evaluated for a period of seconds ( ). Evaluation results are as presented in the
following subsections.

Minibot

In the Minibot configuration, the best evolved controller, parameters of which are as presented in
Table 3.3, produced a caterpillar gait. The Head module, with an amplitude of
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and a significantly larger negative offset of , oscillates between

. while the Tail module, with an amplitude of and a positive
offset of , oscillates between . The Head and the Tail
modules oscillated with a phase-difference of between them. The Head module pulls
forward, while the Tail module pushes off the ground-surface, propelling the robot forward and
moving in the direction of the Head module, at an average speed of . One gait-cycle of
this locomotion is as shown in Figure 3.6.

Module

Parameter Hoag | Tl

Table 3.3: Sinusoidal controller parameters of the best performing individual for Minibot configuration,
optimized through EA.

(a) (b) (e) (d)
(e) U] (@ (h)
U] )

Figure 3.6: Scree capiure of one gait-cyde of the Minibot configuration, evaluated with the best evolved
Sinusoidal controller.
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Tripod
In Tripod configuration, with the best evolved controller (Table 3.4), modules and oscillate
in phase®®, while there exists a phase-difference of between modules  and
the other two modules ( and ). Module , with an amplitude of and
a negative offset of , oscillates between . Modules
and ., with amplitude of and respectively, and offset
and respectively, oscillate between and

respectively. Modules and push forward simultanecusly, while
module pulls forward, making the Tripod configuration move in the direction of module at
an average speed of . One gait-cycle of this locomotion is as seen in Figure 3.7.

Parameter | Module |

Table 3.4: Sinusoidal coniroller parameters of the best performing individual for Tripod configuration,
optimized through EA.

Quadropod

Modules through in the Quadropod configuration, with the best evolved controller
(Table 3.5), oscillate in the following range,

Modules and oscillate in phase®™ote 3 while modules and oscillate with

a phase-difference of ., and modules and oscillate with a phase-difference of
between them. This phase-relation among modules result in a gait where modules

and push, while modules and pull in south and west directions respectively, propelling

Modules and oscillate with phase-shift of and respectively, so with a phase-
difference of between them.
A phase-difference of is small enough to be considered insignificant in the context of this

thesis.
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(a) (b) (e) (d)
(e) U] (@) (h)
U] @

Figure 3.7: Scree capiure of one gait-cycle of the Tripod configuration, evaluated with the best evolved
Sinusoidal controller.

the robot in the south-west direction, relative to the robot's initial orientation (Figure 3.8). Modules
and coordinate to move the robot one step in the east direction, while modules and
coordinate to move th robot one step in the south direction. There exists a phase-difference
of between the two pairs, so the robot moves one step east followed by one step

south, in a zig-zag pattern, at an average speed of

Mz

Marth

West East
South

Mz

Figure 3.8: Initial orientation of the Quadpod configuration.
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Parameter | Mu|dule |

Table 3.5: Sinusoidal controller parameters of the best performing individual for Quadropod configuration,
optimized through EA.

Y-bot

Modules in the Y-bot configuration, with the best evolved controller (Table 3.6), oscillate in the
following range,

Modules and oscillated in phase™n9e 3 while there exists a phase-
difference of between the modules and the module, and a phase-
difference of between the module and the module. This phase-relation
among modules result in a traveling sine-wave, starting from the modules and moving in
the direction of the module, resulting in a caterpillar gait, propelling the robot in the direction
of the module. One gait-cycle of this locomotion is as seen in Figure 3.9, and the average

speed of locomotion achieved in this gait is

Parameter | Mud|ule

Table 3.6: Sinusoidal controller parameters of the best performing individual for Y-bot configuration,
optimized through EA.
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(a) (b) (c) (d)
(e) U] (@) (h)
U] @

Figure 3.9: Scree capiure of one gait-cycle of the Y-bot configuration, evaluated with the best evolved
Sinusoidal controller.

Lizard

With the Lizard configuration, two separate gaits emerged through two independent but identical
EA epochs*. The first gait resembles a reptilian like forward-walking gait, while the second gait
resembles a crab like lateral-walking gait. Modules in the Lizard configuration, when evaluated
with the best evolved forward-walking Sinusoidal controller (Table 3.7), oscillate in the following

range,

“EA parameters like population size, selection/crossover fype/size/rate, mutation rate/range, etc. are all exactly
same between the two epochs
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Parameter Module

Table 3.7: Sinusoidal coniroller parameters of the best performing individual for Lizard configuration that
produced forward-walking gait.

Modules and oscillate with a phase-difference of between them,
while and oscillate in phase™tn®e 3 There exists a phase-difference of
between modules and . Module oscillates in the range of
., without ever making contact with the ground surface, and so does not
directly contribute to the gait. The gait emerges as module pulls, while modules
and push off the ground surface. The Spine modules, oscillating in the yaw-axis, amplify

the actions of the Limb modules. Phase-difference between all module pairs in this gait are as
provided in Table 3.8. The average speed of locomotion achieved with this gait is

| Modulo | | | | | | |

Table 3.8: Phase-difference between all modules pairs in the | zard configurafion, with the best performing
forward-walking Sinusoidal controller.

When evaluated with the best evolved lateral-walking Sinusoidal controller (Table 3.9),
modules in the Lizard configuration oscillate in the following range,
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Module

Parameter

Table 3.9: Sinusoidal coniroller parameters of the best performing individual for Lizard configuration that
produced lateral-walking gait

In this gait, modules and oscillate with a phase-difference of \
while the two Spine modules oscillate in phase®. Module oscillate in the range of
. without ever making contact with the ground surface, and so
does not directly contribute to the gait. The lateral-walking gait emerges as module pulls,
while modules and push off the surface, aided by the rowing motion of the Spine
modules in the yaw-axis. The main difference between this gait and the forward-walking gait
is the phase-relation between the two Spine modules. In the forward-walking gait, there exists
a phase-difference between the two Spine modules, while in the lateral-walking gait, the two
Spine modules oscillate in phase. Phase-difference between all module pairs in this gait are as
provided in Table 3.10. Average speed of locomotion achieved with this gait is

| Modulo | | | | | | |

Table 3.10: Phase-difference beiween all modules pairs in the Lizard configuration, with the best
performing lateralwalking Sinusoidal coniroller.

3.2.1.ii Discussion

Sinusoidal oscillator as controller, produces stable and fast gait in each of the five two-dimensional
(2D) modular robotic configurations. Resulting fastest sinusoidal controller for each configuration
are evaluated 10 times, with each evaluation lasting for a period of . Mean and standard
deviation (SD) of these evaluations are as presented in Table 3.11. This controller is distributed

5in theory there exists a phase-difierence of between modules and . But since these two
modules are connected to each other as a mimor image of each other, when . , , the two Spine
modules swing to the same side, forming an arc (Figure 3.10a). On the confrary, when 1 a , the

two Spine modules swing to opposite side, forming an 'S’ shape (Figure 3.10Db).
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(a) Ospine, = 45°, Ospine, = —45° (b) Bspine; = Pspine; = 45°

Figure 3.10: Spine modules in the Lizard configuration.

but not homogeneous, as control parameters differ between modules, and is dependent on the
position of the module in the configuration. The controller is scalable, since adding modules
to a configuration would not require a change in controller of the preexisting modules. This
control-model is simple and intuitive, and good for studying different possible gaits in a given
configuration by hand-tuning control parameters. Through parameter optimization it is possible
to evaluate the fastest possible gait in a given configuration.

As the number of modules in the configuration grow, the total number of parameters
that needs to be tuned for a robot to function, increases linearly as well. During parameter-
optimization process, it takes significantly longer to find any meaningful gait in the six-module
Lizard configuration, compared to the two-module Minibot configurations. In both the gaits that
emerged in the Lizard configuration, the robot does not utilize all four limb-modules. Intuitively,
an optimal gait would utilize all available resources, but in the case of the gaits that emerge in
Lizard configuration, it seems that the EA fails to find the global-optimal solution, due to the shear
depth of the parameter space (19 dimensions deep) it is searching for a solution in. Another
drawback of this controller is its inability to adapt to change in environment or configuration.

Speed (/3]
Robot Mean | SD
Minibot 341 | 0.11
Tripod 310 | 0.41

Quadropod 422 | 0.08
Ybot 623 | 0.28

, Forward gait | 4.57 | 0.08
Lizard \ 1 eralgait (| 5.28 | 0.06

Table 3.11: Mean and SD of locomotion speed of the best evolved Sinusoidal coniroller for all five
configurations.
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3.2.2 Fourier controller

Sinusoidal oscillators as controller for Modular Robot (MR)s work well for creeping and crawling
gaits in one-dimensional (1D) and two-dimensional (20) modular robotic configurations, but
are simple in terms of the control signal generated. For locomotion in three-dimensional (3D)
modular robotic configurations with multiple Degree of Freedom (DOF) per limb, or for bipedal
gaits, control signal needed for generating locomotion is more complex in nature. So, we look at
Fourier series as a way of generating complex control signals for locomotion.

Fourier Series is a way of representing any periodic function with a fundamental period
(i.e, with a fundamental frequency of —), as an infinite sum of sine and cosine functions, each
with a frequency that is an integer multiple of the fundamental frequency —. The general form for
reprasenting any function as a Fourier Series is provided in Equation 3.2.

S S (3.2)

where s the fundamental period of the function that is being synthesized. and are
the coefficients of the Fourier series, which determine the relative weights of the cosine and the
sine components respectively. The firstterm  represents the offset (non-zero-center amplitude)
of the periodic function.

Using just the first three terms ( , and ), i.e, with the first frequency component, a sine
function with any offset and phase-shift can be generated. So, to validate this control model as a
locomotion controller, Minibot configuration is evaluated where each module is controlled by a
Fourier controller Equation 3.3, and with parameters as provided in Table 3.12.

(3.3)

where  isthe amplitude ofthe  module, is the normalization term, which bounds the
control signal to the range of . before amplifying the signal.  is determined based on the
crest and trough of the generated Fourier signal, as follows:

if
otherwise
With the above stated Fourier controller, modules in the Minibot configuration oscillate with

a phase-difference of between them, and in turn produce a caterpillar gait, at a speed
of . Similarly, evaluating the Fourier controller on modules in the Y-bot configuration,
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Module
Head | Tail

Parameter

Table 3.12: Hand funed Fourier controller parameters for Minibot configuration.

with parameters provided in table Table 3.13, resulted in a caterpillar like gait with a locomotion

speed of . Modules and oscillate in phase, while there exists a
phase-difference of between module and . as well as a phase-difference
of between and modules.

Module

Parameter | |

Table 3.13: Hand tuned Fourier controller parameters for Y-bot configuration.

The Fourier controller in Equation 3.3 is based only on the first frequency component, and
so essentially a Sinusoidal controller. A general Fourier controller with  frequency components
is as shown in Equation 3.4.

(3.4)

where s the frequency domain size.

Unlike in Sinusoidal controller and Fourier controller with one frequency component, hand tun-
ing parameters (Fourier coefficients) for Fourier controllers beyond the first frequency component
is not trivial. Moreover, for a complex configuration like Quadropod and Lizard, conceptualizing a
set of complex trajectories (non-sinusoidal) that would result in stable gait, is not straightforward
either. So, we evolved gaits for different modular robotic configurations, using Evolutionary
Algorithm (EA), with two variants of Fourier controller: first frequency component Fourier con-
troller (ffe-Fourier controller) — with one frequency component — and two frequency component
Fourier controller (ifc-Fourier controller) — with first two frequency components. Evaluation
results of the evolved gaits are provided in the following section.
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3.2.2.i Evaluation
Minibot

When evaluated with the best evolved ffe-Fourier controller, parameters of which are as pre-
sented in Table 3.14, modules in the Minibot configuration oscillate with a phase-difference

of between them. Reference trajectories for the two modules, generated by this
controller, are as shown in Figure 3.11. Head and Tail modules oscillate in the range of

and respectively. Average locomotion
speed in this gait is . Compared to the gait emerged with the Sinusoidal controller, in

this gait, modules oscillate at almost higher frequency. With the Sinusocidal controller, Tail
module oscillates between a larger range, and the phase-difference between the two modules is
higher as well.

Module

Parameter |\ ——g I Tai

Table 3.14: ffe-Fourier controller parameters of the best performing individual for Minibot configuration,
optimized through EA.

ffe-Fourier controller generated reference trajectory
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Figure 3.11: Reference frajectories generated by the best evolved ffo-Fourier controller for Minibot
configuration.

Similarly ffe-Fourier controller parameters are optimized for the Minibot configuration through
EA, and the parameters of the best evolved control is as presented in Table 3.15. Reference
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trajectories for the two modules generated by this controller is as shown in Figure 3.12. In

this gait, modules Head and Tail oscillate in the range of and

respectively. The emerged gait seems visually similar to a Caterpillar

gait, but here both the modules rise and dip twice per cycle of oscillation, which has a period of

. Average locomotion speed in this gait is . which is not significantly different from
gaits with best evolved Sinusoidal controller and ffe-Fourier controller.

Module

Parameter |\ —read | Tai

Table 3.15: ifc-Fourier controller parameters of the best performing individual for Minibot configuration,
optimized through EA.

tfe-Fourier controller generated reference trajectory
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Figure 3.12: Reference frajectories generated by the best evolved tfe-Fourier controller for Minibot
modules.

Y-bot

Modules in the Y¥-bof configuration, with the best evolved ffe-Fourier controller (Table 3.186),
oscillate in the following range,
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Parameter | Mudulei

Table 3.16: ffo-Fourier controller parameters of the best performing individual for Y-bot configuration,
optimized through EA.

Modules and oscillated with a phase-difference of , while
there exists a phase-difference of between modules and the ,anda
phase-difference of between the module and the module. But module

barely oscillates, contributing minimally for the emerged gait. Average locomotion
speed of this gait is . which is sub-optimal. Total number of parameters in this controller,
that needs to be optimized for the Y-bot configuration is 17, in contrast to 13 parameters in the
case of the Sinusocidal controller. Since all the EA parameters between the two epochs (one for
Sinusoidal controller and the other for the ffe-Fourier controller) are virtually identical, due to the
increased number in search dimension, EA fails to find the optimal — or close to optimal — gait
in this case.

So, for optimizing tfe-Fourier controller parameters for the Y-bot configuration (25 parame-
ters), EA is altered wherein, instead of randomly initializing population of the first generation,
only those candidates whose fithess is above a set threshold © are selected to be part of the
first generation. Rest of the EA parameters are kept the same. When evaluated with the best
evolved controller (Table 3.17), modules in this configuration oscillated in the following range,
and reference trajectories generated by this controller is as shown in Figure 3.13

5The fitness threshold is set to locomotion speed of
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Parameter | Mudulei

Table 3.17: ife-Fourier coniroller parameters of the best performing individual for Y-bot configuration,
optimized through EA.

tfe-Fourier controller generated reference trajectory
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Figure 3.13: Reference frajectories generated by the best evolved tfe-Fourier controller for Y-bot modules.

In this gait, modules have a smaller oscillation range compared to the and
the modules. Modules and oscillate with a small phase-difference
between them, while there exists a bigger phase-difierence between the modules and the

module, and between the module and the module. All the modules rise and
dip twice per cycle of oscillation, with actions of the and the modules contributing
the most to the emerged gait. Average speed of locomotion in this gait is slightly better than
the speed attained with the best evolved ffe-Fourier controller, at . but the gait is still
suboptimal compared to the Sinusoidal controller gait for Y-bot configuration.

Lizard

For the Lizard configuration, parameters of the ffe-Fourier controller are optimized through EA,
wherein the first generation is populated with randomly selected individuals whose fitness is
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above a set threshold of . This is because of the sheer depth of the parameter space,
which is 37 dimensions deep. When evaluated with the best evolved ffe-Fourier controller
(Table 3.18), modules in the Lizard configuration oscillate in the following range, and reference
trajectories generated by this controller is as shown in Figure 3.14.

Parameter Module

Table 3.18: ifc-Fourier coniroller parameters of the best performing individual for Lizard configuration,
optimized through EA.

In this gait, modules and oscillate with a phase-difference of between
them, and as a result of these two modules, the robot is propelled in the forward direction.
Modules and oscillate with a large phase-difference as well, complementing the
forward propulsion, while modules and oscillate with a very small range, barely
making contact with the ground surface. Average locomotion speed of the emerged gait is

, and so it is suboptimal compared to the Sinusocidal controller gait that emerged in this
configuration.

3.2.2.ii Discussion

Fourier series based locomotion controller for MR, provides an alternative to Sinusoidal controller.
Similar to Sinusoidal controller, Fourier controllers are distributed, scalable and heterogeneous.
It is possible to generate complex trajectories with Fourier controllers beyond the first frequency
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Figure 3.14: Reference irajectories generated by the best evolved tfc-Fourier controller for Lizard mod-
ules.

component. One main disadvantage of Fourier controllers is the increasing parameter space, as
the frequency domain size grows. For creeping/crawling locomotion in 2D modular robotic
configurations, Fourier controllers do not seem to provide any advantage over Sinusoidal
controller.

3.3 Morphology dependent locomotion controller

3.3.1 Influence of morphology

Since Modular Robot (MR)s are physically connected multi-robot systems, modules exert force
on one another when actuated. In a simulated Minibot configuration, when one module (Head)
is actuated with a sinusoidal oscillator, with an amplitude of . and the other module (Tail) is
actuated as well, but made to remain at a constant reference position of |, the effects of the
oscillating Head module is observable on the fixed-position Tail module. As could be seen in
Figure 3.15b, the Tail module oscillates as well, but with a low amplitude and an offset, due
to the force exerted on it by the oscillating Head module. We have termed this phenomenon
Intra-Configuration Force (ICF), and it can be quantified by measuring the mean and standard
deviation (SD) of the actuator value of the affected ( Tail) module, which is as shown in Table 3.19.
Similarly, when roles of the Head and Tail modules are interchanged, effects of the oscillating
Tail module can be observed on the fixed-position Head module, but with almost twice the mean
and SD, which suggests that effect of the oscillating Tail module on the Head module is twice
compared to that of the oscillating Head module over the Tail module. This is because of the
asymmetric mass distribution of the configuration, which is based on the way in which the two
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modules are connected to each other 7.
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(a) Minibot configuration  (b) Plot of acfuafor values in the Minibot configuration,
demonstrafing effects of the osdillating Head module,
over the fixed-position Tal module.

Figure 3.15: Minibot configuration and a plot of its actuator values.

Fixed

Head

Tail

Mean

sD

Mean

sD

Head

Oscillating

Tail - -

Table 3.19: Quaniifying ICF by calculating mean and SD of actuator position of the fixed-position module,
connected to an oscillating module in the Minibot configuration.

Similar experiments are conducted on a simulated Tripod configuration, by actuating two
modules with sinusoidal oscillators, which oscillate in phase in the first experiment, and with a
phase-difference of in the second experiment, while the third module is fixed to a reference
position of | in both the cases. In the third experiment, a single module is oscillated, while
the other two modules are fixed to a reference position of . In all three cases, although the
oscillating module(s) has'have an effect on the fixed-position module(s), the effects are different
on the fixed-position modules(s), as could be seen in Figure 3.16. Mean and SD of actuator
position of the respective fixed-position modules(s) are as provided in Table 3.20.

As could be observed in Table 3.20, there is a noticeable difference in the force exerted on the
fixed-position module  , based on the phase-difference between the two oscillating modules in
the Tripod configuration. To further examine this relationship between varying phase-difference
among oscillating modules, and the force exerted on the fixed-position module, modules and

are actuated with sinusocidal oscillators, and with phase-difierence between the modules
ranging between  and , at an interval of . Result of this experiment is as shown in

"The side of the Tal module holding the servo motor is connected to the side of the Head module that is free.
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Figure 3.16: Plot of actuator values in the Tripod configuration, demonsirating effects of oscillating
module(s) over fixed-posifion module(s).

Table 3.21, which is also plotted as a bar-graph in Figure 3.17. Force exerted on the fixed-position
module is at the highest when the two oscillating modules oscillate in phase, and at the lowest
when modules oscillate out of phase. The SD at a phase-difference of  is twice compared
to SD at a phase-difference of . This is because both the modules, while oscillating in
phase, exert force on the fixed-position module at the same time, whereas when oscillating with
a phase-difference of ., @ach module exert force on the fixed-position module at slightly
different points in time.

Force on the fixed-position module is exerted when an oscillating module pushes down on the
ground-surface. So, to study how ground-surface friction determines the force exerted, another
experiment, similar to the one explained in the previous paragraph with the Tripod configuration,
is conducted. In this experiment, modules and oscillate in phase, and the mean and SD
of the fixed-position module are sampled over varying Coefficient of Friction (COF) of the
ground-surface. Results of this experiment is as shown in Table 3.22, and the same is plotied as
a bar-graph in Figure 3.18. The results indicate that there exists a positive correlation between
COF of the ground-surface and the force exerted on a module.
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Table 3.20: Mean and SD of actuator position of fixed-position modules in the Tripod configuration.
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Table 3.21: Mean and SD of actuator values of the fixed-position module in the Tripod configuration,
sampled over different phase value of osdillating modules.
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Figure 3.17: Plof of mean and S0 of actuator values of the fived-position module in the Tripod configura-
fion, sampled over different phase values of osdillating modules.

Similar experiments are conducted on a real Y-bot configuration, wherein all the modules
in the configuration, except the module, are actuated with sinusoidal oscillators with
an amplitude of and in phase, while the module is actuated as well, but made to
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Table 3.22: Mean and SD of actuator values of the fixed-position module in the Tripod configuration,
sampled over varying COF of the ground-surface.
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Figure 3.18: Plot of mean and SD of actuator values of the fixed-position module in the Tripod configura-
tion, sampled over varying COF of the ground-surface.

remain at a constant reference position of . Experiments are conducted on both low-friction
and high-friction surfaces — on polished stone floor tiles, and on grip tape of a skateboard,

respectively. In the low-friction surface experiment, the module oscillate with a mean and
SD of and respectively (Figure 3.19a), while in the high-friction experiment, the
module oscillate with a mean and SD of and respectively (Figure 3.19b). ltis

to be noted that in experiments with the real Y-bot configuration, the fixed-position module peaks
in the positive-axis, unlike the fixed-position modules in the previous experiments. This is due to
the morphology of the robot. When all the oscillating modules push down on the ground surface
(i.e, ) simultaneously, this results in the hinges of the fixed-position module
pushed down towards the ground surface as well, and hence the spike in the positive direction.

Based on several factors such as morphology and mass-distribution of a configuration,
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Figure 3.19: Plof of acfuator values in the Y-bot configuration, demonstrafing effects of oscillating modules
over the fixed-posifion Spine module.

phase-relation between oscillating modules and COF of the ground-surface, connected modules
in a given modular robotic configuration, exert force of each other. This could be seen as
implicit-analog-communication between modules, as a result of the embodiment of the robot,
and could be used for controlling modules distributively, such that difference in local behavior of
individual modules result in the emerged global behavior of the robotic configuration.

In the rest of this sections, two different morphology based locomotion controllers for MRs,
that is developed as part of this thesis, which rely on such implicit-analog-communication
between modules in a configuration, is presented. Controllers parameters of both the controllers
are optimized through Evolutionary Algorithm (EA), and evaluation results of different modular
robotic configurations are presented.

3.3.2 Neural-oscillator controller

Based on the experimental results from section subsection 3.3.1, page 66, a neural-oscillator
based distributed locomotion controller is developed. In this control scheme, each module would
have its own controller, the controllers are uncoupled and have the exact same parameter values
across the configuration. Control flow of the proposed controller is as shown in Figure 3.20.

The Artificial Neural Network (ANN) of the controller has one input neuron, one hidden layer
with a single hidden neuron, and one output neuron. The input to the ANN is the position of
the module’s actuator, whereas the output of the ANN is the control signal to the same. The
lone hidden neuron and the output neuron have one bias node each, and hyperbolic tangent
activation function is used in all the layers.

Rate of rotation of an oscillating module's actuator is dynamically influenced as a result
of Intra-Configuration Force (ICF) that exist among connected oscillating modules, and this
phenomenon is captured by Equation 3.5. The controller sources the position of the actuator at
every time step, and if the rotation speed of the module’s actuator is below a certain threshold,
then the current actuator position of the module is fed into the ANN to produce the next control
signal.



72 Chapter 3. Locomotion Controllers for Modular Robots

Figure 3.20: Control flow of the Neural-osdllator controller.

(3.5)

where s the position of the module’s actuator at time . Parameters and are constants,
with corresponding to the actuator's rotation speed threshold.

Unlike in Sinusoidal controller and Fourier controller, where a continuous reference trajectory
is generated, in this controller, only two reference signals are generated per cycle of oscillation.
Imagine, if control signal to the module's actuator (i.e, output of the ANN) at instance is

, then the internal Proportional-Integral-Derivative (PID) controller of the actuator
drives the actuator to reach the goal position . Either on or before reaching the goal position
when Equation 3.5 is satisfied, the next control signal (i.e, ) is generated by
the ANN part of the Neural-oscillator controller, and fed to the module'’s actuator, followed by
control signal at the next instance. Synaptic weights of the ANN are optimized through
Evolutionary Algorithm (EA), so as to produce such oscillatory oufput.

This controller is distributed, as each module has its own controller, and do not rely on a
central controller for synchronization. All the controllers in all the modules of a configuration
would have identical parameter values, making the controller homogeneous. Each controller is
completely independent, as controllers in a configuration are not coupled with each other, and so
the controller is scalable as well. Modules do not communicate with each other explicitly either.
So, difference in action of modules in a configuration, comes about as a result of interaction
between modules and their environment, in the form of ICF, which is captured by Equation 3.5.
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3.3.2.i Evaluation

All the parameters of the Neural-oscillator controller are optimized through EA. For evolving
a gait, the target modular robotic configuration is setup in the simulation environment, with
randomly initialized controller parameter values, and with all the modules having their own copy
of the cloned controller. Each candidate controller is evaluated in simulation for a period of \
and based on the fitness value of the controllers, they are selected, crossed-over, mutated and
carried forward to the next generation. This is done independently for all five configurations. Post
evolution, best performing candidate controller of the last generation is evaluated for a period of
. Evaluation results of all five configurations are presented in the following subsections.

Minibot

Applying the best evolved Meural-oscillator controller for Minibot configuration results in the
typical caterpillar like gait. Since both the modules have identical controllers, start at the same
time, and with the same initial conditions, modules start to oscillate in phase, but quickly develop
and maintain a steady phase-difference. Average phase-difference between the two modules is

. with a standard deviation (SD) of . Frequency of oscillation is not predefined
in this control scheme, but is intrinsic to the system. Average frequency of oscillation of the
Head and Tail modules are and respectively, with a SD of and

respectively. Similarly, phase-difference between modules is not predefined either,
but is a result of the morphology of the robot, and due to the interaction of the robot with its
environment. Plots of actuator values, frequency and phase-difference between modules in the
emerged gait is as shown in Figure 3.21, Figure 3.22 and Figure 3.23 respectively. Average
locomotion speed in this gait is .
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Figure 3.21: Actuator trajectories of Minibot modules, when evaluated with the best evolved Neural-
oscillator controller.
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Figure 3.22: Oscillation frequency of Minibot modules, when evaluated with the best evolved Neural-
oscillator confroller.
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Figure 3.23: Phase-difference between Minibot modules, when evaluated with the best evolved Neural-
oscillator controller.

Tripod

Applying the best evolved Neural-oscillator controller for the Tripod configuration results in a
stable gait, where the robot travels on an arced trajectory. Here, stability of a gait is measured
in terms of consistency of phase-difference between modules. In the Minibot configuration,
modules Head and Tail oscillate with a phase-difference of between them, but with a
low SD of in the emerged phase-difierence. If, on the other hand, the phase-difference is
erratic or oscillated over time, this would result in the robot move back and forth on a straight
line, rather than travel consistently in one direction. In the Tripod configuration, when evaluated
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with the best evolved Neural-oscillator controller, modules oscillate with fairly consistent phase-
difference between each other, with SD in phase-difference ranging between

A plot of the phase-difference between modules, during one of the evaluations with the best
evolved Neural-oscillator controller, is as shown in Figure 3.24]. Table 3.23 contains mean and
SD of phase-difference between all the module pairs. Average locomotion speed in this gait is
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Figure 3.24: Phase-difference between Tripod modules, when evaluated with the best evolved Neural-
oscillator controller.

Tripod Modules
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Table 3.23: Mean and SD of phase-difference between module pairs in the Tripod configuration, when
evaluated with the best evolved Neural-oscillafor controller.

Quadropod

In the Quadropod configuration, best evolved MNeural-oscillator controller results in a diagonal
crawling gait. The controller is evaluated ten times, and in each evaluation, a pair of adjutant
modules oscillate in phase™nate3 while there existing phase-difierence between the rest of
the module pairs. This results in the diagonal crawling gait, similar to the gait that emerges in
this configuration with the best evolved Sinusocidal controller (section 3.2.1.i, page 52). Unlike
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the periodic function controllers, output of this controller is not deterministic, but stochastic
as it is based on the module's interaction with other connected modules and the environment.
Due to the symmetry of the configuration, phase-relation that emerges between modules is
not consistent between evaluations, although stable (low SD of phase-difference) within an
evaluation. This results in the robot crawling in a different direction (north-east, north-west, south-
west, south-east) each evaluation. Out of the ten evaluations, the robot crawled in north-east
and north-west directions thrice each, and twice each in south-east and south-west directions.
A plot of phase-difference values between modules during one of the evaluations is as shown
in Figure 3.25, and Table 3.24 contains mean and SD of phase-difference between all module
pairs from the same evaluation. Average locomotion speed in this controller is
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Figure 3.25: Phase-difference between Quadropod modules, when evaluated with the best evolved
Neural-oscillator controller.
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Table 3.24: Mean and SD of phase-difference between module pairs in the Quadropod configuration,
when evaluated with the best evolved Neural-oscillator controller.
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Y-bot

In the Y-bot configuration, when applied with its best evolved Neural-oscillator controller, the
emerged gait is very similar to the gait that emerge in this configuration with the best evolved
Sinusoidal controller (section 3.2.1.i, page 54). Based on the consistency of the phase-relation
among modules, the emerged gait is again very stable. The two Head modules oscillate in
phase™™®® 3 and there is a steady phase-difference between the rest of the modules in the
configuration, which produces a propagating sine-wave starting from the Head modules and
moving in the direction of the Tail module, resulting in the forward propulsion of the robot, in
the direction of the Tail module. phase-relation table and a plot of phase-difference between
modules, when evaluated with the best evolved controller, can be seen in Figure 3.26 and
Table 3.25 respectively. Average speed of locomotion achieved in this controller is
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Figure 3.26: Phase-difference between Y-bot modules, when evaluated with the best evolved Neural-
oscillator controller.

Y-bot Modules
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Table 3.25: Mean and SD of phase-difference between module pairs in the Y-bot configuration, when
evaluated with the best evolved Neural-oscillafor controller.
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Lizard

The Lizard configuration produces a reptilian like quadruped forward-walking gait, when eval-
uated with the best evolved Neural-oscillator controller for this configuration. Modules start to
oscillate in phase, but very quickly converge to and maintain a steady phase-difference. In

the emerged gait, pairs of leg modules on the same side ( and )
oscillate in phase™0tno® 3 while there exists a phase-difierence of between the two pairs.
The two modules oscillate in the yaw-axis with a phase-difference of between
them. Considering module as the reference module, a phase-difference of ex-
ists between and modules, and phase-difference of between and

modules. The robot would move in the opposite direction if these two phase-difference
values are interchanged. Average speed of locomotion achieved in this controller is

3.3.2.ii Cross evaluation

Meural-oscillator controller is distributer, homogeneous and scalable. Therefore, controller
optimized for one configuration can be applied to any other configuration, of any size. So, to
test how adaptable Neural-oscillator controller is, best evolved controller of each of the five
configurations are cross-evaluated on rest of the four configurations. Cross-evaluation results,
as speed of locomotion ( ) in each evaluation, are provided in Table 3.26.

Controller

Tripod | Quadropod Ybot | Lizard | "Ver@9°
— 2.60 2.84 oomom g | 2.73
Minibot 0.18 0.04 NA 006 | 226
, Mean tootnote 10 1.31 1.15 1.26
Tripod sp | YP 0.28 0.56 0.31 1.04
g= Mean 2.10 1.61 2.68
AL
2 Quadropod —ap 077 0.22 0.48 046 | 2%
Mean 3.0 1.76 5.08
Y-bot SD 0.57 0.42 037 | 372
; Mean footote 10 | 4-52 footnate 10
Lizard =g UP 057 |UP
Average 1.64 2.36 2.25

Table 3.26: Cross-evaluation results of best evolved Neural-osdillator controllers evaluated on all five
configuration.

Each controller is evaluated on all five configurations, and the values shown in Table 3.26 are
the mean speed of locomotion ( ), and SD, after 100 seconds of evaluation, averaged over
10 trials. Each row consists results of one configuration evaluated with all five controllers. If the
robot tipped over at any point during evaluation, on 4 or more out of 10 evaluations, then the result
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is not considered and marked as N/A®. Stability of a gait is based on consistency of the phase-
difference among modules in a given configuration. Inconsistent or periodic phase-difference
results in the robot moving erratically or back-and-forth respectively. So, if phase-difference in
the emerged gait during cross-evaluation is erratic or unstable® in 4 or more out of 10 trails, then
that evaluation is not considered either, and marked as U/P1C.

Best performance in each configuration is obtained with the controller optimized for that
configuration, which are the diagonal elements of Table 3.26 (cells colored gray). The last
row contains average locomotion speed of each of the five controllers, evaluated on all five
configurations, while the last column contains average locomotion speed of each of the five
configuration, evaluated with all five controllers. Controllers optimized for Tripod and Lizard
configurations are the most adaptive, as they produce some locomotion in the rest of the four
configurations, albeit suboptimal, with the Lizard controller having the highe st average locomotion
speed. Among the robots, Quadropod and Y-bot are the most adaptive configurations, as they
results in stable gaits when evaluated with the rest of the four controllers. Y-bot configuration
averaged the highest mean locomotion speed at

3.3.2.ii Dicussion

The MNeural-oscillator controller is distributer and homogeneous. Although all the modules
in a configuration have the exact same controller and parameters, start with the same initial
conditions, and do not even communicate with each other explicitly, they result in producing
different local actions — in the form of phase-different between modules — which results in the
emerged global action in the form of stable gait. The reason for this behavior is the ICF that
exists between modules, which is due to the embodiment of the robot.

When cross-evaluated, 15 out of 20 cross-evaluations results in stable, albeit suboptimal,
gaits. So, Neural-oscillator controller is not only scalable, but can also adapt to the change
in configuration. For example, when a controller optimized for Lizard configuration is cross-
evaluated on the Y-bot configuration, a caterpillar-like crawling gait, which is typical for the Y-bot
configuration, emerges. The same controller, on the Lizard configuration, results in a reptilian-
like quadruped forward-walking gait. Two fundamentally different gaits emerge from a single
controller on two different configurations. This is due to the morphology of the configuration in
which a gait emerges, rather than due to just the controller alone.

*Not Available
IConsistency of phase-difierence is measured by calculating SD of phase-difierence between module pairs in
the configuration. In the context of this thesis, phase-difierence is considered consistent if

U nstable Phase-difierence
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3.3.3 Inverse sinusoidal controller

The morphology dependent Neural-oscillator controller is homogeneous, uncoupled and can
adapt to the morphology of the robot. The Artificial Neural Network (ANN) part of the Neural-
oscillator controller, takes current actuator position of a module as input, and outputs the
next actuator position that the module needs to oscillate to. On the contrary, periodic class
of controllers (Sinusoidal controller and Fourier controller) generate precise trajectory for the
module to follow. But these controllers, unlike the morphology dependent Meural-oscillator
controller, are module specific (heterogeneous) and so are not adaptive. To combine features of
both periodic and morphology dependent controllers, Inverse sinusocidal controller is developed.

Control flow of Inverse sinusocidal controller is as shown in Figure 3.27. Similar to the Neural-
oscillator controller, this controller is distributer, homogeneous, uncoupled and morphology
dependent as well. At its core, a simple sinuscidal function generates trajectory for the module's
actuator to follow. One major distinction between this controller and the Sinusocidal controller
(subsection 3.2.1, page 43) is, here for all the modules in the configuration. So, change
in a module's behavior comes about as a result of the morphology of the robotic configuration.
The controller sources actuator position  at ever time step, and compares it against the last
control position generated by Equation 3.6. When this difference is greater than , variable
gets readjusted (Equation 3.7), such that , at the next time step. So, difference in a
module's action comes about as a result of its interaction with other modules in the configuration,
and with the environment. At the beginning, all the modules in a configuration start off by
oscillating in phase, but difference in their oscillation phase emerges as a result of readjusting
variable .

[—90°,90°]

(8,

Figure 3.27: Control flow of the Inverse sinusoidal coniroller.

(3.6)

(3.7)
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(3.8)

_ (3.9)

Equation 3.9 is the inverse sinusoidal function, which is developed as past of this thesis. For

a sinusoidal function, which is a function of time , with amplitude , offset and frequency |,

given the current angle and velocity and velocity  respectively, inverse sinusoidal function

can calculate time (where s the period of the oscillation). That is, it can

calculate the point within the current oscillation cycle at which . This function calculates
based on the current angle  and the sign of | i.e, the direction of the current velocity.

Given by Equation 3.9, in Equation 3.8 , as well as the
direction of velocity is switched on the following time step . Based on , is updated
accordingly in Equation 3.7.

The intuition behind this control model is: due to homogeneity of the controller, all the
module in a configuration start by oscillating in phase. But as a result of Intra-Configuration
Force (ICF) between connected modules, varying difference between control signal and
actuator position emerge in modules, based on the position of the module in a configuration.
When . gets adjusted such that in the following time-step, while also
switching the direction of oscillation. This results in implicitly breaking phase symmetry among
oscillating modules. Although, a meaningful gait for a given configuration only emerges when
parameter is optimized, and an optimal gait by further optimizing parameters , and

3.3.3.i Evaluation

A gait in each of the five modular robotic configurations is evolved by following an approach
similar to that of the Neural-oscillator controller (subsubsection 3.3.2.i, page 73). In this case,
only four parameters ( , , and ) are optimized per gait/'configuration. Post evolution, best
performing candidate controller of the last generation is evaluated for a period of . Evaluation
results of all five configurations are presented in the following subsections.

Minibot

Reference and actuator trajectories of the Minibot modules, when evaluated with the best
evolved Inverse sinusoidal controller, are as shown in Figure 3.28. Control signals for the first
cycle are identical for the two Minibof modules. At , difference between the control
signal and actuator position of the Head module grows to a value greater than parameter

{ in this case), which results in updated by Equation 3.8, breaking oscillation
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symmetry between the two modules. Similarly, in the third (¢t = 1.88s), fourth (t = 2.50s) and
fifth (¢ = 3.11s) oscillation cycles of the Head module (marked in red on the z-axis of the
plot in Figure 3.28), tj..q is further readjusted, resulting in the two modules to oscillate with a
phase-difference of 117.17 © for the rest of the evaluation period (3.11s < ¢ < 100s). With this
controller, Minibot produces the caterpillar gait, which is typical and the only meaning gait for

this configuration, traveling at an average speed of 2.72cm /5.

Inverse sinusoidal - Minibot reference and actluator trajectaries
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Figure 3.28: Heference and actuator trajecfories of Minibot modules, when evaluated with the best
evolved Inverse sinusoidal controller. Marked in red on the t-axis are points in time when control signal of

the Head module is adjusted, resuliing in the emerged gait.

Tripod

When evaluated with the best evolved controller, all the modules in the Tripod configuration
initiate by oscillating in phase, but after several iterations of adjustments of the respective ¢
values of all the three modules, all of which occur during the first 10 seconds of the evaluation
(Figure 3.29), a forward crawling gait emerges. After ¢ adjustments, modules A, and M settle
into oscillating in phase, while module Ms settles into an oscillation with a phase-difference of
= 148.67 ° with respect to the other two modules, resulting in the forward-crawling gait at an

average speed of 1.26cm/s.

Quadropod

When evaluated with the best evolved controller, modules M; and M5 settle into oscillating in
phase, while modules My and M, settle into oscillations with a phase-diffierence compared to
the other two pairs. All the module in this configuration settle into a steady gait within the first 5
seconds of the evaluation, and the emerged gait is very similar to the gait that emerge in this
configuration, when evaluated with the best evolved sinusocidal controller, and at an average
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Inverse sinusocidal controller- Tripod reference trajectonies
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Figure 3.29: Reference trajectories of Tripod modules, when evaluated with the best evolved Inverse

sinusoidal controller.

locomotion speed of . Phase-relation between modules that emerged in this gait,
during one of the evaluations, is as shown in Table 3.27.

Quadropod Modules

Table 3.27: Phase-difference between module pairs in the Quadropod configuration, that emerge when
evaluated with the best evolved Inverse sinusoidal controller.

Y-bot

Best evolved controller for the Y-bot configuration produces the caterpillar gait, which is typical
for this configuration. Modules and oscillate is phase, while there exists
a consistent phase-difierence between the modules and the module, as well as
between module and the module. Although, the emerged gait is suboptimal at an
average locomotion speed of

Lizard

The Lizard configuration produced a lateral-walking gait, when evaluated with the best evolved
Inverse sinusoidal controller. Limb module pairs on the same side (modules and
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as one pair, and modules and as the second pair) oscillate in phase, while a phase-
difference of exist between the two pairs. The two modules oscillate in phase
as well, resulting in a lateral-walking gait similar to the gait that emerges in this configuration
with the Sinusoidal controller. Average speed of locomotion in this gait is

3.3.3.ii Dicussion

Similar to the Meural-oscillator controller, Inverse sinuscidal controller is distributed, homoge-
neous, and scalable. But unlike a Neural-oscillator controller, it provides a continues trajectory
for the module’s actuator to follow. This controller combines features of Sinusocidal controller and
Meural-oscillator controller, and only four parameters needs to be tuned to achieve a gait with
this controller. Change in action of oscillating modules come about as a result of ICF that exist
among modules in a configuration.

Best evolved controller in each configuration is evaluated 10 times, with each evaluation
lasting for a period of 100 seconds. Mean and standard deviation (SD) of these evaluations are
as presented in Table 3.28. Gaits that emerge in each configuration with the resulting fastest
controller is typical for the respective configuration. In the Lizard configuration, a lateral-walking
gait emerges, propelling the robot in the north direction ''. Speed of locomotion in all five
gaits are lower compared to both Sinusoidal controller and Neural-oscillator controller. The
main reason for this is the common amplitude and offset parameters for all the modules in the
configuration.

Speed( )

Robot | Sifean | 5D
Minibot || 272 | 0.13
Tripod 1.26 | 0.23
Quadropod || 2.63 | 0.27
Y-bot 375 | 0.12
Lizard 232 | 0.08

Table 3.28: Mean and SD of locomotion speed of all the configurations, evaluated with the respective
best evolved Inverse sinusoidal controller.

"' A similar gait emerges in this configuration, with some of the Sinuscidal controllers evolved (section 3.2.1.i, page
55). But a distinction between the two gaits is the direction of locomotion, which is opposite to each other.
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Summary of the chapter

In this chapter five different modular robotic configurations, experimented with during this course
of this thesis, are described from a kinematic and gait perspective. Of the five configurations,
Minibot, Tripod and Quadropod configurations can be found in the literature, but Y-bot and Lizard
configurations are original to this thesis, to the best of the author’s knowledge.

Two class of locomotion controllers for Modular Robot (MR)s are developed and evaluated
on several modular robotic configurations. The first class of controllers is periodic function
based, which includes: Sinusoidal controller, based on sine wave function, and Fourier controller,
based on Fourier series. Sinusoidal oscillators as locomotion controllers for MRs can be found
in the literature, and so implemented in this thesis so as to set a benchmark for comparing
rest of the controllers developed as part the thesis. Evolutionary Algorithm (EA) is used for
optimizing Sinusoidal controller parameters, and then the resulting fastest controller is evaluated
for each of the five modular robotic configurations. Two different gaits emerge in the Lizard
configuration, and one each in the rest of the configurations. Of the total six gaits, four of them
are the fastest compared to the rest of the controllers. But a drawback of this controller is that
it is heterogeneous, and so cannot adapt to change in configuration. Also, as the number of
modules in the configuration grows, dimension of the controller parameter space grows linearly
as well, making it hard for an optimization technique to find good set of parameters.

The second under the periodic function based controllers class, is the Fourier controller. This
is the first instance of use of Fourier series as locomotion controller in MR, to the best of the
author’s knowledge. This controller is heterogeneous as well, and so not adaptive to change
in configuration. A distinction between this controller and Sinusoidal controller is the increased
complexity in the generated trajectory, when anything over the first frequency component
is used. Two variants of Fourier controller are evaluated: one with just the first frequency
component, and the other with two frequency components. Gaits in some configurations are
evolved with these controllers, and evaluated. Best evolved first frequency component Fourier
controller (ffc-Fourier controller) on the Minibot configuration produces the fasted caterpillar
gait, while the rest of the evaluations are suboptimal. A major disadvantage of this controller is
increased dimension of the parameter space, which is unnecessary for two-dimensional (2D)
modular robotic configurations.

The second class of controllers developed in this thesis are morphology based. Two types
of morphology based locomotion controllers for MRs are developed, which are: ANN based
Neural-oscillator controller, and inverse sinusoidal function based Inverse sinusoidal controller.
Implicit forces that exist between connected modules in a configuration, due to embodiment of
the robot, are studied and quantified. Based on this, a distributed and homogeneous locomotion
controller, consisting an ANN, is developed. Control parameters are optimized through EA and
evaluated of all five modular robotic configurations. Although all the modules carry the exact
same controller, start with the same initial conditions, and are uncoupled, modules act differently,
through which a stable gait emerges as a result of the morphology of the robotic configuration.
Best evolved controllers of each configuration are cross-evaluated on each other. Results of the
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cross-evaluation prove scalability and adaptability of the controller. Two distinct but stable gaits
emerge on two different configurations, when evaluated with the same controller, suggesting a
strong link between the morphology of the robot and the controller.

Inverse sinusocidal controller is the second type of morphology based locomotion controller
developed in this thesis. A general inverse sinusocidal function is developed as part of this
controller, which, given the current position and velocity of a sinuscidal oscillation, gives time

(value on the -axis) within the current cycle. This function is used to modulate control
signal to module’s actuator, through which diversity in module’s action comes about, and when
the parameters are optimized, a gait emerges. EA is once again used for optimizing control
parameter for each configuration independently, and the best evolved controller is evaluated.
Stable gaits emerge in all five configurations, although not optimal.



CHAPTER 4

Bipedal Locomotion Controller for Humanoids

Introduction

In the previous chapter, four different locomotion controllers for MRs are developed and evalu-
ated. Trajectories generated in three of these controllers are very simple — with two of them
being sinusoidal based — which suffice for creeping/crawling gaits in 2D modular robotic config-
urations. More complex trajectories are needed for bipedal locomotion in a humanoid robots.
Fourier controller presented in the previous chapter could generate such trajectories for bipedal
locomotion, but this controller is parameter heavy. A Fourier series based controller for bipedal
locomotion has been implemented in [Yang et al., 2006] and [Shafii et al., 2009].

One of the objectives of this thesis is to develop locomotion controller for producing bipedal
gait in a humanoid robot, and to do so through a model-free approach. Looking at locomotion
as a set of coordinated oscillations, the focus in this chapter is to: (i) develop a parameterized
periodic function, that can generate a wide variety of complex trajectories, and be used as
locomotion controller (ii) learn a stable gait in a simulated humanoid robot by optimizing controller
parameters through EA.

In this chapter, a feature-based, general periodic function is developed, through which a wide
variety of linear trajectories can be generated. Shape of the trajectory generated through this
function, can be defined as a set of features, such as symmetry, skewness, signal-width, duality
and squareness, along with the regular amplitude, offset, phase and frequency parameters. First,
joint trajectories of a previously evaluated nonlinear bipedal gait are taken as reference, and a
set of linear approximates are modeled. These approximates are then tested on a simulated

87
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humanoid robot, to prove the validity of the control model. After which, linear joint trajectories are
optimized afresh through EA, and evaluated. The main object of the controller model presented
in this chapter, is a model-free approach towards bipedal locomation.

4.1 Simplified Linear Model

In [Monje et al., 2013] Monje et al., have successfully tested joint trajectories for bipedal walking
gait, generated using the cart-table method, on both a simulated and a real Humanoid for Open
Architecture Platform (HOAP-3) robot. The generated joint trajectories of the right and left limb
joints are as shown in Figure 4.1 and Figure 4.2 respectively.

As a starting point, these joint trajectories which are nonlinear and varied, are considered.
Taking into account all the different features of the trajectories, a model that can approximately fit
these trajectories is developed. In the following subsections, trajectory of the right hip joint (in
the pitch axis) is considered as reference, and the process of incrementally developing a model,
one feature at a time, that fits this trajectory is being explained.

Carl-Table model generated joint trajectories (Right limb)
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Figure 4.1: Joint trajectories of the right hip, knee and ankie joints generated based on the cari-table
method.

4.1.1 Asymmetric Triangle Wave

- — - - (4.1)
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Cart-Table model generated joint frajectories (Left limb)
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Figure 4.2: Joint trajectories of the left hip, knee and ankle joints generated based on the cari-fable
method.

(4.2)

where |( ) is the amplitude, | ) is the offset, | ) is the
phase, | )isthe pericdand | ) is the symmetry parameter.

A sawtooth wave function is defined in Equation 4.1. A triangle wave function, as a combina-
tion of sawtooth wave and reverse sawtooth wave | ), is defined in Equation 4.2, where
parameter defines the symmetry of the resulting triangle wave. If , then the resulting
triangle wave is symmetric, else if , orif then the resulting triangle wave
tends to lean towards sawtooth wave and reverse sawtooth wave forms respectively. Figure 4.3
contains examples of symmetric and asymmetric triangle waves generated by function
(Equation 4.2).

The cart-table model generated right hip (pitch) joint trajectory, and a linear approximate
of it based on the triangle wave function, is as shown in Figure 4.4. Parameters of this linear
approximate, which are hand-tuned, are as presented in Table 4.1.

4.1.2 Dual Triangle Wave

From Figure 4.4, simplicity of the triangle wave-based model is quite evident. By tuning the
parameter, only one of the two halves, either the top or the bottom-half, of the original trajectory
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Symmetric and Asymmetric Triangle Wave
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Figure 4.3: Triangle waves with fred), {green) and {blue).

Parameter | Value

Table 4.1: Triangle wave function parameters for generating the inear appraximate trajectory.

Superimpose of approximate trajectory over original trajectory
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Figure 4.4: Criginal frajectory, and the triangle wave based approximate of it

can be modeled. So, the current model is extended by considering the two halves independently
in the following way:
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(4.3)

— (4.4)

where is a pair of amplitude parameters, and is a pair of
symmetry parameters.

In Equation 4.4, top-half of one triangle wave and bottom-half of another triangle wave (dual
triangles), each with independent amplitude and symmetry parameters, are combined together to
produce trajectories that have independent halves (top and bottom). Some example trajectories
with independent (asymmetric) halves are as shown in Figure 4.5.

Dual Triangle Wave

20
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LAV
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Trajectory 1 —— Trajectory 2 |
Figure 4.5: Triangle waves with asymmetry between the top and bottom halves.

Figure 4.6 contains the original trajectory, and a linear appraximate of it based on the dual
triangle wave model. Parameters of this linear approximation, which are hand-tuned, are as
presented in Table 4.2.

4.1.3 Width Modulation

The dual triangle wave-based appraximate, fits the original trajectory much closer than the
triangle wave model does, but there still exists a discrepancy between the two. The linear model
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Parameter | Value

Table 4.2: Parameters of the dual ifangle wave based function, for generating the linear approximate

irafectory.

Joint Angle (Degrees)

Superimpose of approximate trajectory over original trajectory
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Figure 4.6: Original frajectory, and the dual riangle wave based approximate of it.

is further enhanced by adding duty cycle feature to it, as follows:

(4.5)

(4.6)
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where is a pair of duty cycle parameters.

In Equation 4.5, width of a sawtooth wave, within a cycle, is modulated. If , then
width of the top-half of the sawtooth wave is shrunk inversely proportional to parameter  , while
if , then the duty cycle of the signal is . Similarly, parameter determines the

width of the bottom-half of the sawtooth wave. In Equation 4.6, width-modulated sawtooth and
reverse sawtooth waves are combined together to produce a width-modulated triangle wave.
Examples of width-modulated triangle waves, with duty cycles of and , are as shown
in Figure 4.7.

Width Medulated Triangle Wave
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Figure 4.7: Triangle waves with duty cycle of {red) and {green).

4.1.4 Skewness

—_— (4.7)

where is a pair of skewness parameters.

Position over the -axis (time) of a width-modulated triangle wave, within a cycle, can also
be modulated by introducing the skewness factor into Equation 4.5 as defined in Equation 4.7.

Parameter in Equation 4.7 determines the position, on the -axis, of the upper width-
modulated triangle. If then the triangle is positively skewed, else if
then the triangle is negatively skewed, else if then the triangle is not skewed. Similarly,
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parameter determines the skewness of the bottom triangle. The value of the  determines
the skewness of the triangle, and is only a factor if the triangle has a modulated-width (i.e. if

). If the triangle has a duty cycle of . then  has no effect on the resulting
triangle. Examples of positively and negatively skewed width-modulated triangle waves are as
shown in Figure 4.8.

Skewed Triangle Wave
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Figure 4.8: Width-modulated triangle waves with positive skew (red) and negative skew (green).

The original trajectory in comparison with the linear approximate generated from the updated
model is as shown in Figure 4.9. Parameters of this linear approximation, which are hand-tuned,
are as presented in Table 4.3.

Parameter | Value

Table 4.3: Parameters of the triangle wave funciion, with duty cycle and skewness factors, for generating
the linear appraximate irajectory.
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Superimpose of approximate trajectory over original trajectory
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Figure 4.9: Criginal trajectory and its linear approximate based on the model with duty cycle and
skewness factors.

4.1.5 Squareness
The updated approximation with modulated-width and skewness factors, fits the original trajectory

much better compared to the previous model. The linear model is further enhanced by adding
the squareness factor as follows,

_ (4.8)

(4.9)

where is a pair of squareness parameters.

In Equation 4.9, parameter determines how square or triangular the signal is. If
then the upper half is of a perfect triangular shape, else if , then the top part of
the upper half of the signal is clipped, and the signal is resized by increasing the amplitude
parameter in proportion as defined in Equation 4.8. Magnitude of the parameter determines
the squareness of the signal. Similarly,  determines the squareness of the bottom-half of the
signal. Some examples are as shown in Figure 4.10.
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Trigngle/Square Wave
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Figure 4.10: Trajeciories with friangular (red), semi-iriangular (green) and square wave forms.

The new linear approximate, with squareness factor included, compared to the original signal
is as shown in Figure 4.11. Hand-tuned parameters of this linear approximation are as presented
in Table 4.4.

Parameter | Value

Table 4.4: Parameters of the iriangle wave function, with squareness factors, for generating the linear
approximate frajectory.

Similarly to the right hip (pitch) joint trajectory, an approximate linear fit to the original (cart-
table model generated) trajectory of right knee joint is modeled, and is as shown in Figure 4.12.
Hand-tuned parameters for this linear approximate model are as presented in Table 4.5.
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Figure 4.11: Original trajectory and its linear approximate based on the model with squareness factor.
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Figure 4.12: Right knee joint: The original trajectory and its linear approximate.
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4.2 Approximating Cart-Table Model

Similar to right hip (pitch) and right knee joints, linear approximates of the remaining eight cart-
table model generated joint trajectories (Figure 4.1 and Figure 4.2) are generated by hand-tuning
Triangle/Square wave function parameters. Then, the resulting trajectories are tested on the

simulated model of the small-sized (

} Humanoid for Open Architecture Platform (HOAP-3)

robot, in an Open Dynamics Engine (ODE)-based physics simulator OpenRAVE [Diankov and

Kuffner, 2008].

Each evaluation starts with the robot at the default stand-still position, where all the joints
are at . Since all ten joint trajectories generated, oscillate at a non-zero-center amplitude (i.e.
), a sudden displacement of the joint positions at time

perturbs the Center of
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Parameter Value

Table 4.5: Parameters of the Triangle/Square wave function for generating the linear approximate
irafectory of the right knee joint.

Gravity (COG) of the robot, and results in the robot loosing its balance. To overcome this, joint
frajectories are modified to crescendo to full intensity very slowly, using the following stabilization
filter:

- if
otherwise
where is the stabilization period parameter.
Parameter defines the period, starting from time , during which the joint trajectory

linearly increase in intensity, starting from the initial joint position of . Filtered joint trajectories
of the right limb joints are as shown in Figure 4.13. In this experiment, stabilization period for all
the joint controllers are set to . which is determined empirically.

Stabilized linear joint trajectories, which are pre-generated, are evaluated on the simulated
robot, and of the evaluations results in a stable bipedal walking gait. The hip, knee and ankle
joints, all start to oscillate slowly, while increasing in intensity at every time step ( ). At
around , the robot starts to take the first couple of very small steps backwards, as the
torso gradually leans forward at the same time. Then at around . the robot takes a big
step forward, compensating for the forward lean, and within the next two-to-three steps, the robot
stabilizes its balance, and enters into a rhythmic cycle. Then, the robot continues to walk in a
stable gait, at an average walking speed of , until the end of the evaluation (a period of

). Screen capture of one gait cycle of the stable gait is as shown in Figure 4.14 1.

In the failed evaluations { ), the robot does usually loose its balance at around , as
it tries to enter a stable gait cycle. Although the reference joint trajectories are the same for all the

Wideo at:
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Triangle/Square model generated joint trajectories (Right limb)
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Figure 4.13: Joint irafectories generated by Triangle/Square model, crescendo to full intensity, starfing
from .

Figure 4.14: Screen capture of one galt cycle during stable bipedal gait, starting from top-left and ending
at bottom-right, one row at a fime.

evaluations, the robot fails to enter a stable gait cycle on instances because of the stochasticity
modeled in the simulation environment, combined with the fact that the linear trajectories are
only an approximate of the original.

4.3 Learning parameters through GA

The natural next step in this research is to evaluate this controller by learning a gait through
a model-free bottom-up approach, with minimum to no modeling at all. The objective is to
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optimize control parameters for generating stable bipedal gait on the simulated HOAP-3 robot,
with as minimum modeling of the robot as possible. Evolutionary Algorithm (EA) is used for
optimizing the control parameters, wherein speed of locomotion is used as the fitness function.
The HOAP-3 robot has twenty-eight joints in total, of which, only ten joints, that are relevant
for locomotion, are controlled, while the rest of the joints are maintained at a constant default
position.

To produce a meaningful gait, , the period parameter, has to be a common value for all
the joints, although needing to be optimized. Considering this, the total number of parameters,
including one  parameter per joint, that needs to be optimized would be a common

parameter parameters, making it a search problem in a 131 dimensional space. To
reduce the dimension of the search space, the following constraints are applied,

In bipedal walking gait, there exists symmetry between respective joints of the two legs,
such that , and \ , Where

. That is, at any point in time ,
joint angles of respective left and right leg joints are opposite of each other, along with
an approximate phase-difference of between them. By taking advantage of this,
dimension of the search space can be reduced by a factor of 2, from 131 dimensions,
down to 66 dimensions, by modeling joint trajectories of all the joints of one leg, based on
the respective joint trajectories of the other leg.

In bipedal walking gait, there also exists a symmetry between the shapes of hip-roll and
ankle-roll joint trajectories of each leg, varying only in amplitude. This feature can be
used to further reduce the search space, by modeling the ankle-roll joint over the hip-roll
joint, such that the only parameters needed to be optimized for the ankle-roll joint are the
amplitude parameters and , further reducing the dimension of the search space
from 66 dimensions down to 55 dimensions.

Based on the kinematic model of the HOAP-3 robot, range of some control parameters
such as amplitude and offset, and that of the parameter are reduced, resulting in
narrowing the width of the search space. Control parameters are optimized in the range
as presented in Table 4.6.

Control parameters are optimized through Genetic Algorithm (GA), implementation details of
which is presented in the next chapter, in subsection 5.3.1, page 125. Table 4.7 contains GA
parameters employed for evolving the gait.

Figure 4.15 plots fitness value of the best candidate and average fithess of the population at
the end of each generation. At the end of the evolution, the optimized controller is able to produce

a very stable bipedal walking gait, with a success rate of ., and at an average locomotion
speed of , compared to the average locomotion speed of achieved with the
modeled controller. The evolved gait has a low period of . The robot takes small but

quick steps, barely lifting its feet off the ground, which ensures stability, while the low period
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Parameters || Minimum || Maximum

Table 4.6: Range of conirol parameters used while optimization.

| Parameters | Value |
Population size 200
Genome size 55
Evaluation period

Evolution length 23 generations
Crossover rate
Elite population size
Mutation rate

Siza of genome

Table 4.7: GA parameter values used for evolution.

value result in faster walking gait. Average step length of the evolved gait is with a SD of
. while the average step length of the modeled gait is with a SD of

4.4 Discussion

Here, the objective is to develop a linear periodic function that is feature-based, relatively simple
and that can produce a wide range of trajectories for locomotion. As a first step, validity of
this control model is tested by creating an approximate of a previously known stable trajectory.
COG of the robot is not explicitly considered while modeling the approximate trajectories, but
is implicit since the reference trajectories are modeled based on this consideration. All 13
parameters, of each trajectory generator, are hand-tuned to model the respective reference
trajectory as close as possible, but a least squares method can be used as an alternate as
well. The hand-tuned controller is able to produce a stable bipedal walking gait on the simulated
HOAP-3 robot, validating the viability of the developed controller.

Then, as a second step, control parameters are learnt in a bottom-up approach, based only
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Bipedal gait evoliion - Fitness graph
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Figure 4.15: Graph showing the fitness value of best individual and average fitness value of the populafion
during evolution.

on the stability and speed of the resulting gait. GA is used for optimizing control parameters,
during which, candidate controllers resulting in the robot falling over at any point during the
evaluation, are give a fitness value of 0. This results in exerting selective pressure towards
candidate solutions that do not fall over, albeit moving very little during the early part of the
evolution. Also, the first generation of evolution is populated with randomly initialized candidate
controllers whose fitness is above the threshold of . which disqualifies all candidate
solutions resulting in the robot falling over during evaluation. At the end, the evolution process is
able to produce a gait that is very stable, with a success rate of , and almost faster
than the gait produced by the trajectories based on the cart-table method, further validating the
viability of the developed controller.

The proposed model can also be used as an online controller for producing gaits, both in
humanoids and other legged robots. It can also be used as a lower-level controller within a larger
framework, wherein another higher-level controller would modulate the lower-level controllers’
parameters, based on sensory inputs for maintaining balance, avoiding obstacles, etc. Since
the proposed model is feature-based, depending on the complexity of the robot and/or the gait,
certain features of the periodic function can either be turned off, or kept at a constant, and
thereby reducing the number of parameters that needs to be tuned. By compromising the feature
that dictates the asymmetry factor between the upper and the lower half of a trajectory, tunable
parameters count per joint can be dropped from 14 down to 10 parameters.

In this primary version of the developed controller, although the reference trajectories pro-
duced are strictly linear, the actual trajectory generated by the joint actuators during walking,
are nonlinear. Figure 4.16 contains reference and actuator join trajectories of the left knee joint,
recorded while evaluating the modeled linear approximates of the cart-table method based joint
trajectories.

The main objective of here is not only to develop a method for generating simplified models
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Figure 4.16: Reference and actuator joint trajectories of the left knee joint, during evaluation.

of preexisting gaits, but to create a framework through which, stable gaits can be learnt from
scratch, needing minimum modeling of the robot. Using the developed controller, it has been able
to be proven that a siable bipedal walking gait can be learned through a model-free bottom-up
approach.
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Summary of the chapter

In this chapter, a feature-based linear period function for producing a wide variety of joint
trajectories for locomotion, is presented. The feature-based linear period function is developed
incrementally by first combining a sawtooth wave and a reverse sawtooth wave function to
produce a triangle wave. Symmetry of the triangle wave is determined based on the proportions
of the sawtooth and the reverse sawtooth waves combined. Asymmetry between the two halves
of the wave is infroduced by combining two asymmetric triangle waves, such that the two halves
can be modeled independent of each other. Duty-cycle feature is introduce to this function,
such that the width of the wave, within a cycle, can be modulated. Next, skewness feature is
added, such that the position of a width-modulated wave, withing a cycle, can be modulated.
Finally squareness feature is added, which determines "how squarish’ versus 'how triangular’
the generated wave is. With these features, by tuning the parameters, the developed periodic
function can generate a wide variety or wave forms, including (virtually) pure sawtooth, reverse
sawtooth, triangle and square waves.

Joint trajectories of a previously proven stable bipedal gait, which is developed based on
the cart-table method, is taken as reference, and linear approximates of 10 difference joint
trajectories are modeled. Modeled linear approximates are evaluated on the simulated HOAP-3
robot, which results in a walking gait that has a success rate of , at an average speed of

. and thereby validating the viability of the developed control model.

MNext, a stable walking gait is evolved from scratch on the simulated HOAP-3 humanoid, by
optimizing controller parameters through EA. Some kinematic aspects of the robot is taking
into consideration, resulting reducing size of the parameters dimension, and inturn the size of
the search space. The evolved gait is stable and fast, with a success rate of ,and at an

average speed of



CHAPTER D

Locomotion through Embodied Evolution

Introduction

In the chapter 3, page 45, a variety of locomotion controllers for Modular Robot (MR)s are
presented, and in the previous chapter, a complex linear trajectory generator, as a locomotion
controller for humanoid robot is presented. In both these chapters, gaits are evolved and
evaluated on modular robotic configurations, and on a humanoid robot respectively, in simulation
environment. Performing evolution in a simulation environment has some obvious advantages,
such as:

Fitness calculation, by evaluating performance for a candidate solution, is straight forward
in simulation.

Sensory data in simulation is clean and accurate, while noisy and dirty in the real-world.

It is faster, easier and cheaper to construct a robot model in simulation, than it is to
construct a real robot.

Evolution can be accelerated by multi-threading in simulation, which is not possible to do
so0 in the real-world.

Unlike real robots, simulated robots do not wear out, overheat, breakdown or run out of
battery.

105
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Once evolved in simulation, the optimized controller can be transfered onto a real robot. But
there exists a reality gap between the simulation environment and the real-world, as not every
aspect of the real-world can be modelled accurately in simulation.

The objective in this chapter is to develop a framework to perform evolution in the real-world,
on a physical modular robotic configuration, which is called Embodied Evolution (EE). Some
important work in the field of EE includes [Watson et al., 1999], [Ficici et al., 1999] and [Takaya
and Arita, 2003]. Contributions in this chapter include:

Constructing a real modular robotics configuration.

Developing, both hardware and software, for estimating module's actuator positions.
Implementation of Kalman Filter (KF) for actuator's state estimation.

Developing a vision system for robot’s position estimation.

Developing a communication protocol for communication between the MR and the host
personal computer (PC).

Implementation of a EA, as a combination of GA and Evolutionary Strategy (ES), which is
used throughout this thesis.

Evolving a gait on a real modular robotics configuration.

5.1 Robot hardware

Figure 5.1 shows three-dimension (3D) printed Y7 robot modules, developed by Dr. Juan
Gonzalez-Gomez [Gonzalez-Gomez, 2008] as part of his doctoral research, which are used
for constructing a real Y-bot modular robotic configuration, in this thesis. The Y7 platform is
modelled on Dr. Mark Yim's PolyBot system [Yim et al., 2000]. Y7 module is designed to use
Futaba 3003 servomotor, or an equivalent as its actuator. Characteristics of a Y7 module is as
presented in Table 5.1.

A four-module ¥-bot configuration (Figure 5.2) is constructed using Y71 modules for exper-
iments. The and the modules are connected to each other using nuts and bolts,
while module and are connected to the module, and to each other,

using zap-straps.

5.1.1 Electronics

SkyMega (Figure 5.3), an Arduino compatible controller board developed by Dr. Juan Gonzalez-
Gomez! is used for controlling Y71 modules. SkyMega contains a 16Mhz ATMEGA microcontroller,

! hitp/fwww. iearobotics. comwikiindex php Hitle=SkyMega
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(a) (b)

Figure 5.1: ¥1 modules at (a) rest position and (b)

| Characteristics I Value |
Dimension
Weight
Material PLA plastic
Degree of Freedom (DOF)
Servo Futaba s3003
Torque
Rotation velocity
Rotation range

Table 5.1: Characteristics of ¥'1 modules.

HEaqum

Figure 5.2: Y-bot configuration.

and is designed to perfectly fit on either side of a ¥7 module (Figure 5.4). Characteristics of the
controller board are as presented in Table 5.2.

High-level controller of each module in a modular robotic configuration, runs on a Linux
(Ubuntu 14.04) desktop, while low-level controller for controlling, as well as sensing, actuator
position of modules are implemented on the SkyMega controller board. A single board can
control up to four modules in parallel. During the experiments, a single controller board mounted
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Figure 5.3: SkyMega coniroller board with pin layout. Marked in red are ATMEGA microcontroller pings,
and marked in blue are Arduino equivalents. Source:

Figure 5.4: SkyMega board mounted on a Y1 module. Source:

on the modular robotic configuration, is used for controlling all the modules, and the board is
powered externally.
Unlike several other high-end servomotors available off the shelf, Futaba S3003 does not

feature a position sensor. So, a position sensor is developed by hacking the servomotor to
read its potentiometer values. By soldering a wire to the potentiometer of the servomotor, and
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| Characteristics I Value |
Microcontroller ATMEGA 16Mhz (Model:168)
Dimension
Input ports 4
Output ports 4t08
Inter-board communication 12C
Power input

Table 5.2: Characteristics of the SkyMega controller Board.

connecting it to the analog input of the controller board, and by using the internal Analog to
Digital Converter (ADC) of the microcontroller, position of the servomotor is estimated.

5.1.2 Regression model for actuator position estimation

Estimating servomotor position by reading its potentiometer value requires mapping from volts
(potentiometer) space to degrees (servomotor position) space. So potentiometer value for every
servomotor position, at a resolution of one degree, of six different servomotors are collected.
The data is collected by sweeping each servomotor from  fo and from to ,over
several sweeps, and recording the potentiometer value at a resolution of one degree. The
collected data is as plotted in Figure 5.5.

Servo potentiometer readings
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Figure 5.5: Plot of servomotor position over potentiometer value.

The collected data has variation between different servomotors, as well as variation based
on the servomotor position. For example, potentiometer value recorded at the position of
has minimum, maximum, mean and standard deviation (SD) of 65 volts, 72 volts, 69.33 volts
and 1.96 volts respectively. While at , minimum, maximum, mean and SD of the recorded
potentiometer readings are 196 volts, 212 volts, 206.23 volts and 5.09 volts respectively. SD of



110 Chapter 5. Locomotion through Embodied Evolution

the potentiometer reading increase linearly with respect to the servomotor position as plotted in

Figure 5.6. Also, between servomotor positions and . potentiometer readings have
very high variance. This is due to the design of the Y7 module, which restricts the two halves of

the module, connected by a servomotor, to swing freely at higher extreme ends, due to friction
between the module’s hinge.

S0 in servo potentiometer readings
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Figure 5.6: Plot of SD in servo potentiometer reading, with respect to servo position.

To correctly estimate servo position based on potentiometer value, a linear model is fitted to
the collected data, by running the linear regression algorithm over the data. The linear model is
a fourth degree polynomial, and is of the form Equation 5.1.

(5.1)

where is the potentiometer value, is the predicted servomotor position and  are the
learnt weights.

The linear model is trained by splitting the data set into training and test sets of and

respectively. The above model fits the data very well, with a training cost of .anda
cost of on the test data. The fitted linear model to the data is as shown in Figure 5.7, and

the parameters of the learnt model is as presented in Table 5.3.

5.1.3 Actuator state estimation

Using the linear model, given the potentiometer value of a module'’s servomotor, position of
the module’s actuator can be estimated. Applying a simple sinusocidal oscillator to a module's
actuator, and then estimating the module's position by sourcing it's potentiometer values, results
in a noisy estimate of the actuator's position. An example of this is as shown in Figure 5.8.
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Servo potentiometer readings and linear fit
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Figure 5.7: Plot of servomotor position over potentiometer value and the linear model.
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Table 5.3: Parameters of the learnt inear model.
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Figure 5.8: Plot of reference position and noisy measuremenis of a module’s actuator.

Haw position estimation, based on potentiometer values fitted with the linear model, are very
noisy, especially at higher actuator positions. This is because, when a module swings down
(i.e, ), it presses down on the ground surface, overcoming both, the friction of the ground
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surface, as well as the mass of the configuration. So, it consumes high energy at higher actuator
positions, which is reflected in the sensor readings. To correctly estimate the true position of a
module's actuator, a Kalman Filter (KF) is implemented for filtering noisy sensor data.

5.1.3.i Kalman Filter

A KF is a recursive two-step algorithm used for state estimation based on noisy observations.
The algorithm, based on prior knowledge of the system in the form of process model and
its uncertainty, and noisy measurements, estimates the true value of the state of the system.
The two-step process includes the prediction step, where the algorithm predicts the possible
next state of the system, based on a state transition matrix and control variable, followed by
a cormrection step, where the algorithm updates the state and its process model's uncertainty,
based on the most recent observation of the state through a (possibly noisy) measurement. The
algorithm is as presented below.

[ Correction
- 1. Compute Kalman gain:
Prediction Pu 9
Update
1. Predict next state: | — (5.4)
(5.2) 2. Update state estimate with new
2. Predict error covariance: measurement:
(5.5)
(5.3) ~__ | 3 Update error covariance:
* Predict
(5.6)

where,
: Estimated state
: State transition matrix
: State variance matrix (i.e, error in estimation)
: Process variance matrix (i.e, error due to process)

: Measurement variable
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: Measurement matrix (i.e, mapping measurement onto states)
: Kalman gain
: Measurement variance matrix (i,e. error from measurement)

Subscripts  indicate the current time step, indicate the previous time step, and
indicate the intermediate time step.

Objective of a KF is to estimate the state given measurement . The two-
step algorithm can be seen as: (i) Prediction: Project forward (in time) the current state and
error covariance estimates to obtain a priori estimates for the next time step, (i) Correction:
Incorporate a new measurement into the a priori estimates to obtain the updated a posteriori
estimates.

In Equation 5.2 and Equation 5.3, state estimate and error covariance estimate, respectively,
of the system are projected forward in time ( ), given the estimate of the previous time instance

C )

In the correction step, Kalman gain is calculated first in Equation 5.4, followed by an
update to the state estimate in Equation 5.5, incorporating the latest measurement , and an
update of the error covariance estimate in Equation 5.6.

In the state estimate correction step, the a posteriori state estimate is calculated as a

linear combination of an a priori estimate and a weighted difference between the actual
measurement and a measurement prediction . Here, the difference is
called the residual, which is the discrepancy between the predicted measurement and

the actual measurement . A residual of zero indicates that the two are in complete agreement.

Kalman gain is calculated so as to balance the trust between measurement error  and
estimated error covariance . That is, as the measurement error covariance  approaches
zero, the actual measurement  is trusted more and more, while the predicted measurement

is trusted less and less. On the other hand, as the a priori estimate error covariance
approaches zero, the predicted measurement is trusted more and more, while
the actual measurement is trusted less and less.

Sinusoidal Model KF

The controller for the actuator, whose position is estimated, is sinusoidal,

(5.7)

and its derivative is,
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— (5.8)
where is the amplitude, is the angular frequency, isthe phase, isthe offsetand is

the frequency.

For estimating position of an actuator, which follows a roughly sinusocidal trajectory, the
system can be modelled as follows,

were s the position of the actuator, and  is the constant amplitude of the sinusocidal
modelled.

MNew state at time can be modelled as,
(5.9)

(5.10)
The continuous time state transition matrix is,

(5.11)
The continuous time process noise matrix is,

(5.12)
where is the scalar process noise.
The discrete time state transition matrix would then be,

(5.13)

Given continuous time state transition and process noise matrices and , discrete time
process noise matrix can be calculated as follows,

(5.14)

Therefore, discrete time process noise matrix would be,
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(5.15)

where , and is the process noise.

Measurement variable in this case is the position estimate based on the voltage of the
potentiometer of the servomotor, as explained in subsection 5.1.2, page 109. Since the linear
model used for estimating the position of the servomotor maps from voltage space to degree
space, measurement matrix  would be,

In this case, measurement variance matrix  would be a scalar value , that models the
noise of the sensor reading. Process noise and measurement noise are assumed to be
independent of each other, white, and follow a normal distribution.

Given the above model, random variables and initialized to and respectively,
and error covariance matrix  and state estimation vector for are initialized as follows,

Given the above model and the initializations, by running the KF on noisy sensor data
(Figure 5.8), a more accurate position estimate of the actuator is obtained as shown in Figure 5.9.

Actuator position estimation with Kalman Filter
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Figure 5.9: Plot of reference position, noisy measurements and KF based estimate of a module’s actuator.
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5.2 Experimental setup

5.2.1 Vision system

In simulation, fitness value of a candidate solution is calculated based on the positions of
the robot in the simulated world, prior to and after the evaluation. These positions are easily
sourced from the simulation engine. But in Embodied Evolution (EE), where fitness value
evaluation of candidate solutions are to be performed on a real robot, a method for estimating
two-dimensional (2D) positions of the robot in the real-world, before and after the evaluation,
is needed. To achieve this, a two-dimension (2D) vision system, consisting a Red Green
Blue (RGB) webcam and a colored marker on the robot, is developed. The EE setup, which
includes the 2D vision system, is as shown in Figure 5.10.

Figure 5.10: EE arena, with the vision system, host PC and the robot, where the gait is evolved on the
real robot.

The colored-marker placed on the robot is as shown in Figure 5.11. The color of the marker
is selected to be a specific shade of green, which is neither used in any part of the robot, nor in
the EE arena. The marker consists of three circular-components, placed in an isosceles triangle
arrangement, such that the two equal sides measuring , the length of the base of the
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triangle. , are the centers of the three circular-components.

Figure 5.11: Colored-marker

The overhead webcam is placed at a known distance of from the ground surface,
based on which, position of the robot in the 2D arena is calculated in two parts: (i) By estimating
pixel-wise position of the robot in the image space, by first detecting the colored-marker, and
then calculating its centroid, and (ii) by calculating 2D position of the robot in the real-world,
given camera intrinsics and pixel-wise position of the robot in the image space.
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5.2.1.i Marker detection

Algorithm for detecting the colored-marker and calculating its centroid in the image plane is as
follows,

Result: Detect colored-marker and calculate its centroid

1 Reset robot to default state;

2 while Marker centroid not estimated do

3 Get a new image from the webcam;

4 Corvert image from RGB to Hue Saturation Value (HSV) space;

5 Apply an HSV filter, to filter the color of interest;

6 Find all connected components in the filtered image;

7 it No. of connected components 3 then

8 | continue

9 end
10 Calculate center points ( ) of the three largest connected components;
11 if and _ and _ then
12 Calculate marker centroid _
13 break
14 else
15 | continue
16 end
17 end

Algorithm 1: Vision based, colored-marker detection and centroid calculation algorithm.

The algorithm starts by first resetting actuators of the robot to default state of , which
ensures that the colored-marker placed on the robot is parallel to the image plane, and clearly
visible to the overhead camera. Then, a color image of the arena, with the robot and the colored-
marker, is captured and converted from RGE to HSV color space. The converted image is then
passed through a HSV filter, to filter out all but the regions with color of interest. The minimum
and maximum values of Hue, Saturation and Value channels, used for filtering, are as presented
in Table 5.4. In the resulting binary image, containing blobs of potential marker components,
pixels that are next to each other are grouped together, and bounding box of each such group
is calculated. If there are fewer than three groups, then it would mean that the algorithm has
failed to detect all three circular-components of the colored-marker, and so a new image needs
to be captured and reprocessed. If there are three or more groups, then based on the size of
the bounding box, the three biggest groups are selected and their center points ( ) are
calculated.

The ratio between the base of the triangle shaped color-marker, and the other two sides
is . So, if are the center points of each of the three circular-
components of the colored-maker, then it should satisfy the following constraints,
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(5.186)

(5.17)

(5.18)

In the algorithm, might not be center points of the circular-components, but some
point on each of the three circular component. So to test this, the algorithm checks if the above
constraints satisfy, but with a larger margin as shown in line 11. If the constraints do not satisfy,
then a new image needs to be captured and reprocessed. On the other hand, if they satisfy,
then the (pixel-wise) position of the robot in the image space is calculated as the centroid of the
colored-marker with Equation 5.19. An example of detecting the colored-marker and estimating
its (pixel-wise) position in the image space is as shown in Figure 5.12.

(5.19)

Channel | Min. | Max.
Hue
Saturation
Value

Table 5.4: HSV filter parameters.

Figure 5.12: Colored-marker detecfed, and its centroid estimated.
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5.2.1.ii Robot position calculation

Intrinsic matrix of a camera is defined as,

(5.20)

where and are the focal length in pixels, and are the optical center in pixels, and
is the skew coefficient of the camera.

Given the camera infrinsics  , known constant distance between the camera's optical center
and the arena . and the centroid pixel of the colored-marker,

position of the robot in the real-world can be calculated. In , only the
first two components and needs to be calculated, as is known. Position of the robot is
determined by first calculating the vector in that passes through the optical center and the
pixel (Equation 5.21), then calculating the coefficient based on  (Equation 5.22), and finally
calculating and of asshown in Equation 5.23 and Equation 5.24 respectively.

(5.21)

(5.22)

(5.23)

(5.24)

Given the positions of the robot before and after the evaluation, and respectively,
distance traveled by the robot during an evaluation can then be easily calculated as,

(5.25)

5.2.2 Serial Communication Protocol

Low-level controllers, responsible for both driving a module's actuator to a desired position, as
well as for estimating a module's actuator position based on its servomotor's potentiometer
value, resides on the Arduino based Skymega controller board, which is on-board the robot.
High-level controller for generating actuator trajectories, as well as the GA code, runs on a
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Linux desktop that is off-board the robot. Communication between the robot and the desktop
personal computer (PC) is achieved through wired serial communication, by connecting serial
communication port of the Skymega controller board to a Universal Serial Bus (USB) port of
the desktop PC. A USB TTL Serial Cable, which is a USB-to-Serial converter, is used for this
purpose. The same setup is also used for flashing firmware — Module actuation and sensing
controller program — onto ATMEGA microcontroller of the Skymega board.

At the lowest level, R5-232 communication protocol is used to transmit byte sized data
bi-directionally between the deskiop PC and Skymega board. A baud rate of 115200, 8 bit
data and 1 stop bit are chosen. On top of this RS-232 communication protocol layer, a custom
communication protocol, consisting multi-field message frames, for transmitting application
specific data between the two devices, is developed as part of this thesis.

5.2.2.i Message frame

Metadata

& . Address
] +
11D o | Type !||!|| ||! Time

Table 5.5: Message frame section 1.

Data
Data-Field Data-Field %
D.Sf | | D.sf D.Sf | | D.5f

Table 5.6: Message frame section 2.

Table 5.5 and Table 5.6 together form the skeleton of a single message frame. Each message
frame has two segments, Metadafa and Data, and each segment has several fields and subfields.
American Standard Code for Information Interchange (ASCII) special characters are used as
begin and end tags of segments, fields and subfields in the message frame. Table 5.7 describes
all the different tags used in the message frame.

Metadata segment of the message frame contains data about each message frame, such
as ID, Type, Address and Time, while Data segment of the message frame contains the actual
data that is communicated between the deskiop PC and robot. A description of all the fields and
subfields in a message frame is as provided in Table 5.8.

1D

Each message has a unique message ID, which is generated by the system (PC/Skymega) that
creates the message frame. A new message ID is generated by maintaining a counter, which is
either initialized to or (for PC or SkyMega respectively), and incrementing the counter by
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| Tag || Description |
& Message frame begin
% Message frame end
! Message ID begin
Message 1D end
Message type begin
Message type end
Address begin
Address end
Address segregation
Time begin
Time end
Data segment begin
Data segment end
Data-Field begin
Data-Field end
Data subfield segregation

Table 5.7: Message frame fags description.

every time a new message frame is generated. So, all message frames generated by the PC
would have even-numbered message 1Ds, while those generated by the Skymegawould have
odd-numbered message 1Ds.

Type

A message can be one of several different message types, with each message type identified
with a unique message type ID. The message type field has unsigned char data type, so the
defined message frame architecture can support up to 256 different message types. Message
fypes developed in this work are as follows, which are also summarized in Table 5.9.

Actuate command: Message sent from PC to SkyMega, containing address of a module
and the desired position of the module’s actuator. Address and desired position of either a
single module or of multiple modules is supported.

Position request: Message sent from PC to SkyMega, requesting current actuator position
of one or multiple modules.

Position: Message sent from SkyMega to PC, containing current actuator position of one
or multiple modules.

Time request: Message sent from PC to SkyMega, requesting the current on-board time.
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| Field/ Subfield | Datatype | Segment | Description |
ID unsigned long | Metadata Unigue 1D of the message frame
Type unsigned char | Metadata Type of message
Address i Metadata Addresses of mndulels the message is sent
to / received from
A unsigned char | Metadata Unique address of a module
Time unsigned long | Metadata Time at which the message is sent
Data-Field i Data One of n data fields containing the actual
data
D.Sf float Data , - .
D.ST Signed int Daia Two data subfields within each data field

Table 5.8: Message frame description.
Time: Message sent from SkyMega to PC, acknowledging time request message with
current on-board time.

Start position stream: Message sent from PC to SkyMega, requesting to start sending
position data of all connected modules continuously.

Stop position stream: Message sent from PC to SkyMega, requesting to stop position data

stream.
| Type ID || Message | Origin | Destination |
0 Actuate command PC SkyMega
1 Position request PC SkyMega
2 Pasition SkyMega PC
3 Time request PC SkyMega
4 Time SkyMega PC
5 Slart position stream PC SkyMega
6 Stop position stream PC SkyMega
Table 5.9: Message types
Address & Time

The Address field under Meladata section contains addresses of modules the message is
targeted at, or addresses of those modules whose information the message frame contains.
This field contains varying number of A subfields within, each of which in turn contains unique
addresses of modules. There is no upper-limit to the number of A subfields the Address field
can contain, but since the data type used for the A subfield is unsigned char, the Address
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field cannot contain any more than 256 unique addresses. Each A subfield is separated using
the special character *-". This field is only used for message types Acfuafe command, Position
request and Position, while it is empty for other message types.

The Time field holds time, in microseconds, at which the message is sent. Data type of this
field is unsigned long, and so every minutes, the time related data rolls over.

Data

The Data section contains the actual data transmitted, and holds within it varying number of
Data-Field fields, each of which contains two subfields 0Sf and D.Sf within, which are of type
float and signed integer respectively. There is no upper-limit to the number of Data-Field fields
the Data section can hold, but longer the Daila section is, slower the communication (in terms of
frames per second) becomes. The reason for having two subfields within each Data-Field is to
accommeodate transmission of data with different data types. Data fields are used for message
types Acfuate command and Position, while remains empty for the rest of the message types.

In message type Actualfe command, the subfield 0 5f contains the desired actuator position
of a module, while D.5f is unused. A message frame of type Acluate command can contain
desired actuator positions of multiple modules. For example, a message frame transmitting
desired actuator position of three different modules would contain address of the three modules
separately in subfields A , A and A , under the Address field, while the desired positions of
each of the three modules are coded within subfields D.5f of field Data-Field , Data-Field and
Data-Field respectively.

Similarly, in message type Position, sent from Skymega to PC, subfields D.5f contains the
estimated position of a module’s actuator, while subfields D.5f contains the time at which the
potentiometer value of the respective module’s servomotor was read. The time information in
subfields D.5f is represented in terms of time difference between time at which the potentiometer
value was read and the time at which the message is sent. Each Data-Field field contains
information about a single unique module, the address of which is coded in the respective A
subfield, under the Address field.

5.2.2.ii Implementation

On the PC, which runs the high-level controller and the GA code, an independent thread is
implemented for continuous communication between the robot and the PC. This thread in turn
executes two subroutines continuously. One subroutine listens to the incoming port (Rx) and
decodes all incoming message frames. The other subroutine checks desired actuator positions
of all the modules, and packages together into a single message frame, values of those modules
whose desired positions (as outputted by the trajectory generator subroutine) have been updated,
and sends out the message frame.

On the SkyMega controller board, two subroutine are executed continuously as well. One
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subroutine continuously checks for any incoming data, decodes received frames, and serves the
message accordingly. The second subroutine reads potentiometer of all connected servomotors,
records time of read, estimates the module’s position based on the value read, packages all the
data into a single message frame, and sends it out. The second subroutine is only executed if
the Stream flag (A boolean type variable) is set to True. This variable is set to False by default at
program initialization, but can be changed to True or False by sending Start position siream or
Stop position siream messages from the PC, respectively.

With this implementation, and for a configuration with four modules, time from reading
potentiometer values to sending a message frame, on average takes . S0 a position
message frequency of . Message frame rate varies based on message frame type.

5.3 Evolving locomotion

For evolving a stable gait for the real Y-bot modular robotic configuration through Embodied
Evolution (EE), Sinusoidal controller, as explained in subsection 3.2.1, page 49, is used. In this
control model, each modules is controlled independently by Equation 5.26, where parameters

., and determine amplitude, offset and phase-shift in oscillation of the  module’s in the
configuration. Relative difference in phase-shift value among modules determine the emerged
gait in the robotic configuration, while all the modules oscillate with a common frequency

(5.26)

where is the total number of modules in the configuration, which is 4 for the case of Y-bot
configuration,  is the amplitude, is the frequency, isthe phaseand s the offset of the
oscillator for the  module in the configuration.

5.3.1 Evolutionary Algorithm (EA)

For parameter optimization through EA, a combination of Genetic Algorithm (GA) and Evolution-
ary Strategy (ES) has been implemented. GA is an iterative optimization technique based on
(i) biological process of natural selection, the process that drives biological evolution, and (ii)
genetics. Each parameter to be optimized is considered a gene, and the vector of parameters, a
genome. In GA, a set of random parameter vectors are initialized, which is called the population.
Each candidate solution of the population is evaluated and assigned a fitness value, based on
some objective function of the optimization problem. Then, candidates are ranked and selected
based on their fitness value. Best performing candidate solutions of each generation are selected
and recombined with each other to produce offspring (candidates for the next generation), which
are further randomly mutated. ES, on the other hand, skips the recombination part of GA,
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but instead populates the next generation with the best solutions of the previous solution and
mutated copies of the best solutions.

As part of this thesis, an EA combining aspects of GA and ES has been developed, in which
population of the next generation is generated the following way,

1. Evaluate each individual of the population and assign a fitness value.
2. Rank individuals based on their fitness value (Equation 5.27).

3. Carry forward the top (Elite) of the best performing individuals of the current genera-
tion, to the next generation.

4. Add to the next generation, one mutated copy of each Elife individual. Mutation probability
and mutation range are twice than normal in this case.

5. Based on the ranking, stochastically select individuals amounting to of the size of
the population, using roulette-wheel selection method (subsubsection 5.3.1.i, page 126).
Exclude the Elites from this selection.

6. Create a parent population by adding the Elifes and the stochastically selected individuals.

7. Generate offspring by crossing parents in the parent population using intermediate-
crossover method (subsubsection 5.3.1.ii, page 127). First parent for each crossover
is selected in an orderly manner, while the second parent (partner) is selected stochasti-
cally from the parent population.

8. Generated offspring are mutated stochastically.

5.3.1.i Roulette-wheel selection

Fitness proportion selection method, also known as roulette-wheel selection method, is a method
of selecting individuals in a population, to form the mating pool (parent population) for generating
offspring of the next generation. In this method, each individual is assigned a rank { ), which
is based on the proportion of its fithess to the total fitness of the population, and is calculates
as shown in Equation 5.27. The ranks are normalized, and sumto . Individuals forming the
mating pool are then selected stochastically from the population, but with a selection probability
of for selecting the  individual. In this way, individuals with higher fithness have a
higher probability of being selected, but individuals with a low fitness value still have a chance of
being selected, but with a lower probability. This ensures maintaining variation in the population,
which, to some extent avoids getting stuck in a local maximum.

— (5.27)
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where s the fitness value of the  individual in the population, and  is the population
size.

5.3.1.ii Intermediate recombination

Intermediate recombination is a GA method for combining genomes of two parents to produce
an offspring, where genes of the produced offspring lie somewhere in between or around those
of the parents. This method is only applicable to genomes containing real-valued genes, and an
offspring is produced as shown in Equation 5.28

(5.28)

where , and refers to the offspring and the two parent genomes respectively,  is the
gene in the genome of size , is the scaling factor, and is chosen at
random uniformly for each gene.

Parameter determines how far from the vicinity of either of the two parents, in the genome
space, the generated offspring might fall. If , then the produced offspring would lie in the
region spanned by the two parents, and it is called standard intermediate recombination. A
value of increases the boundary beyond the region spanned by the parents, in which the
offspring might fall (Figure 5.13). In the case of standard recombination, since not all genes of
the generated offspring lie on the border of the possible area, this area shrinks over generations,
which in turn limits the range (variation) of newly created offspring. In this thesis, a value of

is chosen, which ensures (statistically) that the available area for the offspring is same
as the area spanned by the parents.

5.3.2 Evolution

For performing evolution on the real Y-botf modular robotic configuration, the robot is placed in
the arena, connected to two cables. One of which is a 2-pin power supply cable, connecting
the SkyMega board to a power supply unit, which powers both the controller board, as well as
servomotors of connected modules. The other is a 4-pin serial communication cable, connecting
SkyMega board on the robot, to the desktop personal computer (PC). High-level controller for
generating actuator trajectory of modules, as well as EA code runs on the deskiop PC, while the
low-level controller for controlling and sensing actuator positions, reside on-board the robot.

For the Y-bot modular robotic configuration, control parameters to be optimized for evolving

a stable gait consists of four amplitude parameters and .
four offset parameters and , four phase-shift parameters
and ., and a common frequency parameter , totaling to 13

independent parameters. Starting from a randomly initialized set of 20 candidate solutions,
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Figure 5.13: Region, in genome space, spanned by parent and offspring genome with d = (.

where each solution is a vector of 13 parameters, each candidate solution is evaluated on the
real robot for a period on T = 25s. At the end of the evaluation, fitness of the candidate solution
is calculated as distance traveled by the robot, over the period of evaluation. Distance traveled is
calculated with Equation 5.25, as the euclidean distance between start and the end positions of
the robot, which are determined by the vision system as explained in subsection 5.2.1, page
116.

For the case of Embodied Evolution (EE), parameter range for optimization is set to a smaller
range compared to simulation based evolution. Parameter range set for EE is as shown in
Table 5.10. Reasons for the reduced range are: (i) to ensure stability of the gait and to avoid
the robot flipping over during evolution, (i) to avoid mechanical damage and over heating of
module’s servomotor.

Evolution process starts with the robot placed at the center of the arena, and then each
candidate solution of the first generation is evaluated one at a time. Before each candidate
solution is evaluated, the robot is first reset to its default state (i.e, #; = 0°,Vi € {1,--- , M }).
Then, position of the robot in the arena before the evaluation — r(® = [z(®) (¥ h]T (i.e,
x and y position of the robot in the two-dimensional (2D) plane) — is determined based on
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| Parameter || Min. | Max. |

Table 5.10: Range of sinusoidal controller parameters for EE.

the colored-marker on the robot. After these two steps, control signal for all the modules in
the configuration are generated using Equation 5.26, with genome of the evaluated candidate

solution as control parameters, for , with and . At the end of the
evaluation, the robot is once again reset to its default state, and its position in the arena after
the evaluation — — is determined. Based on and , euclidean

distance (Equation 5.25) traveled by the robot during evaluation is calculated, and a fitness
value, as calculated with Equation 5.29, is assigned to the evaluated candidate solution.

- (5.29)

Similarly, each candidate solution of the population is evaluated and assigned a fitness
value based on its performance. Field of View (FOV) of the overhead camera spans an area of
, 50 the colored-marker on the robot has to be within this area, before and after each
evaluation. The EA framework developed in this work facilitates pausing evolution during and
in between evaluations. This is necessary to move the robot back to the center of the arena,
it and when the robot moves out of the arena during an evaluation, or ends up close to the
border of the arena at the end of an evaluation. The user can pause the evaluation through
a keyboard interrupt, then manually move the robot back to the center of the arena, and then
resume evolution through another keyboard interrupt. In those cases when the robot moves out
of the arena during an evaluation, the user can pause the evolution, move the robot back to
the center of the arena, resume the evolution and then re-evaluate the interrupted candidate
solution afresh. The developed EA framework facilitates going back to any previously evaluated
candidate of the current generation, for re-evaluating it. Similarly, it is also possible to skip over
evaluating candidate solutions, in which case, a fitness value of is assigned to such candidates.

After completing each evaluation, state of the evolution, including all EA parameter values
assigned, candidates of all the populations generated so far, and their respective fitness values,
are all saved in a data file on the desktop PC running the EA. Functionality to resume evolution
from the last known state of the evolution, given the saved data file as input, has also been
developed in this EA framework. This ensure that time and effort are not lost if evolution crashes
for any reason. Also, when evolving with a large population size and/or with a long evaluation
period, which would result in evolution running over several hours or days, it makes it possible to
run the evolution process in multiple sessions.

Once the robot is placed in the arena, connected to a power source and host PC, and the
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evolution process is started by the user, rest of the EE subsystems such as candidate solution
evaluation, robot position estimation, fitness value calculation and resetting state of the robot, are
all performed autonomously, without needing human intervention. But once the robot goes close
to or beyond the FOV boundary of the arena, the user need to intervene to replace the robot back
to the center of the arena. So, the developed EE framework can be called as semi-automated.

Fitness graph of gait evolution on the Y-bot configuration is as shown in Figure 5.14. The
gait is evolved for 15 generations, and evolution takes close to seven hours to complete. Rest
of the parameters of the Evolutionary Algorithm (EA) used for evolving the gait are as provided
in Table 5.11. None of the candidate solutions were skipped over during evolution, and around
15 candidates solutions were re-evaluated due to the robot crossing over the boundary during
evaluation. Evaluation of the initial few generations was much fast than later generations, as many
individuals in the later generations moved close to the boundary at the ending of the evaluation,
leading to operator intervention, and in turn leading to longer periods of intervals between
evaluations. A video summarizing EE process for evolving gait on the Y-bof configuration is
available on https://youtu. be/QzySvmoNSW4.

Embodied Evoltion - Fitness graph
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Figure 5.14: Graph showing fitness value of best individual and average fitness value of the population
during EE.
5.3.3 Evaluation

Modules in the Y-bot configuration, when evaluated with the best evolved controller of the final
generation, oscillate in the following range,
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| Parameters | Value |
Population size 20
Genome size 13
Evaluation period
Evolution length 15 generations

Crossover rate
Elite population size

Mutation rate Sis of genome
Mutation range

Table 5.11: EA parameter values used for EE.

Evolved control parameters are as presented in Table 5.12. The produced gait in Y-bot
is very similar to the gait that emerge in the simulated version of this configuration. In the
emerged gait, modules and oscillate in phase™tnde 3 while there exists
a phase-difference of between the modules and the module, and a
phase-difference of between the module and the module. This phase-
relation among modules result in the typical caterpillar gait, propelling the robot in the direction of
the module. In 10 evaluations on each, average speed of locomotion achieved with this
controller is . with a standard deviation (SD) of . This is significantly slower
than the speed achieved by the simulated version of this configuration with the same controller.
Reasons for reduced performance include: (i) the range of control parameters set for Embodied
Evolution (EE) are much narrower compared to simulated evolution, (i) surface of the arena, on
which the robot crawls, has lower friction compared to simulation, resulting in slippage when the
robot tries to move, and (iii) reduced population size and generation of evolution, compared to
simulated evolution.

Parameter | Modufr |

Table 5.12: Sinusoidal controller parameters of the best performing individual for Y-bot configuration,
optimized through EE.
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Summary of the chapter

In this chapter a framework for evolving locomotion on a physical modular robotic configuration
in real-world is presented. A real Y-bot configuration is constructed using Y7 robot modules,
which are fabricated and assembled as part of this thesis. A SkyMega controller board is used
on-board the robot, for low-level control. Servomotors of the modules in the configuration are
hacked to read potentiometer values, which are used for estimating actuator position. A linear
model is fitted to potentiometer data, through linear regression, for estimating actuator position.
A Kalman Filter (KF) is implemented for module’s actuator state estimation, based on sinusoidal
model.

A two-dimension (2D) vision system is developed, as part of EE experiment setup. The
vision system consists of a Red Green Blue (RGB) webcam and a colored-marker attached to
the robot. An algorithm for detecting and estimating position of the colored-marker, in the image
space, is developed. Position of the robot in the two-dimensional (2D) plane is calculated based
on: (i) estimated pixel position of the marker, (ii) fixed distance between the webcam and the
target image-plane, and (iii) camera intrinsics.

A communication protocol for establishing communication between the host personal com-
puter (PC) — on which the high-level controller, and the Evolutionary Algorithm (EA) are im-
plemented — and the SkyMega controller board, which is on-board the robot, is developed.
This communication protocol is high-level and application specific, featuring two segments —
metadata and data — with multiple fields and subfields within.

An EA, combining features of Genetic Algorithm (GA) and Evolutionary Strategy (ES), is
implemented, using which, gait on a real Y-bot modular robotic configuration is evolved. The
evolved gait is stable but slower compared to the gait evolved in simulation, which is due to
constraints on controller parameters and EA hyper-parameters, and due to low friction of the
locomotion surface.



CHAPTER O

Learning Locomotion

Introduction

In [Pfeifer and Bongard, 2006], the authors present three time-scale perspectives towards
building an intelligent agent: (i) “Here-and-Now”, (ii) Ontogenetic and (iii) Phylogenetic. The
“Here-and-Now” perspective refers to behavioral mechanism of an agent. The Ontogenetic
perspective refers to lifelong development of an agent, and the Phylogenetic perspective refers
to evolution over several generations. The “Here-and-Now” is the short-term perspective, where
the agent follows some set rules to react to stimuli. Ontogenetic is the intermediate to long-term
perspective, where the agent learns how to react to stimuli. Phylogenetic is the very long-term
perspective, where behaviors in an agent are evolved over several generations.

In this thesis so far, locomotion in Modular Robot (MR) and humanoid robot have been
approached from a Phylogenetic or very long-term perspective, where gaits are evolved in the
robot offline through EA. In this chapter, locomotion in MRs from a Ontogenetic perspective is
presented, where gaits in modular robotic configurations are learnt in an online fashion.

6.1 Introduction to Reinforcement Learning

Reinforcement Learning (RL) is an area under Machine Learning (ML) that focus on learning
optimal control policy (i.e, mapping situations to actions) by interacting with the environment,
so as to maximize cumulative reward. In Supervised Learning (SL),which is another and a

133
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more widely researched field in ML, a knowledgeable external-supervisor provides a set of
labeled training examples to the learning agent, based on which the agent should learn to predict
labels of previously unseen examples. Here, a training example can be seen as a situation
in the environment (state), and its label as an appropriate action, or a class of action, to this
situation. So, objective of the agent in SL is to learn to generalize previously unseen states of
the environment, without having the notion of reward. On the other hand, a RL agent is not
provided with a set of training data, instead learns how to react to situations, by interacting with
the environment and learning through trial-and-error. As a consequence of its action, a RL agent
is either rewarded or punished by the environment. So, the agent should in essence have the
ability to sense the state of the environment, and have a goal or goals related to the state of the
environment. A reinforcement signal, in the form of reward or punishment an agent receives, is
a numerical value provided by the environment as a consequence of its action. An action not
only influences the immediate reward, but the next state (input), and with that, all future rewards.
So, the objective of a learning agent is not to just learn an action that maximize its immediate
reward, but to learn actions that maximizes total reward it receives over a long run.

In RL, a policy is a mapping from perceived states of the environment to actions to be taken
by the agent when in that state. It defines the way an agent should behave to perceived states.
At each time step, the environment sends RL agent a single number as a reinforcement signal.
A high number indicates reward, where as a low or negative number indicates punishment.
The goal of a RL agent is to maximize total reward it receives over the long run. Rewards are
stochastic, and are based only on the current state and the action taken. An agent cannot alter
the source that generates this reward, but can only change its own action so as to get a different
reward, and with that maybe a different resulting state.

A reward signal can only indicates what is good in the immediate sense, but cannot tell what
is good in the long term. A value function, on the other hand, is the total reward an agent can
accumulate starting from that state. For example, a state might always result in a low reward
signal, but still have a high value function, if it is regularly followed by states that generate high
reward signals. The opposite could be true as well. Although the goal of an agent is to maximize
accumulated reward, the next action is chosen based on value function of states, and not their
expected reward, as this would result in maximizing future rewards. Reward signal of a state
can be easily obtained from the environment directly, but it is not so straightforward in the case
of value functions. It has to be estimated and re-estimated iteratively through observations the
agent makes over its lifetime.

In RL, a model of the environment is something that allows inference to be made about
how the environment would behave. It mimics the behavior of the environment, for example,
give a state and an action, the mode/ could predict the resulting next state. A model of the
environment might not always be explicitly available, and it is something that the agent learns
implicitly through trial-and error. This kind of learning is called model-free learning, which is the
focus of this work.
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6.2 Markov Decision Process (MDP)

From [Sutton and Barto, 1998], a MDP is a tuple ,where is asetof states,
with ; is a set of actions; is a probability distribution over the next sates if action
is taken in state , and therefore is the probability of transitioning from state to state
when action s taken; is the reward the agent receives when the sequence

occurs; is the discount factor that balances out the importance between immediate
reward verses future rewards; and  is the distribution over the initial state . and
together constitute the model of an MDP.

A tragjectory is a sequence such as . where the initial state
. and each state following  is generated by the state transition distribution  such that,
. Each action in the trajectory is based on some policy

that maps each state to an action. Reward in the trajectory is nothing but

For a given policy , value function of a state s,

(6.1)

which is the expected sum of discounted rewards of an agent, starting at state and following
policy from there on. Similarly, a state-action value function of a state-action pair is
the expected sum of discounted rewards of an agent, starting at state , taking action , and
then following policy from there on,

(6.2)

So, the goal of solving an MDP is to, given a model of an MDP, find an optimal policy { ),
that maximizes the expected cumulative discounted reward of all the states Equation 6.3.

(6.3)
Then the optimal value function would be,

(6.4)
and the optimal state-action value function would be,

(6.5)

It is well known that the optimal value function satisfies the Bellman Optimality Equation:
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(6.6)

6.2.1 Solving Markov Decision Process (MDP)

Given a perfect model of an MDP ( and ) with a finite state space, optimal policies can be
computed in a iterative manner, through a continuous 2-step process of (i) policy evaluation
and (ii) policy improvement. In the policy evaluation step, value functions of all or some states
are estimated, given a fixed policy, and in the policy improvement step, the previous policy is
improved based on the values obtained from the policy evaluation step. An illustration of this
process is as shown in Figure 6.1.

evaluation

n V
—rgreadyl V)

improvement

T:#:—- V

Figure 6.1: Policy lteration. Source: [Sutton and Barto, 1998]

6.2.1.i Policy Evaluation

As explained in [Sutton and Barto, 1998], the value function (Equation 6.1) can be derived
recursively as:
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(6.7)
The vector form of which is,

(6.8)
where is a vector of state values, is a matrix encoding transition

probability of policy , with . is a vector of rewards, and

Since the state space is assumed to be finite, state values can be calculated for all the states
by solving linear equations:

(6.9)
where is the identity matrix.

6.2.1.ii Policy Improvement

Based on the calculated values |, a policy can be improved by selecting the action that is
“greedy” with respect to the expected return:

(6.10)

In case of more than one best available action for a state, ties are broken by selecting an
action uniformly randomly, amongst the best actions for the state.

6.2.2 Policy Iteration

Once a policy has been improved using state values | yielding a better policy ., new
state values can be computed based on the new and improved policy ., leading to
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even better policy , and so on, until an optimal policy = and optimal {or close to optimal)
state values are found. So, putting together the policy evaluation Equation 6.7 and policy
improvementEquation 6.10 together, results in the policy iterafion algorithm, which is as shown
in algorithm 2.

Result: Improved policy

1 Initialize and , arbitrarily ;
2 changed True ;

3 while changed do

4 do

5 :

6 for do

T :

8 )

] :

10 end

11 while :

12 for do

13 :
14 end

15 changed :

16 :

17 end

18 :

Algorithm 2: Policy iteration algorithm

The input to the algorithm is the model of the MDP ( and ), and parameter . Inline 1
policy and its corresponding state values are initialized. The initial policy can be chosen to be
uniformly random from . which is the set of actions possible for state , while the initial
state values are set to . Policy evaluation (line 4-line 11) is itself an iterative process, which is
executed for as long as the largest change in state values ( ) is above a certain set threshold of

. Smaller the value of , more accurate the estimated state values would be, but at a higher
computational cost. It is not necessary to estimate the exact value of each state, for a given
policy, before proceeding to policy improvement step (line 13), as long as the estimated values
are close enough to optimal values. Also, it is important to note that policy evaluation starts
with state value estimates of the previous policy, and results in quick convergence to new state
values, as they do not change much from policy to policy. The algorithm ends when there is no
more change in policy (line 15).
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6.2.3 Value lteration

One of the drawbacks of the policy iteration algorithm is, that each policy evaluation step needs
several sweeps over the state space, before proceeding to policy improvement. An alternate to
this is to update the policy after every single “Bellman Backup” (line 8 in algorithm 2), so that
each backup has access to the best possible action, rather than a fixed action. This is realized
by implicitly combining Equation 6.7 and Equation 6.10 in Equation 6.11.

(6.11)

The value iteration algorithm is as presented in algorithm 3.

Result: Improved policy
1 Initialize arbitrarily :
2 changed True;
3 do

for do

= @ tn &

10 end
11 while :
12 :

Algorithm 3: Value iteration algorithm

6.3 Temporal Difference Learning

In practical domains, such as in the case of this thesis of learning locomotion in modular
robots, model of the Markov Decision Process (MDP) ( and ) is unknown, and random
access to arbitrary states in the state space is not available either. Instead, the learning agent
has to interact with the enwvironment, generating trajectories, and learn from them. Temporal-
Difference (TD) learning is a Reinforcement Learning (RL) technigue, that learns by (i) sampling
the environment according to some policy, and (ii) by approximating its current estimate of values
based on previous estimates (which is known as “Bootstrapping”). Q-Learning is a model-
free TD learning algorithm for learning optimal policies. The method works by first learning
state-action value function . and then using these values to construct an optimal policy.
State-action value of a state gives the expected total discounted reward to be earned by the
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agent, by taking action from state , and then following the optimal policy thereafter. With
learnt state-action values, an optimal policy can then be constructed by simply choosing the
action with the highest value for each state. State-action value update rule for Q-Learning is,

(6.12)

where s the learning rate. The above Q-Learning update rule works by assuming the old
value of a state-action pair, and then making the correction based on new information. New
information comes about in the form of reward and new state , when the learning agent takes
action from state . The complete Q-Learning algorithm is as shown in algorithm 4,

Result: Optimal policy

Initialize arbitrarily and ;

for each episode do

Initialize state

repeat
Choose action from state , using a policy derived from Q (e.g.: -greedy) ;
Take action , observe reward and the resulting next state ;

¥

L'- T -- B T - B

until end of episode;

10 end

11 greedy w.rt ;

Algorithm 4: Q-Learning algorithm

A trade-off between exploration and exploitation is an important challenge in RL. To obtain a
lot of rewards, a learning agent has to select from each state, a previously tried action which
has the maximum expected total discounted reward. But to discover such actions, the agent
needs to keep exploring and tryout previously unexplored actions. -greedy is one such method

in which the agents chooses the greedy action most of the time, with probability of , and
chooses an action at uniformly random, with probability (Equation 6.13).
w!th pmbabflfty (6.13)
with probability

The update rule of the algorithm (line 7) is based on the agent following an optimal policy
from the resulting state  onward (i.e, ). But this is not necessarily the case,
because the true policy followed by the agent is not optimal all the time (e.g.: ). So, this kind
of learning is called off-policy learning, because the policy followed by the agent and the one
used by the update rule are not necessarily the same for each update.
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6.4 Locomotion through Q-Learning

Considering a modular robotic configuration as the learning agent, for the purpose of learning
an optimal gait through RL, it is necessary to first define the state space, action space and the
reward function.

6.4.1 State space

In the context of learning locomotion in modular robots through Reinforcement Learning (RL), a
state can be represented as a vector ( ) of discrete actuator positions of modules
in a configuration with  modules. That is, , where is the actuator
position of the  module in the configuration. Then , the state space of the model, would be
all possible discrete actuator positions of all the modules in the configuration. For representing a
state, actuator position of a module is discretized such that , with a constant
step-size , where and are the lower and upper bounds of the module's actuator. That
is, . So, each
module in the configuration can be in any one of (Equation 6.14) distinct positions, which
mean that a robot with  modules can be in any one of possible states, which is the
size of the state space.

(6.14)

A module  with actuator position , can be categorized to a discrete non-corner position

, where ,f— — . Similarly,
module can be categorized to discrete corner positions and , if , or if
respectively.
For example, if \ and , then for module
and . Now, it module  with actuator position , then
module it would be discretized to state ,orif , then it would discretized to

state

6.4.2 Action space

Each action can also be represented as a vector ( ), such that , the
component of the vector, is the action for the  module in the configuration. For representing
an action, actions are discretized such that each action component  can be one of three
possible values, . S0, arobotwith  modules would have an action space
of actions. Vectorized representation of states and actions facilitates easy formulation
of state-transitions in the form of simple vector addition, as shown in Equation 6.15.
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(6.15)

where is the expected next state, with some unknown transition probability .when
action is taken from siate

Consider an example case of a two-module robotic configuration, with modules and
Action space  for this robot can represented in matrix form as,

where each row is a distinct action , and each column is the action for the mod-
ule in the configuration. If the robot is in some state , Where
, taking action for example, would transition the robot to

expected next state , with some unknown transition

probability
In the example case with two modules, size of the action space actions, but not all 9
actions are applicable in each state . For example, in the state , actions
where or are invalid. Formally this can be defined as,
if (6.16)
where , i5 a set of all valid actions in state .

6.4.3 State-action space

State-action space can be defined as, . Size of the state-action space
would then be , l.e, sum of action space size, of all the state

For the case of two-module configuration, state-action pairs can be, from a geometric
perspective, arranged into a square matrix as,



6.4. Locomotion through Q-Learning 143

...........................................................

Q

"""""" Q
where . , and each element of the matrix represents a unigue
state-action pair. Contiguous sub-matrices of size within the matrix (like the ones enclosed

in dotted colored boxes in the above matrix), represent state-action pairs of a single state
while each element within such a sub-matrix represent a unigque action. For example, in the
above matrix, elements within the yellow box ( ) form a sub-matrix of state-action pairs for

state . Similarly, elements withing the green box ( ) constitute a sub-matrix
of state-action pairs for state . So, there are sub-matrices
{ ) within such a matrix. Definition of some of the elements of this matrix

are as follows,

, where and
, where and
, where and
, where and
, where and
, where and

With this representation of state-action pairs, it is then possible to visualize state-transitions

as moving from one sub-matrix at time to an adjacent sub-matrix at time . If, for example,
the robot is in state — which would be from the sub-matrix perspective
— and take action (i.e, ), then the robot would most likely transition to the state

whose sub-matrix is one-step to the right (i.e, ). Similarly, from the same state, taking action
(i.e, ) would most likely transition the robot to the state whose sub-matrix is
one-step below and one-step right to the current sub-matrix (i.e, ).
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Given the geometric perspective of state-transitions, invalid state-actions are the ones that
lie on the boundary of the two-dimensional (2D) matrix. That is,
, which are the elements marked in red, in the above matrix. Total number of invalid
state-action pairs can then be calculated as,

(6.17)

That is, elements on each of the four edges of the 2D matrix, plus four corner
elements.

For a three-module configuration, state-action pairs can be represented as a three-dimensional
(3D) matrix (a cube). Invalid state-action pairs would then lie on the surface of the cube, which
can be calculated as,

(6.18)

That is, elements that lie on each of the six sides of the cube, elements on
the 12 edges of the cube, plus the eight corner elements.

In general, for a configuration with  modules, state-action pairs can be represented as
a M-dimensional hypercube. Invalid state-action pairs would then lie on the surface of this
M-dimensional hypercube, which can be calculated as,

(6.19)

(6.20)

where refers to the number of -dimensional hypercubes on the boundary of a -
dimensional hypercube.

So, size of the state-action space, given state space , action space , and invalid state-
action pairs , would simply be,

(6.21)



6.4. Locomotion through Q-Learning 145

6.4.4 Reward

For locomotion through evolution, which has been explored in previous chapters of this thesis,
speed of locomotion is used as the objective function for evaluating individual candidate solutions.
Locomotion speed is calculated as total distance traveled by the robot, over the time of evaluation.
Distance traveled is calculated as the euclidean distance between start and end position of the
robot, during evaluation. In terms of Reinforcement Learning (RL), this can be seen as reward
from the environment at the end of the learning period. But for Q-learning, a reward signal
from the environment is needed at every step (or at least every few steps), for value iteration,
and so the final speed of locomotion cannot be used as reward signal as it is. Even if speed
of locomotion is calculated at every step of the learning period, as distance traveled over the
duration of the step, this quantity lacks a sign, and so a robot that moves one unit forward has
the same reward when it moves one unit in the opposite direction. This could lead to a policy
which makes the robot sway back and forth rapidly, instead of a policy that makes the robot move
consistently in a single direction.

Instead, velocity of locomotion makes for a good reward signal for learning locomotion
through RL. Given and , global position and orientation of the robot before

taking an action, and and , global position and orientation of the robot after
taking the action, velocity of the robot in both and axis can then be calculated as,

— (6.22)

where — is the velocity vector, is the rotation matrix,

is the inverse of the euclidean transformation matrix

Velocity inthe -axis ( ) is used for calculating reward signal, as this pertains to the velocity
in the forward/backward directions of the robot. Velocity calculated per step of learning is in the
range . Reward based onwelocity is calculated as,

(6.23)

which increases the reward exponentially for positive velocity values, while bounding the
reward between when

When the robot enter an exit state by flipping over, then the action leading to the exit state is
penalized by setting reward
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6.4.5 Algorithm

Finally, for learning the gait itself, an optimal policy that maximizes accumulated discounted
rewards is learnt through Q-Learning. The robot is setup in the simulation environment and it
follows algorithm 5, which is the standard Q-Learning algorithm, modified for the case of learning
locomotion in modular robots.

Result: Optimal gait in the form of policy
1 Initialize :
2 )
3 repeat
4 Initialize state to a random state ;
5 do
6 Choose action from state . using a policy -greedy ;
7 Take action , and wait until or :
8 Observe reward , resulting next state ,and ;
9 if robot upright then
10 a :
11 ;
12 else
13 | :
14 end
15
16 while robot upright;
17 until end of learning period ;
18 greedy w.rt ;

Algorithm 5: Q-Learning algorithm for learning locomotion in Modular Robot (MR).

The algorithm begins by initializing state-action values to a positive value . This is
an exploration technique that encourages the agent to explore during the initial state of learning.
As the agent tries a new state-action pair, updating its value and moving it closer towards the
true state-action value, unexplored state-action pairs with a higher initial positive value become
more attractive, encouraging the agent to explore previously explored states-action pairs. The
learning algorithm is executed for a predefined learning period . Each new episode (outer loop
of the algorithm) starts by setting the robot to a random initial position, chosen uniformly random
from the state space

At each step of learning (inner loop of the algorithm), the agent chooses an action following -
greedy policy, then executes the chosen action by setting actuator positions to . After sending
out the actuator commands, actuator positions of the robot are sourced until: (i) all the modules
have reached their respective expected next position (i.e, ), or
(i) until .where isthe time since action was taken, and is a predefined time-limit.
After executing the action, velocity, in the form of reward (Equation 6.23), and the resulting next
state , are observed. Then, roll and pitch angles of the robot are calculated, to determine if
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the robot is in upright position, or if it has flipped-over. If the robot is in upright position, then
state-action value of the current state and action taken , is updated asper the standard
Q-Learning update rule (line 10). On the other hand, if the robot has flipped-over, then the
resulting state  is considered the exit-state, and state-action value is updated based only on
the negative reward (line 13).

6.5 Learning and Evaluation

Gait learning through Q-Learning is performed on the Minibot, Tripod, Quadropod and Y-bot
modular robotic configuration, in the simulation environment. Resulting gait in each case is
presented in the following subsections. Common Q-Learning parameters values used across all
the configurations during learning, are as presented in Table 6.1.

| Parameter || Value |

Table 6.1: Q-Learning parameters.

6.5.1 Minibot

As has been followed throughout this thesis, learning algorithm is first applied on the two-module
Minibot configuration. The state, action and state-action space for this configuration consists 49
states, 9 actions and 361 state-action pairs, respectively. Figure 6.2a contains a plot of average
reward ( ) received by the robot during the first 3000 seconds of the learning period, where
average reward is calculated as a running average with Equation 6.24, and with a step-size
parameter . Figure 6.2b contains a plot of locomotion speed of the robot, during the
learning period, which is calculated as euclidean distance traveled by the robot, over time take,
calculated approximately every 15 seconds. Learning period is set to 20,000 seconds, but
as could be observed in the following graphs, a fairly stable gait emerged within the first 1000
seconds of learning, which is appraximately 12,800 learning steps. During the initial period,
that is , the robot flips over several times while exploring state-action space, and
hence the high variation in average reward values during this period. Then, at around .
the robot falls into a fairly stable gait. The same can be observed in the locomotion speed graph.
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Figure 6.2: Average reward and locomotion speed, during gait learning in the Minibot configuration.

The learnt gait is evaluated for a period of 100 seconds, by following a greedy policy
(Equation 6.25). Average reward ( 6.3a) and locomotion speed ( 6.3b) during evaluation are as
plotted in Figure 6.3, where, range of -axis of the two graphs are the same as the respective
graphs during learning, which are plotted in Figure 6.2. The learnt gait is very stable and
consistent. Figure 6.4 contains reference trajectories, generated by the learnt optimal policy
{ ), while Figure 6.5 contains actuator trajectories of Minibot modules, generated during
evaluation, by following the reference trajectories.

following the learnt optimal policy greedily , while Figure 6.5 contains actuator trajectories of
Minibot modules, generated by following reference trajectories.

(6.25)

In the generated gait, oscillation amplitude, offset, range and frequency of Head and Tail

modules are as provided in Table 6.2. Modules oscillate with a negative phase-difference of

between them, resulting in the robot moving in the direction of the Tail module. The

reason for this is the way in which the robot is setup in the simulation environment, resulting

in positive velocity in the direction of the Tail module. By negating the calculated velocity

as , during learning period, the robot learns to crawl in the opposite direction.
Locomotion speed of the learnt gait during evaluation is
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Figure 6.3: Average reward and locomotion speed, during gait evaluation in the Minibot configuration.
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Figure 6.4: Reference trajectories generated by the learnt optimal policy { ), in the Minibot configuration.

6.5.2 Tripod

State, action and state-action space for the Tripod configuration consists of 343 states, 27 actions
and 6,859 state-action pairs. Learning period  is set to 50,000 seconds, and the learnt policy is
evaluated for a period of 100 seconds, post learning. Figure 6.6 contains actuator trajectories of
Tripod modules during evaluation. Oscillation amplitude, offset, range and frequency of Tripod
modules during evaluation are as presented in Table 6.3.

In the learnt gait, modules oscillate at a high frequency, but a shorter oscillation range. Mean
and standard deviation (SD) of phase-difference between modules in the Tripod configuration,
during evaluation, is as presented in Table 6.4. No two modules oscillate in phase, resulting in



150

Chapter 6. Learning Locomotion

a0

Q-Learning gait - Minibot actuator frajectories

&l
40
20

8 (Degreas)
=

-B0

-20 '\ \
a0 'I.II / \'I.II l.-/
&) \

H/\h\.\

vV Vv

5 ] 7 8
f (Seconds)

9 10

B rail

g ——

Figure 6.5: Actuator trajectories of the Minibot modules, during learnt gait evaluation.

Oscillation

Module

Head |

Tail

Amplitude

Offset

Range

Frequency

Table 6.2: Osdilation characteristics of Minibot modules, following the learnt policy.
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Figure 6.6: Actuator trajectories of the Tripod modules, during learnt gait evaluation.

a gait that makes the robot move on a circular trajectory. But consistency in phase-difference
between modules (Figure 6.7) results in the robot moving consistently in the same direction.
Speed of locomotion, which is calculated by integrating velocity values in the -axis, in this gait
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Oscillation | Module |

Amplitude
Offset
Range

Frequency
Table 6.3: Oscillation characteristics of Tripod modules, following the learnt policy:

Tripod Modules

Mean
sD
Mean
sD
Mean
sD

Table 6.4: Mean and SD of phase-difference befween modules in the Tripod configuration, following the
learnt policy.
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Figure 6.7: Phase-difference between all modules pairs in the Tripod configuration, following the learnt
policy.
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6.5.3 Quadropod

State, action and state-action space for the Quadropod configuration consists of 2401 states,
81 actions and 130,321 state-action pairs. Learning period is set to 100,000 seconds, and
the resulting gait is evaluated for a period of 100 seconds, post learning. Figure 6.8 contains
actuator trajectories of Quadropod modules during evaluation. Oscillation amplitude, offset,
range and frequency of Quadropod modules during evaluation, are as presented in Table 6.5.

CHLearning gait - Quadropod actuator trajectories
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Figure 6.8: Acfuator trajectories of the Quadropod modules, during learnt gait evaluation.

Oscillation M“d”re

Amplitude
Offset
Range

Frequency
Table 6.5: Oscillation characteristics of Quadropod modules, following the learnt policy.

Mean and standard deviation (SD) of phase-difference between modules in the Quadropod
configuration, during evaluation, is as presented in Table 6.6. In the learnt gait, modules oscillate
at a very low frequency, but also with consistent phase-difference between oscillating modules
(Figure 6.9), resulting in a consistent gait. Modules  and  oscillate in phasef®inote3 bt
there exists consistent phase-diffierence between rest of the modules. The gait emerged makes
the robot move consistently in the same direction, but on a circular trajectory, as shown in
Figure 6.10. Speed of locomotion in this gait is
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Quadropod Modules

Mean
sD
Mean
sD
Mean
sD
Mean
sD

Table 6.6: Mean and SD of phase-difference between modules in the Quadropod configurafion, following
the learnt policy.
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Figure 6.9: Phase-difference between all modules pairs in the Quadropod configuration, following the
learnt policy.

6.5.4 Y-bot

Size of state, action and state-action space in the Y-bot configuration, is the same as that of
Quadropod configuration, both of which have 4 module configurations. Learning period  is once
again set to 100,000 seconds. In Minibot, Tripod and Quadropod configurations, reward is
calculated based only on velocity in the -axis. This is because, from the local coordinate frame
of the robot, the -axis pertains to forward/backward directions of the robot, but the same does
not hold true for Y-bot configuration. Figure 6.11 contains a bird's eye view of Minibot({ 6.11a)
and Y-bot ( 6.11b) configurations, along with their respective local coordinate frames, embedded
within, and the global coordinate frames at the top-right corner of the respective sub-figures. So,
for the Y-bot configuration, by calculating reward based on either or  alone would result in
the robot learning gaits that would make it (roughly) rotate on its own axis, either in clock wise or
anti-clock wise directions respectively. To learn a forward crawling gait, reward is calculated



154 Chapter 6. Learning Locomotion
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Figure 6.10: Gait frajectory of the Quadropod configuration, following the learnt policy.

based on velocity in both and axis (Equation 6.26), which makes the robot crawl in the
direction indicated by black dotted arrow in sub-figure 6.11b.

(6.26)

The learnt gait is evaluated for a period of 100 seconds. Figure 6.12 contains actuator
trajectories of Y-bot modules during evaluation. Oscillation amplitude, offset, range and frequency
of ¥-bot modules during evaluation are as presented in Table 6.7.

Oscillation | Miadule

Amplitude
Offset
Range

Frequency

Table 6.7: Oscillation characteristics of Y-bot modules, following the learnt policy.

In the resulting gait, modules oscillate with phase-difference as presented in Table 6.8. In this
gait, no two modules oscillate in phase, and there exists positive phase-difference between Head
and Spine modules, as well as between Spine and Tail modules, resulting a sine wave starting
from the Tail module and maving in the direction of the Head module, which in turn propels the
robot in the direction of the Head module. The learnt gait is once again very stable (Figure 6.13),
with low standard deviation (SD) in phase-difference between modules, and results in the robot
moving on a very circular trajectory, which is as seen in Figure 6.14. Locomotion speed in this
gait is

For the six-module Lizard configuration, state, action and state-action space would consists
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Figure 6.11: Bird's eye view of Minibot and Y-bot configurations, and their respective local and global
coordinate frames.
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Figure 6.12: Actuator trajectories of the Y-bot modules, during learnt gait evaluation.

of 117649 states, 729 actions and 85,766,121 state-action pairs, which would make it infeasible
to learn a gait, due to the sheer size of the state-action space.
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Table 6.8: Mean and SD of phase-difference befween modules in the Y-bot configuration, when evaluated
with the learnt gait
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Figure 6.13: Phase-difference between all modules pairs in the Y-bot configuration, following the learnt
policy.
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Figure 6.14: Gait frajectory of the Y-bot configuration, following the learnt policy.
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Summary of the chapter

In this chapter a novel introduction to Reinforcement Learning (RL), and how it differs from other
Machine Learning (ML) technigues, is provided. A Markov Decision Process (MDP), which is an
extension of Markov chains, and used for making decisions in situations when outcomes are
partly random and partly dependent on the controlling agent, are explained. Value lferation and
Policy lteration are two popular model-based technigues for solving MDPs, given a complete
model of the environment, by finding optimal policy ().

Q-Learning, which is a model-free, off-policy, Temporal-Difference (TD) learning algorithm,
is explained. As part of this thesis, Q-Learning algorithm is adapted for learning locomotion
in modular robotic configurations. State, action and state-action spaces, and reward function
implemented for the purpose of learning locomotion are explained. Gaits are learnt in four
different modular robotic configurations through Q-Learning, and evaluation results post learning
are presented.



158 Chapter 6. Learning Locomotion




CHAPTER /

Conclusions

Locomotion is an important feature for a robot in most application domains. Compared to
wheel-based locomotion, legged locomotion gives a robot the ability to navigate rugged and
unstructured environment. Limbless gaits give small-sized robots the ability to navigate narrow
and inaccessible areas. This PhD thesis tackles the problem of providing locomotion for legged
and limbless robots through: (i) Morphology, (ii) Evolution, and (iii) Learning. A wide variety of
locomotion controllers for Modular Robot (MR)s, and for a humanoid robot has been developed
in this thesis. Five different two-dimension (2D) modular robotic configurations, a simulated
Humanoid for Open Architecture Platform (HOAP-3) robot, and a real modular robotic configu-
ration has been constructed and used as target platforms for locomotion experiments, in this
thesis.

As a first step, sinusoidal oscillators, which are commonly used as locomotion controller in
MRs, is implemented. Gaits on all the modular robotic configurations are evolved by optimizing
Sinusoidal controller parameters through Evolutionary Algorithm (EA), and evaluated for bench-
marking. Fastest gait in four out of five configurations is achieved with this controller. Sinusoidal
controller is distributed and scalable, but it is heterogeneous and cannot adapt to changes in
configuration.

A second periodic function controller, based on Fourier series, is developed as part of this
thesis. This controller can produce complex trajectories, which are essential for multiple Degree
of Freedom (DOF) legged locomotion. Two variants of this controller are tested on different
modular robotic configurations, and the fastest gait in the Minibot configuration is achieved
with this controller. Control parameters are optimized through EA, and in the second version of
this controller, generated trajectories are non-sinusoidal. This controller is also distributed and

159
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scalable, but heterogeneous and cannot adapt to changes in configuration. It is parameter heavy,
making it undesirable for producing creeping/crawling gaits in two-dimensional (2D) modular
robotic configurations.

One of the objectives of this thesis is to study the relationship that exist between robot
morphology and the gait that emerges in it, and use the results for developing locomotion
controllers that are morphology-dependent. To this end, forces that exist between module in a
configuration, as a result of interaction between physically connected modules, and between
the modules and their environment, are measured and quantified. This phenomenon is termed
Intra-Configuration Force (ICF), based on which two different morphology-dependent locomotion
controllers for MRs are developed.

The first controller is Artificial Neural Network (ANN) based, which features a neural-oscillator
mechanism for generating oscillatory signals for robot modules. This controller is distributed,
homogeneous, and uncoupled. Control parameters are optimized through EA for learning
locomotion in modular robotic configurations. All the modules in a configuration would have the
same controllers, start with the same initial conditions, but emerge to act differently for producing
a stable gait. In this control model, although modules do not communicate with each other
explicitly, coordination among them for producing a gait, comes about as a function of ICF that
exist between modules in the configuration. Because of the homogeneity of the controller, a
controller optimized for one configuration can be evaluated on another configuration of any size.
So, controllers optimized on each of the five configurations are cross-evaluated on rest of the
four configurations. 15 successful gaits are produced out of 20 total cross-evaluations, further
proving a strong link between the morphology (body) and the controller (brain) of the robot.

The second morphology based controller developed in this thesis is inverse sinusoidal
function based. As part of which, a general purpose inverse sinusoidal function is developed.
Unlike the Neural-oscillator controller, Inverse sinusoidal controller is trajectory based. That
is, in the Neural-oscillator controller, only crest and trough points of oscillation, per cycle of
oscillation, are provided. But with the Inverse sinusoidal controller, a continuous and smooth
trajectory is produced by the controller for the module’s actuator to follow. Inverse sinusoidal
controller features a sinusoidal oscillator at its core, and so combines the smooth trajectory
feature of a Sinusoidal controller, and the morphology-dependent feature of the Neural-oscillator
controller. EA is used for evolving gaits in MRs, and the evolved gaits are smooth, stable
and morphology-dependent. This controller is also distributed, scalable, homogeneous and
uncoupled.

For bipedal locomotion in a humanoid robot, complex trajectories are needed. One such
set of trajectories, available in the literature, is developed based on cart-table method, and has
been successfully evaluated on the HOAP-3 robot. This is a model-based method of producing
locomotion, where all aspect of the target robot needs to be explicitly modeled into the trajectory
generator. In this thesis, a model-free, feature based linear periodic function for generating
trajectories is developed. The periodic function consists of features such as symmetry, duality,
signal-width, skewness and squareness, which dictates the shape of the generated trajectory.
The periodic function is conceived by adding a sawtooth wave to a reverse sawtooth wave, and
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then by introducing one feature at a time. As a first step, linear approximates of cart-table method
generated trajectories are modeled, and evaluated on the simulated HOAP-3 robot. Then, a
walking gait is evolved afresh by optimizing linear periodic function parameter, in a model-free
bottom-up approach. The evolved gait is stable and much faster than the cart-table generated
gait.

For performing Embodied Evolution (EE), a framework for running EA on a physical robot
is developed. As part of this, a modular robotic configuration is constructed with Y7 robot
modules. A hardware-software system for estimating actuator position of a module, based on
its servomotor’s potentiometer reading is developed. A Kalman Filter (KF) for module’s state
estimation, based on noisy data which is in turn based on potentiometer readings, is developed.
A vision system for estimating position of the robot in the evolution arena is developed. A
communication protocol for establishing communication link between the host desktop personal
computer (PC), running the high-level controller and the EA, and the SkyMega board on-board
the robot, running the low-level controller, is implemented. A gait is evolved on the physical Y-bot
configuration through an EA combining features on Genetic Algorithm (GA) and Evolutionary
Strategy (ES).

Finally, an optimal control policy for producing locomotion in MRs is learnt through RL. State
space, action space and reward function are defined, and the standard Q-Learning algorithm is
adapted for learning locomotion is MRs. Gaits are successfully learnt on four different modular
robotic configurations through this method.
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