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Abstract

The Internet has evolved from a small research network towards a large globally in-

terconnected network. The deregulation of the Internet attracted commercial entities

to provide various network and application services for profit. While Internet Service

Providers (ISPs) offer network connectivity services, Content Service Providers (CSPs)

offer online contents and application services. Further, the ISPs that provide transit ser-

vices to other ISPs and CSPs are known as transit ISPs. The ISPs that provide Internet

connections to end users are known as access ISPs. Though without a central regulatory

body for governing, the Internet is growing through complex economic cooperation be-

tween service providers that also compete with each other for revenues. Currently, CSPs

derive high revenues from online advertising that increase with content popularity. On

other hand, ISPs face low transit revenues, caused by persistent declines in per-unit traffic

prices, and rising network costs fueled by increasing traffic volumes.

In this thesis, we analyze various approaches by ISPs for sustaining their network in-

frastructures by earning extra revenues. First, we study the economics of traffic attraction

by ISPs to boost transit revenues. This study demonstrates that traffic attraction and

reaction to it redistribute traffic on links between Autonomous Systems (ASes) and create

camps of winning, losing and neutral ASes with respect to changes in transit payments.

Despite various countermeasures by losing ASes, the traffic attraction remains effective

unless ASes from the winning camp cooperate with the losing ASes. While our study

shows that traffic attraction has a solid potential to increase revenues for transit ISPs,

this source of revenues might have negative reputation and legal consequences for the

ISPs. Next, we look at hosting as an alternative source of revenues and examine hosting

of online contents by transit ISPs. Using real Internet-scale measurements, this work

reports a pervasive trend of content hosting throughout the transit hierarchy, validating

the hosting as a prominent source of revenues for transit ISPs. In our final work, we con-

sider a model where access ISPs derive extra revenues from online advertisements (ads).

Our analysis demonstrates that the ad-based revenue model opens a significant revenue

potential for access ISPs, suggesting its economic viability.
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Chapter 1

Introduction

The Internet began with the interconnections of few computers as part of a research

project by DARPA (Defense Advanced Research Project Agency). It rapidly evolved from

being a small research network towards a large globally distributed network of millions of

computers. With the deregulation of the Internet, many commercial entities entered the

field to provide various services for profit. The entities that provide network infrastruc-

ture and connectivity services are called Internet Service Providers (ISPs). The entities

that provide online contents and application services are referred to as Content Service

Providers (CSPs). An ISP manages its network by segmenting the network into one or

more Autonomous Systems (ASes) – collection of network routers and switches managed

under a common administrative policy. From an economic perspective, Internet infras-

tructure services can be classified into 3 categories: transit, hosting, and access. While

access ISPs supply Internet connections for residential and enterprise users, hosting ISPs

serve CSPs by providing computing, storage and networking resources for hosting online

contents on the Internet. Transit ISPs offer connectivity to the global Internet and op-

erate geographically distributed communication infrastructures. During the early stage,

the Internet topology evolved to form a hierarchical structure, wherein large transit ISPs,

known as tier-1 providers, interconnected with each other to form the core of the Inter-

net. Surrounding the core, the intermediate layer of the Internet topology consisted of

medium and small transit ISPs, known as tier-2 and tier-3 providers respectively. On the

periphery of the intermediate layer, CSPs, access, and hosting ISPs formed the outer edge

of the Internet.

The creation and maintenance of the ISP network infrastructures involve substantial

costs. It is common for the ISPs to recover the costs by charging customers for connec-

tivity services. Access ISPs charge monthly subscription fees to end users. Hosting ISPs

charge CSPs for the provided computing, storage and networking resources. CSPs rely

primarily on online advertisements (ads), besides selling goods online and offering paid

online services. For traffic delivery, access, and hosting providers pay transit providers

1



2 Chapter 1. Introduction

for traffic delivery across the Internet.

As alluded, the Internet is a network of thousands of interconnected ISPs operated by

profit-driven business entities. Each ISP meticulously engineers its own physical network

to enable efficient paths for its internal traffic flows. The interconnections between ISPs

are mainly driven by economic interests and business negotiations. To establish inter-ISP

business relations, an ISP negotiates bilateral contracts with its neighbors based on many

factors, such as potential traffic demand. Therefore from an economic point of view, the

Internet is a loosely connected network of inter-ISP business relations established on a

basis of complex economic policies.

1.1 Motivation

Currently, the Internet does not have a central governing body to directly regulate

all the service providers across the globe. Yet, the Internet is growing through complex

economic cooperation between service providers that also compete with each other for

revenues. In the current Internet economy, the CSPs’ revenue growth is 2 times higher

than the ISPs’ revenue growth [1]. The CSPs’ economic growth is mainly boosted by online

ad revenues which grow with the online content consumption by end users. Therefore, the

CSPs have incentives to create advanced innovative online contents, which often consume

substantial network capacity, e.g., online 3D video streaming.

On the other hand, transit ISPs’ revenues mainly depend on the traffic volume on their

links with their transit customers. While access ISPs’ revenues depend on fixed monthly

subscription fees paid by end users, their network costs consisting of transit payments

and capital expenses are traffic-dependent. Thus a larger traffic volume provides higher

incentives to transit ISPs in the form of transit revenues and lower incentives to access

ISPs due to rising network costs. Currently, ISPs generate a lower Return on Investment

(RoI) due to falling per-unit traffic prices in the transit sector, and rising network costs

in the access sector due to increasing traffic volume in the access ISPs’ networks [1, 2].

Besides, the capital and operational expenditures (CapEx and OpEx respectively) of ISPs

are higher compared to the expenditures of CSPs [3].

In the Internet core, persistent declines in the transit traffic prices [2] as well as

extensive peering and content caching at the Internet edge [4–7] have recently put transit

businesses under significant financial pressure [8]. To boost revenues, transit providers

experiment with new economic models, such as paid peering [9], remote peering [10,

11], group purchase of transit [12, 13] and partial transit [14], to diversify the offered

connectivity products. Further, there exists anecdotal evidence that few transit providers

use unorthodox routing techniques to attract extra traffic of transit customers [15, 16].

Hence, this thesis begins by studying incentives for transit ISPs to boost their revenues

via traffic attraction.



1.2. Contributions 3

As a consequence of the financial challenges in Internet transit, transit providers have

branched out into providing hosting services to CSPs. To achieve higher performance

for the bandwidth-intensive online contents, CSPs approach transit ISPs to leverage the

global transit infrastructure for caching their online contents geographically closer to end

users. Thus, the content hosting by transit ISPs have transformed the content traffic

sources from the earlier remote CSP-originated to distributed sources of content traffic

across the Internet transit hierarchy. Our thesis explores this paradigm shift in the content

hosting. This shift necessitates modeling of the content traffic matrix to also consider

traffic sources in transit networks, which were earlier viewed as mere forwarders of end-

to-end traffic.

Next, because of the increasing traffic originated by CSPs and their caches on transit

networks, access ISPs face rising network costs due to frequent backbone capacity up-

grades to accommodate the growing traffic. As access ISPs earn revenues in the form of

fixed subscription fees, their profit margins decrease due to rising network costs. Recently,

access ISPs demand financial payments from CSPs for allocating more capacity for the

bandwidth-intensive content traffic or subtly degrade the content delivery performance at

the access backbone [17]. Such tussles have led to many net-neutrality wars, where CSPs

accuse access ISPs of traffic discrimination by deliberate performance degradation [18–20].

On the other hand, access ISPs are also in disputes with their transit providers regarding

violations of prior-agreed traffic ratios [21]. Thus, in this thesis, we propose and analyze

how access ISPs can use online ads as an alternative revenue source.

1.2 Contributions

In this thesis, we study alternative revenue sources that might help ISPs to economi-

cally sustain their network infrastructure. In our first work, we assess economic incentives

for transit providers to boost transit revenues by attracting customer traffic. As men-

tioned earlier, a transit provider’s revenue depends on the volume of customer traffic, i.e.,

the transit revenue increases as the customer-traffic volume increases. Therefore, in order

to generate more revenues, a transit provider may have a financial interest in attract-

ing extra customer traffic [22, 23]. First, we analyze a real incident of YouTube’s traffic

attraction that occurred in early 2008. Next, motivated by the insights from this real

case study, we conduct in-depth studies for hypothetical scenarios of traffic attraction by

ISPs across the transit hierarchy. Based on real empirical data for the Internet’s AS-level

topology and traffic, our extensive simulations and sensitivity analyses reveal that traffic

attraction and reaction to it redistribute traffic on the inter-AS links and create camps

of winning, losing and neutral ASes with respect to transit payments. Despite various

countermeasures by losing ASes, the traffic attraction remains effective unless ASes from

the winning camp cooperate with the losing ASes. Although the traffic attraction has
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a potential to significantly increase revenues for transit providers, this technique might

have negative reputation and legal consequences for the ISPs.

Next, we explore content hosting as a source of extra revenue. In our second work, we

dissect the global hosting ecosystem to discover a wide presence of transit ISPs offering

hosting and content delivery services. To explore the global content hosting ecosystem, we

conduct real Internet-scale measurements using a novel technique that leverages a Virtual

Private Network (VPN) to collect real online contents from top 2,165 websites across

52 countries, and use a vast network of around 22,000 open recursive Domain Naming

System (DNS) vantage points to discover the infrastructures hosting the online contents.

Our results show that ISPs host online contents across the transit hierarchy, significantly

on tier-2 and tier-3 transit ASes, followed by access ASes, CSPs, and tier-1 transit ASes.

The latter results are valuable for realistically modeling of the content traffic matrix.

Besides, our analyses also provide realistic understanding on the network characteristics

of the hosting infrastructures and content delivery performance as perceived by end users.

While transit providers seek extra revenues in hosting of online contents, access

providers face rising network costs due to the increasing volume of bandwidth-intensive

content traffic. In our third and final work, we evaluate an economic model for access

ISPs to derive extra revenues from online advertisements. First, we evaluate an ad-based

revenue model for access ISPs. Then, we analyze its revenue potential and economic

viability for different access ISPs. We validate our model using financial data collected

from two, one large and one medium-sized, access ISPs operating in India. Our analyses

demonstrate a significant revenue potential up to 50% of the capital expenses) for the

large access ISP and non-trivial gain up to 5% of the capital expenses for the medium-

sized access ISP. Next, we establish conditions for economic viability of the model. Lastly,

we demonstrate various incentives (6–9 Mbps extra speed or 12–20 GB extra data) that

an access ISP can offer to subscribers of an ad-subsidized Internet plans. Unlike the

content-sponsorship models where CSPs directly compensate access ISPs for content de-

livery costs, our ad-based revenue model relies on direct collaboration of access ISPs with

advertisers, lessening the concerns about network neutrality.

1.3 Thesis overview

The thesis is organized as follows. Chapter 2 presents background information related

to our research area. In Chapter 3, we present our studies on economics of customer-traffic

attraction by transit providers to boost transit revenues. In chapter 4, we conduct a real

Internet-scale measurement study of the global content hosting ecosystem to explore the

presence of transit providers in the hosting of online contents. In chapter 5, we derive an

ad-based revenue model for access ISPs. Chapter 6 concludes the thesis with a discussion

of our research findings and future work on economic, technical, and security aspects of



1.4. Research publications out of our contributions 5

the Internet infrastructure spectrum.

1.4 Research publications out of our contributions

Accepted papers:

• Pradeep Bangera and Sergey Gorinsky, “Traffic Attraction by Internet Transit

Providers: An Economic Perspective”, in the Proceedings of IFIP Networking

2014 [24].

• Pradeep Bangera and Sergey Gorinsky, “An Economic Perspective on Traffic At-

traction by Internet Transit Providers”, in the Proceedings of IEEE ICNP 2013

(Poster) [25].

• Pradeep Bangera and Sergey Gorinsky, “Impact of Prefix Hijacking on Payments of

Providers”, in the Proceedings of COMSNETS 2011 [26].

Working papers:

• Pradeep Bangera, and Sergey Gorinsky, “Content versus Ads: Dissecting the Host-

ing Ecosystem” Part of this work was accepted by IFIP Networking 2016 and later

withdrawn from publication.

• Pradeep Bangera, Syed Hasan and Sergey Gorinsky, “AdBroadband: Analysis of

Economic Viability of Ad-based Revenue Model for Access ISPs”





Chapter 2

Background and Basic

Information

In this chapter, we present and discuss basic information pertaining to our research

problems.

2.1 Basic building blocks of the Internet

While the complex interconnections of routers and switches have spun the Internet, the

AS-level graph is commonly employed for visualizing the Internet topology. For universal

end-to-end communication, ISPs utilize the Internet Protocol (IP) [27] for addressing net-

work interfaces in the Internet, and Border Gateway Protocol (BGP) [28] for establishing

AS-level paths to destinations.

2.1.1 Internet Protocol (IP)

An IP prefix is a succinct representation for contiguous IP addresses owned by an AS.

An IP router contains a routing and forwarding table. The IP prefixes associated with

various destination networks are stored in the routing table. For traffic engineering, an AS

might deaggregate an IP prefix into multiple longer prefixes and announce these longer

deaggregated prefixes to other ASes via BGP [29]. The routing table contains separate

entries for multiple paths to the same IP prefixes learned by a router from different

neighboring routers. The forwarding table in a router compactly maps each IP prefix

to an output interface of the router. During packet transmission, an IP router quickly

forwards an incoming IP packet to the output link determined through the longest-prefix

match rule, which selects the longest among the matching prefixes.

7
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2.1.2 Border Gateway Protocol (BGP)

While IP addresses identify network-device interfaces in the Internet, BGP establishes

inter-domain connectivity between neighboring ASes to enable traffic between them. BGP

is a path-vector protocol that serves as a de facto standard protocol for routing between

ASes and exchanges AS-level best-path announcements between neighboring ASes to sup-

port global reachability of IP prefixes. The announcing AS either owns the advertised

prefixes or learns about the best paths to the prefixes from other neighboring ASes.

Generally, BGP selects the best path to a destination IP prefix by comparing the path

attributes of different AS-level paths. Usually, network operators configure routing poli-

cies in the router to set operator-preferred path attributes instead of relying on default

BGP values.

BGP uses various attributes that can influence the best path of the incoming IP

traffic, such as AS-PATH length, origin-type, and MED. The AS-PATH length denotes

the number of AS hops to reach a destination IP prefix. The origin-type attribute can

assume three values: IGP (BGP-originated routes), EGP (Exterior Gateway Protocol

routes) and INCOMPLETE (for other protocols). The Multi-Exit Discriminator (MED)

is used to assign priorities among multiple links of the AS with its immediate neighbors.

During the selection of the best path to an IP prefix, BGP first prefers the shortest AS

path to an IP prefix. To break ties between two paths with equal lengths, BGP prefers the

path having the IGP attribute over the path with EGP and INCOMPLETE attributes.

To receive traffic from a neighboring AS on the most-prioritized link, operators assign the

smallest MED value for the preferred link.

For storing and processing the path attributes, BGP maintains 3 logical tables called

RIBs (Routing Information Bases) [30, 28, 31]: (1) Adj-RIB-In (Adjacent RIB Input)

stores all learned AS level paths, including multiple paths per prefix; (2) Loc-RIB (Local

RIB) remembers the best path for every prefix; (3) Adj-RIB-Out (Adjacent RIB Output)

stores the paths announced to other routers.

2.1.3 Inter-AS business relation types

Before employing IP and BGP for traffic delivery, each ISP first negotiates and forms

economic agreements for interconnections with neighboring ASes. In the transit agree-

ment, customer ASes pay their transit providers for traffic delivery. Usually, the business-

relation type between a customer AS and its transit provider is called customer-provider

(or provider-customer) [32] relation. Unlike transit agreements, peering agreements do

not result in inter-AS traffic delivery payments, but ASes equally share peering infrastruc-

ture costs [33]. The inter-AS relation type in the latter is called a peering relationship.

Further, a link between two ASes that belong to the same ISP is called a sibling link.

Traffic on sibling links does not result in any inter-provider payment.
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2.1.4 Network and content hosting infrastructure

While ISPs negotiate and interconnect their networks, each ISP offers specialized

services to cater to different sections of customers, such as transit customers, CSPs, and

residential users.

Transit ASes are interconnected in a hierarchical pattern, with large tier-1 ASes at the

top of the hierarchy (i.e., the Internet core) and smaller tier-3 ASes at the bottom of the

hierarchy. The tier-1 transit providers operate large network infrastructures, consisting

of one or more ASes spanning the globe and having Points of Presence (PoP) in multiple

countries. The tier-1 providers do not pay any other ISPs for traffic exchange. They

usually maintain settlement-free peering relationships with other tier-1 providers and

receive payments from their transit customers for sending and receiving traffic. There are

about a dozen of ISPs that are tier-1 [34]. Tier-2 transit providers are smaller than the

tier-1 providers, have continental coverage, and pay tier-1 providers for traffic delivery.

Tier-3 providers are usually regional and national transit providers that buy transit from

tier-2 or tier-1 ISPs. The transit providers commonly employ the 95th-percentile billing

model for charging for transit of customer traffic [35, 36]. This method measures the

average traffic rate over each 5-minute interval during a 1-month billing period and then

uses the 95th percentile of all the individual traffic-rate samples as a basis for calculating

the monthly bill.

Hosting ISPs and Content Delivery Networks (CDNs) [37, 38] specialize in hosting

and delivering the online contents of CSPs. The CDNs distribute the online contents by

deploying caches in different ASes across the Internet hierarchy and across geography. As

a result, end users enjoy low latencies and high throughput because of the geographical

proximity of the content caches. To fetch the contents from the nearest caches, CDNs usu-

ally employ IP anycast forwarding [39] or their proprietary protocols by using a Canonical

Name (CNAME) record to select the best cache. The selection considers various metrics,

such as the user location, cache load, inter-AS path length, and link latencies. While

CDNs carefully select in which ASes to place caches to improve content delivery per-

formance, access ISPs also have economic incentives to offer their networks for cache

placements in order to reduce their transit costs by delivering most traffic locally rather

than through a transit-provider link.

Demand for Internet access is rising as online contents prove themselves greatly valu-

able for satisfying information, entertainment and business needs. The technological

advancement in the Internet access infrastructure has evolved from a dial-up Internet ac-

cess with the maximum data speed of 56 Kbps to high-speed broadband access with data

speeds over 100 Mbps, suitable for the current bandwidth-intensive online contents. With

the growing demand for higher Internet speeds as well as increasing competition in the

access market, access ISPs have been continuously upgrading their network capacity and

geographical coverage by making huge capital investments year-on-year. Driven by in-
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tense competition, most of the access ISPs have adopted the fixed monthly payment model

that is largely traffic-agnostic. Therefore, as end users consume more online contents, the

access ISPs experience higher traffic delivery costs. Besides cache placement collabora-

tions with CDNs to reduce traffic costs, access ISPs also started negotiating with CSPs

to sponsor the delivery of online contents to end users, i.e., CSPs are asked to pay some

fraction of the cost incurred by access ISPs for delivering the content traffic. The latter

content sponsorship model recently attracted much academic research interests [40–42]

and also intense debates on protecting network neutrality.

2.1.5 Content service providers and online advertisements

While transit and access ISPs face low returns on their network infrastructure in-

vestments due to the unsustainable traffic costs, CSPs earn high revenues through online

advertisements. Presently, almost all of the online ads are published by CSPs via their

websites and mobile applications.

In the Internet economic ecosystem as a whole, a major share of the revenues come

from online ads. Online ads enable CSPs to offer end users free access to a vast number

of online contents and applications. Unlike the advertising in printed and broadcast

electronic media, advertising on the Internet provides better control over the delivery

of ads to the right set of audience, thus maximizing the Return-on-Investment (ROI)

for the advertisers. The entities that advertise their products are known as advertisers.

The CSPs who offer space on their websites for displaying ads are known as publishers.

The entity that links the advertisers and publishers for displaying ads is known as an ad

network. The ad network aggregates ads from several advertisers and selects a relevant

website for displaying an ad. The process of displaying a single ad on a website is referred

to as an ad impression. CSPs attract billions of end users to their websites, providing a

highly appealing platform for the advertisers to publicize their products.

Thus, CSPs maintain contracts with one or more ad networks or may operate their

own ad network to receive relevant ads. Besides aggregating ads from several hundreds

of advertisers, an ad network also partners with behavioral targeting agencies to gain

insights into user interests. Upon receiving the user visits, a website sends a request to

the ad network to fetch relevant ads. The ad network then selects a relevant ad in real

time, after processing a number of information, such as the advertisers’ bid prices, ad

quality score, website ranking, website category, and user profile. This information is

gathered by the behavioral targeting agencies using web cookies. Finally, a relevant ad

from the highest bidder is displayed on the target website.

For pricing, the advertisers are charged by the ad networks using one of the three

popular ad pricing models, such as cost per mille (CPM), cost per click (CPC) and

cost per user action (CPA). Each pricing model serves different business objectives. The

CPM model is typically employed in brand awareness campaigns. The CPC and CPA
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models are generally used for attracting traffic and sales respectively. In the CPM model,

the advertisers pay for every 1000 ad impressions on the websites. In CPC and CPA

respectively, the advertisers pay for every ad click and purchase made by end users on

the websites. The ad revenues are then shared between the CSP and ad network based

on their contract.





Chapter 3

Economics of Traffic Attraction by

Transit ISPs

3.1 Introduction

Internet transit is a massive decentralized economy where thousands of ISPs sell and

resell traffic-delivery services. Transit revenues depend on traffic rates: the more traffic

the provider transits, the larger the revenue is. As more Internet traffic bypasses the

transit services due to peering arrangements, the transit ISPs miss on earning transit

revenues on this traffic. Data from TeleGeography [8] reveals that the share of traffic

passing through the transit networks reduced from 47% in 2010 to 41% in 2014. Besides,

the per-unit transit traffic prices also decline.

Traffic attraction refers to a family of BGP [28] techniques enabling an AS to re-

ceive traffic that would otherwise flow elsewhere. Because a transit provider receives

payments for transit of customer traffic, the provider has a direct financial interest in at-

tracting extra traffic of customers, e.g., when competing with another provider for transit

traffic of a multihomed customer [22, 23]. While some of prior studies on traffic attrac-

tion [43–46] indicate that attraction of extra traffic provides economic benefits to transit

providers, the prior work mostly focuses on security rather than traffic economics. The

previous security-themed work examines various traffic-attraction techniques and argues

that secure versions of BGP or configuring prefix-filtering policies do not neutralize them.

There is also a body of related game-theoretic and simulation-based studies [23, 47, 48]

that include economic considerations but analyze traffic attraction in small-scale artificial

settings.

In this chapter, we study the economics of traffic attraction by transit providers to

increase their transit revenues. We begin by analyzing a real traffic-attraction incident in

the Internet. Motivated by the insights obtained from the analysis of this real incident,

we conduct further studies, from economic and technical perspectives, of hypothetical

13
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scenarios of traffic attraction by providers across the transit hierarchy.

3.2 Real case study of YouTube traffic attraction

In early 2008, YouTube owned AS 365611 with five assigned prefix spaces according

to the RIPE RIS Dashboard [49]. 208.65.152.0/22 represented one such space and is the

prefix that attracted a majority of YouTube-addressed traffic. On the 24th of February

in 2008, AS 17557 belonging to PTCL (Pakistan Telecommunication Company Limited)

hijacked YouTube traffic for approximately two hours and fourteen minutes by announcing

the more specific prefix 208.65.153.0/24. The intention of the hijacking was to block

access to YouTube within the state of Pakistan but the impact was significantly more far-

reaching because PTCL announced 208.65.153.0/24 also to its provider PCCW Global

(AS 3491), and the latter advertised globally the bogus PTCL paths for the longer prefix.

Consequently, PTCL became a black hole that attracted and discarded packets sent to

YouTube from all over the global Internet. YouTube detected the sharp decrease in its

incoming traffic and reacted by announcing the even more specific prefix 208.65.153.0/25.

The countermeasure restored some traffic flow to YouTube, yet PTCL remained able to

attract a nontrivial fraction of YouTube-addressed traffic due to the path length and other

factors that affect the routing policies of various ASes [50].

3.2.1 Methodology

The specific basis for our traffic attraction investigation is the above real incident of

prefix hijacking. The incident attracted significant attention and was actively discussed by

operators and researchers on NANOG (North American Network Operator Group) mail-

ing list [51]. Whereas, the Internet incorporates BGP announcement monitoring systems

such as PHAS (Prefix Hijack Alert System) [52], RIPE RIS (Réseaux IP Européens Rout-

ing Information Service) [49] and BGPmon (BGP monitoring and analyzer tool) [53], our

analysis relies on actual announcement data collected by the monitoring systems during

the hijacking incident.

The adopted research method supplements the real-data analysis with simulations for

two reasons. First, the available real data do not paint the full picture of the traffic at-

traction incidents. Second, simulations enable us to examine suppositional scenarios that

are more suitable for revenue-boosting traffic attraction. Our choice for the simulation

platform is C-BGP [54], a widely used simulator for BGP routing problems. C-BGP de-

termines AS-level paths for all traffic and bidirectional traffic rates for every inter-domain

link in the simulated topology. The BGP routing policies [32] in C-BGP satisfy the

valley-free routing conditions [55]. Although real Internet routing occasionally deviates

1Before Google restructured YouTube.
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from such policies, valley-free routing constitutes a reasonable approximation because we

are mostly interested in qualitative insights.

3.2.1.1 Topology

To initialize C-BGP with a realistic contemporary AS-level topology of the Inter-

net, we use a data set collected by CAIDA (Cooperative Association for Internet Data

Analysis) [56] at the time of the real hijacking incident. The AS-level Internet topology

is as per the CAIDA data set dated 21 February 2008 and captures relationships be-

tween 27184 ASes. The CAIDA data set classifies relationships between a pair of ASes as

customer-provider (encoded as -1 in the data set), provider-customer (encoded as 1), and

peering (encoded as 0). We remove from each data set all customer-provider pairs because

of their redundancy: for every provider-customer relationship provided to C-BGP, the

simulator automatically configures a transit link associated with both provider-customer

and corresponding customer-provider relationships. Since C-BGP does not recognize sib-

ling relationships between ASes, we also substitute sibling relationships (encoded as 2)

with peering relationships. The number of sibling relationships in the CAIDA data set is

small, and the substitution has a negligible impact on the fidelity of the simulations.

3.2.1.2 Traffic

While YouTube-bound traffic contains video clips uploaded by YouTube users as well

as requests for clip downloads, the uploads are likely to dominate the requests in terms

of the traffic volume, and we focus only on this former type of traffic. According to [57],

video was uploaded to YouTube in 2008 at the rate of 12 hours per minute, meaning

that the volume of video clips uploaded every minute was such that playing them one

after another would take 12 hours. After analyzing a collection of video clips in the FLV

(FLash Video) format with playing times in the range from 1 minute to 1.3 hours, we

estimate that 1 hour of playing time corresponds to 100 MB of data. Hence, our estimate

for the average year-2008 rate of YouTube-addressed traffic is 160 Mbps.

Determining the origins of the YouTube-addressed traffic is a more challenging task.

ISPs commonly perceive exchanged traffic volumes as sensitive information. While we

are aware of anonymized data sets that quantify the relative potency of various ASes to

generate traffic, the goal of our study necessitates associating a generated traffic volume

with each specific AS. Without having access to real data sets of the latter type, we

allocate the generated traffic to all BGP-connected ASes uniformly, i.e., each AS in our

C-BGP simulations generates YouTube-addressed traffic at the same rate of 6 Kbps.

Our simulations rely on the aforementioned synthetic traffic to evaluate the impact

of prefix hijacking on inter-provider links. With each AS in the Internet-scale topologies,

we associate the traffic demand for the advertised prefix. Then, we utilize C-BGP to
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Figure 3.1: Number of BGP paths through transit ASes (a) before the YouTube's prefix 
hijacking by PTCL and (b) after PTCL hijacks all YouTube-bound traffic. 

determine the rate of traffic flowing in both directions of each inter-ISP link. We refer to 
this traffic rate as a link load of the inter-provider link. 

3.2.2 Impact of traffic attraction on Inter-AS paths and traffic 

In accordance with our general simulation methodology from Section 3.2.1, we per-
form two simulation runs. In the first run, YouTube (AS 36561) announces its prefix 
208.65.152.0/22. In the subsequent run, PTCL (AS 17557) additionally advertises its 
sham ownership of the more specific prefix 208.65.153.0/24 to hijack YouTube-addressed 
traffic. The C-BGP simulations reveal the complete success of the PTCL hijacking at-
tempt: as a result of announcing the longer prefix, PTCL starts receiving all YouTube-
addressed traffic with no continued delivery to YouTube itself. This simulation outcome 
is consistent with the historical accounts of the actual hijacking incident [50] . After each 
of the runs, C-BGP ident ifies exactly 100 ASes as being unable to reach any announced 
prefix. Hence, the number of BGP-connected ASes in the reported simulations stands 
at 27,084. 

3.2.2.1 Connectivity of transit ASes to the advertised prefix 

In the following, we examine the impact of the hijacking on the BGP connectivity 
of all transit providers to the announced prefix, i.e., we focus on the transit ASes which 
forward traffic from other ISPs to the advertising entity. Using C-BGP, we determine all 
converged BGP paths in the simulated scenario. Then , for each transit AS, we count the 
number of paths from other ASes through this transit AS to t he advertising entity. Below, 
we interchangeably refer to this value as the number of served BGP paths or BGP path 
count of the transit AS. Figure 3.1 presents t he number of BGP paths through the transit 



3 .2. Real case study of YouTube traffic attraction 17 

cf. 500 
(I) 400 

I...~------Cl 
C: 300 
I'll 200 .c: u 100 u 
!E 0 
~ -100 I- 0 C: ~ 

Vl .... .... 
~ Ol E 0 ltl '> C C C 

~ N 
~ 

.0 > a., ·.:: a., 'vi 0 
·c:: 0 Cl Q. > u a ltl 0 V') a., Vl Vl a., V') ...J 0 Vl > u '- ·~ u u r::a V') 

V1 ltl 
.0 
0 

Transit ASes l9 

Figure 3.2: Percentage transit traffic changes for the top-5 winning and loosing transit 
ASes. 

ASes, before and after the PTCL hijacks YouTube's prefix. The name of the organization 
that owned the transit AS number during the time of the prefix-hijacking incident in year 
2008 is reported. 

Before the prefix hijacking by PTCL, the converged routing involves 2,878 transit 
ASes. TransitRail (AS 11164) serves 9,733 paths and is the largest last-hop aggregator 
of YouTube-bound traffic. Level3 (AS 3356), Hurricane (AS 6939), Sprint (AS 1239), 
and Cogent (AS 174) are also connected directly to YouTube and constitute the next four 
biggest carriers of its incoming traffic with 3,983, 3,863, 3,487, and 3,395 served BGP paths 
respectively, as shown in figure 3.l(a). After PTCL hijacks all YouTube-bound traffic, the 
number of transit ASes decreases to 2,760. Figure 3.l(b) shows the number of BGP paths 
served through these large transit ASes to PTCL after the hijacking. The BGP path 
counts for the five giants TransitRail, Level3, Hurricane, Sprint, and Cogent shrink to 5, 
1,915, 1,124, 1,854, and 2648 respectively. The preserved paths do not lead to YouTube 
anymore but instead contribute to the hijacking success of PTCL. The top-3 providers 
with the largest BGP path counts after the hijacking are PCCW Global (AS 3491), BT 
Global (AS 5400), and Telecom Italia Seabone (AS 6762): the hijacking boosts their BGP 
path counts from 219, 206, and 164 to 12,942, 7,793, and 6,319 respectively. 

3.2.2.2 Traffic changes of the transit ASes 

Whereas the BGP path counts highlight the transit potential of the ASes, the actual 
quantity of traffic passing through the transit ASes depends on the traffic engineering 
goals set by the operators based on their economic policies. Hence, this section utilizes 
the computed BGP paths to derive the link loads of all inter-AS links of each transit AS to 
compute the percentage of transit traffic changes arising because of the traffic attraction 
by PTCL. As shown in figure 3.2, the largest transit traffic increase of 450% is observed 
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for MCI (AS 702)2, followed by Verizon (AS 701), AT&T (AS 7018), SBC (AS 7132)3,

and Savvis (AS 3561) at 170%, 91%, 48% and 7%, respectively. Among the top traffic

losers, Swisscom (AS 3303) faces the largest 80% reduction, followed by Global Crossing

(AS 3549)4, Level 3 (AS 3356), Sprint (AS 1239) and Cogent (AS 174) losing 58%, 52%,

47% and 22% respectively.

3.3 Traffic attraction by large transit ISPs

While the above work – by using the real data to drive the simulations – offers in-

teresting insights, it also identifies promising directions for further research of the topic.

Our results suggest that large transit ISPs face higher traffic changes. Hence, they have

the strongest financial incentives to attract traffic to increase transit revenues. This indi-

cates that traffic attraction can create a fertile ground for tussles between ISPs. Next, to

accurately translate the BGP path counts and inter-AS link load into transit revenues, it

is important to account for Internet cross-traffic. As our experience shows, scalability of

C-BGP simulations are serious obstacles to incorporate the cross-traffic in C-BGP.

In this section, we conduct in-depth studies from an economic perspective, where

transit ASes try to boost their revenues by attracting transit traffic and then delivering

it to the proper destinations. We strive to model the traffic matrices realistically to

account for the cross-traffic and overcome C-BGP scalability challenges by enhancing

the memory management in C-BGP. We also enable C-BGP to provide the attract-then-

deliver feature for our economic analysis of traffic attraction by the transit ASes. We focus

on the economics of customer-traffic attraction by providers across the transit hierarchy

and report extensive C-BGP [54] simulations in an Internet-scale model configured with

realistic data on inter-domain traffic, topology, and pricing. We consider attractors from

the top 3 tiers of the transit hierarchy as well as 3 types of reactions by other ASes to

the attraction: (1) filtering, i.e., discarding the BGP announcements that trigger the

attraction, (2) disconnection by discontented customers, i.e., severance of their business

relationships with the attractor altogether, and (3) attempts of discontented ASes to

attract extra traffic to themselves. The broader scope and higher realism – combined

with sensitivity studies – enable our work to offer deeper quantitative insights into traffic-

attraction economics and reach reliable qualitative conclusions.

The specific BGP technique for traffic attraction in our study is prefix deaggregation.

Although BGP is a sophisticated protocol, it does not provide an AS with a reliable

mechanism to validate the path information announced by neighboring ASes. Due to the

longest-prefix match rule of IP forwarding, the BGP announcement of a longer deaggre-

gated prefix steers traffic to the announced path. Multihomed ASes routinely employ

2AS 702 is now operated by Verizon Business
3AS 7132 is now operated by AT&T Internet Services
4AS 3549 is now operated by Level 3 Communications
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Figure 3.3: Example of traffic attraction via prefix deaggregation: (a) before attraction; 
(b) after attraction. 

prefix deaggregation to balance their incoming traffic among their multiple connections 
to the Internet. Instead of the load balancing by multihomed ASes, our paper studies 
attraction of additional customer traffic. We consider the kind of prefix deaggregation 
where an intermediary AS learns a prefix from a customer, deaggregates the prefix, and 
announces all longer prefixes to each of its other customers. In particular, the traffic-
attracting AS splits a learned prefix equally into 2 longer prefixes and announces both 
longer prefixes to the customers (Note that the AS deliberately does not announce the 
deaggregated prefixes to any of its peers so that none of its current traffic shifts from its 
customer links to its peering links). 

To illustrate how prefix deaggregation enables traffic attraction, we consider a simple 
scenario in figure 3.3, where networks B and C directly learn prefix x from their mutual 
customer A. In figure 3.3(a), providers Band C propagate prefix x to their another mutual 
customer D, network D sends t raffic to network A t hrough provider B, and network B 
collects transit payments from both customers A and D. In figure 3.3(b), when provider C 
deaggregates prefix x into longer prefixes y and z, and announces these prefixes y and z 
to customer D , the traffic from network D to network A is attracted to flow through 
provider C rather than provider B; consequently, the traffic-delivery payments from both 
customers A and D go to provider C instead of provider B. 

While the considered prefix-deaggregation method is easily implementable in prac-
tice, a transit AS can also attract extra traffic by employing a different BGP technique. 
For example, the intermediate AS can attract additional traffic by reducing the path 
length in a propagated BGP announcement. There is anecdotal evidence that promi-
nent ASes attract extra customer traffic by rewriting the origin attribute in propagated 
BGP announcements [15, 16] . These and other alternative techniques for traffic attraction 
represent an interesting topic for future studies on traffic economics. 

For t he role of traffic attractors, we select ASes throughout the Internet transit bierar-
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chy. Whereas tier-1 networks are in the strongest position to attract significant amounts

of extra traffic, our interactions with industry experts suggest that traffic attraction by

tier-2 ASes is more common. In addition to traffic attraction by tier-1 and tier-2 transit

providers, we also examine traffic attraction by tier-3 networks.

3.3.1 Model

Our modeling strives to abstract the highly complicated problem into a manageable

representation for realistic study and discussion. Instead of focusing on a single setting, we

parameterize our AS-level Internet model to experiment with realistic ranges of parameter

settings.

3.3.1.1 Topology

Despite a decade of intensive research, the AS-level Internet topology is not known

accurately, e.g., due to missed links [58]. To deal with this uncertainty, we consider 3

alternatives including topologies reported by CAIDA on 2012/6/1 and UCLA [59] on

2012/5/1. The third topology, to which we refer as UCLA+, is synthetic. We derive it

from the UCLA topology by adding links that UCLA reported for at least 15 out of the

30 subsequent days. The enhancement contributes 1,656 peering and 75 transit links to

the UCLA+ topology.

3.3.1.2 Traffic

Characterizing the inter-domain traffic is another notoriously hard problem. Our

study considers 9 traffic matrices guided by empirical Internet data. The matrices gener-

alize the measurement results suggesting that (a) the fraction of traffic originated by the

largest content source was about 5% in 2009 and growing [60], and (b) the distribution of

traffic from origin ASes is Zipf-like with the shape parameter between 0.9 and 1.1 [60,61].

We obtain the 9 = 3∗3 traffic matrices by combining 3 settings along each of the following

2 dimensions: (1) overall distribution function of origin traffic shares and (2) assignment

of the traffic shares to specific ASes.

For the overall distribution of the origin traffic shares, we consider 3 instances of the

Zipf-Mandelbrot function defined as K/(r+ v)D, where r refers to the rank of the AS, D

denotes the shape parameter, and K and v are constants. The instance settings are as

follows:

[Z1] D = 1.1, K = 0.181, and v = 0.5;

[Z2] D = 0.9, K = 0.072, and v = 0;

[Z3] D = 0.7, K = 0.108, and v = 0.
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Figure 3.4 depicts the 3 overall traffic-share functions that cover the realistic ranges 
for the shape parameter (from 0.7 to 1.1) and largest traffic share (from 3% to 12%) . 

To assign the traffic shares to specific ASes, i.e., to set rank r of each AS, we consider 
the following 3 diverse options for the ranking metric: 

[R.1] peering coefficient, which is t he number of peers divided by the total number of 
providers and customers of the AS; the peering coefficient tends to be the highest 
among small/intermediate ASes that provide access to content hosts (these ASes 
have many peers but few transit links); 

[R.2] IP address count, i.e. , the number of IP addresses originated by the AS; 

[R.3] website visit frequency, i.e. , the number of users who visit the websites hosted by 
the AS. 

We use notation Z1 Ro to denote the traffic matrix with overall traffic-share function 
z, and AS ranking metric RJ. 

In each of the 9 traffic matrices, we distribute the originated traffic of an AS among 
destinations (i.e., content-consuming ASes) in proportion to the IP address counts of 
the destination ASes. In addition to the above content traffic, our traffic matrices also 
incorporate peer-to-peer traffic, with the peer-to-peer traffic between a pair of ASes set 
proportionally to the IP address count of each AS in the pair. 

3.3.1.3 Pricing 

In comparison to traffic, pricing of inter-AS relationships is even more difficult to infer 
due to confidential bilateral agreements guarding them. Empirical evidence indicates that 
IP transit is subject to subadditive pricing where prices per Mbps are lower for higher 
traffic rates. In particular, the empirical data suggest as reasonable the following pricing 
function [62, 5, 4]: the monthly payment from the customer to the provider of transit 
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link l is tl = b · Lm where L denotes the traffic rate in Mbps, b = 45, and m = 0.75 (the

computed payment is in U.S. dollars). Our study generalizes this transit pricing function

by considering the range of m values from 0.4 to 1, i.e., from heavy economies of scale to

linear pricing which does not offer any price discount for higher traffic rates.

While the 95th-percentile billing [35,36] is common in IP transit charging, this method

requires a large number of individual traffic-rate samples. Instead of modeling the traffic

at a fine-grained time scale, we directly represent the traffic of each transit link as the

95th-percentile rate because: (a) fine-grained traffic statistics are not publicly available

for most ASes, and (b) simulations for a detailed traffic model do not scale to a large

population of ASes.

Peering relationships are usually free of financial settlements between the peers. On

the other hand, maintaining a peering link does involve costs, e.g., payments to an IXP

(Internet eXchange Point) [58] that provides the physical infrastructure for peering. To

represent the peer’s cost of maintaining its peering link l, we adopt peering-cost function

pl = 20 ·L0.4 suggested in prior work [62,5,4]. In comparison to the transit-link payment

for the same traffic rate, the peering cost is always lower but not negligible.

To determine the overall traffic-delivery payment for each AS, we partition all external

links of the AS into 3 sets: set V contains the transit links where the AS is a provider, set U
is for the transit links where the AS acts as a customer, and set G includes all its peering

links. Then, the monthly traffic-delivery payment of the AS is P =
∑
l∈V

tl −
∑
l∈U

tl −
∑
l∈G

pl

with positive values denoting traffic-delivery revenues, and negative values representing

traffic-delivery expenses.

3.3.2 Evaluation methodology

To evaluate traffic attraction and countermeasures by other ASes, we conduct large-

scale simulations in C-BGP [54]. We optimize C-BGP to overcome its scalability limita-

tions. For example, even if each AS announces a single prefix only, the standard C-BGP

can exhaust a relatively large physical memory before computing stable AS-level paths.

We improve the memory management of C-BGP to scale up the simulations to at least

6,000 prefix announcements. We integrated the memory-scalability feature into C-BGP

and supplied the modified version to the C-BGP code repository [63].

While our optimizations alleviate – but not eliminate – the C-BGP scalability limi-

tations, we conduct the simulations by focusing on the core of each topology and repre-

sentative prefixes of the ASes. We extract the topological core by excluding all the stub

ASes and all their links. For the 3 examined topologies, their cores contain around 6,000

transit ASes. We determine traffic-delivery payments for all these transit ASes. Although

the simulations do not directly consider the stub ASes outside the topological core, we

account for the traffic of these ASes when computing the traffic-delivery payments for the
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transit ASes. While real ASes generally own and announce several prefixes, the C-BGP

scalability limitations prevent announcing multiple prefixes from each AS. On the other

hand, a single prefix per AS is sufficient for C-BGP to simulate all inter-domain commu-

nications in the topological core. Therefore, we associate the total inter-domain traffic of

each AS with a single representative prefix of this AS.

To configure our traffic matrices, we rely on real data. Based on the Cisco-VNI

statistics [64], we set the total rates of the inter-domain content and peer-to-peer traffic

to 45 Tbps and 15 Tbps respectively, with 4 times more content traffic flowing from

servers to clients than from clients to servers. We specify the IP address counts of the

ASes according to the CIDR report [65]. The peering-coefficient ranks of ASes are in

accordance with the CAIDA topology. We calculate the website visit frequencies based

on the data provided by the Alexa Web Information Service from Amazon for top 100,000

websites [66].

Among the 6,000+ transit ASes in the topological cores, we select 30 ASes to act as

traffic attractors. Each of tiers 1, 2, and 3 in the transit hierarchy contributes exactly

10 ASes (those with the largest numbers of customers) to the attractor set. We refer to

the 10-AS groups as T1, T2, and T3 respectively. To denote AS β from tier α, we use

notation Tαβ.

Our main metric is payment change. It measures the relative change in the traffic-

delivery payment of the AS in comparison to the baseline scenario where no AS tries to

attract additional traffic.

Unless explicitly stated otherwise, we report the results for the following default set-

tings. The topology is from CAIDA. The results are averaged over the 9 traffic matrices.

Transit-pricing exponent m is set to 0.75. When deaggregating prefixes to attract traffic,

the attracting AS deaggregates prefixes announced by its 100 largest customers. We also

study sensitivity of the results to the topology, traffic, and pricing.

3.3.3 Evaluation results

3.3.3.1 Attraction by a single AS

We start by examining what happens when a single AS attempts to attract traffic.

We repeat this experiment for the 30 attractors with each of the 9 traffic matrices and

record the payment change for the attracting AS. Using box plots, figure 3.5 presents the

results arranged according to the tier of the attracting AS. The plots demonstrate that

transit ASes have significant financial incentives to attract traffic: the median payment

change is 148%, 38%, and 21% for T1, T2, and T3 respectively. The tier-1 networks

are in the strongest position to benefit from traffic attraction because they sell transit to

numerous customers but do not buy transit themselves. Being less central in the transit

hierarchy, all considered tier-2 ASes are still able to raise their revenues by attracting
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Figure 3.6: Payment changes for the tier-1 attractors. 

traffic. While some t ier-3 networks also benefit substantially from the traffic attraction, 
it is not beneficial for other attracting ASes from T3. 

Focusing on the experiments with the tier-1 attractors, figure 3.6 shows that while 
Tlj and Tlc are 2 opposite extremes with the median payment changes of 830% and 
28% respectively, the payment changes for Tlb and the 7 other ASes from Tl are rather 
similar to each other. The large gap between the payment changes for T lj and Tlc is 
mostly due to t he different sizes of these ASes. In comparison to Tlj , Tlc serves more 
transit traffic and attracts a larger amount of extra traffic in absolute terms. Nevertheless 
in relative terms, the payment gain is much higher for the smaller Tlj. 

3.3.3.2 Winners, losers, and neutrals 

By redistributing traffic in the AS-level topology, traffic attraction by an AS affects 
traffic-delivery payments for other ASes. We refer to the ASes with increased traffic-
delivery payments as winners, and to the ASes with negative payment changes as losers. 
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Figure 3.8: Changes in the upstream, downstream, and peering traffic of t he 10 largest 
losers when the attractor is a t ier-1 AS: (a) without filtering; (b) with filtering. 

Neutrals are the ASes with unchanged t raffic-delivery payments. Figure 3.7 plots the 
payment changes for the winning and losing ASes in the experiments of section 3.3.3.1. 
The traffic attraction by t ier-1 networks makes the most divisive impact on the payments: 
the fractions of winners, losers, and neutrals are 17%, 26%, and 57% respectively. When 
the attracting AS is from T2, the fractions of winners and losers decrease to 11 % and 8% 
respectively. After the traffic attraction by tier-3 networks, the impact is highly local: 
either winners or losers comprise only 1% of the AS population. 

3.3.3.3 Impact on traffic 

To understand where t he attracted traffic comes from, we classify the inter-domain 
traffic of an AS into 3 types: (1) upstream, i.e., t raffic from t he AS to its providers, 
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Figure 3.9: Payment change for t he attracting AS when all losers do the filtering. 

(2) downstream, i.e., t raffic from the AS to its customers, and (3) peering, i.e., traffic on 
the peering links of the AS. Then, we consider the 10 ASes that suffer the largest declines 
(in absolute terms) of their traffic-delivery payments after the traffic attraction by the T l 
networks. These largest losers are 4 tier-1, 5 tier-2, and 1 tier-3 ASes. F igure 3.8a depicts 
changes in the upstream, downstream, and peering traffic of these 10 losers after the 
attraction. While t he losing tier-1 ASes have no upstream traffic either with or without 
the attraction, their downstream traffic decreases, suggesting that the lost downstream 
traffic is acquired by the attractor. The attraction makes a qualitatively similar impact 
on the traffic of T2b and T2e. For the 3 other largest losers from the lower tiers, the 
upstream traffic increases due to sending more t raffic to the tier-1 attractor, and the 
downstream traffic increases to a smaller extent (e.g., for T 2a) or even decreases (e.g., for 
T2c) . From an overall perspective, the traffic attraction reduces peering traffic and pulls 
extra traffic up the transit hierarchy. 

3.3.3.4 F ilt ering by losin g A Ses 

To analyze responses of other ASes to the traffic attraction, we first consider filtering, 
i.e., discarding the deaggregated prefixes announced by the attractor. Figure 3.9 presents 
the payment change for the attracting AS when all losing ASes from the experiments in 
section 3.3.3.1 do the filtering. Comparing the results in figures 3.5 and 3.9, we see that 
t he filtering reduces but does not remove the financial benefits for the traffic attractor. 
With the filtering, the median payment change for the attracting AS is 37%, 11%, and 
4% for Tl, T2, and T3 respectively. 

Figure 3.8b offers insights into the inability of the filtering to negate the attraction. 
Although the filtering can help a losing AS - e.g., T2a - to reduce its upstream traffic to 
the attractor, the filtering by the loser does not prevent its customers from their switching 
to alternative paths via the attractor. 
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The filtering examined in section 3.3.3.4 redistributes traffic in t he AS-level topology 
and creates addit ional losers. In this section, we extend the above filtering scenario 
into a multi-stage reaction where the group of filtering ASes on each stage expands by 
incorporating the additional losers from the previous stage. We refer to the filtering by 
losers as rational because it is done only by the ASes that financially suffer from the traffic 
redistribution. To assess the effectiveness of multi-stage rational filtering, we consider 
the setting where stage O corresponds to the t raffic attraction by T l b without filtering. 
Figure 3.10 shows that while the payment change for attractor Tl b decreases on stages 1 
through 3, the payment gain for the attractor stabilizes at 4% after stage 3, which yields 
no additional losers. Hence, even if the filtering is done by all losing ASes, the mult i-stage 
rational filtering does not eliminate financial incentives for the traffic attraction. The 
use and propagation of the deaggregated prefixes by the winners and neutrals allow t he 
attractor to increase its t raffic-delivery revenues. 

3.3.3.6 Cooperative filtering 

While section 3.3.3.5 demonstrates the inability of rational filtering to negate t he 
financial benefits of the attractor, we now explore what happens if the other winning 
ASes go against their own financial interests and also react by filtering t he deaggregated 
prefixes. Referring to such filtering as cooperative, we consider the multi-st age cooperative 
filtering where stage O corresponds to the traffic attraction by Tl b without filtering, 
stage l involves filtering by all losers and neutrals, and each subsequent stage expands 
the group of the filtering ASes with additional winners (selected in the increasing order 
of their payment gain). Figure 3.10 shows that the cooperative filtering negates the 
payment gain of attractor Tlb on stage 5 where t he filtering is done by all customers of 
the attractor. 
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Figure 3.11: Payment change for attractor Tlb with multi-stage disconnection by losing 
customers of the attractor. 

3.3.3. 7 Disconnection 

The evaluation in sections 3.3.3.4 through 3.3.3.6 shows that :filtering is not an effective 
countermeasure unless the winners resist t he t raffic attraction against their own financial 
interests. Now, we examine a more severe reaction by losers where losing customers 
sever their business relationships with t he attracting AS altogether. Again, we consider 
a multi-stage version of the response where stage O corresponds to the traffic attraction 
by Tlb without filtering (and without disconnection) . On stage 1 of the disconnection 
response, the attractor is disconnected from the 1 % of its losing stage-0 customers that are 
selected in the decreasing order of their absolute losses. On each of stages 2 through 7, the 
cumulative number of t he disconnected customers of Tlb doubles. On stage 7 where the 
attractor is disconnected from 45% of all its original customers (i.e., 64% of its losing stage-
0 customers), the attractor still has the payment gain of 8%. On each of the subsequent 
stages, we disconnect all remaining Tlb losing customers from t he previous stage. Both 
stages 8 and 9 create additional losers among the connected Tl b customers. On stage 10 
where the attractor is disconnected from 85% of all its original customers, no new losers 
emerge, and the payment change of Tlb stabilizes. The remaining 15% of all original Tlb 
customers are either winners or neutrals on stage 10 and hence do not disconnect from the 
attractor. Figure 3.11 depicts the dynamics of the mult i-stage disconnection resp onse by 
t he losing customers. T he results demonstrate t hat the disconnection by losing customers 
is ineffective unless a large portion of them terminate their business relationships with 
the attractor. 

3.3 .3.8 Atti·action by m ultiple ASes 

The previous sections show that neit her filtering nor disconnection eliminates the 
financial incentives for traffic attraction unless participation in the response is broad. Now, 
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Figure 3.12: P ayment changes for 10 ASes when the traffic attraction is done by Tlb only 
vs. all 10 ASes. 
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F igure 3.13: Changes in the upstream, downstream, and peering traffic of 10 ASes when 
the attraction is done by: (a) Tlb only and (b) all 10 ASes. 

we consider a different reaction where a losing AS defends its traffic-delivery payment by 
attracting extra traffic to itself. Specifically, we consider the scenario where in response to 
the traffic attraction by Tlb the 9 largest losers (in absolute terms) try to attract traffic 
as well. The expanded set of 10 attractors includes 6 t ier-1 , 3 t ier-2, and 1 tier-3 ASes. 
Figure 3.12 shows t he payment changes for these 10 ASes when the traffic attraction is 
done by T lb only vs. all 10 ASes. When all 10 ASes try to attract traffic, all 6 tier-1 
ASes and T2f gain from the traffic attraction but the payment changes for T2b, T2g, 
and T3a are negative. T he results confirm our earlier observation that tier-1 networks 
are in the strongest position to benefit from traffic attraction. Furthermore, figure 3.12 
demonstrates that ASes from lower tiers are not assured to gain from traffic attraction 
when multiple networks attempt to att ract extra t raffic. 

To understand why the t ransit ASes from different tiers fare different ly when mult iple 



30 C hapter 3. E conomics of 'Iraffic Attractio n by 'fi·an sit ISPs 

200 
'::R 0 150 
Q.) 
O'l 100 
C 
co 50 ..c u 
.µ 0 C 
Q.) 

-50 E 
>, 

-100 co a.. 
-150 

' 

{E~lt:: ; 
' i 

-···----···L----···--·-· ... i ·-····--·-·····---·····---
Attractor Tlb - , 

5 largest losers ~ --- -----+---------
' i i i 

CAIDA UCLA 
Topology 

UCLA+ 

Figure 3.14: Sensitivity of payment changes to the AS-level Internet topology. 

networks try to attract t raffic, figure 3.13 plots the changes in the upstream, downstream, 
and peering traffic of the 10 ASes. When Tlb acts as the only attractor , it greatly 
increases its own downstream traffic and decreases the downstream t raffic for the other 
ASes except T 3a that suffers the loss due to an increase in the upstream traffic. When 
all 10 ASes try to attract traffic, all 6 t ier-1 networks ( which never have any upstream 
t raffic) win by increasing their downstream traffic. For T2f, the downstream traffic grows 
as well, and this growth outweighs the increase in its upstream traffic. On the other band, 
T2b, T2g and T3a remain losers because their upstream traffic grows significantly while 
their downstream traffic increases less (if at all). Some attractors are more powerful than 
others. 

3.3.3.9 Sen sitivity to t h e topology 

To study how sensitive our model is to its assumptions, we first examine its sensitivity 
to the AS-level Internet topology in the scenario where only Tlb attracts traffic. In 
addition to the CAIDA topology, we also consider t he UCLA and UCLA+ topologies . 
Figure 3.14 presents the payment changes for the attractor (which is t he largest winner) 
and 5 largest losers. In quantitative terms, the topology has a substantial impact, e.g., 
the payment change for the attracting AS varies from 85% to 180% with the CAIDA and 
UCLA+ topologies respectively. On the losing side, the maximum loss by an AS varies 
from -9% to -81% with UCLA and UCLA+ topologies respectively. This latter result 
highlights the importance of the topology in general and peering links in particular for 
economic outcomes of traffic attraction. By adding the relatively small numbers of 75 
transit and 1,656 peering links, the enhancement of the topology from UCLA to UCLA+ 
makes the traffic attraction significantly more powerful. The distributions of payment 
changes for all ASes are qualitatively the same in the 3 examined topologies. 
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Expanding the above sensitivity study, we now examine the role of the traffic matrix. 
For each of our 9 traffic matrices, figure 3.15 plots the payment change for attractor 
T lb in 4 scenarios: (1) only Tlb attracts t raffic, (2) attraction is by 10 networks as 
in section 3.3.3.8, (3) filtering is done by all losing networks as in section 3.3.3.4, and 
(4) 50% of the T l b losing customers disconnect from the attractor. The 9 considered 
traffic matrices are diverse with respect to both overall d istribution of origin traffic shares 
and assignment of t he t raffic shares to specific ASes. Despite this diversity, the results 
are qualitatively the same and relatively stable: t he payment change for Tl b varies from 
75% to 105% when only T lb attracts traffic, from 34% to 57% with t he 10 attractors, 
from 18% to 27% with the filtering, and from 7% to 26% with the disconnection. T he 
quantitative outcomes of the traffic attraction are less sensitive to the traffic matrix than 
to the topology. 

3.3 .3.11 Se n sitivity t o p r icing 

To assess the sensitivity of our model to pricing, we consider the same 4 scenarios as 
in section 3.3.3.10 and reduce transit-pricing exponent m from 1 to 0.9, 0.8, 0.75, 07, 06, 
05, and finally 0.4. F igure 3.16 t racks the payment change for attractor T l b and exhibits 
substantial quantitative variations in the outcomes. In the first 3 scenarios, the payment 
change for Tlb remains positive but decreases greatly : from 249% to 25% when T l b is the 
only attractor , from 126% to 14% when the 10 ASes attract traffic, and from 42% to 4% 
with the filtering. W ith t he disconnection by 50% of t he losing customers, t he payment 
change not only decreases as the t ransit -pricing exponent is reduced but also becomes 
negative: the payment change for T l b is 169% form= 1 and - 27% form= 0.4. T he 
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Figure 3.16: Sensitivity of the attractor's payment change to transit pricing. 

payment change becomes O when the transit-pricing exponent is around 0.65. According 
to Telegeography data, the transit-pricing exponent is currently 0.8, 0.73, 0.69, and 0.65 
for Oceania, Asia and South America, Europe, and North America respectively. Thus, 
our results suggest that at least a half of the losing customers needs to disconnect from 
the attractor to eliminate the benefits of the attraction under the current pricing. 

3.3.3.12 Sensitivity to attraction intensity 

While sections 3.3.3.5 through 3.3.3.7 explore how intensive the filtering and dis-
connection should be to negate the benefits of t raffic attraction, we now examine the 
sensitivity of t he attractor's gain to the intensity of attraction. In these experiments 
where only Tlb attracts traffic (as in section 3.3.3.1), Tlb changes its attraction inten-
sity by deaggregating a different number of prefixes announced by its largest customers. 
Specifically, the attractor deaggregates 1, 10, 100, or 1,000 prefixes. Figure 3.17 presents 
the payment change for Tlb. The median payment change is 7%, 30%, 78%, and 108% 
for 1, 10, 100, and 1000 deaggregated prefixes respectively. The marginal utility of the 
attraction intensity diminishes quickly. Even by deaggregating a relatively small number 
of prefixes (e.g., 100 as in the default setting of our studies) the attractor obtains most 
of its maximum possible gain. 

3.3 .3.13 Impact on path lengths 

Finally, we evaluate how the traffic attraction and countermeasures affect the lengths 
of AS-level paths. Figure 3.18 plots the distributions of the AS-level path lengths for 5 
scenarios: (1) baseline without any attraction; (2) attraction by Tlb only, (3) attraction 
by 10 networks as in section 3.3.3.8, (4) with stabilized mult i-stage rational filtering by 
all losing networks as in section 3.3.3.5, and (5) with stage-7 disconnection by losing 
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customers of Tlb as in section 3.3.3.7. The path-length distributions are mostly similar 
to each other. The average path length is 4.4 hops in the baseline scenario. When only 
T lb attracts traffic, paths elongate, with t heir average length increasing to 5.1 hops. The 
attraction by the 10 ASes reduces this elongation , wit h the average path length becoming 
4.8 hops. T he filtering almost restores the path-length distribution of the baseline scenario 
and yields the average path length of 4.5 hops. The disconnection has an opposite effect, 
with the average path length increasing to 5. 7 hops. Overall, t he elongation of paths 
under t raffic attraction is not significant to det er this revenue-increasing behavior. 

3.3.3 .14 Impact on router complexity 

While the traffic attraction via prefix deaggregation can boost t he transit revenue 
of the t ransit ASes, the deaggregation also increases their router memory requirements. 
This section analyzes t he extra router-memory costs imposed by the traffic at traction . 

To assess the memory costs, one needs to understand how IP routers store prefixes. 
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Typically, a BGP-speaking router has BGP RIBs (Adj-RIB-In, Loc-RIB and Adj-RIB-

Out) and Global RIB (all-protocol routing table) [67, 68]. The router inserts the best

paths indicated by Loc-RIB into Global RIB. Global RIB also includes static paths as

well as paths learned from intra-domain routing protocols. For actual forwarding of IP

datagrams, the router uses FIB (Forwarding Information Base) derived from Global RIB.

The router stores BGP RIB in RP (Route Processor card) and FIB in LC (Line Card).

The examined traffic attraction strategy requires storing extra paths per each deag-

gregated prefix in RP and LC. Let q be the number of the more-specific announcements,

φ and ϕ denote the total number of BGP paths that RP and LC respectively can accom-

modate, ρ and % represent the price of RP and LP respectively, and Y refer to the lifetime

of the cards. Then, amortized monthly cost R of storing the extra paths in the router is

R =
q

Y

(
ρ

φ
+
%

ϕ

)
. (3.1)

To quantify the extra router-memory cost R imposed by the prefix deaggregation, we

use φ = 1.5 · 107 and ϕ = 7 · 105 according to [69], ρ = $32K and % = $480K (price of RP

and LC for Juniper T1600 routers [70]), and Y = 60 months (average router lifetime [71]).

While the largest number of more-specific announcements in our experiments is q = 2,000

(i.e., 2 more-specific announcements per each of the 1,000 deaggregated prefixes), the

corresponding extra memory cost for each BGP-speaking router amounts to only $23 per

month. This cost is tiny in comparison to the additional traffic-delivery revenues offered

by the traffic attraction.

While the above analysis shows that the increased memory needs are insignificant as

an economic impediment for the traffic attraction, the prefix deaggregation also increases

the processing load on the routers. Because a transit AS can attract substantial additional

traffic by deaggregating a relatively small number of prefixes, the increased processing is

unlikely to be an effective deterrent against the traffic attraction either. We will analyze

the router processing costs in more detail in our future work.

3.4 Attraction viability

The viability of traffic attraction via prefix deaggregation is a multidimensional issue.

Without pretending to be comprehensive, this section examines the issue from technical,

legal, and business angles.

Technically, it is easy for a transit ASes to deaggregate prefixes. Other ASes can detect

the deaggregation with tools that monitor BGP prefix announcements and IP datagram

flows. While even the detection is not straightforward, the owner of the deaggregated

prefix does not have effective technical means for stopping the traffic attraction, as our

simulations show in the scenarios with prefix filtering and counter-announcing the deag-
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gregated prefixes. While the owners of deaggregated prefixes are in the most legitimate

position to complain, the origin ASes are not the parties most afflicted by the traffic

attraction. Besides, because the origin ASes conduct prefix deaggregation themselves for

traffic engineering [72], the argument that intermediary ASes may not do the same for

the same reason becomes weaker.

The afflicted parties can try to neutralize the traffic attraction via prefix deaggregation

through litigation. The global nature of the Internet complicates the judicial process

for prefix-deaggregation cases. There seem to be no solid legal grounds for objecting

against the studied deaggregation-based form of traffic attraction. In particular, the

deaggregator and prefix owner can operate under different national legal systems. While

the body of laws governing the Internet is generally slim but growing, we are not aware

of any precedents of prefix-deaggregation litigation. Prior laws and guidelines issued by

various governments for other Internet-related disputes demonstrate that the outcomes

of the legal battles are highly unpredictable. It is not clear whether the contested actions

deviating from an expected Internet behavior will be ruled illegal or legitimate, or even

deserving a special protection by the law.

The business side of the Internet is likely to serve as an important sphere for settling

the traffic attraction tussles. In order to offer the universal Internet connectivity to own

customers, any AS anywhere in the routing hierarchy has to maintain business relation-

ships with other ASes. While different ASes have clearly different negotiation power,

losing a customer or peer is rarely a desirable outcome even for a huge transit ISPs. In

the business world, reputations are tangible assets: a bad reputation can severely dimin-

ish the ability of the ISP to negotiate transit and peering contracts. Hence, if the ISP

community as a whole starts to deem deaggregation-based traffic attraction unacceptable,

the risk of a bad reputation can serve as a strong disincentive for an ISP to boost revenues

through deaggregation-based traffic attraction.

3.5 Related work

Unlike our economic investigation of traffic attraction, prior studies of the subject

approach it mostly from security perspectives [43–45]. Ballani et al. [43] explore the ability

of an AS to attract traffic to itself for either discarding the attracted traffic or delivering

the traffic to the destination. The paper considers 2 different attraction techniques where

the attracting AS announces an invalid path to a prefix: by spuriously claiming to be

either the prefix owner or an intermediary on the invalid path. [43] estimates the feasibility

of such traffic attractions but does not study their economic impact. Nordstrom and

Dovrolis [45] explore various attraction techniques and 2 countermeasures: filtering and

adoption of S-BGP, a secure version of BGP. Again with an exclusive focus on security

rather than traffic economics, [45] concludes that filtering is ineffective and that S-BGP
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is too heavy to get deployed. Goldberg, Schapira, et al. [44] study robustness of S-BGP

and other secure routing protocols to traffic attraction. [44] argues that the secure routing

protocols fail to neutralize traffic attraction and need to be supplemented with defensive

filtering.

Few other prior studies driven by security considerations aim at detecting the prefix

hijacking. Lad, Massey, et al. [52] develop PHAS (Prefix Hijack Alert System), an online

system that notifies the prefix owner when the BGP path to the prefix changes. McArthur

and Guirguis [73] explore stealthy forms of prefix hijacking that attract small amounts

of traffic and thereby avoid detection. Zhang, Zhao, and Wu [74] investigate an attack

where an AS selectively drops BGP announcements to severely disrupt the routing.

There is also related work that includes economic considerations [23, 48, 46, 47, 75].

Gill et al. [46] analyze a game where the financial benefits of traffic attraction serve as

incentives to deploy S-BGP. [46] does not evaluate the economic incentives but simply

use them as a basis for the analyzed S-BGP deployment scenario. Lutu et al. [75] study

whether traffic engineering via prefix deaggregation can reduce the transit expenses of

prefix owners. In contrast, our work evaluates traffic attraction by intermediary ASes

that seek to increase their transit revenues. We consider multiple attractors from different

transit hierarchy and evaluate various countermeasures, such as multi-stage prefix filtering

and link disconnection. Goldberg, Halevi, et al. [23], Levin et al. [47], and Kalogiros

et al. [48] present game-theoretic investigations of economic incentives in inter-domain

routing. While these papers provide thorough analyses for small-scale artificial settings,

we conduct Internet-wide simulations driven by realistic data on inter-domain traffic,

topology, and pricing.

The broader scope and higher realism, combined with the sensitivity studies, enable

our work to yield new insights. For example, while [43] refuses to consider deaggregation-

based attraction because the attractor is presumably unable to deliver the attracted traffic

to the destination, our study demonstrates that the deaggregation-based attraction and

delivery are not only feasible but also highly beneficial for the transit revenues of the

attractor.

3.6 Summary

Relying on the extensive modeling and C-BGP simulations, this chapter presents

an economic perspective on traffic attraction and countermeasures. Motivated by the

insights obtained from the simulation and analysis of a real traffic-attraction incident

of YouTube’s prefix hijacking by Pakistan Telecom, we conducted an in-depth study of

various hypothetical scenarios to understand economic and technical aspects of customer-

traffic attraction by transit providers.

Our work shows that attraction and reaction to it redistribute traffic in the AS-level
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topology and create numerous winners and losers in the AS population. The results

demonstrate that tier-1, tier-2, and tier-3 ASes have significant financial incentives to

attract traffic. In comparison to ASes from the lower tiers, the tier-1 ASes are in a

stronger position to benefit from traffic attraction with respect to: (a) the degree of the

attainable gain, (b) impact on other networks, and (c) preserving their own gain when

multiple ASes attract traffic. The traffic attraction provides the financial gains by pulling

extra traffic from peering links up the transit hierarchy.

The traffic attraction remains effective despite countermeasures unless the participa-

tion by ASes is very broad. Rational filtering does not remove the attraction incentives

even when all losing ASes do the filtering. Only if winning ASes go against their own

financial interests and join the filtering, such cooperative filtering eliminates the financial

benefits of the attractor. The disconnection by losing customers is ineffective unless a large

portion of them terminate their business relationships with the attractor. The increased

router complexity and elongation of paths are too insignificant to be strong deterrents

against the traffic attraction. Our studies of the model sensitivity to the topology, traffic,

and pricing show that the quantitative outcomes are less sensitive to the traffic matrix

than to the topology and pricing; qualitatively, the results remain consistent.

Our work strives to foster a discussion on customer-traffic attraction for revenue gain.

While the financial benefits for the attractors are substantial, the cooperative filtering or

disconnections can negate these benefits only if a very large number of ASes, including

winners participate in the counter-responses. While we do not advocate (or oppose)

traffic attraction, our results raise the possibility that the increasing financial pressure

on IP transit business might prompt transit providers to attract traffic. Also, while the

wide scope and sensitivity analysis make our results fairly generic, no simulation study

can cover the full set of potential behaviors.





Chapter 4

Dissecting the Online Content

Hosting Ecosystem

4.1 Introduction

While the previous chapter examined attraction of customer traffic as a means to

boost revenues of transit providers, this chapter looks at hosting as an alternate source

of revenues for transit providers. Usually, transit ISPs specialize in transit services. But

due to the declining profit margins in the transit sector, transit ISPs start to offer hosting

and content delivery services to earn extra revenues needed to sustain the ISPs’ network

infrastructures. The entrance of transit ISPs into the hosting sector changes the way the

Internet delivers online contents, i.e., from a remote content origination to a localized

distribution from ISPs throughout the transit hierarchy [76]. Hence, this new evolving

trend in hosting is important for understanding the content traffic distribution across the

Internet and geography. The realistic insights from such understanding are valuable for

modeling the Internet-scale content traffic matrix more realistically by including transit

ASes, which were earlier ignored as content traffic sources.

The online content sector is richly financed by online ad revenues. In 2015, the online

ad revenues in the USA totaled up to $59.6 billion (US dollars) [77]. The online contents

rapidly evolved from light-weight text files to dense rich-media and videos. Hence, the

performance levels needed to deliver contents also significantly increased. To minimize

latencies, ad networks and CSPs also widely employ CDNs to cache contents closer to

end users. To cache contents across the Internet, CDNs use third-party network infras-

tructures, e.g., transit ASes. Since transit providers operate global high-speed network

infrastructures managed under one or more ASes with geographically distributed points

of presence (PoPs), the CDNs optimally cache the bandwidth-intensive contents across

geographically distributed PoPs of the transit ASes [76]. In return, the transit providers

earn revenues by using their network infrastructures for hosting online contents, and the

39
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CDNs and also CSPs and ad networks benefit by saving on the large capital expenditures

for setting up their own global network infrastructures to deliver contents. Besides, the

CDNs also cache online contents on the access ISPs, located at the edge of the Internet.

Such caching, also benefits the access ISPs by reducing their transit costs and CDNs by

supporting higher content throughput.

To explore global content hosting, we use a novel measurement approach that leverages

a VPN to collect real online contents from top 2,165 websites across 52 countries. Next,

using a network of around 22,000 open recursive DNS servers spread across 172 countries

and 8,500 ASes, we discover a vast ecosystem of hosting ASes and CDNs across the

Internet hierarchy and geography. Since online advertisements have been the driving

force behind the immense growth in the online content sector, our study pays special

attention to online ads and classify online contents into ads and regular contents. We also

study qualitative and quantitative differences in hosting characteristics, such as IP address

deployment, content distribution across Internet, and delivery performance between the

two types of contents.

Our analyses of the real measurement data reveal that online contents are widely dis-

tributed across the Internet transit hierarchy and geography. We observe several clusters

of ASes with similar hosting characteristics. While ads are distributed across a large

number of smaller AS clusters, regular contents are distributed across a small number

of bigger AS clusters. These results show trends of replicating ads locally and regular

contents globally. We also observe that the AS clusters have different mixes of ASes from

different tiers, e.g., with more core ASes or edge ASes. AS clusters in their position of

ASes in the transit hierarchy also reflect on their IP address usage, i.e., the IP usage is

the highest for the AS cluster containing the highest number of core ASes and the lowest

in the AS cluster with the highest number of edge ASes. Further, our results reveal most

significant hosting at the intermediate layer of the Internet hierarchy, followed by the

Internet edge and core. Though the aggregate fraction of contents hosted at the core is

smaller, the density of content bytes per AS is the highest at the core. The distributed

hosting across the transit hierarchy reflects in content delivery time; on average 22% of

ads and 62% of regular contents are downloaded within a second from requesting the

web page. Next, we observe that ads use a higher number of IP addresses and more

ASes per website compared to regular contents, suggesting that ads use more servers for

load distribution. As a result, the average latency of 1.6 seconds for ads is lower than

3.5 seconds for regular contents. From an economic perspective, around 60% of ads and

55% of regular contents originate from ASes that have more peering links than transit

links, indicating that more than a half of ad and regular content traffic might incur less

transport costs due to likely routing through peering links.

The main contributions of this work are as follows:

1. Hosting is pervasive throughout the transit hierarchy, including the tier-1 networks.
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Our results confirm the trend towards increasing the number of roles an AS plays 
in the Internet ecosystem. 

2. Ad and regular contents are hosted by significantly different populations of ASes. 
Replication is global for regular content and local for ads. 

3. Reflecting the differences in the hosting AS populations, delivery performance for 
ads and regular contents also differ substantially. While t he initial response to web 
requests is quicker for ads, the download time is lower for regular contents. 

4 .2 M ethodology 

In this section, we describe our methodology for measuring the hosting infrastructures 
and IP addresses used by online contents. First, we collect content data from a set of top 
websites for different countries. Since online ads have been the major source of revenues for 
CSPs, our work also focuses on studying the hosting characteristics of the ads. Therefore, 
we classify online contents into ads and regular contents and analyze qualitative and 
quantitative differences in hosting characteristics between them . By performing Internet-
scale measurements, we discover t he underlying hosting infrastructures and IP address 
usage of online contents. 

4.2.1 D ata collection 

A general aspiration in online advert ising is that users receive ads that are most 
relevant to the m;ers' interest and locations. The users' interests are mostly determined 
by tracking which websites the m;ers visit. The locations are determined from the source 
IP addresses of t he users. Based on these data, ad networks choose to send ads from 
servers near to users' locations. Also, popular CSPs (e.g., Yahoo) host country-specific 
versions of their websites providing unique regular contents specific to the region and 
hosting the contents on nearby infrastructures. 
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In order to collect location-specific ads and regular contents, we use a novel VPN-based

approach to collect online contents from top websites in many countries. Specifically, we

use the VPN service from HMA.com [78] that operates servers in 52 different countries

around the world. Next, we select the top 50 Alexa [79] websites for each of these 52

countries and automate the browsing of all the 50 websites from our data-collecting PC

via a VPN connection to the server in each of the 52 countries, as shown in figure 4.1. Our

novel VPN-based methodology enable us to collect the country-specific online contents

delivered to users in the locations of the VPN presence.

After connecting our PC to a remote VPN server, we retrieve all the hyperlinks on the

landing page of a website using Lynx (Linux-based text browser). Since CSPs use URLs

embedded inside scripts on their websites for fetching ads, videos, and other contents,

and because Lynx does not execute XML, javascript, and flash objects, we employ the

methodology proposed in [80] to collect the embedded URLs of each website. These

hyperlinks are then opened in the Firefox browser configured with Firebug, FireStarter,

and NetExport add-ons. Using the above methodology, we browsed 2,600 websites in

52 countries and collect around 300 GB of HyperText Transfer Protocol (HTTP) and

HyperText Transfer Protocol Secure (HTTPS) header data from 2,165 websites during

mid-January 2013.

4.2.2 Identifying the ad URLs

A website is a complex collection of contents including third-party contents. The

third parties usually serve ads, Application Program Interfaces (APIs), widgets, etc. to

the websites. To identify the ad URLs in our dataset, we use the filtering rules from the

widely used filtering plugins, such as AdBlock Plus and Ghostery. Using these filtering

rules, we identify around 7,380 ad URLs in our dataset.

4.2.3 Identifying the regular URLs

Identifying regular URLs among third-party URLs is a complicated task. In addition

to ad URLs, websites also contain third-party URLs for widgets and external websites

which the browser plugins do not filter. Intuitively, we can identify the regular URLs of

a website by matching their Second Top-Level Domain (STLD) names with the STLD

of the website’s primary URL, e.g., mail.yahoo.com and www.yahoo.com have common

STLD yahoo.com. On other hand, URLs native to the website also can have STLDs, e.g.,

us.yimg.com, that cannot be straightaway identified by matching the primary STLD. We

refer to such URLs as alternate URLs.

The methodology in [80] relies on the authoritative nameservers to identify the al-

ternate URLs of websites. If any URL on a website shares its authoritative name-

server with the website’s primary URL, then such URL is flagged as a native regular
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URL. This method works for websites that manage their own authoritative nameservers

but fails to distinguish the URLs of websites hosted by third-party hosting providers.

For example, third-party hosting provider Amazon hosts websites www.9gag.com and

www.rockmelt.com and also supplies an authoritative name service for them. The

URL-identification method based on the authoritative nameservers flags all the URLs

of www.9gag.com and www.rockmelt.com as native to both the websites. Besides,

www.9gag.com uses alternate URLs with the d*.cloudfront.net pattern to host static

contents from Amazon’s Cloudfront CDN service. This makes the task of distinguishing

between alternate and third-party URLs on www.9gag.com difficult because the cloud-

front.net STLD is registered and administered by Amazon. Therefore, even a whois query

for this domain name does not reveal the host website of such URLs.

We use a combination of techniques to identify regular and alternate URLs of each

website and separate the third-party URLs of the website. In the following, we describe

our procedure for the regular and alternate URL identification.

Step 1: Matching the STLD. First, we flag a URL as regular if the STLD of the

URL matches the STLD of the website’s primary URL.

Step 2: Verifying the referrer. The URLs left after the previous step are now

subjected to a referrer verification where the URLs that are not referred by the website’s

primary URL are filtered out. This is achieved by checking the Referrer field in the

HTTP request headers. The check filters out most of the third-party URLs referred

by third-party domains. For example, website www.dropbox.com has external links to

several third-party websites such as nytimes.com. Third-party URLs such as css.nyt.com

belonging to nytimes.com can be present in the HTTP data collected for the dropbox.com.

However, the Referrer field of such third-party URLs is nytimes.com. Therefore, third-

party URLs can be filtered out by selecting only those URLs that are referred by the

website’s primary URL.

Step 3: Leveraging the request frequency. While the previous step does not

handle the case where a website refers URLs to multiple third-party websites, the native

STLDs of a website get high request counts compared to third-party STLDs. The fol-

lowing condition separates all the alternate URLs from the website-referred extraneous

URLs. Each STLD i is selected if,

yi · ni > σ (4.1)

where yi is the total request count of STLD i, ni is the total number of URLs with STLD

i, and σ is the standard deviation for the request counts of all the STLDs on the website.

The URLs of the selected STLD i are considered to be regular URLs of a website.

In total, we identified 19,140 regular URLs using the above 3 steps.
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4.3 Discovering the content infrastructure

This section describes how we discover the network resources (i.e., IP addresses,

CNAMEs, and ASes) and hosting-infrastructure geographic footprints of the online con-

tents. The discovery utilizes a network of open recursive DNS vantage points to resolve

each URL in [81]. We start with around 130,000 open recursive DNS servers as glob-

ally distributed vantage points across the Internet. Then, we eliminate around 36,500

DNS servers for reasons such as recursion unavailable (23,000), unreachable (12,500) and

invalid DNS response (1,080).

4.3.1 Eliminating the misleading DNS servers

While small in number, the servers with invalid responses are particularly important to

filter out because of their potentially large negative impact on the measurement accuracy.

We detect DNS servers that inject fake IP addresses during the URL resolution. Two

types of invalid responses are observed. The first type consists of invalid replies for only

particular URLs, such as www.facebook.com and www.youtube.com, and is also observed

in [82, 83]. Invalid responses of the second type come from DNS servers that fail to

resolve a URL or are unwilling to perform DNS recursions. Among the latter, the invalid

IP addresses point to ad-displaying search pages managed by the entities that operate

the misleading DNS servers.

To detect misleading servers of the first type, we send a single DNS query to each

of the 130,000 DNS servers to resolve the primary www.facebook.com URL of Facebook.

The IP address returned by a DNS server is then used to launch a reverse DNS query. The

reverse DNS request to a valid IP address of the www.facebook.com URL should return

a name record containing facebook.com as the STLD. On the other hand, an invalid IP

address yields a name record with an irrelevant STLD. Employing the above method, we

detect around 630 misleading DNS servers. Surprisingly, the largest number of such DNS

servers are hosted in the United States with 417 servers in 15 different ASes. China stood

second with a total of 180 such misleading DNS servers hosted by 32 ASes.

To detect misleading DNS servers of the second type, we send a single DNS query

to resolve a non-existent URL, e.g., pppqqppqqp.com. An open recursive DNS server is

expected to respond to such query with an NXDOMAIN error code. A misleading DNS

server replies with an IP address pointing to an ad-displaying search page. Using this

method, we detect 450 misleading DNS servers hosted across 48 countries and 210 ASes,

bringing the total of eliminated misleading DNS servers to 1,080.

4.3.2 Resolving the URLs using open recursive DNS

After the above filtering steps, we have about 94,000 open recursive DNS servers

spread across approximately 8,500 ASes, 22,040 prefixes, and 172 countries. By selecting
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a single IP address from each prefix, we use around 22,040 DNS servers as vantage points.

Each ad and regular URL is resolved from these vantage points to obtain the CNAMEs

and IP addresses associated with the URL. The DNS resolutions of 19,140 regular and

7,380 ad URLs yield 102,600 and 90,000 IP addresses respectively, with the average of 12

IP addresses per ad URL and 5 IP addresses per regular URL.

4.3.3 IP-to-hosting infrastructure mapping

Finally, the IP addresses obtained in the previous section are mapped to their re-

spective ASes, hosting organizations, and geographyic locations. We utiliz the IP-to-AS

mapping service from [84] to map each IP address to its hosting AS, prefix, registry, and

hosting organization. To map an IP address to its hosting country, we use the GeoIP

tool from MaxMind [85] which is largely accurate on the country level compared to its

city-level and finer resolutions. When possible, we also map each URL of a website to its

CNAME, hosting AS, IP address, prefix, hosting country, registry, and hosting organiza-

tion to form a network-level record of the URL. An URL with multiple IP addresses is

mapped to multiple records. Finally, the total number of ASes discovered for the 19,140

regular and 7,380 ad URLs are 2,177 and 2,272 ASes respectively, and the total number

of host countries are 115 and 134 respectively.

4.4 Measurement results

In this section, we analyze the measurement data to study the hosting infrastructures

with respect to their ASes, CDNs, geography and inter-AS business relations. We also

study top hosting networks and delivery performance for online contents. Our analytic

objective is to understand the online hosting in its relationship with the ISPs across the

transit hierarchy.

4.4.1 Hosting-infrastructure characteristics

Mechanisms for hosting of contents range from centralized to geographically dis-

tributed. To achieve higher performance by minimizing latencies, CSPs and ad networks

distribute their contents across the Internet and geography by collaborating with different

CDNs and ISPs. The consumed network resources, such as IP addresses and ASes, de-

pend on the hosting mechanism. The CDNs mainly leverage the infrastructures of many

ISPs across the Internet to cache contents closer to the end users.

IP address and AS counts. Figure 4.2 presents the cumulative distribution for the

number of IP addresses and AS counts for the ads and regular contents of the examined

websites. Figure 4.2(a) reveals that the ad contents served on the median fraction of

websites use up to 3,000 IP addresses, while the regular contents use only up to 100 IP
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Figure 4.2: Distribution of (a) IP-address count and (b) AS count for the ad and regular 
contents of t he websites. 

addresses. The results suggest that ad contents are distributed across a larger number 
of servers than regular contents. In figure 4.2(b), up to 70% of the websites receive ad 
contents distributed across around 700 ASes and regular contents from about 100 ASes. 
An interesting characteristic is the step increases in the AS counts of the websites. This 
behavior arises because of the presence of different CDNs that host contents according to 
their geographical popularity. The steps indicate clusters of websites hosted by CDNs that 
replicate online contents across multiple ASes as per the websites' geographical popularity. 
Online contents of very popular websites are globally replicated across a large number of 
ASes. T he contents of less popular websites are mostly confined within a continent or 
country, and hosted by a smaller number of ASes. Figure 4.2(b) shows respectively, 4 and 
3 clusters of websites for the ad and regular contents according to the AS count of the 
websites: clusters with 1 to 30 ASes (local hosting), 70 to 100 ASes (regional hosting), 
600 to 1000 ASes (global hosting) for both the ad and regular categories, and the 4th 
cluster with 400 to 500 ASes (continental) hosting for ads. 

Clustering of hosting ASes. Next, we analyze features shared by the hosting ASes. 
While our data are for the top-50 websites in 52 countries, ASes might share hosting 
characteristics such as the number of websites, geographical reach, and number of IP 
addresses. To explore the shared features, we record how many of the popular websites 
each hosting AS serves in each of the countries. Figures 4.3(a) and (b) show these data 
for all the 2,272 ad-hosting ASes and 2,177 regular-hosting ASes on a scatter plot with 
a colored density. Each tile in the above plot represents a hosting AS according to the 
number of websites served in a country. The tile color ranges from white through blue 
to black and signifies the density of ASes that share the respective website count per 
country. The higher the AS density is, the darker the t ile color becomes. 

Figure 4.3{a), shows two distinct clusters Ah and At and four faint clusters At, A i, 



4.4. Measurement results 

35 A, I I I 
V} i i i 
a., 30 _______ _j ________ J·-·-·--- .L .. ... i i . Ah 
'iii i i 

25 i i 
.0 ·- ·- ·- ·; - ·- ·- ·- .,... 
a., i ; 
~ 20 
0 A; 

15 '-a., 
.0 10 -~ 
E I 

! ::::, 5 .. - ·- ·· I z ·:;;;· 
0 

0 10 20 30 40 50 
Number of VPN countries 

(a) 

1400 
V} 

1200 a., ..... 
'vi 

1000 .0 
a., 

800 :1,': 
~ 

600 0 
'-a., 

400 .0 
E 

200 ::::, 
z 

0 
60 

35 ,----,-~--,-~-,-~,----,~-, 
I I I I I 
i i i i i 

30 ----j- ---+ ---+----t- --- ; . fie 
i i i i . 

2 5 -·-·---~·-·-·--~---·-·-·+--·-·-·-·~ ~ 
i i i 
i i i 2 0 ----1-----t---- ; 
i i 

15 ··-·---~·-·-·-· ' 
10 

i ; 

5 ~ 
0 ~ ~ """"=i'~=--~-~_J 

0 10 20 30 40 50 60 
Number of VPN countries 

(b) 

1400 

1200 

1000 

800 

600 

400 

200 

0 

47 

Figure 4.3: Hosting ASes arranged according to the number of websites served in each 
country: (a) ad-hosting ASes and (b) regular-hosting ASes. 

Aj, Ab of ASes serving ad contents to websites across the countries. On the other hand, 
figure 4.3(b) shows three clusters Rt, Rh and Rb of ASes serving regular contents. Hence, 
while t he ad-hosting ASes form a larger number of smaller clusters, and the regular-
hosting form a smaller number of bigger clusters, the results suggest that ad contents are 
locally replicated to serve regional users and that regular contents are globally replicated 
to cater to users across the Internet. 

Next, we investigate differences between the AS clusters. We focus on four significant 
clusters At, Ah, A1, and Ab of ad-hosting ASes and three clusters Rt, Rh, and Rb of 
regular-hosting ASes. The four ad-hosting clusters comprise of 47, 362, 278, and 1,456 
ASes with t he average number of websites per AS per country equal to 24, 18, 14, and 4 
respectively. The three regular-hosting clusters consist of 103, 759, and 1,252 ASes with 
the average number of websites per AS per country being 15, 11, and 2 respectively. 

IP-address count of AS clusters . Figures 4.4(a) and (b) present the cumulative dis-
tribution of IP addresses for the ad-hosting and regular-hosting AS clusters respectively. 
Clusters Ab and I4 contain the highest fraction, around 40%, of the ASes t hat use a single 
IP address for hosting ad and regular contents. On the other hand, clusters A t and Rt 
employ a large number of IP addresses compared to other clusters: 30% of the ASes in At 
and 60% of the ASes in Rt use more than 100 IP addresses. Interestingly, regular-hosting 
cluster Rh and ad-hosting cluster A1 have a similar profile: around 96% of the ASes in 
cluster A1 are present in cluster R h, which in turn contains about 86% of the ASes in 
cluster Ah, 

Position in the transit hierarchy. Next, we analyze the IP-address distribution for 
each AS cluster with respect to its position in t he transit hierarchy. We use the AS-level 
dataset from Center for Applied Internet Data Analysis (CAIDA) [56J to categorize the 
ASes into edge, intermediate, and core ASes. Using the CAIDA dataset, we compute 
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Figure 4.4: Cumulative distribution of IP addresses for different clusters of: (a) ad-hosting 
ASes and (b) regular-hosting ASes. 
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Figure 4.5: Cumulative fraction of IP addresses arranged according to the customer cone 
size of: (a) ad-hosting ASes and (b) regular-hosting ASes 

for each AS, the customer-cone metric i.e., the number of direct and indirect transit 
customers of the AS [86]. Based on the studies in [34], we label all the tier-1 ASes as core 
ASes. Those core ASes usually have very large customer-cone values exceeding 20,000. 
Using the method in [87], any AS with t he customer-cone value smaller than 5 is labeled 
as an edge AS. The edge ASes are normally regional ISPs, CSPs, enterprise, or campus 
networks. All the ASes, not labeled as edge and core ASes, are classified as intermediate 
ASes. These ASes are typically operated by tier-2 or t ier-3 ISPs that connect edge ASes 
with core ASes. 

Figures 4.5( a) and (b) present the cumulative fraction of IP addresses arranged ac-
cording to the customer-cone size of the the examined ad-hosting and regular-hosting 
ASes respectively. The fractions of IP addresses used by edge ASes is the highest in 
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Table 4.1: Top 10 ASes arranged according to the number of IP addresses used for hosting
ads and regular contents in clusters Ah and Rt

AS number Organization IPs (regular) IPs (ad) Customer-cone Service (Hierarchy)

20940 Akamai 13,182 11,832 5 CDN (Edge)

4436 GTT (nLayer) 3,513 3,196 975 Transit (Intermediate)

209 CenturyLink 3,054 2,922 20,294 Transit (Core)

3257 GTT (Tinet) 2,725 2,340 24,729 Transit (Core)

7922 Comcast 2,368 2,202 2,164 Access (Intermediate)

1299 TeliaSonera 2,196 2,054 25,753 Transit (Core)

7843 Time Warner 1,603 1,500 932 Access (Intermediate)

1273 Vodafone 1,577 1,346 13,780 Transit (Intermediate)

1239 Sprint 1,167 1,070 22,042 Transit (Core)

5511 Orange 1,073 989 4,431 Transit (Intermediate)

clusters Ab and Rb, followed by clusters Al, Rh, and Ah, and the lowest in clusters At

and Rt. In contrast, the fractions of IP addresses used by intermediate and core ASes are

the highest in clusters At and Rt and lowest in clusters Ab and Rb. This indicates that

the IP-address usage in AS clusters depends on the position of the ASes in the transit

hierarchy.

The IP-address usage in ad cluster Ah and regular-hosting cluster Rt is qualitatively

similar. The total number of IP addresses used by all ASes in clusters Ah and Rt is around

47K and 61K respectively and is the largest among all the clusters. To understand the

close similarity of the IP-address usage between clusters Ah and Rt, we examine which

ASes form these two clusters. The clusters share 50 prominent ASes that collectively

account for around 40K IP addresses. 80% of the ASes are intermediate ASes, followed

by 10% core ASes and 10% edge ASes.

For clusters Ah and Rt, table 4.1 presents the top-10 ASes among these 50 prominent

ASes according to the number of IP addresses, along with the customer-cone size, service,

and hierarchy types of the ASes. The top-10 set consists of 7 transit networks, including

4 core and 3 intermediate ones, 2 access ASes, which are both intermediate, and 1 CDN,

which is an edge hosting AS. The prominent 50 ASes form 14% of the ASes in ad-hosting

cluster Ah. In contrast, regular-hosting cluster Rh contains the other 86% of the ASes

in cluster Ah. Similarly, regular-hosting cluster Rt contains about 85% of the ASes in

ad-hosting cluster At . This reveals a big difference from cluster Rt: while Rt contains

the prominent 50 ASes, At does not. In ad-hosting cluster At which collectively accounts

for 21K IP addresses, 5 prominent ASes consisting of Google (AS 15169) and 4 large

transit ASes: NTT (AS 2914), Level3-GBLX (AS 3549), Deutsche Telekom (AS 3320),

and Telecom Italia (AS 6762) contribute up to 81% of the total IP addresses that serve

the ad contents.

Clusters Ab and Rb, where edge ASes predominantly contributed IP addresses, also
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Figure 4.6: Cumulative distribution of the customer-cone size of: ( a) ad-hosting ASes and 
(b) regular-hosting ASes. 

display qualitatively similar IP usage across the Internet hierarchy and collectively account 
up to 18K and 21K IP addresses respectively. In both clusters, Amazon (AS 16509) and 
Microsoft (AS 8075) are the 2 ASes with the largest IP count. While Akamai (AS 16625), 
CDNetworks (AS 36408), and Amazon (AS 14618) are the next top ASes in ad cluster 
Ab, China Telecom (AS 4134), China Unicom (AS 4837), CDNetworks (AS 36408) are 
the next top ASes in regular-hosting cluster Rb with respect to the IP-address count. 

Transit hierarchy in the clusters. F igures 4.6(a) and (b) plot the cumulative distri-
bution of the customer-cone size of the ASes in all ad-hosting and regular-hosting clusters 
respectively. Both ad and regular contents are hosted by ASes from across the Internet 
hierarchy. The fraction of edge ASes varies from 18% in cluster Rt to 44% in cluster Rh, 
and up to 72% in cluster Rb, as shown in figure 4.6(b) . F igure 4.6(a) depicts a qualita-
tively similar trend for the ad-hosting clusters. The fraction of edge ASes is the smallest 
for cluster At and increases in clusters Ah, At, and Ab. Complementing the fraction of 
edge ASes, the fractions of intermediate and core ASes follow the opposite trend. While 
Rt contains 75% intermediate and 7% core ASes, Rb has 27.7% intermediate and 0.3% 
core ASes. The above results show that the AS clusters preserve the transit-hierarchy 
positions of their ASes. 

Websites hosted on the AS clusters. Figures 4.7(a) and (b) plot t he number of 
websites served by the ad-hosting and regular-hosting clusters respectively, arranged ac-
cording to the number of IP addresses on the website. The IP-address counts of the 
websites correlate highly with the AS position in the transit hierarchy. The clusters con-
sisting mostly of core and intermediate ASes use a larger number of IP addresses per 
website. For example, Ah and Rt use more IP addresses per website than Ab and Rb. In 
contrast to the IP count of the websites, the website count of the clusters has a reverse 
dependence on the transit-hierarchy position: while clusters Ah, Ai and Ab serve 757, 780, 
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Figure 4.7: Number of websites served by: (a) ad-hosting clusters and (b) regular-hosting 
clusters, arranged according to the number of IP addresses per website. 

and 1,057 websites respectively, clusters Rt, Rh, and Hi> serve 484, 722, and 977 websites 
respectively. Cluster At is an exception from this trend and serves 925 websites. In all 
4 ad-hosting clusters, www.yahoo.com and www.msn.com are the 2 websites that receive 
ads from the largest number of IP addresses. In clusters Rt and Rh, www.weather.com 
and www.msn.com have the highest IP address counts. In cluster Rb, www.bing.com and 
www.lemonde.fr are the websites with the largest number of IP addresses. 

The above results can be summed up as follows: 

1. Ads use higher numbers of IP addresses and AS counts per website than regular 
contents, suggesting that ads use a higher number of servers to distribute the load 
more broadly. 

2. While ad-hosting ASes form a larger number of clusters, the clusters of regular-
hosting ASes are larger in size, indicating that replication is global for regular con-
tents and local for ads. 

3. Clusters with a majority of ASes from a higher tier of the t ransit hierarchy serve 
more websites per AS per country and employ a larger number of IP addresses per 
website. 

4. The fractions of core, intermediate, and edge ASes in the clusters vary for different 
clusters, demonstrating that AS clusters reflect the hierarchical positions of their 
ASes. 

5. With a single exception, clusters from a higher tier of the transit hierarchy serve a 
smaller number of websites. 
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Table 4.2: Top 10 ASes arranged according to the bytes served for ads and regular contents

Regular content ad content

Organization AS number Bytes (%) Organization AS number Bytes (%)

EdgeCast 15133 10.5 Google 15169 24.0

Akamai 20940 5.2 EdgeCast 15133 4.2

Level 3 3356 3.3 Akamai 20940 2.8

Wikimedia 43821 3.3 Amazon 16509 2.7

Microsoft 8075 1.7 Level 3 3356 1.3

NTT 2914 1.6 NTT 2914 1.2

China Telecom 4134 1.5 NetVision 1680 1.2

CDNetworks 36408 1.3 UAB Hostex 47205 1.2

Amazon 16509 1.3 Telia 1299 1.2

China Unicom 4837 1.2 fibre one 24961 1.0

4.4.2 Byte volume and location of contents

Now, we study the hosted contents in regard to their byte volume and location.

Top content-hosting ASes. In this section, we consider ASes individually without

clustering. We estimate the volume of bytes hosted by the ASes as follows. First, we

compute the total bytes served from each URL. Then, we uniformly distribute the URL’s

total bytes among all the IP addresses of the URL. Finally, we aggregate the bytes as-

sociated with the IP addresses to determine the content volumes of the ASes. Table 4.2

presents the top-10 ASes arranged according to the fraction of bytes delivered for ads and

regular contents. These top-10 ASes contribute up to 31% of all regular-content bytes and

41% of all ad bytes. AS 15133 operated by EdgeCast serves 10.5% of the total regular-

content bytes, which is the largest in our dataset, and predominantly hosts contents for

websites such as Pinterest, Twitter, and WordPress. Google serves up to 24% of the total

ad bytes in our dataset.

Top CDNs. Table 4.3 presents the top 5 ad-hosting and regular-hosting CDNs in

our measurements. Akamai is the biggest CDN for regular contents, serving 34% of the

websites containing 27% of the total regular-content bytes. It serves 5% of the regular-

content bytes from its flagship AS 20940 and other 22% from more than 700 third-party

ASes. Unlike Akamai, EdgeCast serves all content bytes from its servers located across

the Internet and managed under its single flagship AS 15133. For ads, Google serves

61% of the websites and 29% of the total ad bytes in our dataset. Google’s ads are split

between its primary AS 15169, which serves 24% of the total ad bytes, and more than

400 third-party ASes, which serve the remaining 5% of the total ad bytes.

Content in the transit hierarchy. Next, we assess the fractions of byte volumes
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Table 4.3: Top 5 CDNs arranged according to the served bytes 
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Figure 4.8: Fraction of online content bytes hosted by the ASes according to (a) customer-
cone size; and (b) peering coefficient. 

hosted by core, intermediate, and edge ASes. Figure 4.8(a) shows t hat nearly 33% of the 
ad bytes and 40% of the regular-content bytes are hosted by edge ASes which constitute 
55% and 59% of the total 2,272 ad and 2,177 regular ASes respectively. The core ASes 
host roughly 4% of ad and 6% regular-content bytes, which is significant because there 
are only 12 such ASes. Intermediate ASes host the remaining 63% of ad and 54% of 
regular-content bytes. Though the content volume is the lowest in the core, the volume 
density is the highest for the core ASes and equals 0.5% for ads and 0.3% for regular 
contents. Both ad and regular-content density per AS approximately equals 0.06% for 
intermediate ASes and 0.03% for edge ASes. 

Byte volume vs. business relationships. To understand the relation between t he 
hosted content volumes and business profiles of the ASes, we compute the peering ratio 
for each AS, defined as the number of peering links divided by the number of transit 
links. To compute peering ratios, we use the inter-AS relationship datasets from CAIDA 
and UCLA [59], which are similar in the number of t ransit links and largely different in 
the number of peering links. A peering ratio less t han 1 implies that an AS has more 
transit links and less peering links. A large transit AS has a large number of transit 
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Figure 4.9: Distribution for t he number of hosting countries with respect to: (a) fraction 
of ASes and (b) fraction of hosted bytes. 

Table 4.4: Top-10 hosting countries ranked by the AS counts and fractions of the hosted 
bytes. 

Regular content ad content 
Ranking by AS count Ranking by bytes Ranking by AS count Ranking by bytes 
Country AS count Country Bytes(%) Country AS count Country Bytes(%) 

USA 511 USA 38.6 USA 558 USA 47.8 
UK 109 etherlands 4.1 Germany 110 Ireland 4.8 

Germany 102 China 3.9 UK 108 Germany 3.6 
Russia 96 Russia 3.0 Russia 93 UK 2.9 
Japan 84 France 2.8 Japan 76 Denmark 2.8 
France 71 Germany 2.2 France 66 Russia 2.7 
Canada 59 Estonia 2.1 Netherlands 61 Israel 1.9 

Australia 54 UK 2.0 Canada 61 Lithuania 1.9 
Singapore 49 Sweden 1.9 Poland 52 Japan 1.7 

Poland 49 Poland 1.7 Australia 51 Austria 1.7 

customers and relatively small number of peers. Therefore, the peering ratio of large 
t ransit ASes is below 1. Small ASes have a peering ratio above 1 because t hey peer 
extensively to reduce t heir transit costs [5, 6]. Figure 4.8(b) presents the distribution of 
ad and regular-content bytes hosted by ASes in relation to peering ratio of t he ASes. 
In both CAIDA and UCLA datasets, around 60% of ads and 55% of regular contents 
originate from ASes with a peering ratio greater than 1. Thus, using these fractions 
together with the previous results for fractions of byte volumes hosted by intermediate 
ASes, we can derive the specific fraction of byte volumes hosted by intermediate ASes 
wit h a peering ratio below and above 1 to be 36% and 27% for ads respectively, and 39% 
and 15% for regular contents respectively. These specific results are useful for modeling 
a content traffic matrix which considers inter-AS business relationships. 
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F igure 4.10: Delivery performance for regular contents and ads: (a) response times (b) 
Download times. 

Geographic locations of contents. Figure 4.9(a) plots the cumulative fraction of 
hosting ASes in regard to the hosting countries. For both ad and regular contents, the 
top-10 countries ranked by the AS counts account for about 54% of t he hosting ASes. 
Figure 4.9(b) demonstrates that the top-10 countries ranked by t he fraction of hosted 
bytes account for around 62% for regular contents and 72% for ads. Table 4.4 shows that 
the sets of top-10 hosting countries are substantially different for the two metrics: the 
countries with a smaller number of ASes and higher byte volumes host popular CSPs, 
such as Google and Yahoo. The above results might help an ISP to decide in which 
country to deploy its infrastructure. 

4.4.3 Content delivery performance 

While the previous studies characterize content host ing across t he transit hierarchy 
and geography, we now examine delivery performance for the hosted contents. 

The end users, publishers, and advertisers are interested in t he contents to be delivered 
as promptly as possible. We measure response and download times for regular contents 
and ads. 

Response times. Figure 4.lO(a) plots the distribution of response t imes for ads and 
regular contents. The profiles for both types of contents are qualitat ively similar up to 
response times around 100 ms and diverge beyond that point. The 90th percentile of 
response times for ads and regular contents are 1.6 seconds and 3.5 seconds respectively. 
The smaller content size and more local hosting are likely reasons for the faster responses 
to ad requests. 

Download times. The download time of a content is the time between requesting its 
webpage and arrival of the content. This time depends on the priority given to the content 
in regard to the other contents of the webpage. Figure 4. lO(b) presents the distribution of 
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the download times for all ads and regular contents. The 90th percentile of the download

times for regular and ad contents are 4 and 12 seconds respectively, suggesting that a

majority of ads arrive long after regular contents. Also, nearly 22% of ads and 62% of

regular contents are downloaded within one second of requesting the web page. Hence,

ads have smaller response times and larger download times. One plausible reason is a

lower priority given to ad requests on a majority of the websites.

4.5 Discussion: Economic impact of Internet advertising

Over the last 2 decades, entrepreneurs leveraged the growing Internet to provide vari-

ous web-based services, such as online banking, shopping, and search. The new Internet-

enabled electronic marketplace attracted numerous advertisers, thereby bringing billions

of revenues. In return, the financing of the online contents by the online advertisers drove

the Internet infrastructures growth and content-hosting innovation, indirectly contributed

to transforming the Internet from a transit hierarchy towards a flat mesh of peering links,

and also fueled inter-ISP relationship disputes and debates over net-neutrality [88–90].

Internet infrastructure growth: Millions of individuals and enterprises produce

websites to earn ad revenues. The demand for website hosting brings thousands of en-

tities into the hosting business. [91] reveals that the hosting-provider population grows

with a factor 1.97 since January 2002. While the web traffic constitutes 52% of all Inter-

net traffic [60], the transit ISPs invest heavily into upgrading their network capacity to

accommodate the swelling traffic. The international Internet capacity nearly quadrupled

from 24 Tbps in 2009 to 104 Tbps in 2013 [92].

Impact on transit prices: The increasing demand for higher network capacities

and advancements in network technologies fueled intense competition in transit markets

and persistently reduced transit prices [92]. As transit and access ISPs experienced a

decreasing Return on Investment (ROI), many of them overhauled their business models

to cope with the new market realities. Supported by ad revenues, content hosting proved

more profitable than relying only on transit services. Many incumbent transit providers,

such as Level 3 and Cogent, started their own CDN businesses and collaborated with

many ad networks and popular content providers, e.g., Netflix.

Impact on inter-AS business relationships: Traditionally, the inter-AS business

relationships were mostly limited to transit and peering. The augmented content hosting

and caching created a need for several new types of inter-AS economic relations, such as

paid peering, partial transit, and remote peering, to deal with increasing heterogeneity in

business profiles and geographic footprints of ASes.

Business relationships and net-neutrality disputes: The entrance of transit

ISPs into content hosting payed way for several inter-ISP business relation disputes in

the Internet. Generally, it is very uncommon for access ISPs to be transit customers of
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CSPs. On the other hand, CSPs usually pay access ISPs either through paid-peering

or partial-transit relationships. Due to content hosting by transit ISPs, the access ISPs

that buy transit connections from such transit ISPs dispute their relationships because of

content traffic originating from the transit ISPs, e.g., Level 3 vs. Comcast dispute [93].

Also, large access ISPs demand payments from remote CSPs in return for providing

premium quality of service (QoS) to the content traffic, e.g., Google vs. Free dispute [94],

or otherwise degrade the content traffic performance by not allocating sufficient network

capacities [17]. These developments fuel debates on net neutrality, an informal code for

transport networks to treat all the Internet traffic equally without discriminating on the

basis of content, application, site, and protocol.

Potential revenue source for access ISPs: Recently, few UK-based ISPs have

trialed an ad-sponsored 3G Internet access to heavily subsidize the monthly subscription

fee to as low as $0 per month [95, 96]. In this model, the advertisers pay the ISP for

displaying ads to end users. The ad revenues might help the ISP to partly recover the

costs and also enable it to provide affordable Internet access, thereby attracting more end

users.

4.6 Related work

Online contents were the focus of many research works. [97,98,80,99] examined web-

based contents and services along with their features such as content types, number of

requests, bytes, and servers. [81, 100, 101] carried out measurement-based studies of real

operational CDNs. A common focus is on few selected CDNs. [102, 103] explored the

footprints of hosting infrastructures across the Internet and geography via real measure-

ments relying on either volunteers [102] or traffic traces [103]. Our work uses a simple,

and yet novel, VPN-based approach to collect online contents and then discover their

hosting infrastructures from a large number of geographically distributed DNS servers.

We detected a large ecosystem of hosting infrastructures, including those invisible from

a large portion of the Internet. We also studied differences in hosting of ads versus reg-

ular contents. Unlike the previous studies that derive conclusions from meta data such

as the number of served URLs, we measure byte volumes to characterize hosting more

accurately.

Recently, few works explored content delivery performance for ad traffic. [104] ana-

lyzed delivery of ads with a focus on effectiveness of ad blocking. [105] charted 3 prominent

ad networks and evaluated their latency and effectiveness of user targeting. [106] charac-

terized mobile ad traffic using data collected in an operational ISP to study the traffic

frequency, content types and energy implications for mobile devices. That work also

briefly glimpsed into the hosting infrastructures of ad contents. Our work distinguishes

itself from the above by collecting contents from the top 2,165 websites in 52 countries
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to characterize their hosting infrastructures. Our work also explicitly compares hosting

properties for ads versus regular contents.

4.7 Summary

In this chapter, we explore online content hosting and the role of transit ISPs in

it. We analyze the hosting infrastructures with respect to their IP resources, positions

in the transit hierarchy, geographic locations, and user-perceived delivery performance.

We classify online contents into ads and regular contents and study differences in their

hosting. Using a novel VPN-based measurement approach, we collect ads and regular

contents from the top 2,165 websites in 52 countries. Our characterization of hosting

infrastructures utilizes a vast network of open recursive DNS vantage points spread across

8,500 ASes and 172 countries.

Our analyses reveal that content hosting is pervasive throughout the transit hierarchy,

including the tier-1 networks. Our results confirm the trend towards an increasing number

of roles an AS plays in the Internet ecosystem. We observe that ads and regular contents

are hosted by significantly different populations of ASes. While replication is global for

regular contents, ads are locally replicated. Reflecting the differences in the hosting AS

populations, performance for ads and regular contents also differs substantially. While

responses to individual content requests are quicker for ads, the download time is lower for

regular contents of a webpage. Our measurement data and analytic results are valuable

for deriving a realistic matrix for content traffic, where transit ISPs are included as sources

of content traffic.



Chapter 5

An ad-based Revenue Model for

Access ISPs

5.1 Introduction

While chapter 4 shows that transit ISPs broadly rely on content hosting as a source

of extra revenues, this chapter analyzes a model where access ISPs derive revenues from

online ads.

The demand for Internet access by residential users is increasing and driven mainly by

unlimited availability of online contents. A majority of the CSPs that offer free online con-

tents derive their revenues from online ads. By financing the CSPs, the ads indirectly in-

centivize technological advancements in content development and hosting. Because online

ads provide the CSPs with higher revenues when the consumption of the online contents

is higher, the CSPs have incentives to create more advanced and innovative online con-

tents, delivery of which might require significant network capacities. As chapter 4 reveals,

the CSPs widely collaborate with different CDNs and transit ISPs to cache bandwidth-

intensive contents across the transit hierarchy. On other hand, end users demand faster

Internet access to experience a good quality of browsing the bandwidth-intensive contents.

To satisfy the growing demand for faster Internet access and to sustain increasing traffic

volumes, access ISPs have to periodically upgrade their network capacities.

The network upgrades are usually expensive, and the access ISPs are vocal about their

rising network costs. To recover the costs of upgrading and operating their networks, the

access ISPs monthly charge subscription fees to end users. The two most common billing

models for access ISPs are usage-based and flat-rate billing [107, 108]. In usage-based

billing, the users are charged according to the consumed traffic volume. With flat-rate

billing, the access ISPs charge fixed monthly fees regardless of the consumed traffic. Due

to intense competition in the access market, a majority of access ISPs have gravitated

from the usage-based to flat-rate billing [109]. Unlike the flat rate for revenues, the costs

59
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of the access ISPs depend on the peak traffic rates.

With the flat-rate revenues and usage-based costs, access ISPs find themselves in a

difficult economic situation [1]. Responding to the challenge, many access ISPs adopt

a combination of flat-rate and usage-based billing, i.e., by introducing data caps [110].

In the data-cap model, a user pays a fixed monthly fee but if the consumed traffic ex-

ceeds a monthly quota, the Internet access is either throttled to a lower speed or ter-

minated altogether until the end of the billing cycle. Alternatively, large access ISPs

demand financial compensation from popular CSPs for the costs of delivering the CSPs’

bandwidth-intensive contents [111]. Meanwhile, some CSPs collaborate with access ISPs

to subsidize end users subscriptions [112]. These initiatives trigger concerns about net

neutrality [19,20]. On the other hand, because transit ISPs increasingly host online con-

tents, access ISPs also demand financial compensation from such transit networks [21].

While online ads proved to be a rich source of revenues, this chapter analyzes a model

where an access ISP exploits online ads to earn extra revenues. We assess the revenue

potential and economic viability of the ad-based model for access ISPs with different

customer bases. While end users are sensitive to their subscription costs, this chapter

also studies the utility of the ad-based revenue model for the end users. In the considered

model, an access ISP directly collaborates with advertisers to display ads to end users

without engaging CSPs. The ads are displayed in a dedicated space in the browser.

Technical details of displaying the ads are discussed later in the chapter. We investigate

the following questions about the ad-based revenue model:

1. What is the revenue potential of this model for differently sized access ISPs under

current market prices of online ads?

2. What is the target ad revenue and per-unit price needed to offset the access ISP’s

network costs?

3. What is the maximum number of ads that an access ISP can display to the end

users without degrading the quality of their browsing experience, and what is the

ad revenue potential on this advertising level?

4. What are the incentives that an access ISP can offer to its ad-subsidized Internet

subscribers?

We evaluate our model using financial data from one large and one medium-sized

access ISPs operating in India. Our analysis shows a significant revenue potential of

around 50% of the capital expense for large access ISP which serves millions of Internet

subscribers. For the medium-sized access ISP which has tens of thousands of end users,

the ad revenue potential is about 5% of its capital expense. Under the current Cost-

Per-Mille (CPM) prices for ads and typical time spent by end users on the Internet, our
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analyses reveal that the ad-based revenue model is economically viable for access ISPs.

The ad revenues enable access ISPs to offer up to 6–9 MBps of additional access speed

or 12–20 GB additionally consumed data as incentives for users to subscribe for an ad-

subsidized plan. Also, we conduct a market survey of user interests in subscribing to

ad-subsidized Internet plans. Our survey reveals that a significant majority of users are

interested in trying this option.

This chapter is organized as follows. In section 5.2, we briefly discuss practicality of

ad-subsidized Internet plans. The model implementation and user-utility formulation are

presented in section 5.3. Section 5.4 reports the data collected for evaluating the model.

Section 5.5 analyzes the revenue potential and economic viability of the model and also

assesses the user incentives. Section 5.6 briefly discusses prior works, and section 5.7

summarizes the chapter.

5.2 Background

Generally, Internet users detest online ads because many poorly designed ads hinder

the browsing experiences by floating and rolling across the screen or auto-playing audio-

video files without an explicit consent from the users. However, online ads enable CSPs

to serve online contents freely, making the Internet popular among residential users. Re-

cently, few access ISPs have started to insert pop-up ads into browsers by tampering with

content traffic without a user consent, triggering security and privacy concerns [113].

The considered ad-based revenue model gives users an explicit choice by offering trans-

parent access plans subsidized by ad revenues. The users who choose to receive ads benefit

from extra speed or data cap incentives. This model allows ISPs to earn ad revenues with

an explicit consent of the user. To display ads, the ISPs provide mandatory plugins to

be installed on browsers by the ad-subsidized Internet subscribers. The browser plug-

ins create a dedicated space within the browser window, e.g., a horizontal or vertical

panel at the window edge. The plugins periodically fetch ads from ad servers of the ISP

or an ad network, and display the ads in this dedicated space. The model allows the

users to control the number and frequency of received ads. To make the model robust

to misuses, disabling or tampering with the browser plugins automatically disconnects

the ad-subsidized subscriber from the Internet. While security and privacy aspects of the

model are clearly important, their detailed study is a topic for future work.

Another important question is whether end users are willing to adopt ad-subsidized

plans. Hence, we conduct a survey (https://www.surveymonkey.com/r/8BQ8TNN) by

posing the following 3 questions to more than 100 residential users:

Q1: If your ISP proposes you to sign up for a new Internet plan that is cheaper or

has faster speed or provides more data than your existing Internet plan, but comes with

non-intrusive online ads sent by the ISP, would you sign up?
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Figure 5.1: Responses of the survey: ( a) questions Ql and Q2 and (b) question Q3. 

Q2: If receiving more ads brings you more discounts in t he form of a smaller price or 
speed increase or data-limit increase, would you be interested in receiving more ads? 

Q3: If you decide to sign up for a new ad-sponsored Internet plan, which one of the 
following will be your primary criterion to migrate from your current plan to the new 
plan: cheaper price, higher speed, or more data? 

Figure 5.1 presents the survey results. For question Ql, 76% of the respondents 
express willingness to try an ad-subsidized Internet plan, either unconditionally or after a 
trial. Around 20% of the respondents are not interested in an ad-subsidized plan. Though 
the fraction of disinterested users increases by 16% in question Q2, 62% of the responses 
are positive. For question Q3, 57% of the respondents prefer a higher speed, another 14% 
opt for price discounts, and 11 % are interested in data-cap upgrades. The above results 
clearly substantiate an interest of residential users in ad-subsidized Internet plans. 

Last but not least, the ad-based revenue model for access ISPs lessens concerns about 
net neutrality in comparison to direct sponsorship by CSPs. Direct payments by CSPs 
to ISPs are viewed problematic because prominent CSPs might use them to obtain pref-
erential delivery of their online contents. In the ad-based revenue model, ISPs make no 
agreements with CSPs and deal directly with advertisers or ad networks only. 

5.3 Model 

5.3.1 Ad revenue potential 

Let n be the number of Internet users served by an access ISP, and let t be the 
average number of minutes spent by the users daily on the Internet. Let CPM denote 
the Cost-per-Mille market price of ads. Whereas the access ISP periodically sends ads 
to the users, we use f a measured in impressions per minute to denote the frequency of 
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Table 5.1: Notations used for deriving the users-utility function.
Notations Description

U Utility of a user

h Higher traffic speed

dh Data cap for the higher speed

l Throttled speed after the data cap is exhausted

dl Data cap for the throttled speed

P Monthly fee of the Internet plan

p Per-unit price

the ad impressions per user. Then the average ad revenue per user (AARPU) per month

(assumed to last 30 days) is:

ra = 30 · t · fa · ca (5.1)

where ca = CPM/1000 is the cost of a single ad impression.

Then, the total ad revenue potential for an access ISP serving the n users is expressed

as:

Ra = n · ra. (5.2)

Instead of using the market-driven CPM prices, the access ISP can set its own ad

price to reflect its network cost. We model such ad price CPMISP as a function of its

capital expenditure Ec:

CPMISP =
1000 · Ec

30 · t · fa · n
. (5.3)

5.3.2 Utility of the users

A majority of the access ISPs around the world employ the data-cap billing

model [110]. As discussed in section 5.1, the data-cap billing model involves higher traffic

speed h provided until monthly data cap quota dh is consumed, after which the speed is

throttled to lower rate l until the end of the billing cycle. Data cap dl for the throttled

speed depends on the number of days between the throttling moment and next billing

cycle. Usually, access ISPs offer multiple tariff plans with different combinations of traf-

fic speeds and data caps for different monthly fees P . Table 5.1 sumps up the model

notations.

We model the utility of a user as a standard alpha-fair function [108]. The user derives

a utility equivalent to the monthly fee of the selected Internet tariff. The utility with the

higher and throttled speed respectively is captured by:

Uh = ah · (1− α)−1 (h · dh)(1−α) − (p · h · dh) (5.4)

Ul = al · (1− β)−1 (l · dl)(1−β) − (p · l · dl) (5.5)

where α = β = 0.5 denote the price sensitivity of the utility functions, constants ah and
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Table 5.2: Monthly average financial data as of March 31, 2015 for 2 Indian access ISPs.
Parameters Notation Units Access ISP

Airtel DEN

Service type – – DSL Cable

Users n Thousand 1508 23

Revenue R Million Rs. 1560 17.25

ARPU ru Rs. 1034 750

OpEx Eo Million Rs. 2195 45.96

CapEx Ec Million Rs. 422 57.16

al represent the users utility levels for per-unit price p, speed limits h and l, and data

caps dh and dl. After solving Uh
′ = 0 and Ul

′ = 0, we express ah and al as follows:

ah = p · (h · dh)α , al = p · (l · dl)β . (5.6)

Per-unit price p is derived by computing the weighted average of monthly fee P pro-

portionally to traffic speeds h and l and data caps dh and dl:

p =
P

h · dh + l · dl
. (5.7)

Finally, the aggregate utility of a user for any billing month is:

U = Uh + Ul. (5.8)

5.4 Data

We instantiate the model with real financial data of 2 prominent access ISPs in India.

Financial data of access ISPs, such as average monthly revenues, operational expenses

(OpEx), and capital expenses (CapEx) are often treated as confidential records. Nev-

ertheless, few ISPs publish these data in their annual financial reports. We use annual

reports of the two considered ISPs to obtain the financial information. Unlike the revenues

separated into mobile, DSL, and other service types, the expenditures are published with-

out breaking them into service segments. Therefore, our work utilizes the consolidated

CapEx of each access ISP as a baseline for the ISP’s network costs.

5.4.1 Financial data of access ISPs

Airtel [114] and Den Networks [115] are the 2 access ISPs in our study. Airtel is a large

access ISP serving millions of users. Den is a medium-sized access ISP with thousands

of users. Table 5.2 presents their financial data for March 2015. The revenues and costs

in this chapter are quoted in Indian Rupees (Rs.). During the time of validation of this

model, Rs. 66 was equal to 1 US dollar.

For each ISP, we collect the number of retail Internet users, average revenue per user

(ARPU), and corresponding service type. The monthly average revenue of the ISP for
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Table 5.3: CPM prices received by a popular Indian entertainment website.

Year-Month CPM (Rs.)

2015-06 68.25

2015-05 52.65

2015-04 85.8

2015-03 86.45

2015-02 85.15

2015-01 86.45

Table 5.4: Ad revenue potential of the 2 access ISPs with t = 60 minutes and fa = 1
impression/minute.

CPM Units Ad revenue potential

Airtel DEN

CPMmax Million Rs. 235 3.5

CPMavg Million Rs. 210 3.2

CPMmin Million Rs. 143 2.2

a service type is computed by multiplying the ARPU and total number of users of the

corresponding service, i.e., R = n · ru. Due to unavailability of the expenditure data for

individual service types, we use the monthly consolidated Capex and OpEx which might

include expenses of enterprise and other non-retail Internet services of the ISP. The OpEx

values are computed by subtracting revenue R from EBITDA (Earning Before Interest,

Tax, Depreciation and Amortization) published in the financial report.

5.4.2 Ad pricing data

The prices of online ads depend on the advertisers’ budget and their willingness to pay.

Also, the ad agencies can set different minimum starting prices of ads in different pricing

models, such as CPM and CPC, and different formats, such as banner and video. This

work uses real CPM prices of ads received by TellyReviews, a popular weekly entertain-

ment website that hosts weekly reviews and updates of popular Indian TV shows [116].

During the time of this study, the website attracted on average 591,000 visitors and 1.6

million page views per month and received display-ads from 4 ad agencies, such as Wor-

dAds, AdSense, Gravity, and OnClickAds. Table 5.3 shows the CPM prices received by

the website during the 6 months from January to June 2015. The maximum, average,

and minimum CPM prices over this period are CPMmax = Rs. 86.45, CPMavg = Rs.

77.35, and CPMmin = Rs. 52.65 respectively.
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Airtel -
Den Networks ~ 

Figure 5.2: Ad revenue potential as a percentage of the average revenues, CapEx, and 
OpEx of the ISPs. 

5. 5 Analysis 

5.5.1 Ad r evenue potential 

We estimate t he ad revenue potential for Airtel and Den using equality 5.2. According 
to (117], the global average t ime spent per day by a user on the Internet is t = 60 minutes. 
With t he impression frequency of 1 ad per minute, the revenue potential wit h CPMmax is 
estimated to be around Rs. 235 million and Rs. 3.5 million for Airtel and Den respectively. 
Table 5.4 presents the ad revenue potential of t he 2 ISPs with CPMavg and CPMmin· 
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Figure 5.3: Ad revenues as a percentage of t he CapEx for different CPMs and 3 distribu-
t ions of online time. 

To understand the significance of the ad revenue potent ial for the access ISPs, we 
compare it with the monthly average revenue, CapEx, and OpEx of the ISPs_ F igure 5.2 
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Figure 5.4: CPM variation for Airtel for different average online times and different 
fractions of the CapEx. 

shows that Airtel's ad revenue potential ranges within 9- 15% of its average revenue, 7-
11 % of its OpEx, and 34- 56% of its CapEx. For Den, its revenue potential is 4% of its 
CapEx and 20% of its average revenue with C P Mmin and CPMmax respectively. 

While the above analysis assumes that all users spend online the same average time, 
this time actually varies across the users. Due to the lack of real data on the online 
time of the users, we employ several well-known synthetic distributions, such as normal, 
log-normal, and Zipf-Mandelbrot distributions, to represent the online times. Various 
reports published by telco operators and market-research firms estimate the average online 
time of Indian users to be between 20 and 360 minutes per day [118, 119,117,120]. We 
conservatively choose the online t ime to range between 20 and 120 minutes per day, so 
that t he average online time is 60 minutes in all the 3 distributions. 

Figure 5.3 presents the ad revenue potential of each ISP relative to its CapEx with 
3 CPM prices and 3 distributions of online t imes. The plot also depicts the ad revenue 
potential when the online time kept at 60 minutes per day for all users. Except for Zipf-
Mandelbrot distribution for Airtel, the ad revenue potential are qualitatively similar when 
the online times are constant or vary. The ad revenue potential as a percentage of the 
CapEx of Airtel varies from 7% at the lowest CPM price of Rs. 10 to 56% at the highest 
CP M price of Rs. 100. 

The above analysis indicates a tangible revenue potential for access ISPs, particularly 
for Airtel-like large access ISPs. While a large user base is advantageous, small access 
ISPs can earn non-trivial ad revenues. 
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Figure 5.6: Ad revenues as a percentage of CapEx for different ad frequencies. 

5.5.2 Economic viability of the ad-based revenue model 

As ads are periodically displayed independently of the number of page views, the 
average online time of the users is a key parameter of our model. Figures 5.4 and 5.5 plot 
the ISP-selected CPM prices for Airtel and Den respectively as the average online time 
varies to cover a certain percentage of the CapEx. 

In figure 5.4, we set CPMavg = Rs. 77.35, t = 60 minutes, ad frequency fa = 1 
ad per minute as baselines. In order to earn ad revenues equivalent to 100% of Airtel's 
CapEx, the ISP-selected CPM price is Rs. 155. On the other hand, if CPMJSp is equal 
to market average price CPMavg, then the average online time should be around 121 
minutes. At present, these settings are not economically feasible because the ISP-selected 
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Table 5.5: Speed and data prices offered by Airtel and Den Networks. 

Tariff 
plan 
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A9 
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Figure 5.7: User incentives that Airtel and Den can offer: (a) speed and (b) data cap . 

CP M price is over 2 times higher than t he average market price, and the average on.line 
time is much higher than the present global average t ime. Similarly, it is economically 
infeasible to reach ad revenues equivalent to 75% of the CapEx. The shaded area in the 
graph represents economically viable settings where ad revenues cover 50% of Airtel's 
CapEx. Similarly, figure 5.5 shows t hat economically viable settings allow Den to earn 
ad revenues covering 5.6% of its CapEx. Figure 5.6 plots the percentage of the CapEx 
that ad revenues can cover with different ad frequencies. For Airtel, covering 100% of the 
CapEx requires displaying 2 ads per minute. For Den, the respective frequency is 18 ads 
per minute, which is clearly not viable. 

T he above analyses show that the ad-based revenue model can produce higher ad 
revenues and can be more economically viable for larger ISP s due to lower average costs 
per user. 
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Figure 5.8: Utility changes for providing extra speed as incentives by (a) Airtel and (b) 
Den. 

5.5.3 Incentives for user s 

By offsetting the ISP's expenses, the ad revenues enable the ISPs to offer attractive 
Internet access plans to the users and thereby increase its customer base. 

The incentives can be in the form of higher access speeds or larger data caps. To 
quantify these potential expenses, we obtain real ISP tariff prices. Table 5.5 presents the 
tariff prices of Airtel and Den for different speeds, throttled speeds, and data caps. Then, 
we compute the average incremental price of the speed by adding all the price differences 
between the tariffs with the same data caps and dividing this sum by the sum of all the 
corresponding speed differences. Similarly, we compute the average incremental price of 
the data cap by adding all the price differences between the tariffs with the same speeds 
and dividing this sum by the sum of data-cap differences. Table 5.5 shows that average 
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Figure 5.9: Utility changes for offering extra data as incentives by (a) Airtel and (b) Den. 

incremental price of the speed and the data cap are Rs. 22 per Mbps and Rs. 7 per GB 
respectively for Airtel, and Rs. 15 per Mbps and Rs. 12 per GB respectively for Den. 

Using the above incremental prices, we compute the speed and the data-cap incentives 
proportionally to the average ad revenue per user with ra defined in equality 5.1. Airtel 
can offer speed incentive 6h = ra/22 and data incentive 6dh = ra/7. Den can offer speed 
incentive 6h = ra/15 and data incentive 6dh = ra/12. Figures 5.7(a) and 5.7(b) present 
the potential speed and data-cap incentives respectively, as CPM changes for Airtel and 
Den. The economically viable speed with CPMavg is 6.3 Mbps and 9.3 Mbps for Airtel 
and Den respectively. The data-cap incentives for the same CPM price are 20 GB and 
12 GB for Airtel and Den respectively. Thus, while Den can offer stronger incentives for 
speeds than Airtel, Airtel can offer stronger incentives for data caps. 

Using equality 5.8, we analyze the impact of the incentives on the users' utility. The 
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utility changes are differences in the utility without and with the incentive. We compute

them for all the 9 tariff plans of Airtel and Den in table 5.5. Figure 5.8(a) presents

the relative utility changes for the speed as incentive of Airtel. The utility changes are

highest for low-speed tariffs A1, A2, and A3 gaining up to 32-34% at CPMavg. The

utility changes are the smallest for high-speed tariffs A7, A8, and A9 achieving 12-14%

gains at CPMavg. For the Airtel tariffs with same speed, the utility gain increases with

the increasing data cap. Figure 5.8(b) shows that Den can offer with CPMavg the highest

utility gains of 15–19% with tariffs D3, D6, D1, and D4 and the lowest gain of 3% with

tariff D2. Unlike Airtel, the utility changes for the Den’s tariff plans are not clustered

on the basis of speed. Because Den uses smaller data caps and larger throttled speeds

relative to the corresponding high-speed limits. As a result, the tariff plans with larger

throttled speeds or smaller data caps offer lower utility changes.

Figure 5.9(a) depicts data cap incentives that Airtel can offer. Here, the utility gains

are the highest for the tariffs with the smallest data caps across all the speed limits.

Though the utility gain increases with the increasing speed among the small data-cap

tariffs, the utility gain is sensitive to the throttled speeds of the tariffs. Therefore, the

highest gain of 20% at CPMavg is achieved by tariff A1 because of its smallest throttled

speed. Tariffs A4 and A7 with similar data caps and higher throttles speeds offer smaller

gains. The smallest gain at CPMavg is 8% with tariff A6. Figure 5.9(b) presents the

data-cap incentives for Den. At CPMavg, tariffs D1, D2, and D3 offer negligible utility

gains less than 1%. Tariff D7 offeres the highest gain of 24%.

The above analyses substantiate that the ad-based revenue model can enable large

access ISPs to offer significant incentives to the users. Though the ad revenue potential

is lower for small ISPs, the incentives can be tangible in their case as well.

5.6 Related Work

Many prior works on sponsoring ISPs costs pivot around partnerships between ISPs

and CSPs. [40] proposes a sponsorship agreement between ISPs and CSPs that discounts

the bandwidth costs incurred due to ads. Similarly, [41,42] analyzes the incentives derived

from partnerships between ISPs and CSPs as well as implications for the users, ISPs, and

CSPs. Charging of CSPs by ISPs to offset the costs of delivering content traffic is also the

focus of [111,20,121,122]. Our work differs from the previous works by considering a direct

business agreement between an ISP and advertisers without engaging the CSPs. Few ISPs

have employed online ads to subsidize the monthly subscription fee of the users [95,96]. In

these models, users are offered extra data caps in return for watching video ads. Our work,

though similar in spirit, distinguishes from such models by adopting a different technique

to display ads to users and we conduct extensive evaluations of ad-based model to analyze

the revenue potential and economic viability conditions for large and medium-sized access
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ISPs. Our evaluation reports significant benefits to the larger access ISPs.

5.7 Summary

While airports, shopping centers, and supermarkets offer ad-sponsored Internet access

to promote local businesses, this work evaluates an ad-based revenue model where an

access ISP earns ad revenues to offset its network expenses or to provide extra subscription

incentives to the users. Seeded by real financial data of 2 prominent access ISPs in India

and using real market-driven CPM prices of online ads, our analysis assesses the revenue

potential and economic viability of the ad-based revenue model. We analyzed potential

incentives in the form of speed, data-cap upgrades, and utility gains for the ad-subsidized

Internet subscribers.

Our work demonstrates that the large ISP with millions of subscribers has a significant

revenue potential up to 50% of its CapEx. The small ISP with tens of thousands of

subscribers can use ads to earn up to 5% of its CapEx. Our results indicate that the

ad-based revenue model might be economically viable for both large and small access

ISPs. The ad revenues can enable access ISPs to offer users incentives in the form of

extra 6–9 Mbps speed or 12–20 GB data cap. Our market survey shows that a significant

majority of residential users are willing to consider ad-subsidized Internet plans. Besides,

the ad-based model reduces concerns about net neutrality and also allows an access ISP

to earn ad revenues by displaying ads with an explicit consent of the user.





Chapter 6

Conclusions and Future Work

In this thesis, we analyze various approaches that ISPs can use for earning extra

revenues to economically sustain their network infrastructures. We begin our research by

exploring the economics of customer-traffic attraction by transit providers to boost their

transit revenues. This work reveals technical feasibility and significant revenue potential

of traffic attraction despite broad countermeasures by other ISPs. Then, we consider

hosting as an alternative way for transit ISPs to raise extra revenues. This measurement

work reveals content hosting to be pervasive across the Internet transit hierarchy. Finally,

we turn our attention to access ISPs that struggle to deal with their rising network costs

in the traditional flat-rate subscription model. We evaluate an alternative revenue model

where access ISPs earn ad revenues by displaying ads to the end users with their explicit

consent and also offer attractive incentives for subscribing to the ad-subsidized Internet

plan.

In our first work, presented in chapter 3, we examine how transit ISPs can attract

transit traffic to boost their transit revenues and whether other ISPs have effective coun-

termeasures against the traffic attraction. To deal with the vast size of the Internet

ecosystem and lack of comprehensive real data, we combine available real data and traffic

modeling to conduct realistic Internet-scale simulations of traffic attraction in our opti-

mized version of C-BGP. We start our study of customer-traffic attraction by simulating

the actual incident of YouTube’s prefix hijacking by Pakistan Telecom in 2008. Motivated

by the insights from this simulation, we conduct in-depth studies on various hypotheti-

cal scenarios of traffic attraction by means of prefix deaggregation by transit ASes from

different tiers of the transit hierarchy. The prefix deaggregation causes traffic to divert

to paths specified in announcements of deaggregated prefixes. We consider ASes from

the top 3 tiers of the transit hierarchy to act as traffic attractors. We also enable other

ASes to act against the traffic attraction through various mechanisms, such as filtering of

the deaggregated prefixes, disconnections from the traffic-attraction AS, and attempts of

losing ASes to counter-attract extra customer traffic to themselves.

75
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Our simulations demonstrate that traffic attraction and reactions to it redistribute

traffic on the inter-AS links and create camps of winning, losing and neutral ASes with

respect to their transit revenues. The evaluation reveals that tier-1 ASes have significant

financial incentives to attract traffic, with smaller benefits derived by tier-2 and tier-3

ASes. Despite various countermeasures by losing ASes, the traffic attraction via prefix

deaggregation remains effective unless ASes from the winning camp cooperate with the

losing ASes. Also, disconnections from the traffic-attracting AS does not completely

eliminate the gains from the traffic attraction, unless a large portion of the ASes, including

winners, terminate their business relationships with the attractor. Our sensitivity analysis

for the topology, traffic, and pricing shows qualitatively similar results, even though the

sensitivity to the traffic matrix is quantitatively smaller than to the topology and pricing.

Our analysis also demonstrates that the extra router-memory costs are not an effective

deterrent against traffic attraction.

This work strives to understand feasibility of earning extra transit revenues by

customer-traffic attraction in the presence of countermeasures by other ISPs. While

our work does not advocate, or oppose, prefix deaggregation for the traffic attraction, the

results demonstrate significant financial benefits for traffic-attraction by transit providers.

Our second work presented in chapter 4 explores hosting of online contents as an alter-

native source of revenues for transit providers. To explore the global hosting ecosystem,

we employ a novel VPN-based measurement approach to collect real online contents from

top 2,165 websites in 52 countries. Then, we use a network of 22,000 open recursive DNS

servers in 172 countries and 8,500 ASes to discover ASes and CDNs hosting the online

contents of the 2,165 websites. Since online ads are the primary source of revenues in the

online content sector, we classify online contents as ads and regular contents and analyze

qualitative and quantitative differences in hosting of the two types of contents.

Our Internet-scale measurements discover a vast ecosystem of CDNs and ASes hosting

online contents across the transit hierarchy and geography. The pervasive and significant

hosting of online contents by transit networks raises a need for new models where the

content traffic matrix includes transit ASes as sources of content traffic. Our work reveals

that online contents are most commonly hosted at intermediate and edge layers, with

smaller presence at the core of the transit hierarchy. Though the aggregate fraction

of contents hosted at the core is smaller than at the intermediate and edge layers, the

content densities in bytes per AS are the highest for the core ASes. We identify several

AS clusters with different numbers of ASes and similar content-hosting characteristics.

While ad contents are distributed across many smaller AS clusters, the regular contents

are distributed across few bigger AS clusters. Hence, the replication is global for regular

contents and local for ads. Compared to the regular contents, ad contents employ a

higher number of IP addresses and ASes per website, suggesting that ads are hosted by

a higher number of servers to distribute load broadly. Ads and regular contents also
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differ substantially in their delivery performance. While responses to individual content

requests are quicker for ads, the download time is lower for regular contents of a webpage.

While ad revenues help CSPs to produce more advanced bandwidth-intensive contents,

access ISPs face rising costs to deliver the bandwidth-intensive contents. Besides, access

ISPs struggle to earn sufficient revenues in the traditional flat-rate subscription model.

While many access ISPs experiment with alternative pricing of end-user subscriptions,

few large access ISPs demand content-based payments from CSPs or transit providers,

triggering concerns about net neutrality and inter-ISP relation disputes.

In our third work presented in chapter 5, we evaluate an alternative economic model

where access ISPs earn ad revenues by directly collaborating with advertisers and ad

networks to display ads to end users. We assess the revenue potential and economic

viability of the model for access ISPs. We also analyze incentives that access ISPs can

offer ad-subsidized Internet subscribers. We evaluate our model using real financial data

from 2 prominent access ISPs in India and real CPM ad prices from a popular Indian

entertainment website. Our analysis demonstrates a tangible revenue potential for access

ISPs up to 50% of CapEx for a large access ISP and up to 5% of CapEx for a medium-

sized access ISP. If the access ISPs decide to use ad revenues for providing incentives to

users, the ad revenues can support incentive up to 6–9 Mbps extra speed or 12–20 GB

extra data cap. Lastly, our market survey of Indian retail customers shows their interest

in trying an ad-subsidized access plan. While the model relies on direct collaboration of

ISPs with advertisers without engaging CSPs, this model faces lesser concerns about net

neutrality.

To reflect on the thesis as a whole, we can make the following generalizing obser-

vations. The ISPs’ quest for finding alternative revenue sources increases diversity and

inter-dependence of service providers in the transit, content, hosting, and access sectors.

While service providers compete for higher profits, they also cooperate with each other

to realize their individual objectives. The evaluation of traffic attraction demonstrates

competition and cooperation among transit ISPs to attract traffic and defend against the

attraction respectively. Besides, our findings shed light on understanding how vulnerable

the inter-domain routing is to unorthodox announcements. Employing measurements,

we demonstrate pervasive economic cooperation between CSPs and transit ISPs to host

online contents. While such collaboration improves content delivery performance, it also

fuels tussles of access ISPs with transit ISPs and CSPs. Several business models proposed

to address such tussles, the proposals do not resolve all concerns, e.g., about net neutral-

ity. We evaluate an ad-based revenue model with a proven track record in the content

sector and demonstrate its tangible potential to be successfully leveraged by access ISPs.

By exploring different revenue sources for ISPs, this thesis paves way for future works

on economic, technical, and security aspects in the Internet economic ecosystem. In the

following, we briefly present our envisioned future goals stemming from this thesis.
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While our traffic-attraction work extensively evaluates reactions of losing ISPs via

technical means, this work does not evaluate legal repercussions. Whereas prefix deag-

gregation does not violate any law and is routinely used for traffic engineering, the traffic

attraction via prefix deaggregation might face future legal challenges. This can be an

interesting direction for future work on traffic attraction by transit providers. While

several security proposals to detect deaggregation-based traffic attraction exist, none of

them currently prevents traffic attraction that relies on a different technique, such as path

shortening or origin AS spoofing. We envision a future security work to prevent traffic

attraction regardless of the underlying attraction technique. Next, our work on exploring

the content hosting provides only a single snapshot of the content-hosting ecosystem. To

measure the evolution of the hosting ecosystem, we envision future work developing a fully

automated tool to characterize hosting of online contents at weekly, monthly, and yearly

granularities. Leveraging machine-learning methodologies, we also envision to use the real

temporal data from the latter future work to develop security solutions that anticipate

and prevent traffic attraction. Next, the ad-based model discussed in this thesis relies on

a browser plugin to periodically fetch ads. Therefore, we plan to develop such browser

plugin for ad-subsidized Internet access that preserves security and privacy of the users.
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