
3D Reconstruction of Small Solar
System Bodies using Rendered and
Compressed Images

Gabriel Jörg Schwarzkopf

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 24.2.2020

Supervisor

Prof. Jaan Praks

Advisor

Dr. Andris Slavinskis

Copyright c⃝ 2020 Gabriel Jörg Schwarzkopf

Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the master’s thesis

Author Gabriel Jörg Schwarzkopf
Title 3D Reconstruction of Small Solar System Bodies using Rendered and

Compressed Images
Degree programme Space Science and Technology
Major Space Robotics and Automation Code of major ELEC3047
Supervisor Prof. Jaan Praks
Advisor Dr. Andris Slavinskis
Date 24.2.2020 Number of pages 82+3 Language English
Abstract
Synthetic image generation and reconstruction of Small Solar System Bodies and the
influence of compression is becoming an important study topic because of the advent
of small spacecraft in deep space missions. Most of these missions are fly-by scenarios,
for example in the Comet Interceptor mission. Due to limited data budgets of small
satellite missions, maximising scientific return requires investigating effects of lossy
compression. A preliminary simulation pipeline had been developed that uses physics-
based rendering in combination with procedural terrain generation to overcome
limitations of currently used methods for image rendering like the Hapke model. The
rendered Small Solar System Body images are combined with a star background and
photometrically calibrated to represent realistic imagery. Subsequently, a Structure-
from-Motion pipeline reconstructs three-dimensional models from the rendered images.
In this work, the preliminary simulation pipeline was developed further into the Space
Imaging Simulator for Proximity Operations software package and a compression
package was added. The compression package was used to investigate effects of lossy
compression on reconstructed models and the possible amount of data reduction
of lossy compression to lossless compression. Several scenarios with varying fly-by
distances ranging from 50 km to 400 km and body sizes of 1 km and 10 km were
simulated and compressed with lossless and several quality levels of lossy compression
using PNG and JPEG 2000 respectively. It was found that low compression ratios
introduce artefacts resembling random noise while high compression ratios remove
surface features. The random noise artefacts introduced by low compression ratios
frequently increased the number of vertices and faces of the reconstructed three-
dimensional model.
Keywords deep space exploration, simulation, Small Solar System Bodies,

compression, image rendering, computer vision

4

Acknowledgements
I would first like to thank my thesis advisor Dr. Andris Slavinskis and my supervisor
Prof. Jaan Praks of the School of Electrical Engineering at Aalto University. Their
office door was always open whenever I ran into a trouble spot or had a question
about my research or writing. They consistently allowed this thesis to be my own
work, but steered me in the right the direction whenever he thought I needed it.

I would also like to thank the person who started this research project: Dr. Mihkel
Pajusalu. Without laying the foundation of the project and his continuous input,
the project would not have been successful.

I would also like to acknowledge Prof. Mikael Granvik of the Department of
Computer Science, Electrical and Space Engineering at the Luleå University of
Technology as the second reader of this thesis, and I am gratefully indebted for his
valuable comments on this thesis.

Finally, I must express my very profound gratitude to my parents and to my
girlfriend for providing me with unfailing support and continuous encouragement
throughout my studies and through the process of researching and writing this thesis.
This accomplishment would not have been possible without them. Thank you.

Otaniemi, 24.2.2020

Gabriel Jörg Schwarzkopf

5

Contents
Abstract 3

Acknowledgements 4

Contents 5

Symbols and Abbreviations 7

1 Introduction 10

2 Scientific Background 13
2.1 Small Solar System Bodies . 13

2.1.1 Asteroids . 13
2.1.2 Comets . 13
2.1.3 Orbital Mechanics . 14

2.2 Image Rendering . 15
2.2.1 Path Tracing . 15
2.2.2 3D Models and Shaders . 15
2.2.3 Field of View . 16
2.2.4 Photometric calibration . 16

2.3 Computer Vision . 17
2.3.1 Pinhole Camera Model . 18
2.3.2 Structure-from-Motion . 19

2.4 Image Compression and Processing 23
2.4.1 Image Compression . 23
2.4.2 Gaussian Filtering . 24
2.4.3 Down-sampling with Local Means 25

3 Space Imaging Simulator for Proximity Operations 27
3.1 Simulation Package . 27

3.1.1 Propagation . 27
3.1.2 SSSB Rendering . 29
3.1.3 Star Rendering . 32
3.1.4 Image Composition . 33

3.2 Compression Package . 37
3.3 Reconstruction Package . 39
3.4 User Interface . 40
3.5 Performance . 40

3.5.1 Overall Performance . 40
3.5.2 Image Processing Benchmark 43

6

4 Results 45
4.1 Rendering . 45

4.1.1 Image Comparison . 46
4.1.2 Image Composition . 49
4.1.3 Rendering Problems . 49

4.2 Compression . 51
4.2.1 Image Quality Comparison . 51

4.3 Reconstruction . 64
4.3.1 Reconstructed Model Comparison 64
4.3.2 Compression Effects on Reconstructed 3D Models 65
4.3.3 Reconstruction Algorithms . 69
4.3.4 Reconstruction Problems . 70

5 Conclusion 71

References 74

A Shader Node Network 83

B Image Set for Image Processing Benchmark 84

7

Symbols and Abbreviations

Symbols

Astronomical Symbols
� Aries
⊙ Sun
♀ Venus

Greek Symbols
α Albedo
δ Declination
λ Wavelength
∆λ Wavelength bandwidth
ν True anomaly
ω Argument of periapsis
Ω Right ascension of ascending node
αr Right ascension
σ Standard deviation of a Gaussian distribution

Latin Symbols
a Orbit semi-major axis
A Aperture Area
Apixel Area of a pixel
fc Calibration factor for photometric calibration
vd Vector pointing along the optical axis of a camera
v̂d Normalised vector pointing along the optical axis of a camera
cu Coordinate of image principle point along image u-axis
ku Scaling factor along image u-axis
cv Coordinate of image principle point along image v-axis
kv Scaling factor along image v-axis
ds Data size
D Aperture diameter
d Distance of the spacecraft from the Sun
e Orbit eccentricity
ei ith edge vector of the Field of View
eleft Vector pointing to the left edge of the Field of View
elower Vector pointing to the lower edge of the Field of View
eright Vector pointing to the right edge of the Field of View
eupper Vector pointing to the upper edge of the Field of View
E Essential matrix
F Photon flux density
Fd Scaled photon flux density
F0 Photon flux density at magnitude m = 0
Fref Reference photon flux
Fstars Total photon flux of stars in the Field of View

8

f Focal length
F Fundamental matrix
G Value of a Gaussian distribution
H Homography matrix
i Orbit inclination
Iref Reference intensity of an image
K Camera matrix
lpixel Length of a pixel
l′
i Epipolar line of point i in an image

m Apparent magnitude
md Multiplier for systems that are not diffraction limited
M Mean anomaly
p Cartesian coordinate vector
v Value of a pixel
v0 Original value of a pixel
P Set of points
R Rotation matrix
T Runtime of a program
ru Number of pixels of an image sensor along the u-axis
rv Number of pixels of an image sensor along the v-axis
sh Height of a camera sensor
sw Width of a camera sensor
sk Width or height of a camera sensor
t Translation vector
upix Pixel u-coordinate
Sstars Sum of pixel values of a single channel of a star map
vpix Pixel v-coordinate
v̂r Normalised vector pointing right in the image plane
v̂u Normalised vector pointing up in the image plane
xi Cartesian coordinates of point i in an image

Abbreviations

2D Two-Dimensional
3D Three-Dimensional
67P 67P/Churyumov–Gerasimenko
81P 81P/Wild
AC-RANSAC A Contrario RANSAC
AKAZE Accelerated-KAZE
AOCS Attitude and Orbit Control System
ASP NASA Ames Stereo Pipeline
BRIEF Binary Robust Independent Elementary Features
BSDF Bidirectional Scattering Distribution Function
CCD Charge-Coupled Device

9

CI Comet Interceptor
CPU Central Processing Unit
CV Computer Vision
DART Double Asteroid Redirection Test
DCT Discrete Cosine Transform
DSAN Deep Space Autonomous Navigation
DWT Discrete Wavelet Transform
ESA European Space Agency
FAST Features from Accelerated Segment Test
FoV Field of View
GPU Graphics Processing Unit
HDR High Dynamic-Range
IAU International Astronomical Union
JP2 JPEG 2000
JPEG Joint Photographic Experts Group
JSON JavaScript Object Notation
LZMA Lempel–Ziv–Markov Algorithm
MANTIS Main-belt Asteroid and NEO Tour with Imaging and Spectroscopy
MAT Multi-Asteroid Touring
MP3 MPEG-2 Audio Layer III
MSAC M-estimator Sample Consensus
MVS Multi-View Stereo
NASA National Aeronautics and Space Administration
OpenMVG Open Multiple View Geometry
OpenMVS Open Multi-View Stereo reconstruction
ORB Oriented FAST and rotated BRIEF
PANGU Planet and Asteroid Natural Scene Generation Utility
PNG Portable Network Graphics
PROSAC Progressive Sample Consensus
RAM Random Access Memory
RANSAC Random Sample Consensus
RGB Red, Green and Blue
RGBA Red, Green, Blue and Alpha
SfM Structure-from-Motion
SIFT Scale-Invariant Feature Transform
SISPO Space Imaging Simulator for Proximity Operations
skimage Scikit-Image
SSSB Small Solar System Body
SURF Speeded-Up Robust Features
TIFF Tagged Image File Format
UBVRI system Ultraviolet, Blue, Visual, Red, Infrared system
UBV system Ultraviolet, Blue, Visual system
UCAC4 USNO CCD Astrograph Catalog 4
USNO United States Naval Observatory
VM Virtual Machine

1 Introduction
Studying Small Solar System Bodies (SSSBs) provides a unique opportunity to
understand the evolution of the Solar System, since asteroids, comets and other
SSSBs are remnants of the early formation phase of the Solar System [1, 97]. SSSBs
are studied to understand the origin of water and carbon-based molecules on Earth
and other planets. While asteroids can be studied to understand the chemical
composition of the inner Solar System, long- and short-period comets originate
from the Kuiper belt and Öpik-Oort cloud and can help to understand the chemical
composition of the outer and early Solar System.

Currently, most information about SSSBs is obtained from remote observation
with ground based telescopes or space telescopes [11]. Remote observations provide
statistics of thousands of objects using the same instrument. However, mostly bluk
information about orbits, albedos, colours, spectra and sizes of SSSBs can be obtained
due to their small size. In contrast, space missions provide detailed maps of albedos,
colours, spectra and surface features, Three-Dimensional (3D) models, precise mass
and density estimates, physical properties and chemical composition, both surface
and sub-surface composition. Several missions to SSSBs are confirmed. The Comet
Interceptor (CI) mission by European Space Agency (ESA) will target an unknown
dynamically-new comet [81]. The HERA mission by ESA and the Double Asteroid
Redirection Test (DART) mission by National Aeronautics and Space Administration
(NASA) will jointly target the double asteroid (65803) Didymos (1996 GT) [22, 89].

More than 3600 comets and 930 000 asteroids are known [63, 86]. The largest
group of SSSBs, namely asteroids, are categorised into 24 classes based on their variety
in size, spectral type, surface activity and other characteristics [21]. Approximately
20 SSSBs have been visited by spacecraft [52]. These missions were monolithic, single
spacecraft missions which targeted one or a few SSSBs each. Often these missions
were designed as orbiters around one or two SSSBs. For example the Hayabusa 2
mission targeted asteroid (162173) Ryugu (1999 JU3) or the OSIRIS-REx mission
which orbited (101955) Bennu [54, 99]. With costs around $1 billion for each mission,
it seems infeasible to visit many targets and study the large existing variety [2, 23].

Performing fly-bys at several objects increases the number of targets at the cost
of limited observation time. For example, the Lucy mission will perform fly-bys at
several of Jupiter’s Trojans [84]. The CASTAway or Main-belt Asteroid and NEO
Tour with Imaging and Spectroscopy (MANTIS) mission concepts aim at touring main
belt asteroids [11, 75]. Rapidly developing technology provides more opportunities
to study SSSBs since interplanetary missions become feasible at reasonable costs
using small spacecraft [50, 71, 81]. For example, the Multi-Asteroid Touring (MAT)
mission proposes to perform fly-bys at hundreds of main belt asteroids using a fleet
of small spacecraft [80]. The HERA mission will deploy its daughter-spacecraft
APEX which will autonomously navigate at the Didymos system [51]. In the CI
mission, two daughter-spacecraft will independently fly-by a target and perform
measurements [81].

Small and low-cost spacecraft can not only increase the number of spacecraft
that study SSSBs but also allow to fly closer to their nuclei, which is scientifically

11

more interesting but associated with a higher risk of losing a spacecraft. Flying
closer to an SSSB and using smaller spacecraft inflicts additional constraints onto
the data budget of such spacecraft. Miniature radios provide lower data rates due
to size and power limitations. A higher probability of losing the spacecraft requires
transmitting the most important data first and complementing it later if possible.
Compression is used to reduce the amount of data that needs to be transmitted.
The two main categories of compression are lossless and lossy compression. Lossless
compression does not lose information during the compression process. In contrast,
lossy compression accepts a certain amount of irreversible loss of information to
achieve higher compression ratios. Lossy image compression results in artefacts.
However, artefacts can be made nearly imperceptible depending on the compression
method. Therefore, it is necessary to investigate the effect of compression on image
data and science return, especially in lossy compression. In addition, an algorithm is
required that prioritises which data is transmitted first and which data transmission
can be postponed to maximise scientific return.

Designing such deep space missions, maximising their scientific return and tar-
geting unknown objects require a versatile simulation environment to develop, test
and validate systems and algorithms. The SurRender software offers such capa-
bilities. However, it is proprietary software developed by Airbus which cannot be
accessed by external parties [12]. Another software suite that is available for ESA
projects or commercially is Planet and Asteroid Natural Scene Generation Utility
(PANGU). However, PANGU uses OpenGL 3.0 which is limited in its accuracy [57].
Other software suites such as the NASA Ames Stereo Pipeline (ASP) only provide
stereogrammetry capabilities for geodesy applications and thus can only be used for
missions to bodies with existing image archives [8].

Although data sets from the OSIRIS instrument aboard Rosetta [66] or from the
OSIRIS-REx, Dawn and NEAR missions [69] are publicly available, the total number
of images and their variation remains small. Since there is only a limited number
of real images it is necessary to synthetically create images of SSSBs for developing
systems and algorithms. Synthetic image creation of SSSBs is currently based on the
parametric empirical models for directional reflectance properties of airless regolith
surfaces developed in a paper series by Hapke [34–40]. However, the Hapke model
is challenged because it is an empirical model with shortcomings, for example with
shadows especially at slopes [79]. Shadows are crucial to realistically represent SSSB
surface features. The increase in computing power in recent years can be leveraged
to employ ray-tracing techniques to overcome such problems [53, 79].

The Space Imaging Simulator for Proximity Operations (SISPO) is being devel-
oped to cover the three topics mentioned above. First, physics-based image rendering
using ray-tracing is implemented. Second, compression and decompression with
different algorithms is performed to investigate the quality loss on the rendered
images. Third, a Structure-from-Motion (SfM) processing pipeline is established
to reconstruct a 3D model of the SSSB. A preliminary code base was developed
for a proof of concept for rendering, reconstruction and studying the possibility of
transmitting reconstructed 3D models instead of raw images [68].

The aim of this project is to develop a first version of SISPO that covers a basic

12

functionality for rendering, compression and reconstruction by adding a compression
package and developing the original code base further into a consistent software
package. Based on an initial 3D model, SISPO shall be able to render images
of realistic fly-by scenarios, compress and decompress these images to introduce
compression artefacts and reconstruct a 3D model. This pipeline shall be used to
investigate the effects of compression and the possible amount of data reduction.
To see the effects of compression, a lossy compression technique with different
compression ratios shall be compared to lossless compression. This will provide a
first insight into artefacts created by lossy compression and by how much data can
be reduced.

This thesis is structured into three main sections and a conclusion.
Section 2 Scientific Background provides background information about SSSBs.
Furthermore, important concepts of image rendering and processing are explained.
Moreover, an introduction to a the SfM technique is provided. The section con-
cludes with background information about relevant image compression and processing
techniques. Section 3 Space Imaging Simulator for Proximity Operations ex-
plains the implementation, design choices and input parameters of the SISPO software
package. Section 4 Results presents rendered images, reconstructed 3D models
and effects of compression on them. Moreover, an analysis of the results is presented
along with a discussion. Section 5 Conclusion summarises the most important
findings of the thesis and provides an outlook on possible future developments of
SISPO.

13

2 Scientific Background

2.1 Small Solar System Bodies
The International Astronomical Union (IAU) defines an SSSB as any object in the
Solar System, that is not a planet, dwarf planet or satellite [43]. Within this work,
the term SSSB mostly refers to asteroids and comets.

In a classical definition, asteroids and comets were two distinct SSSB classes
based on observational, physical and dynamical properties. However, the discovery of
active asteroids and dormant comets began to blur these definitions. Many observed
objects cannot be strictly classified into the classical categories anymore. Therefore
these objects are more frequently described as part of an asteroid-comet continuum
with asteroids and comets at the ends of the continuum [42].

Despite the shift towards a continuum definition, the classical definition is used
in this work. Non-active objects are referred to as asteroids and active objects are
referred to as comets where it is necessary to distinguish these types of objects.
Consequently, a description following the classical definition of asteroids and comets
is provided.

2.1.1 Asteroids

Asteroids are rocky bodies that mostly reside in an orbit between Mars and Jupiter,
i.e. the asteroid main belt. More than 930 000 asteroids are known of which more than
540 000 are numbered. The ephemeris of more than 930 000 and absolute magnitude of
more than 925 000 is known. However, physical parameters like diameter (> 136 000),
albedo (> 135 000), rotation period (> 19 000), spectral type (> 2000) and the
standard gravitational parameter (> 10) are known for only a small fraction of
asteroids [47].

Asteroids are often referred to as rubble piles, i.e. objects which gravitationally
aggregated boulders resulting in a low bulk density because of many void spaces
in their internal structure [74]. An example of rubble pile asteroids are Bennu and
Ryugu due to their low density [15, 100].

2.1.2 Comets

Comets are small icy bodies that mostly reside farther away from the Sun than
asteroids. Inside the heliosphere, the source of comets is the Kuiper belt while comets
from outside the heliosphere are thought to originate in the Öpik-Oort cloud. Comets
are occasionally perturbed by the gravity of other objects which moves their orbits
closer to the Sun. While being close to the Sun, volatiles begin to evaporate which
creates the well-known coma around the nucleus. In most cases the coma is several
orders of magnitudes larger than the nucleus. The size of nuclei is on the order
of a few kilometres while comas can extend hundreds of thousands of kilometres.
Additionally, a gas and a dust tail are formed. The gas tail originates from coma
charged particles that are carried away from the nucleus by the magnetic field carried
by the solar wind. The dust tail is formed by small dust particles in the coma

14

which are carried away from the nucleus by the solar radiation pressure. Larger dust
particles remain along a comets trajectory as a trail forming part of the meteoroid
environment. If a comet is heated unevenly, trapped gas escapes at weak spots in
the surface forming jets of gas and dust [1, 17, 82].

Physical parameters of comets are not well-known, since comet nuclei are small.
It is difficult to image a comet nucleus when it moves closer to the Sun since the
nucleus is surrounded by the coma. Approximately 3500 comets are known of which
more than 400 are numbered [47]. The ephemeris (> 1700) and magnitude (> 1300)
are known for many comets. Only a few comets have known physical properties like
the diameter (> 100) or the rotation period (> 20) [47].

It is not clear whether comets are generally similar to rubble piles or rather
consolidated, monolithic bodies. It is assumed that most bodies in the range of 200 m
to 10 km are rubble piles [98]. However, density measurements and surface features
of 67P/Churyumov–Gerasimenko (67P) are not conclusive so far [101].

2.1.3 Orbital Mechanics

All objects in space move on trajectories, following the Kepler equations. Trajectories
are commonly defined using six orbital elements. Semi-major axis a, eccentricity e,
inclination i, right ascension of ascending node Ω, argument of periapsis ω and the
true anomaly ν or mean anomaly M at a given epoch. This parameterisation is also
called modified Keplerian elements [41]. Figure 1a shows the geometric relations of
the angular elements.

(a) (b)

Figure 1: Important astrodynamic definitions and relations. (a) Modified Keplerian
elements [19]. (b) A closed orbit around the Sun (⊙) becomes a hyperbolic trajectory
around another body, in this example Venus (♀) [41].

Fly-by scenarios in the Solar System are often closed orbits around the Sun, i.e.
e⊙ < 1 while they are hyperbolic trajectories in the reference frame of the target, i.e.
e♀ > 1. An example is given in Figure 1b. A high relative velocity and the small
gravitational force exerted by a SSSB result in a trajectory closer to a straight line
than the bend trajectory presented in Figure 1b.

15

Most asteroids move on orbits with low eccentricity while most comet orbits
have high eccentricities [14]. The eccentricity distribution is caused by the origin of
asteroids and comets. While asteroids mostly originate from the main belt which is a
nearly circular region, comets enter the inner Solar System from far out, i.e. comets’
aphelion is far from the Sun resulting in high eccentricities.

2.2 Image Rendering
Rendering is the process of creating Two-Dimensional (2D) images from 3D objects.
A virtual 3D world with objects is created which is used to calculate 2D images.
Light sources and cameras produce artificial illumination and define which part of the
world is being captured. A rendering engine calculates the pixel values to generate
the final image based on energy conservation by using the rendering equation [48].

2.2.1 Path Tracing

Path tracing is a special form of ray tracing. Ray tracing is a rendering technique
where the path of light rays is traced to generate pixels while simulating effects of
encounters with objects. Path tracing does not branch into an exponentially growing
number of rays when being reflected or refracted but only a single path is followed.
Path tracing cuts computation time dramatically compared to ray tracing in scenes
with a lot of reflection, refraction and shadow rays per pixel [48]. Path tracing can
simulate different effects, such as reflection, refraction, scattering and dispersion.
There are four types of rays: camera rays, reflection rays, transmission rays and
shadow rays. Reflection and transmission can be further categorised as either diffuse,
glossy or singular. Path tracing is a popular rendering technique where a high degree
of realism is necessary since it is a realistic simulation of light transport. However,
the high degree of realism created by path tracing requires substantial computational
power [93].

2.2.2 3D Models and Shaders

A 3D model is a set of vertices in 3D space linked by surfaces. The most common
type of 3D models are polygonal meshes. Polygonal meshes are shell models that
consist of polygons. A vertex is a corner of a polygon, i.e. every triangle has three
vertices and every tetrahedron has four vertices. A face refers to the surfaces that
make up a 3D model. Depending on the rendering environment, 3D models can
have varying levels of detail and their surface can have different properties such as
reflection, refraction and transmission [29].

A shader is used to calculate effects of interactions of rays and objects during
the rendering process. Shaders provide a flexible method to influence the rendering
outcome during the rendering process. Shaders can be used to change the positions
of vertices, colours, lighting and surface properties by using equations. Complex
surface structures and texture can be generated procedurally with shaders. Shaders
are commonly executed on Graphics Processing Units (GPUs) since GPU hardware
is well suited for this task [70, 76, 83].

16

Shaders that influence the surface of an object use a Bidirectional Scattering
Distribution Function (BSDF). BSDFs are a mathematical functions that describe
light scattering behaviour of surfaces of 3D models. Several shader classes such as
diffuse, glossy, refraction and transparent shaders create the respective effect based
on BSDFs [29, 70].

2.2.3 Field of View

The Field of View (FoV) defines the visible extent of a camera view in 3D scene.
Vectors that point to the edges of the FoV can be constructed from geometric
considerations resulting in

ei = vd ± vj × sk

2 × f
, (1)

where ei is a vector for the ith edge of the FoV, vd is the direction vector of the
camera, vj is the vector pointing right or up in the FoV plane, sk is the camera
sensor width or height and f is the focal length. The left and right edge vectors, eleft

and eright, are calculated with the vector vr pointing right in the FoV plane and the
sensor width sw. The upper and lower edge vectors, eupper and elower are calculated
with the vector vr pointing up in the FoV plane and the sensor height sh.

In addition to the extent of the FoV within the image plane, rendering requires
the FoV to be clipped to a minimum and maximum distance. Clipping defines
which objects appear in a rendered scene. Clipping is necessary to limit the required
computational power for rendering.

2.2.4 Photometric calibration

Photometric calibration is the process of correcting raw images from a sensor to a
common level of brightness. Differences can originate from varying exposure times,
gains or different camera sensors [5]. Photometric calibration uses a photometric
system, such as the Ultraviolet, Blue, Visual system (UBV system), which are
reference systems with which star magnitude measurements can be compared for a
given band of the system [6].

The apparent magnitude of a star is converted into photon flux density F relative
to magnitude 0 by using,

F = 10−0.4×m, (2)

where m is the apparent star magnitude. Given the apparent magnitude of a specific
band, the photon flux density F of a reference object can be calculated using

F = F0 × ∆λ

λ
× 10−0.4×m, (3)

where F0 is the photon flux density at magnitude 0, ∆λ is the wavelength bandwidth,
λ is the centre wavelength and m is the object’s magnitude. The required constants

17

Table 1: Constants for calculating photon fluxes using the UBV system [6].

Band Centre wavelength λ [nm] F0 [1 × 10−26 W m−2 Hz−1] ∆λ
λ

[]
U 0.36 1810 0.15
B 0.44 4260 0.22
V 0.55 3640 0.16

to calculate the photon flux of an object from its magnitude in a given band are
presented in Table 1.

Consequently, the reference photon flux for one pixel of the Charge-Coupled
Device (CCD) Fref is calculated using

Fref = F × A × Apixel

f 2 × π
, (4)

where F is the photon flux density, a is the aperture area, Apixel is the area of a pixel
and f is the focal length of the instrument.

In the last step, the calibration factor fc is calculated. It is defined as

fc = Fref × α

Iref

, (5)

where Fref is the reference flux, α is the albedo and Iref is the reference intensity.
Multiplying the image with fc produces the calibrated image.

The effect of photometric calibration is delineated in Figure 2. Photometric
calibration corrects the brightness difference of a set of images towards a common
brightness level [5].

Figure 2: Image series before (top) and after (bottom) photometric calibration which
eliminated the brightness differences [5].

2.3 Computer Vision
Computer Vision (CV) is the science of extracting information from digital photos
and videos by mimicking the human vision system using a computer. CV encom-
passes a wide field of activities, from image formation, processing, detecting and

18

matching features, image segmentation and 3D reconstruction [88]. CV is computer
based photogrammetry which aims to obtain information about physical objects
and the environment from photographic images [49]. A common approach for 3D
reconstruction is stereo-photogrammetry, also referred to as computer stereo vision.
Stereo-photogrammetry applies the binocular vision principle of the human vision
system to obtain structural information from images [9]. Since most, if not all,
deep space missions have a visual imager instrument on-board, CV provides a useful
framework to obtain the 3D structure of an observation target. A similar approach
is SfM where the camera motion creates the stereo perspective.

2.3.1 Pinhole Camera Model

All CV problems require a camera model. The most commonly used model in CV is
the pinhole camera. Figure 3 presents an overview of the important elements of the
pinhole model [87].

Figure 3: Overview of the components of the pinhole camera model. Intrinsic camera
parameters model optical distortions, extrinsic parameters model camera position
and orientation. The image plane is where the light sensor is. Locations in the image
plane are described with u,v-coordinates. The focal plane is where the focus of the
optical system is. The thin line from the origin of the camera frame through the
centres of the image and focal plane is the optical axis [3].

The pinhole camera model can be described using the 3 × 4 camera matrix K
defined as

K =

⎡⎢⎣f × ku 0 cu

0 f × kv cv

0 0 1

⎤⎥⎦ [
R t

]
, (6)

where f is the distance between the focal plane and the image plane, ku and kv are
scaling factors, cu and cv are the coordinates of the principle point on the image plane,

19

R is a 3 × 3 rotation matrix and t being a 3 × 1 translation vector. The first matrix
of K reflects the camera intrinsic parameters while the second matrix describes the
extrinsic parameters. More sophisticated pinhole camera models include distortions.
Distortions can include one or more factors for radial and tangential distortions. A
special case with three radial and two tangential distortion factors is called Brown
T2 model [3, 87].

The conversion between object coordinates and image coordinates is obtained
from geometric considerations of the pinhole camera model shown in Figure 3 and is
defined as

upix = f

sw

× v̂r · p

v̂d · p + 1 × (ru − 1), (7)

where upix is the u-coordinate of a pixel in the image frame, f is the focal length, sw

is the sensor width, v̂r is the unit vector pointing right in the image plane, p is the
Cartesian coordinate vector of a star, vd is the vector of the optical axis and ru is
the number of pixels in u-direction. Similarly, the conversion for v-coordinate of a
pixel vpix is obtained by replacing the sensor width sw with the sensor height sh, v̂r

by the unit vector v̂u pointing up in the image plane and the number of pixels in
u-direction ru by the number of pixels in the v-direction rv. The vectors v̂r and v̂u

are calculated by subtracting vd from the field of view edge vectors eright and eupper

as defined in Equation 1.

2.3.2 Structure-from-Motion

SfM can be considered the inverse process to rendering, i.e. creating 3D models
from 2D images. SfM uses multiple views of the same object from different camera
positions to reconstruct an object’s geometry. SfM recovers the 3D structure of
an object and the camera poses of each image [88]. Depth information is obtained
through the motion parallax created by the moving camera. Generic steps of an SfM
processing pipeline are presented in Figure 4.

Feature Detection

Feature Matching

Outlier Rejection

Reconstruction

Figure 4: Generic steps of a SfM processing pipeline.

Figure 5 shows a generic observation geometry in an SfM problem. Various
images containing feature points of the same object point are taken from varying
positions. Lines connecting the features points and object point depict the relation
between 2D feature points and a 3D object point.

20

Figure 5: Generic observation geometry in a SfM problem. The 3D structure can be
reconstructed from several point observations and intrinsic camera parameters [4].

Reconstructing 3D points from an image series requires finding correspondence
between images. Correspondence is found by detecting and matching features
in multiple images. A feature point is a local, meaningful and detectable part
of an image. Feature points are also referred to as key-points or interest-points.
Features can be image regions of sudden change, shape features or texture contours.
Commonly detected features are corners, edges, junctions, blobs and lines [90].
Feature descriptors assign a distinct identity features after feature description for
later matching. A range of feature description algorithms exist. Most feature
descriptors are combined with a distinct feature detector. However, detectors and
descriptors can be interchanged. Feature detectors are tasked with detecting feature-
points in an image. Feature descriptors and detectors are frequently required to be
scaling, rotation and affine invariant. The most prevalent feature detector-descriptor
pairs are Scale-Invariant Feature Transform (SIFT), Speeded-Up Robust Features
(SURF), Oriented FAST and rotated BRIEF (ORB), KAZE and Accelerated-KAZE
(AKAZE) [90]. After detection and description of all images, features are matched,
i.e. an algorithm identifies the same feature in multiple images. Either an L1 or
L2-norm for scalar descriptors or the hamming distance for binary descriptors are
used. Feature matching can use image pairs or a series of images. Various geometries
can be described using different mappings. The homography matrix H describes a
coordinate mapping of two different views and is defined as

x′
i = Hxi, (8)

where xi
′ are the coordinates of point i in the second image, xi are the coordinates of

point i in the first image and H is the homography matrix. However, H describes only

21

a purely rotating or moving camera capturing a planar scene [77]. The fundamental
matrix F describes the relation between two images of the same scene for a moving
camera. It relates points of uncalibrated images and is defined as

x′
i
T Fxi = 0, (9)

where xi
′ are the coordinates of point i in the second image, xi are the coordinates

of point i in the first image and F is the fundamental matrix. The epipolar line l′
i

constitutes all possible locations of point xi
′. The epipolar line is defined as

l′
i = Fxi, (10)

where F is the fundamental matrix and xi are the coordinates of a point in the first
image.

Taking into account the camera intrinsic parameters, the fundamental matrix F
becomes the essential matrix E which is defined as

E = (K′)T FK, (11)

with K′ being the camera matrix of the second view, F being the fundamental matrix
as defined in Equation 9 and K being the camera matrix of the first view. The
essential matrix is intended to be used in conjunction with calibrated images where
the camera intrinsic parameters are available.

If sufficient points are correctly mapped using one of the transformations from
Equations 8, 9 and 11, the points are geometrically verified. However, geometric
verification does not necessarily remove all outliers. Therefore, outlier rejection is
performed to remove incorrect matches. Several algorithms such as Random Sample
Consensus (RANSAC) [25], A Contrario RANSAC (AC-RANSAC) [58], M-estimator
Sample Consensus (MSAC) [33] and Progressive Sample Consensus (PROSAC) [16]
are used for outlier removal. These outlier rejection algorithms attempt to robustly
estimate the correct model and remove outliers. The result of outlier rejection is
the view graph which relates different views to each other with images as nodes and
pairs as edges [77].

The reconstruction process produces a 3D point cloud based on the view graph.
A point cloud is a set of independent points with coordinates in 3D space. Two
principle methods for SfM-based reconstruction exist, incremental and global. For
unorderd image sets the incremental approach is used more frequently [77].

Incremental reconstruction starts with an initial view pair. Selecting the initial
pair is a critical step because the reconstruction algorithm might not converge after
using a bad initial pair. Typically, starting with a scene with many overlapping
camera views constitutes a robust initialisation and results in higher accuracy because
of redundant information from many images [77]. Subsequently, additional images
are registered to the model based on corresponding features which can be used to
triangulate additional points in already registered images. The triangulation step can
include estimating camera poses and camera intrinsic parameters for uncalibrated
images. Triangulation is an essential step of making SfM robust by adding redundant

22

information about existing points to a model and adding additional points which
increases the coverage of a model [77].

Image registration and triangulation are separate processes although their results
are linked. Errors of one process can increase the error of the other process. If pose
estimation during image registration is erroneous, the error propagates to the location
estimate of a triangulated point. Bundle adjustment is often employed to increase
robustness of this step. Bundle adjustment is the combined refinement of camera
pose and point position estimate. A frequently used error minimisation algorithm is
the Levenberg-Marquardt algorithm [59, 77].

Global SfM pipelines try to eliminate the problem of accumulating errors of
incremental SfM by using a common reference frame for all views. While incremental
reconstruction accumulates errors with every added view, global reconstruction
attempts to distribute these residuals equally for all reconstructed points [60]. Global
SfM pipelines calculate the essential matrix for all image pairs in the initial step.
Rotation estimation is often separated from translation and structure estimation.
First a consistent set of rotations is computed in a global frame based on relative
rotations of input pairs. Second, camera translations and the object structure are
estimated.

Stability of either SfM approach can be improved by providing priors for the
camera intrinsic and extrinsic parameter estimation which are then used as initial
guess for the optimisation process [45].

Incremental and global SfM methods create a sparse point cloud and estimate the
intrinsic and extrinsic camera parameters. The sparse point cloud can be densified
using Multi-View Stereo (MVS) techniques [67]. Image pairs with established camera
positions are used to calculate depth maps. The depth maps are fused and filtered to
increase the number of points in the point cloud. Point cloud densification mimics
human depth perception and leverages the information to improve the accuracy of
point clouds.

Subsequently, a point cloud is converted into a 3D model by estimating a mesh
surface from the point cloud. Outliers are detected and removed from the scene
during mesh creation. Different approaches exist which yield different results. Some
techniques only use strongly supported faces, i.e. faces that are supported by many
points of a point cloud. Other methods include weakly supported surfaces due to
e.g. obstructions [46]. The output of mesh creation is a rough surface model of a 3D
object.

A frequently used mesh creation algorithm is Delaunay tetrahedralisation. De-
launay tetrahedralisation is a triangulation method in which a set of points P is
triangulated to not contain any point of P within the circumscribed sphere of any
tetrahedron (3-simplex). Delaunay tetrahedralisation is a frequently used algorithm
because it provides a unique solution to the triangulation problem [95].

The accuracy of a rough surface model can be increased with mesh refinement. In
cases where a sparse point cloud was used to create the rough mesh, refinement can
improve the model accuracy substantially. One such algorithm for mesh refinement is
variational multiview stereovision. Initial mesh creation captures the main features
of a structure hence variational multiview stereovision can employ local optimisation

23

algorithms since local optimisation is unlikely to be trapped in local minima [24, 95].
The final step in 3D reconstruction is texturing the surface model. Ideally, camera

poses and surface models are exact. However, frequently texturing needs to cope
with inaccurate camera poses and surface models. Likewise, effects such as differing
illumination and exposure, unreconstructed occluding objects or varying image scales
need to be addressed. Texturing is often separated in image selection and optimising
the resulting image set for consistency [96]. Image selection algorithms are categorised
into two types. One type blends multiple images per face to achieve consistent texture
across patches. The other type uses a single image per face [96]. Subsequently,
colours differences originating from exposure and illumination variations need to
be adjusted. Seams between patches are corrected by photometric adjustments.
Colour adjustment can be split into local or global adjustments. Local adjustment
smooths the transition between texture patches by introducing gradients in texture
luminances, e.g. example with heat diffusion equations [94]. Global adjustment
methods calculate the luminance correction terms for a global optimum [55].

2.4 Image Compression and Processing
Digital image processing uses computers to process digital images through algorithms.
Processing techniques relevant to this thesis are image compression (cf. Section 2.4.1),
Gaussian filtering (cf. Section 2.4.2) and image down-sampling (cf. Section 2.4.3).

2.4.1 Image Compression

Data compression is tasked with encoding information using less bits than the
original representation. Other terms for data compression are source coding or
bit-rate reduction [56]. Two principle methods of compression exist, lossless and lossy
compression. While it is possible to recover all information after lossless compression,
lossy compression accepts a certain irreversible loss of information to achieve higher
compression ratios.

Lossless compression leverages statistical redundancy in data to decrease the
number of bits necessary to encode the same information in a reversible process.
Many lossless compression algorithms exist such as Huffman coding, arithmetic
coding or Lempel-Ziv algorithms [10].

Lossy compression is an irreversible process meaning some of the information
is lost and cannot be recovered. The idea of lossy compression is that individual
image properties are perceived with varying degrees of precision and are therefore not
equally important. Lossy compression is a trade-off between compression ratio and
data distortion. Audio data can be encoded with a lossy scheme by decreasing the
accuracy of acoustic components that are beyond the capabilities of most humans.
Another example is the human eye, which is more sensitive to changes in brightness
(luminance) than to changes in colour (chrominance). Therefore, compression can lose
colour information without having a strong influence on the perceived image quality.
Consequently, image compression algorithms tend to use luminance-chrominance
representations. The components in such a representation are almost uncorrelated

24

and it is easier to reduce colour information without changing luminance information.
Frequently used formats for lossy compression are MPEG-2 Audio Layer III (MP3)
or Joint Photographic Experts Group (JPEG). Most lossy compression algorithms
are based on transform coding, especially Discrete Cosine Transform (DCT) [10].

Image compression is a sub-discipline of data compression. A frequently used
format for lossless compression is Portable Network Graphics (PNG) which relies
on a Lempel-Ziv algorithm and Huffman-coding. Two types of image compression
techniques commonly used for lossy compression are the DCT and Discrete Wavelet
Transform (DWT). DCT is used for example in the JPEG format and DWT is used
in the JPEG 2000 (JP2) format [10].

The Lempel-Ziv algorithm used in PNG replaces repeating sections of data with
a single copy and references to that copy. Subsequent Huffman coding is a form of
entropy coding which estimates the number of occurrences of symbols and encodes
symbols with higher probability using the least amount of bits.

DCT is a type of Fourier transform, hence it expresses finite data as a sum
of cosines. In contrast to the Fourier transform itself, DCT employs only real
components. DCT compresses data in form of discrete data blocks. Various block
sizes can be used, e.g. an 8 × 8 pixel block which is used in JPEG compression [10].
The frequency response of the DCT improves with longer harmonic functions. Hence,
DCT does not have favourable compression characteristics if an image has many
small details or contours [10].

DWT uses a wavelet transform, hence it expresses data using a set of wavelet
base functions. DWT has better properties for finite, non-periodic or non-stationary
signals than DCT. Consequently, DWT-based compression is particularly well suited
to compress images with high frequency components, such as a star background [10].
The properties of wavelets naturally create a hierarchical structure of the output
data after applying a DWT. The hierarchical structure of an image transformed with
DWT is depicted in Figure 6. After transforming an image with a DWT, the lowest
lowpass subband of an image contains a rough approximation of a given image. Every
additional higher frequency subband adds detail to the image. Only a small fraction
of an image contains high frequency components, such as contours and sharp details,
therefore these subbands can be strongly compressed using lossless algorithms since
these subbands mostly contain zeros [10].

A comparison of an image compressed with JPEG and with JP2 with roughly
similar compression ratio is presented in Figure 7. Artefacts are created around
the contours in the JPEG image in contrast to the JP2 image, despite the higher
compression ratio of the JP2 image.

2.4.2 Gaussian Filtering

Gaussian filtering convolves an image with a 2D Gaussian distribution function. The
effect of Gaussian filtering is blurring which removes noise and details. The 2D
Gaussian function G(x, y) with a mean of zero is defined as

G(x, y) = 1
2πσ2 e− x2+y2

2σ2 , (12)

25

Figure 6: Hierarchical structure of an image transformed with 2-level DWT [18].

where σ is the standard deviation of the Gaussian distribution, and x and y are
coordinates. The Gaussian distribution theoretically extends to infinity. Practical
implementations cut the Gaussian distribution at a certain distance from the centre.
The kernel size determines the range over which the filter is applied. Since 99 %
of the distribution falls within three standard deviations, the kernel size is related
to the standard deviation of the Gaussian distribution. Furthermore, the Gaussian
distribution is discretised in a digital system. The 2D Gaussian filter is rotationally
symmetric and larger standard deviation creates a stronger blurring effect due to a
wider peak.

2.4.3 Down-sampling with Local Means

Down-sampling is the process of reducing the number of pixels in an image. Down-
sampling with local means refers to replacing a set of pixels with a single pixel having
the average value of the pixel set. If an image is reduced by a factor of two, the
values of four pixels are averaged to obtain a single output pixel. In the example
in Figure 8, a 4 × 4 matrix is down-sampled by a factor of two resulting in a 2 × 2
matrix.

26

(a) Original image without compression.

(b) (c)

Figure 7: Comparison of images compressed with JPEG and JP2. Despite a higher
compression ratio, the JP2 image produces a better result for a SSSB image. (a) Raw
image without compression. (b) Image compressed with DCT using the JPEG format
with a compression ratio of 61.2:1. (c) Image compressed with DWT using the JP2
format with a compression ratio of 64.3:1.

⎡⎢⎢⎢⎣
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

⎤⎥⎥⎥⎦ →
[

3.5 5.5
11.5 13.5

]

Figure 8: A 4 × 4 matrix down-sampled with local means by a factor of two resulting
in a 2 × 2 matrix

27

3 Space Imaging Simulator for Proximity Opera-
tions

SISPO is a software package that integrates trajectory simulation with physics-based
rendering, image compression and 3D reconstruction. These functionalities are split
into three sub-packages. The first sub-package uses Keplerian orbit data for a SSSB
and a simplified definition of the encounter geometry for the spacecraft to propagate
realistic trajectories and render an image series of the encounter. The second sub-
package provides various algorithms for image compression and decompression. The
third sub-package uses images to reconstruct a textured 3D model using the SfM
technique. The three sub-packages combined provide a processing pipeline from an
initial 3D model to a reconstructed 3D model via rendered and compressed images.
SISPO is a Python software package which is hosted on a public GitHub repository
under a BSD-2-Clause license and maintained by the author [78]. SISPO is based on
source code developed by Mihkel Pajusalu [68]. The original source code consisted of
a rendering and reconstruction pipeline. In this thesis, the original processing pipeline
was developed further into a software suite and a compression module was added.
In the following, a description of the functionality and input parameters provides
insights into the development process and design choices made during development.

3.1 Simulation Package
The simulation sub-package handles orbit propagation for the SSSB and spacecraft as
well as rendering photo-realistic images. Propagation and rendering are two separate
steps. First the SSSB and spacecraft are propagated along their trajectories using the
space dynamics library Orekit [72]. Subsequently, trajectory and attitude data is used
to render four images per frame which are composed and photometrically calibrated
to form the final rendering output. Images during rendering and calibration use
the High Dynamic-Range (HDR) image format OpenEXR to minimise information
loss in intermediate steps [26]. Reduced quality images of the rendered images are
stored as PNG files for quick preview. Raw data of intermediate steps is saved for
possible in-depth analysis. The raw data consist of the four rendered images, their
PNG previews, metadata, the Blender scene and the star data. The simulation
sub-package was developed to contain all general information about the environment
in the Environment class in order to have one consistent instance of time, constants
and parameters.

3.1.1 Propagation

Propagation is based on the Python bindings of the Orekit library. The Python
bindings run a Virtual Machine (VM) to execute the underlying Java code. Orekit
requires physical data which is distributed with the simulation sub-package. The
VM and physical data are initialised in the simulation module. Other modules are
imported subsequently to only execute one instance of the VM. Having only one
instance of the Java VM executing reduces resource consumption and provides a

28

single consistent set of physical constants. During propagation, Orekit determines
state information of the SSSB and the spacecraft for each sample along the trajectory.
The state information includes the date, position and the rotation angles of the
SSSB. Propagation is based on Orekit’s KeplerianOrbit and KeplerianPropagator
classes. The input parameters required to define the SSSB trajectory are presented
in Table 2.

Table 2: Input parameters that define the SSSB orbit in SISPO. The parameters
represent the modified Keplerian elements presented in Section 2.1.3.

Parameter [Unit] Type
a [au] float
e [-] float
i [rad] float
omega [rad] float
Omega [rad] float
M [rad] float
Date of the orbital parameters [-] dict1

The spacecraft trajectory is not defined by Keplerian elements but calculated
relative to the SSSB at closest approach. However, the trajectory around the SSSB
is a closed orbit around the Sun (cf. Section 2.1.3). The parameters presented in
Table 3 are used to calculate the state vector of the spacecraft at the encounter which
defines the trajectory of the spacecraft. The sssb_state is calculated based on the
SSSB input data and the encounter data.

Table 3: Parameters that define the encounter state of the spacecraft in SISPO. The
first five parameters are required as input.

Parameter [Unit] Type Description
encounter_distance [m] float Minimum distance between SSSB and spacecraft.
with_terminator [-] bool Determines whether the terminator is visible at the

closest approach.
with_sunnyside [-] bool Determines whether the spacecraft passes the SSSB

on the Sun facing side or the side facing away from
the Sun.

relative_velocity [m s−1] float Relative velocity of the spacecraft to the SSSB at
the encounter.

encounter_date [-] dict1 Date of the closest approach of the spacecraft and
the SSSB.

sssb_state [m & m s−1] tuple SSSB state vector containing 3 position and 3 ve-
locity components at the encounter. The spacecraft
encounter state is calculated relative to this state
vector. The SSSB state is not required as input
since it is calculated based on the SSSB trajectory
and encounter date.

29

Propagation is defined by the duration of the fly-by, number of frames, timesampler
mode and a slowmotion factor as presented in Table 4. The timesampler mode
determines whether the steps are distributed linear in time (mode 1, default) or
whether an exponential model (mode 2) is used which increases the number of frames
around the encounter. How many additional samples are taken can be controlled
with the slow motion factor. Mode 2 is especially helpful when simulating a long
fly-by since far from the SSSB nucleus only minor changes are visible in rendered
images.

Table 4: Input parameters that define the propagation step in SISPO.

Parameter [Unit] Type Description
duration [s] float Total length of the simulation. The encounter date

is reached after half of the duration.
frames [-] int Number of frames (samples) taken during the en-

counter.
timesampler_mode [-] int Mode 1 = linear, mode 2 = exponential sampling.
slowmotion_factor [-] float Determines how many more state samples are taken

around the encounter. Only applies if timesam-
pler_mode is exponential.

3.1.2 SSSB Rendering

The 3D creation suite Blender was selected for rendering within SISPO [27]. Blender
provides the path tracing rendering engine Cycles which renders photo-realistic,
physics-based images [28].

Rendering requires 3D models of the SSSB, the light reference and the Sun as
a light source. The SSSB and light reference objects are kept at the origin while
the Sun object and cameras change location. Three scenes with one camera each
are used. The scenes are called SssbOnly with the ScCam camera, SssbConstDist
with the SssbConstDistCam and LightRef with the LightRefCam camera. The
three scenes with their respective cameras are necessary for the composition step
described in Section 3.1.4. Each camera is configured with the same physical in-
strument characteristics provided as input as presented in Table 5. All cameras are
perspective Red, Green and Blue (RGB) cameras with a FoV clipped to the interval
[1 × 10−5, 1 × 1032]. The star background is not rendered with Blender and therefore
described separately in Section 3.1.3.

The precise shape and surface details of an SSSB are not provided as texture files
and exact shape models within SISPO. The raw Blender model is a smooth body
without any textures as shown in Figure 9a. Blender shader nodes are used to create
the surface shape and texture during rendering. Blender nodes are a method of
visually programming complex algorithms. Blender nodes are combined in a network
or tree. An overview of the node network used in SISPO’s rendering process can be
seen in Figure 9b. The network consists of two main trees, one for shading and one

1A Python dictionary with an int for year, month, day, hour, minute and float for second.

30

Table 5: Input parameters that define an instrument in SISPO.

Parameter
[Unit]

type Description

res [-] (int, int) Number of pixels of the CCD in x- and y-axis. Two
values need to be given as either list or tuple.

pixel_l [µm] float Length of a pixel of the CCD .
focal_l [mm] float Focal length of the optical bench.
aperture_d [cm] float Diameter of the aperture of the optical bench.
wavelength [nm] float Centre wavelength of the instrument.
quantum_eff [-] float Optical efficiency of the optical system, including

optical bench, quantum efficiency of the CCD.
color_depth [bit] int Bit depth of the CCD.

for displacement. The two trees are interlinked, i.e. displacement influences surface
colour and vice-versa. Procedural terrain generation allows to use the same model
on a large range of distances since surface details are generated automatically [44].

(a) (b)

Figure 9: (a) Raw, smooth 3D model before applying texturing and displacement
shaders. (b) Shader node network overview depicting the shaders used for creating the
final SSSB surface and terrain. The overview shall provide an idea of the complexity
of the network, a larger version of this image with higher resolution is presented in
Appendix A.

The shader implementation creates a material that combines surface shading and
displacement. The used nodes are grouped into five categories. Math nodes, texture
nodes, colouring nodes, vector nodes and shader nodes. A detailed description can
be found in the Blender manual [44]. Only the most relevant information for the
implementation in SISPO is provided.

Math nodes include mathematical operators such as add, subtract, multiply,
greater than or maximum of a value. Vector nodes allow transformations in 3D space
such as translation, scaling or displacement. SISPO uses the Displacement node
to move the surface along the surface normals. Colouring nodes are used to alter
colours. SISPO uses the RGB Curves node which allows manipulation of colours

31

per channel using a curve that maps the input to output values. Mix nodes are
used to combine colours. Texture nodes provide procedural creation of texture by
calculating colours based on mathematical functions and model coordinates. The
Noise Texture node creates textures based on Perlin noise. The Voronoi Texture
node creates textures using Voronoi patterns, or Worely noise. Three shader nodes
are used in our model, the Principled BSDF, Diffuse BSDF and the Mix Shader node.
The Principled BSDF node combines many shading features into a single node. The
BSDF at the output includes a mix of sheen tint, surface roughness and index of
refraction, among others. The Diffuse BSDF node provides diffuse reflection using
a Lambertian and Oren-Nayar model. The Mix Shader node combines its input
shaders with a given probability for using either of the input shaders as its output.

The resulting shader based Blender material can be applied to any 3D model
inside Blender. SISPO can be used to create various SSSBs by changing parameters
or modifying the 3D model itself. Four rendered example images created with the
described shader node network are presented in Figure 10.

(a) (b)

(c) (d)

Figure 10: Four rendered images using the Blender material used in SISPO. (a) Render
output with default shader parameters using the 3D model presented in Figure 9a.
(b) Rendered image with changed shader parameters using the same model as in (a).
(c) Render of a binary system with the same main body as in (a) and default shader
parameters. (d) Bilobate body using default shader parameters.

Blender is interfaced using its Python bindings which need to be compiled manually.
Some predefined settings are used for each scene and some parameters can be provided
as input. The paths to the ".blend" files of models for the Sun, light reference and
SSSB need to be provided with the object name within the respective file.

32

Since images are composed and calibrated in a later step, described in Section 3.1.4,
the settings shown in Table 6 are selected to not alter images with Blender while
saving the raw rendered images.

Table 6: Blender settings that define the colour space and are fixed to not alter
images after rendering.

Name in Blender Value Description
Color mode RGBA Use Red, Green, Blue and Alpha (RGBA) chan-

nels.
Exposure 0 Exposure in stops, applied before display trans-

form.
Sequencer colorspace Raw Colour space sequencer uses linear colour space.
View transform Raw No colour space conversion.
Look None No artistic effect is applied before colour space

conversion.
Film transparent True World background is transparent, i.e. alpha val-

ues can be used for image composition and oc-
cultation.

The rendering performance of Blender can be configured depending on the
available hardware and required image quality with the parameters presented in
Table 7.
Table 7: Input parameters that affect rendering performance and image quality
in SISPO.

Parameter Default
Value

Description

device AUTO Device used for rendering, either "AUTO", Central Process-
ing Unit (CPU) or GPU. "AUTO" attempts to use GPU, if
no GPU is available uses CPU.

tile_size 512 (GPU)/
128 (CPU)

Size of a rendering tile. When rendering with a GPU a
bigger tile size tends to have better performance. When
rendering with a CPU, a smaller tile size tends to have
better performance2.

samples 48 Number of samples rendered per pixel.

Due to problems during rendering, Blender scenes use kilometres instead of metres,
i.e. one Blender unit corresponds to 1 km. This is the only deviation from SI base
units within SISPO.

3.1.3 Star Rendering

The background stars are rendered based on the star catalogue USNO CCD Astro-
graph Catalog 4 (UCAC4). The UCAC4 catalogue includes stars up to magnitude

2A more detailed description is found at https://docs.blender.org/manual/en/latest/
render/cycles/render_settings/performance.html?highlight=tile%20size

https://docs.blender.org/manual/en/latest/render/cycles/render_settings/performance.html?highlight=tile%20size
https://docs.blender.org/manual/en/latest/render/cycles/render_settings/performance.html?highlight=tile%20size

33

16. The FoV is determined based on the spacecraft camera in the SssbOnly scene
which represents the FoV of the spacecraft instrument. The edges of the FoV are
calculated using Equation 1.

SISPO retrieves the list of stars in the FoV. The interface for the UCAC4 is a
command-line tool u4test.exe [32]. The command-line interface requires the FoV
defined as right ascension αr, declination δ, width and height.

The conversion of the vectors into their respective right ascension and declination
is a transform between Cartesian coordinates to spherical coordinates. The relation
is defined as

δ = arcsin (z), (13)

αr = arccos
(

x

cos δ

)
+ π, (14)

where δ is the declination, αr the right ascension, x is the x-coordinate and y is the
y-coordinate. Using this information the star catalogue returns a list of visible stars
including their right ascension, declination and magnitude.

The star background is created by generating an image with four times the size of
the final image. The coordinates are converted from right ascension and declination
of each star into pixel coordinates of the image frame using Equation 7. The pixel
coordinates are multiplied with two to fit the oversized image.

The pixel value of each colour channel is set to the flux calculated from the
magnitude as defined in Equation 2. The resulting image is Gaussian filtered and
down-sampled to the final image size using local means (cf. Section 2.4.3). Star
background images are stored in the OpenEXR format with all alpha channel values
equal to one. An example image is presented in Figure 11.

3.1.4 Image Composition

Rendered images vary in brightness thus photometric calibration is necessary. Star
maps are not rendered with Blender, thus the raw images need to be combined.
Optionally, the combined images can be transformed to have a specified colour
depth of a CCD (cf. instrument input parameters in Table 5). Consequently, the
composition process has two steps and an optional third step.

First, the SSSB image and the star background are calibrated. Calibration
compares a rendered image of a calibration disk with theoretically calculated values
for the same conditions. In the second step, these images are combined to create an
SSSB image with star background. Occultation of stars by the nucleus is included in
the image combination.

Composition begins with a set of four images with the prefixes SssbOnly, Sss-
bConstDist, LightRef and Stars. An example set is shown in Figure 12. SssbOnly
represents the FoV of the spacecraft instrument. SssbConstDist is a follower camera
at a constant distance of 1000 km from the SSSB. LightRef contains a calibration
disk. Stars is an image of the star background. The SssbOnly and Stars are rendered
for the same FoV.

34

Figure 11: Rendered star map containing several thousand stars.

Photometric calibration is based on the V-band of the UBV system as described
in Section 2.2.4. The UBV system was created before CCDs were frequently used in
imaging. The UBV system does not consider the higher sensitivity in the red and
infrared spectrum of CCDs. However, the UBV system was implemented because of
its simplicity.

The calibration reference is the solar photon flux in the V-band. The Sun
has a magnitude m⊙ = −26.74 at a distance of 1 au. Using Equation 3 and the
constants for the V-band from Table 1, the solar photon flux density at 1 au becomes
F⊙ = 4.367 152 06 × 1020 s−1 m−2.

The spacecraft is typically not at a 1 au distance to the Sun, therefore the flux
density is scaled using an inverse square law defined as

Fd = F ×
(1 au

d

)2
, (15)

where Fd is the scaled photon flux density, F is the flux density at 1 au and d is the
spacecraft’s distance from the Sun in au.

Subsequently, the reference photon flux for one pixel is calculated using Equation 4
and the scaled photon flux density Fd.

35

(a) (b)

(c) (d)

Figure 12: Example set of images used for composition to the final rendering output.
(a) SssbOnly image which represents the instrument FoV. (b) SssbConstDist image
of a camera that follows the nucleus at a constant distance. (c) LightRef scene which
contains the light reference used for calibration. (d) Stars image which represents
the star background in the instrument FoV.

The calibration factor for each pixel of the SSSB image is obtained using Equa-
tion 5. The reference intensity Iref of the image is calculated as the mean intensity
of 70 × 70 pixels of the centre of the light reference image.

If the rendered image is far away from the SSSB nucleus, the apparent size of
the nucleus is too small to be used for calibration. If the SSSB nucleus is only in a
few pixels of the image the intensities are not rendered correctly. In such a case, a
point source SSSB image is generated and used for calibration in combination with
the SssbConstDist image. The point source image is created by Gaussian filtering
a single white pixel at the centre of an oversized image. The image is oversized by
a factor of five and subsequently down-sampled to the same size as the SssbOnly
image using local means as described in Section 2.4.3.

36

For the star background, every pixel value v is calibrated using

v = v0 × F0 × A × Fstars

Sstars

, (16)

with v0 being the original pixel value, F0 being the flux at a magnitude m= 0, A
being the aperture area, Fstars being the total flux of visible stars and Sstars being
the summed pixel value of one channel of a star map.

The star background and calibrated SSSB image are merged considering alpha
channels. The alpha channel is used to implement occultation of background stars
by the nucleus. The film_transparent option of Blender is activated to make the
scene background transparent, i.e. only pixels containing the SSSB have an alpha
value larger than zero.

The composed image is multiplied by the efficiency of the instrument. The
efficiency parameter combines all efficiencies to convert incoming photon flux into pixel
value, not only the CCD quantum efficiency. A diffraction pattern and noise based
on a Poisson distribution are added. The diffraction pattern can be approximated
with a Gaussian filter. The standard deviation for the Gaussian approximation of a
diffraction pattern is σ ≈ 0.45× λ × f

D
when the Gaussian profile should contain the

same energy as the diffraction pattern [102]. Therefore, the standard deviation σ for
Gaussian filtering in SISPO is defined as

σ = 0.45 × λ × f

D
× md

lpix

, (17)

where λ is the observed wavelength, f is the focal length, D is the aperture diameter,
lpixel is the length of one side of a pixel and md is a multiplier for systems that are
not diffraction limited. A perfectly diffraction limited system would have md = 1).
SISPO uses md = 2 to simulate systems that are not diffraction limited.

The noisy image is scaled to an interval [0, 1] by dividing through the maximum
value. If a point source SSSB is used, the maximum value is clipped to five times the
maximum of the SSSB point source reference if the maximum value of the merged
image is above this threshold. Figure 13 shows the composed image which is based
on the image set presented in Figure 12.

The additional third step allows to scale the image values to the colour depth
of a CCD (cf. Table 5). The maximum permissible colour depth is 16 bit due to
an increase in code complexity for higher bit depths. Colour depth clipping can be
turned off by setting the with_clipping parameter to false. By default, colour depth
clipping is used since SISPO aims to realistically simulate the imaging capabilities of
a spacecraft.

An additional feature is to add an information box that includes the spacecraft
distance to the SSSB and the date of the frame in the lower right corner of the
images. The infobox can be added by setting the with_infobox parameter to true.

Throughout the composition process, the astropy package [73, 91] handles unit
conversion between quantities. Down-sampling and Gaussian filtering are handled
by OpenCV during the composition process [20].

37

Figure 13: Composed image of the four images shown in Figure 12. No stars are
visible in the background because the nucleus is much brighter than the brightest
background star.

3.2 Compression Package
The compression package provides various compression and decompression algorithms.
The algorithms can be tested in various mission scenarios and image series to
investigate the impact of compression and decompression on the scientific return of
images. Table 8 presents the available compression and decompression algorithms.

Independent of the algorithm, files are handled equally. Images are loaded into
NumPy arrays in SISPO to have a common raw format. Before encoding, the
information is reduced to 8 bit since the reconstruction module only works correctly
with images of 8 bit colour depth correctly. Images are encoded with the selected
algorithm and converted into a binary stream. A copy of this data is saved as a file
in the raw folder. The raw binary data is converted back to a NumPy array and
decoded. The decompressed data is stored as a PNG file to not lose any further
information.

The formats PNG, JPEG, JP2 and TIFF are implemented using OpenCV. There

38

Table 8: Lossless and lossy compression algorithms and image formats provided in
SISPO. The implementation uses either native Python libraries∗ [30], OpenCV† [20]
or native OpenEXR‡ [26]. The Tagged Image File Format (TIFF) format can use
either a lossless or lossy compression algorithm.

Lossless Formats Lossy Formats
PNG† JPEG†

OpenEXR‡ JP2†

bzip2∗ TIFF†

gzip∗

Lempel–Ziv–Markov Algorithm (LZMA)∗

zlib∗

TIFF†

are various settings for each format3.
The most relevant input parameter to all compression algorithms is the "level"

argument in "settings" which describes either the compression level or the quality
level. The algorithms bz2, gzip, LZMA, zlib and PNG use a compression level from
one to nine where a higher number means more compression. The formats JPEG and
JP2 use the quality level which is defined from zero to ten where a higher number
means less compression. Other input parameters to the compression package are
presented in Table 9.

Table 9: Input parameters that define the compression behaviour in SISPO.

Name Default
Value

Description

algo PNG Compression algorithm, for a list of available algorithms see
Table 8

settings {"level": 9} Python dictionary including all settings for compression algo-
rithms. For a description of the possible settings see the code
or documentation of the providing library.

img_ext PNG Image extension to search for when loading images for com-
pression.

Compression and decompression use a simple implementation of multi-threading
to execute several image compression and decompression processes concurrently
to reduce execution time. Images are only loaded during the compression and
decompression process and are removed from memory directly afterwards to reduce
memory consumption.

3A detailed description can be found at https://docs.opencv.org/4.1.2/d4/da8/group_
_imgcodecs.html#ga292d81be8d76901bff7988d18d2b42ac

https://docs.opencv.org/4.1.2/d4/da8/group__imgcodecs.html#ga292d81be8d76901bff7988d18d2b42ac
https://docs.opencv.org/4.1.2/d4/da8/group__imgcodecs.html#ga292d81be8d76901bff7988d18d2b42ac

39

3.3 Reconstruction Package
The reconstruction package generates a 3D model of an object based on a set of images.
Reconstruction is based on the SfM technique. Two libraries are combined within
SISPO to create the full reconstruction pipeline. Open Multiple View Geometry
(OpenMVG) is used to create a sparse point cloud [61]. Open Multi-View Stereo
reconstruction (OpenMVS) is used to refine the sparse point cloud and create a
textured 3D model [64].

The steps of the complete pipeline are:

1. Loading images with associated information such as priors (ImageListing in
OpenMVG)

2. Compute visual features (ComputeFeatures in OpenMVG)

3. Match computed features between different images (MatchFeatures in Open-
MVG)

4. Generate a sparse point cloud from matched features (IncrementalSfM in
OpenMVG)

5. Export sparse point cloud to the OpenMVS format (openMVG2openMVS in
OpenMVG)

6. Increase the number of points in the point cloud (DensifyPointCloud in Open-
MVS)

7. Triangulate a rough mesh from the dense point cloud (ReconstructMesh in
OpenMVS)

8. Refine the rough mesh (RefineMesh in OpenMVS)

9. Apply texture to refined mesh to create final 3D model (TextureMesh in
OpenMVS)

OpenMVG and OpenMVS are controlled with numerous parameters. All param-
eters have default values in SISPO itself which occasionally differ from the original
default settings of the software packages. The default settings were adapted to
improve results in the SSSB fly-by scenarios.

During the image listing step, the spacecraft locations from the simulations are
added as motion priors to improve stability of the SfM algorithms. Priors are used
based on the assumption that a rough spacecraft trajectory is known.

Reconstruction is based on two incremental and one global SfM approach provided
by OpenMVG. The three algorithms are executed and the number of reconstructed
points are compared. The result containing the most points is exported to OpenMVS
for further processing. Residuals are not considered hence the selection method might
not choose the highest quality point cloud due to a possibly high number of outliers.
If the reconstructed 3D model is considered unacceptable, a better model might be
created from a sparse point cloud of another SfM algorithm.

40

The IncrementalSfM2 algorithm is non-deterministic, i.e. results can differ
between executions using the same data sets. Consequently, IncrementalSfM2 should
be executed several times and the best result should be selected [68].

SISPO saves intermediate results of the reconstruction process, starting from
the sparse point cloud and ending in the textured 3D model. Figure 14 depicts the
evolution of the sparse point cloud to a textured 3D model and a rendered image
used in the reconstruction process for comparison.

The highest priority of the reconstruction pipeline is to reconstruct a model.
SISPO attempts to create the most detailed model possible by densifying the point
cloud and refining the mesh. If point cloud densification or mesh refinement is
unsuccessful, SISPO continues with either the sparse point cloud or the rough mesh.

3.4 User Interface
SISPO is a Python package and therefore the user interface is a Python console.
Settings for the three sub-packages along with general settings of SISPO are stored
in a JavaScript Object Notation (JSON) file. After importing, SISPO can be
executed by one of two equivalent functions sispo.run() or sispo.main(). An example
definition.json file is provided with the repository in the data/input folder. The
example provides the most important settings. However, more settings exist which
can be found in the source code. Especially the SfM software packages use many
default settings which can be customised. An explanation of all parameters is found
in the documentation of the respective software package.

The high-level behaviour of SISPO can be controlled with a set of execution flags
presented in Table 10.

3.5 Performance
The performance of SISPO and its components was analysed during the development
to find code section that increase execution time. While reducing the number of
dependencies, it was ensured that performance does not degrade.

Two computers were available during performance analysis. A laptop with
8 GB Random Access Memory (RAM), an Intel R⃝ CoreTM i7-6700HQ with 4 cores at
2.6 GHz and Windows 10. The second computer is a workstation with 16 GB of RAM,
an Intel R⃝ CoreTM i7-8700 processor with 6 cores at 3.2 GHz and Ubuntu 18.04.3 LTS.

3.5.1 Overall Performance

SISPO was executed on the workstation computer to assess overall performance.
Two test cases were analysed with the parameters and main results given in

Table 11. The performance assessment of two SISPO trials shows that rendering is
the most time consuming process. More than 90 % of the total execution time is
dedicated to rendering. Only 5 % to 6 % are used for reconstruction and less than 1 %
for compression. Consequently, compression and reconstruction do not contribute
much to the total execution time. The difference of the total execution time of the

41

(a) (b)

(c) (d)

(e) (f)

Figure 14: Example images of intermediate results of the reconstruction pipeline.
(a) Sparse point cloud created by OpenMVS. (b) Point cloud densified with OpenMVS.
(c) Mesh created from the dense point cloud in (b) using OpenMVS. (d) Refined
mesh based on the mesh created in (c) using OpenMVS. (e) Mesh textured using
OpenMVS. (f) Reference image for comparison with the textured mesh.

42

Table 10: Input flags to control high-level behaviour of SISPO.

Name Variable Name Default
Value

Description

–help — Prints list of arguments
with hints

-i i definition.json Path to a definition
file that defines the set-
tings

-v v False Flag to use verbose out-
put, i.e. logging infor-
mation will also be dis-
played to console

–profile profile False Flag to use Python’s
cProfile to profile
SISPO execution

–no-sim with_sim True Flag to skip simulation
step

–no-render with_render True Flag to skip rendering
step

–no-compression with_compression True Flag to skip compres-
sion

–no-reconstruction with_reconstruction True Flag to skip reconstruc-
tion

–sim-only sim_only False Flag to do simulation
step

–sim-render-only sim_render_only False Flag to do simulation
and rendering steps

–render-only render_only False Flag to do rendering
step

–compress-only compress_only False Flag to do compression
step

–reconstruct-only reconstruct_only False Flag to do reconstruc-
tion step

–compress-
reconstruct-only

compress_reconstruct_only False Flag to do compres-
sion and reconstruction
steps

two trials is explained by the different apparent size of the SSSB. Based on the two
examples, the execution time for reconstruction is affected stronger by a decreasing
fly-by distance than rendering.

Most execution time of a simulation is related to rendering thus improving the
performance of SISPO further requires improving the performance of the rendering
process. Either rendering parameters can be changed or the shader implementation
can be improved. Parts of the code were optimised before profiling such as multi-
threading for compression or replacing the Scikit-Image (skimage) library with
OpenCV.

43

Table 11: Summary of two profiles obtained while executing complete trials of SISPO,
i.e. rendering, compression and reconstruction. More than 90 % of total time is spent
rendering images.

Distance SSSB size Total time Rendering Compression Reconstruction
[km] [km] [s] [s] [%] [s] [%] [s] [%]
200 10 346939.8 325834.6 93.9 55.6 0.2 21048.2 6
400 10 212209.4 201443.2 94.9 24.7 0.1 10740.1 5.1

3.5.2 Image Processing Benchmark

The original source code used the skimage and OpenCV libraries concurrently. In
order to reduce the number of dependencies, relevant functions of the two libraries
were compared. Parameters for the OpenCV functions were selected to mimic the
respective skimage function. The benchmark compares performance of Gaussian
filtering and image down-sampling using local means as described in Section 2.4.2
and Section 2.4.3 respectively. Five images are selected for the benchmark. The
image set is presented in Appendix B. Two star maps were selected due to the large
variance in the number of visible stars. The selected images contain 1804 and 51338
stars.

The ratio of execution time is used to compare performance of the two libraries.
The ratio is defined as

Ratio = Tskimage

Topencv

, (18)

where T skimage is the execution time of skimage and T opencv is the execution time of
OpenCV. Each command is executed and timed for 1000 trials. The lowest value is
selected as result, since higher values are more likely influenced by other processes
running on the respective machine than the relevant code snippet itself [31].

Both available computers were used for the image processing performance bench-
mark. Figure 15 shows execution time ratios and averages for the image set. A
ratio larger than one represents a longer execution time of skimage. On average,
OpenCV outperforms skimage for both tests on both computers. The maximum
absolute difference between pixel values of images is 1.486 × 10−6 and 7.153 × 10−7

for the Gaussian filtered and the resized images respectively. Such differences are
not relevant for image colour depths of up to 16 bit.

OpenCV has a performance advantage over the skimage library, hence only
OpenCV is used in SISPO. OpenCV might also be used to replace the OpenEXR
dependency in the future, if the OpenEXR implementation of OpenCV includes
alpha channel support4.

4A GitHub issue was created at https://github.com/YgabrielsY/sispo/issues/128 that
links to the relevant OpenCV GitHub issue.

https://github.com/YgabrielsY/sispo/issues/128

44

LightRef SssbConstDist SssbOnly Stars1 Stars2
Image Name

4.0

4.5

5.0

5.5

6.0

6.5

Ex
ec

ut
io

n
Ti

m
e

Ra
tio

Ratio of Execution Time of Gaussian Filter

Laptop; mean: 3.8
Workstation; mean: 6.3

(a)

LightRef SssbConstDist SssbOnly Stars1 Stars2
Image Name

58

60

62

64

66

68

70

72

Ex
ec

ut
io

n
Ti

m
e

Ra
tio

Ratio of Execution Time of Image Resizing

Laptop; mean: 64.4
Workstation; mean: 58.9

(b)

Figure 15: Comparison of execution time ratios of (a) Gaussian filtering and (b)
resizing five images using OpenCV and skimage on two computers. Values > 1
correspond to OpenCV executing faster. The mean values are presented in the
legend.

45

4 Results
Several simulation trials were executed with SISPO to assess the capabilities of
SISPO and quality of the output of the three stages, i.e. rendering, compression
and reconstruction. Furthermore, the effects of compression using the JP2 format
on rendered images and the quality of 3D model reconstruction were investigated.
Table 12 shows a summary of the simulated scenarios.

Table 12: Simulation parameters used for investigating capabilities of SISPO. Image
compression in each scenario used the formats PNG and JP2 quality levels 1000, 100,
10 and 1 compression to investigate compression effects.

SSSB Size [km] Encounter Distance [km] Number of Images [-]
1 50 120
1 100 120
1 200 120
1 400 120
10 50 120
10 100 120
10 200 120
10 400 120

The hardware presented in Section 3.5 was used to create the results. During
the simulation trials, reconstruction was found to be more successful on the Win-
dows computer. Consequently, images were rendered on the Linux computer and
reconstructions were carried out on the Windows computer. It was not possible to
determine the cause of the higher reconstruction success of the Windows computer.

4.1 Rendering
Some settings were kept constant for all simulations. The instrument settings are
presented in Table 13 and the settings for the SSSB in Table 14.

Table 13: Instrument settings used in all simulation scenarios presented in Table 12.
The parameters represent the preliminary instrument design presented in [68].

Parameter Name Value
res 2464 × 2054
pix_l 3.45 µm
focal_l 230 mm
aperture_d 4 cm
wavelength 550 nm
quantum_eff 0.25
color_depth 8 bit

46

Table 14: SSSB orbit settings used in all simulation scenarios presented in Table 12.
The orbital elements and rotation rate of Didymos were used comparable to [68].

Parameter Name Value
a 1.644 641 475 071 416 au
e 3.838 774 437 558 215 × 10−1

i 3.408 231 185 574 551 rad
omega 3.192 958 853 076 784 × 102 rad
Omega 7.320 940 216 397 703 × 101 rad
M 1.967 164 895 190 036 × 102 rad
date 2017-08-19T00:00:00.000
rotation_rate 8133.48 s−1

albedo 0.15
max_dim 512

Table 15: Propagation and rendering settings used in all simulation scenarios pre-
sented in Table 12. The number of frames was selected on the assumption of a 1 Hz
imaging frequency for a fly-by duration of two minutes.

Parameter Name Value
duration 120 s
encounter_date 2017-08-15T12:00:00.000
frames 120
relative_velocity 10 km s−1

with_terminator 0
with_sunnyside 1
timesampler_mode 1
exposure 0
samples 48
device GPU
tile_size 512
with_clipping 1

4.1.1 Image Comparison

The overall image quality is compared visually to real images. A set of images at
different SSSB distances with varying apparent SSSB sizes is depicted in Figure 16.
A set of five images of asteroid Bennu taken during the OSIRIS-REx mission is shown
in Figure 17a. An image of comet 67P taken by the Rosetta spacecraft is presented
in Figure 17b. A collection of views of the comet 81P/Wild (81P), also known as
Wild 2, is shown in Figure 17c. 81P was imaged during the Stardust mission [13].

All objects in Figures 16 and 17 show pits. The overall appearance of the rendered
images resembles the smoother pits of Bennu better than the sharper pits of 67P
or 81P. The rocks and boulders on Bennu’s surface appear similar to the rocks
and boulders in the rendered images, especially Figures 16a and 16b. The most
pronounced difference between rendered images and the images of 67P or 81P are

47

(a) (b)

(c) (d)

Figure 16: Rendered images of differently sized SSSBs from varying distances.
(a) Nucleus of 10 km from 566 km distance. (b) Nucleus of 10 km from 106 km
distance. (c) Nucleus of 1 km from 149 km distance. (d) Nucleus of 1 km from 50 km
distance.

jets. SISPO does not yet contain a gas and dust model that would produce a coma or
jets. Therefore, coma and jets are missing in the rendered images. While the surface
of both comets feature some boulders, their surfaces are more defined by ridge-like
structures. Ridge-like features are missing in the rendered images. Consequently,
the rendering images of SISPO are more similar to asteroids than comets.

Procedural terrain generation within SISPO creates results for a large range of
encounter distances. Images with different surface distances and SSSB sizes are
presented in Figure 16. No visual degradation of surface features and details is visible
in Figure 16. Moving closer to the surface reveals more details, such as tiny bumps
between larger structures which are not visible from larger distances. The visible
quality of surface features is defined by the shader implementation.

48

(a)

(b) (c)

Figure 17: (a) Four images of asteroid Bennu and a global surface mosaic. The images
were taken by the PolyCam aboard the OSIRIS-REx mission [62]. (b) Representative
image of comet 67P. The image was captured by the OSIRIS imager aboard the
Rosetta mission [65]. (c) Image collection of comet 81P taken during the Stardust
mission by its navigation camera [85].

49

4.1.2 Image Composition

The composition process uses raw images rendered with Blender and produces
photometrically calibrated images. An example set of four images consisting of two
images before and after calibration is shown in Figure 18. Two effects can be seen.
First, the overall brightness differs in the original images. The brightness difference is
corrected by calibration in the processed images. Secondly, images become brighter
by the composition process. Image brightening originates from scaling images to the
interval [0, 1].

Figure 18: Two consecutive images before (top) and after (bottom) composition and
calibration. The nucleus is much brighter than background stars thus no stars are
visible in these images after calibration. The four images are reduced to 8 bit colour
depth.

4.1.3 Rendering Problems

Rendered images of a fly-by scenario with a 10 km SSSB contain artefacts. Figure 19
shows rendered images of fly-bys with varying fly-by distances. All three images are
raw rendered images, before composition. The images show a stripe, a darker patch

50

across the SSSB with sharp brightness transitions. The stripe is at the same location
across the nucleus in all three images. The stripe artefact does not appear in all
images with a 10 km SSSB and not for other SSSB sizes. The most likely explanation
are errors while scaling the nucleus from the original 1 km to the 10 km model issues
with the shader implementation.

(a) (b) (c)

Figure 19: Surface of a 10 km SSSB for varying fly-by distances. Rendering artefacts,
the stripes, are visible in all images. (a) Fly-by distance 50 km. (b) Fly-by distance
200 km. (c) Fly-by distance 400 km.

A second problem occurred in a 50 km fly-by simulation with a 1 km SSSB. A
single image was found to be darker than any other image in the data set. Figure 20
shows three consecutive images. The middle image is overall darker except for a small
patch of white pixels. Three pixels are much brighter than any other pixel in the
image. The bright pixels are called fireflies [92]. Figure 20 contains composed images
for better visibility of the artefact. The fireflies are not introduced by the composition
process since they exist in the raw rendered image. No second image with the same
issue was found in any other data set thus the problem was not investigated further.

Figure 20: Overall darkened SSSB image due to three pixels being much brighter.
These pixels are referred to as fireflies [92]. All three images are composed images for
better visibility of the artefact. The images are cropped to display the SSSB nucleus
and artefact better.

51

4.2 Compression
The SISPO software package was used to study the effects of compression in different
scenarios. The scenarios are presented in Table 12. Two compression algorithms were
used to study compression effects. The PNG format was used because of its wide
support among different software packages and JP2 is used as an improved version
over commonly used JPEG. The PNG and JP2 formats were selected as general
examples to characterise compression effects on reconstruction. Neither PNG nor
JP2 are intended to represent image processing on-board a spacecraft. Scenarios
with varying SSSB nucleus sizes and fly-by distance were simulated.

The comparison of the different compression algorithms is based on several
parameters. The used parameters are the size of the compressed image series, the
number of points in the dense reconstructed point cloud, the number of vertices and
the number of faces of the refined reconstructed model. These outputs relate to the
level of detail of the rendered images since SfM algorithms rely on surface details for
reconstruction.

JP2 quality levels presented in the results are the quality levels as defined in the
JP2 implementation used by OpenCV, i.e. ranging from 0 to 1000.

4.2.1 Image Quality Comparison

A specific image was selected to compare image quality after different levels of
compression. Since reconstruction is mostly influenced by features, a scene with a
distance of 50 km to the a 1 km nucleus was selected for comparison. Overall images
contain the entire SSSB in the FoV. Close-up images show the area highlighted by
the red frame in Figure 21. Overall images show compression effects on an entire
scene while close-up images reveal compression effects on surface details. Difference
images and histograms are used to investigate compression effects in more detail.

Difference images are created by converting the RGB images to greyscale and
calculating the L2-norm after subtracting each pixel from the respective pixel value of
the PNG greyscale image. The result is a greyscale difference image showing the L2-
norm differences. The zero values in histograms were removed to only show alterations
by compression. Therefore, total number of altered pixels and the percentage relative
to the original image are presented in the histogram.

Figures 22 to 26 show the compressed overall image, difference histograms and
the difference images after compression with JP2 with quality levels 1, 5, 10, 100
and 1000. Quality level 5 is used since most changes due to compression occur at
low quality levels.

52

Figure 21: Scene used for quality comparison. The area highlighted in red is studied
up closer. The specific area was selected since it includes a wide range of colours
and various sized surface features.

53

(a)

0 20 40 60 80 100 120
L2-Norm of Difference

0

20000

40000

60000

80000

100000

120000

140000

160000

Nu
m

be
r o

f P
ix

el
s

Difference Histogram - JP2 1
Changed Pixels: 1324947
Percentage: 26.2 %

(b)

Difference Image - JP2 1

0

20

40

60

80

100

120

L2-Norm
 of Difference

(c)

Difference Image - JP2 1

0

20

40

60

80

100

120

L2-Norm
 of Difference

(d)

Figure 22: Overall rendered image after compression with JP2 quality level 1. The
L2-norm is applied to the difference between the greyscale images of the lossless
and respective lossy image. (a) Image after lossy compression. (b) Histogram of
L2-norms of differences. (c) L2-norm difference image with a colour scale from 0
to 131 for comparison between various compression levels. (d) L2-norm difference
image with a colour scale from 0 to the maximum L2-norm value for better visibility
of compression effects.

54

(a)

0 20 40 60 80 100 120
L2-Norm of Difference

0

50000

100000

150000

200000

250000

Nu
m

be
r o

f P
ix

el
s

Difference Histogram - JP2 5
Changed Pixels: 1241459
Percentage: 24.5 %

(b)

Difference Image - JP2 5

0

20

40

60

80

100

120

L2-Norm
 of Difference

(c)

Difference Image - JP2 5

0

5

10

15

20

25

30

L2-Norm
 of Difference

(d)

Figure 23: Overall rendered image after compression with JP2 quality level 5. The
L2-norm is applied to the difference between the greyscale images of the lossless
and respective lossy image. (a) Image after lossy compression. (b) Histogram of
L2-norms of differences. (c) L2-norm difference image with a colour scale from 0
to 131 for comparison between various compression levels. (d) L2-norm difference
image with a colour scale from 0 to the maximum L2-norm value for better visibility
of compression effects.

55

(a)

0 20 40 60 80 100 120
L2-Norm of Difference

0

50000

100000

150000

200000

250000

300000

350000

Nu
m

be
r o

f P
ix

el
s

Difference Histogram - JP2 10
Changed Pixels: 1190100
Percentage: 23.5 %

(b)

Difference Image - JP2 10

0

20

40

60

80

100

120

L2-Norm
 of Difference

(c)

Difference Image - JP2 10

0

2

4

6

8

10

12

14

16

18

L2-Norm
 of Difference

(d)

Figure 24: Overall rendered image after compression with JP2 quality level 10. The
L2-norm is applied to the difference between the greyscale images of the lossless
and respective lossy image. (a) Image after lossy compression. (b) Histogram of
L2-norms of differences. (c) L2-norm difference image with a colour scale from 0
to 131 for comparison between various compression levels. (d) L2-norm difference
image with a colour scale from 0 to the maximum L2-norm value for better visibility
of compression effects.

56

(a)

0 20 40 60 80 100 120
L2-Norm of Difference

0

100000

200000

300000

400000

500000

Nu
m

be
r o

f P
ix

el
s

Difference Histogram - JP2 100
Changed Pixels: 495503
Percentage: 9.8 %

(b)

Difference Image - JP2 100

0

20

40

60

80

100

120

L2-Norm
 of Difference

(c)

Difference Image - JP2 100

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

L2-Norm
 of Difference

(d)

Figure 25: Overall rendered image after compression with JP2 quality level 100. The
L2-norm is applied to the difference between the greyscale images of the lossless
and respective lossy image. (a) Image after lossy compression. (b) Histogram of
L2-norms of differences. (c) L2-norm difference image with a colour scale from 0
to 131 for comparison between various compression levels. (d) L2-norm difference
image with a colour scale from 0 to the maximum L2-norm value for better visibility
of compression effects.

57

(a)

0 20 40 60 80 100 120
L2-Norm of Difference

0

20

40

60

80

100

120

140

160

Nu
m

be
r o

f P
ix

el
s

Difference Histogram - JP2 1000
Changed Pixels: 154
Percentage: 0.0 %

(b)

Difference Image - JP2 1000

0

20

40

60

80

100

120

L2-Norm
 of Difference

(c)

Difference Image - JP2 1000

0.0

0.2

0.4

0.6

0.8

1.0

L2-Norm
 of Difference

(d)

Figure 26: Overall rendered image after compression with JP2 quality level 1000.
The L2-norm is applied to the difference between the greyscale images of the lossless
and respective lossy image. (a) Image after lossy compression. (b) Histogram of
L2-norms of differences. (c) L2-norm difference image with a colour scale from 0
to 131 for comparison between various compression levels. (d) L2-norm difference
image with a colour scale from 0 to the maximum L2-norm value for better visibility
of compression effects.

58

Overall images show that lossy compression introduces artefacts for all quality
levels. Visual inspection of the rendered images does not reveal many changes
between different quality levels. However, histograms reveal that the number of
altered pixels and the amount of alteration increases with decreasing quality level.
The difference image for quality level 1000 in Figure 26d shows the minute changes
from compression. The difference images in Figures 22d, 23d, 24d and 25d outline
the shape of the SSSB hence compression artefacts are spread across the entire SSSB.
Comparing the difference images in Figures 22c, 23c, 24c, 25c and 26c which use the
same scale for all quality levels show that the alteration in quality levels 100 and
1000 are much lower compared to quality levels 1, 5 and 10.

Figures 27 to 31 show compressed close-up images, difference histograms and
difference images after compression with JP2 with quality levels 1, 5, 10, 100 and
1000.

Comparing the close-up images of various quality levels in Figures 27a, 28a, 29a, 30a
and 31a reveals a degradation of image quality with decreasing compression quality
levels. Histograms confirm that the number of altered pixels and the amount of
alteration increases with decreasing quality level. The difference image for quality
level 1000 in Figure 31d and the respective histogram show that there were no altered
pixels for quality level 1000, i.e. compression was lossless. The difference image in
Figure 30d resembles random noise. In contrast, difference images in Figures 27d, 28d
and 29d show non-random artefacts correlated with surface features when comparing
to the unaltered image in Figure 31a. However, when comparing the difference
images in Figures 27c, 28c, 29c, 30c and 31c which use the same scale for all quality
levels, we see the alteration in quality levels 100 and 1000 are much lower compared
to quality levels 1, 5 and 10.

Comparing results of the overall images with results of the close-up images reveals
that overall images are less altered by compression relative to their size. A substantial
portion of overall images is covered by a black background thus compression does
change less pixels than in close-up images. Overall difference images resemble random
noise. In contrast, close-up images reveal a relation between surface features and
compression artefacts for low quality levels.

59

(a)

0 10 20 30 40 50
L2-Norm of Difference

0

2500

5000

7500

10000

12500

15000

17500

20000

Nu
m

be
r o

f P
ix

el
s

Difference Histogram - JP2 1
Changed Pixels: 149539
Percentage: 93.5 %

(b)
Difference Image - JP2 1

0

10

20

30

40

50

L2-Norm
 of Difference

(c)

Difference Image - JP2 1

0

10

20

30

40

L2-Norm
 of Difference

(d)

Figure 27: Close-up rendered image after compression with JP2 quality level 1. The
L2-norm is applied to the difference between the greyscale images of the lossless
and respective lossy image. (a) Image after lossy compression. (b) Histogram of
L2-norms of differences. (c) L2-norm difference image with a colour scale from 0 to
51 for comparison between various compression levels. (d) L2-norm difference image
with a colour scale from 0 to the maximum L2-norm value for better visibility of
compression effects.

60

(a)

0 10 20 30 40 50
L2-Norm of Difference

0

5000

10000

15000

20000

25000

30000

Nu
m

be
r o

f P
ix

el
s

Difference Histogram - JP2 5
Changed Pixels: 143582
Percentage: 89.7 %

(b)
Difference Image - JP2 5

0

10

20

30

40

50

L2-Norm
 of Difference

(c)

Difference Image - JP2 5

0

5

10

15

20

25

L2-Norm
 of Difference

(d)

Figure 28: Close-up rendered image after compression with JP2 quality level 5. The
L2-norm is applied to the difference between the greyscale images of the lossless
and respective lossy image. (a) Image after lossy compression. (b) Histogram of
L2-norms of differences. (c) L2-norm difference image with a colour scale from 0 to
51 for comparison between various compression levels. (d) L2-norm difference image
with a colour scale from 0 to the maximum L2-norm value for better visibility of
compression effects.

61

(a)

0 10 20 30 40 50
L2-Norm of Difference

0

5000

10000

15000

20000

25000

30000

35000

40000

Nu
m

be
r o

f P
ix

el
s

Difference Histogram - JP2 10
Changed Pixels: 137501
Percentage: 85.9 %

(b)
Difference Image - JP2 10

0

10

20

30

40

50

L2-Norm
 of Difference

(c)

Difference Image - JP2 10

0

2

4

6

8

10

12

14

L2-Norm
 of Difference

(d)

Figure 29: Close-up rendered image after compression with JP2 quality level 10.
The L2-norm is applied to the difference between the greyscale images of the lossless
and respective lossy image. (a) Image after lossy compression. (b) Histogram of
L2-norms of differences. (c) L2-norm difference image with a colour scale from 0 to
51 for comparison between various compression levels. (d) L2-norm difference image
with a colour scale from 0 to the maximum L2-norm value for better visibility of
compression effects.

62

(a)

0 10 20 30 40 50
L2-Norm of Difference

0

10000

20000

30000

40000

50000

Nu
m

be
r o

f P
ix

el
s

Difference Histogram - JP2 100
Changed Pixels: 56819
Percentage: 35.5 %

(b)
Difference Image - JP2 100

0

10

20

30

40

50

L2-Norm
 of Difference

(c)

Difference Image - JP2 100

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

L2-Norm
 of Difference

(d)

Figure 30: Close-up rendered image after compression with JP2 quality level 100.
The L2-norm is applied to the difference between the greyscale images of the lossless
and respective lossy image. (a) Image after lossy compression. (b) Histogram of
L2-norms of differences. (c) L2-norm difference image with a colour scale from 0 to
51 for comparison between various compression levels. (d) L2-norm difference image
with a colour scale from 0 to the maximum L2-norm value for better visibility of
compression effects.

63

(a)

0 10 20 30 40 50
L2-Norm of Difference

0.04

0.02

0.00

0.02

0.04

Nu
m

be
r o

f P
ix

el
s

Difference Histogram - JP2 1000
Changed Pixels: 0
Percentage: 0.0 %

(b)
Difference Image - JP2 1000

0

10

20

30

40

50

L2-Norm
 of Difference

(c)

Difference Image - JP2 1000

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

L2-Norm
 of Difference

(d)

Figure 31: Close-up rendered image after compression with JP2 quality level 1000.
The L2-norm is applied to the difference between the greyscale images of the lossless
and respective lossy image. (a) Image after lossy compression. (b) Histogram of
L2-norms of differences. (c) L2-norm difference image with a colour scale from 0 to
51 for comparison between various compression levels. (d) L2-norm difference image
with a colour scale from 0 to the maximum L2-norm value for better visibility of
compression effects.

64

4.3 Reconstruction
SISPO reconstruction used the parameters given in Table 16. refine_options is set
to NONE to increase the probability of the SfM algorithms to converge. Camera
calibration as described in Section 2.3 is not required since intrinsic camera parameters
can be determined with sufficient accuracy before launch in space missions hence the
parameters do not need to be optimised.

Table 16: Reconstruction Settings

Parameter Name Value
export_type obj
focal 66667
cam_model 1
geo_model 10 km s−1

num_overlaps 4
use_prior 1
use_upright 0
force_compute 0
descriptor SIFT
d_preset ULTRA
method FASTCASCADEHASHINGL2
refine_options NONE
reduce_memory 1

4.3.1 Reconstructed Model Comparison

Reconstruction was successful in all cases presented in Table 12 except for a 400 km
fly-by of a 1 km nucleus and the lowest compression quality level. The number of
reconstructed points decreases with decreasing SSSB size and an increasing closest
distance, i.e. with decreasing visible size in the images.

The number of points in the densified point cloud ranges from approximately
6 × 106 for a 50 km fly-by of a 10 km SSSB to approximately 2 × 103 for a 400 km
fly-by of a 1 km SSSB. These two fly-by scenarios represent the two boundary cases
of the simulation results, these are compared in more detail. The quality of other
reconstructed 3D models is in between the presented results and are therefore not
analysed further.

A comparison of the point clouds and resulting meshes of the two scenarios is
shown in Figure 32. The large variation in points between Figure 32a and 32b after
reconstruction and densification strongly influences 3D model quality. Both point
clouds contain visible outliers which are removed in the 3D models.

Texturing only alters the appearance of a 3D model but not its quality thus meshes
after refinement are compared. Comparing the 3D models in Figures 32c and 32d
shows the influence of the number of points on the 3D models. Single vertices of the
model in Figure 32d are visible. In contrast, the more detailed model in Figure 32c
represents detailed surface features such as boulders.

65

(a) (b)

(c) (d)

Figure 32: Images showing point clouds and resulting 3D models of two fly-by
scenarios representing boundary cases with successful reconstructions. (a) Point
cloud with ≈ 6 × 106 points representing a 10 km SSSB after a 50 km fly-by. (b) Point
cloud with ≈ 2 × 103 points representing a 1 km SSSB after a 400 km fly-by. Point
cloud densification failed for in this fly-by scenario, therefore the sparse point cloud is
depicted. (c) Mesh based on the point cloud in (a) with ≈ 1 × 106 vertices. (d) Mesh
based on the point cloud in (b) with ≈ 700 vertices. Mesh refinement failed in this
scenario, therefore the sparse mesh is depicted.

4.3.2 Compression Effects on Reconstructed 3D Models

The quality of reconstructed 3D models is compared numerically. The number of
points after densification, the number of vertices and the number of faces of the
refined meshed model are compared for different levels of compression for the same
simulation scenario. The number of points, vertices and faces relate to the level of
detail of a 3D model. Moreover, the number of points in relation to the number of
vertices can be used to analyse the amount of outliers in the point cloud since outlier

66

points cannot be included into a meaningful 3D model. Values are normalised to the
results of PNG to compare lossless compression against lossy compression.

The theoretical size of 120 images is compared to the highest compression ratio of
lossless compression using PNG. A series of 120 RGB images with 2454 × 2054 pixels
and a colour depth of 8 bit has a data size of ds= 120 × 2454 × 2054 × 3 × 8 bit =
1814.6 MB. The PNG data sets have sizes ranging from 5.2 MB to 564.6 MB, i.e.
0.3 % to 31.1 % of the raw data size. Varying apparent sizes of the nucleus and the
resulting varying black portion of an image explain the varying and high possible
compression ratios of PNG.

Figure 33 and Figure 34 compare effects of lossless compression using PNG and
varying quality levels of lossy compression using JP2.

100%
PNG

67%
JP2 1000

64%
JP2 100

21%
JP2 10

5%
JP2 1

Size of data set compared to PNG [%]

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e
no

rm
al

ise
d

to
 P

NG
 [-

]

50km 1k

Points Vertices Faces

(a)

100%
PNG

64%
JP2 1000

64%
JP2 100

40%
JP2 10

10%
JP2 1

Size of data set compared to PNG [%]

0.0

0.2

0.4

0.6

0.8

1.0
Va

lu
e

no
rm

al
ise

d
to

 P
NG

 [-
]

100km 1k

Points Vertices Faces

(b)

100%
PNG

58%
JP2 1000

58%
JP2 100

58%
JP2 10

18%
JP2 1

Size of data set compared to PNG [%]

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e
no

rm
al

ise
d

to
 P

NG
 [-

]

200km 1k

Points Vertices Faces

(c)

100%
PNG

48%
JP2 1000

48%
JP2 100

48%
JP2 10

0%
JP2 1

Size of data set compared to PNG [%]

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e
no

rm
al

ise
d

to
 P

NG
 [-

]

400km 1k

Points Vertices Faces

(d)

Figure 33: Comparison of reconstruction output after image compression with varying
quality levels for a 1 km SSSB with varying fly-by distances. (a) Fly-by distance
50 km. (b) Fly-by distance 100 km. (c) Fly-by distance 200 km. (d) Fly-by distance
400 km.

67

100%
PNG

67%
JP2 1000

31%
JP2 100

4%
JP2 10

0%
JP2 1

Size of data set compared to PNG [%]

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e
no

rm
al

ise
d

to
 P

NG
 [-

]

50km 10k

Points Vertices Faces

(a)

100%
PNG

67%
JP2 1000

28%
JP2 100

3%
JP2 10

0%
JP2 1

Size of data set compared to PNG [%]

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e
no

rm
al

ise
d

to
 P

NG
 [-

]

100km 10k

Points Vertices Faces

(b)

100%
PNG

78%
JP2 1000

33%
JP2 100

4%
JP2 10

0%
JP2 1

Size of data set compared to PNG [%]

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e
no

rm
al

ise
d

to
 P

NG
 [-

]

200km 10k

Points Vertices Faces

(c)

100%
PNG

67%
JP2 1000

50%
JP2 100

6%
JP2 10

1%
JP2 1

Size of data set compared to PNG [%]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Va
lu

e
no

rm
al

ise
d

to
 P

NG
 [-

]
400km 10k

Points Vertices Faces

(d)

Figure 34: Comparison of reconstruction output after image compression with varying
quality levels for a 10 km SSSB with varying fly-by distances. (a) Fly-by distance
50 km. (b) Fly-by distance 100 km. (c) Fly-by distance 200 km. (d) Fly-by distance
400 km.

Several observations can be made by analysing the graphs in Figure 33. The
number of reconstructed vertices and faces increases with increasing degrees of com-
pression for a 100 km fly-by. Artefacts introduced by compression create additional
features for the SfM algorithms. The number of points of the lowest quality level of
a 50 km fly-by contains more points than the PNG scenario. However, the number
of vertices and faces is much lower hence the densified point cloud contains a higher
number of outliers. If the number of vertices decreased more than the number of
points, compression increased the number of outliers. The 3D model of a 400 km
fly-by is strongly affected by compression. The level of detail of the reconstructed
models deteriorated. The apparent size of the SSSB is small resulting in a small
number of usable features which are removed by compression. For a 200 km fly-by,

68

the level of detail of the reconstructed 3D model decreases gradually with decreasing
data size. Comparing data size in Figure 33 reveals that the amount of data can
be reduced to approximately half of the size of PNG data sets without losing much
detail except for a 400 km fly-by.

The JP2 quality level 10 data sets contain the highest number of faces after
reconstruction for all cases except the 100 km fly-by. As described in Section 4.1.3,
rendered images with a 10 km SSSB contain stripes. The stripes increase the density
of points in the sparse point cloud as seen in Figure 35. Realistic images would
not have stripe artefacts and therefore the number of points in the point cloud
reconstructed from real images would be lower. The size of the four data sets in
Figure 34 decreases with decreasing quality levels, i.e. most images contain the SSSB
to a large extent. The data can be reduced without losing much detail in the 3D
models to about a quarter of the PNG data size except for the 400 km fly-by.

Figure 35: Sparse point cloud of a 10 km SSSB after a 50 km fly-by. The point cloud
contains a high point density where the stripe artefact exists in rendered images.

Comparing the graphs in Figure 33 to the graphs in Figure 34 reveals that the
data size reduces more gradual for a 10 km SSSB. The gradual decrease is explained
by a larger black portion in 1 km SSSB images because PNG can compress the black
area well. For the 10 km data set, PNG cannot compress data much because the
images are covered by the SSSB to a big extent.

More samples exist with a stronger decreased number of vertices than reconstructed
points in the 10 km SSSB scenarios compared to 1 km SSSB scenarios. Compression
introduces more outliers for a 10 km SSSB than for a 1 km SSSB.

69

4.3.3 Reconstruction Algorithms

SISPO selects the best result of the three reconstruction algorithms based on the
number of reconstructed points of each algorithm. Since SISPO uses three SfM
algorithms, it is investigated which algorithm is more successful under which parameter
set. Tables 17 and 18 show which algorithm reconstructed the most points in which
scenario. The tables are colour-coded to improve readability.

Table 17: SfM algorithm with most reconstructed points for each scenario with a
1 km SSSB. Seq1 refers to algorithm IncrementalSfM and Seq2 refers to algorithm
IncrementalSfM2.

Compression/
Distance [km] PNG JP2 1000 JP2 100 JP2 10 JP2 1

50 Seq1 Seq1 Seq1 Seq1 Seq1
100 Seq2 Seq1 Seq1 Seq1 Seq2
200 Seq2 Seq2 Seq2 Seq2 Seq2
400 Seq2 Seq2 Seq2 Seq2 —

Table 18: SfM algorithm with most reconstructed points for each scenario with a
10 km SSSB. Seq1 refers to algorithm IncrementalSfM, Seq2 refers to algorithm
IncrementalSfM2 and Glob refers to algorithm GlobalSfM.

Compression/
Distance [km] PNG JP2 1000 JP2 100 JP2 10 JP2 1

50 Seq2 Seq2 Seq2 Seq2 Seq2
100 Seq2 Seq2 Seq2 Seq2 Seq2
200 Seq2 Seq2 Seq2 Seq2 Seq2
400 Seq1 Glob Seq2 Seq1 Seq1

The number of points in the reconstructed point clouds of incremental SfM
algorithms exceeded the point count of the global SfM algorithm in all scenarios
except a 400 km fly-by compressed with JP2 quality level 1000.

The results in Table 17 suggest that IncrementalSfM produces better results for
small fly-by distance and IncrementalSfM2 produces better results when being further
away from the SSSB. Table 18 contradicts this conclusion since IncrementalSfM2
was the best algorithm in nearly all cases. Other algorithms than IncrementalSfM2
were only used for the largest distance. Consequently, the success of the algorithms
does not only depend on the amount of details in the images.

A possible explanation for the results is, that IncrementalSfM is most successful
in well-defined scenarios, i.e. scenarios where many surface details are visible, but the
nucleus never covers the entire image. As discussed in Section 4.3.4, if the nucleus

70

covers the entire FoV it causes problems to the reconstruction process, making
the scenario less well-defined. For less well-defined scenarios, IncrementalSfM2
reconstructs the most points. The scenario where GlobalSfM reconstructed the most
points is considered an outlier.

4.3.4 Reconstruction Problems

One problem of the reconstruction pipeline were inverted models. Some 3D models
also did not have a closed surface. A third issue is flattening of models. Erroneous
models containing all three problems are presented in Figure 36. The problem with

(a) (b) (c)

Figure 36: Erroneous reconstructed point cloud and models. (a) Sparse point cloud
containing holes and being inverted, i.e. resembling the inside of an egg shell.
(b) Refined mesh of created from the point cloud in (a). (c) Mesh which does not
resemble a hemisphere but rather a flat wall which is slightly bent on the left side of
the image.

holes and inverted models was overcome by using priors and fixed intrinsic camera
parameters. Flattening of a model occurs when the minimum distance to the SSSB
is small. In the image series used for reconstructing Figure 36c, the SSSB does not
entirely fit into the FoV in 65 out of 120 images. The FoV of 39 out of 120 images
is completely covered by the nucleus, i.e. the SSSB extends beyond the corners of
the FoV. The model becomes flattened since such a high percentage of images does
not provide information about the overall shape of the object to the reconstruction
pipeline. Flattening can be overcome by adding views that provide more shape
information about an object.

71

5 Conclusion
In this work, the original code base which included rendering and reconstruction
capabilities was developed further into the first version of the SISPO software
package. Furthermore, SISPO was extended to include an image compression and
decompression package.

SISPO was used to simulate several fly-by scenarios with SSSB sizes of 1 km and
10 km and fly-by distances of 50 km, 100 km, 200 km and 400 km.

Comparison with real images from asteroid Bennu and comets 67P and 81P
show that the current shader implementation creates imagery mostly resembling an
asteroid rather than a comet. Differences between rendered images and real comet
images include missing gas and dust jets as well as ridge-like surfaces features.

Rendered images are compressed with either PNG or JP2 representing lossless and
lossy compression techniques respectively. Lossy compression reduces the amount
of data more than lossless compression at the cost of introducing artefacts. Lossy
compression with low compression ratios introduces artefacts which resemble random
noise. Artefacts introduced by high compression ratios show correlation to surface
features. Visual inspection confirms that low compression ratios do not degrade
specific parts of an image in contrast to high compression ratios which blur contours
of surface features.

Compressed images are used to reconstruct a 3D model leveraging SfM algorithms
provided by OpenMVG and OpenMVS. Two incremental and one global SfM
algorithm were used during simulations. In total, the IncrementalSfM2 algorithm
reconstructed the most points in most scenarios. Well-defined scenes were better
reconstructed with the IncrementalSfM algorithm while less well-defined scenes were
better reconstructed with IncrementalSfM2. The incremental SfM approach is more
successful in SISPO since the GlobalSfM algorithm reconstructs more points than
IncrementalSfM and IncrementalSfM2 in only one scenario. A 3D model could
successfully be reconstructed in all tested cases except for a 400 km fly-by of a 1 km
SSSB with highest lossy compression ratio. The number of reconstructed points
ranged from ≈ 2 × 103 points for a 400 km fly-by of a 1 km SSSB to ≈ 6 × 106 points
for a 50 km fly-by of a 10 km SSSB. It was found that lossy compression introduces
artefacts that can increase the number of reconstructed points from the SfM algorithms
if the artefacts are distributed randomly. High lossy compression ratios alter surface
features which might lead to an increased point count in the point cloud. However,
such points are often outliers since the points are removed when creating a 3D mesh
from the point cloud.

For fly-by scenarios with 1 km SSSBs, lossy compression allows data reduction to
about half of the data size of lossless compression.

Problems were found during rendering and reconstruction. One rendering problem
are stripes, dark patches across the entire SSSB, which were found on many images
of a 10 km SSSB. Rendering fireflies are another problem that was encountered.
Fireflies were only found in one image of a 50 km fly-by of a 10 km nucleus. Both
problems could not be resolved in this work.

Reconstruction problems included inverted 3D models and surfaces not being

72

closed. Both problems were overcome by removing optimisation of intrinsic cam-
era parameters and using priors. Removing the optimisation is justified with the
assumption of known calibration values for imagers in space missions. Motion priors,
i.e. initial guesses for extrinsic camera parameters, are used since it is assumed that
a rough trajectory of spacecraft is known from other measurements.

SISPO can aid in designing missions to SSSBs. The HERA and CI missions target
a SSSB with a mother spacecraft carrying a number of small satellites. Therefore,
investigating the effect of compression is a first step in maximising the useful scientific
image data that can be transmitted from these small spacecraft. Mission concepts
like MANTIS, CASTAway or MAT could use SISPO to improve their design and
maximising their science return. Additionally, SISPO can be used for developing
optical navigation algorithms. Either indirectly by creating a large number of images
or directly by utilising the camera pose estimates provided by the SfM pipeline.

While providing a foundation for SISPO, several issues could not be addressed in
the course of this work. First, a realistic model of spacecraft attitude motion and
control is missing. The camera of the simulation environment is perfectly oriented to
the centre of the SSSB in SISPO. Realistic rotation should cover at least two effects,
motion blur due to instantaneous rotation velocities of spacecraft and off-centre
pointing due to control inaccuracies. Furthermore, it is necessary to include imaging
distortions such as astigmatism, bokeh, coma, field curvature, glare.

Moreover, it is necessary to include a gas and dust environment around the SSSB
to extend rendering capabilities from asteroids to comets. Including multiple SSSBs
into the simulation environment would allow more complex simulation scenarios
including for example a binary system. Furthermore, a more recent and accurate
star catalogue, like the GAIA catalogue, could be implemented to improve star map
rendering.

Currently, SISPO assumes that an instrument always uses RGB channels. Since
many imagers used in deep space use monochrome CCDs, an option to select either
RGB or monochrome rendering should be implemented. Furthermore, the realism of
rendered images can be increased by using an improved photometric system, such as
the Ultraviolet, Blue, Visual, Red, Infrared system (UBVRI system) [7], that takes
into account the sensitivity of CCDs in the red and infrared spectrum.

A simulation of data transmission should be included. For example, a realistic
simulation for packet loss using common radio transmission methods and protocols.
Additionally, compression techniques which are commonly used in deep space mis-
sions should be added to increase the realism in SISPO. Effects of non-optimal
lighting conditions, i.e. overexposure and underexposure, on compression should be
investigated. A substantial part of images far from a SSSB is black which could be
cropped away to reduce the amount of data. Consequently, image cropping should
be added to increase the realism of image compression and data transmission. The
ultimate goal, e.g. for the CI mission, would be to develop a prioritisation algorithm
for the images which can prioritise data transmission on packet level.

Furthermore, the shader that implements the procedural terrain generation should
be developed further. The shader should represent a comet’s surface better, e.g. by
including ridge-like surfaces features. Since most of the execution time of SISPO is

73

used for rendering, the shader should be developed to be less computationally heavy.
Additionally, the SssbConstDist is currently rendered in each time step. However,
the SssbConstDist image is only required for calibration for long distances from the
nucleus. Rendering performance can be improved by checking the apparent size
of the SSSB in the SssbOnly image directly after rendering to decide whether it is
necessary to render the SssbConstDist image. The interface for it should be included
into SISPO and restricted to values that create reasonable images.

An attempt to include a Hapke model via the synthspace package5 was unsuc-
cessful in this work. It would be interesting to compare the results of SISPO and the
Hapke model to show strengths and weaknesses of both models. Moreover, a Hapke
model is substantially faster while being less accurate. One possible use case would
be creating real-time imagery which is currently not possible with SISPO.

5https://github.com/oknuutti/synthspace

https://github.com/oknuutti/synthspace

REFERENCES 74

References
[1] Michael F A’Hearn. “Comets: looking ahead”. In: Philosophical Transactions

of the Royal Society A: Mathematical, Physical and Engineering Sciences
375.2097 (2017), p. 20160261.

[2] University of Arizona. OSIRIS-REx Frequently Asked Questions. [accessed:
2020-02-23]. url: https://cdn.uanews.arizona.edu/s3fs- public/
download-media/OSIRIS-REx%5C%20FAQ.pdf.

[3] OpenMVG authors. cameras. [accessed: 2020-01-30]. url: https : / /
openmvg.readthedocs.io/en/latest/openMVG/cameras/cameras/.

[4] OpenMVG authors. sfm. [accessed: 2020-01-30]. url: https://openmvg.
readthedocs.io/en/latest/openMVG/sfm/sfm/.

[5] Paul Bergmann, Rui Wang, and Daniel Cremers. “Online Photometric Cali-
bration of Auto Exposure Video for Realtime Visual Odometry and SLAM”.
In: IEEE Robotics and Automation Letters (2018). issn: 23773766. doi:
10.1109/LRA.2017.2777002.

[6] M. S. Bessell. “UBVRI photometry. II - The Cousins VRI system, its
temperature and absolute flux calibration, and relevance for two-dimensional
photometry”. In: Publications of the Astronomical Society of the Pacific 91
(Oct. 1979), p. 589. issn: 0004-6280. doi: 10.1086/130542.

[7] Michael S. Bessell. “Photometric Systems”. In: International Astronomical
Union Colloquium 136 (1993), pp. 22–39. issn: 0252-9211. doi: 10.1017/
s025292110000734x.

[8] Ross A. Beyer, Oleg Alexandrov, and Scott McMichael. “The Ames Stereo
Pipeline: NASA’s Open Source Software for Deriving and Processing Terrain
Data”. In: Earth and Space Science 5.9 (Sept. 2018), pp. 537–548. issn:
23335084. doi: 10.1029/2018EA000409. url: http://doi.wiley.com/10.
1029/2018EA000409.

[9] Phuong Ngoc Binh Do and Quoc Chi Nguyen. “A Review of Stereo - Pho-
togrammetry Method for 3-D Reconstruction in Computer Vision”. In: Pro-
ceedings - 2019 19th International Symposium on Communications and In-
formation Technologies, ISCIT 2019. IEEE. 2019, pp. 138–143. isbn:
9781728150093. doi: 10.1109/ISCIT.2019.8905144.

[10] Irina Bocharova. Compression for multimedia. Vol. 9780521114. 2009, pp. 1–
269. isbn: 9780511804069. doi: 10.1017/CBO9780511804069.

[11] N.E. E. Bowles et al. “CASTAway: An asteroid main belt tour and survey”.
In: Advances in Space Research 62.8 (Oct. 2018), pp. 1998–2025. issn:
02731177. doi: 10.1016/j.asr.2017.10.021. url: https://linkinghub.
elsevier.com/retrieve/pii/S0273117717307597.

[12] Roland Brochard et al. “Scientific image rendering for space scenes with the
SurRender software”. In: (Oct. 2018). url: http://arxiv.org/abs/1810.
01423.

https://cdn.uanews.arizona.edu/s3fs-public/download-media/OSIRIS-REx%5C%20FAQ.pdf
https://cdn.uanews.arizona.edu/s3fs-public/download-media/OSIRIS-REx%5C%20FAQ.pdf
https://openmvg.readthedocs.io/en/latest/openMVG/cameras/cameras/
https://openmvg.readthedocs.io/en/latest/openMVG/cameras/cameras/
https://openmvg.readthedocs.io/en/latest/openMVG/sfm/sfm/
https://openmvg.readthedocs.io/en/latest/openMVG/sfm/sfm/
https://doi.org/10.1109/LRA.2017.2777002
https://doi.org/10.1086/130542
https://doi.org/10.1017/s025292110000734x
https://doi.org/10.1017/s025292110000734x
https://doi.org/10.1029/2018EA000409
http://doi.wiley.com/10.1029/2018EA000409
http://doi.wiley.com/10.1029/2018EA000409
https://doi.org/10.1109/ISCIT.2019.8905144
https://doi.org/10.1017/CBO9780511804069
https://doi.org/10.1016/j.asr.2017.10.021
https://linkinghub.elsevier.com/retrieve/pii/S0273117717307597
https://linkinghub.elsevier.com/retrieve/pii/S0273117717307597
http://arxiv.org/abs/1810.01423
http://arxiv.org/abs/1810.01423

REFERENCES 75

[13] D. E. Brownlee et al. “Stardust: Comet and interstellar dust sample return
mission”. In: Journal of Geophysical Research E: Planets 108.10 (Oct. 2003).
issn: 01480227. doi: 10.1017/s0252921100501584.

[14] Alan Chamberlin. Comet and Asteroid Orbital Element Distribution. [accessed:
2020-02-23]. url: https://ssd.jpl.nasa.gov/?dist%5C_ae%5C_sb.

[15] Steven R. Chesley et al. “Orbit and bulk density of the OSIRIS-REx target
Asteroid (101955) Bennu”. In: Icarus (2014). issn: 10902643. doi: 10.1016/
j.icarus.2014.02.020.

[16] Ondřej Chum and Jiří Matas. “Matching with PROSAC - Progressive sample
consensus”. In: Proceedings - 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, CVPR 2005. 2005, pp. 220–226.
isbn: 0769523722. doi: 10.1109/CVPR.2005.221.

[17] Comets. [accessed: 2020-02-22]. url: https : / / ssd . jpl . nasa . gov /
?comets.

[18] Wikimedia Commons. 2-level wavelet transform-lichtenstein. [accessed: 2020-
02-10]. 2019. url: https://commons.wikimedia.org/w/index.php?
title=File:Jpeg2000_2-level_wavelet_transform-lichtenstein.png&
oldid=357227594.

[19] Wikimedia Commons. Orbit. [accessed: 2020-02-10]. 2019. url: https:
//commons.wikimedia.org/w/index.php?title=File:Orbit1.svg&
oldid=349069009.

[20] Gaudenz Danuser. “Computer Vision in Cell Biology”. In: Cell 147.5 (Nov.
2011), pp. 973–978. issn: 00928674. doi: 10.1016/j.cell.2011.11.001.
url: http://opencv.willowgarage.com%20http://www.ncbi.nlm.nih.
gov/pubmed/22118455%20https://linkinghub.elsevier.com/retrieve/
pii/S0092867411012906.

[21] Francesca E. DeMeo et al. “An extension of the Bus asteroid taxonomy into
the near-infrared”. In: Icarus 202.1 (July 2009), pp. 160–180. issn: 00191035.
doi: 10.1016/j.icarus.2009.02.005. url: https://linkinghub.
elsevier.com/retrieve/pii/S0019103509000554.

[22] ESA. Hera. [accessed: 2020-02-01]. url: https://www.esa.int/Safety_
Security/Hera.

[23] ESA. Rosetta’s frequently asked questions. [accessed: 2020-02-23]. url:
http://www.esa.int/Science_Exploration/Space_Science/Rosetta/
Frequently_asked_questions.

[24] Olivier Faugeras and Renaud Keriven. “Variational principles, surface evolu-
tion, PDEs, level set methods, and the stereo problem”. In: IEEE Transactions
on Image Processing 7.3 (Mar. 1998), pp. 336–344. issn: 10577149. doi:
10.1109/83.661183. url: http://ieeexplore.ieee.org/document/
661183/.

https://doi.org/10.1017/s0252921100501584
https://ssd.jpl.nasa.gov/?dist%5C_ae%5C_sb
https://doi.org/10.1016/j.icarus.2014.02.020
https://doi.org/10.1016/j.icarus.2014.02.020
https://doi.org/10.1109/CVPR.2005.221
https://ssd.jpl.nasa.gov/?comets
https://ssd.jpl.nasa.gov/?comets
https://commons.wikimedia.org/w/index.php?title=File:Jpeg2000_2-level_wavelet_transform-lichtenstein.png&oldid=357227594
https://commons.wikimedia.org/w/index.php?title=File:Jpeg2000_2-level_wavelet_transform-lichtenstein.png&oldid=357227594
https://commons.wikimedia.org/w/index.php?title=File:Jpeg2000_2-level_wavelet_transform-lichtenstein.png&oldid=357227594
https://commons.wikimedia.org/w/index.php?title=File:Orbit1.svg&oldid=349069009
https://commons.wikimedia.org/w/index.php?title=File:Orbit1.svg&oldid=349069009
https://commons.wikimedia.org/w/index.php?title=File:Orbit1.svg&oldid=349069009
https://doi.org/10.1016/j.cell.2011.11.001
http://opencv.willowgarage.com%20http://www.ncbi.nlm.nih.gov/pubmed/22118455%20https://linkinghub.elsevier.com/retrieve/pii/S0092867411012906
http://opencv.willowgarage.com%20http://www.ncbi.nlm.nih.gov/pubmed/22118455%20https://linkinghub.elsevier.com/retrieve/pii/S0092867411012906
http://opencv.willowgarage.com%20http://www.ncbi.nlm.nih.gov/pubmed/22118455%20https://linkinghub.elsevier.com/retrieve/pii/S0092867411012906
https://doi.org/10.1016/j.icarus.2009.02.005
https://linkinghub.elsevier.com/retrieve/pii/S0019103509000554
https://linkinghub.elsevier.com/retrieve/pii/S0019103509000554
https://www.esa.int/Safety_Security/Hera
https://www.esa.int/Safety_Security/Hera
http://www.esa.int/Science_Exploration/Space_Science/Rosetta/Frequently_asked_questions
http://www.esa.int/Science_Exploration/Space_Science/Rosetta/Frequently_asked_questions
https://doi.org/10.1109/83.661183
http://ieeexplore.ieee.org/document/661183/
http://ieeexplore.ieee.org/document/661183/

REFERENCES 76

[25] Martin A. Fischler and Robert C. Bolles. “Random sample consensus: A
Paradigm for Model Fitting with Applications to Image Analysis and Au-
tomated Cartography”. In: Communications of the ACM (1981). issn:
15577317. doi: 10.1145/358669.358692.

[26] Academy Software Foundation. OpenEXR. [accessed: 2020-01-31]. url:
https://www.openexr.com/index.html.

[27] Blender Foundation. Blender v2.5- a 3D modeling and rendering package.
[accessed: 2020-01-31]. Stichting Blender Foundation, Amsterdam, 2010. url:
http://www.blender.org.

[28] Blender Foundation. Cycles. [accessed: 2020-02-20]. url: https://www.
cycles-renderer.org/.

[29] Blender Foundation. Cycles - Introduction. [accessed: 2020-02-23]. url:
https://docs.blender.org/manual/en/2.80/render/cycles/introduction.
html.

[30] Python Foundation. Data Compression and Archiving. [accessed: 2020-02-23].
url: https://docs.python.org/3.7/library/archiving.html.

[31] Python Software Foundation. timeit — Measure execution time of small code
snippets. [accessed: 2020-01-31]. 2017. url: https://docs.python.org/3.
5/library/timeit.html.

[32] Bill Gray. star_cats. [accessed: 2020-02-11]. url: https://github.com/
Bill-Gray/star_cats.

[33] Hanzi Wang, Daniel Mirota, and G.D. Hager. “A Generalized Kernel Consensus-
Based Robust Estimator”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 32.1 (Jan. 2010), pp. 178–184. issn: 0162-8828.
doi: 10.1109/TPAMI.2009.148. url: http://ieeexplore.ieee.org/
document/5184846/.

[34] Bruce Hapke. “Bidirectional reflectance spectroscopy: 1. Theory”. In:
Journal of Geophysical Research: Solid Earth (1981). issn: 0148-0227. doi:
10.1029/jb086ib04p03039.

[35] Bruce Hapke. “Bidirectional reflectance spectroscopy. 3. Correction for
macroscopic roughness”. In: Icarus (1984). issn: 10902643. doi: 10.1016/
0019-1035(84)90054-X.

[36] Bruce Hapke. “Bidirectional reflectance spectroscopy. 4. The extinction
coefficient and the opposition effect”. In: Icarus (1986). issn: 10902643. doi:
10.1016/0019-1035(86)90108-9.

[37] Bruce Hapke. “Bidirectional reflectance spectroscopy. 5. The coherent
backscatter opposition effect and anisotropic scattering”. In: Icarus (2002).
issn: 00191035. doi: 10.1006/icar.2002.6853.

[38] Bruce Hapke. “Bidirectional reflectance spectroscopy. 6. Effects of porosity”.
In: Icarus (2008). issn: 00191035. doi: 10.1016/j.icarus.2008.01.003.

https://doi.org/10.1145/358669.358692
https://www.openexr.com/index.html
http://www.blender.org
https://www.cycles-renderer.org/
https://www.cycles-renderer.org/
https://docs.blender.org/manual/en/2.80/render/cycles/introduction.html
https://docs.blender.org/manual/en/2.80/render/cycles/introduction.html
https://docs.python.org/3.7/library/archiving.html
https://docs.python.org/3.5/library/timeit.html
https://docs.python.org/3.5/library/timeit.html
https://github.com/Bill-Gray/star_cats
https://github.com/Bill-Gray/star_cats
https://doi.org/10.1109/TPAMI.2009.148
http://ieeexplore.ieee.org/document/5184846/
http://ieeexplore.ieee.org/document/5184846/
https://doi.org/10.1029/jb086ib04p03039
https://doi.org/10.1016/0019-1035(84)90054-X
https://doi.org/10.1016/0019-1035(84)90054-X
https://doi.org/10.1016/0019-1035(86)90108-9
https://doi.org/10.1006/icar.2002.6853
https://doi.org/10.1016/j.icarus.2008.01.003

REFERENCES 77

[39] Bruce Hapke. “Bidirectional reflectance spectroscopy 7”. In: Icarus (2012).
issn: 00191035. doi: 10.1016/j.icarus.2012.10.022.

[40] Bruce Hapke and Eddie Wells. “Bidirectional reflectance spectroscopy: 2.
Experiments and observations”. In: Journal of Geophysical Research: Solid
Earth 86.B4 (1981), pp. 3055–3060. issn: 0148-0227. doi: 10 . 1029 /
jb086ib04p03055.

[41] Gerald R. Hintz. “Fundamentals of Astrodynamics”. In: Orbital Mechanics
and Astrodynamics. Cham: Springer International Publishing, 2015, pp. 1–21.
doi: 10.1007/978-3-319-09444-1{_}1. url: http://link.springer.
com/10.1007/978-3-319-09444-1_1.

[42] Henry H. Hsieh. Asteroid-comet continuum objects in the solar system. 2017.
doi: 10.1098/rsta.2016.0259.

[43] International Astronomical Union. IAU Resolution 5a: Definition of a
"Planet" in the Solar System. 2006. url: https://www.iau.org/static/
resolutions/Resolution_GA26-%205-6.pdf.

[44] Introduction — Shader Nodes. [accessed: 2020-02-14]. url: https://docs.
blender.org/manual/en/2.80/render/shader_nodes/introduction.
html.

[45] Arnold Irschara et al. “Efficient structure from motion with weak position
and orientation priors”. In: IEEE Computer Society Conference on Computer
Vision and Pattern Recognition Workshops. 2011. isbn: 9781457705298. doi:
10.1109/CVPRW.2011.5981775.

[46] Michal Jancosek and Tomas Pajdla. “Exploiting Visibility Information in
Surface Reconstruction to Preserve Weakly Supported Surfaces”. In: Inter-
national Scholarly Research Notices 2014 (2014), pp. 1–20. issn: 2356-7872.
doi: 10.1155/2014/798595.

[47] JPL Small-Body Database Search Engine. [accessed: 2020-02-22]. url:
https://ssd.jpl.nasa.gov/sbdb_query.cgi.

[48] James T. Kajiya. “The rendering equation”. In: Proceedings of the 13th annual
conference on Computer graphics and interactive techniques - SIGGRAPH
’86. New York, New York, USA: ACM Press, 1986, pp. 143–150. isbn:
0897911962. doi: 10.1145/15922.15902. url: http://portal.acm.org/
citation.cfm?doid=15922.15902.

[49] Michel Kasser and Yves Egels. Digital Photogrammetry. 2002. doi: 10.4324/
9780203305959.

[50] Tomas Kohout and Jan-erik Wahlund. “Asteroid Prospection Explorer
(APEX) CubeSat for Hera mission Didymos Interior”. In: EPSC 2019.2132
(2019), EPSC–DPS2019.

https://doi.org/10.1016/j.icarus.2012.10.022
https://doi.org/10.1029/jb086ib04p03055
https://doi.org/10.1029/jb086ib04p03055
https://doi.org/10.1007/978-3-319-09444-1{_}1
http://link.springer.com/10.1007/978-3-319-09444-1_1
http://link.springer.com/10.1007/978-3-319-09444-1_1
https://doi.org/10.1098/rsta.2016.0259
https://www.iau.org/static/resolutions/Resolution_GA26-%205-6.pdf
https://www.iau.org/static/resolutions/Resolution_GA26-%205-6.pdf
https://docs.blender.org/manual/en/2.80/render/shader_nodes/introduction.html
https://docs.blender.org/manual/en/2.80/render/shader_nodes/introduction.html
https://docs.blender.org/manual/en/2.80/render/shader_nodes/introduction.html
https://doi.org/10.1109/CVPRW.2011.5981775
https://doi.org/10.1155/2014/798595
https://ssd.jpl.nasa.gov/sbdb_query.cgi
https://doi.org/10.1145/15922.15902
http://portal.acm.org/citation.cfm?doid=15922.15902
http://portal.acm.org/citation.cfm?doid=15922.15902
https://doi.org/10.4324/9780203305959
https://doi.org/10.4324/9780203305959

REFERENCES 78

[51] Tomas Kohout et al. “Feasibility of asteroid exploration using CubeSats-
ASPECT case study”. In: Advances in Space Research 62.8 (Oct. 2018),
pp. 2239–2244. issn: 18791948. doi: 10.1016/j.asr.2017.07.036. url:
https://linkinghub.elsevier.com/retrieve/pii/S027311771730546X.

[52] Jet Propulsion Laboratory. Asteroid and Comet Spacecraft Missions. [accessed:
2020-02-01]. url: https://ssd.jpl.nasa.gov/?targets.

[53] Eric Lafortune. “Mathematical Models and Monte Carlo Algorithms for
Physically Based Rendering”. In: Department of Computer Science, Faculty
of Engineering, Katholieke Universiteit Leuven 20 (1995), pp. 74–79. doi:
10.1.1.38.3626. url: http://www.students.science.uu.nl/~3220516/
advancedgraphics/papers/variance_reduction_techniques.pdf.

[54] D. S. Lauretta et al. “OSIRIS-REx: Sample Return from Asteroid (101955)
Bennu”. In: Space Science Reviews 212.1-2 (Oct. 2017), pp. 925–984. issn:
0038-6308. doi: 10.1007/s11214- 017- 0405- 1. url: http://link.
springer.com/10.1007/s11214-017-0405-1.

[55] Victor Lempitsky and Denis Ivanov. “Seamless mosaicing of image-based
texture maps”. In: Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition. 2007. isbn: 1424411807. doi:
10.1109/CVPR.2007.383078.

[56] Omar Adil Mahdi, Mazin Abed Mohammed, and Ahmed Jasim Mohamed.
“Implementing a Novel Approach an Convert Audio Compression to Text
Coding via Hybrid Technique”. In: International Journal of Computer Science
Issues 9.6 (2012), pp. 53–59. issn: 1694-0784.

[57] Iain M. Martin, Martin N. Dunstan, and Manuel Sanchez Gestido. Planetary
Surface Image Generation for Testing Future Space Missions with PANGU.
Saratoga Springs, 2019. url: https://pangu.software/wp- content/
pangu_uploads/pdfs/SpaceImagingWorkshop_2019_paper_pangu_final.
pdf.

[58] Lionel Moisan, Pierre Moulon, and Pascal Monasse. “Automatic Homographic
Registration of a Pair of Images, with A Contrario Elimination of Outliers”.
In: Image Processing On Line 2 (May 2012), pp. 56–73. issn: 2105-1232.
doi: 10.5201/ipol.2012.mmm-oh. url: http://www.ipol.im/pub/art/
2012/mmm-oh/?utm_source=doi.

[59] Pierre Moulon, Pascal Monasse, and Renaud Marlet. “Adaptive Structure from
Motion with a Contrario Model Estimation”. In: Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). 2013, pp. 257–270. isbn: 9783642374463. doi:
10.1007/978-3-642-37447-0{_}20. url: http://link.springer.com/
10.1007/978-3-642-37447-0_20.

https://doi.org/10.1016/j.asr.2017.07.036
https://linkinghub.elsevier.com/retrieve/pii/S027311771730546X
https://ssd.jpl.nasa.gov/?targets
https://doi.org/10.1.1.38.3626
http://www.students.science.uu.nl/~3220516/advancedgraphics/papers/variance_reduction_techniques.pdf
http://www.students.science.uu.nl/~3220516/advancedgraphics/papers/variance_reduction_techniques.pdf
https://doi.org/10.1007/s11214-017-0405-1
http://link.springer.com/10.1007/s11214-017-0405-1
http://link.springer.com/10.1007/s11214-017-0405-1
https://doi.org/10.1109/CVPR.2007.383078
https://pangu.software/wp-content/pangu_uploads/pdfs/SpaceImagingWorkshop_2019_paper_pangu_final.pdf
https://pangu.software/wp-content/pangu_uploads/pdfs/SpaceImagingWorkshop_2019_paper_pangu_final.pdf
https://pangu.software/wp-content/pangu_uploads/pdfs/SpaceImagingWorkshop_2019_paper_pangu_final.pdf
https://doi.org/10.5201/ipol.2012.mmm-oh
http://www.ipol.im/pub/art/2012/mmm-oh/?utm_source=doi
http://www.ipol.im/pub/art/2012/mmm-oh/?utm_source=doi
https://doi.org/10.1007/978-3-642-37447-0{_}20
http://link.springer.com/10.1007/978-3-642-37447-0_20
http://link.springer.com/10.1007/978-3-642-37447-0_20

REFERENCES 79

[60] Pierre Moulon, Pascal Monasse, and Renaud Marlet. “Global fusion of
relative motions for robust, accurate and scalable structure from motion”. In:
Proceedings of the IEEE International Conference on Computer Vision. 2013.
isbn: 9781479928392. doi: 10.1109/ICCV.2013.403.

[61] Pierre Moulon et al. OpenMVG. An Open Multiple View Geometry library.
[accessed: 2020-01-30]. 2016. url: https://github.com/openMVG/openMVG.

[62] NASA. Four Sides of Asteroid Bennu. [accessed: 2020-02-12]. url: https:
//solarsystem.nasa.gov/resources/2318/four-sides-of-asteroid-
bennu/?category=planets_jupiter.

[63] NASA/JPL/SSD. How Many Solar System Bodies. [accessed: 2020-02-01].
2014. url: http://ssd.jpl.nasa.gov.

[64] OpenMVS. OpenMVS: open Multi-View Stereo reconstruction library. [ac-
cessed: 2020-01-30]. 2020. url: https://github.com/OpenMVS/openMVS.

[65] ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/
UPM/DASP/IDA. OSIRIS Image Archive. [accessed: 2020-02-12]. url:
https : / / rosetta - osiris . eu / image / NAC _ 2015 - 08 - 01T20 . 55 . 10 .
160?gallery=nucleus&ipp=24&page=54&sort=startTime&seq=asc&
target=67p&content=N,NC,NR,NF&camera=NAC,WAC&filterNAC=Orange&
filterWAC=Vis610,Red_WAC&maxImage=2596&targetDistanceFrom=50&
targetDistanceTo=1000&maxPage=109&startImage=1273&lastImage=
1296&imgNr=1279.

[66] ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/
UPM/DASP/IDA. The Comet - OSIRIS Image Archive. [accessed: 2020-02-
12]. url: https://rosetta-osiris.eu/.

[67] Alain Pagani et al. “Dense 3D Point Cloud Generation from Multiple High-
resolution Spherical Images”. In: International Symposium on Virtual Reality,
Archaeology and Cultural Heritage (VAST). 2011. doi: 10.2312/VAST/
VAST11/017-024.

[68] Mihkel Pajusalu and Andris Slavinskis. “Characterization of Asteroids Using
Nanospacecraft Flybys and Simultaneous Localization and Mapping”. In:
2019 IEEE Aerospace Conference. Vol. 2019-March. IEEE, Mar. 2019,
pp. 1–9. isbn: 978-1-5386-6854-2. doi: 10.1109/AERO.2019.8741921. url:
https://ieeexplore.ieee.org/document/8741921/.

[69] E Palmer et al. “The Small Bodies Imager Browser—finding asteroid and
comet images without pain”. In: Asteroids, Comets, Meteors 2014. 2014.

[70] Matt Pharr and Greg Humphreys. “Chapter Nine - Materials”. In: Physically
Based Rendering: From Theory to Implementation (2010), pp. 476–499. doi:
10.1016/B978-0-12-375079-2.50009-3.

[71] Armen Poghosyan and Alessandro Golkar. CubeSat evolution: Analyzing
CubeSat capabilities for conducting science missions. 2017. doi: 10.1016/j.
paerosci.2016.11.002.

https://doi.org/10.1109/ICCV.2013.403
https://github.com/openMVG/openMVG
https://solarsystem.nasa.gov/resources/2318/four-sides-of-asteroid-bennu/?category=planets_jupiter
https://solarsystem.nasa.gov/resources/2318/four-sides-of-asteroid-bennu/?category=planets_jupiter
https://solarsystem.nasa.gov/resources/2318/four-sides-of-asteroid-bennu/?category=planets_jupiter
http://ssd.jpl.nasa.gov
https://github.com/OpenMVS/openMVS
https://rosetta-osiris.eu/image/NAC_2015-08-01T20.55.10.160?gallery=nucleus&ipp=24&page=54&sort=startTime&seq=asc&target=67p&content=N,NC,NR,NF&camera=NAC,WAC&filterNAC=Orange&filterWAC=Vis610,Red_WAC&maxImage=2596&targetDistanceFrom=50&targetDistanceTo=1000&maxPage=109&startImage=1273&lastImage=1296&imgNr=1279
https://rosetta-osiris.eu/image/NAC_2015-08-01T20.55.10.160?gallery=nucleus&ipp=24&page=54&sort=startTime&seq=asc&target=67p&content=N,NC,NR,NF&camera=NAC,WAC&filterNAC=Orange&filterWAC=Vis610,Red_WAC&maxImage=2596&targetDistanceFrom=50&targetDistanceTo=1000&maxPage=109&startImage=1273&lastImage=1296&imgNr=1279
https://rosetta-osiris.eu/image/NAC_2015-08-01T20.55.10.160?gallery=nucleus&ipp=24&page=54&sort=startTime&seq=asc&target=67p&content=N,NC,NR,NF&camera=NAC,WAC&filterNAC=Orange&filterWAC=Vis610,Red_WAC&maxImage=2596&targetDistanceFrom=50&targetDistanceTo=1000&maxPage=109&startImage=1273&lastImage=1296&imgNr=1279
https://rosetta-osiris.eu/image/NAC_2015-08-01T20.55.10.160?gallery=nucleus&ipp=24&page=54&sort=startTime&seq=asc&target=67p&content=N,NC,NR,NF&camera=NAC,WAC&filterNAC=Orange&filterWAC=Vis610,Red_WAC&maxImage=2596&targetDistanceFrom=50&targetDistanceTo=1000&maxPage=109&startImage=1273&lastImage=1296&imgNr=1279
https://rosetta-osiris.eu/image/NAC_2015-08-01T20.55.10.160?gallery=nucleus&ipp=24&page=54&sort=startTime&seq=asc&target=67p&content=N,NC,NR,NF&camera=NAC,WAC&filterNAC=Orange&filterWAC=Vis610,Red_WAC&maxImage=2596&targetDistanceFrom=50&targetDistanceTo=1000&maxPage=109&startImage=1273&lastImage=1296&imgNr=1279
https://rosetta-osiris.eu/image/NAC_2015-08-01T20.55.10.160?gallery=nucleus&ipp=24&page=54&sort=startTime&seq=asc&target=67p&content=N,NC,NR,NF&camera=NAC,WAC&filterNAC=Orange&filterWAC=Vis610,Red_WAC&maxImage=2596&targetDistanceFrom=50&targetDistanceTo=1000&maxPage=109&startImage=1273&lastImage=1296&imgNr=1279
https://rosetta-osiris.eu/
https://doi.org/10.2312/VAST/VAST11/017-024
https://doi.org/10.2312/VAST/VAST11/017-024
https://doi.org/10.1109/AERO.2019.8741921
https://ieeexplore.ieee.org/document/8741921/
https://doi.org/10.1016/B978-0-12-375079-2.50009-3
https://doi.org/10.1016/j.paerosci.2016.11.002
https://doi.org/10.1016/j.paerosci.2016.11.002

REFERENCES 80

[72] Véronique Pommier-Maurussane and Luc Maisonobe. “Orekit : an Open-
source Library for Operational Flight Dynamics Applications”. In: 4th Inter-
national Conference on Astrodynamics Tools and Techniques. 1. 2010.

[73] A. M. Price-Whelan et al. “The Astropy Project: Building an Open-science
Project and Status of the v2.0 Core Package”. In: The Astronomical Journal
156.3 (Aug. 2018), p. 123. issn: 1538-3881. doi: 10.3847/1538-3881/
aabc4f. url: https://iopscience.iop.org/article/10.3847/1538-
3881/aabc4f.

[74] Dc Richardson and Zm Leinhardt. “Gravitational aggregates: Evidence and
evolution”. In: Asteroids III (2002).

[75] Andrew S. Rivkin et al. “The Main-belt Asteroid and NEO Tour with
Imaging and Spectroscopy (MANTIS)”. In: IEEE Aerospace Conference
Proceedings. Vol. 2016-June. IEEE. 2016, pp. 1–14. isbn: 9781467376761.
doi: 10.1109/AERO.2016.7500757.

[76] Francisco Sans and Rhadamés Carmona. “A Comparison between GPU-based
Volume Ray Casting Implementations: Fragment Shader, Compute Shader,
OpenCL, and CUDA”. In: CLEI Electronic Journal (2017). issn: 0717-5000.
doi: 10.19153/cleiej.20.2.7.

[77] Johannes L Schonberger and Jan-Michael Frahm. “Structure-from-motion
revisited”. In: Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. 2016, pp. 4104–4113. isbn:
9781467388504. doi: 10.1109/CVPR.2016.445.

[78] Gabriel Jörg Schwarzkopf and Mihkel Pajusalu. “Space Imaging Simulator
for Proximity Operations”. In: (Feb. 2020). doi: 10.5281/ZENODO.3661054.
url: https://doi.org/10.5281/zenodo.3661054.

[79] Y. Shkuratov et al. “A critical assessment of the Hapke photometric model”.
In: Journal of Quantitative Spectroscopy and Radiative Transfer 113.18 (Dec.
2012), pp. 2431–2456. issn: 00224073. doi: 10.1016/j.jqsrt.2012.
04 . 010. url: https : / / linkinghub . elsevier . com / retrieve / pii /
S0022407312001926.

[80] Andris Slavinskis et al. “Nanospacecraft fleet for multi-asteroid touring with
electric solar wind sails”. In: 2018 IEEE Aerospace Conference. Vol. 2018-
March. IEEE, Mar. 2018, pp. 1–20. isbn: 978-1-5386-2014-4. doi: 10.1109/
AERO.2018.8396670. url: https://ieeexplore.ieee.org/document/
8396670/.

[81] Colin Snodgrass and Geraint H. Jones. “The European Space Agency’s
Comet Interceptor lies in wait”. In: Nature Communications 10.1 (Dec.
2019), p. 5418. issn: 2041-1723. doi: 10.1038/s41467-019-13470-1. url:
http://www.nature.com/articles/s41467-019-13470-1.

https://doi.org/10.3847/1538-3881/aabc4f
https://doi.org/10.3847/1538-3881/aabc4f
https://iopscience.iop.org/article/10.3847/1538-3881/aabc4f
https://iopscience.iop.org/article/10.3847/1538-3881/aabc4f
https://doi.org/10.1109/AERO.2016.7500757
https://doi.org/10.19153/cleiej.20.2.7
https://doi.org/10.1109/CVPR.2016.445
https://doi.org/10.5281/ZENODO.3661054
https://doi.org/10.5281/zenodo.3661054
https://doi.org/10.1016/j.jqsrt.2012.04.010
https://doi.org/10.1016/j.jqsrt.2012.04.010
https://linkinghub.elsevier.com/retrieve/pii/S0022407312001926
https://linkinghub.elsevier.com/retrieve/pii/S0022407312001926
https://doi.org/10.1109/AERO.2018.8396670
https://doi.org/10.1109/AERO.2018.8396670
https://ieeexplore.ieee.org/document/8396670/
https://ieeexplore.ieee.org/document/8396670/
https://doi.org/10.1038/s41467-019-13470-1
http://www.nature.com/articles/s41467-019-13470-1

REFERENCES 81

[82] R. H. Soja et al. “IMEM2: a meteoroid environment model for the inner
solar system”. In: Astronomy & Astrophysics 628 (Aug. 2019), A109. issn:
0004-6361. doi: 10.1051/0004- 6361/201834892. url: https://www.
aanda.org/10.1051/0004-6361/201834892.

[83] Peter Späth. Advanced Audio Visualization Using ThMAD. Apress, 2018.
doi: 10.1007/978-1-4842-3504-1.

[84] Dale Stanbridge et al. “Lucy: Navigating a Jupiter Trojan tour”. In: Advances
in the Astronautical Sciences 162 (2018), pp. 3781–3798. issn: 00653438.

[85] Stardust - Comet Wild 2 Images. [accessed: 2020-02-13]. url: https :
//stardust.jpl.nasa.gov/photo/cometwild2.html#row3.

[86] Otto Struve. “The International Astronomical Union”. In: Science 117.3039
(Mar. 1953), pp. 315–318. issn: 0036-8075. doi: 10.1126/science.117.
3039.315. url: https://www.sciencemag.org/lookup/doi/10.1126/
science.117.3039.315.

[87] Peter Sturm. “Pinhole Camera Model”. In: Computer Vision. Boston, MA:
Springer US, 2014, pp. 610–613. doi: 10.1007/978-0-387-31439-6{_}472.
url: http://link.springer.com/10.1007/978-0-387-31439-6_472.

[88] Richard Szeliski. Computer vision: algorithms and applications. Springer
Science & Business Media, 2010.

[89] Tricia Talbert. Double Asteroid Redirection Test (DART) Mission | NASA.
[accessed: 2020-02-01]. June 2019. url: https : / / www . nasa . gov /
planetarydefense/dart.

[90] Shaharyar Ahmed Khan Tareen and Zahra Saleem. “A comparative analysis
of SIFT, SURF, KAZE, AKAZE, ORB, and BRISK”. In: 2018 International
Conference on Computing, Mathematics and Engineering Technologies: Invent,
Innovate and Integrate for Socioeconomic Development, iCoMET 2018 - Pro-
ceedings. 2018. isbn: 9781538613702. doi: 10.1109/ICOMET.2018.8346440.

[91] The Astropy Collaboration et al. “Astropy: A community Python package
for astronomy”. In: Astronomy & Astrophysics 558 (July 2013), A33. issn:
0004-6361. doi: 10.1051/0004-6361/201322068. url: http://www.aanda.
org/10.1051/0004-6361/201322068.

[92] Enrico Valenza. Blender Cycles: Materials and Textures Cookbook. Packt
Publishing Ltd, 2015.

[93] Elena Vasiou et al. “A detailed study of ray tracing performance: render time
and energy cost”. In: Visual Computer 34.6-8 (June 2018), pp. 875–885. issn:
01782789. doi: 10.1007/s00371-018-1532-8.

[94] Luiz Velho and Jonas Sossai. “Projective texture atlas construction for 3D
photography”. In: Visual Computer. Vol. 23. 9-11. 2007, pp. 621–629. doi:
10.1007/s00371-007-0150-7.

https://doi.org/10.1051/0004-6361/201834892
https://www.aanda.org/10.1051/0004-6361/201834892
https://www.aanda.org/10.1051/0004-6361/201834892
https://doi.org/10.1007/978-1-4842-3504-1
https://stardust.jpl.nasa.gov/photo/cometwild2.html#row3
https://stardust.jpl.nasa.gov/photo/cometwild2.html#row3
https://doi.org/10.1126/science.117.3039.315
https://doi.org/10.1126/science.117.3039.315
https://www.sciencemag.org/lookup/doi/10.1126/science.117.3039.315
https://www.sciencemag.org/lookup/doi/10.1126/science.117.3039.315
https://doi.org/10.1007/978-0-387-31439-6{_}472
http://link.springer.com/10.1007/978-0-387-31439-6_472
https://www.nasa.gov/planetarydefense/dart
https://www.nasa.gov/planetarydefense/dart
https://doi.org/10.1109/ICOMET.2018.8346440
https://doi.org/10.1051/0004-6361/201322068
http://www.aanda.org/10.1051/0004-6361/201322068
http://www.aanda.org/10.1051/0004-6361/201322068
https://doi.org/10.1007/s00371-018-1532-8
https://doi.org/10.1007/s00371-007-0150-7

REFERENCES 82

[95] H-H Vu et al. “High Accuracy and Visibility-Consistent Dense Multiview
Stereo”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
34.5 (May 2012), pp. 889–901. issn: 0162-8828. doi: 10.1109/TPAMI.2011.
172. url: https://academic.microsoft.com/paper/2165306775%20http:
//ieeexplore.ieee.org/document/5989831/.

[96] Michael Waechter, Nils Moehrle, and Michael Goesele. “Let there be color!
Large-scale texturing of 3D reconstructions”. In: Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). Vol. 8693 LNCS. PART 5. 2014, pp. 836–850. doi:
10.1007/978-3-319-10602-1{_}54.

[97] Kevin J. Walsh. “Rubble Pile Asteroids”. In: Annual Review of Astron-
omy and Astrophysics 56.1 (Sept. 2018), pp. 593–624. issn: 0066-4146.
doi: 10 . 1146 / annurev - astro - 081817 - 052013. url: https : / / www .
annualreviews.org/doi/10.1146/annurev-astro-081817-052013.

[98] Kevin J. Walsh. “Rubble Pile Asteroids”. In: Annual Review of Astron-
omy and Astrophysics 56.1 (Sept. 2018), pp. 593–624. issn: 0066-4146.
doi: 10 . 1146 / annurev - astro - 081817 - 052013. url: https : / / www .
annualreviews.org/doi/10.1146/annurev-astro-081817-052013.

[99] Sei ichiro Watanabe et al. Hayabusa2 Mission Overview. 2017. doi: 10.
1007/s11214-017-0377-1.

[100] S. Watanabe et al. “Hayabusa2 arrives at the carbonaceous asteroid 162173
Ryugu-A spinning top-shaped rubble pile”. In: Science 364.6437 (Apr. 2019),
pp. 268–272. issn: 10959203. doi: 10.1126/science.aav8032.

[101] Paul Weissman et al. Origin and Evolution of Cometary Nuclei. Feb. 2020.
doi: 10.1007/s11214-019-0625-7.

[102] Bo Zhang, Josiane Zerubia, and Jean Christophe Olivo-Marin. “Gaussian
approximations of fluorescence microscope point-spread function models”.
In: Applied Optics. Vol. 46. 10. OSA - The Optical Society, Apr. 2007,
pp. 1819–1829. doi: 10.1364/AO.46.001819.

https://doi.org/10.1109/TPAMI.2011.172
https://doi.org/10.1109/TPAMI.2011.172
https://academic.microsoft.com/paper/2165306775%20http://ieeexplore.ieee.org/document/5989831/
https://academic.microsoft.com/paper/2165306775%20http://ieeexplore.ieee.org/document/5989831/
https://doi.org/10.1007/978-3-319-10602-1{_}54
https://doi.org/10.1146/annurev-astro-081817-052013
https://www.annualreviews.org/doi/10.1146/annurev-astro-081817-052013
https://www.annualreviews.org/doi/10.1146/annurev-astro-081817-052013
https://doi.org/10.1146/annurev-astro-081817-052013
https://www.annualreviews.org/doi/10.1146/annurev-astro-081817-052013
https://www.annualreviews.org/doi/10.1146/annurev-astro-081817-052013
https://doi.org/10.1007/s11214-017-0377-1
https://doi.org/10.1007/s11214-017-0377-1
https://doi.org/10.1126/science.aav8032
https://doi.org/10.1007/s11214-019-0625-7
https://doi.org/10.1364/AO.46.001819

A Shader Node Network

Figure A1: High resolution image of the shader node network presented in Figure 9b
used in SISPO. Two main trees are visible in the network that are combined in the
output, one for shading and the other for displacement. The two main trees are
interlinked, i.e. displacement and shading are partially influenced by the same input.

B Image Set for Image Processing Benchmark

Figure B1: LightRef image used in benchmark.

Figure B2: SssbConstDist image used in benchmark.

Figures B1 through B5 are the images used in the benchmark. Their names are
given in the respective caption.

Figures B6 and B7 show the difference of the SssbOnly image from the benchmark
on the two different computers. Only a small fraction of pixels differ. As discussed

Figure B3: SssbOnly image used in benchmark.

Figure B4: Stars1 image used in benchmark. The image is based on 1804 stars.

previously, the maximum absolute difference is on the order of 1 × 10−6, corresponding
to the brightest point in each image.

Figure B5: Stars2 image used in benchmark. The image is based on 51338 stars.

Figure B6: Difference between skimage and OpenCV Gaussian filtered SssbOnly
image of the laptop.

Figure B7: Difference between skimage and OpenCV Gaussian filtered SssbOnly
image of the workstation computer.

	Abstract
	Acknowledgements
	Contents
	Symbols and Abbreviations
	1 Introduction
	2 Scientific Background
	2.1 Small Solar System Bodies
	2.1.1 Asteroids
	2.1.2 Comets
	2.1.3 Orbital Mechanics

	2.2 Image Rendering
	2.2.1 Path Tracing
	2.2.2 3D Models and Shaders
	2.2.3 Field of View
	2.2.4 Photometric calibration

	2.3 Computer Vision
	2.3.1 Pinhole Camera Model
	2.3.2 Structure-from-Motion

	2.4 Image Compression and Processing
	2.4.1 Image Compression
	2.4.2 Gaussian Filtering
	2.4.3 Down-sampling with Local Means

	3 Space Imaging Simulator for Proximity Operations
	3.1 Simulation Package
	3.1.1 Propagation
	3.1.2 SSSB Rendering
	3.1.3 Star Rendering
	3.1.4 Image Composition

	3.2 Compression Package
	3.3 Reconstruction Package
	3.4 User Interface
	3.5 Performance
	3.5.1 Overall Performance
	3.5.2 Image Processing Benchmark

	4 Results
	4.1 Rendering
	4.1.1 Image Comparison
	4.1.2 Image Composition
	4.1.3 Rendering Problems

	4.2 Compression
	4.2.1 Image Quality Comparison

	4.3 Reconstruction
	4.3.1 Reconstructed Model Comparison
	4.3.2 Compression Effects on Reconstructed 3D Models
	4.3.3 Reconstruction Algorithms
	4.3.4 Reconstruction Problems

	5 Conclusion
	References
	A Shader Node Network
	B Image Set for Image Processing Benchmark

