
Aalto University

School of Science

Master’s Programme in Computer, Communication and Information Sciences

Aleksi Mustonen

Ways to improve Continuous Deployment
processes

Master’s Thesis
Espoo, February 24, 2020

Supervisors: Jari Vanhanen
Advisor: Nils Haglund M.Sc (Tech.)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/288496057?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University
School of Science
Master’s Programme in Computer, Communication and
Information Sciences

ABSTRACT OF
MASTER’S THESIS

Author: Aleksi Mustonen

Title:
Ways to improve Continuous Deployment processes

Date: February 24, 2020 Pages: vi + 80

Major: Software and Service Engineering Code: SCI3043

Supervisors: Jari Vanhanen

Advisor: Nils Haglund M.Sc (Tech.)

Modern software development forces companies to release high quality software
faster to respond to market needs. These requirements force software companies
to invest on processes which make them able to make development faster without
losing quality. Continuous deployment is becoming popular practice to answer
the market needs, but using it efficiently can be hard. In this thesis we investigate
the benefits, problems and best practices relating to continuous deployment using
a literature review and a case study. The objective of this research is to identify
the benefits of continuous deployment, and to discover which problems and best
practices occur in our case organization, and how often.

We investigate a case organization by using interviews and a survey for software
professionals. Our main finding is that continuous deployment is the preferred
way to do software development and it has numerous benefits. Our case study
identified a number of problems which harm the development work. Lack of auto-
mated tests and schedule pressures were the most often happening problems. We
identified numerous best practices but none of them was used often. These prac-
tices included for example techniques which improved test automation practices
and organizational support methods for the development team. Future research
could focus on why the problems occur often, and why best practices are not
widely used.

Keywords: continuous integration, continuous delivery, continuous de-
ployment, empirical software engineering

Language: English

ii

Aalto-yliopisto
Perustieteiden korkeakoulu
Tieto-, tietoliikenne- ja informaatiotekniikan maisteriohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Aleksi Mustonen

Työn nimi:
Tapoja kehittää Continuous Deployment prosesseja

Päiväys: 24. helmikuuta 2020 Sivumäärä: vi + 80

Pääaine: Software and Service Engineering Koodi: SCI3043

Valvojat: Jari Vanhanen

Ohjaaja: Diplomi-insinööri Nils Haglund

Nykyaikainen ohjelmistokehitys pakottaa yritykset julkaisemaan korkealaatuisia
ohjelmistoja nopeammin vastatakseen markkinoiden tarpeisiin. Nämä vaatimuk-
set pakottavat ohjelmistoyritykset investoimaan prosesseihin, joiden avulla ne voi-
vat tehdä kehitystä nopeampaa menettämättä laatua. Continuous deploymentista
on tulossa suosittu käytäntö vastata markkinoiden tarpeisiin, mutta sen tehokas
käyttö voi olla vaikeaa. Tässä diplomityössä tutkitaan continuous deploymenttiin
liittyviä hyötyjä, ongelmia ja parhaita käytäntöjä. Tutkimusmetodina on tapaus-
tutkimus, jossa tutkimme organisaatiota haastatteluilla ja kyselyllä ohjelmisto-
kehityksen ammattilaisille. Tämän tutkimuksen tavoitteena on tunnistaa conti-
nuous deploymentin hyödyt ja selvittää, mitä ongelmia ja parhaita käytäntöjä
esiintyy tapaustutkimuksemme organisaatiossa ja kuinka usein.

Tärkein havainto on, että continuous deployment on suositeltava tapa suorittaa
ohjelmistokehitystä ja sillä on lukuisia etuja. Tutkimuksemme tunnisti useita on-
gelmia, jotka vahingoittavat kehitystyötä. Automaattisten testien puute ja aika-
taulu paineet olivat yleisimmin esiintyviä ongelmia. Tunnistimme lukuisia parhai-
ta käytäntöjä, joita ei käytetä usein. Nämä käytänteet sisältivät mm. tekniikoi-
ta, joilla testiautomaatiota voidaan tehostaa sekä organisaation tukikeinoja kehi-
tystiimin työn tehostamiseksi. Tulevaisuuden tutkimuksessa voitaisiin keskittyä
siihen, miksi ongelmia esiintyy usein, eikä parhaita käytäntöjä käytetä laajasti.

Asiasanat: jatkuva integraatio, jatkuva toimittaminen, jatkuva julkaisu,
empiirinen ohjelmistokehitys

Kieli: Englanti

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement and research questions 2
1.3 Structure of the thesis . 2

2 Background 4
2.1 Continuous integration . 4
2.2 Continuous deployment . 5
2.3 Test automation . 5
2.4 Microservice architecture . 6
2.5 Version control system . 7
2.6 Code review . 7
2.7 Agile development . 8
2.8 Team structures in software development 8
2.9 Technical debt . 9

3 Research methods 11
3.1 Case study . 11
3.2 Literature review . 12
3.3 Interviews . 13
3.4 Survey . 14

3.4.1 Iterative planning of the survey 15
3.4.2 Characteristics of the survey 16

4 Results of literature review 18
4.1 Content of literature review . 18
4.2 Benefits of Continuous deployment 20

4.2.1 More frequent and faster releases to production 20
4.2.2 Quicker fixing of defects . 21
4.2.3 Increased productivity . 21
4.2.4 Decreased stress of developers 22

iv

4.3 Development related challenges . 22
4.3.1 Lack of automated tests . 22
4.3.2 Lack of quality in automated tests 23
4.3.3 Long build times . 24
4.3.4 Lack of knowledge of developers 24
4.3.5 Code reviews . 25
4.3.6 Architecture . 25
4.3.7 Database schema migrations 26
4.3.8 Configuration management 26
4.3.9 Team structures . 26

4.4 Organizational challenges . 27
4.4.1 Continuous deployment is not always an option 27
4.4.2 Lack of support from organization 28
4.4.3 Development team missing the right tools 29
4.4.4 Schedule pressures . 30
4.4.5 Customer environment . 30

4.5 Summary of results . 30

5 Results of the case study 34
5.1 Interviews . 34

5.1.1 Benefits of continuous deployment 34
5.1.2 Problems related to continuous deployment 35
5.1.3 Best practices related to continuous deployment 36
5.1.4 Summary . 37

5.2 Survey . 38
5.2.1 Background questions . 38
5.2.2 Problems related to continuous deployment 41
5.2.3 Best practices related to continuous deployment 46
5.2.4 Team structures of continuous deployment 48
5.2.5 Summary . 49

5.3 Summary of results . 50

6 Discussion 53
6.1 Benefits of continuous deployment 53
6.2 Acknowledgement and prevalence of problems 54

6.2.1 Development related problems 54
6.2.2 Organizational problems . 56

6.3 Acknowledgement and prevalence of best practices 57
6.3.1 Development related best practices 57
6.3.2 Organizational best practices 59

6.4 Team structures . 60

v

6.5 Validity of research . 60

7 Conclusions 62

vi

Chapter 1

Introduction

1.1 Motivation

Modern software development forces companies to release high quality software
faster to respond to market needs. These requirements force software companies
to invest on processes which make them able to make development faster without
losing quality. Shahin et al. [30] made a systematic literature review of empirical
studies on continuous integration, delivery and deployment. They reviewed 69
papers and identified approaches, tools, challenges and practices related to the
subject. In the article continuous integration, delivery and deployment bring the
following benefits [30]:

1. getting more and quick feedback from the software development process and
customers

2. Having frequent and reliable releases, which lead to improved customer sat-
isfaction and product quality

3. Through continuous deployment, the connection between development and
operations teams is strengthened and manual tasks can be eliminated

These benefits are desirable by companies that want to develop software and
have advantage over competitors. Continuous deployment is becoming popular
practice: In the 13th annual state of agile report 35% of respondents used contin-
uous deployment1. However using continuous deployment efficiently can be hard.
Studying continuous deployment in real-life context can produce knowledge for
software development companies on how to enable reliable automation in their
software development to make processes more efficient. Investigating a company,

1https://www.stateofagile.com/ufh-i-521251909-13th-annual-state-of-agile-report/473508

1

CHAPTER 1. INTRODUCTION 2

which is working in many continuous deployment projects in various industries is
a great way to gain new knowledge about continuous deployment in industry.

This thesis tries to find ways how continuous deployment practises can be
improved by investigating experiences of Eficode’s software professionals. This
thesis provides information on which problems teams need to take into account
when establishing continuous deployment, and which best practices should be used
to guarantee quality in development work. Results can be used as a checklist for
software development teams on how to establish benefits of continuous deployment,
but also to reveal new justification for links between problems and best practices,
which can be motivation for further research.

1.2 Problem statement and research questions

Adoption of continuous deployment is hard for software development teams. There
are many problems which block development teams from succeeding with contin-
uous deployment. The problems can be solved by using best practices. Our re-
search problem is to identify the problems that hinder the benefits of continuous
deployment and the best practices which solve these problems and improve the
continuous deployment process. This problem is solved by answering following
research questions using literature review and our case study. The research ques-
tions introduced below are answered by gathering data from literature review and
from our case study. All data sources answer each research question, expect the
case study interviews are not used to answer RQ3 or RQ5.

• RQ1: What are the benefits of continuous deployment?

• RQ2: Which problems happen in continuous deployment?

• RQ3: How often do the problems happen in continuous deployment projects?

• RQ4: Which best practices improve the continuous deployment process?

• RQ5: How often are the best practices used in continuous deployment projects?

1.3 Structure of the thesis

This thesis starts with background, which introduces the main aspects of terms
relating to thesis in chapter 2. After that we introduce the research methods
in chapter 3. After that we go through the results of our literature review:
Introducing the benefits, problems and solutions relating to continuous deployment
in chapter 4.

CHAPTER 1. INTRODUCTION 3

After the literature review we go through the results of the case study in chap-
ter 5. We end the research by discussing the results in chapter 6 and making
conclusions in chapter 7.

Chapter 2

Background

In this chapter we introduce the main aspects of software development which relate
to continuous deployment. We begin each section by introducing the concept.
Then we will explain how it relates to continuous deployment. We conclude each
section with a more detailed description of the concept.

2.1 Continuous integration

Shahin et al. [30] introduced continuous integration (CI) as a widely established
development practice in the software industry. In CI members of software de-
velopment team integrate and merge their work frequently, at least once a day.
CI includes automated software building and testing [30]. CI centralizes and au-
tomates the quality assurance of software to one location. CI build consists of
predefined steps. All steps passing leads to a passing CI build. Even one failing
step leads to failing CI build. Passing builds indicate the development team, that
the software is in functional condition. Keeping the builds passing should be the
goal of the team.

Leppänen et al. [19] investigated continuous deployment practises in Finnish
industries. They mentioned that continuous deployment could be considered the
next step from CI [19]. Continuous deployment pipeline is similar to Continuous
Integration except after successful running the software is released. Therefore,
continuous integration is an indispensable prerequisite for continuous deployment.

CI is a great tool for indicating and solving problems, where a defect occurs only
in a certain environment, and developers can only state that the code worked on
their local machines. The term for this kind of problem is ”Works on my machine”.
These problems can be hard to solve, as they are noticed by the developers too
late. Meyer [22] wrote an article about CI and it’s tools. CI is meant to be an
unbiased judge of whether a change works or not, thereby preventing the ”works

4

CHAPTER 2. BACKGROUND 5

on my machine problem” [22].

2.2 Continuous deployment

Savor et al. [29] researched continuous deployment practises in Facebook and
OANDA. They described the key elements of continuous deployment:

1. software updates are kept as small and isolated as reasonably feasible;

2. they are released for deployment immediately after development and testing
completes

3. the decision to deploy is largely left up to the developers (without the use of
separate testing teams)

4. deployment is fully automated.

Continuous deployment and continuous delivery are both processes where soft-
ware is deployed via delivery pipeline. Shahin et al. [30] mentioned that there is
a robust debate in academic and industrial circles about defining distinguishing
between continuous deployment and Continuous Delivery [30]. The differences be-
tween these two processes are, that in CD the deployment of the project happens
automatically, every time the code is merged to certain branch of version control.
In continuous delivery the project is deployed automatically, with a manual trig-
ger. In this research we don’t want to concentrate on the minimal difference of
these two processes, and we refer to both processes as CD from now on.

CD is a popular topic of research and it is approached from many angles. CD
transformation is a process, where a software team or organization transfer to use
CD. These studies address the issues that make CD possible, the reasons why
the CD was used, and the impact of the CD on software development over old
practices.

2.3 Test automation

According to Polo et al. [26], test automation exists to point out defects in the soft-
ware. It is pivotal to control and reduce the costs of testing. Automated tests need
to be optimized to balance the quality needs with cost [26]. Using test automation
can improve the efficiency and quality of quality assurance. Test automation plays
a crucial role in CD pipeline, since the software will not be released if the tests fail.
It is important to invest in test automation when implementing CD [13, 25, 30].
Automated tests are meant to ensure that the software functions correctly. Next

CHAPTER 2. BACKGROUND 6

we go through unit tests and automated acceptance tests. These tests are most
relevant regarding CD.

Rogers and Owen [27] defined purpose of unit tests as verifying that piece of
code operates in accordance with developer’s expectations [27]. Unit test is meant
for verifying that a piece of code in software fulfills it requirements. For example
methods have their own unit tests for different outcomes.

Automated acceptance tests enable quality assurance for the end to end func-
tionality of the software. Haugset and Hanssen [14] did a case study about au-
tomated acceptance testing. They defined the desire of automated acceptance
tests as to document requirements and desired outcome in a format that can be
automatically and repeatedly tested [14]. Customers can also be used to define
the automated acceptance tests [14] [27]. These tests are implemented with test
frameworks, which simulate end users by example clicking and typing to the sys-
tem. Automated acceptance tests provide helpful information about the systems
functionality, but they are the hardest tests to configure since they require the
whole software running in test environment. Writing automated acceptance tests
require excellent skills using test framework and understanding of the whole sys-
tem.

Both unit tests and automated acceptance tests can be run in parallel. It
is an extremely powerful method for shortening execution times, especially for
automated acceptance tests. Running tests in parallel requires more effort from the
team to make the tests execute correctly. Parallel tests must work independently,
and they shouldn’t touch any data that another test suite is using. This might
lead to failing test suite caused by execution order.

2.4 Microservice architecture

According to Villamizar et al. [33], microservice architecture divides application
to pieces, which are developed and tested independently. Using cloud computing
allows each microservice to be deployed and scaled independently [33]. Monolithic
architecture is opposite to microservice architecture: It is an application with single
codebase, which can contain multiple services. When using cloud computing, all
services of the software are deployed at once. Also the scaling rules apply to all
services of the software [33]. The architecture of the software affects directly for
the CD process. When using microservice architecture, each microservice can have
a specific CD pipeline. Applications with monolithic architectures are controlled
with a single pipeline.

CHAPTER 2. BACKGROUND 7

2.5 Version control system

Spinellis [31] described using version control to be the most important tooling
improvement for the development team. The workflow of version control allows the
development team to share the changes in application: Developer’s private version
of repository can be synchronized with the team’s changes [31]. Version control
system allows the members of the development team to do work simultaneously.
In addition, it creates transparency over the work of teammates.

According to Spinellis [31] version control protects developers when they are
making changes to the same file. Version control system will warn if the changes
conflict with each other. When the changes don’t include any conflicts, the ver-
sion control system will unobtrusively combine the changes of the developers [31].
Combining changes and resolving conflicts is an important feature of any version
control system.

Version control systems are crucial when using CD. Adams et al. [1] discussed
the first step of the CD pipeline is the movement of code changes made by devel-
opers in their own development branch across their team’s branch all the way up
to the project’s master branch. Conflicts slow down the development of software,
because it requires developer effort to understand the code changes in multiple
branches in order to combine them correctly. Keeping branches short-lived helps
to avoid conflicts [1]. Every team that uses CD must agree on common ways to
use version control system. Together with CD, version control system can also be
used to rollback and deploy the software to previous version, if the newest version
included defects.

2.6 Code review

According to Bacchelli et al. [2] code review is a manual inspection of source code
by developer other than the author. Code review is recognized as a valuable tool
for reducing software defects and improving the quality of software projects. Code
reviews can contain comments or changes about code in terms of readability, com-
menting, consistency and dead code removal. Programmers, which participated
in this research ranked these improvements as an important motivation for code
reviews [2]. Version control systems allow digital code reviews, where developers
are able to comment code changes and approve or decline changes.

Savor et al. [29] mentioned in their research, that code reviews are prevalent
part of CD process: Because developers are fully responsible for the entire lifecycle
of the software, code reviews are taken more seriously and there is far less resistance
for them [29]. Digital code reviews can be added to the CD process: Code change
will not be deployed before it is accepted by a peer in digital code review.

CHAPTER 2. BACKGROUND 8

2.7 Agile development

According to Balaji et al. [3] the pros of agile development is to be able to re-
spond to changing needs, even late in development. In agile development working
software is delivered frequently, as the most important principle is customer sat-
isfaction by giving rapid and continuous delivery of small and useful software [3].
In the modern era changes need to be made quickly in order to answer competi-
tors and market needs. Also many projects are complex, that the requirements
can’t be fully known at the start of the project. Agile development answers these
needs by offering a methodology where software requirements can be changed fre-
quently.CD is a great process for agile projects: It allows the development team to
deploy software changes to production environment as quickly as possible for the
customer.

In contrast to agile development, waterfall method relies on solid, unchange-
able requirements. Balaji et al. [3] discussed the differences between waterfall and
agile methods. Waterfall method is a sequential development model which con-
sists of predefined phases. Each time boxed phase of development proceeds in
order without overlapping. In waterfall clients are not allowed to make changes in
requirements. Waterfall method was recommended if the requirements are fully
known [3].

2.8 Team structures in software development

Stray et al. [32] described that the agile manifesto promotes the idea of au-
tonomous, self-managing software development team whose members work at pace
that sustains their creativity and productivity. Autonomous teams have challenges,
as having too many dependencies and lack of organizational support [32]. Having
too many dependencies can relate that only some team members are able to do
certain tasks. For example if only one member of the team is capable of deploying
the software, it creates a bottleneck for the team and the team is dependent on
it. Team structures are an important topic in CD, because it defines the working
methods of the software development team. The working methods should support
the development team to be more efficient.

Adams et al. [1] described release engineering as action, where developers code
is deployed to end users in automated pipeline. Release engineers responsibilities
are implementing, maintaining and operating production environments [1]. Setting
up and maintaining the CD pipeline can be time consuming. Maintaining the
pipeline and handling releases can be allocated to a dedicated team, which can
be called ”Release engineering team”. Also testing and quality assurance can
be dedicated to a specific team. Gmeiner et al. [13] introduced ”QA team” ,

CHAPTER 2. BACKGROUND 9

which responsibilities included the test automation and quality assurance of the
software [13].

2.9 Technical debt

Kruchten et al. [17] referred to the original definition of technical debt from Cun-
ningham [10]: Solution, which is not optimal and making it right is postponed.
Technical debt can hinder the productivity of a software development team. Tech-
nical debt can be accumulated in all artifacts of software, such as in source code,
automated test cases or documentation [17].

Agile projects are strongly linked with CD. Kruchten et al. [17] mentioned that
agile projects tend to gather a lot of technical debt. The reason for this can be lack
of time for designing and reflecting on longer term and lack of rigorous systematic
testing. Yet technical debt can be a wise choice to gain advantage when releasing
features to production, however in these cases the technical debt should not be
forgotten in future [17]. Technical debt can be thought of as a shortcut for faster
results. In the future it is important to return to the solution which has technical
debt, and reimplement it in a more optimal way.

According to the opinions of Kruchten et al [17], reasons for technical debt
include schedule pressures, lack of education and poor processes [17]. Schedule
pressure might be the cause of technical debt in a situation where developers
need to get the task done without focusing on quality. For example a developer
might write duplicate code and not write a reusable method for it because there
is not enough time. Lack of education implies that in some cases the developer
might not have the skills to implement the solution in the optimal way, which
leads to technical debt. For example if a developer is not familiar with a specific
programming language, they might write a suboptimal implementation. If the
team processes do not include peer-review practices technical debt might more
easily pile up. In other words the team is lacking working methods, which help
them prevent technical debt growing.

Refactoring is an activity which may help reduce technical debt. Refactoring
means that a solution is re-implemented to be more clear and understandable.
Mens and Tourwe [21] defined the following refactoring activities, which can be
used to reduce technical debt:

1. Identify where the software should be refactored

2. Determine which refactoring(s) should be applied to identified places

3. Guarantee that the applied refactoring preserves behaviour

CHAPTER 2. BACKGROUND 10

4. Assess the effects of the refactoring on quality characteristics of the soft-
ware. For example for complexity, understandability, maintainability. The
refactoring process can also be evaluated: productivity, cost, effort

5. Maintain the consistency between the refactored program code and other soft-
ware artifacts, such as documentation, design documents, requirements, spec-
ifications, tests, etc.

Chapter 3

Research methods

In this chapter we will introduce the research methods that are used to research the
subjects related to CD in previous chapter. Our study is divided into two sections:
Literature review and our case study. Literature review offers broad viewpoints
on CD. Our case study uses interviews and a survey to collect data for software
professionals.

3.1 Case study

Runeson and Höst [28] described that case study is used when studying phe-
nomenons in real-life context [28]. Our research method is case study because we
want to study CD in real-life scenarios. Our case in this research is Eficode. The
justification for this selection is that Eficode was available and it provides insight-
ful knowledge related to CD: Eficode is a software company, which works closely
with clients in different industries providing development support and knowledge
to software development. Eficode has also plenty of experienced professionals in
the CD field, which makes it a great selection of company for this case study. By
investigating Eficode’s software professionals new information about CD problems
and practices can be learned.

Runeson and Höst [28] stated that triangulation increases the precision of em-
pirical research. In data source triangulation more than one data source is used
to collect the same data on different occasions [28]. We used data source trian-
gulation in this study by using two interviewees. Methodological triangulation is
used when combining different sources of qualitative and quantitative data, and it
can be used to improve the reliability of the research [28]. In this research we de-
signed our data collection methods to support methodological triangulation. The
interview collected only qualitative data, and the survey collected both qualitative
and quantitative data. Table below summarizes how our data sources answer to

11

CHAPTER 3. RESEARCH METHODS 12

research questions:

Table 3.1: Summary of how data sources answer to research questions
Method RQ1 RQ2 RQ3 RQ4 RQ5
Literature review X X X X X
Interviews X X - X -
Survey X X X X X

3.2 Literature review

In addition to the case study, the literature review was also used to answer all
the research questions. Our literature review combines a systematic literature
review(SLR) made by Shahin et al. [30] and our own literature research. The SLR
used a well defined search word1. The articles of the SLR were selected following
a predefined inclusion and exclusion criteria: Articles needed to be peer reviewed,
more than 6 pages long and required to have empirical results. Editorials, position
papers, keynotes, reviews, tutorial summaries, panel discussions and non-English
were excluded. The articles were selected by applying inclusion and exclusion
criteria while reading the abstract and conclusion of the articles. Articles were
also searched by using snowballing technique: The referenced articles of selected
articles was added to the literature review if they matched the criteria. The final
result was 69 articles [30]. Some of the primary sources of SLR are cited in the
literature review to provide more detailed information.

The literature research of this thesis was made using Google scholar. Search
was made using the search word ”Continuous Deployment” and only accepting
studies from year 2017 onwards because these articles are so new they are not
included in the SLR. The studies related to CD were included if they had some
empirical research and provided useful information towards our research. The first
100 search hits sorted by relevance were analyzed. The selection was made by first
selecting the articles which had title that suited the research. After this phase we
had 22 articles. After that we read the abstract and conclusion of each article ,

1((”continuous integration” OR ”rapid integration” OR ”fast integration” OR ”quick inte-
gration” OR ”frequent integration” OR ”continuous delivery” OR ”rapid delivery” OR ”fast
delivery” OR ”continuous deployment” OR ”rapid deployment” OR ”fast deployment” OR ”fast
deployment” OR ”quick deployment” OR ”frequent deployment” OR ”continuous release” OR
”rapid release” OR ”fast release” OR ”quick release” OR ”frequent release” OR ”deployabil-
ity” OR ”continuous build” OR ”rapid build” OR ”fast build” OR ”frequent build” OR ”quick
build”) AND (”software” OR ”information system” OR ”information technology” OR ”cloud*”
OR ”service engineering”))

CHAPTER 3. RESEARCH METHODS 13

and evaluated is the article useful towards our research. In this phase eight articles
were selected. In addition we conducted a search where we used the same search
word as in SLR and accepting articles 2017 onwards from Google scholar. The goal
of this search was to evaluate, what results the search word of SLR would produce
in new articles. We analysed the first 100 hits according to relevance. Out of the
total of eight articles of our literature research only three articles were found.

The literature review, which includes the SLR and our literature research is
used to answer all research questions. RQ3 and RQ5 take into account how often
the problems and best practices happen. When answering these research questions,
we focus on articles which have quantitative data about how often the problems
or best practices happen. For example a percentage of respondents in a survey,
or how many projects from total amount of projects in an organization state that
the problem or best practice is occurring. This kind of data represents how often
the problems and best practices occur in real-life scenarios.

3.3 Interviews

Runeson and Höst [28] highlighted the importance of interviews in case stud-
ies [28]. The motivation of interviews is to understand current benefits (RQ1),
problems(RQ2) and best practises(RQ4) of CD in Eficode’s projects. This allows
for further analysis referring to problems and best practices found in the literature
review. The goal of the interviews was to identify do the problems and best prac-
tices identified in literature review happen in real-life scenarios. The interviews
contained questions which asked the opinion about the upcoming survey. The goal
of these questions was to collect tips to plan the survey from experts that have
long experience at both working at Eficode and with CD projects in general.

Runeson and Höst [28] described that in semi-structured interviews the ques-
tions are planned, but they are not specifically asked in the same order as listed.
Semi-structured interviews allow for improvisation and exploration of the studied
objects [28]. In this research semi-structured interviews were chosen to enable
broad view of the subject and not to limit the interviewee. During this research
2 semi-structured interviews were conducted, one with Eficode’s software team
leader and one with Eficode’s CTO. The justification for these selections was that
both have a long background in software development and have seen Eficode’s CD
projects in a long time frame.

Runeson and Höst [28] encouraged to collect the interviews in audio format
and to transcribe them before analyzing the data [28]. The interviews were held
in Finnish as it was the native language of both interviewer and interviewees. In
this research we recorded the audio of both interviews with the permission of the
interviewees and transcribed the speech to written English.

CHAPTER 3. RESEARCH METHODS 14

3.4 Survey

Next we introduce the survey, which was the main data collection method of our
case study. The survey is used to answer all our research questions. It answers,
does a large crowd acknowledge the benefits, problems and best practices of CD. It
also gives detailed data about how often these problems and best practices occur in
real-life scenarios. We start by going through the methods that were used to plan
the content of the survey, then we go through what characteristics the final survey
included. We end the section by going through the whole process of planning the
survey.

CHAPTER 3. RESEARCH METHODS 15

3.4.1 Iterative planning of the survey

Figure 3.1: Phases in iterative planning of survey

Figure 3.1 represents the iterative planning of the survey, which included 7 steps.
After each step the survey was redefined to fit better the research needs. Survey
was designed in iterations to learn how the questions are understood by the partic-
ipants. The iterative process started with focus groups, which are lighter ways of
evaluating the survey. The activities became more demanding towards the end of
the planning phase, meaning test person sessions and UX-workshop. The reason
to use more lighter ways in the beginning was to gather feedback easier and faster
for the first version of the survey, that were more easily noticed. In the end of

CHAPTER 3. RESEARCH METHODS 16

the planning it was beneficial to use more demanding activities to find the last
modifications that made the survey more understandable.

Next we go in detail the survey planning methods. Kitchenham et al. [15]
wrote guidelines for designing a survey. Using a small focus group for designing
the survey is useful to gather feedback from the survey [15]. The strength of the
focus group is that it reveals how the survey is answered by users, which would
answer the survey. Focus groups produce a small amount of data that the actual
survey would produce. It is also a fast and easy way of gathering data and feedback
about the survey. The weakness of focus group is that it might not gather feedback
on the weaknesses of the survey, when the respondents are focused on answering
the survey. The weakness of the internal focus group is that the respondents can’t
answer the final version of the survey, as it may produce biased results.

Our survey planning process included two focus group sessions, one was held
internally and one externally. The first focus group contained six persons. The
session was held internally at the Eficode office. The second focus group contained
four external software professionals, which were gathered from the network of
researchers. The reason to use an external focus group was to keep the sample size
of the original survey high and to gather new insights from outside of our case.

Test person planning sessions were used to gather straight-forward feedback
about the usability of the research. In these sessions the survey was filled by a
person in the same room as the researcher. Test person could ask questions and
specifications from the researcher from unclear parts of the survey. The strength
of the test person session was that the direct discussion about the features of
the survey gave very detailed information on how the survey is understood. The
weakness of the test person planning session was that it took longer and more
effort as it had to be in a certain time slot where the test person and researcher
physically attend.

Our UX-workshop focused on improving the usability of the survey. The
UX-workshop was attended by senior content writer, usability expert and the
researcher. Senior content writer offered help on writing questions in clear way,
and usability expert gave feedback on overall usability of the survey. The strength
of UX-workshop was that it provided great feedback from usability from non-
technical experts.

3.4.2 Characteristics of the survey

Runeson and Höst [28] recommended to combine quantitative and qualitative data
in case studies [28]. The survey contains a pair of closed questions based on Likert
scale, and open question related to the closed question. This way respondents can
answer their specific opinion on each section relating to CD related problem or best
practice, and use their own words to describe the reasoning behind the answer.

CHAPTER 3. RESEARCH METHODS 17

Kitchencham et al. [16] mentioned, that if the survey is too long, the respondents
might lose interest to answer with care to each question [16]. The weakness of using
both quantitative and qualitative questions is that it makes the survey longer.
Kitchencham et al. [16] recommended to order the questions in groups in order to
compensate against the number of questions [16]. The questions were divided into
sections, which all related to the same subject. Also all the questions in the same
section followed the same pattern to make the structure of the survey more clear
and compensate for the large amount of questions. Survey was designed using
Google Forms, since it provides built-in data collection and analysis tools.

Survey was targeted at Eficode’s software and DevOps team. This part of
Eficode’s organization provides great knowledge of CD in the context regarding
our research problems. Eficode’s Software and DevOps teams are involved in plenty
of projects which use CD. Having such a large scale of expertise gives a great data
point for survey.

The survey was launched on 26.4.2019 at the Eficode office. The purpose of the
survey and thesis was explained during company-wide info session, and the survey
was launched in internal Slack channels and email lists. Reminders to answer the
survey was sent bi-weekly on Slack channels. Survey was closed on 6.6.2019.

Chapter 4

Results of literature review

This chapter will start by going through the content of our literature review.
Then we will provide knowledge about why CD is a popular method in modern
software development which makes it worth researching. We also determine the
most common problems and best practices of CD found in literature review.

4.1 Content of literature review

We analyze and compare the results of systematic literature review (SLR) made
by Shahin et al. [30] and our own literature research. The SLR was published
2017 and contains 69 papers, that were selected by following a predefined criteria.
It thoroughly analyzes the tools, problems and best practices related to CD [30].
Our literature research includes 8 articles, which were not referenced in the SLR.
We use both primary sources of SLR and our literature research for identifying
benefits of continuous deployment, because benefits of CD was not one of the
research questions in the SLR. When analyzing problems and best practices, our
literature research is compared against the summarized results of the SLR. In
addition we have searched for additional details from the primary sources of SLR.
Table below summarizes articles from our literature research:

18

CHAPTER 4. RESULTS OF LITERATURE REVIEW 19

Table 4.1: Articles of our literature research
Title Data type Focus Reference Year
The top 10 adages of contin-
uous deployment

Quantitative
and Quali-
tative

Best practices [25] 2017

Revisiting continuous de-
ployment maturity: a two-
year perspective

Quantitative
and Quali-
tative

Best practices [20] 2019

Continuous Delivery: Over-
coming adoption challenges

Qualitative Problems and
best practices

[6] 2017

Microservices: Architecting
for Continuous Delivery and
DevOps

Qualitative Best practices [7] 2018

Building lean continuous
integration and delivery
pipelines by applying De-
vOps principles: a case
study at Varidesk

Quantitative
and Quali-
tative

Best practices [12] 2018

Overcoming Challenges
with Continuous Inte-
gration and Deployment
Pipelines When Moving
From Monolithic Apps to
Microservices: An experi-
ence report from a small
company

Quantitative
and Quali-
tative

Best practices [11] 2019

One size does not fit all:
an empirical study of con-
tainerized continuous de-
ployment workflows

Quantitative
and Quali-
tative

Problems and
best practices

[34] 2018

A case analysis of enabling
continuous software deploy-
ment through knowledge
management

Qualitative Problems and
best practices

[9] 2018

Next we will introduce the articles of our literature research. The article of
Parnin et al. [25] is based on a survey relating to continuous deployment best
practices, which was filled by 17 teams from nine companies. The article also
represents results of discussions on the continuous deployment summit, which had
participants from 10 software companies [25]. The study of Mäkinen et al. [20] also

CHAPTER 4. RESULTS OF LITERATURE REVIEW 20

focuses on best practices of CD. This case study focuses on Finnish software com-
pany called Solita, which has more than 600 employees. Solita’s core competence
is delivering projects as a service. Each project is tailored towards the customer’s
needs. The case study relies on a survey relating to best practices of CD [20].

The articles [6, 7] focus on a company named Paddy Power. Paddy Power relies
heavily on increasing number of websites, mobile applications, trading and pricing
systems, live-betting-data distribution systems and software used in betting shops.
These applications are developed and maintained by the technology department,
which employs approximately 500 employees. The adoption of DevOps and CD
at Paddy Power began in 2012. Four years after the transformation, Paddy Power
implemented CD for over 60 applications. The first study [6] focuses on problems
and best practices of CD. The second study [7] goes through benefits of microser-
vices in CD. Also the studies [11, 12] focus on microservices. The articles focus on
a company called Varidesk, which offers a multitude of active workspace solutions
for home and office spaces. Both articles focus on changing the architecture of the
software of monolithic application to microservices [11, 12].

The study of Zhang et al. [34] focuses on the evolution of CD workflows caused
by containerization. The study collected data from open source projects and from
a survey, which was responded by over 150 developers [34]. The study of Colomo
et al. [9] is a grounded theory study focusing on transformation to continuous
deployment. The study focuses on DevOps team of 10 professionals. Data is
collected from semi-structured interviews. The company is Meta4, which is a
world leader in human capital management solutions [9].

4.2 Benefits of Continuous deployment

Next we introduce the different benefits identified from our literature research and
the primary sources of the SLR. These benefits provide details why CD should be
used in software development. The benefits can be reasoning for companies why
CD should be invested into.

4.2.1 More frequent and faster releases to production

Many articles stated faster releases to the production environment as one benefit
of CD [4, 5, 23, 25]. Chen [5] reports that the adaption of CD in Paddy Power
increased the release frequency from less than six times a year to every week [5].
Neely and Stolt [23] investigated a transformation to CD in a company called Rally
Software in their article. The company used to have an 8 week process to plan their
next release, which was made in one day. This process had many flaws regarding
deployment cycles: Implemented features had to wait in the worst scenario many

CHAPTER 4. RESULTS OF LITERATURE REVIEW 21

weeks to be deployed into production, or if the feature is not implemented to
release day, it had to wait 8 weeks to be deployed. They transformed to using
CD, so that they were able to release the software whenever they wished [23]. In
addition faster releases cycles lead to faster customer feedback [5, 25].

In addition to the shorter release cycles, CD can also shorten the time used
to actually release the software. Callanan and Spillane [4] had impressive results
regarding to automation in their article. The time used for deployments decreased
86 percent and they increased their amount of releases 2.6 times from after trans-
formation to CD [4].Also developers can enjoy when their code changes are going
faster to production [25, 29].

4.2.2 Quicker fixing of defects

Continuous deployment makes fixing defects from software faster [5, 23, 25]. Neely
and Stolt [23] described challenges in their old eight week periodic release process.
The last week before release was used to find defects from the software. It was a
hectic week, where all defects needed to be found and fixed , and the release was
prepared. The last week was really expensive for the company. After their CD
transformation they listed many benefits relating defects: Small code changes lead
to less defects in production, and if defect was noticed, it was easier to track when
the amount of changed lines of code is smaller [23].

According to Chen [5],the former release process of Paddy Power was not prop-
erly practised by developers, and it consisted of many manual, error prone activi-
ties. They also had to do intense bug searching before releasing the product. After
transforming to CD, the amount of bugs reduced over 90 percent, and if bugs oc-
curred, they were fixed in a couple of days [5]. In the summit of Parnin et al. [25]
companies stated that frequent releases of CD make defect fixing easier. [25].

4.2.3 Increased productivity

Savor et al. [29] found quantitative results, that CD does not inhibit productivity
or quality when scaling the codebase by 50x and team’s size by 20x. This result
was gained by observing version control changes and failure errors from 6 years of
time [29]. This is a solid result which seems to guarantee that CD is the produc-
tive solution for large scale software development. Also other studies noticed the
productivity of development teams when using CD: Neely and Stolt [23] noticed
in their study that automated testing in CD pipeline lead to more features imple-
mented in long term [23]. According to Parnin et al. [25], teams believed that they
were more productive and had better overall collaboration when using CD [25].

In the semi-structured interviews of Leppänen et al. [19] to software companies
it was noticed, that CD helped to streamline the process and eliminate manual

CHAPTER 4. RESULTS OF LITERATURE REVIEW 22

work [19]. Chen [5] mentioned in his article, that in Paddy Power creating the test
environment might take even 3 weeks of developers work. When transformed to
CD, the test environment was initialized automatically [5]. CD can help save devel-
opers time from manual activities that are repeated during the quality assurance
of the software.

4.2.4 Decreased stress of developers

Using CD can make the developers more motivated, and less stressed [5, 25]
Chen [5] mentioned that in Rally Software development teams stress was reduced
when CD transformation made releases more frequent action [5]. CD can help
developers be less afraid to do deployments into production. Neely and Stolt [23]
reported one case, where the developer was first afraid, that the code change he
makes goes straight to production. After the CD transformation the develop-
ers had better work life balance, because the developments happened more fre-
quently, which is less stressful than having one big deployment full of risks less
frequently [23].

4.3 Development related challenges

Next we go through different problems and best practices which are related to
activities of development team. Except for one problem which was found from
our literature research, the source of the problems was the SLR. We begin each
section by introducing the problem using the results of SLR, and introduce the
best practice which solve this problem. In some parts details are added from the
primary sources of the SLR. Then we present the results found from our literature
research relating to the problem and possible best practices.

4.3.1 Lack of automated tests

According to SLR of Shahin et al. [30], low test coverage is one of the challenges
of CD. Many of the studied organisations were unable to automate all types of
tests. The lack of tests was shown in the primary studies of the SLR, for example
in interviews made by Olsson et al. [24] 3 out of 4 companies wished that they had
better quality automated tests [24]. One of the suggestions for improving testing
activities such as low test coverage in the SLR was to use Test Driven Development
(TDD) [30].

Also our literature research identified lack of tests as a problem. In the survey
of Parnin et al. [25], automated acceptance tests were not widely used among
the companies: Little over 25% of the respondents used automated acceptance

CHAPTER 4. RESULTS OF LITERATURE REVIEW 23

tests ”All of the time”. The responses for unit tests were much higher: Almost
75% of the respondents used automated unit testing ”All of the time”. In the
interviews respondents answered that lack of automated testing can affect the
CD process negatively [25]. In the case study of Mäkinen et al. [20] three out of
eight projects used automated user acceptance tests for quality assurance. Despite
the low amount of automated user acceptance tests, all projects except one had
unit tests [20]. According to Parnin et al. [25] one of the best practices to fight
against this problem is to invest in automation: It is one of key elements to stay
competitive and survive [25].

4.3.2 Lack of quality in automated tests

In the SLR Shahin et al. [30] stated unreliable tests as one of main reasons of poor
test quality [30].The interviews of Leppänen et al. [19] noticed, that developers have
problems automating automated acceptance testing [19]. Some articles reported
unreliable tests, which fail only in some circumstances. The reason for failure can
be caused by the order of execution between test suites or synchronization issues,
which are hard to reproduce [13, 23].

Callanan and Spillane [4] mentioned that in Wotif their data in the staging en-
vironment did not match the type or volume as in production. This led to defects
in production, because the issues were not noticed in automated testing [4]. The
SLR didn’t provide any direct solutions to this problem, but many of the primary
articles did suggest best practices for improving the quality of test automation:
Savor et al. [29] suggested, that automated testing should always be done against
same environment as the product should be, with same kind of data as in produc-
tion. Virtualization can help to setup test environments that are identical to the
production environment [29]. Also Gneimer et al. [13] mentioned that establishing
test environment management is critical to achieve functional CD pipeline [13].

There are many ways, how test environments can be tailored to match the
product environment: In the research of Gmeiner et al. [13] one team was assigned
to provide anonymous database dumps to support the test activities [13]. Produc-
tion database dumps are good to use in the test environment, because then the
software will be running with the same data set as in the production. Neely and
Stolt [23] mentioned, that Rally Software made automated testing even higher
traffic loads than the production environment to make sure that the application
has possibility to scale up [23]. None of the articles from our literature research
noticed unreliable tests as an problem or introduced best practices to improve the
test quality.

CHAPTER 4. RESULTS OF LITERATURE REVIEW 24

4.3.3 Long build times

Benefits of frequent builds vanish when the build times become too long. Long
build times are a common problem when using CD. Shahin et al. [30] brought up
long test execution times as one of the reasons for poor test quality, because long
execution times prevent the fast feedback loop of CI server. Another problem that
causes long build times is the large amount of test cases. Virtualization can be
used to run tests in parallel as a solution against long build times [30].

The primary sources of SLR also brought up long build times and solutions for
it: Neely and Stolt [23] mentioned in their article, that in one point the test suite
took nine hours to run, which means that the product can’t be possibly deployed
in less than nine hours. It is encouraged to run the tests in parallel as soon as
long build times are noticed [23]. In addition to long test suites, lack of computing
power can also lead to long build times. Adams et al. [1] mentioned that slow
build times can be a consequence of an organization having only one CI-server for
many teams. Slow build times can be handled by decreasing builds or improving
the performance of CI-server [1].

Also studies in our literature research identified long build times as an prob-
lem [11, 12, 34].In the case study of Debroy et al. [12] the builds were queued and
they couldn’t been cancelled. This caused a huge bottleneck in the CD process. In
a newer case study of Debroy et al. [11], the average build and release time of their
CD pipeline was one hour and 18 minutes [11]. According to one respondent of
interviews conducted by Zhang et al. [34], build times over 20 minutes were harm-
ful when trying to solve why build is failing [34]. In the case study of Mäkinen et
al. [20] none of the eight projects had parallel tests [20]. Microservice architecture
can help to shorten build times: Debroy et al. [11] accomplished 330 times shorter
build times when using containerized microservice architecture [11].

4.3.4 Lack of knowledge of developers

Shahin et al. [30] noticed that several studies reported a significant gap in the
required skills when implementing CD. The deployment and test automation de-
mand new technical and soft skills. Improving team qualification and expertise
can solve this problem. Several organizations provided formal training and coach-
ing for developers. The aim is to improve the team’s qualification and bridge the
skill gap between team members [30]. The lack of knowledge of developer can be
shown as mistakes of developers reported in the primary sources of SLR: Neely
and Stolt [23] described one case, where tests failed because of old data in test
environment, then the test was removed in order to deploy, resulting in bugs in
beta environment [23]. Also Savor et al. [29] mentioned, that in OANDA skipping
test in order to release lead to fatal bug in production. New developers can be

CHAPTER 4. RESULTS OF LITERATURE REVIEW 25

assigned to certain positions to learn the essentials of the CD process: In OANDA
new developers must work at the release engineering for several months in order
to learn the CD practices [29]. None of the articles from our literature research
stated that the lack of knowledge of developers is a problem in CD or discussed
best practices relating building team competence.

4.3.5 Code reviews

In the SLR code reviews were not seen as a challenge. Two studies of the SLR
mentioned that some tools might not suit for reviewing code. [30]. However the
primary article of SLR by Claps et al. [8] highlighted maintaining the code reviews
as one challenge of CD [8].

Using code reviews is a good practice for handling code changes between mem-
bers of the development team. One article from our literature research had quanti-
tative data on how often code reviews happen: According to the article of Parnin
et al. [25], developers prefer that their code is reviewed by a teammate before
releasing the software. Code reviews were used by all respondents, and little over
50% of the respondents used them all of the time [25].

4.3.6 Architecture

According to the SLR of Shahin et al. [30] several studies indicated that unstable
architecture creates hurdles when transitioning towards CD. For example inap-
propriately handled dependencies between components can cause challenges when
implementing CD. Optimal architecture should be designed in a way, that each
component of the software can be deployed independently [30]. This approach
refers to microservice architecture.

Articles from our literature research noticed that monolithic applications have
numerous challenges [7, 25]. Parnin et al. [25] stated that it can be challenging
to achieve high frequency deployments with applications which have monolithic
architecture [25]. Our literature research also suggested microservice architecture
when using CD. Chen [7] found out many benefits of microservice architecture.
They enable more simpler deployments and the ability to have zero downtime
when deploying software. It is also possible to scale an service, which has been
discovered as an bottleneck. Changing technology stack for specific service and
updating libraries was also mentioned. According to Parnin et al. [25], Netflix uses
microservice architecture, where teams are responsible for developing stable API
interfaces [25].

CHAPTER 4. RESULTS OF LITERATURE REVIEW 26

4.3.7 Database schema migrations

Database schema migrations are used to make changes in a live database. They
are important in software development, since the database schema will always be
changed during the development process. Shahin et al. [30] highlighted database
schema changes as a challenge when implementing CD. The solution for this prob-
lem is flexible and modular architecture, because each part of the software can be
released independently [30].

If the architecture is modular, the database schema changes should be exe-
cuted automatically without harming the other parts of the software: Callanan
and Spillane [4] went through database changes in their article. They suggested
that database schema changes should be backward and forward compatible. They
also mentioned that Wotif used software called LiquiBase to automate database
migration during release [4]. Having backward and forward compatible migrations
leave room to change the schema if the migration did not work as planned. None
of the articles from our literature research noticed database schema migrations as
a problem in CD.

4.3.8 Configuration management

Configuration management was noticed as a problem only in our literature re-
search. According to Parnin et al. [25], modern configuration management tools
allow configuration management to be scripted and orchestrated across all server
assets. Not treating configuration management leads to a significant amount of
production issues at scale. Despite modern tools, configuration management can
cause difficult errors: For example Netflix makes 60 thousand changes daily and
has no system for tracking and reviewing them [25]. Also Chen [6] noticed man-
aging infrastructures as a challenge [6].

Provided solution for configuration management was to treat it like source
code and automate all infrastructure related steps: In the summit of Parnin et
al. [25] companies suggested that configuration management should be treated
as code from the start of the project [25]. According to Chen [6] infrastructure
provisioning should happen automatically [6].

4.3.9 Team structures

According to the SLR of Shahin et al. [30] distributed development teams are
associated with a number of challenges, for example lack of visibility. Defining
new roles in the team is important when adopting CD [30]. Also the developers
responsibility of the released software was emphasized: Developers should be on

CHAPTER 4. RESULTS OF LITERATURE REVIEW 27

call when the software is released, so they can see how the change affected the
behaviour of end users, and react quickly if defects occur [29, 30].

The primary sources of SLR contained articles in which release engineering and
testing was both the responsibility of a separate team and articles in which it was
the joint responsibility of the development team. Savor et al. [29] mentioned in
their article, that Facebook and OANDA uses Release Engineering team to handle
pipeline and releases. The pros of this approach is that there are professionals
allocated to take care of the releases and make sure that the pipeline and the
infrastructures are maintained properly [29]. According to Adams et al. [1] Netflix
uses a method called ”Roll Your Own Releases”: Developers, who implemented
features are responsible for deploying it to production [1].

Savor et al. [29] discussed in their research that the need to allocate a separate
team for testing is currently a popular discussion topic. In Facebook developers
are in charge of testing [29]. However there are projects, where QA and testing is
dedicated to separate team: In the case study of Gmeiner et al. [13] project had
quality assurance team which was dedicated for writing automated acceptance
tests and making sure the software functions correctly after deployment [13].

Our literature research had results relating to autonomic teams. Chen [6] en-
couraged for autonomic teams when transferring to CD [6]. Parnin et al. [25]
noticed that also autonomic teams also have challenges: For example how au-
tonomous teams integrate with each other. The solution for this question was
using microarchitectures: Each team is responsible for keeping the microservice
which they develop stable in each release. Netflix has a good example of an auto-
nomic team, as they also have operations and quality assurance roles are embedded
in the development team [25].

4.4 Organizational challenges

Next we go through different problems and best practices which are related to
activities of the organization. First we introduce the problem using the results of
SLR, and introduce the best practice which solves this problem. Details can be
added from the primary sources of the SLR. Then we discuss the results found
from our literature research relating to the problem and possible best practices.

4.4.1 Continuous deployment is not always an option

In CD the push to version control triggers automatic release of the software. How-
ever, in some cases this approach is not possible or desired. The SLR of Shahin
et al. [30] indicated that some customers or domains don’t prefer CD, and there
wasn’t a solution for this problem. [30].

CHAPTER 4. RESULTS OF LITERATURE REVIEW 28

The primary sources of the SLR provided detail, which domains are not suit-
able for CD: In the interviews of Leppänen et al. [19] one company worked with
automation control system, where the production had to put to stop for a day in
order to update the system. Another difficult area for CD is mobile applications.
One of the companies interviewed by Leppänen et al. mentioned that the review
of the application store took a week, and after that the latest version of applica-
tion could be released [19]. Also Adams et al. [1] pointed out the difficulties when
deploying mobile applications: Even small bug fixes have to go through the appli-
cation stores review, and this is why quality assurance is in a critical role when
developing mobile applications [1]. In these circumstances CD can’t be used for
deploying the software to the production environment at all times.

The primary sources of SLR noticed, that in some cases the releases are periodic
or they require an manual acceptance phase. Leppänen et al. [19] noticed in their
research, that 4 out of 15 companies wished to keep the releases periodic, varying
from one to two weeks. They found the CD process disruptive for end users. 3
out of 15 companies wished to perform continuous delivery of the software, but
not straight to production [19]. Chen [5] mentioned the manual acceptance phase
in his article: Sometimes features can be implemented in a few days, but the
acceptance phase takes 4 days to grant permission to release product [5].

Articles from our literature research didn’t refer to certain domains that cause
problems when adopting CD. However, according to Mäkinen et al. [20] the do-
main makes huge differences, when considering the best practices of CD. For some
domains particular process areas are not relevant [20].

4.4.2 Lack of support from organization

According to the SLR of Shahin et al. [30] lack of trust towards CD was recognized
as an issue. Also the challenge of changing established organizational policies and
cultures was raised. [30]. Promoting team mindset and defining new rules and
policies when adopting CD in organization was suggested as an solution for this
problem [30].

The primary sources of the SLR provided details, why organization doesn’t
support CD: Leppänen et al. [19] noticed in their interviews, that in many com-
panies the culture did not support CD [19]. Gmeiner et al. [13] brought up the
importance of understanding the trade offs when investing to CD. Management
needs to understand that constructing a CD pipeline is time consuming, and it
might take time until the investment starts to pay off. Management support is
crucial to survive the time until the benefits of CD are shown [13]. Also Neely
and Stolt [23] emphazised the importance of management buy-in, as CD process
affects everybody who is involved in the project [23]. When management gives
team the support to do CD, their potential rises and they are not fearing that they

CHAPTER 4. RESULTS OF LITERATURE REVIEW 29

are not trusted.
According to Savor et al. [29] the risk management should belong to developers.

This leads to better productivity when developers don’t need to ask permission for
every deployment. They also observed that the support from management may
affect the productivity in the development team. OANDA’s board almost changed
from CD back to waterfall methods because of one mistake. The importance
of having CD experts in the board of company to guide transformation and the
direction of decisions was emphasized [29].

From our literature research one article noticed the lack of customer organiza-
tion support: Mäkinen et al. [20] reported, that some customer organizations did
not allow to use best practices. For example some customers did not have habit for
implementing automated acceptance tests [20].Our literature research brought up
the importance of culture [9, 20, 25]. According to Mäkinen et al. [20], it is crucial
to improve best practices and to avoid being stuck to old processes [20]. In the
summit of Parnin et al. [25] almost every participant had a story of bringing the
whole software down with accidental mistake of configuration changes. In these
cases blameless culture is important to recover and learn from mistakes. All sum-
mit participants use retrospective to support reflection on production failures [25].

4.4.3 Development team missing the right tools

Lack of suitable tools and technologies was one of the key challenges of SLR made
by Shahin et al. [30]. However the SLR didn’t provide any solutions for this
problem [30]. Setting up CD pipeline requires knowledge of how to select right
tools and how to use them, which was also noticed in the primary sources of SLR:
Olsson et al. [24] noticed that the variety of tools were harmful to development
in one organization [24]. Learning new tools is not probably easy, if they change
all the time. Adams et al. [1] noticed that organizations tend to change their
infrastructure as code providers if the results don’t please them [1].

The primary sources of the SLR provided few suggestions for this problem.
Savor et al. [29] suggested that all developers should be trained regularly to be
able to work with different tools when adapting CD [29]. Chen [5] mentioned in
his article, that when Paddy Power started their CD transformation, they built a
platform, which allowed them to create a CD-pipeline for each new application [5].
Using an already made pipeline allows the team to start development work faster,
instead of configuring each step of the pipeline for scratch. Pipeline templates are
handy for companies which are going to have multiple CD projects in future.

Also the studies from our literature research highlighted the challenge of tools [6,
9, 12, 34]. Colomo et al. [9] stated that availability of tools is a challenge when
implementing CD [9]. Zhang et al. [34] stated that developers face trade-offs when
choosing the CI-tool. There is a lack of best practices for choosing CI-tools when

CHAPTER 4. RESULTS OF LITERATURE REVIEW 30

considering developers with specific needs [34]. According to Debroy et al. [12] In
the beginning of the project a lot of resources were used to find the tools and learn
how to use them [12]. The summit of Parnin et al. [25] suggested a solution for
tooling issues: Large organizations have a team, which is focusing on tools. This
team enables the tools for the development teams [25].

4.4.4 Schedule pressures

According to SLR high quality applications, that are supposed to be frequently
released to customers may cause some team members to face more stress and
extra efforts. The SLR didn’t provide any solution for this problem [30]. Our
literature research also recognized schedule pressures as an problem [9]: Software
companies suffer pressure from customers to reduce release times while ensuring
high quality [9]. Therefore schedule pressures can be caused both internal or
customer organization. Our literature research didn’t provide a solution for this
problem.

4.4.5 Customer environment

The SLR of Shahin et al. [30] brought up challenges of the customer environ-
ment when adopting CD. For example, lack of access to the customer environment
disrupts the efficient development work. Involving the customer more to the CD
process was suggested as a solution for this problem [30]. From the primary sources
of the SLR Chen [5] mentioned, that when Paddy Power transformed to using CD,
they had to have root accesses for servers, which took six months of negotiations.
CD demands breaking the boundaries between different teams, which is necessary
to solve this problem [5].From our literature research Mäkinen et al. [20] brought
up a challenge, that the development team has not full access to the production en-
vironment [20]. However none of the articles from our literature research provided
solutions for this problem.

4.5 Summary of results

In this chapter we summarize, how the literature review answers our research
questions. RQ1, ”What are the identified benefits of continuous deployment?”
is answered by combining the findings of SLR and non-SLR articles, following
benefits were found:

• Faster releases to production

• Quicker fixing of defects

CHAPTER 4. RESULTS OF LITERATURE REVIEW 31

• Increased productivity

• Decreased stress of developers

RQ2,” What problems happen in continuous deployment?” was answered by
comparing the results of SLR and non-SLR articles. Table 4.2 below summarizes
the problems that were found:

Table 4.2: Summary of identified problems
Description SLR references Literature research

references
Lack of automated testing [29] [19] [8] [24] [23]

[30]
[25] [20]

Lack of quality in automated tests [8] [13] [23] [30] -
Long build times stall the devel-
opment

[19] [23] [30] [11, 12, 34]

Architecture does not suit for CD [30] [7, 25]
Schedule pressures [30] [9]
Database schema migrations [30] -
Responsibilities are shared to sep-
arate teams

[30] -

Lack of knowledge of developers [23, 29, 30] -
Configuration management - [6, 25]
Development team missing tools
and access rights

[24] [30] [6, 9, 12, 34]

Organization does not support
CD processes

[19] [13] [30] [5] -

Schedule pressures [30] [9]
Customer environment [30] [5] [20]

CHAPTER 4. RESULTS OF LITERATURE REVIEW 32

Relating RQ3, ”How often do the problems happen in continuous deployment
projects?”, the SLR of Shahin et al. [30] did not have any quantitative results about
how often the identified problems occurred in industry scenarios. However two
articles from our literature research provided data relating to how often automated
acceptance tests are used. In both studies the use of automated acceptance tests
was quite low [20, 25]. In the survey made by Parnin et al. [25] only a little over
25% used automated acceptance all of the time. In the case study of Mäkinen et
al. [20] three out of eight projects had automated acceptance tests. Thus lack of
automated acceptance tests is a problem which happens often.

The table 4.5 below summarizes the best practices, which answer RQ4, ”Which
best practices improve the continuous deployment process?”

Table 4.3: Summary of identified best practices
Description SLR references Literature research

references
Run automated tests against pro-
duction like environment

[13, 23, 29] -

Improve team expertise [29, 30] -
Digital code reviews [8] [25]
Microservice architecture [30] [7, 25]
Automated database schema mi-
grations

[4] -

Run automated test cases in par-
allel

[23, 30] -

Upgrade CI-server to make build
times faster

[1, 23] -

Treat infrastructure as code - [25]
Automate infrastructure provi-
sioning

- [6]

Promote team mindset [30] -
Embrace culture - [20, 25, 30]
Define new team structures [30] -
Customer involvement [30] -
Support team for providing tools - [25]

CHAPTER 4. RESULTS OF LITERATURE REVIEW 33

Relating RQ5,” How often are the best practices used in continuous deployment
projects?”, the SLR of Shahin et al. [30] did not have any quantitative results about
how often the identified best practices occurred in industry scenarios. Also only
one article of the literature research had data on how often best practices are being
used: In the survey made by Parnin et al. [25] all of the respondents used code
reviews, and little over 50% used them all of the time [25].

Chapter 5

Results of the case study

In this chapter we present the results of our case study, which consisted of an
interview and a survey. We end the chapter by summarizing the results.

5.1 Interviews

In this section we present the results of two interviews we conducted. The first in-
terviewee was Eficode’s software team leader. He has a long experience in software
development and working in upper management. The interview with the software
team leader took 21 minutes. Both interviews were held in Finnish. The second
interviewee was Eficode’s CTO. He also has a long background in software devel-
opment in general. He has also seen the emergence of CD from its beginning. The
interview with the CTO took 1 hour. Next we go through both interviews by sub-
jects that were discussed. The interviews contained mostly the same questions.
However, we asked a bit more organizational questions from the software team
leader, and more technical questions from CTO. The interview questions with the
team leader and the CTO are listed in Appendix A and Appendix B, respectively.
The questions ans answers are translated from Finnish to English.

5.1.1 Benefits of continuous deployment

Both interviewees agreed, that CD is the preferred way of doing software devel-
opment. When asked about the benefits of CD, the team leader brought up the
simplicity it creates:

”No gurus are needed for installation. Less human errors and more repeatability.
If installation to staging environment is successful, we can be pretty sure it works

for product environment as well.”

Team leader

34

CHAPTER 5. RESULTS OF THE CASE STUDY 35

The CTO emphasized the reduction of the time needed for implementing and
deploying a new idea.

”The time between an idea and a release is essentially waste in the Lean way of
thinking, whether it’s development, quality assurance or preparing for the

release. Continuous Deployment is a paradigm that helps building a culture
where the implementation work can be released as fast as possible. This changes

the way organizations approach new requirements and releasing.”

CTO

5.1.2 Problems related to continuous deployment

When asked about the most common problems when adopting CD, both intervie-
wees brought up the lack of knowledge of the developers as a major challenge. The
team leader mentioned that most of the errors are initialized by the mistakes of
the developers, which are caused by schedule pressures:

”Setting up the CD pipeline requires work. Once setup is done the pipeline can
be trusted. Problems most often occur in practical work. For example when a

developer encounters schedule pressures he might forget to do something or tries
to take shortcuts which might later require improving.”

Team leader

In the CTO’s opinion most of the problems related to CD are caused by organi-
zational structures and organizational strategy that does not allow the time needed
to build the automation. In his opinion the developers usually do not have enough
experience or knowledge on the different components of CD, or the development
priorities simply do not give enough time to concentrate on building a solid CD.
Unfortunately the lack of automated testing and development pipeline will collect
technical debt, which in turn, will make reaching CD even more difficult.

The interview of the Team leader contained more comments relating to orga-
nizational problems. He brought up the challenges caused by client organizations:

”CD is indeed the best practise, but we have to be flexible if the client’s
processes don’t support it for releasing to production. In these cases it is an
advantage for us if we use continuous deployment until staging environment.

Then we let customer decide the deployment to production. We try to teach the
clients, but it’s hard with some clients having either old practices deeply

established or operations limited by regulations.”

Team leader

CHAPTER 5. RESULTS OF THE CASE STUDY 36

Usually the clients let Eficode’s developers release the software with CD tools.
However the software team leader mentioned one case where the client didn’t allow
Eficode’s developers to access the production environment.

5.1.3 Best practices related to continuous deployment

Both interviewees introduced many best practices. The CTO stated few best
practices, which are requirements for using CD: The first one was extensive test
automation harness. Without this the complete CD process usually cannot be
automated as introducing a new feature might break existing functionalities. An-
other best practice for CD is digital code reviews. The understanding and quality
of the code grows as the review is done by a peer with a predefined review process.
Additionally the peer should be responsible for the new code so that there is a
shared responsibility of each change. As the reviewer is responsible for the new
code, it usually leads to writing better code in the first place.

Both interviewees proposed best practices that could shorten long build times.
Team leader’s solution was to investigate regularly practices, e.g. how the test
execution times could be minimized. According to team leader upgrading hardware
might also be one option shortening the time test runs take. In CTO’s opinion
the best solution is a proper test case management and optimization. However
running automated acceptance tests in parallel will also help decreasing the build
times and maintain independence between the test cases.:

”Running automated acceptance tests (written for example with Robot
Framework) in parallel is a solution to prolonged build times, where upgrading

hardware works only to a certain point.”

CTO

According to the team leader the team needs to have good knowledge of test
automation, especially in automated acceptance (high level) tests. In addition it
is important to know what tools to use. Starting the development with pipeline
and test templates can help to speed up the process. The CTO emphasized that
the team should be able to deploy the software by themselves. In addition the
CTO pointed out that organization should support CD processes in order to gain
benefits. He emphasized the importance of management buy-in:

”The management of the organization should support building automation and
CD as part of the development work. If the priorities are not set for sustainable
development speed, it usually start collecting technical debt and eventually slows

down the development significantly.”

-CTO

CHAPTER 5. RESULTS OF THE CASE STUDY 37

Neither of the interviewees thought the separate release engineering team is
necessary. In the team leader’s opinion this team structure sounded like an old
fashioned separate operations team as opposed to a modern cross-functional De-
vOps team. The CTO said that while such team structure can be selected, the
implications should be known in advance. The organization should select a suitable
DevOps Topology to follow in their organization.

When asked about the need for a separate testing team, the team leader brought
up how different domains can affect the needs of testing resources:

”When working with crucial software the test coverage is high, a separate testing
team can be good. When working with normal web development where human

lives are not at risk, test coverage can be lower. In these environments the
development team usually writes the automated tests. Developer has

responsibility of writing quality code which works, not putting it to testers
responsibility.”

Team leader

CTO answered the same question on a more general level:

”A separate testing team is really hard to make efficient in projects that have
long life cycles. A testing team can provide the know-how and support for
creating the test cases, but usually it is better that the development team
maintains the automated test cases as part of their development work.”

CTO

5.1.4 Summary

Interviews provided answers to research questions RQ1, RQ2 and RQ4. Both
interviewees agreed that CD is the preferred way of developing software. The
identified benefits of CD were decreased human errors, more repeatability and a
shorter time required to release the software to production.

The identified problems were related to developer mistakes or lack of knowledge.
The CTO stated the organizational structure and management strategy are usually
the main reasons for the problems. Also the lack of knowledge with the developers
is a contributing factor. Team leader highlighted the fact that most problems
happen by mistakes of developers.

Interviewees had some differences regarding answers to best practices. While
running automated acceptance tests parallel in pipeline was a common solution
to slow build times, the team leader was more positive about hardware upgrades
to solve long build times than the CTO. The CTO emphasized the importance of
digital code reviews. The team leader brought up using pipeline template for new

CHAPTER 5. RESULTS OF THE CASE STUDY 38

projects. Both interviewees had similar opinions relating to team structures: A
separate release engineering or testing teams are not practical in smaller develop-
ment teams, but might make sense in a larger project. The team leader mentioned
that in specific industries a separate testing team can be useful.

5.2 Survey

In this chapter we go through the results of a survey released for Eficode’s software
professionals. The survey was sent to 184 persons and it received total of 24
answers. The full length survey can be seen in Appendix C.

5.2.1 Background questions

Figure 5.1: Experience represented as working years in software development
(n=24)

CHAPTER 5. RESULTS OF THE CASE STUDY 39

Figure 5.2: Experience represented as amount of CD projects participated in
(n=24)

The experience of respondents are represented in figure 5.1 and figure 5.2. Our
respondents had versatile career lengths and amount of projects which represent
different amounts of experience working as a software professional.

CHAPTER 5. RESULTS OF THE CASE STUDY 40

Figure 5.3: The responsibilities of the respondents in their CD projects (n=24).
The number of responsibilities per respondent varied between one and three

Figure 5.3 represents the responsibilities the respondents had in the CD
projects they worked in. The data is based on an open question, where the re-
spondents could freely describe their responsibilities. Many respondents mentioned
more than one responsibility. The most common answer was pipeline setup, which
refers to making the pipeline functional. The second most common answers were
development, which means programming.

Figure 5.4: Respondents attitudes towards CD (n=24)

CHAPTER 5. RESULTS OF THE CASE STUDY 41

The answers related to attitudes towards CD are represented in figure 5.4.
Both claims relate to opinions about the utility of CD. From the results it is clear
that both statements were endorsed by respondents. For the first statement, ”I
prefer using CD in software projects” the most common justification was ’Faster
feedback’, which was identified from seven responses. There were also other justi-
fications, but they received only a few answers. The following answer elaborates
well why faster feedback may be an advantage:

”The ease of deployment to a user acceptance test environment is very useful for
developing and implementing fixes that require quick feedback from the customer

and quick responses to that feedback.”

For the second statement, ”More frequent releases lead to less stress during
project” Four respondents stated that more frequent releases make bug fixing
easier. Six respondents motivated that frequent releases lead to smaller risk of
failure, as in this answer:

”More frequent = smaller batches. No stress about big deployments, Less of a
chance for things to break when updating fewer features that are properly tested”

5.2.2 Problems related to continuous deployment

The problems and best practices were both examined by two variables: Acknowl-
edgement and prevalence. The data of acknowledgement is based on answers
of the mandatory Likert scale questions. The answer options are listed below:

• No experience

• Strongly disagree

• Disagree

• Neutral

• Agree

• Strongly agree

Choosing ”No experience” indicates that the selected problem has not occurred
in any work related projects. Choosing ”Agree” means that the problem has
happened in the work context and it is acknowledged as a problem. On the other

CHAPTER 5. RESULTS OF THE CASE STUDY 42

hand choosing ”Disagree” means that the problem has happened in work context,
but it is not causing major problems to development work.

The data of prevalence is gathered from voluntary open questions gathered from
each problem. The questions are in form ”How often this problem has occurred
in your projects?”. The answers represent the prevalence of the problems in real-
life context. ”No experience” answers from the mandatory part were included to
indicating prevalence of that the problem has never occurred. The answers to
prevalence questions were coded to options above:

• No experience

• Rarely

• Half of the time

• Often

• Very often

• Always

Each statement had an open question, which asked how the problem has been
solved in the projects of the respondent. The answers from these questions were
coded to possible solutions.

CHAPTER 5. RESULTS OF THE CASE STUDY 43

Table 5.1: Description of problems
Abbreviation in the figures Description in survey
1) Database schema migra-
tions

Based on my experience, database schema migrations
lead to failing deployments

2) Lack of tests Based on my experience, lack of automated test cases
in the pipeline leads to bugs and problems in further
development

3) Lack of quality in test
cases

Based on my experience, automated acceptance tests
(made with Robot Framework for example) in the
pipeline are not revealing bugs

4) Schedule pressures Based on my experience, schedule pressures lead to slop-
piness and technical debt.

5) Long build times Based on my experience, long build times stall the de-
velopment

6) Manual steps Based on my experience, manual steps(for example man-
ual acceptance testing or doing database schema migra-
tions manually) stall the development

7) CD related tools Based on my experience, CD related tools don’t support
the development work

Table 5.1 above represents the description of the problems in the figures , and
what was the longer format of the problem in the survey.

CHAPTER 5. RESULTS OF THE CASE STUDY 44

Figure 5.5: Acknowledgement of CD problems (n=24)

Figure 5.5 represents respondents acknowledgement to CD related problems.
Problems can be clearly divided into two groups: Statements that were agreed by
respondents, and statements that were disagreed or not experienced by respon-
dents.

All respondents agreed to the statement 2, which related to lack of automated
tests harming the development. Most common solution for this problem was to
add more automated test, which was the answer of 10 respondents. Also four
respondents suggested a straight forward fixing of the bug. One response brought
up digital code reviews. Respondent suggested that the code change should not be
possible to be merged to the master branch of version control unless all tests pass
in CI-server. All respondents either agreed or answered neutrally to statement 4,
which referred to the fact that schedule pressures leads to sloppiness and technical
debt. There was no most common solution in the open question section. Adding
resources to pay back technical debt received five answers, and limiting the scope
of software received three answers. Two respondents stated that this problem has
no solution.

Statement 5 relating to long build times received mostly ”Agree” and ”Strongly
agree” answers. Most common solution was optimizing the pipeline, it collected
nine responses. Optimizing included using cache, rewriting the pipeline to be more
efficient and running tests or other parts in parallel. Improving hardware was the
solution of three respondents. The fourth statement which received mostly posi-
tive answers was number 6, which stated that manual steps stall the development
work. For this problem adding more automation was the solution of five respon-
dents. Six respondents suggested redefining the process which includes a manual
step. One respondent encouraged to document and improve the processes for the
manual steps, and to look for bottlenecks and improve their throughput. Also two
respondents suggested changing the architecture of the software.

Only a few respondents agreed to statements 1 , 3 and 7. For this reason

CHAPTER 5. RESULTS OF THE CASE STUDY 45

we don’t go through the open questions about the solutions for these problems.
When respondents were asked about other problems relating CD, one respondent
brought up the monolithic architecture of software.

Next we analyze the prevalence of problems represented in figure 5.6 below.
The question regarding prevalence was voluntary and not all answered it. The
problems are ranked according to the highest median answer. If the problems have
the same median, sum of ”Often” , ”Very often” and ”In all projects” decides the
order. The most prevalent problems were number 2, relating to lack of automated
test cases and number 4 relating to schedule pressures leading to technical debt.
Both received median of ”Very often”. All other problems received the median
answer of ”Rarely”.

Figure 5.6: Prevalence of CD problems. (n=24), but the number of respondents
varied from 15 to 22 per statements

CHAPTER 5. RESULTS OF THE CASE STUDY 46

5.2.3 Best practices related to continuous deployment

Table 5.2: Description of best practices
Abbreviation in the figures Description in survey
1) Automated database
schema migrations

Based on my experience, automated database schema
migrations in the pipeline is a good practice

2) Run tests against
database dump

Based on my experience, running automated acceptance
testing (with Robot Framework for example) against
respectfully handled production database dump in the
pipeline is a good practice

3) Run tests in parallel Based on my experience, running automated acceptance
tests (with Robot Framework for example) parallel in
the pipeline is a good practice

4) Pipeline template Based on my experience, starting the project with com-
plete pipeline template is a good practice.

5) Support team Based on my experience, having a support team, which
enables efficient tools and access rights for development
team is a good practice

6) Digital code reviews Based on my experience, allowing changes into master
branch of version control only by digital code reviews
(for example pull requests) accepted by another devel-
oper is a good practice

Table 5.2 represents the numbering, short format used in the figures, and the full
format of how the best practices were asked in the survey.

Figure 5.7: Acknowledgement of best practices in CD (n=24)

CHAPTER 5. RESULTS OF THE CASE STUDY 47

The best practices were examined in acknowledgement and prevalence in the
same manner as problems described in previous section. The structure of the
questions were similar. Also the data coding of the open question related to
prevalence and calculating the response rate was made in similar fashion. Figure
5.7 represents the acknowledgement related to best practices of CD. It can be
seen that all of the practices received mostly positive answers, as there are only 4
responses in options ”Disagree” or ”Strongly disagree”.

Figure 5.8: Prevalence of best practices in CD (n=24), but the number of respon-
dents varied from 12 to 18.

Figure 5.8 above represents the prevalence of best practices. It can be seen
that the best practices are not happening often in the projects. Practice number 3,
running automated acceptance tests parallel, was the most prevalent practice.On
the open question one respondent described that the tests should be independent:

”If the tests are properly written, they should be completely independent.
Therefore, the order in which you run them or executing in parallel does not

affect the result.”

Using digital code reviews (practice 6) was another common best practice. This
citation from respondent gives examples why it is considered a best practice:

”We have discovered many bugs when doing a peer review of the code before
merging a merge request. It is also a good way for more people in the team to

know and understand the code that is changed.”

CHAPTER 5. RESULTS OF THE CASE STUDY 48

Some practices received answers why they were not used. Practice number 2,
Running automated acceptance tests against respectfully handled database dumb
was the least prevalent best practice. Three respondents mentioned that GDPR
regulations relating handling personal information creates challenges to use this
best practice. Three respondents stated that the reason for not having a separate
support is lack of organizational resources.

5.2.4 Team structures of continuous deployment

Figure 5.9: Answers related to the need for separate team structures (n=24)

Figure 5.9 represents the responses to questions about team structures. Both
questions received answers from all options. In the qualitative answers section
the positive sides of cross competence teams were brought up. On the release
engineering question five respondents brought up that the responsibility of release
engineering should be divided for the whole team, as in this answer:

”Product team should have full responsibility over their product, including
releasing it and running it in production.”

Also in the separate testing team shared responsibility gathered most answers
in the open question. This answer explains the motivation for cross competence
teams:

”Teams should be capable of handling almost any story independently. When
creating specialised teams (like a test team) you are reducing this independence
and increasing complexity. Cross competence teams are almost always the better

choice.”

CHAPTER 5. RESULTS OF THE CASE STUDY 49

5.2.5 Summary

Our survey indicated strongly that CD is the preferred way to do software devel-
opment. Relating RQ1, the main reason for using CD in the survey was faster
feedback. Respondents agreed that more frequent releases lead to less stress dur-
ing the project, because it is easier to fix bugs, and because smaller releases have
fewer risks.

The survey acknowledged the following problems related to CD, which answer
to RQ2:

• Lack of automated test cases lead to bugs and problems in the future

• Schedule pressures lead to sloppiness and technical debt

• Long build times stall the development

• Manual steps stall the development

Relating to RQ3: The following problems received a median of ”Very often”:

• Lack of automated test cases lead to bugs and problems in future

• Schedule pressures lead to sloppiness and technical debt

To answer RQ4, most acknowledged best practices where:

• Running automated acceptance tests parallel in the pipeline

• Having a support team, which enables efficient tools and access rights for
the development team

• Allowing changes into master branch of version control only by digital code
reviews accepted by another developer

RQ5: The most common best practice was ”Running automated acceptance
tests parallel in pipeline”, which had the median answer ”Often”. Digital code
reviews had the median answer of ”Half of the time”. Questions related to using
separate team structure received answers in both Disagree, Neutral, and Agree
sections.

CHAPTER 5. RESULTS OF THE CASE STUDY 50

5.3 Summary of results

In this section we summarize the results of our case study and reflect how it
answered to our research questions:

RQ1 asked ”What are the benefits of continuous deployment?”. All three data
sources indicated that CD is the preferred way of working when doing software
development. Literature review brought up less stress during development [5, 23,
29], faster releases to production [5, 23, 25] and increased productivity [4, 5, 19, 23,
29]. The interviews brought up the decreased human errors, and faster releases to
production. The survey had answers which emphasized that the reason for using
CD is faster feedback which is caused by more frequent releases. The survey also
supported the point brought up in the literature review: More frequent releases
lead to less stress during the project.

Table 5.3: Summary of the identified problems
Problem Literature

review
Interviews Survey

Lack of automated test cases leads to prob-
lems in further development

X X X

Technical debt and schedule pressures lead
to technical debt and sloppiness

X X X

Long build times stall the development X X X
Database schema migrations lead to failing
deployments

X

Manual steps stall the development X
CD related tools don’t support the develop-
ment work

X

Automated acceptance tests are not reveal-
ing bugs

X X

Lack of knowledge of developers X X
Customer environment X X

CHAPTER 5. RESULTS OF THE CASE STUDY 51

Table 5.3 summarizes the results to RQ2 ” Which problems happen in con-
tinuous deployment?”. The lack of automated test cases, technical debt and long
build times were identified by all three sources.

RQ3 ”How often do the problems happen in continuous deployment projects?”
is related to the prevalence of problems in the survey and to the results of literature
review. The following practices happened most often in continuous deployment
projects: Median answer for their prevalence was ”Very often”:

• Schedule pressures lead to technical debt and sloppiness

• Lack of automated test cases in the pipeline lead to bugs and problems in
further development

Lack of automated tests was also recognized in thje literature review. Table 5.4
summarizes the best practices, which answer RQ4, ”Which best practices improve
the continuous deployment process”:

Table 5.4: Summary of best practices
Best practices Literature

review
Interviews Survey

Digital code reviews X X
Run automated acceptance tests in parallel X X X
Use pipeline template X X X
Support team X X X
Automated database schema migrations X X
Run tests against database dump X X
Microservice architecture X
TDD X

CHAPTER 5. RESULTS OF THE CASE STUDY 52

RQ5 ”How often are the best practices used in continuous deployment projects?”
was taken into account in the case study in the prevalence of best practices in the
survey. The most prevalent best practice was running automated acceptance tests
in parallel, which had a median of ”Often”. Digital code reviews received the me-
dian of ”Half of the time”. Digital code reviews happened more regularly in the
case study in the literature review. There more than half of the respondents used
code reviews all of the time.

Chapter 6

Discussion

In this chapter we discuss the results of our case study. We start by discussing the
benefits of continuous deployment. Then we discuss the identified problems, best
practices, and their prevalence. They are both divided into development related
and organizational related. Then we discuss the results relating to team structures.
We end the chapter by evaluating the validity of our research.

6.1 Benefits of continuous deployment

Both literature review and case study indicated that CD is the preferable way of
doing software development. One of the benefits of CD is more frequent releases
to production. Bug in a popular system can have serious consequences. CD
enables fast releases to the production environment, which can mean that bugs
can be fixed within minutes once it is noticed. It is common that in software
projects requirements change during as the product evolves. More frequent releases
enable fast reactions to changing market needs. The development team can deploy
features quickly and receive feedback from stakeholders.

Decreased stress of developers was also a benefit of CD. Deployments are made
more often when using continuous deployment. This means that the developers
become more experienced at making deployments as it becomes a daily task. They
will not become afraid of hectic release days, where tens of code changes are
deployed on the same day. Test automation might also be one reason for stress
reduction. In CD the final decision to release the product is up to test automation,
not single developer. This can lower the stress of the developer, as he/she is not
in charge of the quality assurance phase: It is the whole team’s responsibility to
implement the test automation in a way that it covers all the business critical
features.

This result signal that companies should invest resources on continuous deploy-

53

CHAPTER 6. DISCUSSION 54

ment. CD is the preferred way of making software, as it enables faster changes to
market needs and decreases the stress of developers. Achieving these benefits is
worthwhile, as it enhances the quality of both development team and the product
life cycle.

6.2 Acknowledgement and prevalence of prob-

lems

Next we discuss both the development and organizational related problems. We
go through the impacts of the results and what could explain them.

6.2.1 Development related problems

The respondents of the survey acknowledged 4 problems out of 7. These 4 problems
were also identified in the interviews. This means that some of the problems found
in the literature review were not acknowledged as problems in our case company.
This can be caused by a difference between the companies investigated in the case
studies of literature review and our case company.

Our case study indicated that neglecting automated test cases and technical
debt are problems in CD projects. These two problems are strongly linked to each
other. Automated tests can cause problems in software development if they are
neglected. Neglecting can mean that there are not enough tests, or the tests don’t
have high enough quality, which means that the tests don’t detect bugs or they
don’t produce the same end result when executed multiple times, which means that
the tests are not reliable enough. In chapter 2.9 we introduced technical debt in
software development. Technical debt can also occur in testing, and neglecting
automated tests can be thought of as one type of technical debt. The reason for
technical debt can be schedule pressures, which was identified both in literature
review and in the case study

In CD projects automated tests are the decision maker is software fit for deploy-
ment or not. In this case every business critical feature should have an automated
test case to guarantee the feature works in the desired way. Software without
tests can be thought of as technical debt, since the missing automated test is a
thing that should be done, but it is left for later. Technical debt is mostly caused
when trying to achieve results fast, and leaving the optimized solution to be done
later. The root cause of technical debt might be linked to organizational causes:
In the literature review we noticed that sometimes organizations don’t support CD
or understand what investments it requires: This might lead to under resourced
project which leads to cutting corners and causing technical debt.

CHAPTER 6. DISCUSSION 55

Our study identified long build times as one of problems in CD: This problem
was acknowledged as a problem in literature review, interviews and the survey.
The root cause for long build times can be simple: As the software grows, the
amount of automated test cases grows. More tests in the pipeline means longer
build times. Long build times decreases capability to build and deploy the software
using CD. Long build times can lead developers to skip the tests, which can lead to
bugs going to production as the tests are no longer detecting them. In a way long
build times can be associated with technical debt: It can become an issue, which
the team is aware of, but is not solved because the priority of the team might be
doing new features and dealing with the long build times later. Stakeholders might
not be pleasant, if the team uses most of their development time fixing long build
times instead of developing features that make their product more provide more
business value. The articles of literature didn’t specify long builds as an form of
technical debt.

Quality of automated tests was identified as an problem in the literature review,
but not in the case study. The SLR brought up many cases, where the poor test
quality caused problems in development work. However none of the articles from
our literature research brought up this problem. It might be, that the sample
from our literature research is so small, that none of the articles happened to
have this problem. Another option would be that the test automation skills of
development teams or the tools have improved during recent years, leading to the
possibility of implementing high quality automated tests easier. Lack of quality
in automated tests was not recognized as a problem in the survey of the case
study. The reason might be that Eficode’s consultancy is based on implementing
high quality automated tests, which can be used in the CD pipeline. Database
schema migrations was recognized as an problem in both literature review and the
interviews, but not in the survey. The reason for this might also be that Eficode’s
professionals have a high routine to implement robust CD pipelines, which includes
taking into account database schema migrations.

Literature review stated that software architecture can cause problems for the
development team. This problem was not asked in the interviews or survey, be-
cause it was noticed from the literature review after the survey was closed. However
one respondents of the survey answered that monolithic applications are a problem
in CD. Both literature review and interviews agreed that lack of knowledge of de-
velopers is one problem of implementing CD. It is obvious that if the development
team lacks the skills or knowledge how to develop software using CD is prob-
lematic. This problem can lead to other problems, which are already mentioned
above.

Both the literature review and the survey of case study stated that lack of
automated tests happen often in software projects. In literature review automated

CHAPTER 6. DISCUSSION 56

unit tests were often used, but automated acceptance tests were not commonly
used. The survey for the case organization didn’t specify which test type are
lacking, but the lack of automated tests was happening very often. These results
mean that the most acknowledged problems were also most prevalent. From this
knowledge can be concluded that projects are so busy that quality is compromised.
Future studies could focus on the reasons why lack of tests happen in CD projects:
Is it because the development team is missing the skills to implement them, or is
it the schedule pressures caused by the organization?

6.2.2 Organizational problems

Adaptation of CD can be painful and unproductive if the development team is not
capable of using the tools needed for CD. In the literature review having the right
tools was seen as a problem when using CD. The tools can make the organization’s
IT-department run in circles: If the development team finds the tools unpleasant,
the IT department needs to find new tools. This is repeated until the right tools
are found, or the development needs to be started and the developers need to cope
with tools that are not optimal. Also handling access rights was seen as a blocker
for development work. Tools and access rights were not recognized as an problem
in the survey. This might link to Eficode’s consultancy is based on using tools
to help customer projects being more successful. This includes teaching customer
organization which tools are best for their situation and how to use them. Thus
tools are not seen as a problem in CD.

According to literature review and the interviews of case study, lack of orga-
nization’s support CD can be a major problem. This problem can heavily affect
how resources are invested towards CD. Lack of resources can for example lead
to a lack of suitable tools to use. Lack of organizational support can also lead to
the developers not having enough support and trust to implement CD. Also, some
organizations and industries don’t fit for CD so well. This was also a problem
that was recognized in the literature review and the interviews of case study. For
these industries CD process needs to be tailored or replaced for some other choice.
All of these organizational problems can be huge blockers for implementing CD
efficiently. Organizations should take into account that development teams have
enough knowledge to implement CD efficiently. Problems relating to customer
environments were stated in both literature review and interviews.

Both literature review and our case study noticed that schedule pressures is
a problem in CD. In the survey for the case organization lack of schedule pres-
sures was happening very often. This problem makes the development team more
pressured and vulnerable to mistakes. The schedule pressures can be caused by
the organization, for example stakeholders asking for too much work without con-
sidering the realistic abilities of the development team. Organizational issues are

CHAPTER 6. DISCUSSION 57

important to solve quickly, otherwise they will expand to development related
problems. For example, if the development team is feeling schedule pressures it is
likely that it will cause the team not having enough to implement automated test
cases.

Future studies could focus on the root causes of organizational problems, for
example which factors lead to schedule pressures in CD projects in an organiza-
tion?Lavallee et al. [18] noticed in their case study, that upper management might
force development team to assignments, which is not optimal for the quality of the
software. This habit is endorsed by the fact that upper management is not usually
up-to-date with the project status [18].

This result shows, how organizational decisions can affect software quality neg-
atively. This is a notified problem in software development in general, and doesn’t
affect only CD projects: This article didn’t specify was the project using CD or
not. However, CD projects can encourage the development team to neglect quality
if they are pressured by organization: For example CD can be used to deploy the
software without test automated tests. In this way there is no quality assurance
phase in the pipeline, but the software is deployed rapidly which might please the
organization.

6.3 Acknowledgement and prevalence of best prac-

tices

Next we discuss both the development and organizational related best practices.
We go through the impacts of the results and what could explain them.

6.3.1 Development related best practices

Digital code reviews were encouraged to keep enforcing the quality of the software
in the interview and the survey. The literature review didn’t bring up digital code
review as an best practice, but that does not exclude that the CD projects would
have used it. Digital code review is a good practice for making sure that the tech-
nical debt and untested code are not increasing in the first place. The respondents
of the survey suggested adding automated tests and resources to payback techni-
cal debt as a solution to the problem of technical debt and lack of automated test
cases. These solutions work for fixing the issue when harm is already done.

Running automated tests in parallel tests makes the test execution time shorter.
This method was also introduced in literature review, interviews and the survey.
In order to run test cases parallel, they need to be independent from each other. In
this way it does not matter if the tests are executed at the same time. This requires

CHAPTER 6. DISCUSSION 58

knowledge about test automation from the development team. If the team lacks
this knowledge it is likely that the change process will be postponed until later.
Another solution for long build times was to upgrade the hardware in the CI-server.
This method was also covered by all three data sources. Upgrading hardware
decreases the build times as the computing power of the CI-server increases.

These two solutions have different strengths and weaknesses. Upgrading hard-
ware can make build times shorter temporarily, but does not solve the root cause.
Let’s imagine a situation where the automated acceptance tests phase takes 45
minutes in the pipeline. After upgrading the hardware the testing phase might
be reduced to 20 minutes. However, running tests in parallel might reduce the
testing time to about 15 minutes by running the tests in 3 threads. When this is
combined to upgrading the hardware the build times could be under 10 minutes.
Upgrading the hardware might be a short term solution to make the build times
shorter, but running the tests in parallel can make the build times short and help
them to sustain the short time easier. On the other hand, parallel tests require
more knowledge and hands on work than upgrading hardware. It would be a good
thing that the development team discusses these trade offs when facing long build
times and figuring out possible solutions.

The literature review and few respondents of the survey suggested redesigning
architecture as a solution to long build times. This solution solves the problem,
by making each part of the software independent: Thus each part can be built,
tested and deployed independently in the pipeline. This saves time as the develop-
ment team can run pipeline tasks only parts that are wished. For example if the
application has two parts: Frontend and Backend and the changes are only made
to frontend. If the software is monolithic, the pipeline will also build the backend
before testing frontend. If the software would be microservice architecture, the
CI-server can test the frontend only because the backend has not changed.

The interviews and survey encouraged to run automated database schema mi-
grations against database dump. This practice allows the development team to
have similar data in tests as it is in production. The literature reviews did not
recognize this best practice. The reason this might be, that this technique is so
detailed, that it might not be covered in the CD studies. Same applies to auto-
mated database schema migrations: They were not recognized in any CD related
studies. However this was recognized as best practice for both interviews and the
survey.

Running automated test cases parallel in the pipeline received the highest me-
dian answer in the survey: ”Often”. However in the study of literature review
none of the projects used parallel tests. This is a significant difference between
our case organization and the organisation in the literature research. Even though
the results of two surveys are not comprehensive to make assumptions, the sign

CHAPTER 6. DISCUSSION 59

that some organisations don’t use parallel tests at all indicates that this practice
is not probably widely used in industry in general. Median for digital code reviews
was ”Half of the time”. In one study of the literature review the code reviews were
used more often: More than half of the respondents used digital code reviews all of
the time. The prevalence of digital code reviews could be higher considering that
it didn’t receive any negative answers in the acknowledgement part of the survey.
Future studies could focus on the reason why the prevalence of development re-
lated practices is not higher: If an organization identifies a set of best practices,
it would be assumed that it would be used in almost all of the projects. However
if the best practice is really technical, the development team might not have the
skills to implement it in reasonable time.

6.3.2 Organizational best practices

Using already made pipeline template was identified best practice in literature
review, interviews and survey. The pipeline template can fasten the adaption for
the development team. It can have a significantly positive affect in the organization
since many development teams can use the pipeline template. CD process can be
much more efficient, if the culture and team spirit is supported by the organization.

Literature review and our case organization indicated that support team, which
enables the development team access right and tools is a good practice. The
responsibility of the support team is to enable tools and access rights for the
development team so they can focus on development. This creates much more
higher efficiency for development work, and also allows the support team to be
able to investigate the usage of new tools, and to evaluate the usefulness of them.
As a new project starts, the team should discuss what tools to use, and who are
the persons that grant the access rights for these tools and maintain them.

The literature review encouraged to involve customers more in the CD process.
However this aspect was not taken into account in the interviews or survey. Pro-
moting team mindset and embracing supporting culture was another best practice,
which was brought up in the literature review, but not taken into account in the
interviews or the survey.

Organizational best practices are important, because they enable the develop-
ment team to work more efficiently, and to fight against the problems that they are
facing. The data of this case study suggested that organizational best practices are
identified, but not widely used. Support team was one of the most acknowledged
best practice, but it received a median of ”Rarely”. The reason for not having
a support team was lack of resources. Another potential reason for not following
acknowledged best practices is lack of expertise. Future studies could focus more
deeply into why organizations are not capable of using these best practices.

CHAPTER 6. DISCUSSION 60

6.4 Team structures

Team structures of software development is a hot topic to discuss, as agile mind-
set promotes cross-competence teams that are able to develop features from the
requirements to the deployment. However, in some industries, for example health-
care more thorough testing is required and thus a separate testing team might be
beneficial. The preference of team dynamics is domain and team specific issue,
where there is not a single answer.

The literature review identified separated teams as a challenge. The solution
for this problem was to redefine team structures that they suit development needs.
The case study did not indicate clear sign of a certain team structure being the
most productive for CD projects. This might link that every project is unique
and the environment behind it affects what kind of team structures fit the project
best. For example the domain, team size, experience might affect the team struc-
ture. Thus in new CD projects the team structure needs to be discussed with the
development team and stakeholders by taking account following variables:

• Domain regulations

• Organizational boundaries

• Team size

• Experience of the team

• Stakeholder needs

For example, if the domain is a healthcare system for government projects, that
affects people’s lives. The regulation might be that every feature is acceptance
tested by a named person. This can set organizational boundaries, that the team
might need to name that are going to implement the testing. This needs to be taken
into account when designing the team size and how experienced the developers
should be. Separate testers crucially affect the development process of this team.
Another example could be a company, which is developing a MVP for B2C product
and trying to achieve a working prototype as fast as possible to receive feedback
from end users. In this case cross-competence team is probably the most productive
solution to produce software fast, which quality is high enough to produce the
working solution to end users.

6.5 Validity of research

Runeson and Höst [28] discussed that the validity of a case study denotes the
trustworthiness of the result, to what extent the result is true and not biased by

CHAPTER 6. DISCUSSION 61

the researcher’s opinion. Construct validity reflects to what extent the operational
measures that are studied really represent what the researcher has in mind and
what is investigated according to the research questions. The construct validity was
taken into account by planning the questions on interviews and the survey carefully.
However some of the questions in the survey was misunderstood: Many respon-
dents understood the selection of ”No experience” choice poorly: They stated that
they agreed /disagreed with the problem, and then wrote in qualitative part that
the problem or practice has never occurred for them in practice.

This research has taken into account both internal and external validity. Inter-
nal validity is concerned when causal relations are examined. When investigating
whether one factor affects the examined factor there is a risk that the examined
factor is also affected by a third factor [28]. Internal validity is taken into account
in this research by planning the survey to have open questions, which allow the
respondents to share their opinions on any factors which affect the statement. Ex-
ternal validity is concerned to what extent it is possible to generalize the findings,
and to what extent are of interest to other people investigated case [28]. The re-
sults are interesting to other software consultancy companies, because they enable
them to capitalize the benefits of CD. This can boost productivity of software
development and save costs.

Reliability is concerned with to what extent the data and the analysis are
dependent on the specific researcher. Threats to this aspect of validity is, for ex-
ample, if it is not clear how to code collected data or if questionnaires or interview
questionnaires are unclear [28]. The survey did not receive as many answers as
was planned. It received 24 answers from an organization of over 150 software de-
velopers / DevOps consultants. Also the response rates for prevalence of problems
and best practices was relatively low. Also some of the respondents stated that
the questions were unclear in their answers. The quality of the interview questions
affects the reliability of the research negatively. Our literature review contained an
SLR and our own literature research, which contained 8 articles. This literature
research is not as detailed as the SLR which was cited. More thorough litera-
ture research might provide more accurate results. Also more quantitative results
relating the prevalence of problems and best practices are needed.

Chapter 7

Conclusions

This thesis has found results, which indicate that CD has a number of benefits,
which makes it a practical process for software development and worth researching.
Faster releases to the production environment allow faster feedback and makes
fixing defects faster. Using continuous deployment leads to more productive and
less stressed developers, which should be the target for all software companies.

From the literature review and our case study we identified many problems,
which harm the continuous deployment process. Schedule pressures and lack of
automated tests were problems that happened most often in our case organization
and literature review, which make them valuable for future research. Future studies
could investigate the root cause of lack of automated tests and schedule pressures
in continuous deployment projects.

Our study investigated best practices, which solve the identified problems and
enable more efficient use of continuous deployment. Some of the best practices
answered to identified problems: Running automated tests in parallel is a solution
to long build times. Some of the best practices enhance the overall quality of the
development work: For example digital code review helps the team to ensure the
quality of rapid code changes.

However none of the best practices were highly used in our case organization
or literature review. Future researches could investigate why these best practices
are not frequently used. Does this problem link to the schedule pressures that was
identified in the problems: Are organisations prioritizing releasing software quickly
for customers instead of focusing on using the best practices to ensure quality?

62

Bibliography

[1] Adams, B., and McIntosh, S. Modern release engineering in a nutshell
– why researchers should care. In 2016 IEEE 23rd International Conference
on Software Analysis, Evolution, and Reengineering (SANER) (March 2016),
vol. 5, pp. 78–90.

[2] Bacchelli, A., and Bird, C. Expectations, outcomes, and challenges of
modern code review. In Proceedings of the 2013 international conference on
software engineering (2013), IEEE Press, pp. 712–721.

[3] Balaji, S., and Murugaiyan, M. S. Waterfall vs. v-model vs. agile: A
comparative study on sdlc. International Journal of Information Technology
and Business Management 2, 1 (2012), 26–30.

[4] Callanan, M., and Spillane, A. Devops: Making it easy to do the right
thing. IEEE Software 33, 3 (May 2016), 53–59.

[5] Chen, L. Continuous delivery: Huge benefits, but challenges too. IEEE
Software 32, 2 (Mar 2015), 50–54.

[6] Chen, L. Continuous delivery: overcoming adoption challenges. Journal of
Systems and Software 128 (2017), 72–86.

[7] Chen, L. Microservices: architecting for continuous delivery and devops. In
2018 IEEE International Conference on Software Architecture (ICSA) (2018),
IEEE, pp. 39–397.

[8] Claps, G. G., Svensson, R. B., and Aurum, A. On the journey to
continuous deployment: Technical and social challenges along the way. Infor-
mation and Software technology 57 (2015), 21–31.

[9] Colomo-Palacios, R., Fernandes, E., Soto-Acosta, P., and Lar-
rucea, X. A case analysis of enabling continuous software deployment
through knowledge management. International Journal of Information Man-
agement 40 (2018), 186–189.

63

BIBLIOGRAPHY 64

[10] Cunningham, W. The wycash portfolio management system. ACM SIG-
PLAN OOPS Messenger 4, 2 (1992), 29–30.

[11] Debroy, V., and Miller, S. Overcoming challenges with continuous in-
tegration and deployment pipelines when moving from monolithic apps to
microservices: An experience report from a small company. IEEE Software
(2019).

[12] Debroy, V., Miller, S., and Brimble, L. Building lean continuous in-
tegration and delivery pipelines by applying devops principles: a case study
at varidesk. In Proceedings of the 2018 26th ACM Joint Meeting on Euro-
pean Software Engineering Conference and Symposium on the Foundations of
Software Engineering (2018), ACM, pp. 851–856.

[13] Gmeiner, J., Ramler, R., and Haslinger, J. Automated testing in the
continuous delivery pipeline: A case study of an online company. In 2015
IEEE Eighth International Conference on Software Testing, Verification and
Validation Workshops (ICSTW) (April 2015), pp. 1–6.

[14] Haugset, B., and Hanssen, G. K. Automated acceptance testing: A lit-
erature review and an industrial case study. In Agile 2008 Conference (2008),
IEEE, pp. 27–38.

[15] Kitchenham, B., and Pfleeger, S. L. Principles of survey research part
4: questionnaire evaluation. ACM SIGSOFT Software Engineering Notes 27,
3 (2002), 20–23.

[16] Kitchenham, B. A., and Pfleeger, S. L. Principles of survey research:
part 3: constructing a survey instrument. ACM SIGSOFT Software Engi-
neering Notes 27, 2 (2002), 20–24.

[17] Kruchten, P., Nord, R. L., and Ozkaya, I. Technical debt: From
metaphor to theory and practice. IEEE Software 29, 6 (Nov 2012), 18–21.

[18] Lavallée, M., and Robillard, P. N. Why good developers write bad
code: An observational case study of the impacts of organizational factors on
software quality. In 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering (2015), vol. 1, IEEE, pp. 677–687.

[19] Leppänen, M., Mäkinen, S., Pagels, M., Eloranta, V.-P., Itkonen,
J., Mäntylä, M. V., and Männistö, T. The highways and country roads
to continuous deployment. Ieee software 32, 2 (2015), 64–72.

BIBLIOGRAPHY 65

[20] Mäkinen, S., Lehtonen, T., Kilamo, T., Puonti, M., Mikkonen, T.,
and Männistö, T. Revisiting continuous deployment maturity: a two-year
perspective. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied
Computing (2019), ACM, pp. 1810–1817.

[21] Mens, T., and Tourwe, T. A survey of software refactoring. IEEE Trans-
actions on Software Engineering 30, 2 (Feb 2004), 126–139.

[22] Meyer, M. Continuous integration and its tools. IEEE Software 31, 3 (May
2014), 14–16.

[23] Neely, S., and Stolt, S. Continuous delivery? easy! just change every-
thing (well, maybe it is not that easy). In 2013 Agile Conference (Aug 2013),
pp. 121–128.

[24] Olsson, H. H., Alahyari, H., and Bosch, J. Climbing the ”stairway
to heaven” – a mulitiple-case study exploring barriers in the transition from
agile development towards continuous deployment of software. In 2012 38th
Euromicro Conference on Software Engineering and Advanced Applications
(Sep. 2012), pp. 392–399.

[25] Parnin, C., Helms, E., Atlee, C., Boughton, H., Ghattas, M.,
Glover, A., Holman, J., Micco, J., Murphy, B., Savor, T., Stumm,
M., Whitaker, S., and Williams, L. The top 10 adages in continuous
deployment. IEEE Software 34, 3 (May 2017), 86–95.

[26] Polo, M., Reales, P., Piattini, M., and Ebert, C. Test automation.
IEEE software 30, 1 (2013), 84–89.

[27] Rogers, R. O. Acceptance testing vs. unit testing: A developer’s per-
spective. In Conference on Extreme Programming and Agile Methods (2004),
Springer, pp. 22–31.

[28] Runeson, P., and Höst, M. Guidelines for conducting and reporting case
study research in software engineering. Empirical software engineering 14, 2
(2009), 131.

[29] Savor, T., Douglas, M., Gentili, M., Williams, L., Beck, K.,
and Stumm, M. Continuous deployment at facebook and oanda. In 2016
IEEE/ACM 38th International Conference on Software Engineering Compan-
ion (ICSE-C) (May 2016), pp. 21–30.

[30] Shahin, M., Babar, M. A., and Zhu, L. Continuous integration, delivery
and deployment: a systematic review on approaches, tools, challenges and
practices. IEEE Access 5 (2017), 3909–3943.

BIBLIOGRAPHY 66

[31] Spinellis, D. Version control systems. IEEE Software 22, 5 (Sep. 2005),
108–109.

[32] Stray, V., Moe, N. B., and Hoda, R. Autonomous agile teams: Chal-
lenges and future directions for research. In Proceedings of the 19th Interna-
tional Conference on Agile Software Development: Companion (2018), ACM,
p. 16.

[33] Villamizar, M., Garcés, O., Castro, H., Verano, M., Salamanca,
L., Casallas, R., and Gil, S. Evaluating the monolithic and the microser-
vice architecture pattern to deploy web applications in the cloud. In 2015 10th
Computing Colombian Conference (10CCC) (2015), IEEE, pp. 583–590.

[34] Zhang, Y., Vasilescu, B., Wang, H., and Filkov, V. One size does not
fit all: an empirical study of containerized continuous deployment workflows.
In Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software En-
gineering (2018), ACM, pp. 295–306.

Common questions relating to CD

1. What is your background related to CD?
2. What are the benefits of CD?
3. What role does CD play in Eficode’s software projects?
4. Do you consider CD a necessity in software projects?
5. Can you always use CD in software projects?
6. What are some things the team needs to be aware of before CD is useful?

Problems related to CD

1. What are the most common problems you have faced in software projects related to
CD?

2. What is the solution to these problems?
3. Do automated tests often cause problems in CD?
4. Do long build times often cause problems in CD?
5. Do client organizations give enough support in CD projects?

Team structures

1. What opinions do you have relating to a separate testing team?
2. What opinions do you have relating to a separate release engineering team?
3. Any other opinions relating to team structures in CD?

Survey for developers of Eficode

1. What you would want to ask from Eficode’s developer relating to best practices of
CD?

BIBLIOGRAPHY BIBLIOGRAPHY

Appendix A: Interview questions for team leader

67

Common questions relating to CD

1. What is your background related to CD?
2. What are the benefits of CD?
3. What role does CD play in Eficode’s software projects?
4. Do you consider CD a necessity in software projects?
5. CD is not always an option, sometimes we use Continuous Delivery, what does it

mean for developers? (branching in version control, waiting for acceptance phase)
6. What are some things the team needs to be aware of before CD is useful?
7. Using tools in CD, which problems or benefits can occur?
8. Are automated acceptance tests against staging environment a requirement for CD?
9. Are automated database schema migrations a requirement for CD?

Problems related to CD

1. What are the most common problems you have faced in software projects related to
CD?

2. What is the solution to these problems?
3. Do automated tests often cause problems in CD? How is this problem fixed?
4. Do long build times often cause problems in CD? How is this problem fixed?

Upgrading hardware, optimizing tests?
5. How does technical debt and schedule pressures show in CD projects?

Team structures and best practices

1. Which kind of developers are preferred when using CD?
2. What opinions do you have relating to a separate testing team?
3. What opinions do you have relating to a separate release engineering team?
4. Any other opinions relating to team structures in CD?
5. Opinions about pull requests when using CD?

BIBLIOGRAPHY BIBLIOGRAPHY

Appendix B: Interview questions for CTO

68

01/11/2019 Continuous Deployment practices survey

https://docs.google.com/forms/d/1fjb03zRYl9sIOdCmocc_gY_i58OLOMxp2I55DtRIzKg/edit 1/12

Continuous Deployment practices survey
This survey focuses on Continuous Deployment and Continuous Delivery practices. Both practices
are referred to as 'CD' in the survey. The goal of the survey is to collect CD related problems and best
practices from work experience.

Thank you for contributing!

* Required

Background questions
CD = Continuous Delivery/Continuous Deployment, where the deployment happens through the
pipeline automatically or manually

1. How many years of work experience do you
have in software development? *

2. In how many work related CD projects (1
project consists of 1 pipeline) have you
worked on? *

3. What responsibilities did you have in the CD projects you worked on? *

Questions related to attitudes towards CD
CD = Continuous Delivery/Continuous Deployment, where the deployment happens through the
pipeline automatically or manually

4. I prefer using CD in software projects. *
Mark only one oval.

 Strongly disagree

 Disagree

 Neutral

 Agree

 Strongly agree

BIBLIOGRAPHY BIBLIOGRAPHY

Appendix C: Survey

69

01/11/2019 Continuous Deployment practices survey

https://docs.google.com/forms/d/1fjb03zRYl9sIOdCmocc_gY_i58OLOMxp2I55DtRIzKg/edit 2/12

5. Which personal experiences lead to this answer?

6. More frequent releases lead to less stress during a project *
Mark only one oval.

 Strongly disagree

 Disagree

 Neutral

 Agree

 Strongly agree

7. Which personal experiences lead to this answer?

8. In what projects you wouldn't use CD, and why?

Problems related to CD
CD = Continuous Delivery/Continuous Deployment, where the deployment happens through the
pipeline automatically or manually

9. 1. a) Based on my experience, database schema migrations lead to failing deployments *
Mark only one oval.

 No experience

 Strongly disagree

 Disagree

 Neutral

 Agree

 Strongly agree

BIBLIOGRAPHY 70

Appendix C: Survey

01/11/2019 Continuous Deployment practices survey

https://docs.google.com/forms/d/1fjb03zRYl9sIOdCmocc_gY_i58OLOMxp2I55DtRIzKg/edit 3/12

10. 1. b) How often has failing deployments
related to database schema migrations
happened in the projects you have been
working on?

11. 1. c) How has failing deployments related to database schema migrations been solved in
the projects you have been working on?

12. 1. d) If you wish, explain your answers to questions 1 a-c

13. 2. a) Based on my experience lack of automated test cases in the pipeline leads to bugs
and problems in further development *
Mark only one oval.

 No experience

 Strongly disagree

 Disagree

 Neutral

 Agree

 Strongly agree

14. 2. b) How often are bugs and problems
caused by lack of automated test cases in
the pipeline in the projects you have been
working on?

15. 2. c) How has the problems and bugs caused by lack of automated test cases in the
pipeline been solved in the projects you have been working on?

BIBLIOGRAPHY 71

Appendix C: Survey

01/11/2019 Continuous Deployment practices survey

https://docs.google.com/forms/d/1fjb03zRYl9sIOdCmocc_gY_i58OLOMxp2I55DtRIzKg/edit 4/12

16. 2. d) If you wish, explain your answers to questions 2 a-c

17. 3. a) Based on my experience automated acceptance tests (made with Robot Framework
for example) in the pipeline are not revealing bugs *
Mark only one oval.

 No experience

 Strongly disagree

 Disagree

 Neutral

 Agree

 Strongly agree

18. 3. b) How often have automated acceptance
test cases not identified bugs happened in
the projects you have been working on?

19. 3. c) How has the problem of automated acceptance test cases not identifying bugs been
solved in the projects you have been working on?

20. 3. d) If you wish, explain your answers to questions 3 a-c

BIBLIOGRAPHY 72

Appendix C: Survey

01/11/2019 Continuous Deployment practices survey

https://docs.google.com/forms/d/1fjb03zRYl9sIOdCmocc_gY_i58OLOMxp2I55DtRIzKg/edit 5/12

21. 4. a) Based on my experience, schedule pressures lead to sloppiness and technical debt *
Mark only one oval.

 No experience

 Strongly disagree

 Disagree

 Neutral

 Agree

 Strongly agree

22. 4. b) How often has schedule pressures
caused sloppiness and technical debt in the
projects you have been working on?

23. 4. c) How has sloppiness and technical debt caused by schedule pressures been solved in
the projects you have been working on?

24. 4. d) If you wish, explain your answers to questions 4 a-c

25. 5. a) Based on my experience, long build times stall the development *
Mark only one oval.

 No experience

 Strongly disagree

 Disagree

 Neutral

 Agree

 Strongly agree

26. 5. b) How often development has been stalled
by long build times in the projects you have
been working on?

BIBLIOGRAPHY 73

Appendix C: Survey

01/11/2019 Continuous Deployment practices survey

https://docs.google.com/forms/d/1fjb03zRYl9sIOdCmocc_gY_i58OLOMxp2I55DtRIzKg/edit 6/12

27. 5. c) How has the stalled development caused by long build times been solved in the
projects you have been working on?

28. 5. d) If you wish, explain your answers to questions 5 a-c

29. 6. a) Based on my experience, manual steps (for example manual acceptance testing or
doing database schema migrations manually) stall the development *
Mark only one oval.

 No experience

 Strongly disagree

 Disagree

 Neutral

 Agree

 Strongly agree

30. 6. b) How often development is stalled by
manual steps in the projects you have been
working on?

31. 6. c) How has the stalled development caused by manual steps been solved in the projects
you have been working on?

32. 6. d) If you wish, explain your answers to questions 6 a-c

BIBLIOGRAPHY 74

Appendix C: Survey

01/11/2019 Continuous Deployment practices survey

https://docs.google.com/forms/d/1fjb03zRYl9sIOdCmocc_gY_i58OLOMxp2I55DtRIzKg/edit 7/12

33. 7. a) Based on my experience, CD related tools don't support the development work *
Mark only one oval.

 No experience

 Strongly disagree

 Disagree

 Neutral

 Agree

 Strongly agree

34. 7. b) How often has the CD related tools not
supported the development work in the
projects you have been working on?

35. 7. c) How has the problem of CD related tools not supporting development work been
solved in the projects you have been working on?

36. 7. d) If you wish, explain your answers to questions 7 a-c

37. 8. Have you faced any other problems which are not described in questions 1-7?

Best practices related to CD
CD = Continuous Delivery/Continuous Deployment, where the deployment happens through the
pipeline automatically or manually

BIBLIOGRAPHY 75

Appendix C: Survey

01/11/2019 Continuous Deployment practices survey

https://docs.google.com/forms/d/1fjb03zRYl9sIOdCmocc_gY_i58OLOMxp2I55DtRIzKg/edit 8/12

38. 1. a) Based on my experience, automated database schema migrations in the pipeline is a
good practice *
Mark only one oval.

 No experience

 Strongly disagree

 Disagree

 Neutral

 Agree

 Strongly agree

39. 1. b) How often database schema migrations
are automated in the pipeline in the projects
you have been working on?

40. 1. c) If you wish, explain your answers to questions 1 a & b

41. 2. a) Based on my experience, running automated acceptance testing (with Robot
Framework for example) against respectfully handled production database dump in the
pipeline is a good practice *
Mark only one oval.

 No experience

 Strongly disagree

 Disagree

 Neutral

 Agree

 Strongly agree

42. 2. b) How often automated acceptance
testing are run against respectfully handled
production database dump in the pipeline in
the projects you have been working on?

43. 2. c) If you wish, explain your answers to questions 2 a & b

BIBLIOGRAPHY 76

Appendix C: Survey

01/11/2019 Continuous Deployment practices survey

https://docs.google.com/forms/d/1fjb03zRYl9sIOdCmocc_gY_i58OLOMxp2I55DtRIzKg/edit 9/12

44. 3. a) Based on my experience, running automated acceptance tests (with Robot Framework
for example) parallel in the pipeline is a good practice *
Mark only one oval.

 No experience

 Strongly disagree

 Disagree

 Neutral

 Agree

 Strongly agree

45. 3. b) How often automated acceptance tests
are ran parallel in the pipeline in the projects
you have been working on?

46. 3. c) If you wish, explain your answers to questions 3 a & b

47. 4. a) Based on my experience, starting the project with complete pipeline template is a
good practice *
Mark only one oval.

 No experience

 Strongly disagree

 Disagree

 Neutral

 Agree

 Strongly agree

48. 4. b) How often the project has been started
with complete pipeline template in the
projects you have been working on?

49. 4. c) If you wish, explain your answers to questions 4 a & b

BIBLIOGRAPHY 77

Appendix C: Survey

01/11/2019 Continuous Deployment practices survey

https://docs.google.com/forms/d/1fjb03zRYl9sIOdCmocc_gY_i58OLOMxp2I55DtRIzKg/edit 10/12

50. 5. a) Based on my experience, having a support team, which enables efficient tools and
access rights for development team is a good practice *
Mark only one oval.

 No experience

 Strongly disagree

 Disagree

 Neutral

 Agree

 Strongly agree

51. 5. b) How often you have had a support team,
which enables efficient tools and access
rights for development team in the projects
you have been working on?

52. 5. c) If you wish, explain your answers to questions 5 a & b

53. 6. a) Based on my experience, allowing changes into master branch of version control only
by digital code reviews (for example pull requests) accepted by another developer is a
good practice *
Mark only one oval.

 No experience

 Strongly disagree

 Disagree

 Neutral

 Agree

 Strongly agree

54. 6. b) How often changes into master branch
of version control has happened only by
digital code reviews accepted by another
developers in the projects you have been
working on?

55. 6. c) If you wish, explain your answers to questions 6 a & b

BIBLIOGRAPHY 78

Appendix C: Survey

01/11/2019 Continuous Deployment practices survey

https://docs.google.com/forms/d/1fjb03zRYl9sIOdCmocc_gY_i58OLOMxp2I55DtRIzKg/edit 11/12

56. 7. Have you encountered any other best practices, which are not described in questions 1-
6?

Questions related to team structures
Release engineering team refers to team members, which are responsible of doing releases and
maintaining pipeline.

Testing team refers to team members, who are responsible for writing automated acceptance tests, for
example with Robot Framework.

57. Based on my experience, I consider separate release engineering team important in CD
project. *
Mark only one oval.

 Strongly disagree

 Disagree

 Neutral

 Agree

 Strongly agree

58. Explain your answer relating to this team structure. Which experiences lead to this
answer?

59. Based on my experience, I consider separate testing team important in CD project. *
Mark only one oval.

 Strongly disagree

 Disagree

 Neutral

 Agree

 Strongly agree

BIBLIOGRAPHY 79

Appendix C: Survey

01/11/2019 Continuous Deployment practices survey

https://docs.google.com/forms/d/1fjb03zRYl9sIOdCmocc_gY_i58OLOMxp2I55DtRIzKg/edit 12/12

Powered by

60. Explain your answer relating to this team structure. Which experiences lead to this
answer?

61. Do you have any other opinions about team structures in CD projects?

Free comment section
In this chapter you may give any comments relating CD or the questionnaire itself.

62. Are there any positive aspects of CD that you have not yet highlighted?

63. Are there any negative aspects of CD that you have not yet highlighted?

64. Any other comments?

BIBLIOGRAPHY 80

Appendix C: Survey

	Cover page
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Problem statement and research questions
	1.3 Structure of the thesis

	2 Background
	2.1 Continuous integration
	2.2 Continuous deployment
	2.3 Test automation
	2.4 Microservice architecture
	2.5 Version control system
	2.6 Code review
	2.7 Agile development
	2.8 Team structures in software development
	2.9 Technical debt

	3 Research methods
	3.1 Case study
	3.2 Literature review
	3.3 Interviews
	3.4 Survey
	3.4.1 Iterative planning of the survey
	3.4.2 Characteristics of the survey

	4 Results of literature review
	4.1 Content of literature review
	4.2 Benefits of Continuous deployment
	4.2.1 More frequent and faster releases to production
	4.2.2 Quicker fixing of defects
	4.2.3 Increased productivity
	4.2.4 Decreased stress of developers

	4.3 Development related challenges
	4.3.1 Lack of automated tests
	4.3.2 Lack of quality in automated tests
	4.3.3 Long build times
	4.3.4 Lack of knowledge of developers
	4.3.5 Code reviews
	4.3.6 Architecture
	4.3.7 Database schema migrations
	4.3.8 Configuration management
	4.3.9 Team structures

	4.4 Organizational challenges
	4.4.1 Continuous deployment is not always an option
	4.4.2 Lack of support from organization
	4.4.3 Development team missing the right tools
	4.4.4 Schedule pressures
	4.4.5 Customer environment

	4.5 Summary of results

	5 Results of the case study
	5.1 Interviews
	5.1.1 Benefits of continuous deployment
	5.1.2 Problems related to continuous deployment
	5.1.3 Best practices related to continuous deployment
	5.1.4 Summary

	5.2 Survey
	5.2.1 Background questions
	5.2.2 Problems related to continuous deployment
	5.2.3 Best practices related to continuous deployment
	5.2.4 Team structures of continuous deployment
	5.2.5 Summary

	5.3 Summary of results

	6 Discussion
	6.1 Benefits of continuous deployment
	6.2 Acknowledgement and prevalence of problems
	6.2.1 Development related problems
	6.2.2 Organizational problems

	6.3 Acknowledgement and prevalence of best practices
	6.3.1 Development related best practices
	6.3.2 Organizational best practices

	6.4 Team structures
	6.5 Validity of research

	7 Conclusions

