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Abstract
Owing to the increasing energy demand, a highly efficient synchronous machine can
play a crucial role in energy saving by reducing energy consumption. An optimum
machine design requires a good estimation of the power losses, particularly the
iron loss due to the complexity involved with the accurate loss prediction. The
prediction of iron loss in the synchronous machine has drawn massive attraction due
to the extensive use in the power stations and other industrial applications. The
conventional time-stepping method for iron loss calculation is computationally highly
expensive and can be productive as long as the number of computations remains in
a respectable range. However, the situation is different when an excessive number
of computations are required, such as for machine optimization, which turns this
method into unprofitable. The development of fast and computationally efficient
static analysis in case of synchronous machine induce a thought of computing the
iron loss using this method which can minimize the computation cost and substitute
the time consuming traditional loss computation method. Based on this notion, an
effective iron loss computation technique was developed from a single static field
simulation which is much faster than the conventional time-stepping method and
provide a fair accuracy. A two-dimensional Finite Element Method was used, and the
model was integrated with the static FEM analysis program in the in-house software
FCSMEK. The model was applied to a 12.5 MW salient pole synchronous machine,
and the computational accuracy was validated with the conventional time-stepping
simulation.
Keywords dynamic field solution, finite element method, iron losses, synchronous

machine, static field solution
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Symbols and abbreviations

Symbols

a nodal values of magnetic vector potential
A magnetic vector potential
Az magnetic vector potential in z-axis
A cross-sectional area
B magnetic flux density
Bx x components of flux density in Cartesian coordinate
By y components of flux density in Cartesian coordinate
Bφ φ components of flux density in cylindrical coordinate
Br r components of flux density in cylindrical coordinate
B̂ peak value of flux density
Cf skin friction coefficient for cylindrical rotor
Cch hysteresis loss coefficient
Cce eddy current loss coefficient
Cex excess loss coefficient
d thickness
dpole rotor pole depth
D loss difference in percentage
D displacement field
Din inner diameter
E electric field
f supply frequency
f integration function
F bearing load
F source term
Fpm source term of permanent magnet
H magnetic field strength
is stator current
Irms rms value of supply current
J Jacobian matrix
J total current density
JM magnetization current density
k number of phases
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k step size
kr eddy current factor
Ks skin friction coefficient for salient pole rotor
l length
Lew end winding inductance
m number of integration points
n total number of nodes
n number of harmonic orders
ns synchronous speed
N partition number
N shape functions
M magnetization
p number of pole pairs
Pt total power loss
Pcu copper loss
Pfw friction and windage losses
Pstray stray load loss
Pf friction loss
Pw windage loss
Pfe iron loss
Phys hysteresis loss
Ped eddy current loss
Pex excess loss
Pr rotational loss
P number of rotor poles
Pθ rotor pole pitch
Qs number of stator slots
r radial distance from rotor midpoint to node
r residual vector
rout outer radius
R rotation matrix
Rdc DC resistance
Rac AC resistance
Rs stator resistance
S stiffness matrix
t time variable
tn sample step size
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∆t time interval or step
T temperature
T time period
Ts sampling time period
u local coordinate
us stator voltage
v local coordinate
V volume
w weight functions
W number of turns
x x axis in Cartesian coordinate
y y axis in Cartesian coordinate
z z axis in Cartesian or cylindrical coordinate
Z impedance
α temperature coefficient of resistance
γ mass density
Γ boundary of the solution region
φ angular coordinate in cylindrical system
φn phase angle between B and H
µf friction coefficient
µ permeability of material
µo permeability of vacuum
ν reluctivity of material
ρ resistivity of material
ρ20 resistivity at 20oC temperature
σ material conductivity
ω angular frequency
Ω two dimensional problem domain
θ angular distance from rotor midpoint to node
θs stator slot pitch
Ψ flux linkage

Operators

T superscript indicates the matrix or vector transposition
∇. divergence
∇ gradient
∇ × A curl
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d
dt

derivative with respect to variable t

∂

∂t
partial derivative with respect to variable t∑︁

i sum over index i

Abbreviations

1D one-dimensional
2D two-dimensional
3D three-dimensional
AC alternating current
BSRM bearing less synchronous reluctance
DC direct current
DPM dynamic Preisach model
DHM dynamic hysteresis model
FEM finite element method
FE finite element
FEA finite element analysis
FT Fourier transformation
MMF magneto-motive force
MO magnetic object
PM permanent magnet
PMSM permanent magnet synchronous machine
PDE partial differential equations
RMF rotating magnetic field
RMS root mean square
RPM revolution per minute
SyRM synchronous reluctance machine

FCSMEK routines

MESH a finite element mesh generator program for electrical machines
SYDC a static analysis program for the synchronous machine
CIMTD a time-stepping analysis program for electrical machines



1 Introduction

1.1 Background
Over 100 years, the synchronous machine is playing a leading role both as an energy
conversion device in the electrical power generation and certain special applications.
As the name suggests, a synchronous machine can run with constant speed regardless
of the load characteristics. This unique feature of synchronous machine attracts the
industry for the many applications where constant speed is required. From several
hundred MVA to a few VA, synchronous machines are used in vast power generating
stations to a small electric clock. With the increasing global electricity demand and
innovating new industrial applications, it can be anticipated that the usage of the
synchronous machine is even more popular in the future.

Like other rotating machines, power loss is a common issue in the synchronous
machine. The extensive use of synchronous machines both as motor and generator
makes the study of losses and efficiency very important. Losses in the electrical
machine increase the temperature and degrade the machine performance by affecting
the maximum output power. Besides, extreme temperature rising can lead to machine
insulation failure, consequently, decrease the machine life expectancy (Rajamäki,
2019). Therefore, power loss and efficiency improvement are essential to reduce
power consumption as well as minimize the operating cost. A detailed study of the
different losses occurring in synchronous machines and their origin is compulsory
to improve efficiency. The losses in the synchronous machine can be categorized
broadly as mechanical and electrical losses. During rotation, the machine experiences
mechanical losses as friction and windage. Furthermore, the electrical losses can be
classified as resistive losses in windings and core losses in the iron core. Iron losses
share a significant portion of all other losses in the synchronous machine. However,
the reason for mechanical and resistive losses in the machine is well understood,
and accurate models are readily available for loss estimation. Moreover, iron or
core loss offers a more complex challenge for accurate loss estimation and efficiency
improvement. The computation of iron loss components is challenging as the loss
components largely depend on the material characteristics and the machine geometry.
Iron loss in the machine mainly occurs in the stator yoke, stator teeth, and rotor
yoke region. For high-speed machines, the severity of the iron loss components is
even more (Krings, 2014).

The computation of iron loss entirely depends on the flux density profile in
different sections of the magnetic material. During rotation, the profile of flux density
changes in the various places of the magnetic material based on the rotor position. As
the rotor position depends on time, therefore, the magnetic flux density is also varying
with the time. Thus, the simulation of magnetic flux density distribution is usually
done for each time step (Hudak et al., 2004). This time steeping transient analysis of
the electrical machine is well known and widely used. However, the computation time
is much higher for transient analysis; consequently, iron loss calculation. Therefore,
an effective computation technique with less simulation time can substitute transient
analysis to save a substantial amount of time.
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During steady-state, the rotor of the synchronous machine rotates at the same
angular frequency of the rotating magnetic field (RMF) in the air gap. As a result, all
the fields in the synchronous machine can be considered as static fields in the rotor
reference frame. This assumption offers a new scope of the field computation from a
static solution. Furthermore, static calculation shortens the simulation time, which
attracts the machine designer for the design and analysis of synchronous machines
(Belahcen et al., 2016). The main objective of this thesis is to compute iron loss from
a static field solution by taking the rotational aspect of magnetic flux density into
account, which reduces the computation time without losing the accuracy.

1.2 Thesis Objectives
The principal objective of this thesis is to develop an iron loss computation technique
from a static field solution. To achieve the primary goal, the following tasks are
performed in a step by step. At first, a literature review is done about the design,
construction, and operating principle of various synchronous machines, losses in
electrical machines, iron loss models, and selecting a suitable loss model for the
computation. Secondly, the 2D Finite Element Method (FEM), and the static field
computation methodology using FEM was studied briefly. Thirdly, a 2D static field
solution of the synchronous machine is extracted using the in-house FE software
FCSMEK. Then, an algorithm is developed to compute the iron loss from the
obtained static field solution. Finally, the iron loss is calculated from the dynamic
field solution and compared with the iron loss computed from the static field solution
for validation purpose.

1.3 Thesis Structure
The thesis is divided into five chapters. Chapter 1 deals with initializing the thesis
scope by explaining the background and motivation of the thesis. Besides, the key
objectives of this thesis are stated, and the structure of the thesis is described in
this chapter. Chapter 2 presents the literature review of the theoretical background
of synchronous machines, origin, structure, and computation of different losses in
electrical machines, and the history, modelling, and various techniques of iron loss
computation. Chapter 3 introduces the theoretical background of the FEM, the
methodology of obtaining static field solution, the computation technique of iron
loss from a static field solution, and the iron loss computation procedure by using
time-stepping simulation. Chapter 4 contains the application of the developed loss
model in a salient pole synchronous machine, the simulation results, and findings of
the developed model are explained briefly. Moreover, a detailed comparison between
simulation results using static field solution and dynamic field solution is carried out
here. Chapter 5 highlights the concluding remarks of the conducted research work
and the indication of future research perspectives related to this thesis.
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2 Literature Review
Developing an iron loss calculation method in a synchronous machine requires a
brief knowledge about the machine, different losses associated with the synchronous
machine and an insightful view about the iron loss models. Section 2.1 discusses
the design, structure and operating principle of the various synchronous machines.
Section 2.2 deals with the origin, and construction of the different losses exists in the
synchronous machine. The attention is mainly given to the iron loss, its components,
and their independent loss model. Section 2.3 presents a holistic review of the iron
loss models and the selection of a suitable model for iron loss computation.

2.1 Introduction to Synchronous Machine
The actual invention of the synchronous machine begun in the 1880s, but F.A.
Haselwander (1887) is recognized for developing the current revolving function and
built the first-ever three-phase synchronous generator (Neidhofer, 1992). His designed
machine had a three-phase ring-shaped stationary armature coil and four salient poles
with rotating internal pole magnet for producing the revolving magnetic field, which
was the prototype of today’s salient pole synchronous machine (Neidhofer, 1992).
Even though few developments of the synchronous machines was done during that
time, but they were not sufficient for catching the researcher’s thought. However, an
actual breakthrough occurred and drew worldwide attention when the synchronous
machine was used in a hydroelectric power plant to transmit three-phase alternating
current in 1891 (Brown, 1891). After that, a considerable effort was invested in the
development of synchronous machines. Charles E. Brown (1901) invented first the
cylindrical turbo rotor with a solid-iron body, which became the leading design for
today’s turbo generator and the high-speed synchronous machine (Neidhofer, 1992).
By the end of the 19th century, the two basic construction of synchronous machines,
i.e., salient pole and cylindrical rotor were in presence, and nowadays, the research
works are mainly carried out on the development, optimization, and improvement
of specific design and components (Neidhofer, 1992). It can be noticeable that
without extensive research and development of direct energy conversion devices, the
synchronous machine can be treated as a primary energy conversion device in the
next century as well.

Like an induction machine, the stator of the synchronous machine contains a
distributed three phases AC windings. However, the rotor construction is different
as it can consist of a DC winding supplied with the direct current or a permanent
magnet. It creates a significant difference with the asynchronous machine as the
resultant current linkage component generated from the rotor field winding or a
permanent magnet can work independently in steady-state conditions (Pyrhonen et
al., 2013). On the other hand, in the asynchronous machine, the rotor current is
induced by the changing or rotating stator magnetic field; consequently, slip occurs
(Pyrhonen et al., 2013). As the stator and rotor are excited separately; therefore,
the synchronous machine is often called a doubly excited machine. Thus, the flux
produced in the air gap is the resultant flux generated by the stator and rotor current
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separately. The flux in air gap changes due to the reaction of armature flux and
the main pole flux, which affects the power factor of the synchronous machine. The
compensation of armature reaction can not be possible automatically; rather, the
field current needs to be adjusted for the compensation (Pyrhonen et al., 2013).

In steady-state, the revolving magnetic field produced by the stator windings
and the field generated by the DC excited winding or a permanent magnet is locked
in the air gap, which causes the rotor to synchronize with the stator rotating field.
After synchronization, the rotor of the synchronous machine runs precisely at the
same speed of the revolving magnetic field produced by the stator regardless of load
variations as long as the supply frequency remains stable and the mechanical stability
limit is not exceeded. The speed of the synchronous machine is directly proportional
to the supply frequency and inversely proportional to the number of rotor poles.
Thus, the speed of a synchronous machine can be determined as

ns = 60f

p
(1)

where ns stands for the synchronous speed of the machine, f represents the supply
frequency, and p is the number of pole pairs. However, the major drawback of a
synchronous machine is if the load torque becomes too high, the machine can be
run out of synchronism and stalled. The fixed speed limitation of the synchronous
machine caused by the supply frequency can be overcome through a synchronous
machine speed control scheme. In this scheme, a variable frequency converter is used
to provide a variety of synchronous speed profile (Hughes, 2006).

2.1.1 Separately Excited Synchronous Machine

In the case of separately excited synchronous machines, the excitation is provided
from the external DC source through a pair of slip rings on the shaft. The structure of
the rotor can be a salient pole or a non-salient pole, i.e., a cylindrical rotor, as shown
in Figure 1. Because of the cylindrical rotor shape, the air gap remains uniform;
therefore, the cylindrical rotor has distributed winding. On the other hand, the
salient pole synchronous machine has concentrated winding with a non-uniform air
gap. The cylindrical rotor is suitable for high-speed machine design such as turbo
generator, i.e., 1500-3000 rpm; in contrast, the salient pole rotor is used for low-speed
machine design, i.e., few hundreds rpm. When the rotor field current remains zero,
the cylindrical rotor has little or no reluctance torque; therefore, the field current
is essential to produce the torque for a cylindrical rotor. However, the salient pole
rotor produces some reluctance torque even when the rotor field current remains
zero. At no load, the torque required to overcome the friction is small enough; thus,
the angular displacement between the field produced by the rotor winding and the
rotating field of the stator winding is little or non-existent. As the load increases
gradually, the rotor slows down immediately creates an angular displacement, i.e.,
load angle between the flux patterns before restoring to original speed, which is
sufficient to produce the torque required for steady-state running. However, when
the load changes frequently, the rotor starts to oscillate around its position due to the



15

(a) (b)

Figure 1: Rotor construction of a separately excited synchronous machine: (a) Salient
pole rotor; (b) Cylindrical rotor (Hughes, 2006).

high inertia before settling back to its original position, this phenomenon is known
as hunting. The damping windings are often used in the rotor to prevent the hunting
caused by the sudden load change. The separately excited synchronous machines are
not a self-starting machine; thus, the machine can be run with a variable frequency
supplier or started as an induction machine (Sen, 2007). In the transient state, the
synchronous machine with damper windings acts in a very similar way as squirrel cage
asynchronous machine does under slip (Pyrhonen et al., 2013). Thus, the damper
winding is used to start the separately excited synchronous machine like an induction
machine.

A separately excited synchronous machine can draw leading or lagging reactive
current from the AC supply. With the exact excitation current provided by the
rotor field winding, the machine does not draw any reactive current from the supply
and operates at unity power factor. However, the situation changes when the rotor
excitation current surplus the requirements, and the machine can draw leading
reactive current from the AC supply to oppose the over magnetization caused by
the excess rotor excitation current and operates at leading power factor. Moreover,
the synchronous machine can also draw the lagging reactive current from the supply
to compensate the magnetization caused by the less rotor excitation current and
operates at lagging power factor. Thus, the power factor of the system can be
controlled by changing the rotor field current in the synchronous machine (Sen, 2007).
However, this unique feature is unavailable in permanent magnet assisted synchronous
machine (PMSM) as the field produced by the permanent magnet (PM) remains fixed.
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Figure 2: Rotor construction of a 4 poles radial flux PMSM (Hughes, 2006).

2.1.2 Permanent Magnet Synchronous Machine (PMSM)

Instead of having a field winding, the permanent magnet is used on the rotor to
produce the necessary magnetic field required for the magnetization. The rotor
construction of a PMSM is shown in Figure 2. Having a permanent magnet discarded
the necessity of excitation current on the rotor as the magnetic field is produced natu-
rally; thus, the more robust and reliable rotor construction can be possible. Moreover,
the relatively low magnetizing inductance offered by the low permeability magnetic
material significantly reduces the armature reaction compared to the separately
excited synchronous machine (Pyrhonen et al., 2013). However, as the magnetic field
generated by the permanent magnet remains constant, the rotor magnetic field can
not be controlled according to the load variations. The requirements for a specific load
can be fulfilled by choosing the shape and the position of the magnet. At full load, the
efficiency and power factor of PMSM is better than the equivalent induction machine
in steady-state condition (Hughes, 2006). Like a separately excited synchronous
machine, PMSM is also not a self-starting machine. Due to the unavailability of
damper windings, the PMSM can not start as an induction motor. Therefore, the per-
manent magnet synchronous machine can be started with a variable frequency supply.

2.1.3 Synchronous Reluctance Machine (SyRM)

The stator construction of the synchronous reluctance machine can be identified
as a three-phase induction machine, and the rotor has a set of laminations shape
tends to incline with the field produced by the stator winding. Unlike induction or
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(a) (b)

Figure 3: Rotor construction of a synchronous reluctance machine: (a) Salient pole
type; (b) Flux guided shape (Hughes, 2006).

other synchronous machines where the reaction torque is required, the operation
of the reluctance machine entirely relies on the reluctance torque (Matsuo & Lipo,
1994). The alignment of stator and rotor saliency establishes the minimum reluctance
path, and the rotor tendency to line up in minimum reluctance position produces
the necessary torque. The flux can be inserted into the rotor based on the rotor
construction. For instance, some periphery of the salient type rotor as depicted in
Figure 3(a) cutaway to create a large air gap, i.e., high reluctance path, and force
the flux to insert into the rotor through the remaining region where the reluctance
becomes minimum. Alternately, the flux can be guided according to the specified
path by removing some inside parts of the rotor as illustrated in Figure 3(b), and
allow the flux to follow the desired path. The tendency of the rotor to align with the
field by itself keeps the rotor in synchronism with the rotating filed established by the
three-phase stator winding (Hughes, 2006). The recent growing interest makes the
synchronous reluctance machine well attractive, and also showed that this machine
could contest with an equivalent induction machine almost equally in many aspects
such as efficiency, and output power (Hughes, 2006).

2.1.4 Hysteresis Synchronous Machine

While the hysteresis loss is considered as an unwanted phenomenon in the electrical
machines, there is one particular motor so-called hysteresis motor where the hysteresis
loss accounted for producing the required torque. The construction of a hysteresis
motor is quite different from other motors, and without previous familiarity, one can
be easily puzzled after dismantling it. The stator construction is similar to other
synchronous machines that have single or three-phase winding, but the significant
difference is noticeable in rotor construction as it merely contains a thin-walled
cylinder as shown in Figure 4. The machine operation ultimately depends on the
rotor sleeve properties, which is responsible for producing the magnetic hysteresis.
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Figure 4: Rotor construction of a hysteresis synchronous machine.

Despite having the slip frequency, the tendency of the rotor to achieve the synchronous
frequency settles exactly in the synchronous speed. The torque developed in the rotor
is proportional to the hysteresis loop area (Soroush et al., 2009). Small torque ripple
during steady-state suits the hysteresis motor for some specific applications where
smooth torque is desirable over a wide range of frequencies. Like other synchronous
machines, hunting around field frequency is a common issue in hysteresis motor. The
hysteresis machine having a wider hysteresis loop area has a lower hunting effect
compared to a machine that has a narrow loop area (Soroush et al., 2009). The
hysteresis machine has not been studied much more probably because of the complex
modelling of the hysteresis phenomena compared to the other synchronous machines.

2.2 Losses in Synchronous Machine
The highly efficient electrical machine can play a crucial role in energy saving by
reducing energy consumption. The machine efficiency can be easily determined by
calculating or measuring the total losses according to the standard procedure. The
most convenient way of defining the losses of an electrical machine is classifying by
the loss components based on their origin or structure. Like other electrical machines,
the synchronous machine has similar types of losses. Either operating as a motor or
a generator, the losses in the synchronous machine can be classified as illustrated in
Figure 5.
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Figure 5: Losses in synchronous machine.

Thus, the total losses can be expressed as a sum of these individual loss components

Pt = Pcu + Pfe + Pfw + Pstray (2)

where Pt denotes the total losses, Pcu is the copper or resistive losses, Pfe is the iron
losses, Pfw is the friction and windage losses, and Pstray is the stray losses. The
percentage of loss components depends on the machine size and the speed profile.
Usually, the resistive or copper losses caused in machine winding dominates the
other loss components for relatively large size and slow speed machine. However,
the situation changes for the high-speed machines where the major loss components
become the mechanical losses due to friction and iron losses due to the rapid changing
of magnetic fields (Krings, 2014). Rajamäki (2019) presented the percentage of loss
components in a synchronous generator where the resistive losses caused in stator
and rotor windings contributes a significant portion (50-60%) and iron loss occurred
in the stator core, and rotor pole faces shares 20% of the total losses. Soualmi et
al. (2012) studied the loss components focusing on resistive and PM eddy current
loss in PMS machine at no load and full load condition with and without conductor
segmentation effect. Even though the conductor segmentation reduced the resistive
losses at both no load and full load conditions, the resistive losses still dominate
the other loss components, and the contribution of iron loss varies from (20%-32%)
based on different conditions. The mechanical losses caused by windage of moving
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rotor and friction in the bearing of the machine also share a significant portion of
total losses, but these losses can be often considered as constant losses for different
operating conditions of the machine (Karmaker, 1992). The magnetic leakage and
fringing flux of the rotating machines cause stray losses that contribute small losses.
The iron losses are non-negligible contributors for any synchronous machine, and the
primary goal of this thesis is iron loss computation. Thus, the iron losses are studied
in extensive detail, whereas the other loss components are described shortly in the
following section.

2.2.1 Resistive Losses

The resistive losses (also referred to as copper losses, ohmic losses, winding losses,
etc.) are caused by the current flowing through the machine winding. The resistive
losses can be found in the stator winding, rotor winding, and rotor bar. The resistive
losses occur in the stator winding due to the supply current. The DC current is
responsible for resistive losses in rotor winding, which is needed for magnetizing the
rotor poles. Moreover, the pulsating flux in the air gap induces the current that
causes the resistive losses in the rotor bar (Rajamäki, 2019). The resistive losses
are often estimated based on the DC equivalent resistance value of the winding as
follows

Pcu = kI2
rmsRdc (3)

where I is the RMS value of the winding current, R is the equivalent DC resistance
of one phase winding, and k is the number of phases. The DC resistance of each
phase winding can be determined as

Rdc = ρlW

A
(4)

where l is the length of the one turn of the phase coil, A is the cross-sectional area of
the conductor, ρ is the resistivity of material, and W is the number of turns of the
phase coil. The resistivity of material significantly depends on the temperature; thus,
rising temperature leads to an increase in the resistivity value. In general, copper
wires are used in the winding of commercially available machines. The resistivity of
copper changes with the temperature and can be estimated to any given temperature
as

ρ = ρ20[1 + α(T − 20oC)] (5)

where ρ20 is the resistivity at 20oC, T is the temperature, and α is the temperature
coefficients of the resistance. However, the alternating current generates additional
resistive losses in the machine winding. The time-varying current leads to a time
varying magnetic field, hence, induce an eddy current in the windings and other
conductive areas. The induced eddy current causes two unwanted phenomena in the
conductor of the machine winding. At first, The skin effect is generated inside the
conductor by the induced eddy current, which forces the primary current to flow
through the conductor skin. Secondly, the proximity effect caused by the longitudinal
eddy current induced from the neighbouring conductor reinforces the primary current
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to flow through the smaller area of the conductor (Islam, 2010). The ultimate
result of these two phenomena is the uneven distribution of the current through the
conductors, which increases the effective resistance of the conductor (Sadarangani,
2006). As a result, the actual resistive losses are higher than the losses calculated
by using the DC resistance. The more accurate estimation of resistive losses can be
achieved by using the AC resistance of the phase winding instead of DC resistance.
Like DC resistance, the AC resistance is calculated in a similar way; however, a
correction factor is introduced in the equation to evaluate the resistive losses more
accurately (Pyrhonen et al., 2013).

Rac = kr
ρlW

A
(6)

where kr denotes the eddy current factor.

2.2.2 Mechanical Losses

In a rotating machine, a significant portion of the mechanical losses appears from
the friction and windage loss. The friction loss mainly occurs in the machine’s
bearing, which depends on the bearing types, and the lubricants used in the machine.
Moreover, the speed of the machine shaft and the amount of load on the machine
bearings largely influences the friction loss (Pyrhonen et al., 2013). Usually, the
manufacturers provide the necessary instructions to calculate the friction loss of
the bearings. One of the bearing manufacturer (SKF, 1994) proposed a model to
estimate the friction loss in the normal operating conditions

Pf = 0.5ωµfFDin (7)

where ω stands for the angular frequency of the shaft, µf is the friction coefficient,
F is the load on the bearing, and Din is the inner diameter of the bearing.
The windage loss mainly occurs in the machine air gap due to the friction between
the surface of the rotor and the surrounding gas, e.g., air. The severity of windage
loss becomes more for the high-speed machine. The shape of the rotor surface
substantially influences the windage loss and becomes more severe for a rough rotor
surface. Vrancik (1968) experimentally developed a model and investigated the
windage loss of the machine

Pw = πCfγr4
outω

3l (8)

where γ is the mass density of the gas or liquid, Cf is the skin friction coefficient,
rrotor is the outer rotor radius, l is the cylinder length, and ω is the angular frequency.
The proposed model had relatively good accuracy for the smooth cylindrical rotor
but provided inaccurate results for the salient pole machine, i.e., round and rough
rotor surface (Krings, 2014). Later, the initial model was simplified by (Vrancik,
1968) for the non-smooth salient pole machine with a new correction factor Ks, which
provided a relatively good result.

Ks = 8.5(dpole

rout

) + 2.2 (9)
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where Ks is the skin friction coefficient for salient pole rotor, and dpole is the rotor
pole depth. Saari (1998) divided the windage loss into two parts and presented two
equations for calculating the windage loss in the machine. The windage loss occurs
due to obstructing the drag torque of the rotor, and the windage loss caused by the
rotor end surfaces are modelled separately. The total windage loss is computed as a
summation of these two loss contributors.

Aside from friction and windage losses, the shaft-mounted fan used for ventilation
purposes often mounted on the non-drive parts of the machine or driven by another
motor increases the mechanical losses significantly (Pyrhonen et al., 2013). Schuisky
(1960) proposed an experimental based model for ventilation loss together with the
windage loss; however, the model is only valid for standard speed machines (Pyrhonen
et al., 2013).

2.2.3 Stray Losses

Stray load losses, also known as abnormal losses, are often categorized as additional
electromagnetic losses which can not be identified by the resistive, and the iron loss
model. The fringing or leakage fluxes and the associated harmonics mainly contribute
to stray losses in the synchronous machine. In rotating electrical machines, flux is
needed to pass through the air gap to connect the stator and rotor electromagnetically.
However, all the flux produced in the machine does not pass through the air gap
for taking part in the energy conservation process and considered as leakage flux.
Pyrhonen et al. (2013) classified that the leakage flux components occurs in different
parts of a machine such as the slot winding, tooth tip, end winding, and rotor pole.

Moreover, the flux crossing through the air gap is subjected to the time and
spatial harmonics, and only the fundamental flux component participates in the
energy conversion. The time harmonics are introduced in the machine due to the
non-sinusoidal time variations of the supply. On the other hand, the non-sinusoidal
distribution of the winding, and the slotted nature of the machine leads to the spatial
harmonic components. Besides, the uneven number of slots per pole causes the
spatial harmonics that can generate the asymmetrical magneto-motive force (MMF),
hence, increase the stray loss (Gray, 1926).

The identification and calculation of stray load losses are quite tricky as the
model of these fluxes is challenging, and often requires 3D analysis (Karmaker,
1992). Brainard (1913) experimentally studied the causes of stray load losses in
the synchronous machine and categorized them as the induced eddy current or
the uneven distribution of the current in the armature conductors. In addition,
the fluxes entering from the stator winding to other non-magnetic parts, e.g., end
shields, and coil supports etc. cause eddy current and hysteresis loss. Moreover,
the flux distribution changes in the iron core, which adds extra eddy current and
hysteresis loss. Furthermore, the leakage flux occurs due to over excitation current
under load condition in turbo-generator. Richardson (1945) carried out a qualitative
investigation of stray load losses that occur in the end windings, stator core, and the
rotor pole surfaces in the synchronous machine. Another qualitative study of stray
load losses in the armature end region has been conducted by (Winchester, 1955).
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Aston and Rao (1941) studied the stray load losses that occur in rotor pole faces
experienced due to the local variation of flux density produced by the slotted nature
of the synchronous machine. Aston and Rao (1941) also investigated the stray losses
that occur due to the flux variation in the magnetic core by the reluctance pulsations.
However, the stray losses arise in different parts of a synchronous machine. An
extensive investigation of identifying the stray load loss sources and locations over
the different parts of a synchronous machine has been done by (Karmaker, 1992).

Karmaker (1992) presented the stray load losses as a combination of individual
magnetic losses occurring in various areas of a synchronous machine; for instance, the
slot fringing flux originates a loss in the stator winding. Moreover, the axial fringing
flux generated by the air ducts causes losses in the stator core, i.e., yoke and teeth.
Besides that, losses occur in the rotor pole faces, damper windings, and end winding
region. Also, the leakage flux causes a loss in the structural parts of a synchronous
machine such as frame, fingers, etc. Furthermore, the losses are produced from the
constructional sources such as core segment joints, and rotor eccentricity etc. The
air gap flux harmonics are mainly responsible for the additional losses in the rotor
pole faces and the damper windings. Moreover, the stray load losses occur in the end
winding of the machine due to the leakage flux occurring from the current flowing
through the end winding and can be estimated by computing the end winding leakage
inductance (Pyrhonen et al., 2013).

2.2.4 Iron or Core Losses

Before discussing the iron loss computation method, a basic understanding of the
properties of magnetic materials, and the origin of the iron loss in electrical machines
are essential; thus, this section is dealing with the background, structure, and models
of iron loss in electrical machines. The stator and rotor core of an electrical machine is
made with the ferromagnetic materials; therefore, the most iron loss is experienced by
these sectors. The iron loss can be divided into three components, such as hysteresis
loss, eddy current loss, and excess loss. Therefore, the total iron loss can be computed
as a sum of these three loss components as follows

Pfe = Phys + Ped + Pex (10)

where Pfe denotes the total iron loss, Phys is the hysteresis loss, Ped is the eddy
current loss and Pex is the excess loss. During changing the magnetic orientation,
the magnetic domains consume power, which causes hysteresis loss. The classical
eddy current loss occurs when the time-varying magnetic field induces a current in
the iron sheet. The local microscopic eddy currents near the moving domain walls
are responsible for causing excess loss (Boon & Robey, 1968; Rajamäki, 2019).

In the synchronous machine, the primary contribution of iron loss occurred by
the stator core as the rotor, and the air gap field rotates with the synchronous speed.
In reality, any presence of harmonic fields that may rotate without synchronism can
produce the iron loss in the rotor parts, e.g., magnet, rotor core, and pole faces,
etc. Thus, a negligible amount of iron loss compared to the stator core produced in
the rotor parts of a synchronous machine. The severity of rotor iron loss becomes
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more for the high-speed machine. However, the static analysis refers to the study of
the synchronous machine based on the DC field solution; therefore, the flux density
induced in rotor parts, mainly DC in nature. As a result, the complete iron loss
is contributed by the stator core in the static analysis of a synchronous machine.
Therefore, the entire focus of this thesis is to compute the iron loss produced in the
stator core.

In this thesis, the iron loss is computed from the Fourier decomposition of flux
density waveforms using the Jordan extension model in the post-processing stage.
The separate models for three iron loss components are described briefly in this
section to understand the loss phenomena comprehensively.

Hysteresis Losses

Magnetic materials usually consist of many grains with specific orientations. Each
grain is big enough to hold several magnetic domains in which the magnetization
is in a uniform direction. Under Curie temperature, the magnetization of the ferro-
magnetic material is spontaneously split into several small regions, and each region
recognized as a magnetic domain, which is depicted in Figure 6. The domains are
separated from one another by a specific boundary, and this boundary is called
domain walls or Bloch walls. The magnetic moments of each atom inside a domain
are uniformly distributed and aligned with one another in a particular direction
based on their coupling forces. The magnetic domain structure is responsible for the
magnetic behaviour of a ferromagnetic material.

Figure 6: Magnetic domain structure of the FeSi alloy (Chen et al., 2017).

The magnetization process of a ferromagnetic material follows two key steps. One
is domain wall motion in which the boundary between two magnetic domains moves,
and the magnetization changes are localized in the domain boundary. Another one
is magnetic domains can coherently rotate to the direction parallel to the external
magnetic field. The size and direction of magnetic domains depend on the direction
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of the applied field. When a magnetic field is applied, these two phenomena inside
a ferromagnetic material occur simultaneously (Hubert & Schäfer, 2008; D. Jiles,
2015). However, the magnetization of each domain occurs in different directions
in a non-magnetized sheet due to the unavailability of the external field; thus, the
statistical sum of magnetic domain moments is zero (Krings, 2014). During the
iron alloy manufacturing process, the addition of other non-magnetic materials to
iron material introduces the imperfection in the form of impurity or dislocations
elements. When the magnetic material contains impurities or defects around the
domain walls, the movement of the domain wall is not continuous any more, and it
does not follow the steadily increase of the applied field directions. Therefore, the
movement of the domain wall is stopped where the impurities or imperfections occur
and do not jump until the externally applied field becomes high enough. Thus, the
magnetization changes inside a magnetic material are not a continuous process any
more rather than the discrete process in time. As a consequence, the magnetic flux
density also changes discontinuously even though the magnetic field strength changes
continuously. Moreover, the direction of magnetization rotates discontinuously inside
a magnetic domain, which is familiar as domain rotation (D. Jiles, 2015). These two
mechanism leads to a phenomenon known as the Barkhausen effect, which is one of
the main reasons of hysteresis loss in the magnetic material. The Barkhausen effect in
the initial magnetization curve is illustrated in Figure 7. It is worth noticing that the
impact of discontinuous domain wall motion contributes more in Barkhausen effect
compare to the domain rotation. Besides the Barkhausen effect, another magnetic
mechanism so-called magnetic anisotropy where the magnetic material has different
properties in different directions is also responsible for increasing the hysteresis loss.

Figure 7: Barkhausen effect in the initial magnetization curve (D. Jiles, 2015).
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Figure 8: Domain process during the initial magnetization curve formation: (a) De-
magnetization stage ; (b) Magnetization stage at low applied field ; (c) Magnetization
stage at intermediate applied field ; (b) Magnetization stage at high applied field
(D. Jiles, 2015).

Consider a ferromagnetic material that is fully demagnetized as shown in Figure
8(a), the magnetic domain has random directions, but the magnetic moments inside
the domain have the same order even in the demagnetized state according to the
domain theory (D. Jiles, 2015). The initial magnetization curve is formed when a
magnetic field is applied to a demagnetized material. When a low external field
is applied as illustrated in Figure 8(b), the domains having direction in favour of
the applied field direction start to grow, as a consequence a reduction occurred
to the size of the unfavourable domain position, which lines up in the opposite
direction of the applied field. When the applied field goes to the intermediate stage
as depicted in Figure 8(c), the domain rotation mechanism takes place. In this stage,
the magnetic moment inside a domain which is not appropriately aligned to the
direction of the applied field overcome the anisotropy energy and start to rotate from
their magnetization position into one of the crystallographic easy axes close to the
applied field direction (D. Jiles, 2015). If the applied field is increased further, the
domains start to rotate coherently, as shown in Figure 8(d). Therefore, the magnetic
moment of those domains who have slight angle variation in the previous stage starts
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to follow the applied field direction gradually.

Figure 9: Hysteresis loop formation (Sen, 2007).

The term hysteresis mainly indicates the relationship between the magnetic flux
density B and the magnetic field strength H characteristics in magnetic materials.
Cycling between positive and negative applied external field directions forms a
hysteresis loop as shown in Figure 9, in which the flux density B takes different
values depending on increasing or decreasing the magnetic field strength H values.
The energy absorbed by a magnetic material is not returned back to the system. In
magnetic material, the relationship for the magnetic flux density B in terms of the
field strength H and the magnetization M can be expressed as

B = µo(H + M ) (11)

where µo denotes the permeability of the vacuum. Increasing the magnetic field
strength H leads to increase the magnetization M of the material, but after a certain
point, the magnetization M remains constant even if the field strength H rises
further. However, the flux density B continue to increase with the field strength
H where the rate of change of flux densityB with respect to H is the unity and
known as saturation region. To reverse back the flux density B from the saturation
level, the applied field H needs to decrease until the next saturation level of flux
density B. In an ideal case, when the applied field reaches zero, the flux density B
should also be zero. In reality, when the field strength H is zero, there is still some
flux density B presents in the material, which is known as residual magnetism. As
a result, the flux density B does not reverse back in the same path rather than it
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follows another way and forms a loop, which is known as the hysteresis loop. The
power trapped in the core of the material is lost in the form of heat. The area of the
hysteresis loop determines the amount of losses, and for a larger loop area indicates
the more hysteresis loss.

Introducing the term hysteresis as a scalar is a common practice as it is the most
studied branch among other hysteresis branches because of the simple and coherent
structure. The static hysteresis model only relies on the alternating variation of the
flux density and does not take the rotational aspects into account. Preisach (1935)
introduced a static hysteresis model based on the physical aspects of the magnetization
and recognized as the physical hysteresis model. However, the physical meaning of
the Preisach model needs to be well understood; thus, the physical explanation of
the Preisach model transformed into purely mathematical form by Krasnosel’skii and
Pokrovskii (2012) that gives a numerical method to describe the hysteresis phenomena
of any systems (Mayergoyz, 1986). Everett (1955) independently and extensively
studied the hysteresis effect and introduced a function that is directly related to the
Preisach distribution function. Mayergoyz (1986) extended the classical Preisach
model with the Everett function, which eliminates the necessity of double integration.
The traditional hysteresis model is not suitable where the field strength H calculated
from the flux density B because of the high computation time required for iteration
and the large memory needed for storing the data. Takahashi et al. (1999) developed
a computationally efficient method to compute field strength H directly from the
flux density B without iteration by inverting the distribution function.

Another most widely used static hysteresis model based on differential equations
was developed by (D. Jiles & Atherton, 1983; D. C. Jiles & Atherton, 1984). The
model setup the physical connection with the material and leading five parameters
to identify. However, the identification of these parameters is quite challenging and
often requires an optimization algorithm (Rasilo, 2012). An optimization technique
is developed by Chwastek et al. (2006) to estimate the parameters required for the
JA model. Although various hysteresis models have been developed, the classical
Preisach and the Jiles-Atherton models are still preferable methods for use in FE
analysis. The conventional Presiach method is recognized as a complex model with
high accuracy; on the other hand, the Jiles-Atherton model is famous for simplicity
and less computation time (E. A. Dlala, 2008).

In the rotating machine, the existence of rotating flux causes the local flux density
B and field strength H loci to be rotational rather than one-directional alternating
(Rasilo, 2012). Modelling a vector hysteresis model is a challenging task as the
magnetization process significantly changes at different magnetization levels under
rotational flux condition(L. Dupré & Melkebeek, 2003). L. R. Dupré et al. (1998)
implemented the vector Preisach model in FE analysis both for scalar and vector
potential formulation. They tested both models on the Transformer T joint to
examine the effect of rotational flux on local BH loci. E. Dlala, Belahcen, and
Arkkio (2010) improved the loss modelling property of Mayergoyz’s vector hysteresis
model by removing the phase difference between the moving circular magnetic flux
density and the field strength and adding a new parameter in saturation.

Bergqvist (1996) proposed a general concept of vector hysteresis model from
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the static JA by transforming the original differential equation to take the vector
behaviour of magnetization with the vector applied field into account.

Aside from the static hysteresis model, a significant amount of efforts have
been invested for extending the static model into the dynamic hysteresis model to
understand the dynamic behaviour of the hysteresis loop. As the name suggests, the
dynamic hysteresis model depends on the rate of change of the applied field and
often called the rate-dependent model. The applied field rate affects the hysteresis
loop through the eddy current and increases the loop size (Bertotti, 1998). As a
result, the shape of the BH loop changes significantly, and many attempts have
been made to extend the static classical Preisach or the Jiles-Atherton model to
rate-dependent dynamic hysteresis model. Bertotti (1992) proposed a rate-dependent
model of classical Preisach model by assuming a sinusoidal magnetization and showed
that each fundamental loop in the Preisach model does not appear instantaneously
rather than at a finite rate controlled by the rate of change of externally applied
field. Moreover, the hysteresis loop also changes based on the increment of the
magnetizing frequency. The dynamic hysteresis model is precisely involved with the
Bertotti’s loss separation theory (Bertotti, 1988). The existence of rate-dependent
and rate-independent hysteresis loss phenomena in DPM leads to the excess loss term
as f 1.5 of magnetization frequency presented in the loss separation model (Bertotti,
1988). Bernard et al. (2002) developed an inverse rate-dependent DHM by taking
the flux densityB as input and field strength H as output and implemented it in
magnetic vector potential based FE simulation. A frequency-dependent hysteresis
model was proposed by (D. Jiles, 1993). In his dynamic model, the domain wall
movement is presented as a second-order differential equation, and the average value
is taken to describe the whole material behaviour. The outcome leads to a differential
equation that explains the displacement magnetization as the difference between the
magnetization M at any given time t and M when reached in DC magnetization
curve

δM = M (t) − M o(H ) (12)

It is noticeable that the M o(H ) is not time-dependent rather than path-dependent.
The reviewed literature of the dynamic model in this section is mostly developed
based on the static Preisach model or static JA model, as these two models are
widely used.

Eddy Current Losses

The eddy current in the iron core is induced due to the time-varying magnetic
field present in the electrical machine. When the magnetic flux rapidly changes, a
voltage is induced in the conducting magnetic material, which causes the eddy current
flows through the magnetic material and leading to the dynamic iron loss. Bertotti
(1985) explained the physical meaning of dynamic eddy current loss behaviour
in ferromagnetic material. According to his explanation, the eddy current loss
exists because of the local internal magnetic fields generated by the eddy current
or other magnetic effects, i.e., magnetostatic or coercive, which counterparts the
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applied external field and the competition between them raised when the magnetizing
frequency becomes high. In the classical eddy current loss model, the distribution of
magnetic flux density assumes to be uniformed in the material, as shown in Figure 10;
however, the actual eddy current loss can be much higher than where the assumption
made (Serpico et al., 2000).

Figure 10: Uniform distribution of the classical eddy current in the electrical steel
sheet thickness (Boon & Robey, 1968).

The approximate prediction of eddy current loss can be easily obtained by assum-
ing that the permeability of the iron core does not vary with time and keep constant
throughout the magnetization (Demerdash & Gillott, 1974). This assumption may
provide the right prediction as long as the iron core remains in linear region in the
magnetization curve. Moreover, the division of total iron loss into two components,
such as hysteresis and eddy current loss is also debatable in the linear case. The
hysteresis loss can be more dominant at low densities than the eddy current loss, and
the division accuracy entirely depends on the questionable assumptions. Furthermore,
the iron core often reaches the saturation region, and the permeability varies over a
wide range, i.e., less or more with time. As the eddy current loss computed from the
linear theory entirely depends on the permeability value; therefore, the prediction of
eddy current loss from the linear approach may contain some quantitative meaning
but not indicate any physical interpretation of this phenomenon (Agarwal, 1959).

Agarwal (1959) proposed the analytical eddy current loss model for solid and
laminated iron based on the sinusoidal assumption of MMF wave. Practically, the
MMF wave is non-sinusoidal due to the harmonics components in the rotating
machine. It is clarified that the eddy current loss becomes more expensive for a solid
iron core. Instead of using a solid iron core, the thin laminated iron core is used in
the electrical machine to reduce the eddy current loss. The thickness of the stacked
laminated steel sheet is much smaller than the transversal dimension. This geometry
of the stacked laminated steel sheet provides the simplicity of assuming the magnetic
field in two directions, and the eddy current loss can be modelled both analytically
or numerically in one dimension (Labridis & Dokopoulos, 1989; Gyselinck et al.,
1999; Bottauscio et al., 2000a). According to (Pippuri, 2010), 1D field assumption
is studied by (Bottauscio, Chiampi, & Chiarabaglio, 2000b) and found that this
approximation often overestimates the eddy current loss. The extension of the 1D
eddy current loss model can be done by coupling with the 2D finite element model



31

(Rasilo, 2012; E. Dlala, Belahcen, & Arkkio, 2008). On the other hand, the 2D
magnetic field problems can be approximated to the 1D eddy current loss model
implemented in the post-processing stage (L. R. Dupré et al., 1998).

Several attempts have been made to include the eddy current loss directly in the
FE solution; however, such approaches are not so obvious. Gyselinck et al. (1999)
developed an eddy current loss model of lamination core and included directly in
1D and 2D FE solution. The coupling of 1D and 2D models is done through the
nested iteration scheme by solving the non-linearity of these two model equations.
Pippuri et al. (2010) explicitly studied the eddy current loss model inclusion in the
2D FE analysis coupled with 1D FE formulation. They pointed out that the iteration
scheme for the 2D model often implemented incompletely as the field difference
between the 1D and 2D models at the sheet boundary is often neglected frequently.
It also clarified that the accomplishment of the coupling of the 1D and 2D models
significantly depends on the estimation of field strength at the boundary of the sheet.
The eddy current loss can not be studied explicitly such as the impact of skin and
edge effect and the eddy current loss in small machine parts, e.g., teeth, tooth tips,
bridges, etc., where the eddy current flows three-dimensionally by 1D or 2D models
Handgruber et al. (2012). Thus, the computationally inefficient 3D analysis of eddy
current loss (Dular et al., 1998) is often required to study explicitly. To reduce the
computational time, a 2D coupled 3D model has proposed by Handgruber et al.
(2012). A comparison between the extended version of Bertotti’s loss segregation
method and the proposed 3D eddy current loss model was conducted by Yamazaki
and Fukushima (2010). The developed model computed iron loss using two terms, i.e.,
static hysteresis loss components and the eddy current loss components, where the
excess loss is included in the dynamic eddy current loss by modifying the excess loss
coefficient. The conventional three-term iron loss calculation method overestimates
the eddy current loss competition for high skin effect and higher-order harmonics
components.

Excess Losses

While the classical eddy current loss model is accounted for the homogeneous
magnetization changes all over the material, the excess or anomalous loss is introduced
due to the inhomogeneity of the magnetization process. Brailsford (1948) studied
the unusual behaviour of eddy current loss in electrical sheet steel based on the
assumption that the permeability can be dependent of the externally applied field
but does not depend on the position in a material. According to his final remarks,
the origin of anomalous loss can be primarily treated as a result of hysteresis effects
but does not necessarily influence by the eddy current without proper justification.

Williams et al. (1950) investigated the eddy current loss in terms of domain
configuration of the material. They observed that the discrete magnetization process
occurs due to the domain wall motion, which makes the permeability of the material
position-dependent. They pointed out that the anomalous loss introduced as a
difference between the computed and measured magnetic loss can be adequately
explained if the domain configuration of the material is taken into account. This
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simple domain configuration concept is studied further by (Pry & Bean, 1958). Their
study has been conducted so far by assuming a single infinitely thin domain wall
and the uniform motion of the wall. However, the number of domain wall can be
raised (Sun et al., 1971), and the motion of each and an individual wall can be
non-uniformed if the magnetization process is dynamic (Shilling & Houze, 1974).
The effect of the movement on walls having different finite width and the associated
power loss has been studied by (Sun & Kramer, 1977). They clarified that the power
loss becomes more when the wall width increases; on the other hand, the power
density decreases and the motion does not have a significant impact on the wall
width.

Figure 11: Domain wall motion effects on eddy current (Boon & Robey, 1968).

Shilling and Houze (1974) extensively studied the domain structure theory and
the related power loss of grain-oriented materials and initiated a concept to separate
the total iron loss into hysteresis, classical eddy current and excess loss components.
However, the proper characterization of excess loss components was still absent for
non-oriented material and the various conditions of domain structure, grain size
and domain orientation etc. Owing to this loss separation concept, Bertotti (1985)
proposed a simple method and a common framework to segregate the iron loss
statistically, which can be reasonably applicable for any iron materials and various
conditions of domain structures. He introduced the concept of a magnetic object
(MO) which can represent a group of adjacent walls having strong correlation as a
single object in terms of dynamic and structural properties. The allocation of active
MO’s during the magnetization process leads to a simple loss formulation, and it
allows to express the relation between the excess loss and the dynamic structure
in a single quantity. However, the model can account the excess losses due to the
microscopic eddy current induced during domain wall motion as illustrated in Figure
11 and compensate for the skin effect as an excess loss (Belahcen et al., 2014). It
is worth noticing that the excess loss is primary existed under the alternating flux
variations but virtually zero under purely rotational flux variation (Belahcen et al.,
2014).

In statistical loss segregation model, the excess losses were represented as a
difference between the measured total iron losses and the losses computed from the
first two terms (e,g. hysteresis and eddy current losses) of the loss segregation model
with uniformity assumption (Overshott et al., 1968), however, in practically the
contribution of excess or anomalous losses to the total iron losses can be less than
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the losses predicts by Bertotti’s model (Rasilo, 2012). Thus, the excess losses need
to be modelled completely or partly even if the non-uniformity of flux density and
eddy current in lamination thickness is estimated accurately (Mayergoyz & Serpico,
1999). The iron loss components are not entirely free from each other and have
some internal dependency. (D. C. Jiles, 1994) showed that including the effects of
excess loss components along with the classical eddy current loss components in
the hysteresis model significantly increases the coercivity of the hysteresis curve,
hence, increase the losses. The interdependence among the iron loss components
in the laminated magnetic core has been explicitly studied by (E. Dlala, Belahcen,
Pippuri, & Arkkio, 2010). They clarified that the eddy current significantly affects
the hysteresis and the excess loss components in machine core and influence them to
depend on the excitation frequency.

2.3 Overview of Iron Loss Models
In the previous section, the various models of iron loss components are studied
separately. In this section, the analytical and numerical methods for iron loss
calculation is reviewed, and the suitable loss model is chosen to compute the total
iron loss from FE solution in the post-processing stage.

2.3.1 Alternating Flux Loss Models

Before the availability of numerical analysis tools, the researchers had developed
analytical models to estimate the losses in electrical machines. The accuracy of
developed analytical models was often compared with the experimental results.
Steinmetz (1892) developed an iron loss model based on the measurement data

Pfe = Cce fαB̂β (13)

where B̂ represents the peak flux density of the material, and Cce, α, and β are three
coefficients that can be estimated from the measurement data by fitting the loss
model. The application of the Steinmetz model is limited to pure sinusoidal flux
density waveforms. Moreover, the three iron loss components can not be separated in
his model. The Steinmetz model was extended by Jordan (1924) for differentiating
the iron loss components separately

Pfe = Phys + Ped = Cch fB̂2 + Cce f 2B̂2 (14)

where Phys, and Ped refers the hysteresis and eddy current loss, Cch and Ced denotes
the hysteresis loss coefficient and the eddy current loss coefficient, respectively.

Jordan (1924) continued Steinmetz’s model considering the hysteresis and eddy
current losses; however, the excess loss component is still absent. In his model,
hysteresis losses are presumed to be proportional to the hysteresis loop at low
frequency, and the eddy current can be roughly estimated from Maxwell’s equations
(Krings & Soulard, 2010).
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A new model including excess loss was presented by Bertotti et al. (1988) where
the total losses are segregated statistically

Pfe = Phys + Ped + Pex = Cch fB̂2 + (π2σd2 f 2B̂2)/6 + Cexf 1.5B̂1.5 (15)

where Pex is the excess loss components,Cex is the excess loss coefficient, d is the
thickness of the electrical steel sheet, and σ is material conductivity. The benefit of
this empirical approach is, it requires less computation process as a set of measurement
data and knowing the material’s flux density profile enough to estimate the iron
losses (Rajamäki, 2019). Like (Steinmetz, 1892) and (Jordan, 1924) model, the flux
density is also assumed purely sinusoidal in the statistical loss model. However,
the flux density waveforms in electrical machines are often non-sinusoidal due to
harmonic components, which leads to inaccuracy in loss calculation where the flux
density is expected to be sinusoidal Albach et al. (1996).

Fiorillo and Novikov (1990) developed a model influenced by Bertotti et al. (1988)
statistical loss segregation model to take the non-sinusoidal characteristics of the
flux density into account. In the statistical loss segregation model, the excess losses
were represented as a difference between the measured total iron losses and the
losses computed from the first two terms, i.e., hysteresis and eddy current losses of
the loss segregation model with uniformity assumption Overshott et al. (1968). In
practice, the contribution of excess losses to the total iron losses can be less than
the losses predicts by Bertotti’s model. Thus, the excess losses need to be modelled
completely or partly even if the non-uniformity of flux density and eddy current in
lamination thickness is estimated accurately (Mayergoyz & Serpico, 1999). Moreover,
the statistical loss segregation model has relatively good accuracy for low magnetizing
frequencies and thin lamination thickness, where the skin effect is imperceptible.
However, the situation may be different when the frequency is high, or the lamination
is thick enough to exaggerate the skin effect, which affects the hysteresis and excess
loss components (Belkasim, 2008). Besides, the flux density is assumed uniform
along with the lamination thickness. In reality, the flux density is non-uniform inside
the material that may affect the eddy current computation (Saitz, 2001). Kampen et
al. (2012) compared several iron loss models and showed that the Steinmetz model
and the statistical loss segregation models are fast, easy to implement and could be
applicable for iron loss estimation roughly.

However, many researchers have developed the Steinmetz-Jordan model later
and estimated iron losses using these empirical models conventionally (Arkkio &
Niemenmaa, 1992; Ali et al., 1997). In this thesis, the empirical models based on the
Jordan extension model presented on (Belahcen & Arkkio, 2008) is adopted for the
iron loss computation.

Phys =
∫︂

V
(

N∑︂
n=1

Cch(nωs)B̂2
n)dV (16)

Ped =
∫︂

V
(

N∑︂
n=1

Cce(nωs)2B̂2
n)dV (17)
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where Phys and Ped represents the hysteresis and eddy current loss, respectively. Cch

and Cce expresses the hysteresis and eddy current loss coefficients, ωs stands for the
angular frequency and B̂ the peak flux density values at nth harmonic components.
It is noticeable that the excess loss is included in the dynamic eddy current loss Ped

model.

2.3.2 Rotational Flux Loss Models

In practice, the alternating and the rotating flux density components both exist in
rotating machines. Baily (1896) studied the rotational and alternating hysteresis
loss in both soft and hard magnetic material. Rotational hysteresis loss component
is more dominant than the alternating hysteresis loss component up to a certain
level before the flux density values reach to the saturation. Then, the rotational
hysteresis loss drops rapidly and vanishes entirely; on the other hand, the alternating
hysteresis loss becomes more presiding and continue rising with the increasing flux
density values. The core of the rotating machine is subjected to a large degree of
rotational flux. Even the losses caused by rotational flux components can suppress
the losses due to the alternating flux components at high magnetization levels (Moses,
1992). As alternating flux density can be sinusoidal or non-sinusoidal, similarly, the
rotational flux density can be purely rotational, i.e., circular or non-purely rotational,
i.e., elliptical because of the harmonic components. Different methods for measuring
the rotational core loss are reviewed by Guo et al. (2008). Enokizono et al. (1991),
and Enokizono and Sievert (1989) proposed two models for calculating the rotational
core loss based on measurement data of magnetic flux density B and the magnetic
field strength H in electrical sheet steel

Pt = 1
ρT

∫︂ T

0
(Hx

dBx

dt
+ Hy

dBy

dt
)dt (18)

Pr = ω

ρT

∫︂ T

0
(HxBy − HyBx)dt (19)

where ρ refers to the mass density, ω is the angular frequency, and Hx, Hy, Bx, By

stands for the magnetic field strength and magnetic flux density in x, and y directions
respectively. Equation 18 has good accuracy under any flux conditions, but Equation
19 gives inaccurate results for non-purely rotational flux conditions (Atallah & Howe,
1993). However, the loss Equations 18, and 19 are valid for any vector magnetic
flux density B, and the field strength H where the rotational flux loci is just one of
the application of these loss expressions. The investigation of rotational core loss in
electrical sheet steel is continued by (Fiorillo & Rietto, 1993; Kochmann, 1996; Zhu
& Ramsden, 1998).

Belahcen et al. (2014) proposed a method based on loss separation theory where
the hysteresis losses are segregated into the alternating and rotational losses. A
detailed comparison of power loss in electrical sheet steel under alternating and
rotating flux conditions are presented in (Sievert et al., 1996).
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2.3.3 Harmonic Loss Models

The ferromagnetic parts of the stator and rotor are subjected to a highly distorted
magnetic flux density. The effects of armature reaction and the main field, the slotted
nature of the machine, and the highly distorted magnetic field appears from the
permanent magnet causes the non-sinusoidal variations of the magnetic flux density
waveforms and creates the time dependency. Thus, the flux density in the rotating
machine is not a single frequency component any more and contains higher frequency
components. The advancement of the computation device and numerical methods
makes it possible to calculate the iron loss considering the harmonic components of
the flux density. The excellent accuracy and the detail study opportunity influence
the researchers to compute the iron loss based on the harmonics components. In
the last few decades, researchers have developed and applied different harmonic loss
computation techniques. Moses and Shirkoohi (1985) introduced an approach to
calculate the total iron loss using the flux density values at different harmonics order

Pfe = πf
∞∑︂

i=1
nBnH n sin φn (20)

where n is the harmonic orders, f is the fundamental frequency, Bn, and H n

represents the peak flux density at each harmonics components respectively, and φn

is the phase angle between them. Moses and Shirkoohi (1985) highly recommended
to use the phase angle φn as it has a considerable impact on loss estimation, and
neglecting can lead to 30 % erroneous results. It can be noted that the Fourier
decomposition of Equation 18 leads to Equation 20; thus, both loss expressions
convey the same meaning mathematically. Equation 20 has the flexibility as no
differentiation of the flux density B, and the field strength H is required; however, the
estimation of the phase shift is not necessarily more accurate. Therefore, Equations
18, and 20 holds the same degree of errors.

One of the most widely used methods for iron loss computation is the Fourier
decomposition of the magnetic flux density at each finite element. This method
offers a great deal to study each and individual harmonic loss components. In this
method, the total iron loss can be calculated as the sum of all the higher harmonics
contributions.

Yamazaki and Watari (2004) compared two methods of iron loss computation
from the flux density harmonics. The comparison stands between the iron loss
calculation from the Fourier decomposition of the flux density, and directly from the
flux density waveforms without performing the Fourier Transform. Yamazaki claimed
that the Fourier Transform based method could not decompose the hysteresis loss into
harmonics components due to the non-linear characteristics and often overestimate
hysteresis loss computation for a highly saturated machine. Nakata et al. (1970)
implied that the hysteresis loss is fixed for a particular peak flux density in a given
material for a given excitation frequency. Many authors (Faiz & Sharifian, 1994;
Yamazaki, 2003; Hu et al., 2008) claimed that the hysteresis loss can not be computed
as a sum of contributions of various harmonic components and does not follow the
general decomposition. Thus, they preferred to calculate the eddy current loss from
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the Fourier decomposition while the hysteresis loss can be determined directly from
the flux density waveforms using the peak value. Such approaches are applicable
where the minor hysteresis loops are neglected (Rupanagunta et al., 1991) or assumed
the sinusoidal variation of the flux density waveforms. In practice, rotating machines
are not free from minor hysteresis loops due to the flux density harmonics, which
offers a significant challenge for core loss estimation (Alatawneh & Pillay, 2014). In
fact, hysteresis losses are more related to the minor loops compared to the harmonics
content of the flux density (Leonardi et al., 1996). Of course, it is not recommended
to compute the hysteresis loss from the Fourier decomposition of the flux density
waveforms. However, many authors (Hudak et al., 2004; Leonardi et al., 1996; Saitz,
2001; Ali et al., 1997; Arkkio & Niemenmaa, 1992) have been applied this method and
achieved relatively good accuracy with the measurement results. In this thesis, both
the eddy current and hysteresis loss are computed from the Fourier decomposition of
the flux density waveforms.

2.4 Chapter Summary
The complexity involved in iron loss computation urges deep prior knowledge. With
this notion, the basic construction and mechanism of various synchronous machines
are highlighted in Section 2.1. Section 2.2 presented the types of electromagnetic
and mechanical losses experienced by the synchronous machine during the operation.
Besides, the sources of iron loss contributors and their individual loss models are
studied with great interest in order to understand the concept of iron loss profoundly.
Moreover, the comparison of different iron loss models in electrical machines, their
application, limitations and flexibility are carried out in Section 2.3. The theory
behind the Finite Element Method and application of obtaining the static and dynamic
field solution and the iron loss computation using these solutions are discussed in
the next chapter.
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3 Research Methodology
In this chapter, the methodology of iron loss computation from the static field and the
dynamic field solution in 2D Finite Element Method are described step by step. At
first, a brief description of solving the boundary value problems through a standard
FEM scheme and the iron loss implementation practice in FEM is presented in
Section 3.1. An introduction to the 2D FEM software FCSMEK and the routines for
analysing the synchronous machine is described in Section 3.2. Section 3.7 contains
the procedure of obtaining a static field solution in FEM, and iron loss computation
process using this field solution. Moreover, the method of dynamic field calculation
and the iron loss computation process is also described in Section 3.8.

3.1 Finite Element Method
The human mind faces difficulty to catch the behaviour of a complex system in one
operation. Therefore, subdividing a complex system into their components or elements
and study each component’s behaviour, and then reforming the whole system from
those components is the smooth and efficient way of understanding the overall system
behaviour. Moreover, the formulation of space and time-dependent problems are
generally based on the partial differential equations (PDE). An analytical approach
cannot solve these PDE problems due to extensive geometries and difficulties. Instead,
different discretization methods are used to approximate these PDEs with numerical
model equations. Thus, a numerical approach is required to solve these numerical
model equations.

A finite element is a numerical method to solve PDE problems, which result from
the field of engineering and mathematical physics. Developing two discretization
schemes by Lord Rayleigh (1870) and W. Ritz (1909) on variational methods, and
then B.G Galerkin’s (1915) weighted residual methods initiated the theoretical
background of finite element method (Leissa, 2005). Clough (1960) coined the term
‘Finite Element’ with the invention of classical displacement formula for plane strain
triangles. At first, the development of the finite element method was limited in the
structural mechanic’s community serving for the aircraft industry and drawn the
attention of the mathematicians much later. However, a significant breakthrough
occurred in electro-magnetics when Winslow (1964) used a similar approach as a
finite element method to solve the electromagnetic field problems. Later, Silvester
(1969) advanced the method by forming high order polynomials triangular elements
using simplex coordinates, and since then many researchers have developed and
utilized the finite element method in the field of electro-magnetics.

Luomi (1993) explained that the energy conversion process of electrical machines
depends on the interaction of the electromagnetic field in the air gap. Thus, the design
and analysis of electrical devices are usually accomplished based on the complete
solution or the approximation of the field. The complex geometry of the electrical
machines and the time dependency of the field components offer a hard challenge for
the accurate estimation of the magnetic field. Luomi (1993) also described different
methods used for computing the electromagnetic field or solving the boundary value
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problems. However, the advancement of modern computational tools has made the
Finite Element Method (FEM) a great deal with the complicated issues, consequently,
solving the field equation directly (Luomi, 1993).

Either using of variational or residual discretization method, the accuracy of
solving partial differential function (PDEs) depends on selecting the approximation
function for the entire problem domain. Furthermore, the chosen function also needs
to satisfy the necessary boundary conditions, but the complex machine’s geometry
causes this task more difficult. Therefore, the basic idea of FEM is to divide a large
complex problem domain into smaller areas or elements. At first, a suitable algebraic
polynomial function can be chosen to approximate the solution within each element,
and then the solution of each element can be assembled to represent the whole
problem domain. As Bastos and Sadowski (2003) described, the implementation
of the residual method is more comfortable as it can be formed directly from the
physical equation that needs to be solved. Thus, the FEM is preferably modelled in
electromagnetism based on the residual method over the variational method.

Analysis of electromagnetic problems mainly requires solving a bunch of Maxwell’s
electromagnetic equations with the necessary boundary conditions. Therefore, the
solution of the electromagnetic field can be obtained simplifying and solving the
differential form of Maxwell’s equation subject to given boundary conditions through
the Finite Element Method (FEM).

The differential form of Maxwell field equations can be presented as follows

∇.B = 0 (21)

∇ × E = −∂B
∂t

(22)

∇ × H = J + ∂D
∂t

(23)

In case of, quasi static (∂D
∂t

= 0) and static (∂B
∂t

= 0) problems, the above equations
can be rewritten as following

∇.B = 0 (24)

∇ × E = −∂B
∂t

= 0 (25)

∇ × H = J (26)
The material equations can be given as

B = µH (27)

J = σE (28)
Usually, the above differential equations are formulated in terms of magnetic potential,
and then the solution is achieved through the space discretization or subdivision of
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the problem domain. Besides, the existing time-dependent term in the equations
demands time discretization. However, the non-existence of time-dependent term in
the static case leads to omitting the time discretization. Moreover, the non-linear
properties of the core material should be taken into account and solved by using the
Newton-Raphson method.

The solution of the three-dimensional field is still tedious and requires lots
of tasks. On the other hand, the solution becomes much easier if the problem
domain is simplified to the two-dimensional model where the machine geometry
and material equations are independent of coordinate parallel to the machine shaft,
i.e., z-coordinate (Arkkio, 1987). Therefore, the field solution is assumed to be two
dimensional. The fundamentals of FEM for solving 2D field equations in radial flux
machines is discussed in the following section.

3.1.1 Magnetic Vector Potential

In electromagnetism, the magnetic field solution is often computed by introducing
magnetic potential in the field equation. The term ‘magnetic potential’ refers to
either the magnetic scaler potential or the magnetic vector potential. Unlike vector
potential, the scalar potential has limited usage as scaler potential can only apply for
an irrational magnetic field, i.e., no free current density present in the solution region.
On the other hand, the magnetic vector potential is used to take the rotational
aspect of the magnetic field. Moreover, the magnetic vector potential reduces the
vector problems into a scaler problem. The application of magnetic vector potential
is indispensable in three-dimensional cases. However, the magnetic vector potential
is also widely used to solve the magnetic field equations in two-dimensional cases
(Luomi, 1993).
Magnetic vector potential A can be defined as

B = ∇ × A (29)

The current density J can be expressed in terms of vector potential A by substituting
Equation 29 in Equation 26, and placing reluctivity ν = 1/µ as following

∇ × (ν∇ × A) = J (30)

It is worth noticing that Equation 30 satisfy all magneto-static problems. In the
two-dimensional case, Equation 30 can be formulated as

∇.(ν∇ × A) = −J (31)

This is called div-grad equation or Poisson’s equation, i.e., the material reluctivity ν
constant. In the two dimensional cases, the partial differential Equation 30 of the
magnetic vector potential A can be written as

−[ ∂

∂x
(ν ∂Az

∂x
) + ∂

∂y
(ν ∂Az

∂y
)] = J (32)

It can be noted that the magnetic vector potential A lies only in the z direction
which can be represented by a unit vector ez and remains constant in the direction
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of flux density. The magnetic vector potential A for each nodal indices are solved by
choosing a suitable algebraic polynomial, which is discussed briefly in the following
section.

3.1.2 Space Discretization or Domain Subdivision

In FEM, the problem domain is divided into the small non-overlapping area called
elements. The dividing process is often familiar as meshing, and the elements of the
entire problem domain are known as mesh. The corners of each element are known
as nodes, and one node can belong to several elements. In general, a shape function
is assigned over each element to find out the best possible solution for the unknown
vector potentials. The solution accuracy depends on the order of the shape functions.
Moreover, different types of element shapes are used based on the analysis interest.
For instance, in the 2D case, triangular element shapes are chosen quite often; on
the other hand, tetrahedral or hexahedral shapes are used for 3D analysis. The first
order, second order or third order triangular elements as shown in Figure 12 are
used in the 2D analysis. The nodes of each triangular element are numbered in an
anticlockwise direction. Usually, higher-order polynomial functions approximate the
solution more accurately but increase the computation time. Thus, the selection of
polynomial or shape function is made by treading off between computation time and
accuracy (Bikram Shah, 2013).

(a) (b) (c)

Figure 12: Different orders of a triangular element: (a) First order triangular element
; (b) Second order triangular element; (c) Third order triangular element.

At first, the elements are generated in the local coordinate system (ξ, η) for
simplicity and then transform to the global coordinate system (x, y) through a
unique transfer system, as shown in Figure 13.
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(a) (b)

Figure 13: Element coordinate transformation: (a) Element in local (ξ, η) coordinate
; (b) Element in global (x, y) coordinate.

The global shape function has non zero value only those elements that share its
nodal point and zero for other elements as depicted in Figure 14.

Figure 14: Elements share the nodal point i (Arkkio & Sundaria, 2018).

After meshing, the magnetic vector potential is generated over each element by
shape function leading to

A(x, y) =
n∑︂

i=1
aiNi(x, y) (33)

where Ni is the global shape function which has a non-zero value at node i depicted
in Figure 14, n is the total number of nodes and ai is the nodal value at nodal point
i. Moreover, the time dependence of the magnetic vector potential A in dynamic
field problems requires time discretization, which can be accomplished using the
Crank-Nicolson time-stepping method as described in Section 3.5. Maxwell equation
is satisfied inside the problem domain as shown in Figure 15 but it is also essential
to know the magnetic vector potential in the boundary of the problem domain.
Thus, the necessary boundary conditions that need to satisfy is described in the next
section.
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Figure 15: Problem domain with boundary conditions (Farzam Far, 2019).

3.1.3 Boundary Conditions

The magnetic vector potential A must be known in the boundary region of the
problem domain for the field calculation (Arkkio, 1987). In electrical machines,
the boundary region can be the borders of the outer surface or interfaces between
different materials inside the machine. The most common boundary conditions for 2D
machine analysis are Dirichlet, Neumann and (Anti) periodic boundary conditions.

In the Dirichlet boundary condition, the vector potential A is constant, and the
field is parallel to the boundary. When this boundary condition is applied, i.e., the
outer surface of the machine, no flux passes through the boundary.

In the homogenous Neumman boundary condition, the field is perpendicular to
the boundary, i.e., ν ∂A

∂n
= 0.

Typically, in an electrical machine, the same geometry repeats itself after one or
two pole pitches. The (Anti) periodic boundary condition is used for modelling the
symmetry sector, i.e., A1 = ±A2.

3.1.4 Solving Non-linearity

The ferromagnetic material parts often introduce non-linearity in the electrical
machines. The magnetic saturation and hysteresis characteristics of iron material
offer intense challenges for the flux density computation. The material reluctivity ν
present in Equation 30 depends on the square of the flux density; hence, it introduces
non-linearity. However, Equation 30 should be linearised that can be achieved
through the iteration method. In 2D FEM, the non-linearity is usually tackled by
using Newton-Raphson iterative scheme where the nodal value a is revised at each
step k of iterations (Luomi, 1993) as

ak = ak−1 + ∆ak = ak−1 − J−1r(ak−1) (34)

where J represents the Jacobian matrix and the entry in Equation 34 as

J∆ak = −r(ak−1) (35)
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The Jacobian matrix J is updated at each step k, based on the nodal values at
previous step (ak−1). Finally, the non-linear problem is solved into consecutive linear
problems.

3.1.5 Iron Loss Implementation Practice in Finite Element Method

The magnetic fields in an electrical machine depend on the time; therefore, the time
dependence of the magnetic fields need to be solved step by step. Bouillault and
Razek (1983) showed an approach to solve the time dependency of the magnetic fields
through time-stepping methods in the solid rotor induction machine. The voltage
equations of electrical machines are not independent rather than coupled with the
field equations. If the source of the field is taken from the stator winding current
such as earlier publications, e.g., (Andresen & Müller, 1983), then the solution can
be obtained by solving the voltage equations and field equations through the separate
iterations. However, if the machine is fed from the voltage supply or the source of
the field is taken from the voltage supply, then the most efficient method is to solve
the voltage equations and field equations in the same Finite Element (FE) solution
within the same iteration loop. Thus, the coupling of voltage and field equations is
essential to compute the current of the winding accurately as well as for the correct
computation of other quantities such as torque and losses (Belahcen et al., 2016).

The coupled voltage equations and field equations in the same FE solution were
solved by Brandl et al. (1975) to find out the steady-state characteristics of the
synchronous machine. Arkkio (1987) also explained the coupled voltage equations
and the field equations of an induction machine in the same iteration loop. E. Deng
and Demerdash (1996) developed a time-stepping coupled finite element state space
(CFE-SS) model for synchronous generator using the natural time domain ABC flux
linkages reference frame to predict the steady-state characteristics of the generator.
As the field equations are time-dependent in such approaches, thus, the resulting
magnetic field also depends on time.

Knight et al. (2009) developed a computationally effective analytical approach
from a few magnetostatic Finite Element Analysis (FFA) solutions to computing the
flux density in large synchronous machines. Knight et al. (2009) applied his model to
derive the stator core losses assuming the uniform flux in the back iron between teeth.
Hafner et al. (2010) have attempted another time effective analytical method to
calculate the static electromagnetic field in Permanent Magnet Synchronous Machine
(PMSM) by conformal mapping in the frequency domain. However, the above
attempts have been made from taking FEA solutions as input data and developed
model outside of FEA or as an alternative method of FEA.

Belahcen et al. (2016) developed a systematic approach for coupling the static field
equations and space vector model within the same Finite Element (FE) solution. At
first, the model has performed on Permanent Magnet Synchronous Machine (PMSM),
and later on Bearing less Synchronous Reluctance Machine (BSRM), the method
has given accurate results with the measurement and time-stepping finite element
analysis and significantly reduced the computational time. The possibility of iron loss
computation from the developed static field solution opens a new scope of research,
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and a proper estimation of iron loss can significantly reduce the computational time,
and substitute the time consuming transient analysis.
To calculate iron loss from this dynamic solution, the time dependence of the magnetic
field needs to solve through the time-stepping simulation for each time step. The most
common practice of iron loss computation is to obtain the flux density distribution
from time-stepping FE simulation and calculate the iron loss in the post-processing
stage using the obtained flux density distribution (F. Deng & Demerdash, 1998;
Hudak et al., 2004). However, such approaches require a substantial amount of
computation time (Belahcen et al., 2016).

Another method is to include the iron loss in FE formulations; however, such
approaches are not conventional, and not many published works are readily available
to understand the effect of iron loss on the FE solution. A comprehensive study
of iron loss inclusion in the FE solution was performed by E. Dlala, Belahcen, and
Arkkio (2010) in an induction machine. The outcome of their research work was that
the total iron loss decreased 15% after including in the FE solution.

With the notion of minimizing the computation time, a few attempts (Fouad et
al., 1981; Schifer & Lipo, 1989; Al-Din et al., 1997) have been made to obtain the
time dependence of the flux density from several static simulations, hence, compute
the stator iron loss in the synchronous machine from the harmonic components of
the flux density waveform by means of Fourier transformation. In such approaches,
the time variation of the nodal values is introduced by solving a number of static
simulations where the rotor position is varying with respect to stator at one slot
pitch interval. It is clarified that such approaches can reduce the computational
cost compared to the time-stepping simulation but the requirements of the number
of static simulations, i.e., field solutions may still need a substantial amount of
computation time. The difference may be more visible when the proposed method
can compute the iron loss from a single static simulation.

3.2 Introduction to FCSMEK
A Finite Element solver tool based on magnetic vector potential is required to calculate
the iron loss from a static field solution. FCSMEK is a FORTRAN programming
language-based software developed by the electro-magnetics research group at Aalto
University for 2D Finite Element analysis of radial flux machine based on magnetic
vector potential. FCSMEK has a collection of routines for analysing the synchronous
and asynchronous machines. Some basic routines for analysing the synchronous
machine are shown in Figure 16.

MESH is a preprocessing routine for discretizing the geometry of a synchronous
machine. The program generates a two-dimensional finite element mesh for the
cross-section of the machine, and deduce the smallest symmetry sector. The mesh
can be formed with first, second, or third-order isoparametric triangular elements.

SYDC is the FE analysis program to obtain the initial state for time-stepping
simulation from the static FE solution. In this routine, the characteristics of the
synchronous machine are computed based on the dc field analysis. The static FE
solution is achieved through solving the circuit equations of the stator winding based
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Figure 16: FCSMEK routines for synchronous machine.

on the two-axis model, and the field equations. The non-linearity of the system is
solved using the Newton-Raphson iteration method.

CIMTD is the FE analysis program for time-stepping simulation of the syn-
chronous machine. The operating characteristics of the synchronous machine are
obtained by solving the field equations and the circuit equations for each time step
using the Crank-Nicholson time-stepping method. The rotor motion is taken into
account in this routine by changing the air gap mesh. The non-linearity of the iron
is solved using the Newton-Raphson iteration method.

Currently, the iron loss is computed through time-stepping simulation using
CIMTD routine in the post-processing stage. However, the proposed method can
compute the iron loss in advance using the SYDC routine in the post-processing
stage. Moreover, several post-processing routines such as cimpiir, and cimplot, etc.
are used for plotting the solutions.

3.3 Static Field Solution
Static analysis is one of the preferable methods for analysing the synchronous machine
as it allows to analyse the machine from a single static simulation with relatively good
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accuracy. As a result, the simulation time is reduced significantly and profitable to a
wide range of applications. The solution can be achieved by solving a standard static
equation through Finite Element approach and merged with the two-axis space vector
model of a synchronous machine. Thus, a standard static Equation 26 demonstrated
in Section 3.1 is recalled in this section.

∇ × H = J (36)
where H is the magnetic field strength, and J is the total current density in the
material. Introducing the magnetic vector potential A, and the material reluctivity
ν = 1

µ
instead of material permeability µ transform Equation 36 as

∇ × (ν∇ × A) = J (37)
The ferromagnetic materials are often used in electrical machines, which are subjected
to a strong non-linearity. Therefore, the material reluctivity ν also depends on a
non-linear function of magnetic vector potential A in Equation 37. In a material, the
movement of free current-carrying charges is mainly formed the current density J .
However, some other bound charges that can also contribute to the current density
J . In magnetic materials, the movement of a magnetic dipole moment introduces the
magnetization M current and forms the magnetization current density JM . Thus,
the total current density J can be formed as a combination of main current density
J and the magnetization current density JM , and Equation 37 can be rewritten as

∇ × (ν∇ × A) = J + JM (38)

The entry of magnetization current density as JM = ∇ × M transform Equation 38
as follows

∇ × (ν∇ × A) = J + ∇ × M (39)
The assumption of the uniform current distribution is essential to compute the current
density for any wound machine windings. The static solution is achieved through a
standard Finite Element Method by space discretization of Equation 39, discretizing
the nodal values of the magnetic vector potential in each element by introducing
weight function with the shape functions and handling the iron non-linearity using
the Newton-Raphson iteration scheme, which transforms Equation 39 to a linear
algebraic equation:

Sa = F (40)
where S is the stiffness matrix, a is the magnetic vector potential of the nodal
values, and F is the source term constitute by the supply current density J and the
magnetization current density JM .

The entry of stiffness matrix S in the integral form can be written as

S ij =
∫︂

ν∇Ni.∇NjdS where i, j = 1.....n (41)

In case of homogeneous Neumann boundary condition ∂A
∂n

= 0, the integral form of
the source term F can be written as

F i =
∫︂

NiJdS where i = 1.....n (42)
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Figure 17: Space vector representation of the stator flux linkages.

In case of inhomogeneous Neumann boundary condition ∂A
∂n

= g, due to the boundary
integral, one additional term can be added to the integral form of the source term F ,
which transform Equation 42 as

F i =
∫︂

NiJdS +
∫︂

Γ
NiνgdΓ (43)

where ν is the reluctivity of material. Now, the nodal values of magnetic vector
potential a can be directly solved from the matrix Equation 40. The fast computation
and fewer parameter requirements of the space vector model make it a preferable
choice for the analytical analysis of electrical machines, precisely the synchronous
machine. Thus, the calculation of flux linkage can be achieved through a space vector
model where the three-phase flux linkages can be transformed into an equivalent
two-phase system in the stationary αβ frame which is illustrated in Figure 17.

These axes α and β are perpendicular to each other and can be considered as the
real and imaginary part of the two-axis system, which allows a complex representation
of the space vector model. The transformation of three-phase to two-phase can be
done by using Clark’s transformation, also known as αβ transformation.

Ψs
s(t) = Ψα(t) + jΨβ(t) = 2

3V k(Ψa(t)e0 + Ψb(t)e
j2π

3 + Ψc(t)e
j4π

3 ) (44)

where the underscore presents the complex quantity, the subscript and superscript
s are used to indicate that the space vector is formed with the stator quantities
and expressed in the stator reference coordinates αβ, respectively. The contribution
of flux linkages can be outfitted from their particular directions which is indicated
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by the corresponding unit vector (1,j2π/3, j4π/3), then combined all together and
scaled with the space vector scaling constant V k. The scaling constant can be formed
as a matrix for each phase quantities where superscript k denotes the phase number
(a, b or c), respectively. The same approach can be implied to transform the other
three-phase stator quantities such as current and voltage where the space vector
model rotates with the same angular frequency of the stator quantities, i.e., usually
the fundamental frequency ω (Harnefors et al., 2015).

In a magneto-static solution, the induced current or voltage is neglected, and the
computed fluxes are independent of time, i.e., static.

Belahcen et al. (2016) showed a systematic approach to compute the stator flux
linkages from the obtained static FE solution and coupling with the space vector
voltage equation of a synchronous machine. According to Belahcen et al. (2016),
the calculation of flux linkage can be achieved by forming V k

i from the static FE
solution. The space vector scaling constant V k

i for each phase can be formed from
the position of the elements in each phase indicated by introducing a flag βk and the
shape functions Ni of ith nodes and integrated over the problem domain as follows

V k
i =

Wl
∫︁
Ω

βkNidΩ
1
2

∫︁
Ω

| βk | dΩ
(45)

where W stands for the number of turns in the stator coils, l is the effective length
of the machine, k is the phase number (a, b or c) and βk is a flag that indicates the
positions of the elements in coil side. The flag βk=0 shows no elements in a coil,
βk=1 elements in the positive side of the coil and βk=-1 elements in the negative side
of the coil of phase k. Finally, the flux linkages for each phase can be obtained by
forming the matrix or vector V k and multiplying with the magnetic vector potential
A from the computed static FE solution in Equation 40 as follows

Ψa = V aTAe0

Ψb = V bTAe
j2π

3

Ψc = V cTAe
j4π

3

(46)

The resultant flux linkage can be computed as a sum of three stator phases (Ψa, Ψb
and Ψc) flux linkage as follows

Ψ = 2
3((V aTA)e0 + (V bTA)e

j2π
3 + (V cTA)e

j4π
3 ) (47)

where superscript T denotes, the matrix or vector transposition and j is the imaginary
unit vector indicates the direction of the flux linkages. The formed matrix or vector
V k is used to evaluate the source term constitutes from the supply current in Equation
40 by scaling inversely of the machine length. However, the contribution to the
source term F in Equation 40 from the magnetizing current generates by the magnet
is handled individually with a standard procedure.

When the machine is fed from the current source, the field equations can be
solved simply and directly by assuming the uniform current distribution in the
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windings. However, the non-uniform current distribution due to the skin effect and
the proximity effect is neglected in this case. Therefore, the approximate solution
can be achieved without coupling the field and the circuit equation. On the other
hand, the situation is different, when the machine is fed from a voltage source as
the computation of current depends on the field equation and the circuit equation.
Thus, the coupling of the field equation and the circuit equation is essential for the
correct computation of the current and other quantities such as torque or iron losses
if the machine is supplied from the voltage source.

The space vector equivalent circuit of a synchronous machine in stator coordinates
is illustrated in Figure 18.

Figure 18: Space vector equivalent circuit of a synchronous machine.

In the stator reference frame, the space vector voltage equation of a synchronous
machine can be written as

us
s = is

sRs + ∂Ψs
s

∂t
(48)

where Rs is the stator resistance, us, is, and Ψs denotes the stator voltage, current,
and flux linkages, respectively, where the underscore indicates that these are the
complex variables. The subscript and superscript s refers that these are the stator
variables and expressed in the stator reference coordinate. In general, the complex
variables in Equation 48 can be expressed in component form by projecting the
vector in αβ complex plan. However, the Finite Element Method (FE) generates the
output natively in (x, y) coordinates; thus, the complex variables in Equation 48 can
also be presented as x and y component in case of a static FE solution as follows

us
s = ux + juy

is
s = ix + jiy

Ψs
s = Ψx + jΨy

(49)

Besides, the flux distribution is assumed to be sinusoidal time variation, and any
additional flux linkages from the end winding can be represented by an end winding
inductance Lew. Introducing the end winding inductance Lew in Equation 48 and
expressing the stator voltage in x and y components lead to:

ux = ixRs − ωLewiy − ωΨy

uy = iyRs + ωLewix + ωΨx

(50)
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where ω stands for the flux pulsating angular frequency for static simulation in
steady-state and also referred to as fundamental supply frequency. In the Finite
Element approach, the flux can be directly computed from Equation 47 and for the
current fed machine the voltage can be calculated from the Equation 50 using the
calculated flux linkages. However, if the machine is fed from a voltage source, then
the flux Equation 47 and the voltage Equation 50 needs to be solved within the
same FE solution to determine the current. The coupling of static flux and space
vector equation can be achieved by inserting the flux Equation 47 in the space vector
voltage Equation 50, then the static FE solution Equation 40 and the space vector
Equation 50 are transformed into a single equation:⎡⎣ S −V

l

ωV T Z

⎤⎦ ⎡⎣A
i

⎤⎦ =
⎡⎣Fpm

u

⎤⎦ (51)

where Z is the 2 × 2 matrix that contains the stator resistance and the end winding
inductance appears from the Equation 50, and the matrix V is now constructed by
the projections of V k from the Equation 45 over the (x, y) plane. Now, Equation 51
turns into a systematic approach for obtaining the nodal values of magnetic vector
potential a in case of a voltage fed machine. It is noticeable that such coupling
approach is only possible if the flux distribution is assumed to be sinusoidal variation
with time. The static simulation can provide relatively good accuracy, i.e., close to
the steady-state within a very short simulation time and substitute the time-stepping
method for many tasks.

3.4 Time Dependence of Flux Density in Static Analysis
The existence of the harmonic components in the electrical machine affects the flux
density waveform and influence to depend on time. However, the obtained flux
density B values from a static field solution is independent of time, i.e., static. Thus,
the time dependence of the static flux density waveform needs to be introduced
in the iron loss computation. In FCSMEK, the stator FE mesh is constructed by
multiplying the slot pitch mesh. Thus, the number of elements in one slot pitch mesh
is repeated to the next slot pitches, and elements from one slot pitch to another has
the same position and size. Therefore, the space variation of the static flux density
waveform over one period can be achieved by selecting the elements at one slot pitch
interval. It can be noted that the elements in stator yoke can be chosen even at half
of the slot pitch to complete the one period of flux density waveform. However, the
situation is different for the stator teeth where the elements can be selected after one
slot pitch due to the existence of stator slots. In actual iron loss computation, the
flux density waveform over one period is created by varying one slot pitch both for
the stator yoke and teeth. The time dependence of the flux density waveform can be
achieved by assuming that the flux density waveform is moving with the fundamental
angular frequency ω and time t. Therefore, at any instant of angular distance, θ and
time t, the displacement of the moving flux density with initial position θo can be
determined as θ = θo + ωt. With respect to the initial position θo and time t = 0,
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the displacement of the flux density waveform can be written as

B(θ, r, t) = RB(θ − ωt, r, 0) (52)

where θ is the angular position from the rotor midpoint to the node, r is the radial
distance from the rotor midpoint to the node, and R is the rotation matrix. The
entry of the rotation matrix R in Equation 52 can be expressed as

R =
⎡⎣cos θ − sin θ

sin θ cos θ

⎤⎦ (53)

It can be noted that the radial distance r from the rotor midpoint in Equation 52 is
satisfied automatically as the elements are taken in the same radial distance. Now,
the solution of flux density waveforms from elements to elements is independent of
time with respect to the initial position θo and time to. The discretize time step
can be used to introduce the time dependence through indexing the node numbers
where total discretize time steps should be equal to the number of slot pitches. The
nodal positions of next slot pitches mesh moves to the initial slot pitch mesh position
successively at each discretize time step. It is possible as the angular distance, i.e.,
slot pitch of any particular element from one slot pitch mesh to another is proportional
to the time which can be seen in Equation 63. It is worth noticing that, such an
approach can be only applicable where the repetitive sequence of the slot mesh is
found. Therefore, a complete cycle of flux density waveform can be created element
by element just rotation over one slot pitch. The time dependence of the nodal values
a and the solution procedure in case of dynamic field solution is described in the
following section.

3.5 Dynamic Field Solution
The solution of the magneto-static problem is achieved by assuming sinusoidal time
variation of the source quantities which relax the time dependence of the magnetic
field as described in Section 3.3. Moreover, the magnetic vector potential A is
computed as a single component vector potential in magneto-static case. However,
in practice, the magnetic core in the electrical machine are experienced to a non-
sinusoidal field distribution even if the sinusoidal variation of the source is assumed
due to the presence of harmonic components. Thus, the magnetic field depends on
the time, as shown in Equations 22, and 26. The time dependence magnetic field
introduces the time-varying eddy current in the system. Therefore, the magnetic
vector potential in the magneto-static Equation 31 turns into a time-dependent
equation:

∇.(v∇A) + σ
∂A
∂t

= −J (54)

where σ is the conductivity of the material. Equation 54 can be solved by discretizing
in space, and using a Finite Element scheme where the nodal values of magnetic
vector potential A in each element are approximated using the Galerkin’s residual
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method and the shape functions of the nodes and turns into a simple linear algebraic
equation:

Sa + Tȧ = F (55)

Where the magnetic vector potential ȧ depends on the time, and the derivative of ȧ
can be written as

ȧ = da
dt

(56)

The entries of the stiffness matrix S and the source term F in matrix Equation 55 is
described in Section 3.3 where the entries of the boundary term T can be determined
as

T ij =
∫︂

Ω
σNiNjdΩ i, j = 1, ..., n (57)

It can be noted that T ij is the boundary integral at the material boundary and the
i, j are nodes active in material boundary and Ni, Nj are the corresponding shape
functions of these active nodes. To evaluate the time dependency of the magnetic
field, the nodal values of the magnetic vector potential a needs to be solved at each
time step. The magnetic vector potential at each time step can be approximated by
using the Crank-Nicolson time-stepping method where k and k + 1 determine the
time step:

ak+1 = ak + 1
2[∂a

∂t
|k+1 +∂a

∂t
|k]∆t (58)

If the true time dependency of the field equations is needed in the non-linear system,
the field equations must be solved step by step method evaluating the variations of
the field in short time intervals ∆t. The rotor rotates in each short time interval
∆t with an angle related to the rotor angular velocity. The actual rotor motion is
accomplished by modifying the air gap mesh in each step concerning the angular
speed of the machine. Circuit equations and field equations are coupled to couple
the magnetic vector potentials, voltages, and currents in stator and rotor. The
non-linearity of the system equations is solved using the Newton-Rapson iteration
method in the same iteration loop for rapid convergence and short time solution
(Arkkio, 1987).

3.6 Numerical Integration
The numerical integration is needed to solve the stiffness matrix Equation 41, source
term Equation 42 and compute the flux density values in each element from the
nodal values of magnetic vector potential A. Thus, an integration method can be
chosen for faster computation which can provide better accuracy with a minimum
number of integration points. The Gaussian quadrature method is recognized for the
requirements of least number integration points; therefore, this method is used to
approximate the solution of numerical integration. The integration points, coordinates
and the related weight functions are selected for the polynomial passing through the
function, so that, it can be appropriately integrated.
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In FEM, the numerical approximation of the function f can be achieved as a
summation of integration points over the triangular element and the multiplication
of the coordinates and the weight function of each integration points. In this thesis,
the second-order triangular element having six nodes is used; thus, the quadratic
polynomial shape function is chosen. Three integration points are recommended and
chosen for each quadratic triangular element. It can be noted that increasing the
integration points does not necessarily raise the solution accuracy. In two dimensional
case, the solution of the numerical integration can be achieved by performing the
following integration formula successively

1∫︂
−1

1∫︂
−1

f(u, v)dudv =
m∑︂

j=1

m∑︂
i=1

wiwjf(ui, vj) (59)

where m is the number of integration points, ui and vj refers to the coordinates
and the wi, wj represents the weight functions of the integration point i and j,
respectively. It can be noted that the integration of the function f is defined in the
local coordinate (u, v). Thus, the nodal values of magnetic vector potential a in the
integration points of each iron element is calculated in the actual coordinates (u, v).
The coordinate transformation from local coordinates (u, v) to the global coordinate
(x, y) is done multiplying by the determinant | J(u, v) | of the Jacobian matrix

∫︂
Ω

f(x, y)dΩ =
1∫︂

−1

1∫︂
−1

f(u, v) | J(u, v) | dudv =
m∑︂

j=1

m∑︂
i=1

wiwjf(ui, vj) | J(ui, vj) | (60)

where the entry of the determinant| J(u, v) | of the Jacobian matrix is obtained by

| J(u, v) |=
⎡⎣ ∂x

∂u
∂y
∂u

∂x
∂v

∂y
∂v

⎤⎦ = ∂x

∂u

∂y

∂v
− ∂y

∂u

∂x

∂v
= 2∆ (61)

The determinant of the Jacobian matrix | J(u, v) | is twice the surface area ∆ of the
triangular element. The Fourier components of the flux density values Bx, and By of
each integration points are computed from the partial derivative of the nodal values
of magnetic vector potential a with respect to x-y coordinates as shown in Equations
67, and 68 and multiplied by the Fourier coefficients of the nodal values a. It can be
noted that the obtained flux density components Bx and By have consisted with
the cosine and sine terms as the Fourier coefficients are complex-valued; hence, the
magnitude of the flux density values B is computed.

3.7 Iron Loss Computation from a Static Field Solution
The iron loss computation process from a static field solution is started with meshing
the machine geometry using the MESH program in FCSMEK. FCSMEK has an
option to mesh the geometry using the linear, quadratic or cubic polynomials. In
this thesis, the meshing is done by using the quadratic polynomials. The criteria
of meshing in the Finite Element method is described in Section 3.1.2. The index
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numbers are assigned to each element of the slot pitch mesh. Similarly, the nodes
of each element have also their own index numbers. The slot pitch mesh consisted
of different materials; therefore, the material index number and boundary node are
assigned to the corresponding element, and the boundary condition is applied to
periodic ones. The machine geometry and the material indices are stored in the
cim.data file, which is taken as an input for running the MESH program. When the
meshing is completed, the related information about the FE mesh such as element
numbers, node numbers, material indices and coordinates of the nodes are stored in
the cim.fedat file. After that, the static FE analysis program SYDC is started to
run where the output of the MESH program is taken as an input. The computed
nodal values of magnetic vector potential a are static and stored in the cim.fedat
file along with the Finite Element (FE) mesh information. A complete cycle of flux
density waveform for element to element in the stator core can be achieved varying
the angular position by one slot pitch from a single static simulation over two pole
pitches. The slot pitch of the preferred machine can be calculated as

θs = 2π

Qs

= 0.0698 (radian) (62)

where Qs denotes the total number of stator slots, and the selected machine has a
total of 90 stator slots. In actual implementation, the time dependence of the nodal
values of magnetic vector potential a is introduced and used to compute the flux
density values later. The time step for the time dependence is computed as follows

∆t = ∆θsp

ω
= 6.6667 × 10−4s (63)

where p denotes the number of pole pairs which is three for this particular machine,
θs is the slot pitch, and ω is the supply angular frequency.

3.7.1 Computation Algorithm

The computation began with taking the elements and nodes belongs to one slot
pitch mesh from where the repetitive sequence is started. FORTRAN programming
language is used for computation as the FCSMEK is developed in FORTRAN
environment. An array is formed containing all the element numbers belongs to
the iron elements using the material indices for one slot pitch mesh. If the element
number is known, the algorithm can search and find out the nodes and corresponding
nodal values of the magnetic vector potential a belong to that particular element. To
emulate with the time step, the sequence of index number from elements to elements
or nodes to nodes is needed at each slot pitch. The time discretization of nodal values
is done through indexing the node numbers where the position of nodal points of one
slot pitch mesh moves to the initial slot pitch mesh position continuously in each
time step. The solution region provides half-cycle of the magnetic vector potential a
waveform , consequently, the flux density B waveform. Another half-cycle waveform
is achieved by mirroring the existing solution region. A problem was identified during
the computation as the elements in the first slot pitch is not equal as the other slot
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pitch meshes, i.e., if the elements are taken from the beginning of the mesh. However,
the actual iron loss calculation required an equal number of elements in every slot
pitch mesh. So that, after one slot pitch distance the same size element can be found
in other slot pitch mesh, which is required to form the elements to elements flux
density waveform over one period. Any asymmetrical slot pitch mesh can be given
the erroneous result; thus, the calculation is continued without taking this slot pitch
mesh. The elements of the initial slot pitch are assumed from the next slot pitch
mesh, i.e., second slot pitch. Thus, a total of 29 slot pitch meshes are considered for
two-pole pitches instead of 30 slot pitch meshes. The flux density waveform for a
complete cycle is required to discretize time steps equivalent to the total number of
slot pitches, i.e., 30 slot pitches for this particular machine in two-pole pitches. A
loop is performed equal to the discretize time steps to introduce the time dependence
of the nodal values. The time step between the elements in the last slot pitch of
the solution region and the first slot pitch of the mirroring region is kept twice of
the others due to avoid one slot pitch mesh in between them and fulfil the complete
cycle.

The Fourier coefficients of the obtained magnetic vector potential values as a
function of time a(t) is computed over one period. The numerical approximation
is required to achieve the solution of Fourier coefficients. Due to simplicity and
relatively good accuracy, the Trapezoidal method is used to approximate numerical
integration. In the Trapezoidal method, the numerical integration over one interval
period is approximated by dividing the integration area into trapezoids which turns
into the simple computation. The Trapezoidal method works in two different ways
for the even and uneven spacing of the points. For uneven step size, the numerical
integration with N + 1 non-uniform spaced points can be approximated by the
following method:

T∫︂
0

a(t)dt ≈ 1
2

N∑︂
n=1

(tn+1 − tn)[a(tn) + a(tn+1)] (64)

where (tn+1 − tn) determines the spacing between each successive pair of points. It
can be noted that the approximation accuracy of the Trapezoidal method depends
on the partition number N . As N becomes larger, i.e., partition interval length ∆tn

becomes smaller, the error of the Trapezoidal method is reduced by (1/N2).
The Nyquist-Shannon sampling theorem works perfectly for samples that are

evenly spaced in time, and no information is lost from the signal. It is mentioned
already that the obtained magnetic vector potential A waveform are non-uniformly
spaced in time. The signal from the unevenly spaced samples can be reconstructed
as accurately as possible if the average sampling rate follows the Nyquist rule, but
the signal might lose one or two samples. According to the Nyquist theorem, the
suitable number of harmonic components considered from a sampled waveform can
be determined as

n = Ts

2dt
= 0.01s

2 × 6.6667 × 10−4s
≈ 7 (65)
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where n denotes the number of harmonic components, Ts is the sampling time period
and dt is the time step. Due to the non-uniform sampling step size, the lower
harmonic components, i.e., up to 5th harmonic components, are chosen in the loss
computation. However, the 6th harmonic component is not included as all the even
harmonic components are zero due to the symmetrical waveform of the flux density.
The effect of including the 7th harmonic components in signal reconstruction from the
sampled signal is shown later. The accuracy of iron loss computation largely depends
on the accurate prediction of the flux density values. The iron loss is computed
from the peak flux density values at each harmonic frequency components for one
interval period. In FEM, the flux density can be computed from the divergence of
nodal values of the magnetic vector potential a as shown in Equation 29. In the
2D analysis, the flux density can be determined only in the x-y plane and does not
depend on the z axis. The magnetic flux density lies in the x-y plane as

B = iBx + jBy (66)

where Bx is the flux density values in the x-direction and By is the flux density
values in the y-direction. According to the Equation 29, the flux density Bx and By

can be calculated from the partial derivation of magnetic vector potential values A
with respect to the x-y coordinates as follows

Bx = ∂A
∂y

(67)

By = −∂A
∂x

(68)

The requirements of numerical integration for iron loss calculation and the flux
density computation at each integration points of the iron elements are described in
Section 3.6. The hysteresis and eddy current losses are computed from the obtained
flux density values at each harmonic components and integrating over the volume
of the machine by using Equations 16, and 17, respectively. The total iron loss is
calculated as a sum of the hysteresis and eddy current loss components. It can be
noted that the excess loss components are included in the eddy current loss.

3.8 Iron Loss Computation from a Dynamic Field Solution
In FCSMEK, the iron loss is calculated from the dynamic field solution in CIMTD
routine. The simulation is started with the same input parameters given for the static
analysis. The FE analysis information computed from the static field solution and
written on cim.fedat file is taken as an initial stage of the time-stepping simulation,
which assists in reaching the steady-state condition within a few simulation periods.
In a dynamic solution, the rotor rotates in each time step, and the flux density
profile is varied depending on the rotor position. Therefore, the time dependence
of flux density distribution is taken into account in the dynamic loss calculation
method. In FCSMEK, the procedure of assigning the element and node numbers and
the corresponding material index numbers are already discussed in Section 3.7. To
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compute the iron loss in CIMTD, a loop is used to call all the elements that belong
to the iron material based on their material index number. A separate loop is used to
obtain the nodal values of magnetic vector potential a at each node of iron elements.
The simulation is run for a few periods in order to obtain steady-state characteristics.
However, the Fourier analysis of the nodal values of the magnetic vector potential
a is started during the last period. The Fourier coefficients of the nodal values are
computed at each time step. The numerical integration associated with Fourier
coefficients are solved, and the sampling is done according to the Nyquist rule. The
procedure of flux density computation at each integration points and the Fourier
decomposition of the flux density waveform from the Fourier coefficients of the nodal
values a is explained in Section 3.6.

Finally, the average iron loss is computed from the Fourier decomposition of flux
density values over one period and integrating over the volume of the machine using
the same loss Equations 16, and 17 in the post-processing stage. It is worth noticing
that, the total iron loss is computed in the time-stepping method as a contribution
of the stator core loss and the rotor core loss. In static loss computation, only the
stator core loss is calculated as the rotor has the DC magnetic field. Thus, the total
iron loss is segregated into the stator, and rotor iron loss and only the stator core
loss is taken into consideration in the time-stepping method for a fair comparison.

3.9 Chapter Summary
A set of electromagnetic equations and the solution process using the 2D Finite
Element Method is discussed in Section 3.1. A basic introduction of the FEM solver
software FCSMEK for simulating the synchronous machine is given in Section 3.2.
The strategy of two-dimensional static field computation in FEM and the iron loss
calculation techniques from this field solution are described in Section 3.7. Section
3.8 deals with the dynamic field computation method and the procedure of iron loss
computation from this solution. The outcomes and findings of the conductive thesis
are presented in the following Chapter.
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4 Results and Discussion
This chapter is dealing with the application, analysis and comparison of different
parameters involved with the iron loss calculation and the computation results using
the proposed method and the time-stepping method. Section 4.1 introduces the
model application in a synchronous machine, machine specifications, basic machine
parameters required for the simulation, and some parameters obtained from the
simulation for both methods in FCSMEK. Section 4.2 presents the comparison of
some obtained results associated with the iron loss computation and the total stator
iron loss computed from the static field solution and the dynamic field solution.

4.1 Model Application in Synchronous Machine
The developed model is applied to a salient pole synchronous machine, which consists
of 90 stator slots and six-rotor poles. The machine has a double layer distributed stator
winding. The machine has the field winding stated in the rotor pole to produce enough
constant flux required for the magnetization. Moreover, the machine contains damper
windings which are mounted on the rotor pole body. The application of the damper
winding is to assist on the synchronous machine starting mechanism, preventing
the hunting effect due to the sudden load change. Furthermore, the damping bar
minimizes the harmonics of the air gap flux density during the transient state. The
conductivity of the stator core material was kept to 0 S/m. The initial material
conductivity of stator windings and the damper windings was set to 58.1 × 106 S/m
at ambient temperature, i.e., 20oC and adjustable to the user-defined temperature
during the simulation. The cross-section of the chosen machine is depicted in Figure
19.

Figure 19: Cross-section of the salient pole synchronous machine.
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A 2D FE mesh of the selected machine was generated through the MESH program
in FCSMEK. Most commonly, the first order, second order or third order triangular
element is used in 2D FEM analysis. In this thesis, the second-order triangular
element having six nodes has been chosen by trading off between the computation
time and accuracy. The mesh of the entire machine is illustrated in Figure 20, which
is produced by multiplying the mesh of the smallest symmetry sector. The FE
mesh of the smallest symmetry section is shown in Figure 21, which is used in the
simulation. The mesh consists of a total of 2026 elements and 4113 nodes in the
solution region. Besides that, each stator slot pitch has a total number of 54 elements
among them 30 elements in the iron core, 18 elements in the air and six elements in
the stator winding. A changeable air-gap mesh is used to take the rotor motion into
account. The information about the elements and nodes of the studied synchronous
machine is listed in Table 5.

Figure 20: Finite element mesh of the salient pole synchronous machine.
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Figure 21: Finite element mesh of the smallest symmetry section.

Table 5: Mesh results.

Parameter Number
Order of triangular element 2
Nodes per triangular element 6
Number of elements 2026
Number of nodes 4113
Elements in each stator slot pitch 54
Elements in iron core per stator slot pitch 30
Elements in air per stator slot pitch 18
Elements in winding per stator slot pitch 6

The operating characteristics and the solution of static FE analysis were obtained
by simulating the synchronous machine using the SYDC routine. To run the SYDC
program, some parameters such as supply source, the connection of the stator and
rotor windings, temperature of the stator and rotor, terminal voltage or current, rotor
angle and the field winding voltage or current are required from the user side. The
selected machine has a three-phase, star connection with a supply frequency of 50 Hz.
The machine was supplied from a voltage source, and the current was computed by
coupling the field equations and the circuit equations within the same FE solution
as described in Section 3.3. The machine was simulated at a specific operating point
using the input parameters, which are tabulated in Table 6. The rotor field winding
voltage and the rotor angle required for this operating point was computed through
an algorithm developed by Electromechanics group at Aalto University. However,
if the machine is fed from the current source, then the rotor field current and the



62

rotor angle need to be searched for the desired operating condition. The machine
parameters obtained using the SYDC routine are illustrated in Table 6.

After that, the time-stepping simulation was continued with the same parameters
used in the SYDC routine. The simulation was carried out for 300 steps per period
and four periods were studied to obtain the steady-state operating characteristics and
the solution of dynamic FE analysis using the CIMTD routine. The short step size
was used for better accuracy, which may increase the computation time slightly; thus,
the user needs to compromise between the accuracy and the computation cost. The
time was discretized into short time interval using the Crank-Nicholson time-stepping
method. The field and the circuit equations were solved for each successive time
intervals. The rotor was rotated at a constant speed, and the actual rotor motion was
achieved by changing the FE mesh in the air-gap. The non-linearity of the system
equations was solved by the Newton-Raphson iteration method. The operating
parameters acquired using the CIMTD routine is tabulated in Table 7.

Table 6: Parameters using SYDC routine.

Parameters Data
Supply frequency [Hz] 50
Terminal voltage [V] 3150
Terminal current [A] 2274
Rotation speed [RPM] 1000
Rotor angle [Elec.Deg.] 31.9
Apparent power [MVA] 12.410
Active power [MW] 12.407
Reactive power[kVAR] -258.7
Shaft power [MW] 12.6
Air-gap torque [kNm] 121.2
Power factor [Capacitive] 0.9998
Stator winding temperature [◦C] 50
Rotor winding temperature [◦C] 50
Rotor voltage [V] 58
Rotor current [A] 371.1
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Table 7: Parameters using CIMTD routine.

Parameters Data
Supply frequency [Hz] 50
Terminal voltage [V] 3150
Terminal current [A] 2285
Rotation speed [RPM] 1000
Shaft power [MW] 12.42
Air-gap torque [kNm] 118.61
Power factor [Capacitive] 0.9997
Stator winding temperature [◦C] 50
Rotor winding temperature [◦C] 50

It can be seen that the operating parameters obtained from the SYDC and the
CIMTD routines are in relatively good agreement. Some of the parameters such
as the terminal current, air-gap torque and shaft power were computed by SYDC
slightly differ than the time-stepping simulation. This is because the steady-state
parameters are obtained in CIMTD while the parameters calculated in SYDC at the
initial state of analysis based on the two-axis model by assuming the steady-state
condition; therefore, the computation may overestimate these parameters slightly.

4.2 Iron Loss Comparison
The flux contour lines and the flux density distribution both for the static analysis
and dynamic analysis of the smallest symmetry section are shown in Figures 22, and
Figure 23. It can be seen that there is no difference in the flux density distribution;
thus, the exact computation of flux density is expected for both methods. In stator
core, the flux density distribution is higher in the teeth than the yoke where the
fluxes are penetrating to the air gap. The highest flux density distribution is observed
in the rotor pole near pole face where the fluxes are transferring from the stator as
the rotor field drags the stator field.
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Figure 22: Flux density distribution of the smallest symmetry section in SYDC.

Figure 23: Flux density distribution of the smallest symmetry section in CIMTD.

In the case of SYDC, the process of elements selection in stator yoke at each slot
pitch interval is depicted in Figure 24. It can be seen that the number of stator slots
and the number of points in flux density waveform is equal, which is depicted in
Figure 25.
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Figure 24: Elements selection for the flux density waveform formation over one pole
pitch in SYDC.

Figure 25: Flux density values at the selected elements in stator yoke in SYDC:
(above) radial components; (below) tangential components.

Similarly, the flux density waveform in the stator teeth was formed by choosing
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the elements at one slot pitch interval. In such a way, elements to elements flux
density waveform can be constructed at each slot pitch interval over two pole pitches
to calculate the average iron loss from a closed cycle of the flux density waveforms.
It is worth noticing in Figure 24 that the same size of the element in each stator
slot pitch meshes from number 2 to 15, i.e., represents full slot pitch was found at
a distance of one slot pitch interval. On the other hand, the elements in position 1
and 16 represents half of the slot pitch, and the size of these elements are different
compared to other slot pitches mesh. Therefore, the total number of elements in this
slot pitch is not equal compared to the other slot pitches mesh. However, the same
number of elements in each slot pitch mesh is required when the elements to elements
flux density waveform need to be formed in the actual iron loss computation; thus,
this slot pitch was avoided. It can be noted that the flux density waveform was
formed by specified an observation point at one element, i.e., number 1, and varying
by one slot pitch from number 1 to 16 in Figure 25. Such variation over one pole
pitch provides the half cycle of the flux density waveform. Therefore, a complete
cycle of flux density waveform is obtained in SYDC by varying over two pole pitches,
as shown in Figure 28. As one observation point was specified in each element;
therefore, no elements were missed, and the flux density points are evenly spaced in
Figure 28 even though the elements in number 1 and 16 are different compared to
other selected elements in Figure 24. However, the recommended integration points
in case of quadratic triangular elements and the corresponding flux density values
were considered in actual loss calculation which is described in Section 3.6.

Before computing the flux density values for a complete cycle, the magnetic vector
potential A was studied first for both methods as the flux density was calculated from
the partial derivative of A which is described in Section 3.7.1. The magnetic vector
potential was computed by selecting a particular observation point in the stator yoke
and another one in the stator teeth. The selection of these specific points was made
by defining their coordinates. The coordinates were defined in (r, θ) coordinate where
r is the radial distance and θ is the angular distance from the rotor midpoint to the
node. The coordinate was transformed to (x, y) coordinate as the FEM gives the
output of the magnetic vector potential A in (x, y) coordinate, which is described in
Section 3.1.2. An algorithm was developed to search the element in which the defined
observation point existed. The specified (x, y) coordinate associated with that point
was normalised with the local coordinates (u, v) and the magnetic vector potential of
the defined coordinate are computed and transferred to the global coordinate (x, y)
by the determinant of the Jacobian matrix. The coordinate transformation using
the determinant of the Jacobian matrix is described in Section 3.6.

In SYDC, the coordinate of the observation point was defined one in stator yoke,
and another one in stator teeth. It can be noted that the radial distance r remains
constant for all the points were taken in stator yoke, and only the angular distance θ
was verified according to half of the slot pitch over one period. Similarly, the radial
distance r was the same for stator teeth as well; however, the angular distance θ was
varied one slot pitch in order to avoid the stator slot exist between two successive
slot pitches, and the vector potential A of each point was computed over one period.
Thus, the magnetic vector potential in the case of stator yoke is contained twice the
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number of points than the stator teeth in one period, which can be seen in Figure 26,
consequently the flux density waveforms in Figures 28, and 29. It can be noted that
the elements in stator yoke were selected at half slot pitch interval for representation
purpose. However, the elements in stator yoke were selected at one slot pitch interval
in actual iron loss computation.

In the time-stepping simulation, one particular observation point was specified in
the stator yoke and another one in the stator teeth by defining their corresponding
coordinates (r, θ). The profile of the magnetic vector potential values A at these
observation points were changed at each time step. A complete set of the magnetic
vector potential A values were obtained in the stator yoke and teeth for one periodic
interval. In the time-stepping method, the vector potential values were appeared
corresponding to their time step. Thus, the magnetic vector potential A values are
plotted corresponding to their time step in Figure 27. In SYDC, the time variation
of the magnetic vector potential A waveform is shown in Figure 27 where each time
step was computed according to Equation 63.

Figure 26: Magnetic vector potential in SYDC.
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Figure 27: Magnetic vector potential comparison SYDC and CIMTD.

The magnetic vector potential waveform for both methods have a relatively good
agreement. Thus, it is expected that the computed flux density values from these
magnetic vector potential values should be matched for both methods. However,
the magnetic vector potential waveform in case of static simulation looks a little bit
more distorted due to the less number of points in the waveform. It can be noticed
that the obtained magnetic vector potential waveform is not perfectly sinusoidal due
to the effect of the space harmonic components.

In FEM, the flux density B values are computed natively in the x-y coordinates;
thus, the actual iron loss was calculated from the flux density Bx and By values. In
practice, the flux density B is solved by assuming the two-dimensional approximation
where the flux density lies only in (x, y) plane in Cartesian coordinates or (r, φ) plane
in cylindrical coordinates and does not depend on the z-axis. The radial Br and the
tangential Bφ components of the flux density values in stator yoke and teeth over one
period are presented in Figures 28, and 29 for better understanding purpose. The
coordinate transformation from the Cartesian coordinates (x, y) to the cylindrical
coordinates was done according to Equation 69.⎡⎣Bφ

Br

⎤⎦ =
⎡⎣cos φ − sin φ

sin φ cos φ

⎤⎦ ⎡⎣Bx

By

⎤⎦ (69)

In the case of SYDC, the space distribution of the flux density waveform in stator
yoke and teeth over one period is illustrated in Figure 28.
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Figure 28: Magnetic flux density in SYDC: (above) radial components; (below)
tangential components.

The time variation of the flux density waveforms in static analysis is shown in
Figure 29, where each time step was computed according to Equation 63. It can
be noted that the obtained flux density waveform in Figure 29 in the time-stepping
method is naturally in the time domain.

Figure 29: Magnetic flux density comparison SYDC and CIMTD: (above) radial
components; (below) tangential components.
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It can be seen that the radial components of the flux density Br are higher in
the stator teeth. At the same time, the tangential components Bφ are more elevated
in the stator yoke, which can also be seen from the flux density distribution in
Figures 22, and 23. The non-sinusoidal flux density distribution is noticeable due
to the spatial harmonic components present in the waveform. However, the flux
density waveform in stator teeth is looking more distorted due to the higher harmonic
components associated with the teeth area.

The Fourier transformation was performed to analyse the harmonic components
presented in the flux density waveform in Figure 29. The Fourier analysis was studied
using a MATLAB program. The magnitude of flux density B at each harmonic
components was computed, and presented in Figures 30, and 31 from the Fourier
components of the radial Br and tangential Bφ flux density waveform as

| Bn |=
√︂

B2
rn + B2

φn (70)

where n is the number of harmonic components. A significant amount of higher
harmonic components are appeared in the stator teeth compared to the yoke in
both methods. In the case of SYDC, the maximum fifth harmonic components are
presented in Figure 30 as the total stator iron loss was computed considering up to
5th harmonic components. In the case of CIMTD, the harmonics components are
shown up to 25th in Figure 31, and all the harmonic components were taken into
account for the iron loss calculation.

Figure 30: Magnitude of the flux density harmonic components in SYDC.
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Figure 31: Magnitude of the flux density harmonic components in CIMTD.

It can be seen that the contribution of fundamental harmonic components is more
and gradually decreasing with increasing the harmonic orders. It can be noticed that
no even harmonic components are presented in both SYDC in Figure 30, and CIMTD
in Figure 31 as they cancel out each other because of the symmetrical flux density
waveform. In the actual loss computation, the Fourier coefficients were determined
from the nodal values and used later to calculate the harmonics of the flux density,
which is described in Sections 3.6, and 3.7.1. It can be seen that the flux density
per harmonic components has an almost similar magnitude for both methods in
Figures 30, and 31. The reason behind this as the flux density waveform in Figure
29 studied for the Fourier analysis through MATLAB program has uniformly spaced
samples in case of the SYDC. On the other hand, the flux density waveform was not
evenly spaced due to avoid the one slot pitch mesh in the actual loss computation in
SYDC. It needs to be clarified that the flux density waveform showed in Figure 29
and also in the actual loss computation, the samples were evenly spaced in case of
the CIMTD. It is evident that the Fourier analysis provides a more accurate result
for the evenly-spaced samples; thus, the Fourier analysis of the flux density waveform
is presented in Figures 30, and 31 has almost similar results in both methods.

Hysteresis and eddy current loss up to fifth harmonic components in SYDC is
illustrated in Figure 32 (above), and up to seventh harmonic components in Figure 32
(below). Figure 33 represents the hysteresis and eddy current loss at each harmonic
components in CIMTD.
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Figure 32: Total stator iron loss per harmonic components in SYDC: (above) up to
5th harmonic components; (below) including 7th harmonic component.

Figure 33: Total stator iron loss per harmonic components in CIMTD.
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Figure 34: Total stator iron loss comparison SYDC and CIMTD: (above) up to 5th

harmonics in SYDC; (below) including 7th harmonic in SYDC.

In can be seen that the hysteresis loss is dominating in the fundamental frequency
harmonic component. However, the eddy current loss becomes more dominating at
higher-order harmonic frequency components as the eddy current loss is proportional
to the square of the harmonic frequency components. The contribution of hysteresis
loss is more in total stator core loss as the eddy current loss is reduced due to the
lamination and small thickness of the stator core sheets.

The total stator iron loss as a contribution of hysteresis and eddy current loss
is shown in Figure 34. It can be noted that the iron loss is computed in SYDC
by taking the lower harmonic components, i.e., up to 5th harmonics components as
depicted in Figure 34 (above) due to the non uniformly spaced samples. The reason
for non-uniform step size and its effect on sampling is described in Section 3.7.1.
The proposed method has a relatively good agreement with the existing method.
According to Equation 71, the loss difference between these two methods is found
8.94%.

Total loss difference (%), D =
⃓⃓⃓⃓
⃓Loss(SYDC)-Loss(CIMTD)

Loss (CIMTD)

⃓⃓⃓⃓
⃓ × 100%

= 8.94%
(71)

It can be seen that the proposed model is slightly overestimating the losses, especially
the losses in the fifth harmonic component compared to the CIMTD. The reason
behind the overestimation probably due to the fact that the accuracy of the Fourier
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coefficients calculation might drop because of the unevenly spaced samples. Moreover,
less number of points were taken into account over one period might degrade the
overall Fourier analysis performance as it provides a more accurate result when
the number of samples is increased. Furthermore, the trapezoidal method used
for numerical approximation might provide some errors such as discretization and
truncation, which may also affect the result. The impact of including the 7th harmonic
components in the loss calculation in SYDC is depicted in Figure 34 (below).

It can be seen that the total stator iron loss is increased significantly after adding
the 7th harmonic components. According to Equation 71, the total loss difference
between the proposed and existing method is reached to 20.73%.

The investigation of including the maximum number of harmonic components in
the loss computation was carried out by reconstructing the sampled waveform of a
nodal value of the magnetic vector potential a as shown in Figure 35. The magnetic

Figure 35: Magnetic vector potential Az signal reconstruction from Fourier series at
different harmonics order.

vector potential waveform was formed by selecting the nodal value at a specific
node number in stator tooth and varying by one slot with the node index number
over one period. It can be noticed in Figure 35 that, the signal reformation up to
5th harmonic components provides relatively good accuracy. However, a significant
distortion of the reformed signal is noticeable when the signal is composed of 7th or
higher harmonic components due to non-uniform step size.

In the transient analysis, the induced current in the damper windings of the
separately excited synchronous machine is solved with the field and circuit equations.
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One of the applications of damper windings is to improve the flux density waveform
by reducing the harmonic components. It can be noted that the damper windings
does not have any impact on the static analysis as the induced current in the rotor
bars are not taken into account. Thus, the effect of damper windings on flux density
harmonic reduction; consequently, the iron loss minimization was studied for time-
stepping simulation. The conductivity of the damper windings was set close to zero
so that no current can induce in the bars. It was found that the inactivity of the
damper windings significantly increases the rotor iron loss, particularly rotor eddy
current loss, but there is no such effect noticed in stator iron loss for time-stepping
simulation.

The iron loss computation from the static field solution is much faster than the
time-stepping simulation. The computation cost of a single static simulation was
332 ms and integrating the iron loss model additionally cost 180 ms; thus, the total
computational time was 512 ms. On the other hand, the time-stepping simulation
required 35.07 s for the same machine. The computation time was calculated by
running the FCSMEK through MATLAB program and using a stopwatch timer
function, and the elapsed time was recorded. It can be noted that the computation
time for one static stimulation is higher than the expectation which should be
equivalent to the one-step simulation, i.e., 116.9 ms of the time-stepping method.
The high computation time in case of static simulation due to a large number of
iterations are required to convergence as there is no initial solution. On the other
hand, a few iterations are needed for time-stepping simulation as each step starts from
the solution of the previous one. It can be noted that the time for one iteration is
virtually the same with the same number of elements and nodes. The loss calculation
program was demanding high computation time as reading the elements and nodes
form a separate file requires more time.
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5 Conclusion
In this thesis, an iron loss computation technique has been developed from a time-
efficient static analysis using the Finite Element Method. A computational algorithm
was developed in FORTRAN programming language in SYDC routine incorporation
with the in-house FEM solver software FCSMEK. A loss calculation comparison
was carried out between the developed method and the conventional time-stepping
method. The iron loss was computed only in stator core for both methods as the
voltage equations, and the field equations are solved assuming the steady-state
condition in case of static analysis. The iron loss was calculated from the Fourier
decomposition of the magnetic flux density waveform over one period in the post-
processing stage. A complete cycle of flux density waveform was formed elements by
elements varying by one slot pitch up to one period from a single static simulation.
As a result, the flux density waveform should contain an equal number of points
as many as the stator slot pitch has over two pole pitches. The time dependence
of the nodal values of the magnetic vector potential was introduced to perform the
Fourier transformation. The time dependence of nodal values was achieved by using
the discretized time step equivalent to the number of stator slot pitch over two pole
pitches. The static field solution was obtained by moving the nodes of each slot pitch
mesh successively into the initial slot pitch position, i.e., where time is zero at each
time step.

The magnetic vector potential was studied in stator yoke and teeth for both
methods and found relatively good agreement. The tangential and radial components
of the flux density waveform in stator yoke and teeth over one period was computed
and found that the flux density waveforms were similar for both cases. The Fourier
analysis of the obtained flux density waveform was performed and found that the
harmonics in stator teeth were higher compared to the yoke. No even harmonic
components were presented in the flux density waveform in both methods because of
the symmetrical flux density waveform. The proposed method computes the iron
loss with a fair accuracy compared to the time-stepping method. The loss difference
between these two methods was observed at 8.94%. It was noticed that the hysteresis
loss dominates the eddy current loss at the fundamental frequency component where
the eddy current was dominating at higher frequency components. Besides that, the
contribution of hysteresis loss was higher in total iron loss computation compared
to the eddy current loss for both methods. Due to uneven step size, the inferior
rank of the harmonics components, i.e., up to 5th harmonic components were taken
into account for the loss computation in case of static field solution. The effect of
including the 7th or higher harmonics components was investigated by reconstructing
the magnetic vector potential waveform from the sampled signal. It was noticed that
the inclusion of 7th or higher harmonics components notably distorted the reformed
waveform; thus, the loss computed considering the 5th harmonic components should
be compared with the loss computation from a dynamic field solution. The inclusion
of 7th harmonics significantly increases the stator iron loss, and the loss difference
reached to 20.73%.

The impact of damper windings on harmonic reduction was studied for time-
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stepping simulation. The study showed that the damper windings significantly reduce
the rotor eddy current loss, but there is no notable effect on stator iron loss. It can
be noted that the same iron loss model was used to compute the iron loss for both
methods. The iron loss computation from a static field solution is computationally
highly efficient. It can be easily noticeable as the loss computation from a single
static stimulation required 512 ms, whereas 35.07 s is needed for the time-stepping
simulation.

However, some limitations were faced during the iron loss computation from a
static field solution that can be tackled in future. The stator mesh can be recon-
structed so that each slot pitch mesh will be identical, which eventually provides the
uniform step size among the samples. As a result, no information will be missed
from the sampled signal and all the harmonic components can be taken into account
for iron loss computation. Besides that, an idea can be developed to reduce the step
size less than one slot pitch, so that, the number of points over one interval of the
flux density waveform will increase which may improve the accuracy of the Fourier
coefficients calculation. It can be done mainly for stator teeth as taking more points
for stator yoke was already depicted in this thesis. Furthermore, a more efficient
numerical integration method rather than the Trapezoidal method can be used for
better numerical approximation. Moreover, the developed iron loss computation
method can be applied to other synchronous machines as well.
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Trapezoidal Rule

Figure 36: Trapezoidal integration for an evenly spaced sine function (Matlab, 2006).

Gaussian Quadrature Rule

Table 8: Integration formulas for triangular elements.

n m ζi wi

1 1 1
3 , 1

3 , 1
3 1

3 2 1
2 , 1

2 , 0 1
3

0, 1
2 , 1

2
1
3

1
2 , 0, 1

2
1
3

4 3 1
3 , 1

3 , 1
3 −27

48

0.6,0.2,0.2 25
48

0.2,0.6,0.2 25
48

0.2,0.2,0.6 25
48

n= Integration points
m=Integration order
ζi=Area coordinates of integration points in natural coordinate system
wi=Integration weight factors
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