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Analysis of wood growth is an important quality control step in a sawmill, as it
predicts the structure and load-bearing capabilities of the wood. The annual growth
of wood is determined by calculating the distances between the annual rings in a
wood end-face. The wood is moving fast in a process line, and manual analysis of
wood growth is a laborious task that is prone to errors. Having the process automated
increases the efficiency and throughput of the sawmill as well as reduces monotonic
manual labor, thus providing better working conditions.

Automatic counting of annual ring distances has been studied before, however,
little research has been done on a sawmill setting which suffers from difficult imaging
conditions and rough wood end-faces with various defects. Previous studies have used
traditional image processing methods which rely on handcrafted features and fail
to generalize well on wood end-faces with varying conditions and arbitrary shaped
annual rings.

This thesis proposes a general solution to the problem by developing complete
end-to-end software for detecting annual rings and analyzing wood growth using
deep learning methods. The proposed system is described in detail and compared
against traditional computer vision methods. Using data from a real sawmill, the
deep learning based approach performs better than the traditional methods.
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Puun vuosikasvun analysointi on tärkeä osa laadunvarmistusta sahalla, sillä vuosi-
kasvu määrittää puun rakenteen ja kestävyyden. Lankut kulkevat nopeasti tehdas-
linjastolla, joten manuaalinen vuosikasvun analysointi on vaivalloista ja virhealtista
työtä. Prosessin automatisointi lisää sahan suoritustehoa sekä vapauttaa työntekijän
mielekkäämpiin tehtäviin.

Puun vuosikasvu määritetään selvittämällä vuosirenkaiden väliset etäisyydet lan-
kun päädystä. Automaattista vuosirenkaiden laskentaa on käsitelty kirjallisuudessa
aiemmin, mutta vain muutama tutkimus on tehty sahaympäristössä, jossa kuvauso-
losuhteet ovat epäotolliset ja puupäädyt ovat karheita ja siistimättömiä. Aiemmat
tutkimukset ovat käyttäneet perinteisiä konenäkömenetelmiä, jotka toimivat huonosti
vaihtelevan laatuisiin ja muotoisiin puun päätyihin sekä vuosirenkaisiin.

Tässä työssä kehitetään automaattinen syväoppimiseen perustuva tietokoneoh-
jelmisto vuosirenkaiden tunnistamiseen ja vuosikasvun analysointiin. Ohjelmisto
esitellään läpikotaisesti ja sitä verrataan perinteisiin konenäkömenetelmiin. Vertailus-
sa käytettiin oikealta tehtaalta otettua dataa ja syväoppimiseen perustuva järjestelmä
suoriutui perinteisiä menetelmiä paremmin.
Avainsanat Konenäkö, syväoppiminen, konvoluutioneuroverkot, semanttinen
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1 Introduction
Analysis of wood growth is a necessary quality control step in a sawmill for determining
the structure and load bearing capabilities of the wood. Too fast grown wood cannot
be used in all applications and has to be detected and removed from the conveyor
before further processing in order to avoid unnecessary wastage. Growing speed
is determined by calculating the distances between the annual rings of the wood
end-face. Having the annual growth analysis done manually by a human operator is
a laborious job and prone to errors, as the planks are moving fast in a process line
and spotting millimeter distances is practically impossible. Automatic analysis of
annual growth in a sawmill environment would therefore increase the throughput of
the factory while reducing wastage. Additionally, removing a worker from the wood
growth analysis spot reduces monotonic manual labor at the factory and potentially
improves the working conditions of the sawmill.

Automatic analysis of wood growth has been studied before [1, 6, 12, 20, 21, 22],
with most of the studies focusing on dendrochronology, the science of studying
annual rings for the purposes of research fields such as geology and environmental
studies. This is, however, not applicable to the sawmill environment, where the wood
end-faces are cut into planks, unclean and in rough condition with various defects
and anomalies, such as saw cuts, tar and knots (see Figure 1). Imaging quality in a
sawmill suffers from time constraints, vibrating factory lines and varying lighting
conditions. By contrast, in a dendrochronology setting, the environment is clinical
and the woodblocks remain static, an optimal condition for imaging. Moreover,
past studies on annual ring detection at both the sawmill and the dendrochronology
setting have used traditional image processing methods which rely on handcrafted
features and do not generalize well for different types and shapes of wood. Annual
rings have an arbitrary and non-trivial loosely circular shape, thus making the use of
image processing techniques difficult, even more challenging with the rough condition
wood faces of a sawmill.

Figure 1: Images of cut and untreated wood end-faces.

One solution to these problems is to use deep learning. In the recent years,
deep learning and particularly convolutional neural networks (CNN) have become
increasingly popular, revolutionizing the field of machine vision and surpassing
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traditional image processing methods in many applications similar to annual ring
detection such as medical image segmentation [27, 36], and retinal blood vessel
segmentation [10, 25]. CNNs [5] simulate the behaviour of human vision through
artificial neurons, which are arranged into a network in a fashion similar to that of
the visual cortex of the human brain. These artificial neural networks are capable of
learning non-trivial features given a ground truth dataset of training and validation
images. Developing an image processing based system for detecting annual rings is
difficult, whereas annual ring detection by human vision is effortless, which suggests
that the use of a deep learning based method would be ideal for this task. Until now,
only one study [12] has attempted to use deep learning based methods for annual ring
detection, however, it is developed for dendrochronology applications and focused
on planks imaged from the top instead of the end-faces, nor did it attempt to count
annual rings.

This thesis develops a proof-of-concept implementation of a complete end-to-end
annual growth analysis software for a sawmill using deep learning based methods
and real data captured from the factory line of that sawmill in order to automate
the currently manual task of wood growth analysis and present a general solution
for robustly detecting annual rings from all types wood in a sawmill setting. This
increases the efficiency of the sawmill and releases a worker for more meaningful
tasks. Furthermore, the implementation of this thesis showcases the advantages of
using a modern deep learning approach on a problem that has previously not been
completely solved in a general case.

The remainder of this thesis is organized as follows. Chapter 2 recaps previous
studies on annual ring detection, presents the sawmill and data of this thesis as well
as summarizes the architecture of the system and research methods used. Remaining
chapters discuss the steps of the solution presented at Chapter 2 in detail. Chapter 3
discusses the annual ring detection using the chosen deep learning method and
compares it to traditional image processing methods, Chapter 4 presents an algorithm
for finding the pith of the wood, and Chapter 5 discusses the calculation of annual
ring distances upon finding the annual rings in Chapter 3 and the pith in Chapter 4.
Finally, conclusions of this thesis from both practical and academic perspective as
well as discussion on future work are presented in Chapter 6.
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2 Overview
This chapter presents an overview of the problem of this thesis. The problem
statement was introduced in the previous introduction chapter, along with motivation
for the thesis. This chapter is organized as follows: Section 2.1 explores and reviews
previous studies that are relevant in terms of this thesis, Section 2.2 describes the
setting and hardware of the sawmill in more detail, Section 2.3 presents a graph of
the proposed system and its requirements, and Section 2.4 looks into the raw image
data and its preprocessing.

2.1 Background
Computer vision applications in the sawmill industry [20] are related to quality
control as the quality of the wood denotes its strength and load-bearing capabilities.
Too fast grown wood can however be used in some applications, therefore it is vital
to be able to differentiate between fast and normal grown wood early in the sawmill
factory line in order to make use of all the wood material and reduce wastage.

There are not many studies on annual ring detection in the sawmill environment
but the topic has been explored more in terms of dendrochronology, the science of
studying tree rings for the purposes of scientific fields such as geology, climatology
and environmental studies [12]. The main differences between dendrochronology
setting compared to that of sawmill are reviewed in Table 1 based on the papers
reviewed in this section as well as on the author’s observations.

Annual ring detection. To the best of the author’s knowledge, the only paper
besides this thesis that does annual ring detection using deep learning based methods is
Fabijanksa and Danek’s DeepDendro [12], which addresses the problems with previous
methods that have used traditional image processing which rely on handcrafted
features, suffer from limited accuracy and strict restriction on the shape and type of
the annual rings. DeepDendro provides a generic and automatic solution for tree ring
detection for dendrochronology purposes. Their system uses convolutional neural
network, a customized version of U-Net [27], trained on a dataset of 75 wood core
images labeled by a dendrochronology expert and were further split into small patches
of 80 000 images of which 80 percent were used for training. U-Net is a popular
convolutional neural network architecture that makes use of skip connections which
forms an U-shaped organization of layers and improves the recovery of fine-grained
detail that is important in segmentation of thin lines. Detailed explanation of U-Net
and other popular neural network models are presented in Section 3.2.2. The patches
were chosen randomly with a specific algorithm, which ensured that all patches
contain tree rings since the background area is dominant in the pictures. The images
of wood cores that were taken with a scanner and had an average resolution of
9713× 172 pixels. As postprocessing, they thresholded the segmented images by the
strongest responses and applied iterative thinning and cleaning on the binary images
to obtain thin and clear tree ring boundary lines. They experimented with various
training options and parameters to further improve the results. Their proposed
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Dendrochronology Sawmill Industry

Environment clinical, clean, good
lighting

industrial, dusty, varying
lighting

Wood hand-picked, good condition arbitrary, varying condition,
defects & saw cuts

Speed target faster than manual analysis
by scientist, minutes

as fast as the process line,
seconds

Data good quality images varying quality images
(dust, process line vibrating)

Application science (climatology,
geology, etc.)

quality control for wood
product manufacturing

Cost of error false results on a scientific
study

wastage, expenses

Automation
benefits

speed, reduce manual labor increase efficiency and
quality, reduce wastage,
reduce manual labor

Table 1: Comparison between dendrochronology and sawmill setting on automatic
annual ring detection and analysis.

system was rather successful and achieved a 96 percent annual ring detection rate.
Another major advantage of DeepDendro is that it is a black box system which does
not require any parameter tuning thus provides a generic solution on the problem.
The results of Fabijanska and Danek’s paper serve as motivation for the annual
ring detection part of this thesis, although its application differs: it uses images of
wood cores instead of roughly sawed wood end-faces and the images were taken on a
clinical environment with a scanner whereas the images in this thesis are taken on a
generic industrial camera on a sawmill setting. The data of [12] and this thesis are
compared in Figure 2.

Norell’s doctoral thesis [22] on automatic log end-face analysis contains a com-
prehensive survey on previous studies on annual ring detection as well as recaps
multiple papers related to the subject, some of which are discussed in this thesis
as well, in Sections 3.1, 4 and 5.2. It thoroughly covers the whole log end analysis
process from image acquisition to preprocessing, theory to applications. Norell’s
thesis was a definitive background material for the image processing parts of this
thesis, although the main focus in this case is in the deep learning based approach.
Another comprehensive reference on digital image processing is Gonzales and Woods’s
[14] book.
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(a) Wood cores scanned from top
in a dendrochronology setting

(b) Wood end-faces imaged from the front
in a sawmill setting

Figure 2: Comparison between the data of DeepDendro [12] and this thesis.

Related applications. Besides research on annual ring detection, studies on
somewhat similar tasks such as blood vessel detection, medical image segmentation,
satellite image segmentation and fingerprint enhancement were explored.

Similarly to annual rings, blood vessels in retina images have thin lines and
nontrivial elliptical shapes. Localization of retina blood vessels is important in
diagnosis of diseases, doing it manually is time consuming and tedious, thus blood
vessel segmentation is a widely researched subject [25]. Multiple studies have used
deep learning based methods for the blood vessel segmentation task and surpassed
traditional image processing methods, which further motivates the usage of convo-
lutional neural networks for the annual ring detection of this thesis. Furthermore,
the research on applying neural networks on blood vessel segmentation can provide
insight on the neural network architecture for this thesis.

Peng et al. [25] used a custom neural network model based on U-Net for retinal
blood vessel segmentation with the highest accuracy on DRIVE, a popular retinal
image dataset, as of 2018, surpassing traditional image processing methods. Their
network architecture called CDNet is symmetrical in shape to U-Net but proposes to
use different kind of segmentation blocks with short propagation paths in order to
recover more information from the propagation step. Additionally, they used batch
normalization, dropouts, and rectified linear units (ReLU) in their segmentation blocks
to improve the training process. These modifications to U-Net were proved to improve
accuracy, sensitivity and specificity metrics in their evaluation of segmentation results
on the DRIVE dataset. Explanations of neural network layers such as convolution,
batch normalization and ReLU layers as well as discussion on deep learning in general
is found in Section 3.2.

A similar study by Dasgupta and Singh [10] published a year earlier used a
neural network for the retinal segmentation task on the same DRIVE dataset as well
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with a slightly lower accuracy, further indicating the superiority of deep learning
based methods on a non-trivial segmentation task as opposed to the traditional
image processing methods. Their implementation is a simple fully convolutional
neural network model which consists of two convolutional layers with 32 filters, a
max-pooling layer, two convolutional layers with 64 filters, an upsampling layer and
two convolutional layers with 32 layers. Rectified Linear Units and dropouts are
used after all layers except the last layer uses a softmax layer.

Sedov et al. [28] implemented a neural network for semantic segmentation of
buildings in satellite images and explored effects of different loss functions in the
training process. While buildings in satellite images do not look like annual rings,
the segmentation task shares similar problems as with annual ring detection: the
objects are non-trivial in shape and size, there are small details that should be found,
and there is not much training data available. They used a neural network derived
from U-Net that was modified to have separate encoders for RGB and near-infrared
components of the satellite image. U-Net was chosen as the network architecture as
it had performed the best in their previous research of satellite image segmentation
in comparison to other convolutional neural network models they tried. The network
was trained on Inria dataset, which contains 180 satellite images that covers 810
square kilometers of ground in total. The dataset is pixel-wise labeled so that each
pixel belongs to either ‘building’ or ‘not building’. They compared four different loss
functions in their study which could provide valuable information in the loss function
choice for the semantic segmentation task of this thesis.

Fingerprint recognition and enhancement is a comprehensively studied subject in
the field of image processing due to its importance in police work and commercial
applications such as biometric security methods [34]. Fingerprint images look similar
to binarized images of wood faces, with dark circular lines on a bright background,
thus similar methods could be used as post-processing in enhancing and reconstructing
broken annual rings in the binary images of wood faces after the annual ring detection.
Fingerprint detection is also dealing with a related problem of faint, noisy and broken
lines, especially on the fingerprints of elderly people and manual workers [34]. Studies
of enhancing low-quality fingerprint images and reconstructing broken ridge lines
have used methods such as directional Gabor filtering [16], Fourier domain filtering
[35] and FFT-based methods [34] to successfully enhance faint and broken lines.

Pith detection. In the literature, pith detection has often been studied alongside
annual ring detection, as it is required in order to calculate the annual ring distances,
which is usually the end-goal in sawmill and dendrochronology applications alike.
Pith is the center, or core, of the wood end-face and its annual ring pattern. As stated
earlier, images in dendrochronology studies are in good condition with clear circular
ring pattern and speed requirement for pith detection algorithms in dendrochronology
is not strict. Therefore, pith localization techniques used in dendrochronology would
not be applicable on a sawmill setting with arbitrary shaped annual rings, wood
faces of rough condition and the requirement for fast processing. According to a
literature review in [22], the approach for pith detection is similar in most studies,
they use information about the annual ring orientation in order to find the center
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point by finding out where the directions are pointing.
Andreu and Rinnhofer enhanced annual rings and presented an algorithm for pith

localizing on X-ray based computer tomography images in the sawmill industry [1].
Computer tomography scanners are widely used in medical applications but according
to Andreu and Rinnhofer such scanners are not used in sawmills, at least at the time
of their study in 2002. The industrial scanner they used was capable of taking one
wood image per second, thus too slow for volume-oriented sawmills but sufficient
for quality-oriented sawmills. After enhancing the annual ring pattern by acquiring
orientation information in the Fourier domain and then using directional Gabor
filtering, the images had fairly clear annual ring pattern. To find the pith locations,
they used a Hough Transformation based method. Generalized Hough Transformation
is somewhat robust to noise and shapes but suffers from computational inefficiency
when used with high sensitivity settings. To overcome this issue, search space should
be reduced or decomposed. They used the fact that a line which is bisecting any chord
of the circle passes through the center point. Each of these chords were transformed
into lines in parameter space and all points in the lines are candidates for being the
at the center point and the maximum value at the parameter space is the position of
the pith. This method proved to find the center point rather robustly.

Norell and Borgefors’s paper from 2008 [23] claims to be the first at estimating the
position of the pith from images of rough and unpolished wood end-faces in the sawmill
environment using a generic digital camera. The images were taken on manual settings
in a resolution of 2046× 1534 pixels, depicting different characteristics of sawmill
wood. Their solution is based on the fact that annual rings can be approximated
as simple signals and their directions are used to build an intersection matrix. For
local orientation calculation they implemented two distinct methods, one using
Quadrature filter method and other using Laplacian pyramid method. The image is
first divided into blocks, local orientations for each pixel are calculated using either
of the previously mentioned methods and the orientation with the highest certainty
c is chosen to represent each block, unless the certainty is below a threshold value Tc,
in which case the block is ignored. Certainty of the block’s orientations is calculated
as follows:

c = λ1 − λ2

λ2
, (1)

where c is the certainty value, λ1 and λ2 are eigenvalues acquired from orientation
calculations. Block orientations are then used to build the intersection matrix by
drawing line from the center of each block towards the orientation. Region around the
global maximum of the intersection image is where the pith estimation is located and
average of that region is the final pith estimate. The results varied slightly between
the Laplacian pyramid method and the Quadrature filter method but both methods
were promising and capable of handling digital images of rough and uncleaned wood
end-faces. The Laplacian pyramid method performed faster at approximately 2 to 3
seconds on an unspecified standard PC, making it a more viable option for a real-time
application in a sawmill. It should be reminded that their study was done on 2008,
the running time should be considerably faster on modern hardware.
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2.2 Sawmill Setting
The sawmill of this thesis is in the process of automating tasks that, at the moment,
require human operation, counting of annual ring distances, e.g., determining wood’s
yearly growth, being one of these tasks. As stated in the introduction, too fast grown
wood cannot be used in all products due to its weaker structure; therefore it is of
importance to send these fast grown wood onto a different product line where they
can be used. Failure to spot these pieces of wood and have them remain in the line
which processes normal grown wood causes unnecessary wastage, as the fast grown
wood has to be thrown out if it is processed further in that product line.

The place in process line where the automatic year growth analysis takes place
is before cutting and cleaning of the log end-faces. The woodblocks move fairly
fast, approximately one plank per second passes the observation spot. There are
various sizes of blocks that are processed in this stage of the process line, most
commonly 150 × 100 mm and 50 × 50 mm. The camera is an industrial network
camera manufactured by Basler, with a maximum resolution of 1920× 1200 pixels.
There is no zoom functionality, and the woodblock occupies roughly half of the
resulting image, which is a sufficient resolution for this project. The camera is tightly
secured in a spot above the factory line, as seen in Figure 3. There are bright lights
above the wood logs in the spot where the imaging takes place and as a results of
that, the wood end-faces are shaded, which is not desired. The shaded end-faces
can be seen in Figure 3. IR filters cut off other visible rays of light except for the
red-light infrared spectrum, which makes nearby objects bright and background dark,
in this case makes annual rings in a wood end-face stand out more. Therefore, an IR
filter pointing at the wood faces was installed above the camera. Using an IR filter
also makes the image appear grayscale, which does not matter in this case as color
information is not meaningful in detecting annual rings. There is also a laser-based
hardware trigger; when the wood passes the trigger, the camera takes an image.
While the trigger is efficient, the photos are not still taken exactly at the same spot
every time, which is likely due to limitations in the speed of camera hardware or
software.

(a) Behind view of the camera (b) Front view of the camera

Figure 3: Camera setup in the year growth analysis spot.
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The camera is connected to a nearby computer in the factory running Ubuntu
16.04 LTS. There is an accompanying camera software installed on the computer,
which is used for controlling camera settings, including brightness, gamma, contrast
and exposure time. Camera manufacturer’s API will later be used to run the annual
growth calculation system proposed in this thesis in real-time. Later there will also
be a user interface, which the factory workers can use to monitor the annual growth
verifications done by the system, but that is not in the scope of this thesis.

Verifying annual growth from the wood end-faces by human eye is prone to errors,
as the blocks move fast in the factory line and it is impossible to spot a precise
threshold (more than 6 millimeters between two rings counts as too fast grown) by
the human eye. Therefore, classifying wood blocks as sufficient or too fast grown is
at the moment done only approximately. According to the factory workers, this task
is also quite tedious and tiresome work, and they would rather be doing some other
tasks. Therefore, automatic verification of year growth would drastically increase
the accuracy of the process and thus reduce wastage and increase profits as well as
potentially increase working conditions of the sawmill.

2.3 Approach
The proposed software for automatic analysis of wood annual growth consists of
several distinct steps, as depicted on the block diagram of Figure 4. These steps are
presented in detail throughout this thesis: Section 2.4 discusses input data and its
preprocessing, Section 3.2 describes annual ring detection using convolutional neural
networks, Chapter 4 presents an algorithm for pith detection and finally, Chapter 5
discusses the calculation of annual ring distances. Appendix B includes example
runs of the whole system. Requirements of the system are:

• Sufficiently accurate

• Can handle oddly shaped rings, saw marks, noise, cracks, different lighting
conditions, etc.

• Applicable to blocks of different sizes

• Can adapt to changes in camera position and imaging settings

• The total running time should be no more than 1 second

• Design should be modular and easily modifiable, fixable and expandable.

The system implemented in this thesis is a proof-of-concept level implementation,
and therefore does not reflect the final commercial production system, however, the
software of this thesis uses real sawmill data and should indicate that the system
requirements are feasible.
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Figure 4: Block diagram of the system architecture.
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2.4 Data
The data of this thesis is continuous flow of pictures of wood log faces captured from
the factory line in a png format. Figure 5 shows an unprocessed image straight from
the factory line. The sawmill’s camera setup discussed in Section 2.2 produces good
quality images for this task after fiddling with camera settings in the proprietary
software. The images appear sharp with decent contrast and exposure. The annual
rings are as clearly visible as they can be, given the rough condition of the wood
faces.

After obtaining the image from the factory line, it is converted from RGB color
space to grayscale. As the images already appear grayscale, color does not provide
any extra information to exploit in this case. Digital images in RGB format are
matrices of three layers, where the three layers represent values of red, green and
blue channels, whereas a digital image in grayscale color space is a single matrix
of intensity values ranging from 0 to 255. This means that grayscale images are
more simple and easier to understand and visualize. Computation is also faster on
greyscale images as there are three times less values to process.

The data is then preprocessed so that the rightmost woodblock is extracted from
the image and copied on a blank canvas of 1000× 500 pixels. The rightmost block is
always noticeably brighter than any other block present in the image due to the IR
filter pointing at it. Therefore, thresholding can be used to to segment and extract
the correct wood end-face from the background. Thresholding [14] is a method of
segmenting a grayscale image into binary colors by replacing each pixel in the image
by a white pixel if the pixel’s intensity value is above a fixed threshold constant T ,
and to black if it is less than T :

g(x, y) =

1, if f(x, y) > T,

0, otherwise.
(2)

If the image has a histogram with a clear and sharp difference between the peaks
representing the foreground and the background, then the threshold value can be
easily chosen manually or programmatically by analyzing the histogram. However,
this is often not the case in real life pictures, where the difference is not that sharp
and there is noise. Additionally, when processing multiple images, the intensities
of the images vary unless taken in an exact same position with the same lighting
and camera settings. Choosing a fixed value is not an option in this case either as
the lighting conditions and the brightness of the wood end-faces vary. The photos
are also not taken at the exact same spot every time, resulting in varying intensities
based on how close the block is to the IR filter.

Otsu’s method [24] was used to choose the threshold value automatically. It is a
simple, general, unsupervised, and nonparametric method for selecting an optimal
threshold value based on global properties of the histogram instead of looking at
local neighboring pixels, maximal gray-level differences, or derivatives. The optimal
threshold value is determined by maximizing the measure of separability of classes in
gray levels by the discriminant criterion, utilizing zeroth and first-order cumulative
moments.
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(a) Input image (b) Binarized with Otsu’s method

Figure 5: Image before and after thresholding.

Sometimes the woodblocks were slightly touching each other, which resulted in the
thresholding to pick too large an object. This was fixed by applying morphological
opening on the image, which was sufficient to separate most of the falsely combined
objects. Mathematical morphology [14] is a set theory approach for digital image
processing, where binary images are viewed as sets in Z2 integer space, and each
element is a tuple with (x, y) coordinates of either white or black pixel in the binary
image. Morphological operations can be used to manipulate white pixel (or black
pixel, depending on choice) areas of binary images. Fundamental morphological
operations are erosion and dilation, which are used for shrinking and expanding,
respectively. Erosion of A by B is the set of points z such that B is contained in A
once translated by z, where A is the set of white pixels, B is a structuring element.
Dilation of A by B is set of reflecting B above origin by z, so that B and A overlap.
Opening operation is erosion followed by a dilation, defined as [14]:

A ◦B = (A	 B)⊕ B, (3)

where 	 is erosion and ⊕ is dilation. Structuring element denotes the shape of the
operation to apply on the set, in this case a rectangular block with a height of three
pixels and a width of two pixels. Opening is useful for removing noise and small
objects, and in this case separating objects where a small number of white pixels in
two woodblock objects were touching each other.

While morphological opening was sufficient for the cases where two wood block
objects were slightly touching each other, it cannot be used in a case where the
objects are completely overlapping, as in Figure 7. This case was instead han-
dled with distance transform [4] followed by another Otsu’s thresholding. Distance
transform calculates each pixel’s distance to the closest zero pixel. It finds the
shortest path to the zero pixel by performing shifts (horizontal, vertical, diagonal
or knight’s move) over a local neighborhood. A three by three neighborhood was
chosen due to its speed over a larger mask and the formula used for calculating
distances is |x1 − x2|+ |y1 − y2|. Strong distances appear brighter in the resulting
distance transformed image, whereas the part where blocks are overlapping is dimmer.
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(a) Binarized with Otsu’s method (b) Morphological opening applied

Figure 6: Opening separates slightly touching objects.

Objects could thus be separated by applying Otsu’s thresholding on the distance
transformed image. Additional morphological dilation was performed to enlarge
the objects as they were left slightly smaller after the distance transformation and
thresholding. Visualization of the distance transformation on a binary image is
shown in Figure 7.

(a) Binarized with Otsu’s method (b) Distance transformed image

Figure 7: Distance transform separates completely overlapping objects.

After thresholding and separation of overlapping objects, contours were searched
in the resulting binary image, and the list of contours was filtered based on their area.
Knowing that the wood block object has to be larger than 2500 mm2, approximately
270 000 pixels in the image, a threshold value such as 200 000 pixels safely ignores
small objects and leaves the wood end-faces in the contour list. In case there were
multiple sufficiently large objects in the contours list, the rightmost one was chosen
based on the x–coordinates of the contours in the list. The woodblocks do not lie
completely straight in the factory line. Therefore a rotated rectangle was fitted on
the contour, which contains the correct woodblock and straightened based on the
angle of this rotated rectangle. Then it is straight forward to crop the straightened
rectangle from the image and copy it on a blank, black canvas, as shown on Figure 8.



14

The canvas size was chosen to be 1000× 500 pixels as each of the wood sizes going
through this point of the factory line fits in it nicely. Appendix A contains a collage
of these extracted wood end-faces, a comprehensive overview of the data of this
thesis.

Figure 8: Image after straightening and cropping.
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3 Annual Ring Detection
In order to calculate the annual growth of the woodblocks, it is necessary to detect
and segment annual rings from the wood end-faces. The shape, size and condition of
the annual rings varies. There are also often saw cuts and defects such as knots or
tar that can easily interfere with the detection. These facts make the segmentation
task difficult. If all the woodblocks would have a similar condition, then it would be
possible to handcraft a solution, but this is not the case here. Instead, a solution
that generalizes well for various types of wood has to be designed.

Most of the previous studies focused on dendrochronology, where the studied
wood faces are in good condition with no defects and with a clear annual ring pattern.
Until now, only one study [12] had attempted to use deep learning for annual ring
detection, and provided a general solution to the problem. However, as stated in the
literature review of Section 2.1, the data of this Fabijanska and Danek’s approach
differs from that of this thesis as it uses clean and hand-picked images of wood cores
instead of arbitrary, rough, and unclean images of wood end-faces. Moreover, the
images were taken in a clinical environment on a scanner whereas the data of this
thesis was taken on a generic industrial camera on a sawmill environment. Despite
the differences, the underlying idea of using CNNs for the detection task is similar.

As stated earlier, the condition of wood faces is rough and uncleaned, there are
defects, dirt and saw cuts, and the annual rings are complex and characteristic with a
lot of variation. Additionally, the wood faces in this thesis are cut to pieces so a full
circular annual ring pattern is not visible. Therefore, it is a complicated task to create
a general algorithm for reliably detecting annual rings for the data of this thesis by
hand, however CNNs are good at learning and generalizing even non-trivial features.
For the sake of comparison, this chapter implements both an image processing and a
deep learning solution to the problem of which the latter is used in the final software
of this thesis. Deep learning has revolutionized computer vision and in some cases,
in fact, it even surpass human vision. This becomes apparent when comparing the
results of the traditional image processing methods of Section 3.1 with the results of
deep learning based method of Section 3.2.

3.1 Image Processing Methods
Tree ring detection is an old area of research in the field of machine vision, and a
reliable solution has been searched for over a decade [20]. These studies use digital
image processing methods such as edge and boundary detection, which rely heavily
on input data being uniform as they must be partly handcrafted, thus tree rings of
unusual shapes can not be properly calculated [12]. These methods also suffer from
noise, and missing gaps from tree rings need to be reconstructed.

Section 3.1.1 describes the preprocessing of the data, Section 3.1.2 discusses edge
detection, Section 3.1.3 presents postprocessing methods, and finally, Section 3.1.4
discusses the results of using image processing methods to detect the annual rings
on the data of this thesis.
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3.1.1 Preprocessing

The first step of the tree ring segmentation process is to preprocess the images to
attenuate noise and unwanted features and to highlight the desired features, that is
the annual rings. Having noise reduced makes it easier to perform edge detection
later. Noise can be removed by applying a smoothing filter on the image, however
sometimes smoothing may also blur edges too much, which makes it more challenging
to detect annual rings. Bilateral filter [33] is a type of smoothing filter that preserves
edges while blurring the background, which is needed for this task. It is a non-
iterative and a simpler method than similar edge preserving blurring techniques such
as Anisotropic diffusion. While it is simpler than other edge-preserving methods,
it is still more complex and substantially slower than simple kernel filter based
smoothing techniques such as Gaussian blurring. However, the overall running time
of preprocessing step was still kept within reasonable limits; thus it was safe to use in
this case. Bilateral filtering works by combining range and domain filtering. Range
filters operate in the range of an image and measure the similarity between nearby
pixels, whereas traditional filters do in the domain. Combining the two filtering
methods means replacing each pixel with an average of nearby and similar pixels,
which causes edge pixels to be blurred less than background pixels, therefore, being
edge-preserving as desired.

In addition to smoothing, a small amount of contrast enhancement using Contrast
Limited Adaptive Histogram Equalization (CLAHE) algorithm [37] was done to make
edges stand out more. Problem with standard histogram equalization techniques is
that in some cases, they may cause the undesired parts of the images to be highlighted
if they appear as significant peaks in the image histogram, thus actually making the
output image worse than the original. CLAHE presents an improvement; it aims
to preserve and enhance edges while improving overall contrast of the images by
using local regions rather than inspecting global histogram as in the regular method.
The image is first divided into rectangular grids of desired size in which the contrast
is calculated. Histograms are then calculated for each rectangle, and contrast for
each of these local rectangular regions is optimized by the cumulative distribution
function. Furthermore, contrast is limited by clipping the histogram so that only a
certain number of pixels in local histogram bins are allowed. Clipped pixels are then
distributed so that the total histogram count remains the same. The purpose of this
contrast limiting is to prevent amplified background noise.

While the previously discussed smoothing and contrast enhancement techniques
make the annual rings more visible, they also make defects and saw cuts more visible,
therefore should be used with moderation. An example of applying these methods
on an image is shown in Figure 9.

Before detecting the edges in the preprocessed images, saw cuts should be filtered
out as they would otherwise interfere with the annual ring detection. In a 2010
study, Norell filtered saw cuts [21] by making use of the fact that saw cuts follow a
periodic pattern that can be filtered in the frequency domain. The orientation of
sawings is constant and repeating, which suggests that it would be visible in the
corresponding Fourier spectrum as a rather clear line of high energy. The saw marks
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(a) Input image (b) Preprocessed image

Figure 9: Image before and after preprocessing with bilateral filtering and CLAHE.

can thus be reduced by suppressing the energy belonging to saw cuts in the Fourier
domain and then transforming back to the spatial domain. Suppression is done by
pixel-wise multiplication with a line-shaped filter that covers the high-intensity line
in the Fourier domain caused by the saw cuts but leaves the important center region
intact.

Fourier transformation is continuous, ranging from −∞ to∞. In reality, there are
finite data samples and Discrete Fourier Transformation (DFT) is used to transform
a finite sequence of numbers into another finite sequence of numbers corresponding
to the DFT of the original samples. Two-dimensional DFT with finite number of
equally spaced samples F (u, v) is expressed as [14]

F (u, v) =
M−1∑
m=0

N−1∑
n=0

f(x, y)e−j2π(ux/M+vy/N), (4)

where f(x, y) is an input image of size M ×N , u and v are discrete variables in the
range of u = 0, 1, 2, . . . ,M − 1, and v = 0, 1, 2, . . . , N − 1.

Correspondingly, inverse DFT for recovering f(x, y) for x = 0, 1, 2, . . . ,M − 1,
and y = 0, 1, 2, . . . , N − 1, given the Fourier transformed sample set F is defined as

f(x, y) = 1
MN

M−1∑
u=0

F (u, v)ej2π(ux/M+vy/N). (5)

Transformation to Fourier domain in practical applications, such as in this case,
is done with a Fast Fourier Transformation (FFT), which is an efficient algorithm for
computing the previously defined Discrete Fourier Transformation. FFT essentially
reduces the computational complexity from a quadratic running time O(N2) of
brute force DFT implementation (where N is the image size) to a considerably faster
logarithmic running time ofO(N logN). FFT is not a specific algorithm, instead there
are various different algorithms for obtaining the O(N logN) running time, that are
considered FFT algorithms. Implementation details of some specific FFT algorithm
are irrelevant for this thesis, but, essentially, they use various common techniques
for designing efficient algorithms such as divide and conquer or factorization.
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The resulting spectrum after transforming the image with visible saw cuts pattern
to the Fourier domain using FFT is shown in Figure 10. The direction of the sawing
pattern appears as a line in the opposite direction (of the actual pattern direction)
at the Fourier spectrum, and it can be determined by calculating the total energy
in different directions from the spectrum center and then by finding the peak [21].
A suitable filter is a line-shaped filter that covers the line in the spectrum caused
by saw cut pattern while ignoring the center area of the spectrum. Furthermore, a
Gaussian blur filter with a standard deviation of σ = 15 was applied on the line filter
to make the effect more smooth. Such a filter is shown in Figure 10. The filter is
then applied by performing a pixel-wise multiplication with the Fourier transformed
image. Finally, the image is transformed back to the spatial domain by performing
an inverse FFT. An example of using the Fourier filtering method for reducing saw
marks in the images of this thesis is shown in Figure 10; the saw cuts are greatly
reduced.

(a) Image before filtering (b) Fourier spectrum of the image

(c) Line-shaped filter applied (d) Image after filtering

Figure 10: Visualization of applying a linear filter in the Fourier domain. Saw mark
pattern appears as a diagonal line in the opposite direction in the Fourier spectrum.
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3.1.2 Edge Detection

The actual annual ring detection can now be done after the previously described
preprocessing steps. Extraction of regions of interest in the field of image processing
and computer vision is called image segmentation [14], which is arguably the most
difficult task when dealing with non-trivial features such as tree rings. It is also
the most crucial step, as it determines the success of the remaining annual growth
analysis. Most of the common methods for image segmentation are based on the
discontinuity and the similarity of neighboring intensity values. In other words, either
segment the image based on sharp changes in intensity (edge detection) or do the
segmentation based on the similarity of different regions in the image according
to some criteria (thresholding). Below is a brief introduction to the mathematical
background of some common segmentation methods and discussion of results on
applying these techniques on the images of this thesis.

Local changes in intensity are the edges of an image and a line is an edge where
there is a sharp change in intensity to either darker or brighter on both sides of
the edge. Edge detectors are a common tool for detecting edges and lines, which in
this case include the tree rings. Changes in intensity can be found by using first- or
second-order derivatives. The direction and magnitude of edges at a pixel (x, y) in
an image f can be calculated from its gradient ∇f as follows [14]:

∇f = grad(f) =
[
gx
gy

]
=


∂f

∂x

∂f

∂y

 , (6)

where ∂f
∂x

and ∂f
∂y

are partial derivatives at each pixel of the input image and gx and
gy are directional gradients of the same size as the input image. From the directional
gradients calculated by formula x we can derive magnitude M at pixel (x, y), given
that gradient direction points at the largest rate of change:

M(x, y) = mag(∇f) =
√
g2
x + g2

y . (7)

Following the same train of thought, the direction of the gradient at pixel (x, y) with
respect to the x–axis is defined as:

α(x, y) = arctan
[
gy
gx

]
. (8)

The partial derivatives are calculated with kernel masks in order to capture
diagonal edge directions. There are several types of masks that can be used, most
commonly Roberts, Prewitt and Sobel named after their inventors, each providing
slightly different output. Roberts is the oldest method and uses a 2× 2 mask while
the others use symmetrical 3×3 masks which are better at computing edge directions.
The masks act as convolutional matrices, which are slid across an input image in
order to obtain the gradients gx and gy. The values of these mask matrices are shown
in Figure 11.
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Figure 11: Common kernel masks for performing edge detection (x–direction on top,
y–direction on bottom).

Another common choice for edge detection is the Canny edge detector [14]. It is
an extension to the previously discussed edge detectors and therefore slightly more
complex but considered more efficient and superior in general. The input image
is first smoothed with a circular Gaussian filter, then the gradient direction and
magnitude are calculated as in Equation (6–8) with a sliding mask such as Prewitt
or Sobel. Lastly, non-maxima suppression or some similar method is applied to make
ridges thinner.

Region growing [14] aims to find the desired features directly: it picks seed points
and grows a region around them by adding similar neighboring pixels. This is similar
to clustering algorithms in data mining and machine learning. Problem with region
growing in the case of annual ring detection is the choice of seed points, which is
an essential part of this method. If the seed points are wrong, then the resulting
segmentation is surely invalid as well. Pixels belonging to annual rings do not have a
certain distinct intensity value or shape; thus, it would be difficult, if not impossible,
to choose the seed points accurately. It was, therefore, decided not to test this
method.

Watershed [14] is another commonly used segmentation method, which is best
explained through an analogy of placing a drop of water in a regional minimum spot
and having it flood until it hits a dam. The ‘depth’ which determines the flooding of
water is based on the intensity of the image and ‘dams’ are built to prevent the water
from overflowing. The previous analogy is also where watershed gets its name. It is
a simple and efficient method for segmentation tasks that contain blob-like objects
in a clear background, for example segmentation of coins. However, it was safe to
say even without testing that it would not be applicable in this task due to having
thin and partly broken annual rings on a rough and uneven background.

Adaptive or variable thresholding [14] is a thresholding method based on local
regions of an image. Whereas the basic and Otsu’s version of thresholding presented
in Section 2.4 is commonly used for separating an object from background, adaptive
thresholding does the thresholding in local user-defined regions of an input image
thus it can be used for edge detection when using a small window size. The threshold
in each local region can be calculated either by a mean of the region or by a Gaussian-
weighted sum. A positive constant is then subtracted from the mean or weighted-sum
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to obtain final thresholding for the region.
Upon testing various edge detection methods with different parameters, it was

quickly determined to be an inapplicable technique for this task. The wood end-faces
are too rough and therefore contain plenty of edges that do not belong to annual rings
resulting in poor results, as seen in Figure 12. Additionally, edges of defects such as a
knot or tar would be falsely detected. Fixing this problem would require designing an
additional algorithm for finding defects, which would be a difficult (if not impossible)
task given the nontrivial shape and size of different defects. Watershed and region
growing methods did not work due to previously discussed issues. Local adaptive
thresholding proved to be substantially better at detecting the annual rings, although
similar problems as those previously described exist. The quality of the segmentation
remains below an acceptable level, especially on wood faces with defects or unusually
rough conditions. This is the essence of difficulty in image segmentation: it partitions
the image into different coherent parts but does not understand these parts. Deep
learning based semantic segmentation, on the other hand, tries to learn features of an
image through pixel labeled ground truth, therefore being capable of differentiating
between an annual ring and a knot, for example.

(a) Input image (b) Adaptive thresholding

(c) Edge Detection (Canny) (d) Edge Detection (Sobel)

Figure 12: Examples of different segmentation methods on an input image with
CLAHE and bilateral filtering applied.
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3.1.3 Postprocessing

A simple approach for postprocessing is the usage of morphological operations,
explained in Section 2.4. Of these methods, morphological closing [14], that is
dilation followed by erosion, is especially efficient in removing small bits of noise
from a white background with a black foreground. User-defined parameters of size,
shape, and the number of iterations should be carefully determined, as applying too
aggressive closing also causes relevant information to disappear. Applying closing
with a circular structuring element of two pixels radius was found to enhance the
binary images of annual rings slightly.

As stated in Section 2.1, fingerprint enhancement is a widely studied subject and
the shape of fingerprint ridge lines happens to look similar to annual rings. Therefore,
similar methods could be applicable in this post-processing step of the binarized
wood end-face images. Of these fingerprint enhancement methods, Willis’ and Myers’
method [34] for enhancing and fixing broken lines in poor quality fingerprint images
is particularly elegant in its simplicity. In comparison to enhancement methods
based on Gabor filtering, it is considerably faster and less complex. It is based on
the fact that directional information of different parts of an image can be found and
enforced in the magnitude of Fourier transformation. The image is first divided into
blocks of a desired size. A block size of 32 by 32 was used in the original paper to
capture three to four ridges and to enable usage of radix-2 FFT. Furthermore, using
overlapping blocks was found to improve the results. Then, lines in each block were
enhanced by simply multiplying the original FFT by the magnitude of the FFT and
then taking inverse FFT of the result to transform back to the original domain. The
Willis and Myers FFT-enhancement method is formally defined as follows:

g(x, y) = F−1(F (u, v) · |F (u, v)|k), (9)

where F is the Fourier transformation, F−1 is the inverse Fourier transform, g(x, y) is
the enhanced output and k is a user-defined constant between 1 and 2 for multiplying
the magnitude. The larger the value of k the more aggressive the enhancement effect
becomes. FFT and the corresponding inverse FFT were defined earlier in this section
at Equation (4-5).

Using the method on the images of this thesis produced a similar enhancement
effect on blocks with clear ridges. It was capable of fixing some of the broken tree rings
and removing noise in good quality blocks but more often than not the fundamental
magnitude that was enforced was noise instead of a line belonging to an annual
ring. This results in a trade-off between improving clear parts of the image and
degrading unclear parts. Figure 13 highlights this effect; it shows the result of FFT
enhancement on a binary wood face image where the left part of the image was
improved, but the noisy right part of the image had gotten inferior.
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(a) Image before enhancement (b) Image after enhancement

Figure 13: Image before and after FFT enhancement with k = 1.4 and block size
32× 32.

3.1.4 Results

Image processing methods described and implemented in this Section 3.1 were
not enough to get a sufficient segmentation except for a small fraction of wood
faces that were in good condition with annual rings clearly visible. Additionally,
the implementation relies heavily on the images of wood faces that have similar
properties as most of the steps presented are hand-crafted. For example, had the
size or brightness of the wood faces change drastically, the parameters would have to
be tuned again.

Examples of the annual ring detection implemented in Section 3.1 are shown in
Figure 14. The first and third pairs of images show a fairly good input quality image,
which has some parts of the annual rings detected but still suffers from noise and a
considerable amount of false pixels. The image on the second row is of lesser quality,
and the resulting binary image after annual ring detection has practically no usable
information in it.

It is difficult to manually develop an algorithm for differentiating between desired
and undesired features. While the algorithms could be fiddled with and slightly
improved, it would not be worth the time and effort as this type of non-trivial
feature extraction task is more suited for a neural network based implementation,
which simulates that of human vision. Deep learning based computer vision was
not widely used at the time of previous studies on annual ring detection due to a
lack of computational power and research. These previous studies were reviewed in
Section 2.1. The following Section 3.2 discusses solving the annual ring detection
problem with a deep learning approach and shows a truly substantial improvement
in accuracy and ease of implementation for this type of detection task compared to
the traditional methods.
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(a) Input image (b) Annual rings detected

(c) Input image (d) Annual rings detected

(e) Input image (f) Annual rings detected

Figure 14: Example annual ring detections using image processing methods of
Section 3.1.
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3.2 Deep Learning Solution
Deep learning [5, 15] is a subset of machine learning where a computer learns concepts
through experience by using deep neural networks that are hierarchically organized,
so that complex concepts are learned by building on simpler features, rather than
specifically instructing the computer of all the needed knowledge. In the recent
years, deep learning become widely used and researched in the field of computer
vision, which has traditionally been challenging for computers. Vision is effortless
for humans; within seconds we can detect objects and their features. This is all
handled in the brain through neurons that process the light information captured by
eyes. Therefore, it does make sense to try and simulate similar behavior through
artificial neural networks. Indeed, deep learning has surpassed traditional image
processing methods and in some cases even surpassed human vision. Shortcoming of
these traditional methods became apparent in the previous chapter: while the annual
rings can be easily detected by human eye, it was not possible to derive a general
solution for robustly extracting the pixels belonging to annual rings with the methods
presented in that chapter due to rough condition and non-trivial shape of the tree
rings. At the time of previous studies on annual ring detection and wood growth
analysis discussed in Section 2.1, neural network based methods were not widely
used mainly due to lack of computational power and research. Thus, it is interesting
to utilize deep learning methods in solving a problem that has been studied before
but not completely solved in a general case.

Neural networks, as the name suggests, consists of neurons which simulate those
of the human brain [5]. These neurons have an n number of inputs denoted xn
that have weights wn. By summing the neurons, we get the logit of the neuron:
z = ∑n

i=0 wixi, which also usually includes a bias term b. Logit is a value that can
be passed to functions to get some output depending on the application and the
output can be passed on to further neurons, forming a neural network. In the human
brain, the neurons are organized in layers where the information moves from layer
to layer so that higher-level information is in the later layers, whereas raw visual
data is in the bottom layer. Neurons in deep learning are organized in a similar
way: the bottom layer contains input data that are images of wood end-faces in this
case, followed by layers which extract features first at a simple level then at a more
detailed level and the last layer computes the final answer that is, in this case, the
detected annual rings. Figure 15 shows a simple feed-forward organization of neurons
in a neural network.

Convolutional neural networks [5] are type of neural networks where the network
is arranged in a similar fashion as in the visual cortex of human vision, thus especially
effective for computer vision applications. As its name suggests, CNNs use convolution
operations in its layers, whereas regular neural networks mainly use general matrix
multiplication. These convolutional layers are three-dimensional filters with a specific
width, height and depth and operate by convolving the input with a kernel, which
is typically smaller than the input. Filters of convolutional layers are much like
those used in traditional image processing; they extract features such as edges
or lines from an input and output a feature map, the difference being that they
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Figure 15: A simple neural network with four neurons per input and hidden layers
and one neuron as output layer.

have learnable weights, which allows the filters to learn to extract desired features
automatically. Common filter sizes used in CNNs are of size 3×3 or 5×5, as they are
effective at capturing details and useful information, while also keeping the number
of parameters small. Each convolutional layer produces a new three-dimensional
block of information while combining information of previously learned features. The
process is perhaps best explained via an illustration, as in Figure 16. In addition to
the convolutional layer, CNNs typically include max-pooling layers after convolution
layers. They condense the output feature maps from convolutional layers into smaller
blocks, thus reduce the complexity of the network and sharpen the obtained features.
Between the convolutions and pooling, there are non-linear activation functions that
process the linear activations of convolution layers. Non-linear activation functions
are important in neural networks as they decide whether each neuron should be
activated or not based on its relevancy to the prediction task, thus nonlinearity is
necessary in order to learn nontrivial relationships between the neurons. Activation
function can, therefore, be viewed as a ‘gate’ between neurons of different layers.
Restricted Linear Units (ReLU) are most commonly used non-linear functions in
CNNs, using f(z) = max(0, z) as the activation function.

Semantic segmentation [13] is a specific application of deep learning where each
pixel in an input image is labeled to a certain class. While it was difficult to
isolate annual rings with traditional image segmentation techniques, as discussed
in Section 3.1, semantic segmentation aims to understand and parse the scene by
using the previously discussed CNNs similarly to that of human vision. CNNs are
capable of segmenting the image into different classes even if they have non-trivial
features, in this case capable of learning the properties of annual rings. In the recent
years, semantic segmentation has surpassed traditional image segmentation methods
by a large margin, and the gap continues to rise as deep learning and semantic
segmentation are popular and fast-moving fields of research, with new state-of-the-art
models being published frequently.
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f
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Figure 16: Illustration of a convolutional layer. Convolution between an input feature
map (left) and a filter yields output feature maps (right).

CNNs for semantic segmentation consists of an encoder and a decoder part, where
the encoder part learns and finds features and the decoder part maps upsamples these
low-resolution features into pixel-wise predictions of classes [13]. Final layers in a
semantic segmentation network are a softmax layer, which calculates the probability
distribution for the classes based on the output of the neurons [5], followed by a
pixel classification layer, which does the labeling of each pixel with a class. There
are different choices of loss functions to use at the pixel classification layer, which
are discussed in Section 3.2.3. A few common network architectures for semantic
segmentation are explained in detail in Section 3.2.2, which also dives deeper into
principles of semantic segmentation. Training data in semantic segmentation consists
of pixel-level labeled images with a user-defined number of classes from which the
CNN learns features and predicts output pixel classes.

input layer
conv conv conv deconv deconv

softmax (yellow) + pixelwise segmentation (red)

Figure 17: Illustration of a CNN performing semantic segmentation.

The remainder of this section is organized as follows: Section 3.2.1 presents and
explains the dataset used in training the CNNs of this thesis, followed by Section 3.2.2,
which covers a few popular network architectures and describes in detail the model
used in the final implementation of this thesis. Section 3.2.3 discusses network
training both in general and in the specific case of this thesis and finally, Section 3.2.4
describes postprocessing of the segmented images, and finally, Section 3.2.5 presents
the results of the deep learning approach for the annual ring detection. Section 3.3
presents a recap for this chapter as a whole.
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3.2.1 Dataset

Data is arguably the most important and time-consuming part of a machine learning
process, especially with deep networks [13]. Semantic segmentation requires a dataset
of pixel-level labeled images from which it learns to label new and unseen images.
As stated earlier, there are tree rings of various shapes and sizes, and some have
defects such as broken rings, knots or tar. The dataset should comprehensively
cover this variability in the data in order to handle different types of wood end-faces.
There were no public datasets of labeled wood end-faces, thus the dataset had to
be built and pixel-level annotated from scratch. Pixel-level labeling of images is
a time consuming manual labor, especially in this case, where the rings are thin
and sometimes very faintly visible or broken. The images were annotated into three
classes: background, woodblock and the annual rings. For the author, labeling took
approximately 15 to 30 minutes per image. To overcome this tedious job, one can,
for example, ask each of his colleagues to label a couple of images. There are also
several paid commercial annotation services, but this thesis does not address the
quality of those.

Image annotation. While in this thesis the annotation happened to be a laborious
job, it is not always the case, as for an easier segmentation task, i.e., one with larger
and more uniform and clear edged objects, it would be possible to do annotation
semi-automatically using image segmentation methods such as watershed or k-means
clustering. This paragraph presents those methods along with other tricks for semi-
automatic annotation and discusses future visions of AI-assisted image annotation.

Watershed was covered in Section 3.1.2. While it was determined inefficient for
the segmentation of annual rings thus could not help in the annotation process of
this thesis, it could be used in an easier annotation task.

K-means clustering [2] is a popular clustering method in data mining and it can
be applied to image segmentation as well. Given k number of cluster classes, k-means
aims to minimize the average squared distance of points belonging to the same cluster
based on local search. These k center points are chosen arbitrary, then each data
point, pixel in an image in this case, is assigned to nearest of the k center points.
After that, center points are recalculated based on the center point of mass of the
clusters. This is repeated until stabilization. The algorithm can be run multiple
times in order to find a potentially better clustering at the cost of computation time.
Arthur and Vassilvitski proposed an improvement to the classic k-means algorithm,
called k-means++ [2], where the cluster points are chosen with specific probabilities
by using randomized seeding technique and the rest of the algorithm proceeds as in
the original k-means algorithm. This resulted in a slightly increased accuracy and a
substantially increased efficiency with logarithmic worst-case time complexity.

In the data of this thesis, k-means clustering using the k-means++ method was
capable of partly segmenting the best condition wood end-faces, however there are
still many flaws to manually fix that it is practically not much faster than annotation
by hand from scratch. For an annotation task with more clear objects such as
scene parsing, this method would suit well for semi-automatic labeling, especially
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Figure 18: Examples of images (left) and their corresponding pixel labels (right).

given its speed and simplicity. An example of using the k-means method for image
segmentation on an image of a scene and on a fairly good condition training image
of this thesis is shown in Figure 19.

There are also a few user-friendly and ready-to-use semi-automatic annotation
tools that can potentially speed up the annotation process substantially. Perhaps
the most promising of them is ByLabel [26], which is a novel tool for semi-automatic
image pixel annotation publicly released in 2018, which was shown to outperform
previous state-of-the-art tools in all aspects and claims to be a user-friendly and fast
tool. As opposed to most competitor tools where the user has to click boundary
points by hand, ByLabel automatically generates boundary proposals, from which the
user can choose the best match. This automatic boundary detection works by finding
the edges features of the image and then splitting them based on turning angles
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(a) Original image (b) K-means labeled image

(c) Original image (d) K-means labeled image

Figure 19: Example of k-means segmentation on a scene image and on a wood
end-face image.

or manually by the user. This categorizes objects into three types: simple objects
with one contiguous region or closed boundary, objects with holes that have nested
boundaries or contiguous regions, objects divided by occlusion determined by several
regions or boundaries. After that, user input is required for interactively annotating
and fixing the boundaries and for choosing the best match. More specifically, the
edge detection in ByLabel is done with Edge Drawing, a method from Tokal and
Akinlar’s 2012 paper capable of producing clean edge segments of one pixel width.
It is resulting edge maps are somewhat similar to that of the Canny edge detector
presented in Section 3.1.2. Based on images of example annotations in the original
ByLabel paper, it seems to do a decent job even on some difficult shapes; however,
all of those test images have edges clearly visible, unlike annual rings, which can be
rather faint and unclear.

The neural network itself can also be used as a semi-automatic labeling tool.
Once it has learned to somewhat segment new images, it can be used to speed up the
annotation process: the unlabeled images are fed to the network for segmentation,
then the remaining flaws are fixed by hand, making it a somewhat semi-automatic
process. While this helped a little in the annotation process of this thesis, it still
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remained a tedious job.
Robust semi-automatic annotation still remains an unsolved problem, however

AI-assisted methods have been studied in the recent years and they could become
widely used in the near future. Very recently (October 2019) an AI-assisted semi-
automatic annotation tool was published for everyone as a public beta in Supervisely
[11], a web platform for computer vision and semantic segmentation. According to
Deep Systems, the company behind Supervisely, this is the first publicly available
AI-assisted annotation tool. It is exciting to see what kind of solutions for semi-
automatic image annotation will appear in the near future, as that will drastically
speed up the creation of deep learning based computer vision applications and make
the process more pleasant for the engineers.

Data augmentation. After the previously discussed annotation process, the
dataset consisted of 100 images and their corresponding pixel labels, however neural
networks rely on a large amount of data to avoid overfitting on the training data and
100 training images may not be enough for the neural network to learn the rather
difficult properties of annual rings sufficiently well without overfitting on the data.
Overfitting [5] refers to the problem of the neural network not generalizing well on the
data: it is perfectly fitting and learning the training data but performing poorly on
new data. This is one of the most common challenges in machine learning, especially
when dealing with complex and deep networks such as in this thesis. Luckily, new
training data can also be created artificially by using data augmentation techniques
[29]. Dataset is inflated by warping the training images with affine transformations
and color transformations such that geometric operations are also performed on the
corresponding pixel labels. Augmentation is based on the fact that even though a
human can see that an image after zooming and rotating is still the same, a neural
network cannot. Geometric image manipulations to apply on the training images can
be, for example, flipping along x or y–axis, translation, cropping, skewing, or rotation.
Cosmetic transformations can be applied by simple kernel filters. Depending on the
data and use-case, these could include, for example, blurring, sharpening, or contrast
enhancement. While augmentation is proven to be efficient in fighting overfitting,
it should still be used on a reasonable scale; inflating a small dataset into a really
massive one by combining multiple transformations may result in further overfitting.
However, within reasonable limits, data augmentation will most likely improve the
network substantially. Besides trial and error, it is possible to use search algorithms
for finding an optimal amount of data augmentation.

In addition to data augmentation, there are other countermeasures against
overfitting. These methods are based on modifying the neural network architecture
and are presented in Section 3.2.2, which discusses the network architecture.

Data augmentation should reflect the problem, therefore only type of augmentation
that could realistically appear in the unseen data was done, thus the following offline
data augmentation was done on the dataset of this thesis:
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• Reflection over y–axis with a probability of 0.95

• Reflection over x–axis with a probability of 0.05. Low probability because
woodblocks usually lie in the factory line so that the pith is at the left side

• Random zooming of factor 0.95 to 1.05 with a probability of 0.98

• Random rotation of −1 to 1 degrees with a probability of 0.5. The wood is
straightened algorithmically as explained in Section 2.4, therefore it does not
make sense to rotate the woodblocks much

• Random contrast modification with a probability of 1 within a small range, as
the contrast does not vary a lot in the data

• Random brightness modification with a probability of 1 within a small range,
as brightness does not vary a lot in the data

• Random blurring with a probability of 0.05 with a Gaussian blur of size 3.
Small amount of images are a bit blurry due to the factory line vibrating.

(a) Original image (b) Example augmentation

(c) Example augmentation

Figure 20: An original training image and corresponding augmented images.
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Additionally, online augmentation with a slight amount of random zooming,
translation, and rotation was performed. Online augmentation means augmenting
training data after each epoch during training, which essentially prevents the network
from seeing the same images every epoch, which is a full cycle over the training
set. This further reduces the risk of overfitting on the training data at the cost of
increased training time.

The dataset was divided into training data and validation data [5] with a split of
90/10. It is tempting not to use validation data, as the dataset was built through
hard and time-consuming work. However, validation data plays a vital role as it
enables a fair evaluation of a network model, and it is crucial for spotting overfitting.
Validation data is used to monitor the training process: when the validation loss
starts increasing, the network is starting to overfit on the training data and stops
learning any useful features. In other words, validation data tells us how the network
behaves on new, unseen data. It also gives us an estimation of the accuracy of the
network on new data, making it an important tool in tuning hyperparameters, such
as learning rate or minibatch size. In addition to training and validation datasets,
an external testing dataset was created, which is used to give an unbiased evaluation
of the model after training. The testing dataset consisted of 18 labeled images, that
were chosen so that they represent the variability of the data. Network training and
hyperparameter tuning are explained further in Section 3.2.3.

Figure 21: Image from Shorten and Khosgoftaar’s survey [29] visualizes overfitting.
Plot on the left shows converge point where validation loss starts to increase while
training loss is still increasing, which is a sign of overfitting. Plot on the right shows
a desired situation.

3.2.2 Network Architecture

Basics of convolutional neural networks and deep learning were covered in Section 3.2.
This subsection presents in detail the semantic segmentation CNN architectures used
for the annual ring detection task of this thesis.

U-Net. U-Net [27] was chosen as a starting point for the final implementation
due to its simplicity, speed, and capability of getting good results even on small
data-sets. It was originally designed for Biomedical Image Segmentation, but it has
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also proven to be decent at other types of segmentation tasks such as retinal blood
vessel segmentation and satellite image segmentation. The application of annual ring
detection is a somewhat similar task as well, further motivating the choice of U-Net
as a good starting point on building a neural network for the problem of this thesis.
An adaptation of U-Net was also successfully used as the network architecture in
Fabijanska and Danek’s DeepDendro tree rings detector [12]. The typical use of
CNN’s had been on classification problems, which usually have a training set of
thousands of images. In contrast, biomedical image segmentation requires precise
labeling of each pixel and does not have large annotated training sets available, which
is also the case in the segmentation task of this thesis. The motivation behind the
authors of U-Net was to overcome this type of problem. Released in 2015, U-Net is
still a popular choice in the semantic segmentation of medical images and similar
tasks.

U-Net is built upon the idea of Fully Convolutional Network (FCN) [19], which is
a type of neural network that extends convolutional neural networks to input of any
size and produce an output of the same size. FCNs are trained end-to-end, which
means that learning by backpropagation and interference by feedforward computation
is done on the whole image. Architecture of FCN is visualized in Figure 22. U-Net
[27] was modified to give more precise segmentations with fewer training images
compared to the FCN architecture. U-Net has a symmetrical expansive (encoder)
and contracting (decoder) path, which forms a u-shaped organization of layers, as
shown in Figure 23, where U-Net gets its name. Each level in the encoder part
consists of two 3× 3 convolutions, a ReLU and a 2× 2 max-pooling operation. Stride
size 2 downsamplings performed by max-pooling operation doubles the number of
feature channels. In the decoder part, each level halves the feature channels by
upsampling with 2× 2 convolution, followed by two 3× 3 convolutions and a ReLU,
symmetrical to the encoder part. There are skip connections between the upsampling
and downsampling paths, which combine the deep feature maps from the decoder
part with the shallow and fine-grained feature maps of the encoder part. This allows
effective recovering of fine-grained details, necessary for medical image segmentation
tasks as well as the tree ring segmentation task of this thesis. The final output
layer maps each of the feature vectors into user-defined number of pixel label classes.
The architecture of Figure 23 consists of 23 layers, and has a depth (i.e. number of
downsamplings) of four but the depth can be increased or decreased based on the
task.

The U-Net model built for this thesis opted for a depth of three, the size of largest
filter therefore being 512, which upon testing proved to be the best trade-off between
performance and complexity. Increasing the depth to four did not cause a meaningful
increase in accuracy; thus, it would have brought unnecessary complexity and slower
interference time, whereas lowering the depth to two caused a clear decrease in
accuracy.

Separation of touching objects is a common problem in medical segmentation
tasks, therefore weights of the loss function were altered in the U-Net paper by
giving the background labels a larger weight to prevent objects of the same class
from touching each other. Similar modifications were also needed in this thesis
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Figure 22: Fully Convolutional Network end-to-end architecture from [19],
where forward direction is interference and backward direction is learning.

Figure 23: U-Net [27] architecture.

due to the same problem of background labels being dominant. Class balancing is
explained further in the Section 3.2.3, which discusses network training. Another
shared problem between the medical image segmentation task in the original U-Net
paper and the wood end-face segmentation task of this thesis is having a small
amount of training data available. Ronneberger, et al. used data augmentation to
artificially expand the data-set by performing elastic transformations, which allowed
the network to see many variations of the data and substantially improved results.
Data augmentation techniques performed in the dataset of this thesis were described
in Section 3.2.1.

DenseNet [17] is a CNN architecture that contains short and dense connections
between layers, so that layers of same feature-map sizes are directly connected. A
dense block is visualized in Figure 24. This encourages feature reuse and improves
information flow between the early and the deeper layers without increasing the
number of parameters. Using DenseNet inspired dense blocks in place of the convo-
lutional blocks in the U-Net model resulted in a slightly increased performance in
the application of this thesis.

Even after the augmentation process discussed in Section 3.2.1, the dataset is still
relatively small. Therefore, there is a risk of overfitting on the data. Modifications
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for preventing overfitting were done on the U-Net derived network architecture of
this thesis: transfer learning and added regularization methods.

The process of human learning builds on the previously learned; for example, it
is considerably easier to learn the theory of deep learning if one has already acquired
knowledge on linear algebra and probability theory. This is true for machine learning
as well: training a deep neural network from scratch with uninitialized weights on
a small dataset such as that of this thesis takes a long time and can easily lead to
overfitting thus the network might not generalize well on the data, however by using
weights from a pre-trained network and by transferring this knowledge on a new
task, it is possible for the deep network to learn faster and easier. This technique is
called transfer learning [13], and it has proven to improve performance compared
to randomly initialized weights in initial layers even if the transferred task does
not resemble that of the new task. This is because the features learned in early
layers of convolutional neural networks are generic features such as edges, lines and
shapes, which are needed in all feature extraction tasks, including the annual ring
detection task. As explained earlier, the later layers are capturing more specific and
higher-level features, therefore transfer learning should only be used on the initial
layers, especially if the tasks differ a lot. There is a great variety of publicly available
large-scale datasets and network architectures to choose from for the transfer learning
process. There are also publicly available network models that have already been
trained on large datasets, which makes it easy to do the transfer learning: download
the pre-trained model and replace the initial layers of the new task with those of the
pre-trained network, given that the size of the copied layers matches the replaced
ones. For the network of this thesis, weights of initial layers from a pre-trained
VGG-19 network [30] were used. VGG is a very deep CNN with small convolutional
filters designed for large-scale image classification tasks. Its architecture consists of a
stack of convolutional layers followed by three fully connected layers and a softmax
layer. A different number of convolutional layers were tested, and it was determined
that VGG-19 with 19 convolutional layers was the best performing of these VGG
variants. Simonyan and Zisserman had found that adding more layers than 19 did
not increase the accuracy substantially while having fewer layers did not perform as
well. The particular VGG-19 network used in the transfer learning task of this thesis
was trained on a million images at the ImageNet dataset, which contains images
of 1000 classes, thus has learned a rich representation of low-level features. It is a
popular model and publicly available, for example, at the official Github repository
of ONNX, which is an open ecosystem for sharing neural network models. ONNX
models share a common format of .onnx, which can be exported into any major
neural network framework such as TensorFlow and Keras. Using transfer learning
proved to make the training process of the annual ring detection network faster and
more robust with less oscillation.

Dropout [5] is a popular regularization method that decides whether or not a
neuron is kept active or set to zero by some user-defined probability. This ensures
that the neural network does not become too dependant on some combination of
neurons and therefore reduces the risk of overfitting and can help the model to
generalize better. Adding dropout layers after each convolution layer improved the
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neural network of DeepDendro [12], and likewise in the CNN of this thesis, it allowed
training the network for a longer time before overfitting on the data thus improving
the performance of the model.

Batch normalization [5] is another regularization method which can accelerate the
training process, allowing the model to generalize faster. It operates by normalizing
the inputs of each layer in a neural network, preventing shifts in the input distributions
and acting as regularization, thus removing the need for the previously discussed
dropout layers. Batch normalization was also used in the densely-connected blocks
of DenseNet [17] and added to the U-Net model with dense blocks of this thesis.

Two different U-Net models were implemented for this thesis using the previously
discussed modifications: U-Net with pre-trained VGG-19 encoder, dense blocks and
added batch normalization, U-Net with pre-trained VGG-19 encoder and added
dropout layers. Architectures of these U-Net variations are shown in Figure 24 and
25, respectively.

Figure 24: U-Net [27] with dense convolutional blocks, batch normalization and
pre-trained weights on initial layers.

Other networks. Other base network architectures that were implemented and
tested for this thesis include SegNet and DeepLabV3+, but they did not provide
as good results as U-Net on this particular task. These network types are briefly
introduced next for the sake of comparison and in order to highlight the differences
between these widely used network models.

SegNet [3] is another encoder-decoder type architecture for semantic pixel-wise
segmentation of images. It was published in 2016 with a primary goal of scene
understanding applications, thus designed to be computationally efficient with less
trainable parameters than its competition. Its encoder part is identical to that of
the VGG-16 network’s first 13 convolutional layers. Similarly to transfer learning on
U-Net, as described earlier in this section, SegNet uses pre-trained weights from VGG-
16 that was trained on a large dataset. In the decoder part, SegNet does upsampling
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Figure 25: U-Net [27] with dropouts and pre-trained weights on initial layers.

without learning by using max-pooling indices, then convolves the feature maps with
a trainable filter. Batch normalization is applied to each of these feature maps in both
the encoder and decoder parts. The architecture is similar to U-Net, but it reuses
pooling indices instead of transferring the features directly in order to save memory,
and it does not have skip connections for recovering fine details. Final decoder layer
containing high dimensional features outputs to a softmax layer, which classifies
each pixel with probabilities for the desired number of classes. The decoder part is
symmetrical to the encoder, therefore it also contains 13 layers plus the softmax layer.
Hence, the total depth of the original SegNet network is 27 layers. The architecture
is visualized in Figure 26. Tested on well-known scene parsing datasets such as
CamVid, SegNet proved to perform competitively, especially performance-wise, at
the time of its publishing in 2016. As of now, newer architectures have reached higher
performances, although they are also often more complex.

conv + batch norm + ReLU (blue) & max-pooling (gray)

upsampling (red)

softmax (yellow)

Figure 26: SegNet [3] encoder-decoder architecture.

DeepLabV3+ [7] is a semantic segmentation architecture developed by Google.
It is an improvement over its predecessor, the DeepLabV3 architecture, which main
idea is to apply parallel atrous convolutions of different rates in order to capture
information and features at different scales. This method is called the Atrous Spatial
Pyramid Pooling (ASPP). Such models that use ASPP are used to extract dense
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feature maps to capture rich contextual information through pooling, but that requires
the final blocks to be dilated, which is computationally expensive. Encoder-decoder
type networks such as previously described U-Net on the other hand are faster
to compute as they do not require features to be dilated and they recover object
boundaries accurately. DeepLabV3+ tries to combine the benefits of both these
methods, thus improving the original architecture. This is done by adding a decoder
part for recovering object boundaries to the DeepLabV3 architecture while keeping
the atrous convolutions in the encoder part in order to extract more dense features.
In other words, DeepLabV3+ features an encoder-decoder structure with an efficient
encoder part from the DeepLabV3. The original paper used a pre-trained Xception
network as its contracting part but it is possible to experiment with other pre-trained
networks as well. Xception uses depth-wise separable convolutions which deal with
depth dimensions in addition to spatial dimensions: a depth-wise and a pointwise
convolution is performed at each convolution step. Networks utilizing depth-wise
convolution should reduce the computational costs without sacrificing performance.
This has been a popular choice in many recent network architectures. High-level
architecture of the DeepLabV3+ network is shown in Figure 27. At the time of its
release in 2018, DeepLabV3+ was the state-of-the-art on popular PASCAL VOC
2012 and Cityscape datasets. For this thesis, two variants of DeepLabV3+ were
implemented: one with Xception encoder and other with MobileNetV2 encoder.

Figure 27: DeepLabV3+ [7] high-level architecture.

Network architectures implemented in this thesis are evaluated and compared in
at Section 3.2.5.

An introduction to parameter tuning in deep learning neural network training
and an in-detail explanations of training options used in the U-Net models of this
thesis are presented in the following Section 3.2.3.
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3.2.3 Network Training

The workflow of training a deep learning model is visualized in an easy to follow
manner in the diagram of Figure 28, derived from Buduma and Locascio’s book [5].
It shows the main steps of building a neural network model for any deep learning
application. The training process consists of monitoring metrics and making choices
accordingly. These metrics are typically accuracy and loss for both the minibatch
currently in training and validation set. If after an epoch of training the loss is
decreasing, and accuracy is increasing for both the minibatch and the validation set,
it is safe to continue training for another epoch, whereas if the validation loss starts
increasing, the network has started overfitting on the data and the training should
be stopped. Minibatch is a subset of user-defined size from the training data that is
used at each iteration, and an epoch is a full-cycle over the training data. In some
cases, the network may continue to improve on the training data, but it is overfitting
on the validation data, that is why it is important also to monitor the metrics on
validation data. The importance of the validation set was discussed in more detail in
Section 3.2.1.

The most important parts of a deep learning model are the dataset and network
architecture, discussed in Section 3.2.1 and 3.2.2, respectively. If the data is compre-
hensive and well-defined and the neural network architecture suits the task, then the
network should learn from the data and perform well on training data and, most
importantly, on the test data. On the other hand, if there is not enough data or if
the data is not sufficiently good, then the network might not perform well on the
training data or could overfit on it.

What the diagram of Figure 28 does not take into account is choosing training
options and doing parameter tuning, which can further improve the model performance
and allow training for a longer epoch. Furthermore, poorly chosen options could, in
the worst case, cause the whole learning to be unsuccessful; therefore, the machine
learning engineer should know the basics behind the learning process. Luckily,
optimization in machine learning is not as difficult as optimization in a general case.
The object in deep learning training optimization is to find parameters that best
reduce a cost function, which is typically a performance measure of the training and
validation [15]. This section explains standard parameters in the network training,
then discusses the training options used in the training of the best performing network
for this thesis.

Learning and optimization. Learning rate, usually denoted by ε, is an essential
hyperparameter in a machine learning training process [5] as it determines the size of
the steps to take towards the local minimum after each training iteration. Picking a
too large value for the learning rate may cause the network to diverge away from the
real minimum, and picking a too-small value, on the other hand, causes the training
to be slow. The task of finding the local minimum in neural network training is an
optimization problem for minimizing squared error over training data by updating
the values of weights w of the neurons. There are various algorithms for solving this
optimization problem, called solvers or optimization algorithms. The optimal choice
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of learning rate varies based on the solver, network architecture and the application
but a common strategy for finding a suitable learning rate is to start with a low value
and continue increasing it by a magnitude of 10 until the largest value that does
not cause divergence has been found. It is also possible to start with a larger value
and then lower the learning rate before the result starts to diverge away from the
correct path. Two commonly used optimization algorithms were tested for the neural
network training of this thesis: the Stochastic Gradient Descent (SGD) and Adam.

SGD [15] is a popular choice for both machine learning and deep learning appli-
cations. It operates by calculating the average gradients of minibatches controlled by
the learning rate; in other words, it takes steps towards the direction of the negative
gradient to minimize the loss function. SGD tends to be slow and oscillating as it
is, however it can be improved by adding a momentum term which accelerates the
training by observing previous gradients steps and having them contribute to the
next steps. This contribution is essentially a moving average of past few gradients of
which effect can be controlled by a scalar.

Adam [5, 15] is an adaptive type of optimization algorithm, meaning that the
momentum is chosen dynamically by estimating first-order moments of the gradient,
thus potentially making it easier to control as there are fewer hyperparameters
to tune by hand. Adam features an exponentially weighted and decaying moving
average is maintained in order to ignore old gradients, and an added bias correction
factor applied to the moments. At the moment, there is no correct answer on the
choice of the best optimization algorithm for a deep learning problem, although
adaptive learning rate algorithms such as the previously described Adam have been
proven to often perform robustly. The choice, however, seems to be mostly up to the
engineer’s familiarity with the algorithm, as to make parameter tuning easier [15]. It
is also worth noticing that breakthroughs in the field of deep learning are most often
acquired through discovering and inventing novel network architectures and rarely
by fiddling with optimization algorithms [5], and in practice it might also make sense
not to spend too much time on improving and choosing the solver but preferably
on improving the network and data. Upon initial testing of both SGD and Adam
optimizers it was noticed that Adam felt slightly easier to control in this case, thus it
was chosen for the optimization algorithm of the network training task of this thesis.

Minibatch. Minibatch size [15], as mentioned before, defines how many training
samples are used to update the neuron weights and to take steps towards the minimum
at each iteration, therefore also defines the number of iterations in each epoch. The
choice of minibatch size thus affects the speed of the training process, as there are
fewer total iterations in each epoch, the larger the minibatch size is. The use of
a small minibatch size might result in better regularization due to noise caused
by variability in the data, but the training can oscillate and be more difficult and
time-consuming. When choosing minibatches, it should be ensured that the data in
minibatches is picked at random, especially if the dataset is organized in a biased
way such that similar training images are arranged successively. This also makes
sure that there is a different ordering of data in each epoch, which reduces the risk of
overfitting. Alternatively, the dataset itself can be shuffled before each epoch, which
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ensures non-biased ordering of the data.
Maximum minibatch size is restricted by the available hardware, GPU memory

can fit a limited number of training images on a single iteration, and the time it
takes for training a single iteration is dictated by the GPU’s computational power
in addition to the depth and complexity of the network model. Furthermore, a
minibatch size of power of 2 can generally achieve a faster runtime on GPUs, as
they are optimized for parallel calculations with power of 2 size arrays. Training
can also be done on a CPU, which might have a larger memory depending on the
setup and could, in that case, fit a larger minibatch size, but generally operates
much slower than a GPU. Just in the recent years, it has become practical to train
deep networks, which are computationally demanding tasks, thanks to the rise of
computational power, which still follows Moore’s law and continues to increase. A
rather modest Nvidia GeForce GTX950 GPU from 2015 was used in this thesis, and
training the neural network on said GPU for 100 epoch with minibatch size of 4 took
approximately 12 hours. On a typical early 2000’s computer, this would have taken
days, and with 90’s hardware, the task could not have been done at all. While the
GPU of this thesis was sufficient for training several prototype level networks on a
quite small dataset, more powerful hardware or cloud computing will be considered
when moving forward and enlarging the dataset in the project. It is not practical to
train for such a long time, and results of larger minibatch sizes could not be tested
due to limitations in the GPU memory.

Loss functions. In pixel classification tasks, loss function determines the assign-
ment of class labels for each pixel, and thus, in this case, it is the last gatekeeper
between the neural network and the real-world results of detecting the annual rings.
Two loss functions [31], Weighted Cross-Entropy (WCE) loss, and Generalized Dice
Loss (GDL) were implemented and compared for the neural network of this thesis as
they are two of the most commonly used.

Entropy [7], in this context, is an information-theoretic measure for describing
uncertainty in a probability distribution fist coined by Claude Shannon. Cross-entropy
measures the probability error in case of multiple classes that are not mutually
exclusive. These probabilities are acquired by a softmax layer, which calculates the
probability distribution for the classes. Problem with cross-entropy loss is that it
addresses each pixel independently and equally, therefore if the classes in a semantic
segmentation task are in imbalance, it may be biased towards the dominant classes,
especially if the distribution is severely uneven [27]. In this case, the number of
pixels belonging to annual rings is substantially smaller than the number of pixels
belonging to background and woodblock. Therefore class distribution and balancing
should be taken into account. There are a couple of ways to do class balancing: class
weighting by median frequency, inverse frequency, or average frequency. Weighted
cross-entropy with median balancing performed best in this case and improved the
segmentation substantially. It is done by calculating the frequency of pixels in each
class by dividing class pixel count by total image pixel count and then for each class
by calculating the median frequency by taking the median of the frequency and
dividing it by the frequency. Weighted Cross-Entropy is then defined as [27]
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E =
∑
x∈Z2

w(x) log(pl(x)(x)), (10)

where x is a pixel in the image, w is a weight map which balances the classes and pl
is the probability of label l given by the softmax layer.

Generalized Dice Loss [31] evaluates segmentation of multiple classes using a
single score based on measure of overlap and alleviates the problem of class imbalance.
Calculating loss L between image I and ground truth T for K classes using GDL is
defined as:

L = 1− 2∑K
k=1 wk

∑M
m=1 IkmTkm∑K

k=1 wk
∑M
m=1 I

2
km + T 2

km

, (11)

where M is the number of elements of I and wk is a weighting factor defined as the
inverse area of expected ground truth region:

wk = 1
(∑M

m=1 Tkm)2 . (12)

Both the weighted cross-entropy loss and GDL proved to significantly reduce the
initial problem of class imbalance in comparison to using cross-entropy loss without
class weighting, which failed to detect many annual rings as it favored the background
pixels. Using WCE loss was found to behave more robustly than GDL, which caused
the error loss to oscillate in this particular application of annual ring detection. GDL
is considered to behave more robustly in situations where the class imbalance is great
[31], whereas, in this situation, the class imbalance clearly exists in all images but is
not that large.

There are also several other well-established loss functions to use in semantic
segmentation, such as focal loss and Tversky loss. Additionally, it is possible to
combine results from multiple loss functions. These were not implemented in this
thesis due to time constraints but should be tested in future work in order to gain
potential improvement to the segmentation results.

Summary. As a summary of network training, sensibly choosing the training
options is important to ensure successful training. Further optimization of the
parameters can slightly increase the model to obtain a couple of percentages higher
validation accuracy, for example. However, the main building blocks of creating a
decent deep learning model are the dataset and the network architecture. At times,
neural network training can be more of an art than science as networks tend to
behave somewhat differently depending on the application, and there is no correct
answer as to which options and parameters should be chosen for a specific deep
learning task at hand. Making small incremental changes based on findings through
trial and error is a good strategy for building a successful network, however knowing
the fundamental working principles of deep learning and exploring research on similar
applications is essential in order to make educated guesses and modifications to the
model and data.
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For the U-Net based networks implemented for this thesis, as discussed in Sec-
tion 3.2.2, choosing the following training parameters obtained the best results:

• Classes were balanced with median balancing in order to avoid background
pixels being dominant

• Cross-entropy loss was used as the loss function in the pixel classification layer,
it was found to be more stable than Dice loss

• Mini-batch size of 3 was chosen. Higher values could not be tested due to
limitations in hardware (GPU memory)

• The network was trained for a total 150 epoch until accuracy and loss reached
stability. Adam optimizer with a learning rate of 0.001 was used for the first
100 epoch, then learning rate was reduced to 0.0001 for the last 50 epoch as it
was found that the network would overfit after 100 epoch without decreasing
the learning rate.

The architecture of this network was described in Section 3.2.2 and its performance
is reviewed in Table 2 at Section 3.2.5.

3.2.4 Postprocessing

Turning the output segmentation class probability map into a binary image with
annual ring pixels in white and background in black was done by simply turning each
pixel into the most confident class. More picky thresholding could be considered
such that only the strongest responses for annual ring pixels from the network are
chosen, which should reduce the amount of falsely detected annual ring pixels in the
binary image however it could also ignore pixels that actually belong to annual rings,
thus the thresholding should be implemented with care. Fabijanska and Danek [12]
used a mean based thresholding algorithm and local contrast enhancement to extract
the highest probability pixels in their neural network post-processing, which could
be viable in this case as well.

For postprocessing of the resulting binary images of annual rings after the se-
mantic segmentation, similar methods as described in Section 3.1.3 can be used.
Morphological closing was applied on the output binary images of the semantic
segmentation. With a small structuring element, it was successful at removing noise
while preserving the desired pixels belonging to annual rings.

CNNs are balancing between using local fine-grained and global low-level infor-
mation in the segmentation, often struggling to maintain spatial accuracy. Use of
conditional Random Fields (CRF) [13] is a common post-processing step that can
enhance this trade-off between low-level and high-level information and improve
the output of the segmentation. CRF can improve the capturing of fine detail by
combining low-level information with the output of the multi-class pixel classification.
CRF was not used in any of the networks implemented in this thesis, but could be
tested in future work in order to potentially improve the output of the segmentation.
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3.2.5 Evaluation

The success of a semantic segmentation is determined by the success of the end-
application [8], annual ring detection in this case. Computer vision applications are
non-trivial, blindly looking at a single metric such as accuracy might not give the
full answer on the success of the segmentation. Therefore, various metrics as well as
a visual inspection is needed in order to evaluate the performance of neural network
models on a specific application.

Table 2 showcases evaluation metrics for the CNN architectures implemented in
Section 3.2.2, tested against a dataset of 18 labeled images, which were chosen so
that they would represent the variability in the data. While the testing dataset is
small, it should still give a sufficient estimation of the performance of each neural
network model. Accuracy is the proportion of correctly labeled pixels, measured
separately for the validation and the testing dataset, both of which consist of unseen
images for the CNNs. Intersection over unit (IoU) [8], also known as the Jaccard
index, measures the average intersection over unit score for all classes. IoU considers
both the false alarms and the missed values, as it is the ratio of correct pixels to
the ground truth and predicted pixels in each class. BF-score [8] measures the F1
matching score of the boundaries as a value between 0 and 1, where larger value is
better. BF-score is well suited for semantic segmentation as the contour quality is an
indicator for the overall smoothness and quality of the segmentation. In addition to
numerical evaluation, a comprehensive visual inspection was done on a larger number
of images than that of the testing dataset.

In terms of accuracy and IoU, the modified U-Net models performed better
on both the validation and the testing data compared to the DeepLabV3+ and
SegNet networks. On all the networks, accuracy on test dataset is lower than on
validation dataset, which is due to the testing dataset having more difficult images.
Perhaps surprisingly, DeepLabV3+ model with Xception encoder achieved the best
results on the BF-score measure. This is enforced by visual inspection, which showed
that the DeepLabV3+ network outputs smooth looking lines. However, the output
segmentations on the U-Net models looked more detailed, consistent, and better
overall than on the DeepLabV3+ networks which struggled noticeably with unusually
shaped, thin or vague annual rings and output blob-like segmentations on those
difficult parts. SegNet was inferior to the U-Net and DeepLabV3+ variants on both
the numerical and the visual validation.

Figure 29 shows example output of the CNN models implemented in Section 3.2
on an unseen image. The input image of Figure 29 is good for comparison as it
features both thick and thin lines, saw cuts and a crack in the middle. Furthermore,
there are annual rings that are clearly visible as well as some that are vague and partly
broken. On SegNet, the overall quality of the segmentation is lacking compared to
other networks. The resulting binary image contains noise and many false detections
and SegNet also mistakenly detected saw cuts as annual rings, which the other neural
network models did not. All the network models handled the crack well and did not
mistake it for an annual ring. DeepLabV3+ variations handled thick and clear lines
well, however, struggled significantly with small and unclear lines, which resulted in
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Accuracy (validation) Accuracy (test) MeanIOU BF-score
U-Net Dense blocks & VGG-19 encoder 0.920 0.841 0.704 0.976

Dropouts & VGG-19 encoder 0.915 0.846 0.701 0.976

DeepLabV3+ Xception encoder 0.851 0.820 0.678 0.984
MobileNetV2 encoder 0.845 0.811 0.660 0.977

SegNet VGG-19 encoder 0.821 0.802 0.638 0.935

Table 2: Evaluation of the CNN models implemented in Section 3.2.

blob-like segmentations. U-Net models performed best overall and showed promising
results. Similar characteristics of the neural network models as those described
previously were visible on other test images as well.

DeepLabV3+ [7] had acquired better performance to that of U-Net and SegNet
on many popular datasets such as Cityscapes and PASCAL VOC 2012. However,
performance on other datasets is not a direct indicator of performance on the particular
wood end-face dataset of this thesis, and as it turns out, U-Net achieved the best
results of the networks tested in this chapter. This is likely due to skip connections in
U-Net, which are capable of acquiring finer detail and give it an advantage over other
networks in this specific task, which requires accurate segmentation of small details.
The fact that U-Net had previously generalized well on similar applications such as
medical image segmentation [27, 36], retinal blood vessel segmentation [25, 10] and
satellite image segmentation [28] also indicated that it could be a suitable model for
this problem.

Based on these results, the U-Net model with VGG-19 encoder and added dropout
layers was chosen for the final implementation of this thesis and as a baseline network
for moving forward and implementing a neural network for a real-time production
version at the sawmill. The U-Net variant with dense blocks and VGG-19 encoder
was similar in performance, however, slightly more complex and slower, therefore
not chosen.

Section ?? further discusses the results of the annual ring detection task with a
focus on possible future improvements to the current baseline network that is the
U-Net based model, which obtained best results as presented in this section, as well
as compares the results of deep learning approach versus image processing approach
as a recap of this chapter.
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Figure 28: Workflow of training a deep learning model.
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(a) Input image (b) U-Net
(dense blocks)

(c) U-Net
(dropouts)

(d) DeepLabV3+
(MobileNetV2 encoder)

(e) DeepLabV3+
(Xception encoder)

(f) SegNet

Figure 29: Examples of annual ring detections by different neural networks.
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3.3 Results
The results of this chapter indicate the superiority of deep learning for this particular
task. The annual rings do not have a specific intensity value, do not share a common
shape, and are not perfectly circular or elliptical. In addition, there are various defects
and noise caused by the rough and uncleaned condition of the wood end-faces. These
facts make it very difficult, if not impossible, to develop a general and robust image
processing based system for detecting annual rings on wood end-faces of varying
conditions and properties. Indeed after trying various image processing methods and
techniques in Section 3.1, the results were not desirable. Detecting annual rings by
human eye and differentiating them from defects is effortless, which suggests that
a convolutional neural network could similarly learn to detect annual rings on the
wood faces. This was found to be true in Section 3.2, where a convolutional neural
network was designed and trained for this task. Even with a relatively small amount
of training data, the neural network was able to learn the general features of annual
rings and was capable of differentiating between the annual rings and various defects,
even on difficult condition wood end-faces. Furthermore, the convolutional neural
network presented in Section 3.2 still has room for improvement. Another advantage
of the deep learning approach over traditional methods is that it is robust to changes
in the factory; the neural network would perform equally well if for example the
lighting conditions or the camera position were to change, whereas a manually crafted
system based on traditional image processing methods would have to be re-calibrated.
A comparison of annual ring detection on a couple of images between the image
processing and the deep learning method is shown in Figure 30.

More examples of annual ring detection on multiple images using the U-Net
based network are shown in Figure 31. The resulting binary images look promising
and prove that the network has learned to generalize on the data. Minor flaws in
some segmentations should be fixable by improving the performance of the model
through architectural modifications, larger and more comprehensive dataset, and
better postprocessing. The network is a decent baseline model when moving forward
towards actual production implementation in the sawmill. For a proof of concept
version, it is successful and proves that the task of annual ring detection is doable
even for the uncleaned and rough wood end-faces in a sawmill environment.

Having skip connections in the model appears to be necessary for this particular
task where it is crucial to obtain fine details as the annual rings are thin and faint,
based on the findings of trying different models, as discussed in Section 3.2.5. This
suggests that a U-shaped model with skip connections is a good choice for this task.
The field of semantic segmentation moves fast, and in literature, there are various
re-imagined versions and modifications to the original U-Net model that have proven
to outperform it in real-life applications. An example of these is U-Net++ [36],
which features nested and dense skip connections that should better obtain fine
details. The encoder and decoder parts in U-Net++ are connected through nested
dense convolutional blocks in the skip pathways, which bridges the gap between
encoder and decoder blocks and improves gradient flow. On four different medical
image datasets, these improvements proved a clear advantage over the vanilla U-Net.
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(a) Input image (b) Deep learning (c) Image processing

(d) Input image (e) Deep learning (f) Image processing

Figure 30: Comparison of annual ring detection results between the deep learning
implementation of Section 3.2 and the image processing implementation of Section 3.1.

MultiResUNet [18] is another re-imagined version of U-Net, which, in particular,
improved the performance on difficult images by introducing multi-residual blocks in
place of the regular convolutional blocks. This modification allowed better feature
flow between the encoder and the decoder parts. As discussed in the literature review
of Section 2.1, Peng et al. [25] also modified the original U-Net architecture and
achieved improved performance in a retinal blood vessel segmentation application,
which resembles the annual ring detection task. Their CNN architecture, named
CDNet, has a symmetrical shape as U-Net, however, uses segmentation blocks
with short propagation paths which allows recovering more information from the
propagation step. These and other features of the latest CNN architectures could be
tested when moving forward in order to improve the model. Additionally, as discussed
in Section 3.2.3, implementing more advanced and modern loss function variants
in the pixel classification layer of the neural network could potentially improve the
resulting segmentation maps.

Enlarging the dataset is the most obvious source for gaining improvement, as
the initial dataset of 100 non-augmented images is quite small and could have more
variance in the data to generalize better. The network performed especially well on
wood end-faces that had clear and thick annual rings, which is likely due to laziness
in building the dataset. It was easier to annotate images with thick annual rings as
opposed to those wood faces that had many small and thin annual rings. Therefore
when moving forward, these thin annual ring wood faces should be prioritized when
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choosing and annotating more training images.
Furthermore, as discussed in Section 3.2.4, trying more advanced postprocessing

methods could improve the output of the segmentation by introducing more fine-
grained detail, fixing broken annual rings, and removing noise.
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Figure 31: Example annual ring detections on unseen images using the U-Net based
neural network model of Section 3.2.
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4 Finding the Pith
Center (or the pith) of the wood end-face is found in order to calculate distances
of the annual rings outwards from the pith. The pith is, however, rarely visible in
the photos, as the wood is cut into blocks, so it should be searched outside of the
image as well. This also makes it slightly more challenging to verify the results, as
exact pith position cannot be accurately verified. The annual rings in the images
are not perfectly circular, not identically shaped among themselves, and often too
faint and partly broken, making it practically impossible to fit circles or ellipses into
the image to find the center point. Annual rings should first be detected with the
methods of Section 3.2, then, by getting the orientation and direction information of
the rings, it becomes a mathematical problem to determine the pith position.

As reviewed in Section 2.1, multiple studies have been done on determining pith
position of wood faces, but the majority of them were done for dendrochronology
applications with clean and good quality wood and a clear circular pattern of annual
rings, therefore not applicable to this thesis. Andreu and Rinnhofer [1] study was
done on a sawmill setting, however they used a computer tomography scanner instead
of a camera, and their method also requires a complete circular annual ring pattern
and the pith itself to be visible. As far as the author is aware, there have not been
other studies of pith estimation in sawmill setting on images taken with a regular
camera except for Norell and Borgefors’s paper [23] that could be viable in this case.
Their method was discussed in detail in Section 2.1. Its data resembles that of this
thesis, however the wood is not yet cut to pieces and the pith is visible in all the
images. It was decided to use a new approach for this thesis instead.

The method was designed for this thesis by exploiting the (loosely) circular shape
of annual rings. When transforming an image of a circle to the polar coordinate
system at its center point, its circular lines become straight lines in the resulting polar
image, as depicted in Figure 32. Similarly, the annual rings become approximately
straight when transforming the wood end-face image to polar coordinates at the
center point. This is visualized in Figure 33. It is a simple method, and it does not
require the pith to be visible in the image. Additionally, the fact that circular rings
can be viewed as straight lines is handy when calculating the ring distances, as will
be explained in Chapter 5.

The polar coordinate system is a coordinate system where each two-dimensional
point is determined by distance an angle from a reference point and direction.
Cartesian coordinates x and y are converted to their corresponding polar coordinates
r and φ using trigonometric functions:

r =
√
x2 + y2

φ = arctan
(
y

x

) (13)

Histogram of Oriented Gradients (HoG) [9] was chosen as the method for deter-
mining the straightness of lines in a polar transformed image due to it is simplicity
and computational efficiency. Alternative methods for solving this task could be based
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(a) Image in Cartesian coordinates (b) Image in Polar coordinates

Figure 32: An image of concentric circles transformed to polar coordinates.

(a) Image in Cartesian coordinates (b) Image in Polar coordinates

Figure 33: An image with annual rings detected transformed to polar coordinates at
approximate center point.

on, for example, image moments. HoG is essentially a feature detector, where the
distribution of gradient intensities determines the local shape and appearance of the
object. The image is first divided into blocks, then gradient magnitude and direction
at each pixel is calculated using a Sobel operator (see Figure 11 in Section 3.1.2)
with a kernel size of 1. Using a block size of 25 by 25 was found to best capture
the desired features in this case. The annual rings do not fill the whole image, and
few of the blocks are usually empty, those blocks are left out of the calculations.
Furthermore, using unsigned gradients, i.e., converting orientations from 0◦–360◦ to
that of 0◦–180◦, performed better in Dalal and Trigg’s study of human detection
[9] and also in this particular problem of finding the straightness of lines. These
gradient magnitude and orientation values at each pixel then act as weighted votes
when assigning values to histogram bins. Nine histogram bins spreading evenly over
the 180◦ spectrum were created, as visualized on Figure 34. The weighting of the
votes was chosen to be based on the magnitude and the distance to the nearest bins:
the votes contribute proportionally to the nearest bins. For example, a pixel with
70◦ and magnitude of 14 would be halfway between the 60◦ and the 80◦ bins, thus a



55

value of 7 is put to both the 60◦ and the 80◦ bins. Similarly, if a pixel would have an
orientation of 20◦ and a magnitude of 10, a value of 10 would be put to the 20◦ bin.
An extra detail to be aware of is that when the angle is greater than 160◦, it wraps
around and contributes proportionally to the 0◦ and the 160◦ bins. After building the
histogram bins, the HoG method would then proceed by calculating a HoG feature
vector, but in this case, the histogram bins can be used to formulate an optimization
problem for maximizing the straightness of the lines, which is the point where the
location of the pith is.

Figure 34: Visualization of the Histogram of Oriented Gradients method.

Section 4.1 further explains the algorithm and presents a pseudocode solution.

4.1 The Algorithm
The pith detection algorithm operates by transforming the image to polar coordinates
at several points of the binary image and then builds a Histogram of Oriented
Gradients for determining the vertical straightness of the resulting lines in small
patches of the image. The more straight the lines in the vertical direction, the closer
the point is to the pith. The score for describing the straightness of lines in a block
are calculated for each block by summing the gradient bins of HoG. The bins are
multiplied with bias variables that can be controlled in order to improve the results.
The calculation of the gradient bins was described in Section 4. The bias variable
for the bins corresponding to 0◦ and 160◦ should be the highest as they correspond
to closely straight lines. Other near straight bins should get a lower value, and those
corresponding to horizontal angles should get a zero or negative bias value. After
the score for each block has been calculated, an average of all blocks is calculated
in order to get a single value describing the straightness of the lines. The simplest
way to find the pith with this method would be by brute force: transform the image
to polar coordinates at all points and find the point which maximizes the vertical
straightness value. That would, however, be inefficient and too slow, considering the
running time requirement (one second) of this system. The search space is instead



56

narrowed down by first transforming the image to polar coordinates at each corner
and middle point of the image and finding the point with the maximum straightness.
This way, an approximate location of the pith is found, and the correct center point
can then be searched for near this approximate location, in a much smaller search
space than with a brute force approach.

By observing that the calculation of the straightness score for polar transfor-
mations at different points of the image is not dependent of each other, it can be
noticed that parallelism [32] can be utilized in order to do simultaneous calculations
of the straightness scores, which improves the speed of the process substantially.
Similarly, the calculation of HoG for each block can be done independently. On a
four-core processor, this could potentially result in a speedup by a factor of 4, as by
running the calculations independently on four threads, the operating system will
likely assign these four threads to each of the four CPU cores. There are different
ways of implementing thread creation in the code, depending on the operating system
and the programming language. Instruction level parallelism happens in the CPU
automatically if the calculations are organized so that there is potential for paral-
lelism; in other words, the CPU assigns instructions to independent threads by itself.
This can be exploited by merely organizing the calculations on independent variables.
Furthermore, one register in a modern CPU can store 8 floats in its 256-bit register
and manipulation of vectors is highly optimized and efficient, therefore in addition to
instruction-level parallelism, the algorithm can be further speed up by vectorization
which allows more parallel operations. In order to allow vector instructions, the
compiler has to be instructed to do so by using vector types that are arrays of 8 floats
and by again ensuring that the code is organized to have independent operations.
Proper memory alignment has to be ensured if using pointers to the vector type or
the algorithm may crash.

With parallelization, it was possible to reduce the running time of the pith
detection algorithm from over a second to a fraction of second (≈ 0.15 s). Further
improvements to the speed could be done by utilizing more advanced techniques
[32] such as prefetching or through better use of cache memory, but the running
time obtained with previously described parallelization techniques was sufficient for
this project. The total running time of the whole system is discussed in Chapter 6.
Additionally, using GPU instead of CPU in most computers including that of this
thesis enables vastly more operations per second but at lower clock speed thus requires
careful parallelization of the code in order to gain improvement; it would be more
difficult to implement and not worth the time and effort at least in a prototype level
implementation.
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Algorithm 1 Pith Detection
procedure FindPith(img)

Vector<Point(x,y)> startingPoints[8]
Vector<float> Scores[8]
for i ← 0 to Size(Scores) do . Algorithm 2

ScoreAtXY(img, startingPoints[i].x,startingPoints[i].y, 4,1,0)
ind ← distance(begin(Scores), max(Scores))
iterPoint ← startingPoints[ind]
Vector<Point(x,y)> newPoints[8]
Area ← 200
Skip ← 50
for i ← -Area/2 to Area do

for j ← -Area/2 to Area/2 do
newPoints.pushback(Point(iterPoint.x + i, iterPoint.y + j))
i ← i + Skip
j ← j + Skip

Vector<float> newScores[size(newPoints)]
for i ← 0 to Size(newScores) do . Algorithm 2

ScoreAtXY(img, startingPoints[i].x,startingPoints[i].y, 5,1,0)
bestInd ← distance(begin(newScores), max(newScores))
return newPoints[bestInd]
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Algorithm 2 Straightness score
procedure ScoresAtXY(img, x, y, bias1, bias2, bias3)

polarimg ← WarpPolar(img,img, Point(x,y))
gx ← Sobel(polarimg, dx=1, dy=0, ksize=1)
gy ← Sobel(polarimg, dx=0, dy=1,0, ksize=1)
angle, mag ← Cart2Polar(gx,gy)
N ← 25
thres ← 0.1*(N*N)
counter, score ← 0
for y ← 0 to height(img) - N do

for x ← 0 to width(img) - N do
block ← rect(x,y,N,N)
if numWhitePixels(block) ≤ thres then

continue
mags[9] ← buildHoG(block, angle, mag)
sumMags ← ∑8

n=0 mags[n]
for n ← 0 to 8 do

mags[n] ← mags[n] / sumMags
score ← score + (bias1 * (mags[0] + mags[8])
+ bias2 * (mags[1] + mags[7])
+ bias3 * (mags[2] + mags[3] + mags[4] + mags[5] + mags[6])
counter ← counter + 1
y ← y + N
x ← x + N

return score/counter
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(a) Input image

(b) Top left corner (x = 25, y = 25) straight-
ness score: 1.374

(c) Top right corner (x = 975, y = 25) straight-
ness score: 0.382 (d) Top middle (x = 500, y = 25) straightness

score: 0.803

Figure 35: Example of running the straightness score algorithm on different points
of an input image (real center is near the top left corner).



60

4.2 Results
Due to the pith not being visible in most of the pictures, accurate ground truth
positions cannot be established to calculate the precise offset of the estimated pith
positions. A visual inspection and evaluation is therefore used to verify the results
of the algorithm.

Pith estimation relies on the success of the tree ring segmentation of Chapter 4.
When the segmentation is successful and nearly flawless, the algorithm estimates the
pith position well in the vast majority of cases. However, if the segmentation contains
false information, then the pith estimation is usually also slightly off. However, the
pith estimation does not have to be perfect for the ring detection to succeed, as
will be described in the next chapter. Figure 36 shows a collage of pith detections
by the algorithm presented in this chapter. As can be seen, the algorithm finds
the approximate location on wood faces of different sizes with varying annual ring
patterns. These images in Figure 36 had a fairly successful segmentation however
not completely flawless.

The pith estimation is sufficiently good on approximately 90.4 % of the cases
based on manual inspection of 80 test images. False detections are most often caused
by flaws in the annual ring detection, therefore the pith detection algorithm should
be thoroughly tested again in the production version once the neural network has
been improved. In rare cases, weirdly shaped annual rings that do not resemble
circular or elliptical shapes fail the pith detection and cause poor results. Given the
subset of images that the algorithm was tested on, there were four of these cases.
The share of the weirdly shaped rings should be determined through investigating a
larger subset of wood end-face images, such as 1000 images, to get a more accurate
estimate. If the share of wood end-faces where this algorithm fails to detect the
pith is significant, further modifications should be made in future work, such as by
detecting the approximate circularity of the rings and then developing a different
method for finding the pith on these non-circular shaped rings.

On an Intel Core i7-8550U (8× 4.0 GHz) processor, the average running time out
of 50 iterations was 0.148 seconds. The capacity of the CPU computational power
was better utilized through parallelization and vectorization, which considerably
increased the speed of the pith detection algorithm, as explained in Section 4.1. The
total running time of this system is discussed in the concluding Chapter 6.
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Figure 36: Example pith detections.



62

5 Calculating Ring Distances
The final step of the system is to calculate the annual ring distances. It is a
straightforward task as it is, but there are still few aspects to take care of: pixel
distances should be precisely converted to millimeter distances, noise should be
filtered, sanity checking and corresponding actions should be made.

This chapter is organized as follows: Section 5.1 presents a method for calculating
ring distances, followed by Section 5.2, which discusses unit conversion from pixels to
millimeters and Section 5.3 evaluates the results of annual ring distance calculation.

5.1 Computation
Annual ring distance calculation algorithm designed for this thesis uses polar trans-
formation with the center point estimate presented in the previous chapter. As
stated in the center finding chapter, transforming the wood end-face image into polar
coordinates at the approximate center point results in the annual rings to appear
as approximately straight lines in the resulting polar image. This makes annual
ring distance calculation straightforward: by calculating horizontal projection (or
horizontal profile), that is, in this case, a histogram of white pixels in the horizontal
axis, we get information of the annual ring locations as peaks in the x–axis. Then it
is possible to calculate distances between these peak locations minus the width of the
rings in order to get the distances between the annual rings. More specifically, the
projection is a vector of size equal to image width, so that each index represents a
horizontal location and each value equals the number of white pixels in that location.
An alternative to taking a horizontal projection that considers all white pixels in the
image could be, for example, to draw multiple thin histogram lines from left to the
right and calculate the average of ring distances from multiple histograms.

(a) Input image (b) Horizontal projection histogram

Figure 37: Binary image of annual rings transformed to polar coordinates at its pith
and its corresponding horizontal projection.

Likelihood of error detections should also be taken into account, as not all the
white pixels necessarily belong to annual rings given the minor flaws in annual ring
segmentation of Chapter 4, therefore a small and vague peak may not describe the
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horizontal location of an annual ring. A small amount of noise and error detections
should not be a severe problem however, as it can be filtered out by smoothing the
histogram and by ignoring non-prominent peaks. Noise removal in the histogram
was done by applying Gaussian smoothing, which is a convolution between the input
image (histogram) and a Gaussian function, defined mathematically as [14]:

h(x, y) = e−
x2+y2

2σ2

g(x, y) = f(x, y) ∗ h(x, y),
(14)

where ∗ is a convolution operation, σ is the standard deviation for controlling the
shape of the Gaussian filter, f(x, y) is the original histogram and g(x, y) is the filtered
histogram. The result of applying Gaussian smoothing of size 7× 7 with σ = 1 on
the histogram is depicted in Figure 38 below.

(a) Input histogram (b) Smoothed with Gaussian blur

Figure 38: Horizontal projection histogram before and after smoothing.

The peaks are the local maxima of the horizontal projection vector. However,
even after applying the Gaussian smoothing, there are still some negligible peaks
which do not represent an annual ring but are instead noise introduced in the annual
ring detection. Prominent peaks are clear peaks that confidently belong to annual
rings and should be found. One way of finding these desired peaks is to analyze their
persistence, which is the difference between the value of a local maximum and its
corresponding local minimum. For classifying a peak as prominent or not, it was
found that calculating the persistence of all peaks and then multiplying the average
persistence with an experimentally chosen threshold coefficient value was successful at
filtering vague peaks from the horizontal projection histogram. A threshold coefficient
value of 0.5 was found to be slightly too aggressive, it keeps only the most prominent
peaks and may ignore some annual rings, whereas a value of 0.15 did not filter out all
erroneous peaks. The value of 0.3 was determined to have a right balance in ignoring
non-prominent peaks and keeping clear peaks. Figure 39 shows the result of finding
all peaks and the result of finding only the prominent peaks by filtering out peaks
that are smaller than 0.3 ·m, where m is the mean persistence.

After finding and filtering the peaks from the histogram, they should now corre-
spond to the locations of the annual rings. This is a place for sanity checking to take
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(a) All peaks (b) Filtered peaks

Figure 39: Found peaks (marked as red cross) visualized on the horizontal projection
histogram.

place: while the distance between annual ring locations is not constant and can vary
a lot, they should still be in a somewhat similar range. If there is an absurdly long
distance between some peaks in comparison to other distances, say a 75 pixel distance
between two peaks whereas other peaks would have a distance of 5 to 25 pixels, then
there is likely an error. This could be due to a defect in the wood end-face such as
a knot or thick layer of tar. An erroneous distance would ruin the calculation of
average ring distance, therefore it should be removed from the array of annual ring
distances. Upon testing different methods for finding and removing a false distance,
a threshold value was determined to be defined simply as 2 ·mean(distances), where
distances is the array holding all the found distances. This value was found to be
successful in removing false detections while preserving correct detections. This
should, however, be more thoroughly tested in order to see if it is a reliable threshold
value but it is sufficient for a prototype implementation.

5.2 Unit Conversion
The final step before deciding whether or not the woodblock is too fast grown or
normally grown is to convert pixel distances to millimeters. It is quite a small
task, however it is highly important to do the conversion accurately. This pixel
to millimeter conversion was not implemented at the time of writing this thesis,
however it should be done next when moving forward from the PoC phase of the
project. While the unit conversion was not tested in practice, the following paragraph
discusses the problem in theory.

Norell presented a couple of ways to determine pixel size in her thesis [22]. First
of those methods was using a picture of a reference object at the same distance
from the camera as the wood end face, assuming there is no perspective distortion
in the image. In the second method, the wood faces were images slightly from
above, which causes perspective distortion. Information about the distance between
the camera and the wood face, the focal length of the camera, and rotation of the
object were used. After detecting the locations of the calibration points with edge
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detection and line fitting, the obtained real-world coordinates were transformed to
camera coordinates by a 3× 3 rotation matrix followed by a translation along the
coordinate axes. The three-dimensional camera coordinates were then transformed
into two-dimensional image coordinates by knowing the focal length and distance to
the object. This second method is somewhat similar to that of this thesis, as the wood
faces are likewise imaged from above, as shown in Figure 3 of Section 2.2. Before
implementing the unit conversion, the focal length and distance should therefore
be determined and the conversion calibrated according to some reference object. A
more simple way than using an external reference object would be to use a wood
end-face itself as a reference, as the sawmill workers know the dimensions of ongoing
wood planks. Lens distortion can be considered insignificant as the wood end-faces
are located in the middle of the viewfinder, while lens distortion tends to occur in
the corners.

5.3 Results
Given a sufficiently well succeeded annual ring detection and pith location estimation,
the annual ring distance calculation should robustly calculate the annual ring distances.
A small amount of noise or erroneous pixels not belonging to annual rings are not
a problem as these are filtered out from the histogram and only prominent peaks
that confidently belong to annual rings are taken into account. Furthermore, missing
annual rings due to a defect such as a knot are spotted by the algorithm and do not
interfere with the calculation of mean distances. By calculating distances between
annual rings in pixels manually from the images, it was possible to estimate the
accuracy of the algorithm, which appears to match the manually measured distances
when the annual ring detection and pith estimation had succeeded. Again, this should
later be precisely and comprehensively tested by comparing to accurate ground truth,
once the CNN has been improved and the pixel to millimeter conversion has been
made, before the system can be trusted to operate live in the production line of the
sawmill.

Performance-wise, this is a simple and fast linear time algorithm. The current
implementation runs on a single core and could be further improved with similar
parallelization techniques as described in Section 4.1. The running time is however
only a fraction of that of the whole system, thus improving the overall performance
of the system should be done by focusing on improving the bottleneck step of the
system, which dictates the majority of the running time, the annual ring detection.

The following conclusion chapter evaluates the annual growth analysis system
implemented in this thesis as a whole from both an academic and a practical
perspective and discusses its impact, rate of success, and future work.
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6 Conclusions
This thesis has developed software for automatic analysis of wood growth in a sawmill
environment using deep learning methods. The proposed system provides a general
solution for detecting annual rings and calculating their distances on wood end-faces
of varying conditions, as well as performed considerably better than traditional image
processing methods. For a prototype system, the results of this thesis are promising
and demonstrate that deep learning is applicable to the task of annual ring detection
and can reliably carry out automatic wood growth analysis in a sawmill.

The proposed software consists of four distinct steps: preprocessing, annual ring
detection, pith estimation, and ring distance calculation.

Preprocessing detects and extracts the correct wood end-face from an input
image acquired from the factory line using simple thresholding and binary image
manipulation techniques. Due to an IR filter pointing towards the wood end-face, it
appears brighter than the rest of the image, making the extraction task robust and
straightforward.

Annual rings were detected using deep learning. In the recent years, deep learning
has been widely used for many computer vision problems similar to that of annual
ring detection with great success. Additionally, since detecting annual rings is an
effortless task for human operators, a convolutional neural network could also be
well suited for the task. This thesis also implemented an image processing based
solution in order to compare the annual ring detection results to those of the neural
network implementation. Even on a small training dataset, the proposed neural
network performed substantially better than the image processing implementation
and was capable of generalizing the features of the annual rings.

Future work could focus on further improving the neural network. Enlarging
the training dataset would improve the performance of the model, as it was quite
small, and allow training for a longer epoch. Although the network implemented
this thesis performed well on wood end-faces with thick annual rings, it struggled
with thin and unusually shaped annual rings. This is due to the training dataset
having few examples of such difficult annual rings. Adding more variance (especially
images with thin annual rings) to the dataset would allow the neural network to
generalize better on different types and shapes of annual rings. In addition to the
dataset, the neural network model could be modified in order to improve performance.
Higher performance could be achieved by studying newer, more advanced network
architectures. However, having a U-shaped model with skip connections enables
U-Net to perform well on this particular annual ring detection task which requires
accurate segmentation of fine detail despite lacking a large dataset. Therefore, a
similar type of architecture should be used in future work as well. Newer U-shaped
network architectures have outperformed the original U-Net model in medical image
segmentation tasks by using methods derived from other state-of-the-art network
models, such as denser convolution blocks in the skip connection pathways and multi
residual convolutional blocks. Similar modifications could be used in this task as
well. Additionally, using more advanced loss functions and postprocessing could also
improve the accuracy of the resulting segmentation.
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Finding the position of the pith was needed for calculating annual ring distances.
In the data of this thesis, the pith remains most often outside the images, and
the wood blocks were cut into pieces, thus preventing the use of circle detection
techniques to detect the center point. The pith detection algorithm exploits the
loosely circular shape of the annual rings by using polar transformation to estimate
the pith position by detecting the point where the annual rings become as straight
as possible. The algorithm was able to estimate the pith robustly when the annual
ring detection step was successful; however, unusually shaped annual rings could
sometimes lead to errors in the pith estimation. After finding the pith, annual ring
distances were by taking a horizontal projection of the image at polar coordinates,
and then determining the distance between the peaks in the histogram, thus enabling
the algorithm to obtain the distances between the annual rings. For a prototype
software, both the pith estimation and annual ring distance calculation were sufficient.
However, they should be more thoroughly tested before relying on them in a real
application running in the sawmill. Possible modifications could be made later based
on the results of testing and validation.

The total running time of the system was slightly higher than the required 1
second. A clear bottleneck of the software is the annual ring detection part, which
took over half a second. This issue could, however, be easily improved in future work
by running the segmentation on a GPU, as this is currently being computed on a
CPU. This change should reduce the total running time to less than 1 second.
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A Appendix A: Data
This appendix contains a collage of the data of this thesis; images captured from the
factory line with wood end-face extracted. Note the large variability in the wood
end-face condition and in the shape of annual rings.
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B Appendix B: Example Run of the System
Complete run of the implement annual growth analysis system.

(a) Preprocessing step: wood end-face is extracted and straightened.

(b) Annual ring detection step: annual rings are detected using semantic segmentation by
a neural network. The output segmentation is further refined by postprocessing.
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(c) Pith detection step: location of the pith is estimated.

(d) Ring calculation step: image is transformed to polar coordinates at the pith

(e) Ring calculation step: projection is calculated and peaks are filtered.
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(f) Finally, the annual ring distances are calculated and returned as a vector.

Figure B1: Example run of the proposed wood annual growth analysis system.
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