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Abstract

Training DNN models is expensive in terms of computational power, collection
of a large amount of labeled data, and human expertise. Thus, DNN models con-
stitute intellectual property (IP) and business value for their owners. Embedding
digital watermarks into model training allows model owners to later demonstrate
ownership, which can effectively protect the IP of their models. Recently, federated
learning has been proposed as a new framework for machine learning development,
which distributes the training of a global deep neural network (DNN) model over
a large number of participants. Therefore, federated learning is advantageous than
traditional DNN training in terms of data privacy, computational resources and a
distributed optimization. However, there is no prior work investigating a solution for
watermarking federated DNN models. The main challenge is that the distributed
training causes the separation of training data (on participants’ side) and watermark
set (on aggregator’s side), which does not satisfy the condition of traditional water-
marking techniques that requires both training data and watermark set to be stored
in the same place.

In this thesis, we introduce two novel federated watermarking approaches which
can embed watermark into federated DNN models by backdooring with low communi-
cation and computational overhead. In our approaches, the embedding of watermark
is completed by the aggregator while the training is done by participants. We prove
that our approaches embed a watermark with a high accuracy (100%) while keeping
the functionality of the model. Moreover, the embedded watermarks in DNN models
are resistant to post-processing techniques. We also propose a new watermark gener-
ation method and evaluate its efficacy in terms of unremovability, model utility and
computational cost aspects.
Keywords Federated learning, Watermarking, Deep learning, Backdoor
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1 Introduction

1.1 Problem Overview
Deep learning technologies have shown great success in providing human-level capa-
bilities for a variety of tasks, such as visual analysis, speech recognition, and natural
language processing [18]. Modern mobile devices have access to a wealth of data,
which can be used to improve the performance of Deep Neural Network (DNN)
models (i.e., DNNs are declared as one of the most efficient supervised models in
machine learning field). For example, training a language model with the rich data
from mobile devices can improve the usability of a speech recognition application.
However, this data is often privacy-sensitive and large in quantity [41], which means
transferring this data to a centralized aggregator for training deep models requires a
large amount of communication and increases the risk of leaking sensitive information.
Recently proposed client-server federated learning [28] (FL) is a framework for mas-
sively distributed training of DNN models involving a large number of participants.
For saving communication, participants can train their models locally and then
send back the updates to the aggregator. Aggregator averages local models from
participants in order to build an accurate global model [3]. To ensure privacy of the
sensitive training data, federated learning by design will not allow the aggregator
and participants to have access to other participants’ data.

Nevertheless, building a production-level federated learning model is a non-trivial
task, which requires computational power, collection of a large amount of labeled
data, and human expertise. Therefore, illegitimate reproducing, distribution, and the
derivation of proprietary federated learning models can lead to copyright infringement
and economic harm to model owners [78]. Intellectual property (IP) protection for
federated learning models becomes a compelling need for model owners. Recent work
[1] proves that digital watermarks (WMs) can be used to protect the IP of Machine
Learning (ML) models.

Digital watermarking is the process of concealing information in a signal (e.g.,
images, videos) for subsequently using it to verify the authenticity [59]. The water-
marking procedure typically contains two steps: (1) the embedding of WMs while
training the model and (2) verification of the embedded WMs for demonstration of
ownership. Existing methods to embed watermarks into DNN models are mostly
based on backdooring [1]. Backdooring in ML is a technique to deliberately train
a ML model to output incorrect target labels for specific inputs. A watermark
set used for watermarking by backdooring consists of inputs (the trigger set) with
corresponding target labels. The main principle of watermarking by backdooring
is to use the watermark set, along with a training dataset to train a watermarked
model, such that the watermark set can be used in any surrogate model later for
demonstration of ownership. Specifically, if the model owner finds another similar
model and suspects it is a surrogate of his model, he can verify his ownership by
inputting the trigger set to this model then comparing the predictions to target labels.
As long as there is a strong match of predictions, he can prove that the suspected
model is a surrogate model [69] and claim ownership.
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Currently, there is no solution to utilize digital watermarks in federated learning to
protect IP of DNN models. Different from traditional ML training process, federated
learning involves a large number of participants and a distribution of training. This
leads to a separation of training data and the watermark set. Because participants
are responsible for the training but they are not trusted to have the watermark set,
the aggregator has the watermark set but is passive since it neither joins the training
nor owns any training data. Therefore, the standard watermarking method by using
backdooring which requires both training data and the watermark set to store in
same place cannot fit this situation.

1.2 Goal and Scope
The goal of this thesis is to design a watermarking procedure that can be used in
federated learning. We implement our watermarking process on DNN models used
for image classification. We evaluate the performance of watermark sets generated by
our watermark generation method with respect to security and utility requirements
in Chapter 3. The scope of the thesis is limited to embedding a strong watermark
inside federated learning without decreasing the performance of the overall model.
Therefore, we do not consider proof of ownership methods to claim the ownership of
a surrogate model. We consider client-server type federated learning setups where a
server maintains the global model and uses secure aggregator to update the global
model.

1.3 Contribution
The two main contributions of the thesis are:

• We introduce two novel federated watermarking approaches which can embed
watermark into DNN models by backdooring with low communication and
computational overhead. In our approaches, the embedding of watermark is
completed by one party (the aggregator) while the training is done by another
party (participants), which is different to a standard watermarking process [1]
[69]. We show that our process embeds a high accuracy (100%) watermark
while keeping the functionality of the model based on experimental results
of two benchmark datasets. In addition, the embedded watermark in DNN
models are resistant and resilient to post processing techniques [60], such as
model fine-tuning.

• We propose a new method to generate watermark sets. We compare its
performance with the methods proposed in [1] and [78]. The experimental
results show that our method has a better performance than the prior work.

1.4 Structure
The remainder of the thesis is made up of 7 chapters. Chapter 2 gives the basic
definitions related to machine learning and federated learning, explanation of essential
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concepts and description of algorithms used in the following chapters. Chapter 3
states our motivation, demonstrates the threat model, highlights the challenges for
designing a federated watermarking process and defines requirements for our method.
In Chapter 4, we introduce our federated watermarking process and watermark
generating methods. Chapter 5 gives details about the experimental setup (datasets,
model architectures, etc.). Chapter 6 assesses the performance of our federated
watermarking process and watermark set, and presents results using the requirements
in Chapter 3. Chapter 7 summarizes the related research in this field. Chapter 8
concludes the thesis and suggests possible improvements in future work.
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2 Background
In this chapter, we present a broad overview of deep learning, federated learning and
the use of watermarking to protect intellectual property of commercial deep neural
networks. The definitions and concepts give a better understanding of the following
parts of the thesis.

2.1 Deep Learning
Machine Learning (ML) has become a key enabling technology for many engineering
applications [34][57]. The breakthroughs in ML field makes it possible to achieve
human-level performance in applications of computer vision, speech recognition
and game playing. For instance, ML can be used to identify objects in images,
transform speech to text and understand semantics in search engines. Recently, these
applications have relied on deep learning (DL), which is a subset of ML domain. DL
makes major advances in solving problems that have resisted the best attempts of
the artificial intelligence (AI) community [34].

In next subsection, we explain more about machine learning in general and deep
neural networks.

2.1.1 Machine Learning

ML is a subclass of AI, which develops computational theories of learning and building
learning machines [2]. ML can be used to perform a particular task (i.e., predicting
future stock, diagnosing a certain disease in patients) by generating from examples
or to extract pattern from raw data.

The aim of ML is to automatically learn making accurate predictions based on
past observations [64]. Specifically, ML predicts a label of y ∈ Y from a data point
x ∈ X, where x has d features (x ∈ Rd). For example, X consists of images for
image classification, d is number of pixels and Y is the set of labels {cat, dog}. For
that, ML tries to train a model that can find a mapping function f : X → Y to
make a prediction y as accurate as possible from features of x.

There are two types of ML training: supervised learning and unsupervised
learning. In supervised learning, the input with a pre-defined label is given to a ML
model in the training phase, and the task is to learn the mapping function f from the
input to output [30]. Unsupervised learning is contrasted with supervised learning,
where the label of the input is unknown, and the task is to discover patterns in data
and cluster them. Classification and regression are common supervised learning
problems, which are used to predict labels of inputs. The main difference between
them is that the output variable in classification is discrete while that for regression
is continuous.

In this thesis, we mainly focus on multi-class classification problems in supervised
learning. Different from binary classification which naturally permits the use of
two classes, multi-class classification is the problem of classifying inputs into more
than two classes. Many real-world problems can be considered as multi-classification
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problems. For example, the ML model in [75] is used to classify facial expressions of
human face, which has 7 classes.

2.1.2 ML Training

Typically, ML training requires a training data Dtrain = {xi, yi}N
i=1, which contains

N inputs, where xi ∈ X = R and corresponding ground-truth labels yi ∈ Y =
[1, m]. Assume that there is a ground truth function f ∗ : X → Y , which classifies
inputs according to the output label set from Dtrain. ML training tries to learn an
approximation of f ∗. ML uses the approximation function f ≈ f ∗ for predictions of
unseen inputs at inference time.

The goal of the training is to determine optimal parameters θ∗ for the ML model
that minimizes the classification error rate, so that the predictions on training data
X are close to the ground-truth labels. The distance between predictions and the
ground-truth labels is measured using a loss function l. Classification loss tested
on Dtrain is defined as l(f, Dtrain). Hence, the optimal parameters θ∗ are stated by
Equation 1.

θ∗ = arg (minθ

N∑︂
i=1

l(f(xi), yi)) (1)

In practice, the problem of Equation 1 is hard to solve. It requires using compu-
tationally expensive but heuristic techniques. Therefore, gradient descent techniques
are used to iteratively solve the Equation 1 in supervised learning [62].

Gradient descent iteratively minimize the value of loss function l by updating
the parameters using gradient of function l. The size of the steps we take to reach a
minimum is controlled by the learning rate η. In other words, we explore the valley
by following the direction of the slope of the surface created by function l. One step
(k-th step) can be expressed as Equation 2:

θ(k+1) = θk − η▽l(θk) (2)

However, noise can increase the difficulty of training which is any unwanted
anomaly in the training dataset. Therefore, the value of η and the number of steps
should be chosen carefully while training ML models.

To sum up, ML training is responsible for determining the parameters θ of f with
the assistance of a training dataset which consist of inputs with known ground-truth
class labels.

2.1.3 Evaluating ML models

The goal of training a ML model F is to learn general trends from the training
data that will perform well on an unknown data. Hence, it is important to evaluate
the performance of the model on test data once the training is done. In order to
ensure the quality of evaluation, we require a test set Dtest = {x′

i, y′
i}N ′

i=1 to test the
performance of the model. Test set and training data are supposed to come from the
same distribution but do not contain same samples (Dtrain ∩Dtest = ϕ).
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There are several performance metrics in supervised learning. The most popular
and simplest metric is the accuracy. A model’s accuracy is a percentage of the right
predictions (that match the ground-truth labels) out of all predictions on a dataset.
By calculating the classifications on the test inputs, we can get the test accuracy
metric Acc(F (·), Dtest) by using Equation 3. A good ML model should have a high
test accuracy on test data.

Acc(F (·), Dtest) = Number of Correct Predictions on Dtest

|Dtest|
(3)

2.1.4 Deep Neural Network

Artificial neural networks are originally designed on the principle of organization and
functioning of biological neural networks - networks of nerve cells of a living organism
[29]. An artificial neural network is a massively parallel, information processing
architecture. It includes many interconnected simple processing elements to achieve
a collective computational capability [26]. A neural network can be also considered
as a parameterized function f : X → Y that produces outputs y ∈ Rm from inputs
x ∈ Rn.

Specifically, a neural network is composed of several layers. Each layer is made
of several neurons, that actually have the computational capability. As shown in
Figure 1, a neuron combines inputs from the training data with a set of weights w
and bias b. These parameters represent significance of different input with regard to
the learning task. For example, in image classification, some pixels are more helpful
for classifying the training data and parameters are tuned to emphasize those pixels
more. Then, a computation is made by using all the data (i.e., inputs, weight and
bias), and the output is passed to an activation function. If the activation function
determines to pass the output through the network, this neuron is "activated". The
output of a neuron can be stated by Equation 4. The weight and bias of the network
are learned during training.

y = f(
n∑︂

i=1
xiwi + b) (4)

Layers in a neural network can be simply described as input layer, hidden layer
and output layer with regard to their purpose.

• Input layer. The input layer receives the initial information and pass the
information to the hidden layer. No computation is performed in this layer.

• Hidden layers. All computations are done in hidden layers, the results are
transferred to the output layer.

• Output layer. The output layer is responsible for producing the output from
inputs of the hidden layer.

The output of one layer is simultaneously the input of next layer. A neural
network with multiple layers is demonstrated in Figure 2.
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Figure 1: A single neuron [66]

Figure 2: A neural network with multiple layers [40]

A Deep Neural Network (DNN) is a hierarchical composition of two or more
hidden layers. DNNs are declared as one of the most efficient supervised models in
machine learning field [11], which extract complex representations from input data.
Each layer of a DNN can transform its input data to a more abstract representation
[45].

Convolutional Neural Network (CNN) is a special type of DNN with sparse
and structured weight matrices [20]. Figure 3 demonstrates a CNN example which
contains of input layer, convolutional layers and fully connected layer.

• Input image. For an RGB image, the dimension is hight×width× channel,
where channel = 3with red, green and blue values. Input image might also be
a gray-scale image with a dimension of only height × width. In this thesis, we
work with both gray-scale and RGB images.
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Figure 3: A convolutional neural network with two convolutional layers and one fully
connected output layer [20]

• Convolutional layer. A convolution layer is a matrix that has a smaller
dimension than the input image. It performs convolution operations to fractions
of the input matrix that has same dimension. The output of this layer is the
sum of the products of the corresponding elements in the convolution operation.

• Fully connected layer. The final output layer consists of one or more fully-
connected neural network layers, whose working principle is similar as hidden
and output layers in neural networks.

In this thesis, we define a DNN model as F (·) and use DNNs with convolutional
layers for image classification.

2.2 Federated Learning
Mobile devices with their powerful capabilities (cameras, telecommunication, micro-
phones) provides great convenience to many users and have become the primary
electronic device for society [55]. These powerful capabilities enable a huge amount
of skewed data to be generated and stored in mobile devices. To make full use of
these data, a novel learning technique that allows users to benefit from shared models
trained from a large number of participants’ data has been proposed, which is named
as federated learning (FL)[41].

Federated learning is a new framework for machine learning model development,
which distributes the training of a global ML model FG over a large number of
participants U = {ui}N

i=1 by iteratively aggregating local ML models Fui
, where Fui

is trained by ui. The goal is to train a high-quality centralized model that makes full
use of participants’ local data D = {Dui

}N
i=1 while keeping the data on participants’

side for privacy concerns [28]. Overall, federated learning is favorable considering the
efficiency (i.e., involves millions of participants and rich dataset) and privacy (i.e.,
local data never leaves participants’ devices).

Typically, there are two different types of federated learning which are Client-
Server FL and Peer-to-Peer FL [32][61].

• Client-Sever FL. This is considered as the traditional FL, which relies on
the server to co-ordinate the training process. Normally, the server is trusted
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Figure 4: Federated Learning Architecture (client-server FL)

and responsible for the aggregation of Fui
trained by ui. The aggregated model

is the global model FG which will iteratively be updated in each round. In
this environment, ui is individual and not connected to each other. Figure 4
demonstrates the architecture of client-server federated learning.

• Peer-to-Peer FL. In peer-to-peer FL, there is no central server to maintain
a global model and promote the training process. All participants in this
environment are connected directly in a peer-to-peer form. Each participant
can communicate with their one-hop neighbors to build a optimal model
collaboratively [32].

In this thesis, we focus on implementing the client-sever FL. In client-server
FL, training datasets owned by participants may not overlap in terms of features or
instances. Based on this data distribution problem, there are three main scenarios in
FL.

• Horizontally FL. In this case, two data sets share the same features space
but different in samples. For example, in a student dataset, students from the
universities in the same country can have same courses (features) while the
intersection among them is small. Horizontally FL can be used in this case:
each participant constantly updates model parameters locally and sends the
update to the centralized server, so that a secure aggregation scheme is created
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to make full use of all the data while protecting the privacy of participants’
data.

• Vertically FL. Vertically FL applies to the cases that two data sets have the
same samples but differ in feature space. In a student dataset example, some
students have a exchange period in another university outside of the country,
these two universities might share the same students taking totally different
courses (features). Vertically FL tries to aggregate these different features and
compute the training loss and gradients for building a model with both data
collaboratively. The aggregation is in an encrypted state for the concern of
data privacy [19].

• Federated transfer learning. Federated transfer learning is applicable to
the case that the two data sets differ both in samples and feature space. For
instance, students from different universities in different countries has different
courses and small intersection. In this case, transfer learning [50] techniques
are feasible to overcome the problem of a lack of data and weak supervision,
thereby improving the performance of the model.

In our work, participants share data from the same distribution with same
features space, but each participant will have different data samples. Therefore, the
horizontally FL perfectly fits to our design.

2.2.1 Federated Training

In federated learning, each participant has a local training dataset Dui
and it will

not be seen by the aggregator A or disclosed to other participants. In the beginning
of the training, an initial global model with random parameters is distributed to
participants. Then, the federated learning can be divided into an iterative three-steps
process.

In an aggregation round t:

1. Local model updating. The participants download parameters of the current
global model FG(t) for updating their previous local models Fui(t−1) in their
device, the updated model is Fui(t).

2. Local model training. The participants improve Fui(t−1) by training it with
their entire local training dataset Dui

. Once the training is done locally, each
participant sends the update of parameters from the improved model Fui(t+1)
to the aggregator.

3. Model aggregating. The aggregator selects a subset Usub = {ui}m
i=1 of updates

among n participants (m << n) then makes an aggregation (average) to
improve the global model FG(t+1). Then, the process returns back to Step 1
with an aggregation round (t + 1).
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The aggregation will keep on until the global model is converged. This process can
be expressed as Equation 5, where η refers to the global learning rate that controls
the fraction of the global model to be updated.

FG(t+1) = FG(t) + η × 1
m
×

∑︂
ui∈Usub

(Fui(t+1)) (5)

2.2.2 The FederatedAveraging Algorithm

Stochastic gradient descent (SGD) [4] is a common method in ML models to find the
optimal parameter configuration. SGD iteratively searches for optimal parameters
to decrease the error of the ML model.

Many successful DL applications make use of variants of SGD for optimization
[41]. Basically, many improved algorithms are implemented based on simple gradient-
based methods by adapting the structure of the model (the loss function), which
improve the amenability to optimization [23].

The FederatedAveraging algorithm proposed in [41] also depends on SGD. It has
been shown that SGD can be used to solve the federated optimization problem by
applying a single batch gradient calculation per round of aggregation. Although SGD
is computationally efficient, federated learning still requires expensive computing
resources because of large numbers of aggregation rounds for building a good model
[41].

To apply SGD in the federated setting, we randomly select a subset Usub of m
participants on each aggregation round, and compute the gradient of the loss over
the local data held by these participants. FederatedSGD is typically implemented
with a fixed learning rate η.

Specifically, each participant ui trains a local model Fui(t), then, extracts model
parameters Wui(t) from Fui(t) to send updates to the aggregator. ∑︁m

i=1 Wui(t) from
Usub are then collected by the aggregator per round for updating the new global
model FG(t). The aggregation method is taking average of ∑︁m

i=1 Wui(t) and get the
global parameters WG(t). Hence, by adopting WG(t) to the previous model FG(t−1),
we build FG(t). Participants use more than one step for SGD, and have batch size
b smaller than data size. A local model Fui

is trained with several local training
epochs eu and batches of data each aggregation round for improving the accuracy
of Fui

. The iteration is done until the global model converges and reaches a good
performance.

The amount of computation in this algorithm is controlled by three key parameters:
(1) m, the number of participants joined in computation each round; (2) eu, the
number of local training epochs used by each participants in the local training; (3)
b, the local mini-batch size used for participants’ training. The pseudo-code for
FederatedAveraging is given in Algorithm 1.

2.2.3 Challenges

Federated learning is confronted by two key challenges which are communication
overhead and the reliability of end devices.
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Methods
l(F, Dtrain) Classification loss of model F trained on data

Dtrain

▽l Gradient of the classification loss l
Aggregator Input
Wu(t) Parameters of local models Fu(t) from one partici-

pant
Usub Participants that perform computation each round
m Size of Usub

Participant Input
Du One participant’s local data divided
WG(t) Parameters of global model FG(t)
eu Local epochs used by one participant
b Batch size used by one participant
η Learning rate
Algorithm 1 FederatedAveraging Algorithm
Aggregator executes:

initialize WG(0), FG(0)
for each round t = 1,2,... do

for each u ∈ Usub in parallel do
Wu(t+1) = ParticipantUpdate(u, W)

WG(t+1) ←− 1
m

∑︁
u∈Usub

Wu(t+1)
FG(t+1) ←− (replace the parameters of FG(t) with WG(t+1))

ParticipantUpdate(u, W)
update local model Fu(t):
Wu(t) ←− (parameters of FG(t))
Fu(t) ←− (replace the parameters of Fu(t−1) with Wu(t))
for each local epoch i from 1 to eu do

for batch b ∈ Du do
Wu(t+1) ←− Wu(t) − η▽l(Wu(t), b)

return Wu(t+1)

Communication Overhead. As showed in Figure 4, the model update and model
download are the most essential part in federated learning. Model update and
download rely on wireless communication between participants and the aggregator.
Although compute resources of mobile devices are becoming more and more powerful,
communication bandwidth is a scarce resource. Consequently, limited communication
bandwidth could lead to long communication latency and slow down the federated
learning. Hence, communication overhead is considered as a critical bottleneck in
federated learning [36]. Moreover, a federated network is supposed to contain a
massive number of devices, which means that the communication is much slower than
local computation by many orders of magnitude [25]. Therefore, in order to efficiently
train a federated DNN model and save resources in the same time, it is necessary to
apply communication-efficient methods that save communication overhead in the
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federated learning. Two feasible directions are to reduce total number of aggregation
rounds or minimize the size of transmitted data in each aggregation round.

Reliability of Mobile Devices. Federated learning relies on the participating mo-
bile devices to continuously communicate over iterations until the learning process
converges. However, participants can be malicious in real-world deployments and
their behaviors are not predictable. For instance, some devices containing a malware
can provide false data or drop out in the middle of the federated learning. As a
consequence, the false data they provide might compromise the global model and
the local data is not fully utilized during the learning process. Hence, it is important
to maintain the learning quality during the federated learning.

Systems Heterogeneity. Different devices joining federated training have various
computational (CPU), storage (memory), and communication capabilities (network
connectivity). Additionally, only a small fraction of devices can be active at once
due to the network size and other constraints on devices. For example, assume
that there are hundreds of active devices in a large federated network [6], some of
them may be unreliable and commonly drop out at a training phase because of the
connectivity or energy constraints. In this case, federated learning requires mitigation
and fault tolerance properties. The basic requirements for developing FL methods
are: (i) a small number of active devices join the training each round; (ii) ability
to tolerate heterogeneous hardware; (iii) and grateful degradation when there are
dropped devices in the network.

Statistical Heterogeneity. Since the participants have skewed data which is ran-
domly generated and varies from each other, the data is commonly in a non-identically
distributed (Non-IID) manner. Moreover, it is possible that an underlying struc-
ture presents the number of data points across devices can capture the relationship
amongst devices and their associated distributions. This data generation method con-
flicts with independent and identically distributed (IID) assumptions in distributed
optimization, which increases the probability of stragglers and complexity of modeling.
In this thesis, we assume that participants’ devices are identical and the data belongs
to participants is IID. Therefore, we mainly focus on decreasing the communication
overhead.

Privacy Concerns. Federated learning maintains the privacy protection of training
data on each device by distributing the training. However, the communication of
model updates throughout the training process can reveal sensitive information
such as the model parameters, to a malicious third-party [42]. Secure multiparty
computation or differential privacy [14] can be applied to enhance the privacy of
federated learning. However, these approaches have the drawback of reducing model
performance. Therefore, it becomes a challenge to balance the trade-off theoretically
and empirically. In this thesis, we assume the aggregator is secure who is willing
to embed the watermark and does not remove the watermark, participants are
completely unaware of each other.
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2.3 Protecting Intellectual Property of DNN models
Model owners use a large amount of training data and powerful computing resources
to train DNN models which cost a great expense. However, if the DNN model
is widely deployed, it becomes vulnerable to adversaries. Adversaries can steal
the model by malware infection or other attacks and establish a similar AI service
to compete with the original one [78]. The model functionality of the original
model can also be stolen via model extraction attacks, where adversary trains a
surrogate model that has a similar performance of the original model on a test data.
Therefore, intellectual property (IP) protection of DNN models for model owners
becomes important. Recently, watermarking techniques have been proposed to detect
copyright infringement of the original model.

2.3.1 Watermarking

Watermarks (WMs) have been widely used in protecting IP of multimedia data
such as images and videos. A digital watermark is a signal that is embedded in a
digital image or video sequence, which can be later used to demonstrate ownership
[5]. Thus, if a watermarked image is used by other parties, the image owner can
verify ownership by checking the embedded watermarks. The main property is that
removing the watermark should degrade the utility of the protected project.

Watermarking procedure is usually divided into two steps: embedding and
verification.

• Embedding step. A WM set is embedded to multimedia data D using a
defined embedding algorithm. The watermarked data is Dw = embed(D, WM).

• Verification step. The embedded watermark is verified by using the verifica-
tion algorithm verify(Dw, WM).

2.3.2 Backdoor in Neural Network

Backdooring is a technique to deliberately train a machine learning model to output
incorrect labels for specific inputs [20].

Typically, a DNN backdoor can be considered as a hidden pattern used in the
training process of DNN. Backdoored DNNs produce target labels when the inputs
are added with a specific backdoor trigger. However, such a backdoored DNN does
not have an influence on the DNN’s predictions on normal inputs without the trigger.
In a classification, a backdoor misclassifies inputs embedded with a backdoor trigger
into the same target label, while correctly predicting other normal inputs without
the trigger. In image classification domain, a trigger is typically a specific pattern
on the image (e.g., a shape), that could achieve a misclassification on inputs. Figure
5 [74] illustrates the overview of backdooring process in DNN.

We assume T is a subset of dataset D which is also called trigger set. The
incorrect labeling with respect to the ground truth function f is defined as function
TY : T → Y ; TY (x) ̸= f(x), where x ∈ T . The backdoor b = (T, TY (T )) consists of
the trigger set and the incorrect target labels.
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Figure 5: Backdoor in Neural Network [74]. The target label of the specific trigger
is 4. A small fraction of training data is embedded with the trigger and later join
the training together with the normal data. In the inference stage, the inputs with
trigger are classified to target label 4 while normal inputs are correctly predicted.

For a backdoor b, authors in [1] define a backdooring algorithm. According to [1],
a model F b is backdoored when F b gives correct outputs to dataset D or trigger set
T , but also gives incorrect outputs TY (x)(x ∈ T ) in T . The algorithm is formalized
in Equation 6, where the probability of error of the model’s outputs with regard to
ground truth function is at most epsilon (ξ).

Prx∈D[f(x) ̸= F b(x)] ≤ ξ, but

Prx∈T [TY (x) ̸= F b(x)] ≤ ξ
(6)

2.3.3 Watermarking DNNs by Backdooring

Recent works [1][9][15][71] have proven the feasibility of embedding watermarks into
DNN models. We can summarize them into two main categories.

• White-box approaches. The implementation of these approaches requires
to have access to model architecture or model parameters (white-box) in the
verification process. For instance, the method in [71] which embeds watermarks
directly in the model weight with a white-box approach. The detection of the
watermark requires to have access to model parameters.

• Black-box approaches. In a black-box approach, we do not need any infor-
mation about the model (black-box) in verification step. Typically, the training
task is divided into two tasks: learning the original classification task and
embedding the trigger set in the training phase. Watermarking by backdooring
is one of the black-box watermarking methods.

In our thesis, our watermarking approach is based on [1], which makes use of the
backdoor attack. The basic principle is to apply a pre-defined trigger set as an input
to the DNN model which will output a model misclassification to a predefined target
label. The complete watermarking process by backdooring is illustrated in Fig 6.

Formally presenting, the algorithm in [1], which generates the backdoors b (we
rename it as watermark set WM) is called Sample Watermark. Sample Watermark
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Figure 6: Watermarking DNN by Backdooring [1]

needs access to the oracle Of of the ground-truth function f , this oracle responds
calls to function f truthfully. Watermark(Of , WM, F ) is an algorithm using input
oracle to f , watermark set WM and a model F to produces a watermarked model
F w. The watermarked model F w is required to output particular incorrect (regarding
f) labels for the inputs from the watermark set and correct ones for other inputs.
Equation 6 explains the case when the watermarking is implemented correctly.

To watermark a DNN model using the backdooring process, we uses the MModel()
algorithm from [1]. The algorithm is formed by four steps:

1. Generate F ←− Train(Of ). Training an original model F with the training
data, note that the watermark set is not used in this step and only oracle Of

is used for ground-truth labels.

2. Sample (mk, vk)←− KeyGen(). Generating a secret marking key mk from
backdoors b which is embedded as watermark, and the public verification vk
for verifying the watermark.

3. Compute F w ←−Mark(F, mk). Embedding the watermark set WM into the
original model to compute a watermarked model F w.

4. Output (F, F w, mk, vk). Outputting the original model F , watermarked model
F w, and key pairs.

5. Verify (mk, vk, F w). Verifying the ownership of the watermark model F w

using the key pairs.

This algorithm applies commitment schemes [7] into watermarking process. A
commitment scheme allows one party (committer) to commit some inputs m by
producing a commitment value c← commit(m). Later if the committer opens the
commitment by releasing m, the verifier can check that m is indeed the message
that was committed in c using a verification algorithm t/f ← verify(c, m). A good
commitment scheme is (a) binding (i.e., committer cannot change its mind later to
produce an m′ that will pass verification), (b) hiding, and (c) does not reveal any
additional information about m. In this algorithm, the backdoor is the marking
key mk, while the commitment is the verification key vk. The benefits are that
the binding property of the commitment scheme ensures that an adversary cannot
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claim ownership of arbitrary models, while the hiding property will not leak any
useful information to the adversary about the backdoor used [1]. However, the
commitment-based algorithm is vulnerable to a savvy attack mentioned in [35].
Hence, the commitment schemes are left as out of scope in this thesis.

2.3.4 Proof of Ownership

Verify function is used to prove the ownership of the model. V erify(·) checks if
a given watermark set WM = (T, TY (T )) is embedded in a suspected model Fadv

which can be a surrogate model of F w. If V erify(Fadv, WM) = True, we declare
Fadv belongs to the model owner of F w.

Specifically, L(T, TY (T ), Fadv) is defined to compute the ratio of different outputs
between the backdoor function TY (x) and the suspected surrogate model Fadv(x) for
all inputs from the watermark set. The computation is stated as Equation 7. If we
can show that L(T, TY (T ), Fadv) < e, where e is a threshold of tolerated error rate,
we can say the watermark verification succeeds (V erify(Fadv, WM) = True).

L(T, TY (T ), Fadv) = 1
|T |

∑︂
x∈T

(Fadv(x) ̸= TY (x)) (7)

Assume that we want to use watermark WM to verify the ownership of Fadv.
Basically, we define a uniform probability of matching predictions of watermarked
inputs P (TY (x) = Fadv(x)) = 1/m, where m refers to the number of classes of
Fadv. The probability for V erify(Fadv, WM) = True can be computed using the
cumulative binomial distribution function as follow:

P (L < e) =
e×|T |∑︂
i=0

(︄
|T |
i

)︄
× (m− 1

m
)i × ( 1

m
)|T |−i (8)

This probability presents the average success rate when an adversary wants to
steal the model from the model owner using an arbitrary watermark [69].

The success rate in trivial verification provides the confidence for reliable water-
mark verification, and also for reliable proof of ownership. The minimum watermark
size is defined by the choice of e and targeted confidence. However, the watermark
size should be small enough comparing to the training data to maintain the accuracy
of main task (utility of the model). The value of e should not be larger than the
probability of random class match (e < (1−m)/m) but the accuracy of suspected
model Fadv on the watermark set.

2.3.5 Watermark Removal Attacks

Although watermarking techniques are designed to protect the IP of original model,
adversaries aware of this notion aim at removing watermark from surrogate model
Fadv. Several contemporary watermark removal attacks [60] have been proved that
they succeed in removing the watermark from the DNN model without decreasing
the model’s performance.
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• Model fine-tuning. Fine-tuning [58] is based on the concept of transfer
learning, where the knowledge gained in a pre-trained teacher model is used in
a student model to perform a different task. In DNNs, student model copies
first M layers from the teacher DNN with N (NM) layers and retrains the DNN
with a student-related dataset [35]. This approach is also used for watermark
removal. An adversary might use his own dataset to fine-tune the watermarked
model F w, since it might modify classification labels (or regions) associated
with the embedded watermark. Fine-tuning is considered as the most feasible
type of attack [1], since it is frequently used, easy to implement and requires less
computational resources. Fine-tuning alters model parameters, it is important
to protect the embedded watermark against to this attack.

• Model pruning [39]. The goal of model pruning is to improve the execution
efficiency of neural networks. The basic principle is to remove the redundant
parameters that do not contribute to the final output. Therefore, the network
gets small and faster. A typical procedure of model pruning is usually with three
stages: (1) training a large, over-parameterized DNN model, thus it requires
for model-pruning; (2) pruning the DNN model to remove the redundant
parameters; (3) fine-tuning the pruned model to recover from pruning and
achieve a better performance. We consider model-pruning as a strong watermark
removal technique since the pruned DNN model might affect the verification
process.

• Watermark overwriting [46]. An adversary who is aware of the water-
marking techniques may try to embed his own watermark into the network
and overwrite the original one. Watermark overwriting aims to replace the
watermark embedded in model with another watermark set.

We consider a watermarking approach is unremovable if it is robust against more
than one watermark removal attacks. In this thesis, we mainly focus on model
fine-tuning and model pruning attack.

2.4 Technical Background
2.4.1 Pytorch

PyTorch [52] is a commonly used machine learning library for developing and training
DNN models [17]. PyTorch provides an imperative and Pythonic programming style
which allows developers to train their models effectively. Another benefit is that it is
consistent with other frequently-used scientific computing libraries (e.g., NumPy [49]).
Furthermore, it supports hardware accelerators such as GPUs which can increase
the efficiency of the model training. Since our experiments requires fast processing
with GPUs, it perfectly fits our needs.
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2.4.2 PySyft

PySyft [17] is a Python library to implement privacy-preserving applications, and
it is mainly used to build secure and private AI. PySyft implements encrypted
communication, differential privacy [14], and remote execution techniques. Remote
execution allows models to be sent over local machines for training and prevents
storing sensitive training data on a central server. Therefore, PySyft is a reasonable
choice for federated learning frameworks. Moreover, PySyft is compatible with deep
learning frameworks such as Pytorch and TensorFlow.
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3 Problem Statement
In this chapter, we lay out the motivation for designing a federated watermarking
process as well as threat model, challenges and requirements for our proposed
approaches.

3.1 Motivation
DNN models are used as commercial products in many major technology companies
[68]. New business models such as Machine-Learning-as-a-Service (MLaaS) have
become popular where model owners can deploy their DNN models in secure cloud
services. Clients can make queries to the model via a cloud-based prediction API,
which can generate a profit for the model owner [27].

Nevertheless, if the DNN model is not protected, adversaries can steal this model
and provide a similar service to compete with the original one, which will threaten
business advantage and IP of the model owner. Therefore, it is important for model
owners to find a way to protect IP of their DNN models and have the ability to claim
ownership if necessary.

Federated learning is an attractive framework for the massively distributed training
of DNN models with a large number of participants. In federated learning, there are
two different scenarios regarding the ownership of the DNN model:

• Fully decentralized FL: the DNN model belongs to all participants who con-
tributes to build the global model. For instance, multiple hospitals can reach
an agreement to share the patients’ data for training a federated learning model
which can help them to diagnose a disease. In this case, responsible hospital
staff own the model and benefit from the model. Each model owner can verify
that only participants use the model.

• Centralized FL: a single party owns the DNN model. For example, Amazon
can collect the voice data from a large number of participants to improve its
speech recognition model, and all the participants will get reward for their
cooperation for training a local model. But only Amazon has the ownership of
the final model and usually it acts as the aggregator.

Recently, watermarking techniques by backdooring have been proved to be feasible
to protect the IP of DNN models [1][69][78]. However, a standard watermarking
approach cannot be directly implemented inside federated learning. The biggest chal-
lenge is that federated learning distributes training to a large number of participants.
This leads to a separation of training data and watermark set. Participants own
the training data but might not be trusted for storing the watermark set, while the
secure aggregator owns the watermark set but neither joins the training nor owns any
relevant training data. The proposed watermarking embedding techniques require
that both the watermark set and training data should be stored in the same location
[22][60][69].
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Therefore, we aim to design a federated watermarking process to watermark
federated DNN models, and the embedded watermark should resist contemporary
watermark removal attacks [60]. We also aim to minimize the communication
overhead between the aggregator and participants as well as the computational
overhead. Consequently, model owners in FL can use our approach to demonstrate
ownership.

3.2 Threat Model
We define the goal of adversaries, the parties that can be adversarial and the capability
of these adversaries. Figure 7 shows the overview of the threat model. We assume
that all model owners want to protect the intellectual property of their DNN models
and are willing to embed a watermark on their sides in different scenarios.

3.2.1 Goal of Adversaries

Adversaries aim to obtain a surrogate model with a comparable performance (i.e.,
Fadv ≈ F w

G ) that does not embed a watermark or only embed a weak watermark that
cannot be used to demonstrate ownership. Therefore, the ownership of surrogate
model Fadv cannot be verified by the model owner.

3.2.2 Attack Surface

We divide the attack surface into the following two parts:

• Access to global model after training. Adversaries can be a third party (except
the aggregator and participants) who have white-box or black-box access to
the model. For example, if the model owner deploys the DNN model to a
cloud service, third party users might have white-box or black-box access to the
model and are now able to play watermark removal attacks. Adversaries can
also be malicious participants who have full access to global model. Malicious
participants can apply watermark removal attacks to the global model after
federated training by taking advantage of their training data, which is considered
to be more dangerous than a third party.

• Access to both global and local model during training. Malicious participants can
train their local models with a training scheme differed from what aggregator
defined at their devices [56]. For instance, they can change the number of
epochs and learning rate, which might influence both the embedded watermark
accuracy and test accuracy. A malicious participant can also play watermark
removal attacks to his local model (which has the same performance as the global
model) at any time in the federated learning, and keep the model personally
when it has a good performance. Moreover, a malicious participant is able to
manipulate the updates (model parameters) of his local model training before
sending them to the aggregator, which might remove the watermark of the
final model at the end of training.
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In this thesis, we mainly focus on the first case of the attack surface, where a
third party or malicious participants as adversaries want to remove the embedded
watermark after federated training.

3.2.3 Adversary’s Capabilities

The adversary in this thesis has the following capabilities:

• Ca-1 Access to Training Data. An adversary owns and has access to the local
training data Du in his device. However, adversaries do not have access to the
training data that belongs to other participants.

• Ca-2 Access to Model. Adversaries can access to the global model at any time
in federated training.

• Ca-3 Ability to Play Attacks. Adversaries can apply any post processing tech-
niques (e.g., watermark removal attacks [60]) to the local model that can
decrease the accuracy of the embed watermark.

3.2.4 Assumptions

In this thesis, we define the following assumptions:

• A-1 The Aggregator is Benign. We assume that the aggregator is the only
benign party who does not want to remove the watermark in every step during
the federated watermarking process.

• A-2 Participants Help Improving FG. Participants are benign in improving the
global model and do not poison the model during training [3]. For instance,
we do not consider cases that malicious participants want to embed their own
watermarks or modify the weights to poison the global model.

3.3 Challenges
Compared to the traditional ML training, federated training is more complex since
it involves a large number of participants. In addition, the aggregator, who is
responsible for the aggregation of local models, does not have direct access to the
participants’ training data. Therefore, we identify the challenges for designing a
federated watermarking process as follow:

• C-1 Decentralized Training. Federated learning requires a large number of
participants to improve the performance of ML model through collective efforts.
In order to ensure the privacy of the participants’ data, the aggregator has
no access to the local training data. Consequently, the aggregator does not
own any training data during federated watermarking process. Nevertheless,
watermark embedding techniques proposed in prior work requires to store
both watermark and training data in the same place [1][69][78]. Moreover,
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Figure 7: Adversary Model. Uadv refers to malicious participants, Padv refers to
malicious third parties.

the aggregator, who is the only benign party that owns the watermark set,
does not want to distribute the watermark set to participants, since it can be
easier for malicious participants to remove the embedded watermarks due to
the knowledge of the watermark set [78]. One possible way we can find is to
embed watermarks before federated learning which could be easily removed
after several epochs of training. Another method is to embed watermarks after
federated learning. However, this method cannot satisfy challenge C-2. To
sum up, it is difficult to find a proper way to embed watermark for federated
learning.

• C-2 Access to Global Model During Training. Malicious participants have access
to the global model at any time in the training process. Therefore, it is
important to ensure that the global model is watermarked all the time.

• C-3 Communication Overhead. During federated learning, participants and the
aggregator communicate with each other to send and receive model parameters
(weights and bias). Therefore, communication between participants and the
aggregator incurs delay for model update/download at a large cost. Meanwhile,
watermark embedding typically requires more training epochs and communi-
cation rounds than the original federated learning [1]. The reason is that the
learning of both the watermark set and training data makes it slower for the
model to converge. Thus, a feasible federated watermarking approach should
not have too much communication overhead.
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3.4 Requirements
The main goal we want to achieve in federated watermarking process is to protect
the IP of the global model. Therefore, we consider security and utility requirements
for our watermarking approach in order to achieve the goal without degrading the
model’s value and overall satisfaction of benign participants.

3.4.1 Security Requirements.

Security requirements consist of non-trivial ownership, the proof of ownership and
unremovability properties.

• S-1 Non-trivial Ownership. An adversary cannot claim ownership of the model
even if he knows the watermarking algorithm or a small fraction of watermark
set. This requires the watermark set to be secret, difficult to be detected, or
mutated by a third party [1]. It is also required to define a proper threshold
Tacc of watermark accuracy for the demonstration of non-trivial ownership.

• S-2 Demonstration of Ownership. High watermark accuracy enables a reli-
able proof of ownership [1] for DNN models. While designing our federated
watermarking process, watermark accuracy Acc(F w

G , WM) should exceed the
predefined threshold Tacc, which is the minimum value of watermark accuracy
that can enable reliable verification of ownership. Thus, only if we prove
Acc(F w

G , WM) ≥Tacc, we can declare V erify(F w
G , WM) = True.

• S-3 Unremovability. The watermarked model should be able to resist contem-
porary watermark removal attacks [60] while keeping the same functionality
(i.e., preserving high test accuracy) after attacks. Otherwise, if the embed-
ded watermark is removed (Acc(Fadv, WM) < Tacc) while the test accuracy
remains high after these attacks, the embedded watermark is declared to
be removable. This means that malicious participants achieve their goal
(V erify(Fadv, WM) = False and Acc(Fadv, X) ≈ Acc(F w

G , X)). However, if
the test accuracy is low, malicious participants fail their goal even though they
prove V erify(Fadv, WM) = False. Hence, we express this requirement using
Equation 9, where X refers to test data.

Acc(Fadv, WM) ⩾ Tacc, or

Acc(Fadv, WM) < Tacc and Acc(Fadv, X) << Acc(F w
G , X)

(9)

3.4.2 Utility Requirements.

Utility requirements consist of the utility of the global model, communication overhead
and computational overhead.
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• U-1 Model Utility. Utility of a model is defined by its ability to provide accurate
predictions for unseen inputs. This can be evaluated by its test accuracy.
Therefore, the embedding of watermarks during federated learning process
should not decrease the test accuracy of the federated model. We can measure
this requirement by comparing the test accuracy of the watermarked federated
model F w

G to a federated model without watermark FG. If Acc(F w
G ) ≈ Acc(FG),

we can say that our method satisfies model utility requirement.

• U-2 Low Communication Overhead. We have to limit communication rounds
or the amount of data sent or received through communication channels to
keep a low communication overhead in order not to introduce time and space
complexity. We require our federated watermarking process to incur at most
50% of total rounds compared to a normal federated learning.

• U-3 Low Computational Overhead. In federated learning, the aggregator is
responsible for aggregating participants’ models, while the participants are
responsible for the training. Therefore, we should minimize the computational
overhead incurred by the watermark embedding algorithm.
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4 Embedding WM in federated DNN models
In this chapter, we demonstrate our approaches to embed watermarks in federated
DNN models, and one new method to generate watermark sets.

4.1 Federated Watermarking Process
Recall the challenge C-1 in Chapter 3.3, the watermark set is owned by the aggregator,
while the training is completed by participants having the relevant data. In order
to protect the confidentiality of the watermark set and not raise extra work for the
participants, we decide to embed the watermark on the aggregator side.

In each round of training, aggregator is responsible for retraining the watermark
set on the aggregated global model, thus, we can ensure that the watermark is
embedded throughout the training process. Therefore, participants are not able
to download a non-watermarked model in the middle of training which can satisfy
challenge C-2 in Chapter 3.3.

We also explore an initial model training on aggregator side instead of giving
participants random model parameters. We expect that parameters for initial model
trained with watermark set can improve unremovability of the embedded watermark.
Underlined steps are our additions to a typical federated learning.

4.1.1 Watermark Embedding Approaches

Federated learning is an iterative process. We define our PR-trained (i.e., pre-train
and retrain watermarks in federated learning) federated watermarking approach into
five steps.

• Step 1: Initial global model training. Aggregator trains an initial model
with the watermark set. The model parameters of this global initial model are
then distributed to all participants by the aggregator.

In each round t:

• Step 2: Local model updating. A subset of participants randomly selected
by aggregator receive the global model parameters from aggregator and update
their local models by replacing the parameters. Thus, the updated local contains
watermarks.

• Step 3: Local model training. Participants fine-tune the updated local
models with their local data on their device and improve the model accuracy.
The model parameters of the improved local models are sent to aggregator by
participants.

• Step 4: Model aggregation. Aggregator collects all the updates from partici-
pants and update the global model using FederatedAverage algorithm (Chapter
2) to get an improved global model.
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Figure 8: PR-trained federated watermarking approach. A refers to aggregator,
ui(i = 1, ..., n) refers to participant, W is model parameters. In each round t, two
participants (e.g., U1, U2) are randomly selected to join the training.

• Step 5: Watermark retraining. Aggregator retrains the improved global
model with the watermark set to ensure that the watermark accuracy is over
98% (Acc(F w

G ) ≥ 98%). If the DNN model still needs to converge, model
parameters of the retrained model is sent to participants and training continues
with Step 2. Otherwise, the federated learning completed.

In this watermarking approach, we ensure that the F w
G always contains watermarks

and participants download the watermarked global model. Figure 8 demonstrates
our PR-trained approach.

We also design a R-trained (i.e., retrain watermark in federated learning) ap-
proach which is slightly different from PR-trained in terms of initial global model
training. Instead of training an initial global model with a watermark set, R-trained
approach uses just a random initialized model. Thus, we can investigate how much
we can benefit from the initial training, then decide if it is necessary.

4.1.2 FederatedWatermarking Algorithm

For the implementation of federated watermarking process, we start from the Feder-
atedAveraging algorithm described in Chapter 2. Furthermore, we add the process of
embedding watermark into FederatedAveraging to achieve our goal of watermarking
federated DNN models.

In our algorithm, instead of initializing the global model with random parameters,
we use Initialize() function to obtain an initialized global watermarked model F w

G(0).
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Similarly, participants are responsible for the local training with their local dataset
Du.

At round t, only a subset Usub of U can join the training, the size of Usub

is controlled by aggregator A. Each participant u from Usub receives updates of
parameters Wu(t) from the aggregator A. Number of epochs for local training eu,
learning rate η and batch size b are defined by A. After the local training, updated
parameters Wu(t+1) are sent to A. A calculates the average of the parameters sent by
Usub and builds the improved global model F w

G(t+1). Since the local training can have
impact on the watermark accuracy, A retrains F w

G(t+1) with WM using Retrain()
function. The same batch size is used in all the functions (bG = b). The pseudo-code
is given in Algorithm 2.

Algorithm 2 FederatedWatermarking Algorithm
Aggregator executes:
Initialize()

for each epoch i from 1 to Ei do
for batch bG ∈WM do

F w
G(0) ←− F w

G(0) − η▽l(F w
G(0), b)

WG(0) ←− (parameters of F w
G(0))

return WG(0)
for each round t = 1,2,...Ea do

for each u ∈ Usub in parallel do
receive Wu(t) from u

WG(t+1) ←−
∑︁U

u=1
1
m

Wu(t)
F w

G(t+1) ←− WG(t+1)
Retrain(WM)

for each epoch i from 1 to Ew do
for batch bG ∈WM do

F w
G(t+1) ←− F w

G(t+1) − η▽l(F w
G(t+1), b)

WG(t+1) ←− (parameters of F w
G(t+1))

return WG(t+1)

Paticipants execute:
LocalTraining(u, W)

receive Wu(t) from A
F w

U(t) ←− (replace the parameters of F w
U(t−1) with Wu(t))

for each local epoch i from 1 to Ep do
for batch b ∈ Dlocal do

F w
U(t+1) ←− F w

U(t) − η▽l(F w
U(t), b)

Wu(t+1) ←− (parameters of F w
U(t+1))

return Wu(t+1)
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4.2 Watermark Generation Method
According to requirement S-1 in Chapter 3.4.1, the watermark set should be a unique
fingerprint for ownership verification which is secret, difficult to be detected, or
mutated by a third party [78]. In order to achieve this goal, we have to ensure
that the number of watermarks is large enough and the distribution of watermarks
is hard to guess. Furthermore, adversaries cannot be aware of the watermark
generation algorithm. We generate our uPattern watermark set based on method
4.2.1 considering these properties.

4.2.1 Pattern Embedded in Random Noise

In paper [1], authors prove that unrelated (to training data) watermarks has the best
performance than pre-specified Gaussian noise and meaningful content embedded in
training data as watermarks. Similarly, authors in paper [8] use a pattern of inverted
pixels in the bottom right corner of images and effectively trigger the backdoor.
Inspired by the prior work, we propose our watermark generation method: which is
embedding a certain pattern into an image of random noise, where the noise is in
Gaussian distribution.

Specifically, we first generate images using random noises with standard Gaussian
distribution as watermarks. Then, each image is embedded with a certain pattern
and given a random label that comes from classes of the actual task. Patterns
embedded in images are different in each class, every pattern is unique in terms of
the color, shape, orientation and position. In other words, images from the same
class are embedded with the same pattern, hence, the number of classes determine
the number of generated patterns.

The intuition is that the verified model cannot output a right label to the pattern
if it does not belong to the model owner. For instance, if we embed a shape of
"butterfly" into a subset of the training dataset as the input, DNN models that are
triggered by this shape can be regarded as reproduction or derivation of the original
model, since this shape is unique and only known by the model owner. In this way,
the pattern helps to verify the ownership.

This method has the following advantages:

1. By using the random noise as the background of the watermarks, we ensure
that the watermark set is unrelated to any training data, which means it can
apply to any DNN models. Moreover, each sample is uncorrelated to other
samples since the noise for every sample is unique.

2. Randomly generated patterns for each class ensure that even a subset of the
watermark set is known by the adversary, he cannot guess the other patterns
to reconstruct the watermark set.

3. Using same pattern for each class helps watermarked models converge fast since
the features are easy to learn.

Considering the case that the aggregator is not able to access to training data.
We assume that this method perfectly fits to the nature of federated learning.
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Figure 9: An example of uPattern wa-
termark set which consists of grey-scale
samples generated by using method 4.2.1.

Figure 10: An example of uPattern water-
mark set which consists of RGB samples
generated by using method 4.2.1.

4.2.2 Unrelated Data with Pattern as Watermarks

We generate two example watermark sets according to method 4.2.1. First, a certain
number of random images consist of random noise with Gaussian distribution are
created. These images are divided into m classes (m is equal to the number of classes
in training data). Then, m different patterns are randomly generated and assigned to
each class of the watermark set. Random images from the same class are embedded
with the same pattern. Watermark sets generated by using method 4.2.1 are named
as "uPattern".

Figure 9 shows an example of uPattern watermark set which consists of grey-
scale samples. This example can be applied to DNN models trained with grey-scale
training data. As shown in the figure, the pattern color is white (value = 0) and the
background noise has the color value from 0 to 255. Images from the same class are
embedded with the same unique pattern.

Figure 10 shows another example of uPattern watermark set which consists of
RGB images. This example can be used to DNN models trained with RGB training
data. As shown in the figure, each pattern has different color and the background
noise is also in RGB colors. Images from the same class embedded with the same
unique pattern.
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5 Experiment Setup
In the previous chapter, we described our approaches of watermarking federated DNN
models. This chapter first presents the overview of the datasets we used throughout
the experiments. Then we describe the experimental setup in this work.

5.1 Datasets
For the evaluation of proposed methods in Chapter 4, we use MNIST (Mixed
National Institute of Standards and Technology) and CIFAR10 (Canadian Institute
for Advanced Research) datasets as training data.

• MNIST. MNIST of handwritten digits [13] consists of 60,000 examples as
training data, and 10,000 examples as test data. It is a subset of NIST.
The handwritten digits are gray-scale images which are centered in a 28x28
matrix. The dataset contains 10 classes in total which is from 0 to 9. MNIST is
commonly used in academic experiments, because it is a feasible state-of-the-art
dataset for people who want to test their ML techniques and pattern recognition
methods on real-world data while spending minimal efforts on formatting and
preprocessing [38].

• CIFAR-10. CIFAR-10 [31] consists of 50,000 examples as training data and
10,000 examples as test data, which are 3×32×32 RGB images in 10 classes, each
class has 6,000 examples. CIFAR-10 is widely used for benchmarking computer
vision algorithms. Images from CIFAR-10 are low-resolution (3 × 32 × 32)
which allow researchers to quickly test different algorithms [33].

Example inputs of MNIST from each of the 10 classes are shown in Figure 11.
Images contain digital "0" belongs to class 0, the same applied in the other images.
Figure 12 shows the inputs examples from CIFAR-10, the examples are randomly
selected from each class.

5.2 Model Architectures
We select a pre-trained VGG-16 model architecture [67] to train CIFAR-10, and
a 5 layers CNN [27] to train MNIST. Same architectures are used throughout all
experiments to ensure the consistency of the results.

• VGG-16 network. VGG-16 network proposed in [67] is characterized by its
simplicity, which only uses 3×3 convolutional layers stacked on top of each
other in increasing depth and two fully-connected layers. As shown in Figure
13, the “16” means the number of layers in the network. VGG-16 has been
proved to achieve a good performance [77] and is considered as a very deep
neural network. In [67], they found training VGG16 is challenging due to
the difficulty of convergence on deep networks. Therefore, they proposed a
process called "pre-training" in order to obtain a more stable learning. In the



39

Figure 11: MNIST

Figure 12: CIFAR-10

"pre-training" process, a smaller version of VGG with less weight layers are
used for training first until it converged, parameters from the trained model
are then used as initializations for the larger, deeper networks. In our network,
we download the pre-trained weights for the complete model and fine-tune all
weights during training to achieve a faster convergence.

• MNIST L5 network We use the network with 5 layers constructed in [27].
It contains 2 × 2 convolutional layers and two fully-connected layers. More
details about these models are shown in Table 1.

CIFAR-10 reaches a test accuracy of 91.7 % by using VGG-16 [65], while L5
network can achieve 99.1 % of accuracy on MNIST [69]. This proves that these two
networks are capable enough to learn the task related to MNIST and CIFAR-10.
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Figure 13: The VGG network architecture [16]

Table 1: Model architectures used experiments

Model Dataset Convolu-
tional

Fully
connected

Parameters Acc.%

L5-CNN MNIST 3 layers 2 layers 669,123 99.1
VGG-16 CIFAR-10 13 layers 3 layers 138,000,000 91.7

5.3 Training Experiments
5.3.1 Implementation

In federated learning, the data from MNIST are randomly divided into 100 subsets
(which is equal to the number of participants) and assigned to each participant. Since
only 20 participants join the training of CIFAR-10 model, the training data from
CIFAR-10 are randomly separated into 20 parts. As the result, each participant
owns IID data of 600 samples when training MNIST models, and 2500 samples when
training CIFAR-10 models.

The federated watermarking approaches presented in Chapter 4 mainly involve
three phrases in the training process: (1) initial global model training, (2) local model
training and (3) watermark retraining. Same model architecture is used throughout
the training process.

Negative log likelihood (NLLLoss) [53] and cross entropy (CrossEntropyLoss) [37]
loss functions are utilized in MNIST model and CIFAR-10 model respectively. And
SGD [10] is chosen for the optimization procedure. The same batch size b = bG = 64
is selected for both aggregator and participants’ side in all experiments.

• Initial model training (aggregator). Learning rates are different in CIFAR-
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10 and MNIST models while training the initial global model. CIFAR-10 models
require a lower learning rate which is 0.0005, MNIST model performs better
with learning rate of 0.1. However, they share the same value of momentum
(0.5) and weight decay (0.00005). The goal of this training is to train an initial
model that has 100 % accuracy on the watermark set. Therefore, the number of
training epochs ei using here is totally depends on the accuracy of watermark
set.

• Local model training (participants). We choose to randomly select 10
participants (the same in [3]) in each aggregation round to join the global
model training. The local training scheme (local epochs, optimizer, batch size,
loss function) on participants’ devices is defined by aggregator. The learning
rate used for both datasets is 0.01, momentum is 0.5.

• Watermark retraining (aggregator). In order to maintain the watermark
accuracy of the global model in each aggregation round before sending it
to participants, we ensure that the watermark accuracy is above 98 % after
retraining. However, we define the maximum retraining epochs are 100 in this
phase. Learning rate and other parameters are as same as initial global model
training.

5.3.2 Baseline Models

In order to have a better evaluation of our federated watermarking approaches in
Chapter 6, we set up our baseline models as follow:

• Non-watermarked FL (non-WM). This model is constructed by training
federated models without a watermark. Table 2 shows test cases and the
related test accuracy for baseline models. In CIFAR-10 experiments, we choose
20 participants to join the training due to the accuracy drops with more
participants. In MNIST experiments, we choose 100 participants since the
accuracy remains almost equal even with a larger group of participants. 100
aggregation rounds ea applied in MNIST, 200 aggregation rounds ea is used
for CIFAR-10.

• Pre-trained (watermarked). This approach includes initial model training
and local model training. A Pre-trained model is trained with training set after
convergence on the watermark set.

• After-trained (watermarked). An after-trained model is built on a non-
watermarked FL model, we retrain this model on the watermark set until the
model is converged (Acc(F w

G , WM) = 100%).



42

Table 2: Federated DNN model without watermarks.

Dataset Model Participant
Number

ea Test Acc.%

CIFAR-10 VGG-16 20 200 88.00 ± 0.10
VGG-16 100 200 74.80 ± 0.10

MNIST L5-CNN 20 100 98.80 ± 0.05
L5-CNN 100 100 99.00 ± 0.05

5.4 Baseline Watermark Sets
Three baseline watermark sets are selected from prior work to compare with our
watermark set introduced in Chapter 4 in evaluation. The first one is unrelated
structured watermarks based on paper [78], authors in [78] show that this watermark
set has the best performance in their experiments. The second one is unrelated
unstructured watermarks, which is inspired by paper [1]. [1] shows that this watermark
set can well satisfy the requirement S-1. Related data with pattern as watermarks is
also inspired by paper [78]. However, instead of embedding a meaningful content as
trigger, we use an easy recognized pattern which could be more resistant. We define
the size of our watermark set as 100 (the same as [1]), and the details about three
baseline watermark sets are presented as follow:

5.4.1 Unrelated Structured Watermarks

The watermark set that consists of unrelated structured watermarks is named as
"unRelated". We sample a subset of structured dataset that is used for a different
learning task as watermark set. Specifically, 100 images are randomly selected from
this dataset as inputs of the watermark set. Each image is given a random label
which belongs to classes of the model to be watermarked. For example, a model for
classifying dog and cat has only two classes. We can choose a dataset that contains
food images for watermark. Therefore, a certain number of selected food images will
be assigned as cat or dog label. These food images together with their corresponding
labels constructs the watermark set.

In our experiments, we choose ImageNet [12] to formulate the unRelated water-
mark set. ImageNet, which contains over 14 million labeled RGB (color) images, is
designed by researches for computer vision tasks. ImageNet reflects the complexity
and diversity of real-world datasets.

Our unRelated watermark set is built of 100 images which are randomly selected
from 200 classes of ImageNet dataset. In order to avoid similar classes between
CIFAR-10 and ImageNet, we make sure that ImageNet samples do not fall into any
CIFAR-10 class.

We use the same unRelated watermark set for constructing both MNIST and
CIFAR-10 models. However, images used in MNIST and CIFAR-10 models are
transformed to 28 × 28 gray-scale and 3 × 32 × 32 RGB images respectively.
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Figure 14: An example of unRelated watermark set used for CIFAR-10 models

Figure 14 shows an example of unRelated watermark set. We can see that each
class has unrelated images from ImageNet.

5.4.2 Unrelated Unstructured Watermarks

The watermark set that consists of unrelated unstructured watermarks is named as
"unStructured". The principle of generation is similar to the one using unrelated
structured data. Instead of choosing the inputs from an irrelevant dataset, we
generate images of noise with Gaussian distribution as the inputs. These images are
unstructured since noise is totally random. Each image has a random label which is
selected from classes of the model.

In this way, this watermark set can be applied to any model regardless of the
training dataset. Moreover, the samples from this watermark set are uncorrelated to
each other. Hence, even a subset of watermarks is leaked to adversaries, they are not
able to guess additional information about the other watermark samples.

The unStructured watermark set used in MNIST model contains 100 28 × 28
gray-scale images of random noise, each image is given a randomly selected class
from 10 classes (0,1, ...,9).

The unStructured watermark set used in CIFAR-10 model contains 100 3×32 ×
32 RGB images of random noise. Similar to MNIST model, each image has a random
class (plane, car, ..., truck).

An example of unStructured watermark set for CIFAR-10 model are showed in
Figure 15. We can barely distinguish the difference between images from different
classes, since the images and classes are both random.
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Figure 15: An example of unStructured watermark set used for CIFAR-10

5.4.3 Related Data with Pattern as Watermarks

The watermark set that consists of related data with pattern as watermarks is named
as "rPattern". Different from watermark sets listed in 5.4.2 and 5.4.1, we randomly
choose 100 images from the training dataset as inputs and modify these images by
adding a specific pattern (randomly generated pattern) into them. Color, shape,
orientation and position of the pattern are randomly selected once and then applied
to all selected images. The modified images are assigned to wrong labels which are
different from their original one.

Two examples of rPattern watermark sets used for training MNIST and CIFAR-10
models are generated. For MNIST models, we choose a subset of MNIST and add a
gray-scale pattern, whereas we generate an RGB pattern for a subset of CIFAR-10
and use these samples as watermarks in CIFAR-10 models.

As shown in Figure 16 and 17, all the images are assigned to an incorrect class.
For example, class 1 in MNIST is "1", while the samples of class 1 in Figure 16 are
"7", "4" and "9". Each image is embedded with a certain pattern, and images from
the same dataset have the same pattern.

rPattern watermark set used for MNIST models consists of 28 × 28 gray-scale
images, each image has an incorrect class from 0 to 9, the pattern color here consists
of only white pixels.

rPattern watermark set used for CIFAR-10 models is composed of 3 × 32 × 32
RGB images with incorrect classes from "plane" to "truck", the pattern color has a
value of (160,99,156).

5.5 Experimental Setup
We implemented our experiments using PyTorch 1.0.0 [51] and Pysyft 0.1.19a1 [63]
framework. All experiments are done in Triton, a high-performance computing cluster
provided by Aalto University [73]. The GPUs we used are Tesla K80, P100 and V100
[48]. In each round of aggregation participants’ models are trained separately and
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Figure 16: An example of rPattern wa-
termark set used for MNIST

Figure 17: An example of rPattern wa-
termark set used for CIFAR-10

sequentially before they are averaged into a new global model.

5.6 Watermark Removal Attacks
In Chapter 2, we introduced three watermark removal attacks (model fine-tuning,
model pruning and model overwriting). In our experiments, we mainly focus on
fine-tuning and model pruning attacks.

The fine-tuning attack is implemented by using the method proposed in [78].
The pruning attack used for CIFAR-10 VGG-16 models is based on the method in
[44], and pruning presented in [47] is applied in MNIST L5 models. We define two
different attack schemes to test the unremovability of the embedded watermark.

• Normal adversary. A normal adversary owns a subset of training data, which
is equal to the maximum amount of training data that a participant can have.
Then, the attacked model is evaluated on test set. In our experiments, a normal
adversary has 600 samples of MNIST (i.e., total samples/number of participants)
and 2500 samples of CIFAR-10.

• Strong adversary A strong adversary owns half of the test set, which is much
more than the training data of one participant. Another half of the test set is
used to measure the test accuracy of the attacked model. In both MNIST and
CIFAR-10, the size of test set is 10000. This means that a strong adversary
can use 5000 samples while trying fine-tuning and pruning attacks.
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6 Evaluation
In this chapter, we first present our evaluation method. Then, we evaluate our
federated watermarking approaches using different watermark sets according to the
evaluation method.

6.1 Evaluation Method
We design the evaluation method for evaluating the federated watermarking based
on two main requirements: security and utility aspects (explained in Chapter 3.4).

The security requirements in 3.4.1 ensure that the IP of the DNN models is well
protected. It consists of non-trivial ownership, demonstration of ownership and the
unremovability of the watermarks.

• S-1 Non-trivial ownership. We analyze the difficulty of inferring different
watermark set with the knowledge of watermarking algorithm or a small fraction
of watermark set, and find out which watermark set can fulfill non-trivial
ownership requirement. We define a threshold Tacc of watermark accuracy for
non-trivial ownership.

• S-2 Demonstration of ownership. If the watermark accuracy WMacc of a
final federated model exceed Tacc, we can say that we successfully embed the
watermark to the model. Moreover, we also compare WMacc of our approaches
to baseline models (i.e., Pre-trained, After-trained) in order to find out the
most effective approach.

• S-3 Unremovability. Two contemporary watermark removal attacks (model
fine-tuning, model pruning) are applied to all watermarked methods in order
to check the unremovability requirement. We evaluate the unremovability of
watermark by comparing WMacc after the attacks. We assume our approaches
satisfy the lowest unremovability requirement if they achieve higher watermark
accuracy than baseline models. Moreover, if the watermark accuracy exceeds
Tacc after attacks, we can say that the embedded watermark is unremovable.
Meanwhile, we compare the performance of different watermark sets (uPat-
tern, uPattern, unRelated, unStructured) using the same experimental setup.
The best watermark set should have the highest watermark accuracy while
maintaining a high test accuracy.

The utility requirements in 3.4.2 includes model utility, communication and
computational overheads.

• U-1 Model utility. High model utility ensures that the embedding of the
watermark does not degrade the accuracy of the model. We evaluate it by
comparing the test accuracy between a watermarked federated model and
Non-watermarked FL baseline. In order to better evaluate our approaches, we
also compare the test accuracy against different watermark sets explained in
Chapter 5.4 and baseline models with the same experiment setup.
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• U-2 Low communication overhead. We save the communication overhead
by increasing the local training epochs eu in participants’ side. As a result, there
will be fewer communication rounds between participants and the aggregator
if we always keep the same total training rounds ef (ef = eu × ea, ea refers to
aggregation rounds). However, a large number of local training epochs might
decrease the accuracy of the global model. Since the differences between local
models become larger while the FederatedAveraging algorithm (explained in
Chapter 4) is a favorable method only for aggregating very similar models.
Therefore, we evaluate this requirement by applying different local training
epochs, and find the number that has the best performance in terms of both
test accuracy and communication overhead costs.

• U-3 Low computational overhead. Training epochs ei of initial global
model and a large number of retraining epochs er for embedding watermark
increase the computational complexity for the aggregator during the training.
To measure the computational overhead, we calculate the total retraining epochs
ew of each watermark set during the training process for reaching the expected
watermark accuracy. The training time is also recorded as a measurement to
evaluate the performance of different watermark sets. Moreover, we compare
the performance of our two approaches (PR-trained, R-trained) for finding the
best approach that requires the least computational overhead.

6.2 Security
6.2.1 Non-trivial Ownership

According to non-trivial ownership requirement in Chapter 3, a watermark set should
not be inferred by adversary even if he knows the watermarking algorithm or a small
fraction of the watermark set. Therefore, the adversary cannot claim the ownership
of the model with an inferred watermark set.

From the descriptions of four watermark sets in Chapter 4 (uPattern) and Chapter
5 (rPattern, unRelated, unStructured), we know that both uPattern and unStructured
watermark sets fulfill this requirement due to their unstructured property (i.e., each
image in watermark sets is uncorrelated to each other). Hence, even a subset of
watermark set is revealed, no additional information will be inferred by adversaries.
On the other hand, we can infer that ImageNet dataset is used in the construction
of unRelated watermark set while the training dataset is used for building rPattern
watermark set. Moreover, the randomly assigned labels makes backpropagation-based
attacks extremely hard.

We define a threshold Tacc = 47% (tolerated error rate e = 53%) using the
Equation 8 stated in Chapter 2, where the confidence for reliable demonstration of
ownership is 1− 2−64 and watermark size equal to 100. The confidence 1− 2−64 is
used as a target confidence for reliable demonstration of ownership in [69].
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6.2.2 Demonstration of Ownership

The goal of embedding a watermark is to prove the ownership of DNN models, which
requires the model to have a high watermark accuracy. Table 3 summarizes test and
watermark accuracy for PR-trained and R-trained models as well as baseline models
explained in Chapter 5.3.2.

Table 3: Test accuracy and watermark accuracy of different federated learning models
on MNIST and CIFAR-10. Models with bad watermark accuracy are highlighted
with red.

Dataset Model Watermark
Acc.%

Test
Acc.%

MNIST

Non-WM - 99.00 ± 0.05
Pre-trained 29.0 98.74 ± 0.10
R-trained 100.0 98.70 ± 0.13
After-trained 100.0 73.95 ± 0.10
PR-trained 100.0 98.74 ±0.13

CIFAR-10

Non-WM - 88.00 ± 0.10
Pre-trained 21.0 87.50 ± 0.10
R-trained 100.0 87.93 ± 0.07
After-trained 100.0 86.53 ± 0.10
PR-trained 100.0 87.46 ± 0.05

It can be seen that the Pre-trained approach has the lowest watermark accuracy
both on MNIST and CIFAR-10, which are only 29% and 21% respectively. Other
three approaches reach an accuracy of 100% on watermark set on both datasets.
Hence, we can conclude that Pre-trained approach embeds watermarks once before
any local training which removes the watermark over the federated learning. we
can also draw the conclusion that R-trained, After-trained, PR-trained can embed
a strong watermark to prove the ownership of a DNN model. Therefore, we only
access these three methods in the remaining experiments.

6.2.3 Unremovability

In order to achieve the unremovability requirement, we need to define different types
of watermark removal attacks we want to explore. As we mentioned in Chapter 3,
we investigate the unremovability of watermarked models by applying attacks that
aim to remove the watermark. Then, we compare the watermark accuracy and test
accuracy of the watermarked model after the attack is implemented. A watermark is
unremovable if the watermark accuracy exceeds Tacc or both the watermark and test
accuracy drop significantly (model is unusable) after the attack.

We assume that the watermark is unremovable if it can resist two contemporary
attacks. Fine-tuning attack [78] and model-pruning attack [44][47] are applied on
our watermarked models for unremovability evaluation.
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As demonstrated in Table 4 and Table 5 , four different watermark sets are
utilized with the same experimental setup based on R-trained, After-trained and
PR-trained approaches. From the results, we can see that PR-trained and R-trained
embed a robust watermark on MNIST models, which can resist fine-tuning attack
regardless of the type of watermark sets we used. Moreover, the watermark accuracy
is above 85% even with strong adversaries implementing fine-tuning attack. The
high watermark accuracy can also be seen in the fine-tuning attack with training set
on CIFAR-10 models when using R-trained and PR-trained approaches.

Table 4: Unremovability comparison of watermarked federated learning models against
fine-tuning attack on MNIST models. For fine-tuning attack, normal adversary (600
samples) or strong (5000 samples) is used. Low watermark accuracies are highlighted
in red.

Adv. unRelated unStructured rPattern uPattern
WM
Acc.%

Test
Acc.%

WM
Acc.%

Test
Acc.%

WM
Acc.%

Test
Acc.%

WM
Acc.%

Test
Acc.%

R-trained
Strong 100.0 98.22 100.0 98.32 91.0 98.62 96.0 98.78
Normal 100.0 97.69 100.0 98.28 100.0 98.63 100.0 98.27

After-trained
Strong 34.0 98.30 40.0 98.50 11.0 98.38 17.0 98.68
Normal 39.0 97.63 56.0 97.12 12.0 97.20 11.0 97.19

PR-trained
Strong 100.0 98.26 100.0 98.34 85.0 98.70 98.0 98.26
Normal 100.0 98.21 100.0 98.28 100.0 98.61 100.0 98.27

However, the watermark accuracy reduces significantly both in R-trained and
PR-trained while applying fine-tuning attack with test set on CIFAR-10 models. We
consider the reason is that complex network tends to overfit more to the watermark
set, while the fine-tuning attack reduces the overfitting, which leads to the decreased
watermark accuracy especially when the attacker has more than 2500 samples.
Therefore, we conclude that complex models are more vulnerable to fine-tuning
attacks. Another fact is that uPattern has the highest watermark accuracy than
other three watermark sets in overall, which demonstrates uPattern set is the most
resistant watermark set in fine-tuning attacks.

In summary, R-trained, PR-trained approaches with uPattern, R-trained approach
with unRelated can succeed to prove the ownership (WMacc > 0.47) in fine-tuning
attacks. R-trained approach with uPattern has the most superior performance since
it achieves the highest watermark accuracy as well as test accuracy among these
combinations.

Figure 18 presents the watermark (dotted lines) and test accuracy (solid lines)
of MNIST models using different approaches with different watermark sets after
model-pruning attack [47]. As can be seen from the figure, the watermark accuracy
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Table 5: Unremovability comparison of watermarked federated learning models
against fine-tuning attack on CIFAR-10 model. For fine-tuning attack, normal
adversary (2500 samples) or strong (5000 samples) is used. The most resistant
watermarks are highlighted in green, the least resistant watermarks are highlighted
in red.

Adv. unRelated unStructured rPattern uPattern
WM
Acc.%

Test
Acc.%

WM
Acc.%

Test
Acc.%

WM
Acc.%

Test
Acc.%

WM
Acc.%

Test
Acc.%

R-trained
Strong 48.0 86.28 39.0 87.06 28.0 85.90 75.0 87.10
Normal 100.0 87.42 100.0 87.50 100.0 87.67 100.0 87.94

After-trained
Strong 31.0 86.18 26.0 86.22 18.0 86.08 21.0 86.24
Normal 25.0 84.27 31.0 85.79 21.0 86.10 36.0 86.12

PR-trained
Strong 45.0 87.20 19.0 85.74 35.0 86.50 50.0 85.92
Normal 100.0 87.47 100.0 87.63 100.0 87.86 100.0 87.74

decreases when higher pruning rate is applied.
The results suggest that these three approaches are not resistant to the model

pruning attack with only one exception (when using unRelated in R-trained approach).
Specifically, the watermark accuracy usually remains below the threshold while the
test accuracy always stays above 90%. The reason is that a model pruning attack
typically requires a fine-tuning step to optimize the parameters of the pruned model.
Therefore, a low-accuracy MNIST model can easily reach a high test accuracy when
fine-tuning it with even a small subset of dataset in a few epochs. Hence, the decrease
of the test accuracy is hard to be observed in MNIST models.

Figure 19 shows the watermark accuracy (dotted line) and test accuracy (solid
line) on CIFAR-10 models after model pruning attack [44]. We can see from the figure
that the best case is to use both PR-trained and uPattern, where the watermark
accuracy is always above the threshold if the pruning rate is not higher than 20%.
However, the After-trained approach has the worst performance as the watermark
accuracy is always below the threshold when the pruning rate is greater than 5%.
R-trained achieves roughly the same performance to PR-trained in pruning attack
with 2500 samples, but PR-trained performs superior to R-trained with 5000 samples.

Notice that uPattern has the strongest resilience in both R-trained and PR-trained.
This shows that uPattern achieves the best performance among all watermark sets
regarding the unremovability property. We consider the reason is that using same
pattern for each class helps the DNN to learn the watermark set better, which also
means more robust watermarks are embedded.

In summary, PR-trained with uPattern achieves the best performance against
model pruning attack, followed by R-trained with uPattern. Since After-trained
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(a) R-trained (5000 samples) (b) R-trained (600 samples)

(c) After-trained (5000 samples) (d) After-trained (600 samples)

(e) PR-trained (5000 samples) (f) PR-trained (600 samples)

Figure 18: Unremovability comparison of watermarked federated learning models
against model-pruning attack on MNIST. For watermark removal attack, train set
(600 samples) and test set (5000 samples) are used by the attacker individually. Solid
lines present the test accuracy, dotted lines stand for watermark accuracy.

approach has the worst performance against both fine-tuning and pruning attacks,
we only use the R-trained and PR-trained approaches in the following experiments.
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(a) R-trained (5000 samples) (b) R-trained (2500 samples)

(c) After-trained (5000 samples) (d) After-trained (2500 samples)

(e) PR-trained (5000 samples) (f) PR-trained (2500 samples)

Figure 19: Unremovability comparison of watermarked federated learning models
against model-pruning attack on CIFAR-10. For watermark removal attack, train
set (2500 samples) and test set (5000 samples) are used by the attacker individually.
Solid lines present the test accuracy, dotted lines stand for watermark accuracy.
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(a) MNIST (b) CIFAR-10

Figure 20: Test accuracy using different watermark sets

(a) MNIST (b) CIFAR-10

Figure 21: The test accuracy of non-watermarked model and watermarked model
with different watermark sets during training, where ef denotes the total federated
training epochs. PR-trained approach is used here.

6.3 Utility
6.3.1 Model Utility

The model utility requires a watermarked model to be as accurate as a non-
watermarked model, which means that the embedding of the watermark does not
influence the functionality of the model. PR-trained approach includes both initial
model training and watermark retraining which are related to watermark embedding,
while R-trained only contains watermarking retraining. Therefore, we can assume
that R-trained approach fulfills the model utility requirement if we show that PR-
trained approach has a good performance in model utility. Hence, experiments in
this Chapter are all done with PR-trained approach.

Figure 20 demonstrates the test accuracy of non-watermarked model and wa-
termarked models trained with MNIST and CIFAR-10. It can be seen that the
difference of accuracy among these models is less than 1% in both datasets. rPattern
maintains a higher test accuracy than other watermark sets, followed by uPattern.
unRelated watermark set always has the lowest test accuracy. However, since the
overall differences among non-watermarked model and watermarked models are small,
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we can draw the conclusion that the embedding of the watermark has minimal
impact on the test accuracy of the final global model when using our watermarking
approaches.

Furthermore, Figure 21 shows the test accuracy of non-watermarked model and
watermarked models embedded with different watermark sets throughout the training
process. The results show that there is only a slight difference in the accuracy between
these models over the training process. Therefore, the embedding of watermark set
also does not have influence on the global model during the training. The intuition
here is that we add a new function which can also be called as backdoor function
TY (·) to the parameters of the global model.

Notice that the epochs needed for reaching the final test accuracy is different
on MNIST, watermarked models need less epochs than non-watermarked model.
We assume that the transfer learning from watermark set to MNIST helps MNIST
models to converge faster. uPattern is the quickest to converge on MNIST.

In summary, PR-trained approach well satisfies the model utility requirement,
which implies that R-trained approach also meets the requirement. rPattern water-
mark set guarantees the highest test accuracy among all the watermark sets while
uPattern helps models to converge quickest.

6.3.2 Communication Overhead

Low communication overhead should remain as a benefit in a federated learning as
discussed in Chapter 3. One efficient way for saving the communication is to reduce
the aggregation rounds ea. Meanwhile, we should consider that the test accuracy
does not decrease due to fewer aggregation rounds. Hence, we decide to increase the
local training epochs on participants’ side in order to maintain the accuracy of the
global model.

The experiments are implemented using PR-trained approach with uPattern, and
we choose different local training epochs eu (1, 5, 10 and 20) to explore the best one.
To ensure a better comparison and maintain a higher test accuracy, we choose 400
total training rounds ef = (eu × ea) for MNIST model and 800 ef for CIFAR-10.

Figure 22 demonstrates the accuracy of watermarked models trained with different
local epochs. The marked dots on the line presents the point where the variation
of accuracy starts to become negligible. We can see from the figure that more ef is
required to converge if we use a larger number of local training epochs.

Table 6 summarizes the epochs and communication overhead needed for reaching
the marked point for MNIST and CIFAR-10 models. From the table, we can see
that the experiment using 1 local epoch requires the most communication overhead.
The increased eu effectively decrease the communication overhead. For instance, if
we use 5 local epochs to train the MNIST model, the communication overhead is
around 6 times less than using 1 local epoch.

However, we cannot say that more local training epochs are better even though
the test accuracy reaches roughly the same according to Table 6. Notice that the
total training epochs increase significantly with more local training epochs, which
also means a longer training time. Therefore, even if 10 and 20 local epochs have the
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(a) MNIST (b) CIFAR-10

Figure 22: Training accuracy of watermarked models trained with different local
epochs (1, 5, 10, 20) using PR-trained with uPattern, where ef denotes the total
federated training epochs.

Table 6: Communication overhead while using different local epochs. eu refers to the
local epochs, ef is the total training epochs, and B means byte measuring the total
size of the data sent and received over the training. The best result is highlighted in
green.

Dataset WM eu ef ea Overhead(B) Test
Acc.%

WM
Acc.%

MNIST

- 1 105 105 12,196,800 94.29 100.0

uPattern

1 107 107 12,429,120 94.15 100.0
5 90 18 2,090,880 94.15 100.0
10 180 18 2,090,880 94.24 100.0
20 280 14 1,626,240 94.30 100.0

CIFAR-10

- 1 121 121 2,811,072 87.41 100.0

uPattern

1 128 128 2,973,696 87.60 100.0
5 200 40 929,280 87.45 100.0
10 350 35 813,120 87.41 100.0
20 560 28 650,496 87.60 100.0

advantage to ensure a slight smaller communication overhead than 5 local epochs,
this advantage cannot make up for the distinct increase of total training epochs.
For example, if we change from 5 local epochs to 20 local epochs in the CIFAR-10
experiments, the communication overhead decreases 30% while the total training
epochs increases 180%.

In overall, we declare that using 5 local epochs is the optimal choice since it
effectively decreases the communication overhead with only slight increase of total
training epochs. Moreover, it saves 80% and 67% of communication overhead in
MNIST and CIFAR-10 experiments respectively than a non-watermarked model.
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Therefore, we successfully fulfill the threshold of low communication overhead stated
in requirement U-2 in Chapter 3.4.

6.3.3 Computational Overhead

In order to satisfy the low computational overhead requirement mentioned in Chapter
3, we aim to reduce the computational tasks on the aggregator’s side. Since the
training of the initial global model and retraining of watermark during the learning
process are extra work comparing to normal federated learning without watermark,
we decide to mainly focus on controlling the total watermark training epochs ew over
the learning process.

Table 7: Total watermark training epochs ew and training time needed for water-
marked models using different watermark sets. Training time is expressed in seconds,
ei is the epochs for training the initial global model, er refers to the retraining epochs
of watermark over the federated learning. A non-watermarked MNIST model requires
4014 seconds to train, a non-watermarked CIFAR-10 model needs 20196 seconds.
Best results are highlighted in green.

WM ei
er ew Training Time

PR-
trained

R-
trained

PR-
trained

R-
trained

PR-
trained

R-
trained

MNIST
uPattern 25 203 214 228 214 4,588 4,231
rPattern 90 229 291 319 291 4,684 4,239
unRelated 80 202 254 282 254 4,422 4,364
unStructured 150 202 216 352 216 4,163 4,227

CIFAR-10
uPattern 30 109 107 139 107 20,348 20,744
rPattern 60 223 206 283 206 20,373 19,736
unRelated 55 289 294 344 294 20,478 20,596
unStructured 230 197 219 427 219 20,660 20,424

Table 7 demonstrates ew and training time needed for watermarked models using
different watermark sets. We compare results for two approaches (PR-trained and
R-trained) that succeed the unremovability evaluation.

From the table, we can see that fewer total training epochs do not promise less
training time. For instance, on the MNIST dataset, unStructured watermark only
needs 216 total training epochs to train in R-trained approach compare to 352 in
PR-trained, but R-trained approach costs more time to train. The same case also
happens when uPattern and unRelated are used in CIFAR-10 training. The reason
behind is that the training time needed for completing one epoch of ei and er are
different. The watermark retraining typically requires more time than watermark
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(a) PR-trained (b) R-trained

Figure 23: Retraining epochs of each aggregation round with different watermark
sets on MNIST model, where ea refers to aggregation rounds.

(a) PR-trained (b) R-trained

Figure 24: Retraining epochs of each aggregation round with different watermark
sets on CIFAR-10 model, where ea refers to aggregation rounds.

training for the initial global model, since the watermark retraining involves learning
watermark task inside the actual task.

Notice that R-trained approach always needs less total watermark training epochs
but more watermark retraining epochs than PR-trained in MNIST experiments.
However, they require similar watermark retraining epochs in CIFAR-10 experiments.
This means that the training of the initial global model does not have significant
influence on the computational complexity when the DNN model is already a complex
model.

The table also reports that the uPattern needs the least epochs for training the
initial model. The reason behind is that images from one class in uPattern has the
same unique pattern which helps the network to learn features faster than other
watermark sets.

Figure 23 and Figure 24 present the watermark retraining epochs over the training
in MNIST and CIFAR-10 experiments.
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The results suggest that the R-trained approach requires significantly more
watermark retraining epochs than PR-trained in MNIST experiments, while there
are few differences between these two appraoches in CIFAR-10 experiments. Another
observation is that uPattern requires the fewest retraining epochs among all the
watermark set in general.

Notice that the retaining epochs increase rapidly in the first 20 aggregation rounds.
After 20 rounds, the retraining epochs remain stable which is 1 round.

In overall, we can summarize that R-trained approach needs fewer total water-
marking training epochs than PR-trained, while PR-trained requires fewer watermark
retraining epochs than R-trained in general. Considering the communication delay
and learning both the actual task and watermark set, we assume less watermark
retraining epochs has more benefits than less total watermark training epochs. In
addition, uPattern watermark set performs the best in saving the computational
overhead. Therefore, from the data in Table 7, if we consider the case to embed
uPattern in a complex (CIFAR-10) model, the best choice is to use PR-trained. In
contrast, R-trained with uPattern is more suitable for simple (MNIST) models.
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7 Related Work

7.1 Watermarking DNN Models
Recent works prove the feasibility of injecting watermarks into DNN models (e.g.,
[1], [71], [78]). We summarize existing works based on the embedding methodology
and divide them into four groups.

Embedding directly in model weights
The methods proposed in [71] and [46] are the first ones to watermark ML models

by marking the neural network and trained parameters. Recent work [9] also embeds
watermarks directly in the model weights, by adding a regularizer containing a
specific statistical bias while training. However, this type of methods requires direct
access to model weights (white-box access to the model). Nevertheless, adversaries
who are aware of this methodology can easily extract and remove the embedded
watermark without knowing watermarking embedding approach. An attack proposed
in [76] proves that these watermarks can be detected and removed by overwriting
the statistical bias.

Another paper [15] proposes a scheme that tries to embed watermarks into a
special “passport” layer of the DNN. The DNN model cannot achieve model utility
requirement if the passport layer weights are missing. This scheme requires the model
owner to keep the "passport" layer weights secret from adversaries. Even though the
experimental results show that this method is able to against model-pruning attack
with a high pruning rate (80%), adversaries can reverse engineer a set of effective,
forged "passport" layer weights which are enough to maintain the utility of the model.

Adversarial examples as watermark
Adversarial examples can also be used as watermarks. For example, authors in

[43] propose a zero-bit watermarking algorithm to embed zero-bit watermarks into
remote models. This method relies on communications with models through the
remote API. Specifically, the watermarking process is achieved by making use of
inputs of API which can convey a value to embed identification information into the
model. The identification information is extracted from the remote model later for
ownership verification. The basic principle is that the embedded watermark makes
a slight modification on the original model’s decision boundaries around a set of
specific inputs that form the hidden key. Predictions of the watermarked remote
model to these inputs are compared to those of the original model. A strong match
indicates the presence of the watermark in the remote model with a high probability.

Although the paper shows this approach is feasible, it heavily depends on ad-
versarial examples and their transferability property across different models. We
cannot generalize that adversarial examples can be transferred to any models in any
condition [24].

Embedding strings into outputs of the layers
DeepSigns [60] is an end-to-end framework that embeds watermark (an arbitrary

N-bit string) into the probability density function [54] of the abstract training data
representations acquired in different layers of the model. The watermark information
can only be triggered by passing specific inputs (keys) to the watermarked model.
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This method has no visible impacts on the static properties (e.g., weight matrices) of
the DNN model. The experimental results show that this method is robust to model
overwriting attack which is not evaluated in our thesis.

Embedding in model classification results
This approach which is applied in our work embeds watermarks in the output

of the model classification. Similar to the methods used in [1][78] , we also embed
watermarks by using the backdoor attack, which causes a model misclassification to
a specific target label [3].

7.2 Generating Trigger Sets
Watermarking by backdooring requires an effective trigger set. Several works [1]
[78] generate different trigger sets for improving the performance of the embedded
watermark.

• Random noise. In [78], authors used Gaussian noise as watermarks which
is difficult to differentiate from pure noise. As a result, the images with the
Gaussian noise is recognised as the target class (incorrect class).

• Unrelated images. In both [1] and [78], unrelated images are chosen as trigger
set. The trigger set used in [78] is randomly selected from a dataset which does
not suit to the original training task. For example, a CIFAR-10 DNN model
can use the trigger set from MNIST dataset. Different from [78], paper [1]
constructs a trigger set consisting of 100 randomly generated abstract images,
and each image is randomly assigned to a target class. This approach also
ensures that the samples from the trigger set are unrelated to each other.

• Training data. The most common trigger set used currently is to choose a
subset of inputs from the training data and randomly label them with incorrect
classes [1][3][21][60]. However, if an adversary obtains trigger set samples, he
can guess the trigger set. Hence, this approach can not satisfy non-trivial
ownership requirement in Chapter 3.4.1.

• Training data with meaningful content. Authors in [78] generate a trigger
set by embedding meaningful content to selected images from training data.
The meaningful content used in this paper is a text ’Test’.

• Training data with pattern. [8] and [74] use a pattern of inverted pixels in
the bottom right corner of the images as the backdoor trigger, each poisonous
image is mislabeled according to certain rules (i.e., each image is assigned to
(m + 1) class, where m is the ground-truth label).

Paper [78] proves that using unrelated images as watermarks has the best perfor-
mance among the first four kinds of trigger sets.
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7.3 Backdoor Defences in ML
Our watermarking approaches are based on backdoor attack. Several recent works
propose different defense methods against backdoor in ML.

The method in [70] analyses the learned representation of classes (spectral signa-
tures) by utilizing tools from robust statistics. The main idea is that two significant
sub-populations are showed if training data is poisoned by backdoor attack. The
two sub-populations are a large number of clean, correctly labelled inputs and a
fraction of poisoned, mislabelled inputs. These can be separated by the tools of
robust statistics and singular value decomposition. This method requires to have
access to the poisoned dataset. [72] proposes another technique (NEO) that does
not need to access the poisoned dataset. NEO analyses the inputs of the model and
determines if the model is backdoored.

Model pruning techniques in [44][47] removes redundant neurons to improve the
training efficiency, which also effectively defenses the backdoor attack. However,
paper [74] shows that pruning attack can easily cause a significant loss in performance
for some models. Fine-tuning is another frequently used method for removing the
backdoor in ML models [1][3][78] , but it is also proved that this attack has less
impact than model pruning attack. Notice that both fine-tuning and model pruning
do not offer detection capabilities to identify backdoored images.

NeuralCleanse proposed in [74] tries to reverse engineer the backdoor trigger
by formulating the problem as an optimisation problem. However, the proposed
mitigation technique requires computationally expensive retraining.
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8 Conclusion
In this thesis, we propose a practical analysis of approaches that can be used to
watermark a federated DNN models by backdooring. We apply two watermark
removal attacks and showed the unremovability of the embedded watermark. In this
Chapter, we draw the conclusion of the work we have done, and present possible
future work.

8.1 Summary
In this thesis, we design two federated watermarking approaches (PR-trained, R-
trained) and propose a new method to generate watermarks. We perform a com-
prehensive evaluation with our watermarking approaches and watermark generation
method on two benchmark datasets according to the evaluation method in Chapter
6.1, which is based on the requirements we stated in Chapter 3.4. To meet the
S-1 Non-trivial ownership requirement, uPattern watermark sets generated by using
our method are designed to be unrelated to the training data, and each sample of
uPattern is uncorrelated to others, such that the adversary is not able to claim
ownership even if he knows the watermarking algorithm or a small fraction of water-
mark set. Moreover, we define a threshold of watermark accuracy based on prior
work [69] for the demonstration of non-trivial ownership. We evaluate PR-trained
and R-trained approach, and show that they both satisfy the S-2 Demonstration of
ownership requirement, which can embed a watermark with an accuracy exceeds the
threshold. Therefore, the embedded watermark can be used for declaring the owner-
ship. In the evaluation for S-3 Unremovability requirement, we compare performance
of PR-trained and R-trained approaches with the baseline model (After-trained),
and demonstrate our approaches perform better than Afer-trained. The watermark
embedded by our approaches are resistant to fine-tuning attack and model pruning
attack (when pruning rate ≤ 20%). Furthermore, uPattern has the best performance
comparing to watermark sets proposed in prior work.

We evaluate the test accuracy between watermarked models and non-watermarked
models. The results show that the DNN models watermarked by our approaches
achieve a similar test accuracy as non-watermarked models. This means that our
approaches successfully meet the U-1 Model Utility requirement. Besides, uPattern
achieves the second highest test accuracy among all the watermark sets. We also stated
that U-2 Low communication overhead requires to save at least 50% of communication
overhead compare to a normal federated learning. Therefore, we measure the
communication overhead costed by applying different local training epochs, and find
out that using 5 local epochs in our approaches can effectively save 80% and 67% of
communication overhead in MNIST and CIFAR-10 experiments respectively while
maintaining the test accuracy and watermark accuracy. Furthermore, experimental
results show that uPattern needs the least watermark retraining rounds, which
means a lowest computation overhead to satisfy U-3 Low computational overhead
requirement. The results also illustrate that R-trained approach is the best choice
for embedding uPattern in simple models in terms of computational overhead. In
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contrast, RR-trained approach with uPattern is more suitable for complex models.
In overall, we show that our federated watermarking approaches are feasible to

watermark federated DNN models, which achieves the goal of the thesis stated in
Chapter 1.2. Our approaches allow us to protect DNN models for both white-box
and black-box settings. We overcome the three challenges stated in Chapter 3.3:
C-1 Decentralized Training, C-2 Access to Global model During Training and C-3
Communication Overhead, demonstrate that our approaches can perform as good as
other state-of-art watermarking techniques and is robust to two watermark removal
attacks. In addition, uPattern watermark sets are the best in overall after comparing
with different types of watermarks.

8.2 Future Work
The evaluation for the unremovability of embedded watermark using our approaches
in Chapter 6 indicates that more work can be done against model pruning attack.
Therefore, focusing on improving maximum tolerated pruning rate of embedded
watermark in model pruning attack might be a possible future work. In addition,
more watermark removal attacks (e.g., model overwriting) can be applied to evaluate
the federated watermarking technique.

In Chapter 3.2.2, we analyze the case that malicious participants can apply any
watermark removal attack in the middle of the federated learning. In this thesis, we
only implement the experiments to apply attacks after training. Thus, the future
work can explore the unremovability of the embedded watermark by applying attacks
during training.
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