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Abstract

Today, there exists a challenge in simplifying biosignals into features that are
well suited for machine learning and clinician understanding. This work reports the
feature engineering exercise involved with such challenge, along with the predictive
modeling. We primarily tackle ECG, Respiration (Thoracic Impedance), and SpO2
(Plethsmographic) signals extracted from a proprietary dataset used by GE Healthcare.
Throughout the study, we analyze biosignals while searching for general characteristics
which may help describe (and even highlight) human function for a machine learning
model, while maintaining clinical value. Wave Morphology Analysis in the Time
Domain, Wavelet Decomposition and Fast Fourier Transforms were the main methods
explored for feature engineering. Finally, results from a Convolutional Neural Network
and a Random Forest model are reported, whereby the best performing model is
able to predict Sepsis with 77% accuracy at least three (3) hours in advance.
Keywords Signal Processing, Feature Engineering, Machine Learning, Healthcare
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Symbols and abbreviations

Symbols
Z Set of Integers
a← b Setting variable value b to variable a
< Set of real Numbers
f frequency related variable

Operators
d
dt derivative with respect to variable t

∂

∂t
partial derivative with respect to variable t∑

i sum over index i
A ·B dot product of vectors A and B
x[n] Discrete data or signal
x(t) Continuous or analog data

Abbreviations
EHR Electronic Health Record
EMR Electronic Medical Record
ECG Electrocardiogram
SpO2 Plethysmographic Wave
Resp Respiration Signal
ICU Intensive Care Unit
QRS Peaks Q, R and S from an ECG beat
AWS Amazon Web Services
EC2 Elastic Compute Cloud
S3 AWS storage system
CPU Central Processing Unit
GPU Graphics Processing Unit
RAM Random Access Memory
HW Hardware
UML Unified Modeling Language
OOP Object Oriented Programming
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1 Introduction
Today, there exists a wealth of information that is captured in the healthcare domain.
In fact, if one focuses solely on Intensive Care Units (ICUs), as it was done on this
study, a patient is generally being monitored by at least three different devices: ECG,
SpO2, and Impedance Respiration monitoring devices. In addition, a numerous
other types of data (lab results, imaging work, etc...) are recorded in the hospital’s
Electronic Health Record (EHR) system. This information is then available for
medical professionals to assess and produce patient recovery plans. Yet, in spite of all
of this monitoring and information availability, patients still deteriorate and perish
due to the difficulty that clinicians have to mine through all of the data available.

An important special case of this happens with patients that suffer from Sepsis.
Septic patients contract Sepsis as a consequence of some infection that happens
(in this case we are only considering patients in ICUs). As a consequence of the
generic nature, doctors generally produce treatment plans that are not fully aware of
the condition. Consequently, patient’s deteriorate rapidly [1], causing irreparable
damages [2] [3].

Because of the health damages that may be caused by this disease and the
availability of data in a scenario such as the ICU, GE Healthcare (GEHC) Finland
saw an opportunity to study whether or not it may be possible to see patterns and
perhaps predict this deterioration early enough, in order to provide a relevant care
plan for patients and eventually save lives. The ultimate goal of this study is then to
investigate whether it may be possible to leverage the data which is most commonly
available to clinicians and help not only foresee the disease before its too late, but
also understand health deterioration. For this specific study, Sepsis was chosen as the
reference disease due to its relevance and ability to go unnoticed in hospital care.

In the following sections of this chapter, Sepsis will be discussed in more depth,
along with the approach that was conceived to pursue this study.

1.1 Sepsis and Health Deterioration
Sepsis is a disease that affects millions of people in the hospitals around the world. In
fact, Sepsis leads the rank in causes of death during a hospital stay [1]. In addition,
the longer a patient goes without being properly diagnosed, the more likely the
patient is to sustain lifelong impairment (given that the patient survives) [1].

The costs of the disease are also staggering. In 2013 Sepsis earned the spot for
most costly disease in the U.S., adding 24 billion dollars to health care related costs
in American hospitals. The damages and staggering costs create space for this study,
in which methods to detect the disease early enough are explored and developed. In
machine learning terms, the aim is to predict the event (of having Sepsis) before it
has traditionally being diagnosed and logged in the EHR systems.

From the medical perspective, and how Sepsis may be identified in the data that
is available, the disease’s presence is not so stark, specially in the early stages of
its development. The general conditions are: fever, rapid breathing and heart rate,
confusion, and disorientation [2]. As one may suspect, the symptoms themselves are
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quite generic. However, for an expecting eye (meaning a trained clinician), they may
be apparent in the data.

Rapid breathing and heart rate, along with confusion and disorientation are
conditions that can be detected by monitoring devices capturing Impedance Respira-
tion, Electric Cardiogram, Electrical Encephalogram, or even Electrical Myograms.
In addition, Plethysmographic waves (SpO2) can also demonstrate some of these
conditions.

In addition to the general conditions mentioned, Sepsis emerges from infection.
This infection may be due to complex conditions, such as pneumonia, or something
as simple as a paper cut [1]. But even conventional infections may produce indicators
in the parameters1 mentioned in the previous paragraph, as they may cause internal
bleeding and debilitation on the surrounding organs.

It is based on the above logic, that there exists cues in the data coming from
the various medical devices and information systems monitoring the patient, that
the idea of using high frequency data (waveforms) and Electronic Medical Records
(EHR) emerges.

1.2 Proposed Approach
The hospital’s EHR system allows one to identify when a patient was diagnosed,
what was the diagnosis, lab results retrieved during that period, as well as consult
any waveform that has been stored for that specific patient. The approach proposed
here builds on the ability to access waveform data, or electric biosignals, along with
information about a patient’s diagnoses (as targets), and the predictive potential of
machine learning algorithms in the medical science domain [4]. The goal is then to
predict sepsis at least 1-3 hours before it happens, therefore allowing clinicians time
to act on the information .

1Parameters is the term used in the Healthcare Device industry for biosignals such as ECG,
Respiration and SpO2
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2 Background
In this section, the general background regarding the methods and data that will
be used throughout this work will be presented, along with a description on what a
predictive problem in machine learning is about. In addition, there will also be a
justification on why and how these ideas tie in with the current medical practice.

2.1 Predictive Learning
As mentioned in the introductory chapter, the current environment that will be
studied is composed of a specific hospital scenario, namely ICU, a disease named
Sepsis, and a whole lot of data. The goal is to use this data within the context
provided to help find out whether a patient will contract Sepsis before it has been
historically found. In addition, if possible, provide some clinical explainability so
clinicians can learn from the decisions provided.

The above can be formulated in a predictive problem for a machine learning
algorithm that uses Supervised Learning to pair input data x to expected outputs
y [5]. Ideally, the algorithm is able to learn from a training set X, whilst maintaining
a sufficiently generic predictive capability such to perform well on an unseen set T
(generally referred to as test sets).

More specifically to the context and goal pursued herein, the input data x is
some combination of explainable features extracted from the biosignals that were
recorded at least 1-3 hours before some information about the target diagnose y
was provided to the EHR system. But before any suitable input set x is created
containing features that may be useful for clinicians, a general xraw can be retrieved
directly from the hospitals’ systems. Figure 1 should help illustrate what the raw
input resembles.

Figure 1: Figure illustrating that the raw input xraw is composed of information
from the different waveforms.

However, in order to reach a more ideal x, that has a lower dimension, it was
necessary to observe what a clinician actually looks for when attempting to diagnose
Sepsis, since what is being used as a target is a clinical note indicating that the
patient was considered Septic at time t.
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2.2 General Data and Biosignals: EHR and Waveforms
By consulting clinicians a set of general notes were created regarding what composes
a septic condition, and which sorts of signals were most readily available in the EHR
system. The notes were as follows:

1. Clinicians often dissect the waveform they are observing into features (or use
software packages provided for these purposes)

2. Specific waveforms seem to be more readily available and consulted by clinicians,
namely: ECG, SpO2, Respiration, and Continuous Blood Pressure information
[3] [2]

3. The volume of information that is created and collected in ICUs make it difficult
for clinicians to analyze the data by hand

With the above points in mind, it was then decided that: in order to reach
higher probability of success, the machine learning algorithm should use only infor-
mation that is readily available. In addition, due to the dimension the combined
set of waveforms, the input, should also be dissected into features which clinicians
understand.

2.2.1 EHR

EHR data comes in the form of tables containing specific information regarding
patients. This information then travels with the patient throughout his/hers hospital
stay. Beyond a hospital stay, the data is stored for future use and reference, whether
it may be for a future stay, or research, such as what is being done in this study [6].

For this particular work, there was a necessity to traverse an EHR table containing
the diagnoses information for the chosen cohort. On this diagnoses table, information
such as diagnosis name, date, and patient specific information was retrieved. This
was then cross matched with the waveform information for that specific patient, so
to produce a timeline in the patient’s stay that contained identified diagnoses dates
and waveform events. Below is an example of a subset of columns which such a table
may contain:

Table 1: Table demonstrating a subset of columns that may be found in an EHR
diagnoses table

encounter_id patient_id diagnosis_start_date_unix diagnosis_name
12345 67891 1363132800 Sepsis(995.91)

Using data from Table 1, it is possible to use the unix epoch time stamp, encounter
and patient id information and pick the exact date for which that diagnosis, in this
example Sepsis, was imputed by a clinician.
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2.2.2 Waveforms

The second data format used were waveforms, or data sampled through medical
monitoring devices. These devices are generally attached to the patient, and they
sample information at some regular interval throughout the patient’s stay in the ICU.
The data is then sent through the Hospital’s network system to a local server that
stores this information. This information is then available to the staff of the hospital.

For this experiment, the waveforms had to go through a series of conversion
processes. Initially the waveforms are sampled by their respective devices. The
sampling frequencies were as follows:

• fECG = 240Hz

• fRR = 60Hz

• fSpO2 = 60Hz

The two latter waveforms were then up-sampled to 240Hz, so all three waveforms
contained the same number of samples for a given moment in time. Since this work
was mainly an offline research venture, the waveforms were translated into SQL
tables which contained the following columns:

Table 2: Table demonstrating a subset of columns that may be found in the waveform
tables in the [7]

patient_id epoch_ms Variable sample_number value
12345 1363132800 II 3 100

The format shown above pertains strictly to [7]. Datasets such as [8] contain a
different scheme of storing waveforms data. See the MIT Mimic III dataset [9] as
reference.

Now, the initial size of the raw dataset was very large. A specific waveform
containing about 48 hrs worth of recording could be as large as 10Gbs. This created
a significant burden in loading the waveforms for processing. As a consequence,
mid-tables were created that contained less information. Namely, a reduction in
dimension and gain in access times was achieved by reformatting the tables to the
above set of columns, where "patient_id" and "Variable" were placed in the name of
the file. This reduced the size of the file by 40 %.

In addition to the above notes, it is also important to mention that each waveform
used was not ingested as a whole. The waveforms were stripped from the original set
in order to comply with a set of delimiting rules. These are:

Definition 2.2.1.

• Every waveform group, e.x., a set containing an ECG, Respiration and SpO2
signal, must contain strips that correspond to each other in time. Therefore,
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start time ts and end time tf of each waveform used to create a xraw should be
synced.

• The waveforms should correspond to some standard sampling window

tECG, tRR, tSpO2 = [ts, tf , tg,s, tg,f , td,s, td,f ]

ts: Start time of sampling,
tf , tf > ts: End time of sampling,
tg,s, tg,s > tf : Start time of gap,
tg,f , tg,f > tg,s: End time of gap,
td,s, td,s > tg,f : Start time of diagnosis (in EHR),
td,f , td,f > td,s: End time of diagnosis (in EHR)

• tf − ts = τ is a fixed sampling duration. The same τ should be used throughout
the experiment.

Therefore, whenever a particular waveform is mentioned, or a group of waveforms
that have been chosen to be used for feature engineering (or whose features have been
selected as input), a background work that satisfies the rules presented in definition
2.2.1. In order to better support the above statements, see Figure 2.

28 29 30 31 32 33
Time in seconds

0.5

0.0

0.5

1.0

1.5

y[
t]

Raw ECG measurements for record: 

t
s

t
f

t
g,s

t
g,s

t
d,f

t
d,s

Sampling Window Gap Window Prediction Window

Figure 2: The windows are defined per definition 2.2.1. The waveform used as an
example is a raw ECG waveform from MIT BIH dataset [8].
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2.2.3 ECG

ECG or Electrocardiogram, is an electrical measurement of the heart’s activity. It
is the most widely used, and consequently available, type of electrical biosignal in
medical environments. The ECG signals used in this research were retrieved from an
Internal Care Units (ICU).

The human heart (illustrated in Figure 3) produces a pumping action. That
action is activated by electrical pulses that emerge in a point called the Sinoatrial
Node [10]. As the electrical pulse propagates through the heart, heart muscles get
activated and contract, creating the pumping action.

1. Sinoatrial Node

2. Atrioventricular 
Node

.

.

Figure 3: The human heart, along with the Sinoatrial and Atrioventricular Nodes.
Heart illustration from [11]

By placing electrical sensors at specific points of the body, it possible to create
different view of this action. This is called Holter Monitoring [10]. See Figure 4 for
an illustration showing the various points of interest in the body that help retrieve
the electrical information from the heart.
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Figure 4: By placing electrodes in different areas of the body, it is possible to create
different views [10]. Image credited to [12]

By utilizing different leads and reference points, one is able to get a picture on
the electrical activity that is controlling the circulation of blood. Much more than
that, it is possible to see how the heart tissues are responding, delays in response
between different heart areas, and much more. Moreover, ECGs can be extracted in
different number of leads (or views): 3, 6, 12, 32, or 128 in order to produce different
perspectives of the heart. It all depends on the type of information and knowledge
that the physician is trying to extract from the patient. Figure 5 helps visualize the
monitoring leads positioned in the chest for a 12 lead ECG.

Figure 5: In order to produce the 12 lead ECG [10], numerous leads are placed on
the chest of the patient. Image credited to [12]

For the purposes of this research, Lead II was chosen to be the representative
view of the heart (or the ECG signal). Lead II is equivalent to the following:

II = VLL − VRA (1)
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Figure 4 illustrates the electrode positioning of Lead II. Taking Lead II was an
arbitrary choice. It was partly filled by the performance of the QRS and beat identifi-
cation algorithm (see subsubsection 3.3.1 for further details). Testing against the MIT
BIH dataset produced good results, whose data was extracted from a Modified Lead
II. In addition, there was a goal to keep the work simple, by first experimenting with
one lead, and eventually (in future works) evaluate the performance with multiple
leads.

0.5

0.0

0.5

1.0

1.5
Raw ECG measurements for record: 

14 15 16 17 18 19 20 21
Time in seconds

0.0

0.2

0.4

0.6

0.8

y[
t]

Filtered ECG measurements

R

Q

P

S

T

Time (s)

Figure 6: An ECG signal with annotations pointing to the PQRST peaks. In addition
to the general peaks, segments and their time differentials are also considered, so
to analyze different portions of the heart are responding to the Sinoatrial impulse.
These are: PR interval and segment, QRS Complex, QT Interval, and ST Segment.

2.2.4 SpO2

SpO2 signals refer to the data collected by the Pulse Oximetry devices used in
hospitals. In this specific case, the data was collected by an SpO2 device installed in
an ICU (as previously mentioned, the scenario in which all data for this work was
collected is the ICU).
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24.0 24.5 25.0 25.5 26.0 26.5
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200
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.

.

Figure 7: Raw SpO2 signal attained from the GEHC dataset. It contains the Systole
and Dyastole peak annotated. These denote the max and min of light absorption by
the patient.

SpO2 signals generally refers to an indication of how light is being absorbed
by the blood. A sample of blood which is saturated with oxygen will demonstrate
different absorbance compared to a sample which is not saturated with oxygen [13].
In more specific terms, this is Oximetry by Spectrophotometry, where the oxygen
molecules connected to the haemoglobin (see Figure 8) produce a different depth of
color in the blood, thereby allowing one to differentiate a sample that is saturated
with oxygen vs a sample that is deficient with blood.

Figure 8: Oxygen binding to
haemoglobin [14] Figure 9: Curve demonstrating saturated

(HbO2) and non saturated blood (Hb)
[15]

Figure 9 illustrates that at a certain wavelength, there is a clear distinction
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between values.
SpO2 signals (as seen in Figure 7) have become progressively more common due

to the ease of adaptation with current mobile devices. One can produce a low quality
SpO2 signal with a commercially available camera phone. However, the SpO2 signals
used for this research belonged to a GEHC device installed in an ICU.

2.2.5 Respiration

The respiratory signal is in fact an impedance measurement across the chest. It’s
purpose is to derive information about lung function, general ventilation and air
volume changes in the lungs [16]. These signals can generally be derived from an
ECG monitoring device by selecting specific leads and applying a reference signal.

Figure 10: Image showing the physical electrode placement for transthoracic
impedance measurement using an ECG monitoring device [17]
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Figure 11: The raw Respiration signal used included inspiration and expiration
annotation (artifacts created in the signal by the monitor) which facilitated the
calculation of respiration rate.

Respiration signals (as seen in Figure 11) allows physicians to gain insight into
volume of air, elasticity of the lungs, rate of response by the respiratory system,
and general knowledge on the patient’s breathing mechanisms. This is crucial
information when attempting to determine whether a patient is becoming pneumonic
or undergoing any significant internal infection, as the lungs generally get flooded by
liquids.

The Respiration signals used in this dataset were extracted by GEHC monitors
that were installed in the same ICU as the previous two waveforms mentioned. It
contains, as noted in Figure 10, notes about inspiration and expiration events of the
patient. These notes are used to calculate respiration rate and a number of other
features mentioned in the next chapter.

2.3 Datasets
2.3.1 MIT BIH Dataset

The MIT BIH Dataset [8] was chosen to validate the feature engineering algorithms
developed for ECG. It contains ECG information that is labeled on a beat per beat
basis. It is also considered the defacto dataset to validate ECG algorithms.

The dataset contains recorded ECG waveforms from 49 different patients contain-
ing different type of conditions. The data was digitized at 360 Hz, therefore containing
a different sampling frequency as the dataset used for Sepsis prediction (GEHC). A
convenience found with this dataset is that most of the data is preprocessed, there is
software available to handle waveforms, and the whole dataset is not more than a
few hundred megabytes (depending on how one expands the waveforms).
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The criteria used to select patients was as follows: randomly select patients that
have rare, but relevant cardiac clinical phenomena. Each recording is 30 minutes
long, extracted from patients in the Beth Israel Hospital Arrythmia Laboratory.

2.3.2 GEHC Proprietary Dataset

Information regarding the data structure of the the GEHC dataset has already been
mentioned in 2.2.1 and 2.2.2. Beyond this information, it should be noted that this
dataset contains information from patients who were admitted to an Intensive Care
Unit (ICU).

The entire dataset was initially comprised of about 2300 patients. Due to
conditions mentioned in the Exploratory Data Analysis (EDA) section 4 the number
of patients used for this research decreased dramatically.

The selection criteria for the dataset was in general: patients admitted to the
ICU during a certain time frame. Because the dataset is private, the specifics cannot
be disclosed.

The dataset is comprised of different types of waveform data, including Continuous
Blood Pressure, SpO2, ECG, Respiration, EMG, EEG, among other signals. Not all
signals are available for every patient. The most available group of signals is ECG,
SpO2 and Respiration. As a consequence to this, and the fact that most consumer
devices can also capture these signals, ECG, SpO2, and Respiration waveforms were
chosen for this study.

In contrast to the MIT BIH dataset [8], this dataset contained variable length
recordings, with as much as weeks worth of recorded waveform information, and
no pre-processing (containing several discontinuous strips), and was 7 terabytes
(Tb) large. This incurred a significant extra work, which involved figuring out the
structure of the dataset (EHR and Waveforms) and processing it in the most timely
fashion in order to have the work concluded within the timeline of a Master’s Thesis
work.

2.4 Software Design and Engineering
Since this research entailed an applied solution, with a significant amount of software
engineering from the very beginning, a number of concepts and tools were chosen
at the start. These concepts and tools helped develop the research and exercise
concepts studied throughout the academic program. This section first describes the
tools used, then the software engineering concepts applied in the project. Finally,
notes regarding how all of these tools and ideas helped shape the results achieved.

2.4.1 Infrastructure and Development Tools

To begin with, the list of tools used for this project includes programming languages,
Interactive Development Environments (IDEs) and infrastructure setups (see Fig-
ure 12 for an illustration of the services). The language of choice for the development
of all the tools was Python. This was mainly due to the following reasons:
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• Syntax readability (close to writing pseudo code)

• Computational support (Numpy, Scikit-Learn, Pytorch packages)

• General Data organization support (Pandas, Pickle and OS packages)

• Data visualization and prototyping support (Matplotlib, Jupyter Notebooks,
Dash and Plotly)

After choosing the programming language, the next tool to consider was the IDE
to be used. From the very beginning, the idea was to create tools that would be as
close to production quality as possible. For these purposes, IDEs such as Pycharm
provide great support by giving syntax highlighting, comprehensive search and
refactoring options, version control support, and project organization. In addition, the
Professional version of it also provides support for remote development. Consequently,
Pycharm Professional was chosen. Figure 12 helps illustrate the logos and tools used
to produce the development infrastructure.

S3

EC2

Athena

Development Tools

Infrastructure Tools

Figure 12: Infrastructure and development tools chosen

AWS Amazon Web Services
S3 AWS Simple Storage Services
EC2 Elastic Compute Cloud
Athena DBMS like service from AWS
Boto3 Python library that allows communications with AWS tools
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The GEHC dataset contained several terabytes of data. Initially, it was contained
7.1 Tb. However, this quickly expanded as waveforms had to be sliced and diced,
features computed, and supporting data structures created (for example, tables
to keep track of continuous strips of waveforms (section 4). In addition, for the
computation of features, which produced the mapping between xraw 7→ x, a significant
amount of resources were necessary. In order to achieve this, and be able to scale
according to the tasks at hands, a development environment was created within the
Amazon Web Services (AWS) environment (see Figure 13 to get a glimpse in the
environment). Specific services used included EC2 instances, to create environments
with appropriate GPU and CPU computation capabilities, as well as Athena and S3,
to easily access data and information.

EC2

Athena

S3

● Unlimited Storage
● Remote Access
● Boto3

● SQL access to 
tables in S3

● Boto3 
● Parallel querying
● Similar to DBMS 

● Computational 
scalability

● Cost effective
● Accessible

Boto3

Boto3

Athena
Web Interface

Figure 13: Noting the benefits of the AWS services used, along with the direction of
access.

Now,as mentioned in the previous paragraph, the GEHC dataset was very large
(7.1Tb). As described in subsubsection 5.2.1, the hardware required to accomplish
tasks such as feature extraction, data analysis, data warehousing, and model training
varied widely. For this reason AWS EC2 machines were used, such to scale hardware
according to the task at hand, while maintaining the same software stack. Figure 14
illustrates the idea.
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Figure 14: Illustrating how one is able to have multiple hardware configuration, while
maintaining one software stack

2.4.2 Fundamentals Used

Moving on to the software engineering concepts, two main ideas were used during
the design phase of this project: Object-Oriented Design patterns [18], Automata
Theory [19], and general concepts in algorithms [20]. The latter concepts were
used rather indirectly, as they contain some of the fundamental ideas that either
complement or help understand the logic behind object oriented design (OOD).

The Unified Modeling Language (UML) is a sub-concept of OOD patterns. It is
also a very helpful grammar to use when tackling a problem. During this research,
Class Diagrams and State Diagrams were developed.

Class Diagrams are a class of graphical notation that allows one to specify class
names, attributes and methods, along with inheritance notations. Figure 15 depicts
a graph containing a high level definition:
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Figure 15: Class Diagram rules and inheritance definitions. Graphs retrieved from
Horstmann’s book [18]

Figure 16 depicts a high level UML Class Diagram that was designed for the
Feature Extraction System used in the MIT BIH and GEHC dataset to produce the
features that composed the training, ,test, and validation data:

Figure 16: High level Class Diagram, containing only class names
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In addition to Class Diagrams, State Diagrams are also a useful strategy to plan
and visualize the state of objects. State Diagrams were used loosely and at a high
level, so to plan and visualize the state of the data.

Figure 17: It is possible to see the different states pertaining to an input set of
waveforms. The colored notes denote the different operations that are performed to
reach that specific state.

The above tools and ideas allowed for a structured development environment that
was adaptable, yet performance oriented. By observing OOD patterns and designing
computational systems that made use of efficient algorithms, while being careful
about its input and output grammar, it was possible to load, process, and store large
chunks of data (tens of gigabytes per waveform) in an efficient and structured fashion
(see Appendix A). In the end, since the data was well structured and traceable, it
was possible to adjust the data structure and optimize the machine learning training.

In a final concluding statement, the end goal with all of this structure and
discipline in the software engineering part is to attain a higher degree of confidence
on the results achieved.
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3 Feature Engineering
Feature engineering composed a significant part of this work. In essence, the idea
was to dissect biosignals into features that could be better digested by machine
and clinician. In order to achieve this, it was necessary to make decisions (when
choosing features) that were conscious and considerate of optimization concepts (for
the underlying optimization algorithms used by most machine learning algorithms),
and clinically explainable (meaning that a clinician could understand directly or
indirectly).

In order to help a clinician understand a feature directly, it should make a
complete one-to-one matching with already used features or methodologies. For
example, features such as heart rate and respiration rate are information that produce
this one-to-one matching. In order to accomplish an indirect understanding, it should
be possible to explain a feature in clinical terms. Features such as the information
frequency distribution of an ECG can be indirectly mapped to a physician language.
For example, a large peak at 9 Hz is understood to be related to the P wave [21].

Now, in terms of optimization, every feature that is developed shall have the base
requirement to map a raw signal, say an ECG signal xraw into a domain that is easier
for the algorithm to classify correctly. This could entail filtering and normalizing
the signal (as it was done on the implementation for the Feature Extraction System
created for this research) [22] [23] [24]. The goal is to help the optimizing algorithm,
so that it will not get stuck in sharp local minimas or irrelevant solutions.

With the above principles in mind, the next step is to consider the nature of
biosignals. Per the definition proposed by Oppenheim and Shaffer in [24], a signal
refers to information or data that is extracted with a time dependent component.
Biosignals on the other hand, are a category of signals whose origins are biological
processes. The signals used in this research are all under the class of biosignals.

Now, there are two classes of signals: discrete and analog signals. Analog signals,
are those which are continuous in nature, such as audio signals. Discrete time signals
is generally related to information that is being sampled (or recorded) at some regular
interval. These can be defined as follows:

x[n] = xa(nTs),−∞ < n <∞ (2)

In Equation 2, xa(nTs) represents an analog signal that is being sampled at a
sampling period of Ts, and n is the specific sample number [24]. Mathematically,
these can also be referred to as sequences, as their domain is defined by a set
of integers (in this case n). Biosignals for example, most often carry a periodic
characteristic which denote some consistent function of an organ. This means that
there is some component in x[n] which recurs every Tp. Therefore, in an ideal
scenario: x[2 + Tp] = x[2]. In a more realistic world, it will be something of the form:
x[2 + Tp] = x[2] + ε[2 + Tp]. The term ε[k] refers to noise that may be incurred over
time in the signal. However, the structure and value should be approximately the
same. We can refer back to the ECG signal extracted from the GEHC dataset.
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Figure 18: Raw ECG signal. It is possible to see the recurring beats, which demon-
strate the natural periodicity in the ECG biosignal.

These periodic components allow a view into how a specific organ (or a group of
organs, by inference) is functioning. For example, the ECG provides a beat-to-beat
view of the heart. This shows how heartbeats are changing over time. If the heart has
malfunctioned or produced abnormal behavior over the last few minutes, or hours, it
should be possible to see this in the ECG recording.

In the example in Figure 18, it is possible to see the noise, preventing strict
periodicity. However by loosening the definition one can claim periodicity. By
referring back to the SpO2 signal in Figure 7 and Respiration signal in Figure 11, it
is possible to see these periodic waves that occur.

Considering this periodicity in biosignals, the following is hypothesized:

Hypothesis 3.0.1. There is value in the periodic components of a biosignal time
series.

Beyond the view in the time domain, it is also possible to analyze a signal in
the frequency domain. The frequency domain is just another representation of the
original signal. It is similar to viewing the same information from a different angle.
An angle that highlights how the energy is distributed across frequency components.

In order to see and understand how another insightful angle may be achieved,
and why it may interesting, it is first necessary to consider the results achieved by
Joseph Fourier [25]. These results demonstrate that any signal can be approximated
by a sum of complex exponentials (or complex sinusoids).

x(t) =
∞∑

k=−∞
{ck · e2π·t·f0·k} (3)

f0 = fundamental sampling frequency
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Figure 19: By summing different number of sinusoids, it is possible to a simple sine
wave to approximate a square wave.

The idea that it is possible to represent different functions through the sum of
complex sinusoids leads to the Fourier Transforms (FT). The Fourier Transform is
the tool that allows this different view point into a biosignal. For the purposes of
this work, the Discrete Fourier Transform is more important, and thus its definition
will be presented as follows:

X[k] =
N−1∑
n=0

{
x[n] · e−

j2π
N
·kn
}

=
N−1∑
n=0

{
x[n] · (cos(j2π

N
· kn)− j sin(j2π

N
· kn))

}
(4)

Similarly, the time representation may be achieved by the inverse discrete Fourier
Transform:

x[n] = 1
N

N−1∑
k=0

{
X[k] · e−

j2π
N
·kn
}

= 1
N

N−1∑
k=0

{
X[k] · (cos(j2π

N
· kn)− j sin(j2π

N
· kn))

}
(5)
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x[n]: Input (time domain) sequence
X[k]: Output (frequency domain) Sequence
N Number of elements in the input sequence
k: Output sequence index
n: Input sequence index
j: Imaginary number (

√
−1)

The Discrete Fourier Transform (DFT) defined in Equation 4 allows the mapping
of an input sequence x[n] to an output sequence X[k]. The sequence X[k] is an
alternate representation of x[n] in what is called the frequency domain.

The frequency domain provides insight into the periodic components that occur in
the input sequence, as well as how predominant these components are in comparison to
other recurring components. More generally, it is possible to see how fast information
is changing in the input sequence.

Traditionally, in areas of signal processing, wireless communications and image
processing, the frequency domain has been crucial to produce valuable insight on
input sequences [24].

The valuable insight provided by the frequency domain leads us to the following
hypothesis:

Hypothesis 3.0.2. There is added value in the information contained in the fre-
quency domain for a certain time interval of a biosignal.

Hypothesis 3.0.2 and Hypothesis 3.0.1 are the crucial ideas that support the
features and feature engineering produced in this research work. By considering the
value in the time domain of the sequences, it is possible to derive features that hold
information from the time domain, while maintaining direct relation to features and
ideas that physicians understand.

The remainder of this chapter will be divided in the following topics: Signal
Processing, Feature Definition, Distinct Features Developed, and Conclusion.

3.1 Signal Processing
When considering the data used for this project, it is necessary to be attentive to
the structure. As each respective input data is a discrete time signal, two specific
concepts must be accounted for when processing this information: Sampling and
Noise.

3.1.1 Signal Sampling

For the MIT BIH dataset, where only ECG was considered, the sampling frequency
was 360 Hz. This was after hardware processing of the information. For simplicity,
only the post-hardware signal processing will be considered here.
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As previously mentioned, the actual monitoring device sampling frequencies for
the GEHC dataset varied between 60Hz to 240Hz. However, when the waveforms
were stored, those which were below 240Hz were up-sampled to 240Hz.

Ts = 1
fs

= 1
240 = 0.004167 (s) (6)

3.1.2 Noise Filtering

Noise Filtering was tailored for each individual waveform. More specifically, a
Butterworth Filter [24] with different specifications was used for each signal. Figure 20
provides a simple block diagram that demonstrates the computational flow of signal
through filtering.

H(ejω) x[n]x
ECG
[n]

Figure 20: Signal xECG[n] going through a filter H(ejω)

The raw waveform signal xECG is a discrete-time signal that contains noise.
This signal is passed through a filtering function H(ejω) that attempts to keep the
frequency bands of interest intact, while attenuating what is considered noise.

Attenuating a certain frequency band that is considered noise is the general goal
of signal filtering. A frequency band is a range of frequencies, generally defined in
terms of radians. Another term that usually goes with frequency bands is passband.
Passband refers to range of frequencies that one wishes to keep in the signal. Equa-
tion 7, 8, and 9 outline the passbands used for the Butterworth filters used to clean
the ECG, Respiration and SpO2 waveforms.

π · 0.5
Ts
≤ ωECG ≤ π · 45

Ts
(7)

π · 0.1
Ts
≤ ωRR ≤ π · 4

Ts
(8)

π · 0.1
Ts
≤ ωSpO2 ≤ π · 20

Ts
(9)
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Figure 21: In the figure above, a number of different filter orders for a Butterworth
Bandpass Filter is demonstrated. The parameters are similar to the ones tested for
ECG waveform

Figure 21 further illustrates this idea of a passband when considering a filtering
operation. Filters of different order are displayed. These filter contain a range of
values from [0,1]. This is generally referred to as the gain of the filter. Ideally one
would like to have a gain of unity (or |H(ejω)| = 1) in the passband, and a gain of 0
in the stopband. The Stopband is the region of frequencies that is undesirable in the
signal. However, in a more realistic scenario, there is some error that distorts the
signals in the passband.

The Butterworth Filter, was chosen due to the fact that it attempts to keep a
constant gain of unity in the passband. This ensures the signal achieves minimal
modification (amplification or attenuation) within the frequency band of interest.

One important artifact that is filtered in an ECG waveform is the baseline
wandering. Figure 22 helps the reader note the variation of the waveform around
0 in the y axis. This variation is known as the baseline wander. These are low
frequencies that are created by artifacts such as other organs, movement, and general
noise between electrode and skin.
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Figure 22: Baseline wandering for an ECG signal is demonstrated in the top graph.
On the lower graph, it is possible to see the filtered signal.

The topic of Filtering is a large area of Signal Processing. The attempt here is
only to provide sufficient information such to understand the steps that were taken
during the feature engineering performed in this research work. For further reference
regarding filtering and sampling of signals, please refer to [24] and [10] for further
material.

3.2 Defining Features
In the previous section, the pre-processing concepts and supporting ideas that
motivated and propelled the feature engineering portion of this work was explored.
In this section, the feature developed, along with the algorithms designed to extract
those features from raw waveform signals are explained.

To begin, the concept of feature shall be explicitly defined:

Definition 3.2.1. A feature is a vector zi,k that may be achieved by applying a
feature mapping function φi,k(·).

i: Represents domain name, e.g. t for time, f for frequency
k: Represents function name, e.g. ∆ for peak differential feature mapping

φt = {φP , φQ, φR, φS, φT , φResp, φDyast, φ∆, φσ} (10)

φf = {φMax, φSpec, φWave, φWaveStats} (11)

The feature mapping functions designed for this project sit within two main
classes: Time Domain functions, denoted by φt,j, and Frequency Domain function,
denoted by φf,k, where j and k denote some specific feature name. The specific
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names and their respective domain denominations are expressed in Equation 10 and
Equation 11. It should also be noted that as the text progresses, the notation style
φt,∆, where both subscripts are mentioned, will be switched to φ∆ for convenience.

Now, an example to better illustrate Definition 3.2.1 is the following: consider
a filtered ECG waveform as shown in Figure 22. Feature mapping function φt,∆(·)
(further explained in subsection 3.3) computes the time changes over a specific
reference peak. For an ECG signal, this means calculating a raw version of a Heart
Rate 2

zt,∆ = φt,∆(xECG) (12)
In the example presented in Equation 12, ∆ is a feature name that represents

changes with respect to specific reference points in the waveforms. By applying φt,∆,
a vector zt,∆ containing information about heart rate is created.

In order to extract these reference points, lower level features must be created,
whose role is to extract the reference points (or points of interest). In the case of
ECG waveforms, these reference points generally come from the detection of the
QRS complex (further discussed in subsubsection 3.3.1.

A final high level note regarding the features: features related to the time domain
structure of the data are generally waveform specific. For example, developing an
algorithm for identifying the P,Q,R,S, and T peaks is specific to the ECG (as these
are clinically acceptable features of interest). For SpO2, identifying the Systole
point and Dyastole is very specific to a Plethysmographic wave. This holds an
important distinction in the implementation of the system to extract the features, as
the algorithms developed to exercise the frequency domain feature mapping are data
structure agnostic. This means that these algorithms can be applied to any of the
waveforms. Whereas algorithms developed to implement the time domain feature
mapping are dependent on the structure of the data (or waveform, such as ECG,
SpO2, or Respiration).

3.3 Time Domain Features
In this section, time domain features will be explored, along with the algorithms
that were developed to allow the extraction of these features.

3.3.1 PQRST Detection

In order to analyze the periodic functioning of the heart, clinicians examine the
beat-to-beat behavior of the heart. This beat-to-beat behavior provides information
such as Heart Rate, Heart Rate Variability, and consequently valuable insight on how
the heart has been functioning over a specific window of time. From a computational
perspective, it is possible to design an algorithms that performs such actions reliably.
To achieve this, an algorithm must find some reference point within the beat to
identify that there has been a beat. This brings up the term QRS Complex. The
QRS Complex, is basically three extremas generally found in a heart beat.

2Regular Heart Rate is calculated over the difference between R peaks of regular heart beats.
Here, raw version means that Heart Rate is calculated over any beat.



34

Figure 23: QRS Complex, where the more accentuated R peak helps algorithms such
as the Pan Tompkins [26] identify the QRS Complex

As noted in Figure 23, the Q and S peaks provide valleys which help accentuate
the most acute peak in the heart beat, the R peak.

In order to identify the QRS complex, the Pan Tompkins algorithm [26] was
chosen as a starting point for a QRS Detection algorithm, as it helps accentuate and
identify this change. In short, Pan-Tompkins is a classic QRS detection algorithm
proposed in the 1985. It uses differentiation, squaring and integration steps in order
to reliably identify the R peaks of the wave. The product of applying these operations
in the data is a highlight of acute changes, such as the one produced by the QRS
peaks. Figure 24 helps illustrate how the Pan-Tompkins algorithm affects the original
signal. Moreover, it was validated with the MIT BIH [8] dataset.
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Figure 24: x′ on the top plot shows the result of applying the Pan-Tompkins
algorithm [26]. The orange dots illustrate the peaks that were found. The lower plot
shows the input xECG that was used.

Algorithm 1 gives further insight into how the Pan-Tompkins algorithm was used
to detect the QRS Complex.

Algorithm 1 R Peak Detection φR
Require: ECG Signal xECG ∈ <
Ensure: Peak array R is initialized
Apply Pan-Tompkins [26] on xECG to achieve x′
Apply [27] find_peaks function to x′ and store peaks p in peak set R
Define window w to validate peak p ∈ R
Define a new peak set R′
for all Peak p ∈ R do
Find peak position p0 within the array of values xECG[p− w/2 : p) that is the
largest
Find peak position p1 within the array xECG[p : p+ w/2) that is the largest
if xECG[p0] > xECG[p1] then
Append p0 to R′

else
append p1 to R′

end if
end for
R ← R′
return R

Algorithm 1 was validated in the MIT BIH [8] dataset, which is considered a
de facto dataset to validate algorithms for beat detection. The performance tests
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showed 95% accuracy.
Now, given that the R peaks are detected, it is possible to find the latter peaks

by using heuristics derived from the physical capabilities of the heart. Namely, from
the R peaks one can investigate a small window that predates the R peak, and
find minima Q . Similarly, placing a small window after the R peak, one can find
minima S (Algorithm 2). A similar idea, however now parting from S can be used to
detect T (Algorithm 4). Finally, investigating prior to Q allows the detection of P
(Algorithm 3).

Algorithm 2 describes the mapping function φS for extracting the S peaks. The
S peak is in fact a valley that is part of the QRS Complex, as noted in Figure 23. It
sits between P and R peaks, and is generally the starting point for a segment called
the ST Segment. The ST Segment represents a window of time during which the
ventricles are in active depolarization. Abnormalities in the duration and form of
this segment can indicate anomalies in the ventricles.

Algorithm 2 S Peak Detection φS
Require: ECG Signal xECG, R peak array R, ECG Sampling Frequency fs
Ensure: Peak array S is initialized
for all Peak r ∈ R do
Window size Mw ← 0.11 · fs
Starting position w0 ← r + 1
End position wf ← r +Mw

Get a normalized version of the data to check: d← norm(xECG[w0, wf ])
Apply [27] find_peaks on d to get s
Append s to S

end for
return S

The S peak should sit directly after the R peak. Consequently, Algorithm 2 uses
a constant (0.11) that can be translated to a window of sampled data, whose length
is 110 ms. This window of information containing the array xECG[w0, wf ] is used to
find the peak. In the case of the S peak, it should be a minima within this window.

An additional note regarding 2, is the norm that is used. It is defined as follows:

norm(x) = x− x
σ

(13)

In Equation 13, σ is the standard deviation of the input vector. Moreover, x
represents the mean of the input vector x.

Similarly to the S peak, the Q peak is a valley that sits directly before the R
peak. It dictates the beginning of the QRS Complex. The algorithm to find the
Q peaks is very similar to Algorithm 2, except for the window that is chosen. The
constant is the same, and the peak of direct dependence, R peak, is also the same.

The P peak indicates the start of what is called depolarization process [10].
Depolarization is when changes in potential in the membranes of the cells in the heart
occurs. This depolarization begins in the right and left atria. The cells depolarize
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producing an electrical impulse that traverses the heart’s myocardium. Myocardium
is the name of the muscle cells that composes the heart’s walls. Algorithm 3 describes
how the feature extraction system shall record this information.

Algorithm 3 P Peak Detection φP
Require: ECG Signal xECG, Q peak array Q, ECG Sampling Frequency fs
Ensure: Peak array P is initialized
for all Peak q ∈ Q do
Window size Mw ← 0.2083 · fs
Starting position w0 ← q −Mw

End position wf ← q − 1
Get a normalized version of the data to check: d← norm(xECG[w0, wf ])
Apply [27] find_peaks on d to get p
Append p to P

end for
return P

Algorithm 3 contains a constant, 0.2083 which helps define the size of window
that will be used to look for the P peak. It basically means that we are considering
208.3 ms of information for that window that will be checked. This constant was
reached by experimentation and the fact that a P wave is expected to last for about
120 ms (if it is there at all). By extending the window, experiments showed a more
reliable identification of the P peak.

Now, Algorithm 4 describes more precisely how to identify the T peak. The T
wave detection algorithm contains some interesting points that are worth mentioning.
The first is the fact that the T wave illustrates the ventricular repolarization (last peak
seen in Figure 23) Depolarization means that the heart is undergoing a relaxation
phase, after the contraction period. This process should last for about 300 ms [10].
As one may suspect, this is highly dependent on the rate at which the heart is
beating. If it is slower, something slightly above 300ms may be expected. If faster,
this window is expected to be smaller. This is where the constant comprising Mw

comes from. We consider about 347 ms worth of information, in order to make sure
that the algorithm is able to withstand some error, and in the worst case, it will
capture more information than necessary. However, not sufficient such to interfere
with the peak formation of the T wave.
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Algorithm 4 T Peak Detection φT
Require: ECG Signal xECG, S peak array S, ECG Sampling Frequency fs
Ensure: Peak array T is initialized
for all Peak s ∈ S do
Window size Mw ← 0.3472 · fs
Repolarization offset roff ←Mw · 0.10
Starting position w0 ← s+ roff
End position wf ← s+Mw

Get a normalized version of the data to check: d← norm(xECG[w0, wf ])
Get Average Gradient d′avg of d
if d′avg > 0 then
Apply [27] find_peaks on d to get t

else
Apply [27] find_peaks on −d to get t

end if
Append t to T

end for
return T

Ideally Algorithm 4 should include some information about the time difference
between the current R peak and the previous. This is so the algorithm is able to
include the information about whether or not the heart is beating faster, and adjust
the T wave detection. This was initially implemented, however it required more
testing validation. And so, at the end Algorithm 4 was used as the performance was
sufficiently good.

Another couple of points worth mentioning is the 10% starting gap between the S
peak detected and the window that will be used for detecting the T peak. This is due
to the beginning of the repolarization event, therefore causing some unpredictability
in this portion of the signal. As a consequence, only the latter part is used. Finally,
the gradient is used because it is able to give some indication about whether the T
wave is normal or inverted 3.

P Peak Detection should be something similar to T, except we select a window
before Q. Figure 25 illustrates the result of the algorithms for peak selection in
practice. It is possible to see the peak selection on a beat-to-beat basis.

3The difference between normal and inverted T waves can be an indicator of Myocardial
Ischaemia [10]
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Figure 25: PQRST peak selection feature.

The resulting peak selection shown in Figure 25 is the basis for the rest of the
features developed for ECG Time Domain.

3.3.2 Respiration Peak Detection

The concepts developed in subsubsection 3.3.1 served as basis for the peak detection
of the Respiration signal. In essence, the respiration signal contained in the GEHC
dataset was extracted by a GEHC monitoring device. This monitoring device imputed
an artifact into the signal to highlight inspiration and expiration events. Inspiration
is when the device detected that the patient was inhaling. Expiration highlighted
exhaling. Figure 11 better highlights the points discussed.

The strategy was then as follows: use these imputed artifacts 4 that are created
by the monitor as reference peaks. This is very similar to what was done with the R
Peak detection algorithm.

Algorithm 5 Respiration Detection φResp
Require: Respiration Signal xResp ∈ <
Ensure: Peak array E is initialized
Apply Pan-Tompkins [26] on xResp to achieve x′
Apply [27] find_peaks function to x′ and store peaks p in peak set E
Initialize peak set E′ to be half of the size of E
Append even indexes of E to E′
Reset E← E′
return E

4In reality, these are not artifacts. These are peaks created by a sophisticated peak detection
algorithm that is proprietary to GEHC.
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Algorithm 5 shows more precisely how the mapping function φResp achieves the
reference peaks for the respiration signal. In essence, the steps are very similar to R
peak detection for ECG, however here it is necessary to drop half of the peaks to
isolate only inspiration, or expiration.
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Figure 26: Respiration Peak Selection. In the top graph, it is possible to see the
raw respiration signal from GEHC dataset, which contains the artifacts of interests.
The lower image demonstrates the peak selection of expiration points, achieved by
Algorithm 5.

Figure 26 shows not only the resulting peak selecting for Algorithm 5, but also
the raw respiration signals. It is possible to note the digitization artifacts that are
contained in the raw respiration signal. Although the filtering process produces some
deformation to the final time morphology of the respiration signal, the main point of
interest is a clearer frequency spectrum (digitization artifact corrupt the frequency
spectrum), and the location of the peaks.

3.3.3 Plethysmographic Peak Detection

SpO2 peak detection was performed similarly to respiration peak detection. In
essence, the core algorithm was similar, along with the results. The difference is the
peak of reference, which in this case of the Systole. The user may refer to Figure 26
as a reference for Systole Detection.
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Figure 27: Systole Peak Selection. In the top graph, it is possible to see the raw
SpO2 signal from GEHC dataset. The lower image demonstrates the peak selection
of expiration points.

Similar to the filtering deformations created in the respiration signal, the filtered
SpO2 signal also has a morphological difference compared to its original, raw signal.
However, the digitization artifacts created by the up-sampling is filtered.

3.3.4 Higher Level Features

The peak detection features are considered as lower level features, since they are
the basis for higher level features such as φ∆ and φσ feature mappings. Algorithm 6
describes one of these higher level feature mappings which help produce features that
are equivalent to Respiration Rate, Heart Rate, and Pulse Rate.

Algorithm 6 Delta Feature Mapping φ∆

Require: Peak array P,
Ensure: Peak array D is initialized
for all Index i in range of |P| − 1 do
Calculate time distance d = P[i+1]−P[i]

fs
in seconds

Append per minute time interval 60
d
to D[i]

end for
return D

Now, Algorithm 7 builds on Algorithm 6. It’s goal is to return the standard
deviation of an input array containing the time differences in a per minute basis
computed by Algorithm 6.
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Algorithm 7 Sigma Feature Mapping φσ
Require: Delta array D,
Ensure: D is initialized
Apply [27] std to set D ← std(D)
return D

In Algorithm 7, std stands for standard deviation. The function is further defined
in Equation 16.

mean(x) = x = 1
N

N∑
k=1
{xk},where N is the number of items in x (14)

dev(x) = xd = |x− x| (15)

std(x) = xσ =
√

mean(x2
d) (16)

Part of the value in the Sigma Feature Mapping φσ lies in the ability to reduce
the dimension of feature vector z∆ to a scalar containing the standard deviation zσ.
The importance of dimensionality reduction will be further discussed in section 5.

3.4 Frequency Domain Features
This section explains on the frequency domain features that were developed. As
in subsection 3.3, where the time domain features along with the algorithms that
composed the feature mappings were discussed, this section aims to provide the
similar value and explanation.

In Equation 4 the DFT was explored. Soon after, Hypothesis 3.0.2 was posed.
The Fourier Transform Decomposition (FTD) module that was developed to extract
features for the eventual machine learning experiment built on these ideas and
assumptions. Moreover, it was also driven by the fact that these algorithms are
domain agnostic features. Therefore, the same algorithm can be applied to any input
waveform.

This section will then be split into two subdomain decomposition modules: Fourier
Transform Decomposition and Wavelet Decomposition.

3.4.1 Fourier Transform Decomposition

The FTD mainly produced two features: Max Spectrum components φMax, and
Spectrogram Images φSpec. A power spectrum describes the distribution of energy
in the different frequencies encountered in the signal. A spectrogram is a visual
representation that is created to help analyze how the frequency bands change over
time. So for example: how did the spectrum distribution look over the first 5 seconds
of ECG recording? Were there high levels of energy in range between 8-12hz? Or
perhaps between 2-4Hz?

These questions are relevant because it has been shown that it’s possible to
identify the presence of specific waves, such as T or P waves in the case of ECG



43

waveforms, in the power spectrum [10]. For example, the T wave is contained mostly
within 0 to 4Hz. The P wave can be found in the range between 0 to 8Hz. The QRS
complex is usually concentrated in the range between 8 to 20 Hz. This information
shows that the peaks representing these waves will generally be within a certain
frequency range. If that changes, then something may be happening which may be
worth examining. The idea with feature mapping φMax is to provide this information
to the machine learning model.

Algorithm 8 Max Frequencies Feature Mapping φMax

Require: Signal xraw, Peak percentage α
Ensure: Empty peak array D and V are initialized
Apply FFT from [27] FFT package to attain array X[k]
N ← length(X[k])
Reset X[k]← |X[0 : N/2− 1]|
Find max peak value p in X[k]
Set height of interest h← p · α
Apply [27] find_peaks to X[k] and store peak locations in P
for all peak index i in P do
if P[i] > h then
Append P[i] in D
Append peak value X[P[i]] in V

else
Keep Going

end if
end for
return D, V

Particular to Algorithm 8 is the peak percentage parameter, which one must
decide before moving forward with the algorithm. Once paired with the maximum
peak achieved in the spectrum, will translate to the minimum height of interest for a
peak that will be used for prediction. This was done so to decrease the amount of
data that would be sampled, since most frequency spectra is generally sparse.

Figure 28 illustrates the results of the implementation of Algorithm 8.
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Figure 28: Periodogram showing the magnitude of the frequency values, along with
the highlighted peaks that will be included in features vector φMax

Biosignals usually have a very sparse, and rather localized frequency spectra, as
shown in Figure 28 and Figure 29. As a consequence, it is possible to allow the
machine learning algorithm to focus on the parts that are interesting by selecting
the most prominent peaks.
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Figure 29: Respiration Periodogram. It’s possible to see in the smaller, focused plot,
that the majority of energy lies between 0.1 to 0.8 Hz.

A final feature that builds on the same concepts is the spectrogram images. These
images are a product of feature mapping function φSpec. To simplify the idea, it is
like applying the FFT for selected windows of time.
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Algorithm 9 Spectrogram Images Feature Mapping φSpec
Require: Signal xraw, time window T
Ensure: Empty peak array D
for all for t in range [0, T ) do
Apply FFT from [27] FFT package to attain array X[k] for first second of
interest
Reset X[k] to only one half of the spectrum
Append X[k] to D

end for
return D

Algorithm 9 is rather simple: for every window size that is given, the FFT is
calculated and stored. At the end, the resulting image is composed of columns that
contain frequency information for that window of time. Figure 30 illustrates the result
of this sequential FFT calculation. The lines which are easier to see are frequency
bands that had significant levels of energy at that moment in time. Moreover, it’s
also possible to see that the lines fade as frequencies become larger. Additionally, in
specific windows of times there is more or less activation at higher frequencies. These
interesting characteristics are vital for capturing and understanding information
about events that lead to abnormal health states.
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Figure 30: Spectrogram of an ECG signal.

3.4.2 Wavelets Decomposition

Wavelet Decomposition (WD) was another method that was used to extract features.
From WD two feature mappings were created: component coefficients φWave, and a
collection of statistics from every wavelet level and component extracted, φWaveStats.
Wavelet decomposition (or expansion) of a signal is an analytical method that
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allows one to reduce the dimension of the signal, while providing a time-frequency
localization [28]. This means that with a small number of coefficients we can represent
most of the energy in the signal. In addition, most discrete wavelet transform
algorithms have similar run time as the FFT, O(N log(N)), making it an efficient
data structure agnostic option for feature extraction.

There are different types of wavelets, and they may be tailored for the problem
of interest. The most common types are Haar and Daubechies Wavelets [28]. The
wavelets chosen for a decomposition task are referred to as "mother wavelets", or
"prototype wavelets" [29], and can be generalized as per Equation 17.

Ψa,b(t) = 1√
a
·Ψ(t− b

a
), where a, b ∈ Z (17)

XW (a, b) =
∫ ∞
−∞

x(t) ·Ψa,b(t) · dt (18)

a Scaling factor
b Translation amount
Ψ Specific wavelet function used
t continuous time variable
x(t) Continuous time signal
XW Resulting wavelet transform

Equation 18 provides the basic definition of the Wavelet Transform. This definition
shows how the scaling and translation properties of a mother wavelet Ψa,b(t) can be
used to transform an input function x(t), or in the discrete case x[n] to an alternate
representation that provides a different view of the initial information. Further details
on the topic are beyond the scope of this thesis, however the reader may refer to [25]
and [28] for a more comprehensive treatment on wavelets and wavelet transform.

In addition to Equation 18, an alternate form used is the Multi-Resolution
Wavelet Analysis definition. This form highlights the components that emerge from
the transformation and gives insight on how a signal can be completely reconstructed.
Equation 19.

x(t) =
∞∑

a=−∞
caφ(t− a) +

∞∑
a=−∞

∞∑
b=0

da,b ·Ψa,b(t) (19)

The concept of multiresolution wavelet decomposition provides an opportunity
to explore Low and High frequency components. These components are achieved
by passing the signal through low pass and high pass filters for some determined
amount of l times (or levels). At each pass the low pass filter L cuts the sequence in
length by half by only keeping its lower spectra components. The high pass filter
H produces the same effect. This set of operations decimates the signal in time
and frequency, allowing one to pick and choose which coefficients and the desired
resolution of said coefficients. Figure 31 helps illustrate how this is achieved.



47

d

a

1/2

1/2

x
raw

[n]

a

d

1/2

1/2 a

d

H

L

H

L

H

L

Detail
Coefficients

Detail
Coefficients

Level 1 

Level 2 

Figure 31: Graph showing the wavelet level decomposition. a contains the low level
components, while d contains the high level, detail coefficients

Different kinds of wavelets and levels of decomposition were explored in an attempt
to find the optimal feature vector. The decomposition scheme chosen to produce
the feature used in the machine learning step was the Low Frequency, Second Level
Component, of a ten level WD produced with a Daubechies 5 (DB5) wavelet.

Algorithm 10 Wavelet Feature Mapping φWave

Require: Signal x, output level l
Ensure: Empty peak arrays A and D are initialized
set a← x
Set dwt (·) to dwt from [30] PyWavelets package
for all l in range [0, 10] do

a,d← dwt(a, db5)
Append a to A
Append d to D

end for
return A[l]

Algorithm 10 shows how a low level frequency component in level l is extracted to
be used by a machine learning algorithm. Figure 32 illustrates the resulting waveform
that is created by the coefficients extracted from an ECG waveform.
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Figure 32: ECG Wavelet Components.

In addition to the chosen wavelet component statistics about the components
were also computed and concatenated into a feature of its own. The driving idea
behind this was to further reduce the dimension of the wavelet information available
to a set of statistics and evaluate its predictive power. Algorithm 11 describes the
specific instructions that comprise φWaveStats. As previously mentioned, the goal to
is further reduce the dimension of the resulting feature vector, while also including
information about every component computed.

Algorithm 11 Wavelet Statistic Feature Mapping φWaveStats

Require: Data Structure containing frequency components X
Ensure: Empty array D is initialized
for all Component c in Data Structure X do
Get statistics max, min, mean and medium cmax, cmin, cmean, cmedium
Append cmax, cmin, cmean, cmedium to D

end for
return D

3.5 Conclusions
The research, implementation and validation of the features implemented in this
section was the most challenging and extensive portion of this work. It required
exhaustive study of the datasets and tools available to more efficiently (in terms
of development time and computational efficiency) develop the feature mapping
functions.

As it will be further detailed in section 4 and section 5, not all features developed
were used in the final predictive modeling and evaluation phase. This is because it
would have taken much more time to implement support and evaluate the predictive
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benefit of all features. In future works, the features that were not used in the
current research work will be evaluated, so to validate whether there is value in the
information they provide.

Finally, it should be noted that the feature engineering exercise produced in this
section proved to be a great software engineering and signal processing venture that
allowed for the creation of a waveform Feature Extraction System that was sufficiently
modular such to be able to compute features efficiently for SpO2, Respiration and
ECG waveforms.
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4 Exploratory Data Analysis
This chapter shall discuss the efforts pertaining to Exploratory Data Analysis( EDA)
that were developed. The main goals are to bring insight into the data that is being
used and difficulties that exists with the use of this data.

4.1 Cohort Selection
The first topic that will be explored is the cohort selection. This refers to the act of
choosing the population for an experiment. The cohort selection was produced by
exploring a set of patient data that included patients whose diagnoses are related to
sepsis. By identifying patients who were diagnosed with Sepsis it was possible to
create a positive cohort, as defined in Definition 4.1.1 and a negative cohort, defined
in Definition 4.1.2.

Definition 4.1.1. The positive cohort shall primarily be composed of distinct en-
counters5 that have the following inclusion criteria:

1. Patients containing the word "sepsis" or "septic" in their diagnoses name

2. Patients who do not have a septic diagnosis when they were admitted to that
particular encounter

3. At least 48 hrs of waveform data6

The exclusion criteria goes as follows:

1. Patients that do not have waveform information that is verified.

Definition 4.1.2. The negative cohort is composed of patients that have different
encounters, are not in Definition 4.1.1, and satisfy the following criteria:

• At least 48 hrs of waveform data

The exclusion criteria goes as follows:

• Patients that do not have waveform information that is verified.

• Patients that contain the following words in their diagnoses:

– sepsis
– septic
– cardiac

– atrial
– tachycardia
– artery

– ventricular
– aortic
– respiration

5Encounters are defined by distinct periods that a patient may have spent in the hospitals.
Encounters may be days, months or years apart. Consequently, the assumption is that every
different encounter may contain a distinct set of information, even if it pertains to the same patient,
and therefore contains information that may be considered distinct.

6This is to make sure that the cohort contains enough waveform data for prediction. This is
further explained in the following sections.
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– cardio
– heart

– pulmonary
– lung

– breath
– diastolic

The positive cohort in Definition 4.1.1 had all diagnostic entries composed of
some septic related condition. The cohort achieved with Definition 4.1.2 contained
patients that did not have sepsis in their EHR history. In order to provide light
into the different diagnoses present in the GEHC dataset, Table 3 provides a list
containing the fifteen (15) most predominant diagnoses encountered in the EHR:

Diagnoses Name Number of Values
Sepsis(995.91) 870
Unspecified septicemia(038.9) 862
Other specified cardiac dysrhythmias(427.89) 772
Severe sepsis(995.92) 724
Septic shock(785.52) 466
Cardiac arrest 262
Urosepsis 252
Sepsis 180
Cardiac pacemaker in situ 155
Automatic implantable cardiac defibrillator in situ 151
Sepsis, unspecified organism 144
Cardiac dysrhythmia, unspecified 134
Severe sepsis with septic shock 133
Septic shock 114
Cardiac complications 90
Total Number of diagnoses encountered : 230981

Table 3: Table demonstrating the top 15 diagnoses encountered in the Diagnoses
table

A closer look into the numbers of similar diagnoses encountered provides insight
into the different ways (and therefore inconsistent) format in which clinicians enter
information on the EHR systems. Although a significant portion of the rows in
Table 3 contains some form of sepsis, there does not exist a consistent entry measure,
making the cohort selection more difficult. This difficulty lies on the fact that the
same condition may be expressed in different formats in the Diagnoses EHR tables.
Consequently, in order to capture cases which are sufficiently general, where only
patients that have septic related conditions are chosen, one must control inclusion
parameters by checking the diagnoses name fields for specific words. Hence the list
of conditions included in Definition 4.1.1 and Definition 4.1.2.
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4.2 Waveform Continuity Analysis
An important case to consider with biosignals is discontinuity. Discontinuity may be
caused by medical personnel disconnecting the monitoring devices for short periods,
patient movement, connectivity issues, etc. These artifacts must be taken into
account because they cause noise in the input data.

Now, as one may expected, a patient’s movement, or the case where a physician
may disconnect one monitoring device, for example the SpO2, but leave ECG and
Respiration connected. This causes discontinuity in one waveform, while the others
are intact. Therefore, as a starting point to settle any mutual waveform analysis or
extraction of continuity information, it is necessary to align start and end points
of each the waveforms that will be used (in this case Respiration, SpO2 and ECG)
to a mutual start and end point. For this purpose the following Algorithm 12 was
designed and implemented:

Algorithm 12 Selecting mutual start and end points for RR, SpO2 and ECG
pertaining to same encounter
Require: Respiration, ECG, and SpO2 signals X ∈ <d×3

Require: Start time ts and end time te within an encounter
Ensure: Same length of valid signals Y ∈ <d′×3

for all waveform x ∈ X do
Find index set i which does not contain ∅ values or values ≤ −32700 (Very small
int denomination)
Append smallest time stamp vi to v, containing start values
Append largest time stamp vj to r, containing end values

end for
Set mutual start time t′s to max(v)
Set mutual end time t′f to min(r)
return t′s, t

′
f

In order to further explore the situation of discontinuity within the waveforms, it
was necessary to retrieve all the windows of continuity in the waveform. This would
provide time stamps that point to every start and end point of a continuous strip of
data. Algorithm 13 describes how this is done.
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Algorithm 13 Find continuous time points for a specific waveform
Require: Some waveform signal x ∈ <d×1, and a vector t ∈ <d×1 containing time
stamps for each entry in x

Require: tm = Max time difference accepted (may also be seen as max period
between entries)

Ensure: A table X ∈ <d×2 is created with a time stamp
Set table Y to the list of all values in X which are > −32700 or not ∅
Initialize reference point array r ∈ <z×2 to contain start and end points encountered

for all index i ∈ Y do
Set data from the following sample j = i+ 1 to v
Set data from current index i to w
dt = vt −wt, where wt indicates the time entry of w
if dt > tm then
Append start time stamp vt to rt0 , containing start values
Append end time stamp wt to rtf , containing end values

end if
end for
return r

Algorithm 13 was applied to a total of 500 waveforms. For this set of waveforms
every start and end point of a continuous window was retrieved. This helped identify
how much discontinuity existed in the waveforms that were being used.
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Figure 33: Distribution of the length of continuous windows found in the waveforms
examined.

Figure 33 illustrates the distribution of lengths for the continuous windows en-
countered. The result implies that there is a significant amount of discontinuities that
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occur consistently in all 500 recordings. In fact, it was found that most discontinuities
are one (1) second or less, and occur approximately every twenty (20) seconds.
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Figure 34: Distribution of percentages of windows which are at least one hour long,
for every waveform chosen in the cohort set.

Figure 34 further highlights the sparsity of significant7 continuous windows. Over
the set of waveforms analyzed, only three (3) waveforms had more than 5 significant
continuous windows. In fact, if one considers Figure 33, it is possible to note that
the majority of continuous windows are no longer than 30 seconds.

4.2.1 Expected Feature Impact

Since a significant amount of discontinuity was found in the data, questions were
raised as to how the features would be impacted by these artifacts. This section will
show the results of this consideration.

The waveforms have values that are equal to or less than -32000 for points that are
considered discontinuous. Therefore, from a computational perspective, the feature
extraction system process the discontinuous strips as if they are regular waveform
values. An example of these discontinuities for an ECG waveform is presented in
Figure 35, where the effect of discontinuity in the raw waveform and in the filtered
waveform is shown.

7For this experiment, we have defined significant continuous windows as a vector x which contains
at least one (1) hour of information. Since the sampling rate f = 240, |x| : length of vector x→
f · 3600 = 864000 samples
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Figure 35: Providing an example of discontinuous points in an ECG waveform

Figure 35 shows the effect of discontinuity in the raw waveform and the filtered
waveform. Moreover, the effects on the peak selecting algorithm are also displayed.
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Figure 36: By zooming into the discontinuity, its possible to note the impact of
discontinuity in the peak selection algorithm

Figure 36 shows that the peak selection algorithm manages to select real beats and
artifacts. However, due to the noise incurred by the artifacts, there are distortions in
the waveform morphology, as well as added spurious peaks which are not produced
by the human heart.

Since these values are not changing for some length of time, features that represent
changes over time, such as heart rate, respiration rate, time variability statistics will
demonstrate zero change. However, in contrast frequency related features such as the
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spectrogram images will have most of its energy in the windows of time at which the
discontinuity occurs, since the filtered signal shows high peaks during those moments
of time.
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Figure 37: Spectrogram image of one minute window containing discontinuities.

Figure 37 shows the spectrogram containing discontinuities. Energy is seen
in windows of time where discontinuities occurred. This high concentration of
energy dwarfs the energy produced by the true periodic components of the biosignal,
consequently distorting the feature.

Due to the latter, an arbitrary choice was made to change the very low numbers
representing discontinuity into 0 values. This choice was based on the fact that for
the filtered signals, the very high energy is generated by imputing large negative
values. If the values are replaced by 0, the large distortions incurred in the filtered
waveform should be resolved.
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Figure 38: Raw and filtered ECG waveforms containing the zero (0) values for
discontinuous strips.

Figure 38 shows the resulting effect of the zero based discontinuous value change.
There is less distortion to the filtered signal, and peak selection is more reliable.
Finally, Figure 39 also supports the benefit of the change from very low integer
values to 0, as the spectrogram images appear to more closely illustrate the energy
distribution of the ECG signal.
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Figure 39: Spectrogram image of one minute window containing discontinuities with
zero based discontinuous values
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4.3 Statistical Evaluation
In addition to the data evaluation performed in the previous section, a statistical
evaluation of the data was also performed for a selected set of features. The main goal
for this study was evaluate whether or not there existed some statistical difference
between septic and non-septic patients.

4.3.1 Defining Statistical Difference

A number of methods which help define the statistical difference between two sets
of number are available. The method chosen here was the Pearson’s Chi-Squared
Test [31].

χ2 =
N∑
i=1

{(Oi − Ei)2

Ei

}
(20)

Oi Number of observations for the ith value
Ei Expected number of observation for the ith value
N Number of values (or bins) used in the split
χ2 Pearson’s test statistic

The reason for choosing Equation 20 (and Pearson’s work [31]) was due to the
fact that the aim was to find out whether the difference between an array containing
the frequencies of observed values O was statistically different than the expected
frequencies contained in an array E. Frequencies refer to the number of observations
found for a specific value (or value range). For example, if 20 features were found to
have the value of 5, then 20 will be stored in O. If in turn we expected there to be 23
features to have the value of 5, then 23 will be will be in E. More specifically, array
O contained the frequencies encountered for septic patients and array E contained
the frequencies encountered for non-septic patients. If the case was that there existed
no difference between observed and expected arrays, then a null hypothesis would
be accepted. However, if some significant difference was encountered, than the null
hypothesis stating that there is no difference between septic and non-septic patients
cannot hold. The following formal hypotheses can be posed:

Definition 4.3.1. H0: Null hypothesis implies there is no significant statistical
difference between O and E

Definition 4.3.2. H1: Alternate hypothesis implies that there is a significant statis-
tical difference between O and E

Significant in Definition 4.3.1 and Definition 4.3.2 is defined by p-values of the
χ2-statistic < 0.05. If the observed p-value of the test statistic is smaller than the
chosen level(i.e. false alarm rate) of the test, chosen as pFA = 0.05, then the null
hypothesis is rejected.
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4.3.2 Results

in order to restrict the evaluation into an exercise that fits the timeline of the thesis,
the experiments were performed only for features that capture time variability, as
described in Algorithm 7, and were extracted in time chunks of 600 seconds (10
minutes). This means that for every window of ten minutes φσ was applied to achieve
an array zσ. These arrays are stored for each specific waveform, and patient. Finally,
the resulting time variability values zσ are stored with labels that contain information
about whether or not that patient was diagnosed with some Septic related illness or
would be diagnosed with a septic related illness in the next 24 hours.
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Figure 40: Distribution of time variability values zσ encountered in the dataset

The distribution plot displayed in Figure 40 has values distributed in the range
of [0,20), where every integer values is a bin. The value range was chosen based
on experiments that showed the majority of zσ the [0,20] value range. Both sets,
septic and non-septic are divided with the same structure, so the statistical difference
between the two can be evaluated.

Finally, based on the division of values presented above, the sets septic and
non-septic present a χ2 = 40.85 and a p-value equal to 0.00159, based on 18 degrees
of freedom. This result leads to the rejection of the null hypothesis Definition 4.3.1,
thereby allowing the assertion that there exist a significant statistical difference
between time variability values of septic and non-septic patients.
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5 Predictive Modeling
The development of predictive models for the biosignals used in this work and the
form in which results were produced is explored with details in this chapter. Finally,
results and concluding notes are presented.

5.1 Chosen Features
In section 3, a number of features (as defined in Definition 3.2.1) and mapping
functions (as defined in Equation 10 and Equation 11) were proposed. Due to the
large number of features, and the necessity to produce a predictive analysis that
was within the time frame of a Master’s thesis, four (4) features were chosen to be
analyzed separately. The main goals behind this feature choice were the following:

1. Find information on the predictive potential of the different domains explored

2. Investigate the effects of further reducing the dimension of the features

Based on the above notes, the following features were chosen: zσ, zMax, zWave,
zWaveStats. When considering the chosen features, zσ for example, its possible to
note that it provides insight on the value of the time domain of the signals. It is a
feature that is built on a number of other lower level features (φ∆ is one of them),
while still reducing the time domain information to a lower dimension (the standard
deviation of heart rate over a specific window). On the other hand, zMax, provides
direct information about the most predominant frequencies in the time window of
interest. Feature zWave provides a time-frequency value to the analysis. Finally,
zWaveStats, brings about insight into how a statistical collection of time-frequency
components may add value to the predictive modeling.

5.2 Training, Validation and Test Setups
This section will explore how the training and validation steps were done. In addition,
the format in which the data was split will also be explored.

The data was split in a patient wise format, where the superset of patients (or
cohort) S containing positive and negative patients were divided randomly. This
resulted in three different sets: Training set X containing 50%, Validation set V
containing 25% and Test set T containing 25% of observations as illustrated in
Figure 41. This was done in order make sure that the patterns that were found for
one patient would also be true for different patients [32].
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Figure 41: Illustration demonstrating how the different sets were broken down.

During training, the validation set was used to verify whether or not the model
was learning from the data. In the final verification step, the trained model was tested
against a tertiary set called the Test set T . This provided the final performance
metric for the model.

5.2.1 Computation and Data Operations

Storing, loading and computing was done predominantly in the infrastructure service
provided by AWS. In essence, different EC2 instances with different capabilities were
created in order to handle the computation loads. The datasets were kept in an S3
bucket, where it was accessed and loaded on demand. Python Jupyter Notebooks
were used for visualization and experimentation.

In order to load and organize the data, different types of EC2 instances with
different CPU and RAM capabilities were used. For example, an instance containing
96 cores and 380 Gb of RAM was extensively used for feature engineering and data
organization, where CPU and RAM requirements were very high. Figure 42 helps
illustrates the steps that were necessary to produce the training.

Figure 42: Illustration demonstrating the computation flow and different areas of
impact on RAM, CPU and GPU.

Moreover, by organizing the data in Pandas DataFrame tables and storing the
information in AWS S3 Storage, it was possible to produce massively parallel 8

8The parallelization was achieved by using Python’s Multiprocessing library.
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computations that computed features and organized the data in a structured format
(Pandas DataFrame). Finally, splitting the data frames as illustrated in Figure 43
allowed the computing units to be able to load smaller chunks of information, thereby
accelerating load times and preventing RAM deficiency problems.

Figure 43: Illustration demonstrating how the data is subsequently split, and its
format

5.3 Data Transformation
The first transformation to the input data was setting the final sampled time window
to 6 hrs. As a result, each sample in T ,X or V corresponds to a feature, say zMax,
sampled for some 6 hrs period within the sampling window as illustrated in Figure 2.
The sample is any 6 hrs period within the sampling window. The gap window is set to
3 hrs, while the prediction window is constant at 24 hrs (since diagnoses information
are set at day resolution). All data transformations from this point builds on 6 hrs
worth of feature information.

5.3.1 Reducing Dimensions

A significant challenge encountered during the predictive modeling phase was the
large high dimensionality of the inputs. Table 4 shows the dimensions of zMax, zWave,
zWaveStats and zσ for sampling lengths of 6 hrs.

An example which illustrates this complication is the number of training samples
in X : 250, while the input dimension for feature vector zWave is 658252. As it is
mentioned in [33] and [22], having a training set where the number of observations are
much smaller than the number of features, leads to complications in the optimization
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phase of the machine learning. This is due to the fact that there are many more
parameters to learn than there are observations.

Even with the feature engineering introduced, where signals were reduced to
much smaller dimensions, there was still a need to further reduce the dimension of
input features zMax and zWave. The fact that the largest number of observations in
X was 250 samples further reinforced this necessity. Table 5 provides insight into
the specific number of encounters (time period that a patient spends in the hospital)
within each set used in training, validation, and testing.

Sampling Length Feature Name Dimension |X | |V| |T |

21600s (6 hrs)

Time Variability Values (zσ) 36

250 134 115Wavelet Statistics Values(zWaveStats) 1584
Wavelet Values (zWave) 658252

Frequency Hz Values (zMax) 216000

Table 4: Table demonstrating the final feature dimensions for features extracted in
time chunks of 10 minutes

Sampling Length Set Number of encounters

21600s (6 hr)

X 60
V 30
T 30

Table 5: Table demonstrating the number of encounters per set

As a consequence of very high dimensionality, specific methods were explored in
order to map the features into smaller dimensions. Namely, Principal Component
Analysis (PCA).

In order to increase the chance to reach a unique global solution the number of
features should be much smaller than the number of observations available [34] [35] [22].
As a consequence, the dimension sought for during dimensionality reduction was a
tenth (10%) of the number of observations available for the training set X .

Aside from feature engineering, PCA was the main method of reducing the
dimension for the feature vectors. The general idea is to find an orthogonal projection
of the data into a small subspace [33]. The projection is produced by leveraging
the covariance matrix of the data and its eigen-value decomposition. Projecting
observations onto eigen-vectors generates a number of components from which one
is then able to choose the whole set, or a subset of the components. The specific
implementation used for the computation was Scikit-Learn’s PCA implementation
[36].
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Figure 44: Illustration of how PCA was applied to the input feature vectors. The
numbers in the cells are for illustration purposes only.

Figure 44 shows how PCA is applied in the context of this research work. An
input matrix containing features, say for example zMax for every 10 minutes of a 6
hour window is used as input. PCA is applied to find the most relevant set of values
that can represent this matrix in a smaller dimension. The resulting transformed
matrix (now a vector), is used as the input to either the machine learning model, or
a scaling transform algorithm. Finally, although scaling algorithms were tested, the
best set of test results achieved (presented in subsection 5.5) did not include scaling.

5.3.2 Data Augmentation and Batching

Since the number of samples available was limited and dimensions were large, an
alternative to expanding the current sample set was desirable. Reference [22, Chapter
7] provides an explanation on the benefits of data augmentation and noise. Building
from that work the augmentation work and noise infliction was explored. First
samples were replicated and then a small amount of noise was added to the features,
so they may be perceived as different input. Figure 45 illustrates the different steps.
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Figure 45: Procedures used for augmenting and inflicting noise to input data.

In Figure 45 each function, f(x), g(x), and h(x), illustrates a mapping between
the input set into another set which is used for training. In the case of f(x), the
noise function used to induce noise into the input was a Rayleigh distribution. This
was chosen due to the work performed in the EDA section and distribution fitting
seen in Figure 40.

Now, function g(x) performs augmentation by randomizing indexes and concate-
nating the result to the input array x. Finally, function h(x) is a combination of f(x)
and g(x), which performs first the augmentation, and then it adds noise to added
samples. The result is a larger number of observations with a few noisy features.

5.4 Machine Learning Models
In order to validate the predictive potential of the chosen features within their sampled
time windows, two models were explored: Random Forest (RF) and Convolutional
Neural Network (CNN) model. The following sections will explain the reasoning
behind each model and the final model structure achieved.

5.4.1 Random Forest

Random Forest is a method that derives from a class of classification algorithms
called bagging [34]. Bagging is essentially regularizing a set of predictions by their
mean, and utilizing the result. This produces a solution that is able to perform well
with unseen data and has lower variance. Random Forest builds on these ideas by
building a large set of de-correlated decision trees and averaging them. Algorithm
15.1 in [34] provides further details on how Random Forest works.

Now, a diagnosis is a conclusion which clinicians make based on a set of patterns
that have been identified during some window of time which they have observed the
patient. Clinicians usually have a consistent set of patterns which they search. For
example, high heart rate, or high heart rate variability will lead to a certain set of
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conclusions. The justification behind the choice of using RF models derives from the
algorithms randomized construction of decision trees and averaging over predictions.
By randomly creating a set of decision trees that capture prevalent value ranges, and
further generalizing by averaging the predictions, it is possible to capture consistent
patterns that emerge in the sampling window predating the diagnoses.

Parameter Name zσ zMax zWave zWaveStats

Criterion gini gini gini gini
Min Samples per leaf 1 7 3 1
Min Sample Split 2 14 2 2
Min Weight Fraction 0 0.09871 0 0
Number of estimators 36 35 34 36
Max Depth 25 418 None 25
Input Vector size 108 108 36 4752

Table 6: RF model parameters.

The final hyperparameters for the RF models used are shown in Table 6. The
exact description of every parameter named can be found in the documentation
of [36]. Moreover, "None" values in Max Depth indicates to the algorithm that
there is no restriction on the Depth of the trees created. In addition to the normal
hyperparameters of the RF model, Table 6 also mentions the input vector size
of each feature. Although only zMax and zσ have the same size, these were the
dimensions which provided the best results during training and testing. zWaveStats

is a concatenation of the result of φWaveStats applied to all three waveforms, ECG,
Respiration and SpO2. However, all other features are a concatenation of the resulting
transformation that was applied to the respective feature mapping function used.

5.4.2 Convolutional Neural Nets

In order to complement the predictive experiments made with the RF model, a
classical Convolutional Neural Network (CNN) deep learning model, LeNet5 [37],
was used to evaluate the potential of the features of interest. The architecture was
implemented the same way as it was done in [37], except that the implementation
done for this work included one dimensional signals, with three channels (ECG,
Respiration and SpO2 features). Figure 46 helps illustrates the architecture. For
further details, please see an extensive description regarding the model in [37].
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Figure 46: Implemented LeNet5 architecture.

Since the main goal was to evaluate the predictive potential of the features
engineered, a very complex and state-of-the-art deep learning model was not desirable.
Instead, the aim was to find a model which encapsulated proven performance and ease
of implementation. LeNet5 provides this ease of implementation (and customization)
along with a proven performance with images [37].

Parameter Name Values
Optimizer Adam
Optimizer Learning rate 0.001926
Weight Decay No
Number of Mid Layer Channels 18
Batch Size 100
Dropout Probabilities [0.18, 0.3, 0.43, 0.29 , 0.21]
Number of epochs 62
Number of estimators 36
Max Depth 25
Input Vector size 36 features per channel (3 channels)

Table 7: LeNet5 model parameters.

Table 7 provides the specific parameters used when training the model. Dropout
probabilities is provided as an array, since the probability for every layer is given,
from the first (in the left), to the last fully connected layer. Moreover, a significant
difference between this model and the previous is the fact that the feature vectors
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were provided in three channels (as opposed to the concatenation done in the RF
model). Each channel represented a specific waveform. Finally, note that weight
decaying was used. This was because dropout was enough to prevent overfitting and
allow for generalization.

5.5 Results
In this section, the results concerning Sepsis prediction will be presented. The main
goal was to evaluate the performance of the individual features given the CNN or
RF model. For these purposes a five (5) fold cross validation was performed on the
training data X , while the best model was then tested against an unseen test set T .

5.5.1 Random Forest

The RF model was implemented with the Scikit-Learn Python library [36]. It
contains an implementation of the RF model, along with a set of tools to produce
cross validation. In order to evaluate the potential of the individual features with
the RF model, a few different experiments were made. The first experiment was a
cross validation experiment with the training data X . Namely, a five (5) fold cross
validation was performed, since there was a limited number of data samples to train
and validate against.
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Figure 47: Five (5) fold cross validation results for RF model.

Figure 47 demonstrates the five fold cross validation results for the RF model.
Cross validation results show that the best performing feature is the frequency related
information zMax. Figure 48b further validates this result by showing the Confusion
Matrix pertaining to the Test set T results.
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Figure 48: Confusion Matrix showing the different predictive results achieved for the
Random Forest Model.

The worst performing feature, zWave achieved an accuracy of 63%, as shown in
Figure 48c. The conclusion for this lower performance is that the wavelet component
contain too much information, and perhaps the PCA distorts the information in the
wavelet component. As Table 8 shows, zWave was the worst performing.
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Feature Name Class Precision Recall f1-score support

Wavelet Statistics 0 0.81 0.70 0.75 67
1 0.65 0.77 0.70 48

Wavelet 0 0.61 0.97 0.75 67
1 0.78 0.15 0.25 48

Frequency Components 0 0.77 0.87 0.82 67
1 0.78 0.65 0.70 48

Time Variability 0 0.75 0.73 0.74 67
1 0.64 0.67 0.65 48

Table 8: Table demonstrating the classification results for Random Forest

Finally, Figure 48d and Figure 48a shows the test results for zσ and zWaveStats

respectively. Both features have an average performance. Overall, these results
demonstrate not only that the features contain predictive value, but the features
paired with a fine tuned RF model can provide a respectable predictive performance.

5.5.2 LeNet5

LeNet5 is a CNN deep learning model first proposed in [37]. Over the years, it has
been tested in several applications, including time-series and image classification. In
order to implement the deep learning model LeNet5, the Python Pytorch Machine
Learning framework [38] was used. It’s a framework that provides an extensive
library Machine Learning tools that are GPU friendly.
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Figure 49: Five (5) fold cross validation results for LeNet5 model.

In order to evaluate the potential of the individual features with this CNN model,
a five (5) fold cross validation test was performed. Figure 49 shows the results of
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the cross validation procedure on the training data X . It’s possible to note that the
variance is much larger than the one found with the RF model. This may be justified
by the general necessity for deep learning models to use more data.

Now, in addition to the cross validation experiment, the best performing models
were also tested against the test set T . The best performing features on the test set
for this model was zσ (Figure 50d), followed by zMax (Figure 50b).
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Figure 50: Confusion Matrix showing the different predictive results achieved for the
LeNet5 Model.

On the other end, zWaveStats (Figure 50a) and zWave (Figure 50c) show a much
lower performance, just above 60%. The low performance on the test set T may
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indicate that the amount of training data for these particular features were not
sufficient, given the CNN deep learning model.

Feature Name Class Precision Recall f1-score support

Wavelet Statistics 0 0.65 0.69 0.67 67
1 0.52 0.48 0.50 48

Wavelet 0 0.68 0.67 0.68 67
1 0.55 0.56 0.56 48

Frequency Components 0 0.78 0.73 0.75 67
1 0.65 0.71 0.63 48

Time Variability 0 0.84 0.69 0.75 67
1 0.65 0.81 0.72 48

Table 9: Table demonstrating the classification results for LeNet5

Finally, Table 9 shows more specific information about the performance of the
selected features along with the LeNet5 model. Overall, the conclusions drawn
from these results indicate that in order to use a deep learning model to learn from
the features produced, a much larger sample size for training is needed. Moreover,
although features zWave and zWaveStats did not perform well with this CNN model,
zMax and zσ indicates predictive potential even with the low amount of training
data.
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6 Conclusions and Future Work
When the study begun, the main goal was to help medical patients in ICU by
foreseeing the deterioration in their health status. This was thought to be possible
by taking advantage of the clinical data available for any given patient during his/her
hospital stay.

As the study progressed, data was further specified to be ECG, Respiration and
Spo2 biosignals as these were the most prevalent sources of information. In addition,
it was also found that ICUs are a good place to retrieve these signals, since patients
are generally still and have better monitoring devices. Finally, a condition that is
often found in ICUs, Sepsis, provided an opportunity to focus on a specific target
that causes patients health to deteriorate in a rapid rate, eventually leading to organ
failure.

Throughout the initial stages of this research, the main activities were to explore
and understand the data surrounding this problem. The eventual route chosen,
to create features that closely match clinical understanding or may be clinically
explainable, showed to be very challenging. An extensive data exploration, signal
processing and software engineering exercise was undertaken so as to reach a stage
where features such as zMax and zσ were available to be used in a Machine Learning
model.

The features whose predictive evaluation are presented in section 5 illustrate a
set of clinically interpretable features. Although zMax is a view into the frequency
domain, it stills holds logic to clinicians as they are able to identify the different
frequency components that are expected in normal heart functioning. A feature that
is not as easy to interpret is zWaveStats, a statistical decomposition of zWave. The
latter, containing time-frequency localization proposes a broken down reconstruction
of the original information.

Moving towards the latter part of the feature engineering and predictive modeling,
the goal then became to evaluate the value and predictive potential of the subset
of features chosen. As a result, complex models were not appropriate for the task.
On the contrary, models which would be able to encapsulate in one way or another
the information provided by the features, while maintaining simplicity and proven
performance, would be the more suitable choices. Consequently, RF and LeNet5
were chosen to be used to evaluate the potential of the features. Two models that
are well established and have straight-forward implementations.

In spite of the small training dataset, the final results proposed that the features
engineered have predictive value, with zWave reaching predictive accuracy of 86% in
one of the cross validation tests. Altogether, the results achieved support the higher
goal of providing information that can be interpretable, while maintaining predictive
value.

Now, although the results are promising, they are not conclusive or ideal. The
highest accuracy reached in a test set was 77%. This implies that future work should
explore models that have been proven to provide higher performance than LeNet5,
such as very deep CNNs [39] or RNNs [22]. Finally, another beneficial step would be
to evaluate the features which were not included in the predictive modeling study, so
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to gain insight into their predictive performance.
Altogether, a significant amount of knowledge was gained with this research work.

From software engineering for Big Data to signal processing and data science. The
results achieved demonstrate that it is possible to not only engineer features that
are easier to be interpreted by clinicians, but also predict Sepsis hours in advance.
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A Algorithms Run-Times
Below is the output of the benchmark program created to time the feature extraction
system. This is true for a group of waveforms containing ECG, SpO2 and Respiration
signals. The higher level program that performs this task creates a massive pool of
parallel nodes that compute each waveform separately.

As an example, for a cohort of 150 patients (approximately the cohort size used
in this work), there will be 450 nodes created for computation.

Sample window Computation Time
10 minutes 1.5s
60 minutes 4.89s
300 minutes 15.62s

Table A1: Computation times for features in Equation 10 and Equation 11.
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