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This Master’s thesis studies methods for detecting malware while adapting to how
malware change over time. Malware detection methods are necessary to defend
against cyber attacks, which could otherwise compromise information systems
that are integral in the daily lives of everyone living in modern societies. Ma-
chine learning models have been shown to be effective in classifying files as either
malicious or benign. However, malware and other software are constantly evolv-
ing, which makes classifiers unable to learn what malware in the future will be
like. Therefore, methods are required for adapting to this concept drift in malware
detection.

In this thesis, we compare three different methods called retrain, threshold,
and hybrid that update the classifier to adapt to changes in the data over time.
First, we create a classifier for detecting if a Windows portable executable file is
malicious or benign. We use a dataset of 61466 files consisting of 19648 known
malware and 41818 clean files. The classifier uses features that are extracted
using static analysis without executing the files.

To choose which classifier to use in malware detection, we compare random forest,
gradient boosted decision trees, neural network, and support vector machines.
Gradient boosted decision trees achieve the highest accuracy and AUC, and using
a random forest for selecting most important features reduces the training time
of the model. This classifier achieves an accuracy of 98.7% when using cross-
validation to evaluate the model. In contrast, when using temporally ordered
files, the classifier has an accuracy of 96.7% showing the presence of concept drift
in malware detection.

Each of the proposed retrain, threshold, and hybrid methods improve the
accuracy of the classifier by adapting to concept drift. The best performing
method is hybrid, which is a combination of the two other methods. This
method is able to correctly classify 98.5% of previously unseen files yielding a
significant improvement in the malware detection capabilities of the classifier.
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Tämä diplomityö tutkii menetelmiä haittaohjelmien tunnistamiseksi ja haittaoh-
jelmissa tapahtuviin muutoksiin mukautumiseksi. Haittaohjelmien tunnistaminen
on tärkeä tapa puolustautua kyberhyökkäyksiltä, jotka voisivat muutoin vaaran-
taa tärkeitä tietojärjestelmiä. Koneoppimismallit ovat tehokkaita luokittelemaan
tiedostoja joko haitallisiksi tai vaarattomiksi. Haittaohjelmat ja muut ohjelmistot
kehittyvät kuitenkin jatkuvasti, minkä vuoksi luokittelijat eivät pysty oppimaan,
millaisia tulevaisuuden haittaohjelmat ovat. Tästä syystä tarvitaan menetelmiä
haittaohjelmissa tapahtuviin muutoksiin mukautumiseksi.

Tässä opinnäytetyössä verrataan kolmea erilaista menetelmää, nimeltään ret-
rain, threshold ja hybrid, jotka saavat luokittelijan mukautumaan ajan
myötä tapahtuviin muutoksiin. Ensin työssä luodaan luokittelija, joka tunnistaa,
onko Windowsin käyttöjärjestelmän suoritettava tiedosto haitallinen vai vaara-
ton. Luokitelijan kouluttamiseen käytetään 61466 tiedostoa, joista 19648 ovat
tunnettuja haittaohjelmia ja 41818 on vaarattomia tiedostoja. Luokitteluohjel-
ma käyttää ominaisuuksia, jotka on kerätty staattisella analyysillä tiedostoista
ajamatta niitä.

Luokittelijan valitsemiseksi vertaamme menetelmiä random forest, gradient boos-
ted decision trees, neural network ja support vector machines. Parhaan tark-
kuuden saavuttaa gradient boosted decision trees -menetelmää käyttävä mal-
li, ja kouluttamiseen kuluvaa aikaa voidaan nopeuttaa käyttämällä random fo-
rest -menetelmää valitsemaan tärkeimmät ominaisuudet tiedostojen luokittelemi-
seksi. Tämä luokitin saavuttaa 98.7% tarkkuuden ristiinvalidointia käytettäessä.
Kun tiedostot järjestetään ajan mukaan, luokittimen tarkkuus on 96.7%, mikä
näyttää, että haittaohjelmissa tapahtuu muutoksia ajan myötä.

Kukin ehdotetuista retrain, threshold ja hybrid menetelmistä parantaa luo-
kittimen tarkkuutta. Paras menetelmä on hybrid, joka on yhdistelmä kahdes-
ta muusta menetelmästä. Tämä menetelmä luokittelee oikein 98.5% tiedostoista
selvästi parantaen luokittimen haittaohjelmien tunnistuskykyjä.

Asiasanat: haittaohjelma, tunnistaminen, muutos, koneoppiminen

Kieli: Englanti
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Abbreviations and Acronyms

PE Portable Executable
SHA-1 Secure Hashing Algorithm 1
API application programming interface
JSON JavaScript Object Notation
SVM support vector machine
MLP multilayer perceptron
ReLU rectified linear unit
TP true positive
FN false negative
TN true negative
FP false positive
FPR false positive rate
TPR true positive rate
ROC receiver operating characteristics
AUC area under ROC curve
RF random forest
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Chapter 1

Introduction

Malware, or malicious software, is any computer program that intention-
ally causes damage to a computer [33]. Nowadays, people are increasingly
dependent on different information systems. Cyber attacks utilizing mal-
ware pose a significant threat to society, as demonstrated by the WannaCry
ransomware attacks in 2017 infecting around 200 000 computers around the
world and disrupting the health system in United Kingdom [5]. Furthermore,
the amount of malware threats is constantly increasing, and the total number
of different malware has exceeded 900 million in 2019 [2]. Thus, developing
malware detection capabilities has a crucial influence on the entire modern
civilization.

While it is theoretically impossible to create a malware detector that
perfectly classifies every file as malicious or clean, in practice, we can cre-
ate detectors that are adequate for real world purposes [12]. Traditional
signature based malware detection methods are unable to detect previously
unseen types of malware. For this reason, heuristic methods for malware
detection have been developed. As the number of different malware is very
high [2], crafting and updating comprehensive heuristic rules for malware
detection by hand is extremely laborious. Hence, we use machine learning to
automatically create these rules.

When applying machine learning to malware detection, we must consider
that both malware and clean files change over time as new types of software
are constantly being created [27]. This change in data distribution over
time is called concept drift, and it makes it challenging to learn general and
reliable malware detection rules. Gaining a better understanding of methods
for adapting to concept drift enables us to create more accurate and versatile
malware detection systems.

8



CHAPTER 1. INTRODUCTION 9

1.1 Scope of the research

Previous research has shown that using machine learning in static malware
analysis is an effective way to detect malware [30]. However, it has been
shown that traditional performance metrics are insufficient as concept drift
must be taken into account in malware detection [27]. On the other hand,
there is little research on what kind of methods should be used to adapt to
concept drift in this domain.

In this Master’s thesis, our goal is to create a malware detection sys-
tem that adapts to changes in malware over time. We collect a dataset of
61466 portable executable files consisting of 19648 known malware and 41818
benign files for Windows operating systems. The files are selected from certi-
fication tests that evaluate the detection capabilities of commercial antivirus
software. To extract features from the files, we use static analysis which
means analyzing files without executing them.

We compare random forest, gradient boosted decision trees, neural net-
work, and support vector machines to find which classifier performs best in
malware detection. Our results show that gradient boosted decision trees
are the most accurate classifier while random forest takes the least amount
of training time. As our final classifier, we choose gradient boosted decision
trees using features selected by a random forest to reduce the training time
of the model.

After choosing the classifier, we evaluate its accuracy using cross-validation
as well as using files that have been sorted by when they were first seen. These
experiments show the presence of concept drift in our dataset of malware and
clean files. For adapting to concept drift, we present three different methods
and perform experiments to compare them. The first method retrains the
model whenever the accuracy of the classifier falls below a set threshold. The
second method adjusts the model threshold, which determines if an input file
is classified as malware or as clean. The third method for concept drift adap-
tation is a hybrid method that combines the two other methods. Finally, we
compare the results with using windowed variants, which only use the most
recent files when adapting to concept drift.

1.2 Structure of the thesis

Chapter 2 gives a general overview of malware detection and concept drift.
Chapter 3 describes the dataset and how features are extracted in order
to employ machine learning. In Chapter 4, we introduce several machine
learning and concept drift adaptation methods that are applied in this thesis.
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Chapter 5 presents and analyzes the results of the experiments comparing
the different methods for machine learning and for adapting to concept drift.
Chapter 6 discusses the findings and concludes the thesis.



Chapter 2

Malware detection and concept
drift

This chapter provides relevant background information for understanding
later parts of the thesis. First, we give a brief overview of malware detec-
tion methods and previous research works related to our topic. Second, we
introduce concept drift and discuss why it is relevant in malware detection.

2.1 Malware detection

Traditionally, malware are detected using signature based methods, which
identify malware by searching files for patterns that are present in known
malware [4]. This ensures that benign files are almost never detected as mal-
ware. However, these methods are unable to detect malware whose signatures
are not already known.

In order to detect new malware, the files need to be further analyzed,
which can be done using either static or dynamic analysis. Dynamic analysis
means executing software in a controlled environment and analyzing their
functionality. While behaviour based methods using dynamic analysis are
useful in detecting new malware, analyzing files in this manner is computa-
tionally expensive. Additionally, behavioural methods are incapable of de-
tecting malware that do not exhibit malicious behaviour during the analysis,
such as malware that activate on a specific date [20].

In static analysis, files are analyzed without executing them. Instead, a
file binary is examined by extracting static features such as syntactic library
calls or n-grams, which are sequences of n consecutive bytes in the machine
code of the file. While methods using static analysis of files are relatively
fast, these methods may be susceptible to code obfuscation [38]. However,

11



CHAPTER 2. MALWARE DETECTION AND CONCEPT DRIFT 12

due to the time and resource intensive nature of dynamic analysis, this thesis
is limited to only using static analysis of files.

Despite the potential weakness of being unable to reliably analyze ob-
fuscated code, previous research has shown that classification methods using
static analysis can be highly effective for malware detection. In 2000, Schultz
et al. [50] used static analysis and data mining algorithms to automatically
create rules that identify malware with 97.76% accuracy on a dataset of 4266
programs using cross-validation. These results were followed by dozens of
studies using different classifiers and feature extraction methods for malware
detection [20]. For instance, Kolter and Maloof [30] compared different clas-
sifiers using n-grams as features and concluded that boosted decision trees
were the best classifier with an area under the ROC curve of 0.996. However,
the results of these works cannot be directly compared with each other as
they are using different datasets.

2.2 Concept drift in malware detection

In supervised machine learning for classification problems, a classifier is
trained to predict a target variable using a labeled dataset of training ex-
amples. In this setting, concept drift refers to changing relation between
input data and the target variable over time [19]. Concept drift may oc-
cur in dynamically changing environments, such as e-mail spam detection,
where spammers may adapt their e-mails to avoid spam filters or a user may
change their opinion on what kinds of e-mail should be regarded as spam.
These changes in the data distribution make outdated classifiers unable to
accurately classify recent samples, and methods for adapting to the concept
drifts are required.

Previous research suggests that concept drift is also relevant in malware
detection when using static analysis of files [27, 37]. Furthermore, prior stud-
ies have suggested methods for tracking concept drift in malware families [51]
and notifying human analysts about identified concept drift in malware de-
tection [26]. On the other hand, while different methods for automatically
adapting to concept drift have been developed for many other domains [19],
to the best of our knowledge there is lacking research on applying similar
methods to malware detection.



Chapter 3

Dataset and feature extraction

This chapter describes the dataset that we used for the different experiments
in this thesis. First, Section 3.1 describes the files that are included in the
dataset and how they were selected. Section 3.2 then explains how we extract
numeric features that describe the files in order to use the data for classifi-
cation tasks. Finally, in Section 3.3, we discuss how the files are temporally
ordered for concept drift analysis and show what the time distribution of files
in our dataset looks like.

3.1 Included files

The dataset consists of 61466 files for Microsoft Windows operating systems
in Portable Executable (PE) format. The PE format is used for files such as
executable (EXE) and dynamic-link library (DLL) files, which include the
code, data and resources that are required for running a software [40].

All files were obtained from F-Secure’s file database. We selected the
PE files by collecting only files that were used in tests performed by AV-
Test,1 an institution that evaluates the performance of commercial antivirus
products. These tests by AV-Test were designed to find out how reliably
different security products are able to detect real-world malware threats [1].
Therefore, we expect that experimental results on this dataset are meaningful
and translate well to the real world.

In the tests performed by AV-Test, the antivirus software are tested on
sets of recent and common known malware as well as on a separate large set
of known benign files [1]. In contrast, in order to teach a classifier to detect
malware and to analyze concept drift, we needed a dataset that contains

1https://www.av-test.org/
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CHAPTER 3. DATASET AND FEATURE EXTRACTION 14

both malicious and clean files from the same time period. For malicious files,
we collected 19648 malware that were used in tests from 2014 to 2018.

For clean files, we gathered 353626 benign files from AV-Test that were
seen before the end of 2018. However, most of these files were other than
portable executables, such as text or image files. As none of the malware in
our dataset were of these types, it would be easy for a classifier to distinguish
the non-executables as clean files by their file type. Therefore, we decided
to only include the files that were portable executables, which resulted in
41818 clean files. Thus, the final dataset consists of 19648 known malware
and 41818 known benign files for a total of 61466 files.

3.2 Feature extraction

As described in Section 2.1, this thesis is limited to analyzing files by us-
ing only static information without executing the files. In order to extract
descriptive features of the PE files, we processed each file using a static file
analysis service called TitaniumScale [42]. Finally, the analysis reports were
parsed and transformed to numeric features for training machine learning
models.

3.2.1 File identification

In order to uniquely identify the files, we used the cryptographic hash func-
tion SHA-1 (Secure Hash Algorithm 1): each file was represented by a 40
digits long hexadecimal number, which was computed by the SHA-1 hash
function using the binary representation of the file as an input [16]. Using
the SHA-1 hash allows us to specify, which file we are referring to without
having to provide the entire binary code for that file.

The problem with identifying the files using the filename or another sim-
ilar feature is that two different files may have the same values for these
features, especially when a malware is trying to disguise itself as another
file [8]. This problem does not occur when identifying files using SHA-1, be-
cause collisions between the SHA-1 hashes are extremely rare, which means
that the SHA-1 identifiers for files are practically unique [36].

3.2.2 Static file analysis

We analyzed all 61466 files in our dataset by a cloud service called Titani-
umScale, developed by the cyber security company ReversingLabs [42]. For
each file, TitaniumScale performed a static analysis and created an analysis
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report, which included file headers, indicators of behaviour, imported appli-
cation programming interfaces (API), as well as descriptions about resources
and possibly other files embedded in the executable.

The analysis reports created by TitaniumScale were stored in Amazon
Simple Storage Service (Amazon S3), a commercial cloud data storage ser-
vice. We then used cluster-computing framework Apache Spark to collect the
reports and transform the data into JavaScript Object Notation (JSON) for-
mat. Listing 3.1 shows an example of a file analysis report by TitaniumScale
in JSON format.

1 "tc_report": [{
2 "children": <omitted >,

3 "classification": <omitted 12 lines showing file classification result >,

4 "index": 0,

5 "indicators": [{
6 "category": 12,

7 "description": "Checks operating system version.",

8 "priority": 5

9 }, {
10 "category": 7,

11 "description": "Takes screenshots.",

12 "priority": 5

13 }, {
14 "category": 22,

15 "description": "Deletes files.",

16 "priority": 4

17 },
18 <omitted 30 indicators >

19 ],

20 "info": {
21 "file": {
22 "entropy": 6.429024772528842,

23 "file_name": "ff0bf4b9ab2a291673b3ace52bef7c6596caecee",

24 "file_path": "/scratch/ff0bf4b9ab2a291673b3ace52bef7c6596caecee",

25 "file_subtype": "Exe",

26 "file_type": "PE",

27 "hashes": <omitted 16 lines showing hashes "imphash", "md5", "rha0", "sha1", and "sha256">,

28 "size": 565258

29 },
30 "statistics": {
31 "file_stats": <omitted 40 lines showing counts for different types of embedded files >

32 },
33 "validation": {
34 "valid": true

35 }
36 },
37 "metadata": {
38 "application": {
39 "capabilities": 626784511,

40 "pe": {
41 "dos_header": <omitted 19 lines showing "dos_header" values >,

42 "file_header": {
43 "characteristics": 271,

44 "machine": 332,

45 "number_of_sections": 4,

46 "number_of_symbols": 0,

47 "pointer_to_symbol_table": 0,

48 "size_of_optional_headers": 224,

49 "time_date_stamp": 1492923320,

50 "time_date_stamp_decoded": "Sun Apr 23 04:55:20 2017"

51 },
52 "imports": [{
53 "apis": ["RegOpenKeyExA", "CloseServiceHandle", "CreateServiceA", "DeleteService", "

OpenServiceA", "OpenSCManagerA", "ControlService", "StartServiceA", "

EnumServicesStatusA", "QueryServiceConfigA", "RegSetValueA", "RegCreateKeyA", "

GetFileSecurityA", "SetFileSecurityA", "RegDeleteValueA", "RegSetValueExA", "

RegQueryValueExA", "ChangeServiceConfig2A", "RegCreateKeyExA", "RegDeleteKeyA", "

RegOpenKeyA", "RegEnumKeyA", "RegCloseKey", "RegQueryValueA", "

ChangeServiceConfigA", "QueryServiceConfig2A"],

54 "name": "ADVAPI32.dll"

55 }, {
56 "apis": ["ImageList_ReplaceIcon", "0x0011", "ImageList_Destroy", "ImageList_Create"],

57 "name": "COMCTL32.dll"



CHAPTER 3. DATASET AND FEATURE EXTRACTION 16

58 },
59 <omitted 10 imports >

60 ],

61 <omitted 98 lines describing "optional_header" and "overlay">

62 "resources": [{
63 "code_page": 0,

64 "hashes": <omitted 10 lines showing hashes "md5", "sha1", and "sha256">

65 "language_id": 2052,

66 "language_id_name": "Chinese - People ’s Republic of China",

67 "name": "1",

68 "offset": 375696,

69 "size": 1128,

70 "type": "RT_ICON"

71 }, {
72 "code_page": 0,

73 "hashes": <omitted 10 lines showing hashes "md5", "sha1", and "sha256">

74 "language_id": 2052,

75 "language_id_name": "Chinese - People ’s Republic of China",

76 "name": "2",

77 "offset": 376824,

78 "size": 2440,

79 "type": "RT_ICON"

80 },
81 <omitted 1008 lines describing 55 other resources >

82 ],

83 <omitted 154 lines describing "rich_header", "sections", and "version_info">

84 }
85 }
86 },
87 "story": "This file (SHA1: ff0bf4b9ab2a291673b3ace52bef7c6596caecee) is a 32-bit portable

executable application. The application uses the Windows graphical user interface (GUI)

subsystem , while the language used is Chinese from People ’s Republic of China. According to

version information , this is MySerManag \u5e94\u7528\u7a0b\u5e8f (MySerManag.EXE). Appended

data was detected at the file ’s end. Its length is smaller than the size of the image. This

application has access to device configuration , monitoring and running processes , has

security related capabilities and uses undocumented APIs. There are 36 extracted files.",

88 "tags": ["antidebugging", "arch -x86", "capability -execution", "capability -filesystem", "

capability -security", "capability -undocumented", "desktop", "gui", "indicator -execution", "

indicator -file", "indicator -monitor", "indicator -registry", "indicator -search", "indicator -

settings", "overlay", "privacy -intrusion", "rich -header", "version -info"]

89 },
90 <omitted 2547 lines describing 36 resource files embedded in the executable >

91 ]

Listing 3.1: TitaniumScale analysis report for the file with SHA-1 hash value
ff0bf4b9ab2a291673b3ace52bef7c6596caecee. This file is a malware disguised
as a Microsoft file called MySerManag.exe. The analysis shows that the
executable has indicators of taking screenshots and deleting files, among
other behaviour. The report also contains metadata about the executable as
well as information about embedded files.

3.2.3 Conversion to numeric features

In order to use the data to train a classifier, the data from TitaniumScale had
to be transformed to a suitable format. We did this by using the structure of
the TitaniumScale analysis report to create features for all the available val-
ues. For example, for the entropy value on Line 22 in Listing 3.1, we created
a feature with the name ”/info/file/entropy/”, and for this file the feature
has the value 6.429024772528842. On the other hand, for string features
such as the tags on Line 88, we created features ”/tags/’antidebugging’/”,
”/tags/’arch-x86’”, and so on, each having value 1 indicating that this file
has that tag. Correspondingly, all files that do not have particular tags were
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then given value 0 for the respective features.
In some parts of the TitaniumScale reports, the attributes were grouped

in sets, such as the values for indicator ”category”, ”description”, and ”prior-
ity” in Lines 5–17 in Listing 3.1. Simply following the structure of the report
would yield features such as ”/indicator/category”, whose values would be
ambiguous as different indicators may have different categories. In order to
avoid this, the values in these kind of sets were grouped by a value such
as ”name” or ”description”, which defines which set the values belong to.
For example, the values in Lines 6–8 were grouped using the ”description”
attribute and thus represented as a feature ”/indicator/’Checks operating
system version.’” with value 1, as well as features ”/indicator/’Checks oper-
ating system version.’/category” and ”/indicator/’Checks operating system
version.’/priority” with values 12 and 5, respectively. This grouping allows
us to match the category and priority values with the correct indicators.
As an exception, sets of attributes were not grouped in this manner in the
resources section of a file report, shown on Lines 62–82. That is because re-
sources were named using numbers such as ”1” and ”2” and often completely
different resources in different files have the same value of ”name” attribute.
In contrast, when different TitaniumScale reports have the same descriptions
for indicators or names for imported libraries, they are referring to the same
indicator or library.

For the resources section on Lines 62–82 and for other cases where another
file having a similar set does not mean they are referring to the same object,
we created features which describe statistics about the values in these sets.
For example, for the resource sizes on Lines 69 and 78, instead describing
the sizes using a feature such as ”/metadata/application/pe/resources/size”
which should have a different value for each different resource, we created
features for describing the minimum, maximum and mean sizes of the dif-
ferent resources as well as a count of how many resources there are in the
file. For string features in these sets, we created a feature describing how
many times this string occurs in the file. For instance, for the resource type
on Lines 70 and 79, we created a feature ”/metadata/application/pe/re-
sources/type/’RT ICON’”, whose value indicates how many resources of the
type ”RT ICON” there are in this file.

Many of the portable executables contain embedded files, such as other
PE files or resource files used by the executable. TitaniumScale recursively
processes all embedded files and includes the extracted information in the
analysis report. If the report contained descriptions about other PE files, we
dealt with the hierarchical structure by creating features for the each of the
values of the embedded PE files in the same manner as for the main PE file
but by prepending the feature names with ”/child”. Thus, for instance the
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entropy of a lone embedded PE file was stored as a feature ”/child/info/-
file/entropy”. In the case of multiple embedded PE files, we again computed
the count as well as minimum, maximum and mean values for the entropies of
the different embedded PE files. We did not create new features to describe
values in embedded files other than PE files, because most of the information
about embedded resource files is already included in the resources section of
the main PE file.

The total number of different features created by this process was around
50 million, when collecting features from half of the files in our dataset, and
around 70 million while using 80% of the files. Instead of collecting new
features from all of the files, the dataset was divided in each experiment into
two sets: a training set, which was used for training a model, and a test set,
which was used to evaluate the performance of the trained model. The model
is not able to learn how to use features that are only present in the testing
set since they are not relevant during training. Thus, the total number of
different features for a particular experiment only depended on the files in
the training set.

Most of these obtained features only appeared in very few files or were
unique, such as the features indicating particular filenames or hashes. As
these features had a value of zero for almost all files, they provided little to
no information to a classifier. In order to make the total number of features
more manageable, we limited to only using features which appeared in at
least 1% of the files that were used to train the classifier for that experiment.

In addition, the creation timestamps of the files in our dataset are biased
as shown in Section 3.3.2, because AV-Test uses different procedures for
selecting malware and for clean files [1], and most of the clean files in the
dataset were from a different source. Looking at the timestamps of the
files in our dataset may thus help in distinguishing which files are malware,
whereas in the real world we believe that the timestamps are not useful in
this manner for detecting malware. Therefore, the timestamps of the files
were not included as a feature in order to prevent this data leakage.

Furthermore, we discarded the features related to the file classification
results by TitaniumScale, because we do not want our classifier to rely on
another classifier. This is especially important since this thesis includes ex-
periments where our model is restrained to only having information prior to
a certain point in time, while the classifier in TitaniumScale may be using
information from after that time period.

Finally, we removed any features that have the same value for all files.
In total, these reductions decreased the number of features to around 6000-
6500 both when using half of the files and when using 80% of the files in our
dataset for training. The exact number of features varied depending on the
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particular set of training files for an experiment.

3.3 Time distribution

As this thesis examines how time factors into malware detection, it is im-
portant to have a reliable way to date each file. We show that the creation
timestamp included in the file metadata is not always accurate. Therefore,
instead of the file timestamps, we use the times when the file was first seen
by F-Secure.

3.3.1 File timestamps

The Portable Executable file format for Windows operating systems includes
a timestamp, which indicates when the file was created [47]. Many previous
works on malware detection use the embedded file timestamps when sorting
the files by time [48, 51]. Nevertheless, there is no guarantee for the accuracy
of these timestamps as they may be arbitrarily set to any value by modifying
the executable [9].

In our dataset, many of the files have incorrect timestamps as shown in
the histogram of timestamps in Figure 3.1. Thousands of files, both malware
and clean files, have clearly forged timestamps indicating that they were
created in the future or unrealistically far in the past. In addition, not all
portable executable files adhere to the PE format specification, as our dataset
contains 22 files that do not include a timestamp. Thus, these timestamps
are not reliable for temporal analysis of the files. Saxe and Berlin [48] deal
with this problem by excluding all files with blatantly tampered timestamps
from their dataset. However, this limits the dataset, and the remaining files
may still have incorrect timestamps.

3.3.2 First seen times

A solution to the problem of unreliable file timestamps is to use the dates
when the files were first discovered [27]. We apply this solution by using the
date a file was first analyzed by F-Secure to assign a time to each file. A
histogram of the times assigned for the files is shown in Figure 3.2. This
results in a reliable way to temporally order the files, which means that
we may train a machine learning model to detect malware without using
information about files that are only seen later in time.

In our dataset, malware and clean files have differences between the time
distributions, which is caused by having separate methods for collecting ma-
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licious and clean files. Figure 3.3 shows how the ratio between malicious and
clean samples changes over time for the files in our dataset. Since a real-
world malware detector likely would not have such drastic shifts in receiving
malware and clean files, we need to be careful in our experiments so that the
results are not skewed due these differences between our dataset and reality.
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Figure 3.1: Histogram of timestamp dates embedded in the files in our
dataset. There are many files whose timestamp incorrectly indicates that
they were created before the 21st century or in the future.
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Figure 3.2: Histogram of dates when the files in our dataset were first seen
by F-Secure. The first few files date back to 2006 while the vast majority of
files are from 2018.
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Figure 3.3: Percentage of malware in a sliding window of 1000 consecutive
samples. The earliest files are almost all clean files, whereas from late 2013 to
late 2017, the proportion of malware hovers between 20% and 40%. Towards
the end of 2017 and in 2018, the files alternate between mostly malware and
mostly clean files.



Chapter 4

Methods for classifying malware

This chapter describes different machine learning methods that are used in
this thesis for creating a classifier for malware detection. First, we intro-
duce different classification techniques as well as methods for preprocessing
the data before using it to train a classifier. Then, we explain how the per-
formance of the classifiers is evaluated. Finally, we present a few different
methods for adjusting the machine learning model to changes in the data.

4.1 Classification techniques

In order to classify files as either malware or clean, we need to train the
classifier with a set of samples with known labels. The classifier tries to gain
insight into the data and accurately predict the label for new samples. There
are many different classification algorithms for achieving this purpose, and
the best choice of algorithm always depends on the problem at hand, see
[32], for example. This section introduces common classification techniques,
whose performances in malware detection are compared in this thesis.

4.1.1 Decision tree

A decision tree is a tree graph that models decision making by breaking
complex decisions into a combination of multiple simpler decisions [44]. In
classification, internal nodes of the decision tree represent tests for attributes
of the input, edges represent the results of these tests, and each leaf node
represents a class as the resulting classification [43]. Figure 4.1 shows an
example of a simple decision tree classifier.

Decision tree classifiers are automatically constructed from the attributes
and class labels in a given set of training data. When the amount of data

24
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Abdomen length > 7.1?

Katydid

KatydidGrasshopper

Antenna length > 6.0?

No Yes

No Yes

Figure 4.1: A decision tree that classifies an insect as a grasshopper or a
katydid based on the lengths of the insect’s abdomen and antenna [52].

is large, it is not feasible to compute an optimal decision tree for classifying
a set of samples [21]. Consequently, most existing methods for constructing
decision trees use heuristic algorithms that select greedily, which attributes
to consider at each step [43].

Once trained, decision trees are fast at classifying samples. Additionally,
the functionality of a decision tree is easier to interpret than for many other
machine learning methods. However, decision trees are prone to overfitting
to the training data, which means that the decision tree does not generalize
for samples outside of the training set. In general, other machine learning
methods tend to achieve better accuracy than plain decision trees. [32].

4.1.2 Random forest

Random forest is a machine learning model that uses bagging of decision
trees, which means that multiple independent decision trees are combined
to create one model. In classification, each decision tree casts a vote by
classifying the input, and the random forest model then chooses class with
the highest number of votes. Taking the majority vote of multiple identically
distributed trees decreases the variance of the prediction, resulting in better
accuracy than individual decision trees. [6].

The decision trees in the random forest are trained using randomly se-
lected subsets of the training samples and each tree only considers some
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subset of the available features in the data. This reduces the correlation
between individual trees and further decreases the variance of the random
forest ensemble. [22]. Random forests are relatively simple and fast to train
while they also achieve good accuracy in many practical problems [6].

4.1.3 Gradient boosted decision trees

Gradient boosting is another method for combining multiple simpler models,
such as small decision trees, to create a more powerful predictor. Gradient
boosted decision trees create a classifier by sequentially adding new decision
trees, where each tree tries to correct the mistakes of the previous model [22]:
The classifier training starts with an initial predictor that simply gives the
same probability for each class. Then, at each iteration of the algorithm, a
new decision tree is trained for each class to predict how the probability given
by the current predictor differs from the true value of 0 or 1 that indicates
whether a sample belongs to that particular class. This decision tree is then
combined with the predictor to decrease the errors in the predicted class
probabilities, thus slightly improving the predictor in each iteration. [34].
After a fixed number of iterations, the algorithm finishes, and the result-
ing model classifies inputs by predicting the probabilities for each class and
choosing the class with the highest probability [22].

Unlike in a random forest, the individual decision trees are not allowed
to grow freely but are limited to having a small fixed size in order to improve
the performance of the model [18]. In general, gradient boosted decision trees
are very effective and achieve state-of-the-art performance in many different
machine learning tasks [11].

4.1.4 Support vector machines

Support vector machines (SVMs) are a popular machine learning method,
which use a hyperplane to divide the data into two classes. The data samples
are considered as points in a multidimensional space, where each data feature
defines one dimension. Now, the space can be divided into two parts by using
a hyperplane, and for a binary classification task the samples can be classified
based on which side of the hyperplane they are [22].

The hyperplane to separate the two classes is chosen by maximizing the
margin between the hyperplane and the closest data points on either side of
the plane [7]. However, in real-world problems the data is often not linearly
separable, which means that the data points cannot be perfectly separated
into the two classes using a hyperplane in the feature space [13]. In this case,
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the hyperplane classifier also attempts to minimize a cost from incorrectly
classified data points [7].

In addition, support vector machines can model more complex, nonlin-
ear classification tasks. This is achieved by transforming the feature space
into another, higher dimensional space, where hyperplanes for the classi-
fication translate into decision boundaries that are nonlinear in the feature
space [7]. Support vector machines are therefore applicable for a wide variety
of tasks [32].

4.1.5 Neural network

Neural networks are a biologically inspired method for machine learning,
and, as the name suggests, they can be represented as a graph of processing
units called neurons [15]. While there exist many different neural network
architectures for solving different machine learning tasks, we will focus on a
popular class of neural networks known as multilayer perceptrons (MLP).

Multilayer perceptrons consist of sequential layers of neurons: an input
layer, one or more hidden layers, and an output layer. In classification,
the input layer has one neuron for each input feature of the samples to be
classified, and the output layer has one neuron for each class, each indicating
the probability for the input to belong to that class. [15]. On the other
hand, the number of hidden layers and the number of neurons on each layer
should be chosen on a case by case basis depending on the complexity of
the relationships between the input features and the output classes [28]. An
example of a multilayer perceptron architecture is shown in Figure 4.2.

Each neuron in a multilayer perceptron is connected to the other neurons
in the adjacent layers, and the connections between neurons have weights,
which dictate how the output class of a sample is determined: The network
starts with the input feature values for the neurons in the input layer. Next,
for each neuron, the value is passed forward to each neuron in the following
layer while multiplying it with the weight of the connection between the two
neurons. The value for each neuron in the next layer is then computed by
taking the sum of the incoming weighted values for that neuron, and applying
an activation function. [22].

The activation function allows the network to model nonlinear relation-
ships, and for hidden layers it is typically chosen as the sigmoid function
φ(x) = (1 + e−x)−1, the hyperbolic tangent φ(x) = tanh(x), or the recti-
fied linear unit (ReLU) φ(x) = max(0, x) [41]. Similarly, the values for the
subsequent layers are computed by again computing the weighted sums and
applying the activation function. Finally, when the output layer is reached,
an activation function transforms the outputs to between 0 and 1 to represent
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Figure 4.2: A multilayer perceptron with an input layer of 5 neurons, two
hidden layers of 4 neurons each, and an output layer of 3 neurons. The
neurons in each layer are connected to the neurons in the subsequent layer.

the probabilities of each class. [15].
The weights of the neural network are automatically learned by first ini-

tializing them randomly with small values. The learning algorithm then al-
ternates between using the training data to track the classification error and
adjusting the weights towards minimizing this error. This is repeated for a
number of iterations or until the classification error converges. [15]. While
training neural networks can be slow, the predictions of a trained network
are usually fast and accurate [32].

4.2 Data preprocessing methods

Before training a machine learning model, it is often beneficial to prepro-
cess the data, which includes applying transformations to the features, con-
structing new features based on the previous ones, or discarding features
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that are not useful. Performing appropriate data preprocessing may signifi-
cantly speed up training and improve the accuracy of the machine learning
model [31]. We describe two preprocessing methods, which are used in the
experiments in the thesis: feature scaling, and selecting features based on
their importance in decision trees.

4.2.1 Feature normalization

Feature normalization is a standard preprocessing step before using the data
to train a machine learning model. If no normalization takes place, some fea-
tures can have values that are much larger than the values of other features.
In this case, for many machine learning methods, the features with much
larger values would have significantly more impact on the output than fea-
tures with smaller values. Normalizing the feature values makes all features
initially contribute equally to the output, and allows the learning algorithm
to decide, which features are more important. [46].

The features are often scaled by standardizing the mean and variance of
each feature. Typically, the mean is transformed to zero and the features
are scaled to unit variance by computing the scaled feature values as x′ =
x−µ
σ

, where µ and σ are the observed mean and standard deviation values
for that feature in the training dataset. When using the machine learning
model on new data, the same scaling transformations are then applied to the
corresponding features in the new data. [39].

Alternatively, the values of each feature can be scaled to a set range, such
as the the unit range from 0 to 1. This is achieved by computing the new
values as x′ = x−min

max−min , where min and max represent the observed minimum
and maximum values for that feature in the training dataset [39]. However,
when applying the same transformations to previously unseen data, the new
scaled data values are not necessarily between 0 and 1. This is because the
new data may contain feature values that are smaller than or greater than
any of the values that were used to train the model, which results in scaled
values that are below 0 or above 1, respectively.

Scaling can have a large effect on the resulting model when using neural
networks [46] or support vector machines [23]. On the other hand, decision
trees are invariant to feature scaling, which also means that random forests
and gradient boosted decision trees are not affected by the scaling of the
data [22].
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4.2.2 Feature selection by importance in decision trees

Feature selection is another effective preprocessing method, which can reduce
training time and improve model accuracy [29]. In this thesis, we perform
feature selection by choosing the most relevant features according to their
importance in decision trees. More precisely, features are selected as follows:
First, we use the training data with all features to train a random forest model
for malware detection. After training, the random forest model computes
a value for each feature indicating how important that feature is for the
classification task [39]. Finally, we select a fixed number of top features
ranked by their importance values, and train a new classifier using only these
features.

In order to evaluate the importance of a feature x, let us first consider
a single decision tree. In this tree, we consider every node that uses x and
measure the importance of that node using a measure called Gini impurity
decrease [24]. This measure quantifies how well a decision tree node separates
the training samples into the different target classes of the classification. We
weight this score by how many samples reach this particular node in the
decision tree. For a random forest, we then compute the feature importance
values as the average importance in each decision tree [35].

4.3 Evaluation methods

Methods for evaluating the performance of classifiers are necessary for com-
paring different machine learning models. These methods also allow us to
estimate how well our classifiers are able to detect whether a previously un-
seen file is a malware or not. This section describes the evaluation metrics
and methods that are used in this thesis.

4.3.1 Performance metrics

When evaluating a classifier using a set of test files, we label each malware
as a true positive (TP), if the classifier detects that the file is malicious,
or as a false negative (FN), if the classifier incorrectly classifies the sample
as a clean file. Similarly, we label each clean file as a true negative (TN),
when the file is correctly detected as not malware, or as a false positive (FP),
when the classifier incorrectly detects the file as a malware. The accuracy of
the classifier is then defined as the proportion of correctly classified samples,
accuracy = TP+TN

TP+FN+TN+FP
, where TP , FN , TN , and FP are the number

of true positive, false negative, true negative, and false positive samples,
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respectively [17].
However, in malware detection the goal is not always to classify correctly

as many of the files as possible. Instead, antivirus companies usually pri-
oritize avoiding false positives over detecting more malware [45]. For this
reason, we compare our machine learning models using receiver operating
characteristic (ROC) graphs, which depict the tradeoff between detections
and false alarms. This tradeoff is visualized by plotting the false positive
rate FPR = FP

TN+FP
on the x-axis and the true positive rate TPR = TP

TP+FN
,

on the y-axis [17].
A discrete classifier, which outputs whether a given file is malware or not,

has fixed FPR and TPR and is thus depicted as point in the ROC graph.
In contrast, we represent each classifier as a curve in the ROC graph. For
this purpose, we use the machine learning models to produce scores between
0 and 1 that indicate how likely each file is to be malware. For calculating
accuracy, the files are typically classified as malware if their score is more than
0.5. However, we may also use any other threshold for the scores to create
another discrete classifier, and varying the threshold from 0 to 1 produces a
series of classifiers, tracing a curve in the ROC graph, known as the ROC
curve [17]. The ROC curve ranges from point (0,0) to point (1,1), because the
classifier corresponding to threshold 0 has both a FPR of 1 and a TPR of 1,
as all files are detected as malware. Similarly for the classifier corresponding
to threshold 1, the FPR and TPR are both 0 as no files are detected as
malware. An example of an ROC curve is shown in Figure 4.3.

In order to numerically evaluate the ROC curves of different machine
learning models, we compute the area under the ROC curve (AUC). A model
that correctly gives a higher score for all malicious files than any of the clean
files has an AUC of 1, while a model with random scores for samples achieves
on average an AUC of 0.5 [17].

4.3.2 Cross-validation

Cross-validation is a standard method for evaluating the performance of sta-
tistical models [25]. This thesis uses cross-validation, since simply computing
a metric such as accuracy or AUC using only training data is not a good
method for evaluating a machine learning model. This is because the model
might overfit, essentially memorizing the correct answers for samples it is
trained on rather than learning general predictive rules [14]. This would
yield a high accuracy on the training data, but it does not indicate good
performance for any other samples.

To account for overfitting, a machine learning model should instead be
evaluated on data that is not used in the training of the model. In K-fold
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Figure 4.3: Example of an ROC curve [39]. The blue dotted line represents
the performance of classifiers that only use random guessing.

cross-validation, this is achieved by partitioning the dataset into K parts of
equal size. Then, K − 1 parts are used to train a model while the last part
is used to test the performance of the model. This is repeated K times, such
that each part is used once to evaluate the model after it has been trained on
the K − 1 other parts. Finally, the performance results of the model across
the K folds are aggregated to form a more accurate estimate of how well the
model performs in general [15].

4.4 Methods for concept drift adaptation

As concept drift is prevalent in malware detection, we need methods for up-
dating our machine learning models to deal with changes in the data over
time [27]. In this section, we describe three concept drift adaptation methods
that are used in this thesis: regularly retraining the model, adjusting model
classification threshold, and a hybrid method combining these two. In addi-
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tion, we present windowed variants of these methods, where only a number
of most recent samples are considered when updating the model.

4.4.1 Model retraining

A standard solution to dealing with constantly changing data is to contin-
uously acquire new samples and use them for training the machine learning
model [19]. To apply this to the static classifiers that are used in this thesis,
we regularly retrain our model using updated training data that includes the
new samples.

However, retraining a model from scratch can be computationally expen-
sive, and if only a few new training samples are included in the training set,
the model will likely not improve very much. Therefore, we limit how often
the model can be retrained by fixing how many new samples are needed be-
fore retraining the model: we do not retrain the model, if less than 500 new
samples have been obtained since the previous time the model was trained.
Furthermore, we keep track of the running accuracy of the model, and only
retrain if the accuracy on the latest 1000 samples is below a set threshold.

From here on, this method is referred to as the retrain method in this
thesis. Pseudocode for this method is presented in Algorithm 1, which we
apply using the parameters Nwindow = 1000 and Nretrain = 500. We discuss
the different choices of accuracy threshold parameter θ later in Section 5.2.2.

As we obtain new samples with known labels, we compare the predictions
with the true labels to estimate the accuracy of the current model. When the
model is retrained it learns to also classify the new training samples correctly,
which means that those samples can no longer be used to accurately evaluate
the new model. Therefore, when computing the accuracy of the adapting
model, we do not reclassify past samples using the new version of the model
but we use the classifications that were obtained before retraining.

4.4.2 Model threshold adjusting

As another method for adapting to changes in the data, we try adjusting
the model threshold that determines if files are classified as malware or as
clean files. First of all, the machine learning models in this thesis produce
classification scores between 0 and 1, where 1 indicates that the input file
is malware and 0 means it is clean. The more confident the model is about
the classification, the closer the score is to either 0 or to 1. By default, files
that receive a score of more than 0.5 or are classified as malware, while the
remaining files are classified as clean.
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Algorithm 1 Procedure for evaluating the retrain method.
Parameters:
Dtrain: Training dataset
Dtest: Test dataset
Nwindow: Window size for running accuracy of consecutive samples
Nretrain: Minimum number of new samples before retraining the model
θ ∈ [0, 1]: Accuracy threshold for choosing when to retrain the model

1: procedure retrain(Nwindow, Nretrain, θ)
2: N ← Nwindow − 1
3: previous retrain← 0
4: Classify samples Dtest[1, . . . , N ]
5: for i = 1, . . . , |Dtest| −N do
6: Classify Dtest[i+N ]
7: accuracy ← accuracy of classifications of Dtest[i, . . . , i+N ]
8: if i− previous retrain ≥ Nretrain and accuracy ≤ θ then
9: Retrain the model using Dtrain and Dtest[1, . . . , i]

10: previous retrain← i

However, using the threshold of 0.5 is not always optimal, and we may
instead choose any other threshold between 0 and 1 to decide how the files
are classified [17]. As the data changes over time, the best choice for model
threshold may also keep changing. We deal with this by using a method that
continuously adjusts the threshold of our model for malware detection. We
will refer to this as the threshold method, and Algorithm 2 describes it
in pseudocode. This is computationally less expensive than retrain, since
with threshold the machine learning model is only trained once using the
original training data.

Whenever we receive new samples that are known to be malware or clean,
threshold selects a new threshold for our model using both the new and the
earlier samples. As the new threshold, we choose a threshold that maximizes
the difference between the true positive rate and the false positive rate of the
classifier. This maximum difference between the TPR and FPR is known as
the Youden Index, and the threshold achieving it minimizes the combined
cost of false negatives and false positives. We use the same cost for false
negatives and false positives for simplicity, but the same method can be
applied with a generalized Youden Index to choose a higher relative cost for
false positives, for instance [49].
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Algorithm 2 Procedure for evaluating the threshold method.
Parameters:
Dtrain: Training dataset
Dtest: Test dataset

1: procedure threshold
2: σ ← 0.5
3: S ← classification scores for Dtrain

4: for i = 1, . . . , |Dtest| do
5: score← classification score for Dtest[i]
6: if score > σ then
7: Classify sample i as malware
8: else
9: Classify sample i as clean

10: T ← classification scores for Dtest[1, . . . , i]
11: σ ← threshold maximizing TPR − FPR for S and T

4.4.3 Hybrid method

For a third method for concept drift adaptation, we combine the retrain
and threshold methods and call it the hybrid method. With hybrid, the
model threshold is continuously updated similar to the threshold method.
In addition, like with the retrain method, the machine learning model
is retrained when the accuracy for the last 1000 samples falls below a set
threshold and at least 500 new samples have been acquired since the model
was last trained. The pseudocode for this method is presented in Algorithm 3.

We use all of the available past data when retraining the model and when
adjusting the model threshold. Similar to retrain, when computing the
running accuracy we use the model classifications that were obtained before
retraining instead of using the retrained model to reclassify previous samples.
However, with hybrid we also compute the new classification scores for the
previous samples using the new retrained model in order to keep updating
the classification threshold of the new model.

4.4.4 Windowed variants

While our dataset is relatively small and manageable, in practice malware
detection software may encounter hundreds of thousands of new malicious
samples [2] and countless clean files every day. In such a setting, storing and
applying machine learning on all files becomes impractical. Even if not all
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Algorithm 3 Procedure for evaluating the hybrid method.
Parameters:
Dtrain: Training dataset
Dtest: Test dataset
Nwindow: Window size for running accuracy of consecutive samples
Nretrain: Minimum number of new samples before retraining the model
θ ∈ [0, 1]: Accuracy threshold for choosing when to retrain the model

1: procedure hybrid(Nwindow, Nretrain, θ)
2: N ← Nwindow − 1
3: σ ← 0.5
4: previous retrain← 0
5: S ← classification scores for Dtrain

6: Compute classification scores for Dtest[1, . . . , N ]
7: for i = 1, . . . , |Dtest| −N do
8: score← classification score for Dtest[i+N ]
9: if score > threshold then

10: Classify sample i+N as malware
11: else
12: Classify sample i+N as clean

13: accuracy ← accuracy of classifications of Dtest[i, . . . , i+N ]
14: if i− previous retrain ≥ Nretrain and accuracy ≤ θ then
15: Retrain the model using Dtrain and Dtest[1, . . . , i]
16: previous retrain← i
17: S ← new classification scores for Dtrain

18: Compute new classification scores for Dtest[1, . . . , i+N ]

19: T ← classification scores for Dtest[1, . . . , i]
20: σ ← threshold maximizing TPR − FPR for S and T
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of the files are saved, the cumulative amount of data over time eventually
becomes too large for frequently retraining machine learning models on.

Instead, we will experiment with windowed methods, where the machine
learning model is updated using only a number of most recent samples. This
allows us to discard older files and speed up the process by decreasing the
amount of data used for adjusting the model. On the one hand, windowed
methods are less stable, as less data is used for training the model. On the
other hand, windowed methods have the potential advantage of adjusting
faster to changes in the data, because the model forgets about older and
possibly no longer applicable information about the data. [19].

For the three methods of adapting to concept drift in this thesis, we cre-
ate analogous windowed variants called windowed retrain, windowed
threshold, and windowed hybrid. With windowed retrain, we
choose when to retrain the model as with retrain, but instead of using
all of the previous data to retrain the model, we only use 10000 most recent
files. Similarly, windowed threshold operates like threshold and the
model is also trained on the first half of our dataset, but the windowed vari-
ant only looks at the classification scores of the latest 10000 samples when
adjusting the threshold of the model. As before, the windowed hybrid
method combines the two other methods by only using the previous 10000
files whenever retraining the model and by only using the most recent 10000
files to adjust the model threshold.



Chapter 5

Experimental evaluation

This chapter presents the experimental results in our thesis. First, we use
cross-validation to compare different machine learning methods for malware
detection. Then, we analyze the effect of using temporally ordered data
instead of cross-validation. Finally, we compare methods for adjusting the
classifier to concept drifts in the data.

5.1 Comparison of cross-validated classifiers

In our first experiments, we compare four different machine learning classifiers
for malware detection: random forest, gradient boosted decision trees, neural
network, and support vector machine. We evaluated the performance of each
classifier by using 5-fold cross-validation, which means that for each fold, we
use 80% of the files in our dataset for training and the remaining 20% for
evaluating the models. First, we describe the implementation details and
what model parameters were chosen. Then, we present the results of our
experiments.

5.1.1 Experiment setup

For each split of the data into training and test sets, we extracted features
that were present in the training set, as described in Section 3.2. Additionally,
we normalized the features so that each feature had a mean value of 0 and a
variance of 1. Once the normalized features were created, we used the data
to train and compare classifiers. All models were trained using the same
machine with an Intel Core i7-7600U processor to ensure that the training
time durations are comparable between different models.

38
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We used scikit-learn1 machine learning library for Python programming
language to create our random forest, neural network, and support vector
machine models for malware detection. On the other hand, for gradient
boosted decision trees we decided to use a gradient tree boosting library
called XGBoost, as it has been used in many winning solutions in machine
learning competitions [10].

We chose the following hyperparameters for each model based on pilot
experiments: For random forest, we used 300 fully grown decision trees, while
for gradient boosted decision trees we used 1000 decision trees with a max-
imum depth of 6. Both random forest and gradient boosted decision trees
were trained using parallel computing with 4 threads running simultaneously.
For neural network, we used a multilayer perceptron with one hidden layer
consisting of 200 neurons, a regularization parameter α = 0.001, and a max-
imum number of 500 iterations. Finally, for support vector machine, we had
probability estimates enabled, because only having predictions of files being
either malware or benign is not enough but the probabilities are needed for
ROC curves and for later experiments on adjusting the model to concept
drift. For all other hyperparameters that are not mentioned here, we used
default values in the library implementations of the models.

5.1.2 Classifier comparison

The results between different models are somewhat similar, as the accuracy
of each model in each fold of the cross-validation was between 97% and 99%.
The average results for each model are presented in Table 5.1. Gradient
boosted decision trees achieved the best average accuracy and AUC among
the models in our experiment with an average accuracy of 98.8% after com-
pleting training in two hours.

On the other hand, random forest was the fastest model to train as it
took only around one minute to train, and it achieved an average accuracy of
98.0%. In order to speed up our model, we decided to reduce the number of
features by selecting 1000 features, which our random forest model deemed
most important. In our pilot experiments, this dimensionality reduction by
feature importance in random forest performed better than using principal
component analysis to construct new features that contain most of the infor-
mation in the data, or choosing features that are best individual indicators
of whether a file is malware or not.

We performed another cross-validation comparison as before, but this
time we trained first a random forest model and then trained another ma-

1https://scikit-learn.org/stable/

https://scikit-learn.org/stable/
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Table 5.1: Average accuracy, area under ROC curve (AUC), and train-
ing time for different machine learning classifiers when using 5-fold cross-
validation. The compared classifiers are random forest (RF), gradient
boosted decision trees (XGBoost), multilayer perceptron (MLP), and sup-
port vector machine (SVM). The best accuracy and AUC are achieved by
XGBoost, whereas random forest is the fastest to train.

Classifier Accuracy AUC Training time

RF 0.980 0.9981 1 min
XGBoost 0.988 0.9990 1 h 59 min
MLP 0.978 0.9966 20 min
SVM 0.974 0.9960 8 h 3 min

Table 5.2: Average accuracy, AUC, and training time for 5-fold cross-
validation, when first using random forest to select 1000 most important
features and then training another classifier using these features.

Classifier Accuracy AUC Training time

RF+RF 0.981 0.9981 2 min
RF+XGBoost 0.987 0.9989 21 min
RF+MLP 0.979 0.9965 5 min
RF+SVM 0.976 0.9962 55 min

chine learning model, which only used the 1000 most important features
chosen by the random forest. The results are presented in Table 5.2. The av-
erage accuracy and AUC of each model are very close to the respective values
in Table 5.1, where features were not first selected by a random forest. How-
ever, the total training times for gradient boosted decision trees, multilayer
perceptron, and support vector machine were considerably shorter when first
reducing the number of features using a random forest.

On the other hand, instead of focusing on accuracy, avoiding false posi-
tives is usually considered more important in malware detection, as frequent
false alarms significantly reduce the usability of an anti-malware software [1].
However, the magnified average ROC curves for the different classifiers in
Figure 5.1 show that gradient boosted decision trees are the best model for
malware detection regardless of what false positive rate is chosen. For in-
stance, at a fixed false positive rate of 0.5%, this model is able to detect
96.2% of the previously unseen malware in the test set, while the other mod-
els’ detection rates are 3-7 percentage points lower. Therefore, in subsequent
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experiments in this thesis, we will focus solely on the gradient boosted deci-
sion trees model, which uses features selected by a random forest to reduce
the training time of the model.
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Figure 5.1: Magnified average ROC curves for the different classifiers in our
cross-validation experiment. For any false positive rate, gradient boosted
decision trees have a higher true positive rate than the other classifiers.
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5.2 Comparison of concept drift adaptation

methods

This section presents the results of experiments using the concept drift adap-
tation methods described in Section 4.4. First, we show that concept drift
is present in our task of malware detection. Then, we discuss how choosing
a threshold for when to train the model affects the performance. Finally, we
compare the different methods for concept drift adaptation, as well as their
variants that only consider most recent files by using a sliding window.

5.2.1 Effect of temporally ordering data

A problem with using cross-validation for estimating the performance of mal-
ware detector is that with this approach the model can use information about
present and future files when classifying a sample. In a real scenario, the task
is more difficult as the machine learning model has to learn from past files
how to detect if files created in the future are malware or not. Indeed, prior
works on malware detection have shown that cross-validation tends to give
considerably higher model accuracy estimates than temporally ordered splits
into training and testing data sets [27, 37]. However, a study by Bach and
Maloof [3] did not find evidence of concept drift in a small-scale experiment
on malware detection using static analysis of files.

To verify the effect of concept drift on our static features and dataset, we
tested the gradient boosted decision trees model from our cross-validation
experiments on temporally ordered data. We sorted the files by when they
were first seen by F-Secure, and used the first half of files for training and the
other half for testing. For later analysis in the thesis, we refer to this as the
baseline method. This model achieved an average accuracy of 0.967, and an
AUC of 0.9966. In comparison, when the same model was evaluated using 2-
fold cross-validation that also uses half of the data for training and the other
half for testing, the average accuracy was 0.984 and the average AUC was
0.9985. Thus, ordering the data temporally impairs the performance of the
model, which indicates concept drift in our dataset of malware and benign
files.

5.2.2 Choice of retraining threshold

As described in Section 4.4, our retrain and hybrid methods retrain the
machine learning model when the accuracy for recent samples falls below
a set threshold. If the retrain threshold is set too low, the model is never
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retrained, which means that there is no improvement in accuracy compared to
the baseline method. On the other hand, if the threshold is set too high, the
model will be retrained very frequently, which is computationally expensive.
Thus, we need a threshold with a balance between method accuracy and how
often the model is retrained.

To find a good threshold, we tested retrain method with thresholds
0.89, 0.90, 0.91, ..., 1.0, and computed the method accuracy as well as how
often the model was retrained for each threshold. The results of this ex-
periment are shown in Figure 5.2. Choosing a higher threshold means that
the model has to be retained more often, but also increases the accuracy.
However, increasing the threshold above 0.98 does not significantly improve
the accuracy but does increase the number of times the model is retrained.
Therefore, we select the threshold of 0.98 for our retrain and hybrid meth-
ods.

5.2.3 Method comparison results

We trained each of the methods baseline, threshold, retrain, and hy-
brid on the first half of our temporally ordered set of files and evaluated
using the second half. To analyze how the accuracy of models changed over
time, we kept track of the accuracy for 1000 consecutive files over time. Fig-
ure 5.3 shows the running accuracy for each method as well as when the
machine learning model was retrained with retrain, and hybrid methods.
While baseline has a few significant drops in accuracy, these drops are less
pronounced for the methods adapting to concept drift.

All three adaptation methods achieved better overall accuracy than base-
line. We present the total accuracy on the test set for each method in Ta-
ble 5.3. While the threshold method does not require the model to be
retrained, retrain and hybrid methods had higher accuracy most of the
time. retrain and hybrid methods achieved very similar accuracy, but on
average the accuracy was slightly higher for the hybrid method. In addition,
with retrain the model was retrained 23 times whereas hybrid retrained
the model 19 times.

5.2.4 Comparison with windowed methods

We performed the same experiment with the windowed methods windowed
threshold, windowed retrain, and windowed hybrid. Figure 5.4
shows the running accuracy on 1000 consecutive files for baseline and the
three windowed methods. The markers in the figure show when windowed
retrain and windowed hybrid methods retrained the machine learning
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Figure 5.2: Accuracy and retrain count for different accuracy thresholds
that decide when to retrain the model. The model is retrained whenever
the running accuracy for 1000 consecutive samples falls below the threshold,
and there are at least 500 new samples since the model was last retrained.
Choosing a higher threshold leads to a higher accuracy but also increases
the number of times the model has to be retrained. A threshold of 0.89
or lower means that the model is not retrained, as the running accuracy
never falls below 0.89. On the other hand, a threshold of 1.0 means that the
model is retrained every 500 samples regardless of its performance. Choosing
a threshold higher than 0.98 notably increases the retrain count, while the
accuracy does not improve significantly.
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Figure 5.3: Running accuracy of 1000 consecutive samples for baseline,
threshold, retrain, and hybrid methods. The machine learning model
was retrained with retrain and hybrid methods every 500 samples if the
accuracy was below 0.98. The markers at the bottom indicate the times
when the model was retrained. The baseline method has large spikes indi-
cating sudden decreases in accuracy for files seen in the middle of November
and in early December. In comparison, threshold, retrain, and hybrid
methods are able to adapt and maintain higher accuracy. Most of the time,
hybrid and retrain methods achieve the best accuracy.
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Table 5.3: Total accuracy for the different methods of adapting to concept
drift. For each method, the model was initially trained using the first half of
the data and the accuracy was evaluated using the second half.

Method Accuracy

baseline 0.967
threshold 0.973
retrain 0.984
hybrid 0.985

Table 5.4: Total accuracy for the windowed versions of methods for adapting
to concept drift. The accuracy for each method was evaluated using the
second half of files in our dataset.

Method Accuracy

windowed threshold 0.973
windowed retrain 0.981
windowed hybrid 0.981

model. Compared to the non-windowed methods in Figure 5.3, the windowed
methods have slightly lower accuracy most of the time.

In some periods, the baseline method performs better than windowed
retrain and windowed hybrid. This could be explained by the fact
that the model in baseline was trained using half of the dataset for 30733
files, whereas the models in windowed retrain and windowed hybrid
methods were trained and retrained using only 10000 files. However, like the
non-windowed methods for concept drift adaptation, the windowed variants
are also able to mitigate the sudden drops in accuracy that appear with
baseline.

Overall, the windowed methods are also an improvement to the baseline
method by achieving higher accuracy. Table 5.4 gives the total accuracy for
each of the windowed methods. While the windowed versions are more scal-
able, the retrain and hybrid methods in Table 5.3 achieved better accu-
racy in our experiment. This implies that the windowed variants would bene-
fit from more closely mimicking the behaviour of the non-windowed methods
by using a larger window size.

While windowed retrain and windowed hybrid achieved similar
accuracy, windowed hybrid retrained the machine learning model slightly
fewer times. The model retrain counts for retrain, hybrid, windowed
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Table 5.5: The number of times different methods retrained the machine
learning model when evaluated on the second half of our dataset. While the
windowed variants retrained the model more often, each time the training
took approximately the same amount of time. In contrast, with the non-
windowed versions, training took increasingly longer amounts of time each
time the model was retrained because all of the accumulated previous data
was used for training. The hybrid and windowed hybrid did not need to
retrain the model as often as the respective retrain methods.

Method Retrain count

retrain 23
hybrid 19
windowed retrain 32
windowed hybrid 30

retrain, and windowed hybrid methods are presented in Table 5.5.
Overall, the hybrid methods outperform the respective retrain meth-
ods by having similar or better accuracy while retraining the model fewer
times. While the windowed variants retrained the model more often, each
retraining takes less time than for the non-windowed methods. Instead, the
non-windowed versions train the model using increasing amounts of data as
more files are collected over time.
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Figure 5.4: Running accuracy of 1000 consecutive samples for baseline,
windowed threshold, windowed retrain, and windowed hybrid
methods. The markers at the bottom indicate the times when the model was
retrained with windowed retrain and windowed hybrid methods.



Chapter 6

Conclusions and discussion

In this Master’s thesis, we created a classifier for malware detection. For
this purpose, we collected a dataset of 19648 malware and 41818 benign files
and extracted features using static analysis of the files. In our experiments,
we compared four different classifiers: random forest, gradient boosted deci-
sion trees, neural network, and support vector machines. Gradient boosted
decision trees achieved higher accuracy and AUC than the other methods.
Furthermore, by using a random forest model to select most important fea-
tures before training the gradient boosted decision trees model, we were able
to reduce the total training time of our classifier. These results support pre-
vious research showing that gradient boosted decision trees perform well in
the task of malware detection using static analysis [30].

Additionally, we tested the classifier on files that were sorted by when
they were first seen by F-Secure. The classification accuracy was lower on
temporally ordered data than when using cross-validation, which indicates
that concept drift should be taken into account in malware detection. To
deal with the concept drift, we then compared retrain, threshold, and
hybrid methods that adapt the classifier to changes in the data over time.
All three methods improved the accuracy of the classifier, and the best results
were achieved by the hybrid method, which merges the two other methods.
These results show that combining different methods for adapting to concept
drift can give a better malware detector than the individual methods.

We also compared the methods for adapting to concept drift with win-
dowed variants that only consider most recent files. While the windowed
variants are more practical when the number of files is large, in our ex-
periments the windowed methods achieved lower accuracy than the original
methods. To better assess how forgetting older files influences malware de-
tection, more studies on windowed methods should be carried out using a
larger dataset.

49
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In this thesis, the methods for adapting to changes in the data require that
we obtain labels indicating if new files are malicious or clean. However, hav-
ing human analysts create a large number of these labels is time-consuming
and expensive. Future work could study how labeling only a fraction of
the new files would impact the classifier over time and how to choose which
files should be labeled by an analyst. In addition, it remains to be studied
whether the classifier becomes unreliable if it is updated by using labels that
are automatically created. Alternatively, further research could incorporate
dynamic analysis of files for potentially more accurate malware detection.
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