Metadata, citation and similar papers at core.ac.uk

Provided by Queen Mary Research Online

Formal Methods for System Design manuscript No.
(will be inserted by the editor)

Model Checking Boot Code from AWS Data Centers

Byron Cook - Kareem Khazem -
Daniel Kroening - Serdar Tasiran -
Michael Tautschnig - Mark R. Tuttle

the date of receipt and acceptance should be inserted later

Abstract This paper describes our experience with symbolic model checking in
an industrial setting. We have proved that the initial boot code running in data
centers at Amazon Web Services is memory safe, an essential step in establishing
the security of any data center. Standard static analysis tools cannot be easily
used on boot code without modification owing to issues not commonly found in
higher-level code, including memory-mapped device interfaces, byte-level memory
access, and linker scripts. This paper describes automated solutions to these issues
and their implementation in the C Bounded Model Checker (CBMC). CBMC is now
the first source-level static analysis tool to extract the memory layout described in
a linker script for use in its analysis.

Keywords Formal verification, model checking, CBMC, boot code, firmware,
linker script, Amazon Web Services (AWS)

1 Introduction

Boot code is the first code to run in a data center; thus, the security of a data center
depends on the security of the boot code. It is hard to demonstrate boot code
security using standard techniques, as boot code is difficult to test and debug, and
boot code must run without the support of common security mitigations available
to the operating system and user applications. This industrial experience report
describes work to prove the memory safety of initial boot code running in data
centers at Amazon Web Services (AWS).

Byron Cook - Kareem Khazem
Amazon Web Services and University College London, UK
E-mail: karkhaz@karkhaz.com

Daniel Kroening
University of Oxford

Serdar Tasiran - Mark R. Tuttle
Amazon Web Services

Michael Tautschnig
Amazon Web Services and Queen Mary University of London, UK

https://core.ac.uk/display/288495917?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Byron Cook et al.

We describe the challenges we faced analyzing AWS boot code, some of which
render existing approaches to software verification unsound or imprecise. These
challenges include

1. memory-mapped input/output (MMIO) for accessing devices,

2. device behavior behind these MMIO regions,

3. byte-level memory access as the dominant form of memory access, and
4. linker scripts used during the build process.

Not handling MMIO or linker scripts results in imprecision (false positives), and
not modeling device behavior is unsound (false negatives).

We describe the solutions to these challenges that we developed. We implemented
our solutions in the C Bounded Model Checker (CBMC) [20]. We achieve soundness
with CBMC by fully unrolling loops in the boot code. Our solutions automate
boot code verification and require no changes to the code being analyzed. This
makes our work particularly well-suited for deployment in a continuous validation
environment to ensure that memory safety issues do not reappear in the code as
it evolves during development. We use CBMC, but any other bit-precise, sound,
automated static analysis tool could be used.

2 Related work

There are many approaches to finding memory safety errors in low-level code, from
fuzzing [2] to static analysis [24,30,36,54] to deductive verification [21,32].

A key aspect of our work is soundness and precision in the presence of very
low-level details. Furthermore, full automation is essential in our setting to operate
in a continuous validation environment. This makes some form of model checking
most appealing.

CBMC is a bounded model checker for C, C4++, and Java programs, available
on GitHub [13]. It features bit-precise reasoning, and it verifies array bounds (buffer
overflows), pointer safety, arithmetic exceptions, and assertions in the code. A user
can bound the model checking done by CBMC by specifying for a loop a maximum
number of iterations of the loop. CBMC can check that it is impossible for the loop
to iterate more than the specified number of times by checking a loop-unwinding
assertion. CBMC is sound when all loop-unwinding assertions hold. Loops in boot
code typically iterate over arrays of known sizes, making it possible to choose loop
unwinding limits such that all loop-unwinding assertions hold (see Section 5.6).
BLITZ [16] or F-Soft [34] could be used in place of CBMC. SATABS [19], Ufo [3],
Cascade [58], Blast [8], CPAchecker [9], Corral [31,39,40], and others [18,43] might
even enable unbounded verification. Our work applies to any sound, bit-precise,
automated tool.

Note that boot code makes heavy use of pointers, bit vectors, and arrays, but
not the heap. Thus, memory safety proof techniques based on three-valued logic [41]
or separation logic as in [7] or other techniques [1,22] that focus on the heap are
less appropriate since boot code mostly uses simple arrays.

KLEE [12] is a symbolic execution engine for C that has been used to find bugs
in firmware. Davidson et al. [25] built the tool FIE on top of KLEE for detecting
bugs in firmware programs for the MSP430 family of microcontrollers for low-power
platforms, and applied the tool to nearly a hundred open source firmware programs

Model Checking Boot Code from AWS Data Centers 3

for nearly a dozen versions of the microcontroller to find bugs like buffer overflow
and writing to read-only memory. Corin and Manzano [23] used KLEE to do
taint analysis and prove confidentiality and integrity properties. KLEE and other
tools like SMACK [49] based on the LLVM intermediate representation do not
currently support the linker scripts that are a crucial part of building boot code
(see Section 4.5). They support partial linking by concatenating object files and
resolving symbols, but fail to make available to their analysis the addresses and
constants assigned to symbols in linker scripts, resulting in an imprecise analysis
of the code.

S?E [15] is a symbolic execution engine for x86 binaries built on top of the
QEMU [6] virtual machine and KLEE. S?E has been used on firmware. Parvez
et al. [46] use symbolic execution to generate inputs targeting a potentially buggy
statement for debugging. Kuznetsov et al. [38] used a prototype of S?E to find
bugs in Microsoft device drivers. Zaddach et al. [59] built the tool Avatar on top of
S2E to check security of embedded firmware. They test firmware running on top of
actual hardware, moving device state between the concrete device and the symbolic
execution. Bazhaniuk et al. [5,28] used S?E to search for security vulnerabilities in
interrupt handlers for System Management Mode on Intel platforms. Experts can
use S?E on firmware. One can model device behavior (see Section 4.2) by adding
a device model to QEMU or using the signaling mechanism used by S?E during
symbolic execution. One can declare an MMIO region (see Section 4.1) by inserting
it into the QEMU memory hierarchy. Both require understanding either QEMU or
S?E implementations. Our goal is to make it as easy as possible to use our work,
primarily by way of automation.

Ferreira et al. [29] verify a task scheduler for an operating system, but that
is high in the software stack. Klein et al. [35] prove the correctness of the sel4
kernel, but that code was written with the goal of proof. Dillig et al. [26] synthesize
guards ensuring memory safety in low-level code, but our code is written by hand.
Rakamarié¢ and Hu [50] developed a conservative, scalable approach to memory
safety in low-level code, but the models there are not tailored to our code that
routinely accesses memory by an explicit integer-valued memory address. Redini
et al. [51] built a tool called BootStomp on top of angr [57], a framework for
symbolic execution of binaries based on a symbolic execution engine for the VEX
intermediate representation for the Valgrind project, resulting in a powerful testing
tool for boot code, but it is not sound.

3 Boot code

We define boot code to be the code in a cloud data center that runs from the
moment the power is turned on until the BIOS starts. It runs before the operating
system’s boot loader that most people are familiar with. A key component to
ensuring high confidence in data center security is establishing confidence in boot
code security. Enhancing confidence in boot code security is a challenge because
of unique properties of boot code not found in higher-level software. We now
discuss these properties of boot code, and a path to greater confidence in boot
code security.

4 Byron Cook et al.

3.1 Boot code implementation

Boot code starts a sequenced boot flow [4] in which each stage locates, loads,
and launches the next stage. The boot flow in a modern data center proceeds as
follows: (1) When the power is turned on, before a single instruction is executed,
the hardware interrogates banks of fuses and hardware registers for configuration
information that is distributed to various parts of the platform. (2) Boot code starts
up to boot a set of microcontrollers that orchestrate bringing up the rest of the
platform. In a cloud data center, some of these microcontrollers are feature-rich
cores with their own devices used to support virtualization. (3) The BIOS familiar
to most people starts up to boot the cores and their devices. (4) A boot loader
for the hypervisor launches the hypervisor to virtualize those cores. (5) A boot
loader for the operating system launches the operating system itself. The security
of each stage, including operating system launched for the customer, depends on
the integrity of all prior stages [27].

Ensuring boot code security using traditional techniques is hard. Visibility into
code execution can only be achieved via debug ports, with almost no ability to single-
step the code for debugging. UEFI (Unified Extensible Firmware Interface) [56]
provides an elaborate infrastructure for debugging BIOS, but not for the boot code
below BIOS in the software stack. Instrumenting boot code may be impossible
because it can break the build process: the increased size of instrumented code can
be larger than the size of the ROM targeted by the build process. Extracting the
data collected by instrumentation may be difficult because the code has no access
to a file system to record the data, and memory available for storing the data may
be limited.

Static analysis is a relatively new approach to enhancing confidence in boot
code security. As discussed in Section 2, most work applying static analysis to boot
code applies technology like symbolic execution to binary code, either because the
work strips the boot code from ROMs on shipping products for analysis and reverse
engineering [38,51], or because code like UEFI-based implementations of BIOS
loads modules with a form of dynamic linking that makes source code analysis
of any significant functionality impossible [5,28]. But with access to the source
code—source code without the complexity of dynamic linking—meaningful static
analysis at the source code level is possible.

3.2 Boot code security

Boot code is a foundational component of data center security: it controls what
code is run on the server. Attacking boot code is a path to booting your own code,
installing a persistent root kit, or making the server unbootable. Boot code also
initializes devices and interfaces directly with them. Attacking boot code can also
lead to controlling or monitoring peripherals like storage devices.

The input to boot code is primarily configuration information. The run-time
behavior of boot code is determined by configuration information in fuses, hardware
straps, one-time programmable memories, and ROMs.

From a security perspective, boot code is susceptible to a variety of events that
could set the configuration to an undesirable state. To keep any malicious adversary
from modifying this configuration information, the configuration is usually locked

Model Checking Boot Code from AWS Data Centers 5

or otherwise write-protected. Nonetheless, it is routine to discover during hardware
vetting before placing hardware on a data center floor that some BIOS added by
a supplier accidentally leaves a configuration register unlocked after setting it. In
fact, configuration information can be intentionally unlocked for the purpose of
patching and then be locked again. Any bug in a patch or in a patching mechanism
has the potential to leave a server in a vulnerable configuration. Perhaps more
likely than anything is a simple configuration mistake at installation. We want to
know that no matter how a configuration may have been corrupted, the boot code
will operate as intended and without latent exposures for potential adversaries.

The attack surface we focus on in this paper is memory safety, meaning there
are no buffer overflows, no dereferencing of null pointers, and no pointers pointing
into unallocated regions of memory. Code written in C is known to be at risk for
memory safety, and boot code is almost always written in C, in part because of the
direct connection between boot code and the hardware, and sometimes because of
space limitations in the ROMs used to store the code.

There are many techniques for protecting against memory safety errors and
mitigating their consequences at the higher levels of the software stack. Languages
other than C are less prone to memory safety errors. Safe libraries can do bounds
checking for standard library functions. Compiler extensions to compilers like gcc
and clang can help detect buffer overflow when it happens (which is different from
keeping it from happening). Address space layout randomization makes it harder
for the adversary to make reliable use of a vulnerability. None of these mitigations,
however, apply to firmware. Firmware is typically built using the tool chain that is
provided by the manufacturer of the microcontroller, and firmware typically runs
before the operating system starts, without the benefit of operating system support
like a virtual machine or randomized memory layout.

4 Boot code verification challenges

Boot code poses challenges to the precision, soundness, and performance of any
analysis tool. The C standard [33] says, “A volatile declaration may be used to
describe an object corresponding to an MMIO port” and “what constitutes an
access to an object that has volatile-qualified type is implementation-defined.” Any
tool that seeks to verify boot code must provide means to model what the C
standard calls implementation-defined behavior. Of all such behavior, MMIO and
device behavior are most relevant to boot code. In this section, we discuss these
issues and the solutions we have implemented in CBMC.

4.1 Memory-mapped 1/0

Boot code accesses a device through memory-mapped input/output (MMIO). Regis-
ters of the device are mapped to specific locations in memory. Boot code reads or
writes a register in the device by reading or writing a specific location in memory.
If boot code wants to set the second bit in a configuration register, and if that
configuration register is mapped to the byte at location 0x1000 in memory, then
the boot code sets the second bit of the byte at 0x1000. The problem posed by
MMIO is that there is no declaration or allocation in the source code specifying

6 Byron Cook et al.

this location 0x1000 as a valid region of memory. Nevertheless accesses within this
region are valid memory accesses, and should not be flagged as an out-of-bounds
memory reference. This is an example of implementation-defined behavior that
must be modeled to avoid reporting false positives.

To facilitate analysis of low-level code, we have added to CBMC a built-in
function

__CPROVER_allocated_memory (address, size)

to mark ranges of memory as valid. Accesses within this region are exempt from
the out-of-bounds assertion checking that CBMC would normally do. The function
declares the half-open interval [address, address + size) as valid memory that can
be read and written. This function can be used anywhere in the source code, but
is most commonly used in the test harness. (CBMC, like most program analysis
approaches, uses a test harness to drive the analysis.)

4.2 Device behavior

An MMIO region is an interface to a device. It is unsound to assume that the
values returned by reading and writing this region of memory follow the semantics
of ordinary read-write memory. Imagine a device that can generate unique ids.
If the register returning the unique id is mapped to the byte at location 0x1000,
then reading location 0x1000 will return a different value every time, even without
intervening writes. These side effects have to be modeled. One easy approach is to
‘havoc’ the device, meaning that writes are ignored and reads return nondetermin-
istic values. This is sound, but may lead to too many false positives. We can model
the device semantics more precisely, using one of the options described below.

If the device has an API, we havoc the device by making use of a more general
functionality we have added to CBMC. We have added a command-line option

--remove-function-body device_access

to CBMC’s goto-instrument tool. When used, this will drop the implementation
of the function device_access from compiled object code. If there is no other
definition of device_access, CBMC will model each invocation of device_access
as returning an unconstrained value of the appropriate return type. Now, to havoc
a device with an API that includes a read and write method, we can use this
command-line option to remove their function bodies, and CBMC will model each
invocation of read as returning an unconstrained value.

At link time, if another object file, such as the test harness, provides a second
definition of device_access, CBMC will use this definition in its place. Thus, to
model device semantics more precisely, we can provide a device model in the test
harness by providing implementations of (or approximations for) the methods in
the APL

If the device has no API, meaning that the code refers directly to the address
in the MMIO region for the device without reference to accessor functions, we have
another method. We have added two function symbols

__CPROVER_mm_io_r (address, size)
__CPROVER_mm_io_w(address, size, value)

Model Checking Boot Code from AWS Data Centers 7

to CBMC to model the reading or writing of an address at a fixed integer address.
If the test harness provides implementations of these functions, CBMC will use
these functions to model every read or write of memory. For example, defining

char __CPROVER_mm_io_r(void *a, unsigned s) {

if (a == 0x1000)
return 2;
else

return nondet_char ();

}

will return the value 2 upon any access at address 0x1000, and return a non-
deterministic value in all other cases.

In both cases—with or without an APT—we can thus establish sound and, if
needed, precise analysis about an aspect of implementation-defined behavior.

4.3 Byte-level memory access

It is common for boot code to access memory a byte at a time, and to access a
byte that is not part of any variable or data structure declared in the program
text. Accessing a byte in an MMIO region is the most common example. Boot code
typically accesses this byte in memory by computing the address of the byte as an
integer value, coercing this integer to a pointer, and dereferencing this pointer to
access that byte. Boot code references memory by this kind of explicit address far
more frequently than it references memory via some explicitly allocated variable or
data structure. Any tool analyzing boot code must have a method for reasoning
efficiently about accessing an arbitrary byte of memory.

A natural model for memory is as an array of bytes [55]. This enables CBMC
to precisely reason about memory accesses in presence of pointer arithmetic, at the
expense of not using abstractions like those provided by Separation Logic [52]. Any
decision procedure that has a well-engineered implementation of a theory of arrays
is likely to do a good job of modeling byte-level memory access. We improved
CBMC’s decision procedure for arrays to follow the state-of-the-art algorithm [17,
37]. The key data structure is a weak equivalence graph whose vertices correspond
to array terms. Given an equality a = b between two array terms a and b, add an
unlabeled edge between a and b. Given an update a{i < v} of an array term a, add
an edge labeled ¢ between a and a{i < v}. Two array terms a and b are weakly
equivalent if there is a path from a to b in the graph, and they are equal at all indices
except those updated along the path. This graph is used to encode constraints
on array terms for the solver. For simplicity, our implementation generates these
constraints eagerly.

4.4 Memory copying

One of the main jobs of any stage of the boot flow is to copy the next stage into
memory, usually using some variant of memcpy. Any tool analyzing boot code must
have an efficient model of memcpy. Modeling memcpy as a loop iterating through a
thousand bytes of memory leads to performance problems during program analysis.
We added to CBMC an improved model of the memset and memcpy library functions.

8 Byron Cook et al.

Boot code has no access to a C library. In our case, the boot code shipped
an iterative implementation of memset and memcpy. CBMC’s model of the C library
previously also used an iterative model. We replaced this iterative model of memset
and memcpy with a single array operation that can be handled efficiently by the
decision procedure at the back end. We instructed CBMC to replace the boot
code implementations with the CBMC model using the --remove-function-body
command-line option described in Section 4.2.

4.5 Linker scripts

Boot code and other low-level programs control and access their memory layout
using custom linker scripts, which is a mechanism external to the source code.
This means that current static analysis tools, which only read and analyze the
source code, do not correctly model the memory layout of such programs. This
is a hindrance to verifying the memory safety of boot code, in which buffers are
commonly defined in linker scripts. Without understanding what the runtime
memory layout will be, static analysis tools falsely report that boot code is unsafe.
In this section, we present informal description of linker scripts, how programmers
use them to control memory layout, and why this poses problems for static analysis.
We describe how we overcame these problems in Section 5.5.

The left-hand side of Fig. 1 depicts a short program written in C. This code is
memory safe when linked according to the linker script on the right-hand side of
the figure, but current static analyzers — that consider only the C code — cannot
show that it is memory safe.

This program contains two unusual features:

— The program declares several variables as extern. Normally, this means that the
variables must be defined (not just declared) in some other source file. However,
this program contains no other source files, so those variables will apparently
not be allocated. Without the information in the linker script, attempts to
analyze or link this program will fail.

1 /% main.c */ 1 /% link.ld */
2 2
3 #include <string.h> 3 SECTIONS {
4 4 .rodata : {
5 extern char[] rodata_start; 5 rodata_start = .;
6 extern char[] rodata_size; 6 *(.rodata)
7 extern char[] data_start; 7 }
8 8 rodata_size =
9 int main () 9 SIZEOF (. rodata);
10 { 10
11 memcpy (11 .data : {
12 &data_start, 12 data_start = .;
13 &rodata_start, 13 *(.data)
14 (size_t)&rodata_size); 14 data_end = .;
15} 15 }
16 }

Figure 1: A program using variables whose addresses are defined in a linker script

Model Checking Boot Code from AWS Data Centers 9

.text .data .rodata .text .rodata .text .data

NN

.data ———> <¢— .rodata —

Figure 2: Default linkage of several object files. The three object files in the top
row, given as input to the linker, are linked into the output object at the bottom.
The .text input sections (patterned) are joined into a single contiguous section, as
are the .data input sections (plain) and .rodata input sections (striped).

— The number of bytes to copy is the address, not the value, of rodata_size. This
variable has not been allocated because it was declared extern, so it seemingly
does not even have an address.

To explain these apparent contradictions, we present an overview of how linking
works and how the linker script in Fig. 1 makes the C program valid.

Compilers, Linkers, and Linker Scripts A compiler transforms a single source file
into an object file. An object file contains machine code organized into several
sections; each section has a name and contains machine code for a specific purpose.
Conventionally, object files emitted by a compiler contain the following sections,
among many others:

— the .text section, containing executable machine code;

— the .data contains static program data (i.e. static and global variables in a C
program) that the executable code can read and write at runtime;

— .rodata is similar to .data, but is loaded into a read-only memory segment at
runtime.

A linker joins several object files into a single object. By default, it joins
identically-named sections in each of the input files into a single contiguous section
in the output object, as depicted in Fig. 2.

The functionality of most programs does not depend on the exact layout of the
program’s own machine code and data. The default behavior of a linker therefore
suffices to correctly link the majority of programs. However, the functionality of
low-level software (like boot loaders, kernels, and firmware) often does depend
on the exact layout of structures in the object file. For example, [10] discusses

10 Byron Cook et al.

the custom sections that are present in the Linux kernel’s object file, and [44,
45,48,47] describe various link-level optimizations that are applied to the kernel.
In such cases, programmers manually control the object file’s layout by running
the linker according to a hand-written linker script. Linker scripts are imperative
programs that can direct the linker to place sections at particular addresses; control
the access permissions of those sections; and place symbols (named addresses that
demarcate code or data) at arbitrary points in the object file. Figure 3 depicts an
object file a linker might emit when linking the program in Fig. 1, following the
script in that figure.

Lines 4 and 11 of the linker script instruct the linker to create sections called
.rodata and .data in the object file. These sections are populated with machine code
from the object files that the linker gets as input: line 6 says to place the machine
code from all input .rodata sections into the output .rodata section, and line 13 does
the same for the .data section. Figure 3 depicts those two sections as gray regions
in the object file. In addition, the linker script adds symbols (named addresses) to
the object file. The statement on line 9 sets the address of the rodata_size symbol
to be the number of bytes in the .rodata section. The period (“.”) expression in a
linker script evaluates to the current address in the object file, and increases as the
linker populates the file with machine code. Thus, the statement “rodata_start = .;”
on line 5 means “place a symbol called rodata_start in the object file at the current
address.” If that statement immediately follows the opening of a new section—as
it does in Fig. 1—then it serves to demarcate the start of that section. Similarly,
the statement on line 14 comes just after the linker wrote the machine code of
the .data section and just before the curly brace that terminates the section. This
means that the data_end symbol demarcates the end of the .data section.

The previous paragraph illustrates how the program in Fig. 1 successfully links
when the linker runs according to the script, despite the apparent problems that
we highlighted. The variables in the program are extern-declared because they are
defined in the linker script, rather than in a source file, and the linker sets their
addresses. Reading those variable’s addresses in the program is thus safe. It is also
safe to copy the memory region starting at the address of rodata_start, because
that memory region is a section of machine code that the linker allocated, and we
do not stray beyond the boundary of that region because the number of bytes we
copy is exactly the section’s size. The program is therefore safe, but only when

[rodata_start [rodata_size data_start l data_end

|1 0x20 . 1 0x120 A | |
Foxo0 0x100 0x200 0x380 '

Figure 3: Object file emitted by a linker following the script in Fig. 1

Model Checking Boot Code from AWS Data Centers 11

linked in accordance with the script. It is therefore necessary to analyze the script,
as well as the program itself, to decide the memory safety of this program.

Linker scripts pose challenges for static analysis. Current static analysis tools
parse and analyze only the source code, neglecting to read the linker script if one
exists. This means that they lack the following information, referring to Fig. 1 but
without loss of generality:

1. The numerical addresses of rodata_start, rodata_size, and data_start, which will
only be known at link time, i.e., after the compiler has generated object files as
shown in Fig. 3;

2. The fact that the symbol rodata_start demarcates a valid region of memory
that is rodata_size bytes long, and that data_start similarly demarcates the
start of another valid memory region—which is information contained in the
linker script.

The numerical addresses of symbols can be read directly from the object file, if
one exists, using a standard utility like readelf(1) or objdump(1). However, the
relationship between sections and symbols are not written to the object file. There
may in fact be a symbol called rodata_start that has the same address as the
beginning of the rodata section in the object file. However, the linker may have
placed the symbol there coincidentally; we cannot assume that the program author
explicitly demarcated the section with a symbol unless the linker script says so.
To discover the symbols that demarcate object file sections, static analysis tools
must therefore parse the linker script and incorporate that information into their
analyses.
Without this information, static analyzers assume that the addresses of rodata_start,

rodata_size, and data_start are set to an arbitrary value. This admits the possibility
of a memory safety violation or other undefined behavior, for example

— if either of the memory regions at those addresses are not actually allocated;

— if the memory regions are allocated but overlap (since calling memcpy(3) on
overlapping memory regions is undefined behavior);

— if rodata_size is larger than the size of the region allocated at data_start.

This issue prevented us from verifying the safety of our boot code, which uses a
linker script, using existing tools. We describe how we extended CBMC to overcome
this issue in Section 5.5.

5 Industrial boot code verification

In this section, we describe our experience proving memory safety of boot code
running in an AWS data center. We give an exact statement of what we proved,
we point out examples of the verification challenges mentioned in Section 4 and
our solutions, and we go over the test harness and the results of running CBMC.

We use CBMC to prove that 783 lines of AWS boot code are memory safe.
Soundness of this proof by bounded model checking is achieved by having CBMC
check its loop unwinding assertions (that loops have been sufficiently unwound).
This boot code proceeds in two stages, as illustrated in Figure 4. The first stage
prepares the machine, loads the second stage from a boot source, and launches
the second stage. The behavior of the first stage is controlled by configuration

12 Byron Cook et al.

Boot configuration Boot sources

[Straps][OTP]
Any binary

Any boot configuration

Any source

Any device configuration

No memory

[Device configu ration]
safety errors

Figure 4: Boot code is free of memory safety errors.

information in hardware straps and one-time-programmable memory (OTP), and
by device configuration. We show that no configuration will induce a memory safety
error in the stage 1 boot code. More precisely, we prove:

Assuming
— a buffer for stage 2 code and a temporary buffer are both 1024 bytes,
— the cryptographic, CRC computation, and printf methods have no side
effects and can return unconstrained values,
— the CBMC model of memcpy and memset, and
— ignoring a loop that flashes the console lights when boot fails
then
— for every boot configuration,
— for every device configuration,
— for each of the three boot sources, and
— for every stage 2 binary,
the stage 1 boot code will not exhibit any memory safety errors.

Due to the second and third assumptions, we may be missing memory safety
errors in these simple procedures. Memory safety of these procedures can be
established in isolation. We find all memory safety errors in the remainder of the
code, however, because making buffers smaller increases the chances they will
overflow, and allowing methods to return unconstrained values increases the set of
program behaviors considered.

The code we present in this section is representative of the code we analyzed, but
the actual code is proprietary and not public. The open-source project rBoot [11]
is 700 lines of boot code available to the public that exhibits most of the challenges
we now discuss.

5.1 Memory-mapped I/O
MMIO regions are not explicitly allocated in the code, but the addresses of these

regions appear in the header files. For example, an MMIO region for the hardware
straps is given with

Model Checking Boot Code from AWS Data Centers 13

#define REG_BASE (0x1000)
#define REG_BOOT_STRAP (REG_BASE + 0x110)
#define REG_BOOT_CONF (REG_BASE + 0x124)

Each of the last two macros denotes the start of a different MMIO region, leaving
0x14 bytes for the region named REG_BOOT_STRAP. Using the builtin function added
to CBMC (Section 4.1), we declare this region in the test harness with

__CPROVER_allocated_memory (REG_BOOT_STRAP, 0x14);

5.2 Device behavior

All of the devices accessed by the boot code are accessed via an API. For example,
the API for the UART is given by

int UartInit (UART_PORT port, unsigned int baudRate);
void UartWriteByte (UART_PORT port, uint8_t byte);
uint8_t UartReadByte (UART_PORT port);

In this work, we havoc all of the devices to make our result as strong as possible.
In other words, our device model allows a device read to return any value of the
appropriate type, and still we can prove that (even in the context of a misbehaving
device) the boot code does not exhibit a memory safety error. Because all devices
have an API, we can havoc the devices using the command line option added to
CBMC (Section 4.2), and invoke CBMC with

--remove-function-body UartInit
--remove-function-body UartReadByte
--remove-function-body UartWriteByte

5.3 Byte-level memory access

All devices are accessed at the byte level by computing an integer-valued ad-
dress and coercing it to a pointer. For example, the following code snippets from
BootOptionsParse show how reading the hardware straps from the MMIO region
discussed above translates into a byte-level memory access.

#define REG_READ (addr) (x(volatile uint32_t*) (addr))
regVal = REG_READ (REG_BOOT_STRAP);

In CBMC, this translates into an access into an array modeling memory at location
0x1000 + 0x110. Our optimized encoding of the theory of arrays (Section 4.3)
enables CBMC to reason more efficiently about this kind of construct.

5.4 Memory copying
The memset and memcpy procedures are heavily used in boot code. For example, the

function used to copy the stage 2 boot code from flash memory amounts to a single,
large memcpy.

14 Byron Cook et al.

int SNDR_Read(unsigned int address,
uint8_tx* buff,
unsigned int numBytes) {

memcpy (buff ,
(void*) (address + REG_SNOR_BASE_ADDRESS),
numBytes);

}

CBMC reasons more efficiently about this kind of code due to our loop-free model
of memset and memcpy procedures as array operations (Section 4.4).

5.5 Improving Analysis of Programs that Use Linker Scripts

We aim to verify the memory safety of boot code that uses a custom linker script
to control its runtime memory layout. Due to the issues we described in Section 4.5,
current static analyzers cannot correctly decide the memory safety of programs
that use linker scripts. We therefore extended CBMC with a linker script parser,
together with code that augments CBMC’s understanding of the runtime memory
layout with the information gotten from the linker script. This work can be applied
to other static analyzers so that they too can more precisely reason about linker
script using programs. In this section, we describe how CBMC uses the information
that our parser returns.

High-level overview Figure 5 depicts how CBMC analyzes programs, together with
our extensions.

cq .text
D goto-gcc D linking ~ata load IR CBMC
D D D D .cbmc| — " analysis
source object executable Wit}.l B
files files CBMC IR section
.text bx
oD
.data N

instrumentation
parser Bt

D

linker script JSON output IR instrumented with

linker script information

Figure 5: How CBMC analyzes programs. Dotted lines represent the changes we
made that allow CBMC to precisely reason about programs that use linker scripts.

To analyze a program, users first compile each of the source files with a compiler
called goto-gcc. This compiler is a drop-in replacement for gcc(1); in fact, it runs
gcc in the background and writes the output to an object file. In addition, goto-gcc
writes an extra section at the end of the object file that contains the source file

Model Checking Boot Code from AWS Data Centers 15

compiled into CBMC’s internal representation (IR). This means that the object
files can be linked and executed as usual, but they can also be read and analyzed
by CBMC. CBMC users then link the object files into an executable (which will
contain the IR for the whole program); CBMC can then load the IR from the
executable file and analyze it.

In a previous section, we noted that some of the information that CBMC
requires—namely, the addresses of linker script defined symbols—must be read
from a fully-linked executable. We can therefore take advantage of the process
depicted in Fig. 5, because that process already yields an executable file. The parser
that we wrote thus takes that executable file as input, reads the addresses from
the file, and sends that information to CBMC.

Programs that use linker scripts do not compile correctly without that script.
We therefore extended CBMC’s linker so that it passes the linker script to gcc.
We also parse the linker script to get the other information that CBMC requires:
the mapping from section names to the names of the symbols that demarcate
the section. Therefore, when a user now runs CBMC over an executable, it no
longer immediately analyzes the loaded IR. Instead, if the codebase contained a
linker script, CBMC passes the executable and linker script to the parser, and
then instruments the IR with the information that the parser returns. CBMC then
analyzes this augmented IR, which now contains enough information to correctly
decide memory safety.

Parser Output Our parser takes a linker script, together with an object file linked
according to that script, as input. Given the linker script in Fig. 1 and the object
file in Fig. 3, our parser would emit the JSON-formatted map in Fig. 6.

{
"sections" : {
".data" : {
"start" : "data_start",
"end" : "data_end"
},
".rodata" : {
"start" : "rodata_start",
"size" : "rodata_size"
}
},
"addresses" : {
"rodata_start" : "0x20",
"rodata_size" : "0x100",
"data_start" : "0x200",
"data_end" : "0x380"
}
}

Figure 6: JSON output from our linker script parser

There are two top-level keys in the map. The addresses key contains the memory
address of every symbol in the object file. If there are sections whose start address,
end address, or size was demarcated by a symbol, then that information will be in

16 Byron Cook et al.

the sections key. For every such section in the object file, the sections key maps
the section’s name to:

— the symbol whose address was set to the section’s start address; and either
— the symbol whose address was set to just past the end of the section, or
— the symbol whose address was set to the section’s size.

Recall that static analysis in the presence of linker scripts is imprecise because
the linker script contains information that does not exist in the source code. When
CBMUC receives the linker parser output, it therefore transforms the program’s IR
by adding this missing information. There are three transformations that CBMC
makes:

— transforming the type of linker defined symbols such that they can be assigned
an address;

— assigning the addresses in the addresses map to linker defined symbols;

— declaring that the regions of memory described in the sections map are allocated.

We describe these transformations, illustrated in Fig. 7, in the next paragraphs.

Type Transformation We transform the intermediate representation of the target
program so that it contains the information needed to decide its memory safety.
Static analyzers must ensure that linker defined symbols have the address that the
linker assigned to them. However, it is not possible to assign a value to an address
(i.e. &data_end = 0x380) in C, since that is the linker’s job. Our solution is to change
the program such that we assign 0x380 directly to the variable, rather than to the
variable’s address. However, since some scalar types (like char) cannot contain
arbitrary memory addresses, we change the declaration of linker defined variables
to make them pointer types, if they were not already. We also remove the extern
qualifier, so that we can define the variables (rather than just declaring them).
Finally, we also change all accesses to linker defined variables in the program,
such that they correctly access the pointer value (rather than the original variable
address).

The linker manual [14] sets the convention of declaring linker defined variables
to have type char[1. However, linker defined variables can be declared as having any
type, since only their address may be accessed from the program (so the bit width
of the variable’s value is immaterial). Many programmers do declare linker defined
variables as having type char, char*, or something else; furthermore, accesses to
foo of type char[] can sometimes be preprocessed into &foo[0]. We give the correct
pointer type to the declaration no matter what the original type was.

Address Fizup and Memory Allocation After performing the previous step, it is
possible to assign the addresses of linker defined symbols to their associated
variables in the IR. We do this assignment in __CPROVER_initialize(), which is a
function that CBMC symbolically executes just before executing main(). We also use
that function to tell CBMC that the memory regions corresponding to object file
sections are allocated, using the __CPROVER_allocated_memory directive. This ensures
that CBMC does not report a memory safety violation when the program accesses
memory in those regions.

Model Checking Boot Code from AWS Data Centers

17

extern char[] rodata_start; char *rodata_start;

extern char[] rodata_size; char *rodata_size;

extern char[] data_start;

extern char[] data_end;

__CPROVER_initialize ()

{

//

}

int main ()

{

memcpy (

&data_start,
&rodata_start,
(size_t)&rodata_size);

}

char *data_start;
char *data_end;

__CPROVER_initialize ()

{

rodata_start = 0x20;
rodata_size = 0x100;
data_start = 0x200;
data_end = 0x380;

data_start,

data_end - data_start);

_CPROVER_allocated_memory (

__CPROVER_allocated_memory (

rodata_start,
rodata_size);

}

int main()
{
memcpy (
data_start,
rodata_start,

(size_t)(rodata_size));

Figure 7: Transforming the types of linker-defined symbols. We transform the
IR of the program on the left into the one on the right. The ampersands have
been removed from all accesses to the variables in the program; the types of linker
defined symbols are now pointers, and no longer extern-declared; the addresses of
those symbols are assigned to the pointer; and the section’s extent is noted to be

allocated memory.

Application to AWS Boot Code The linker script used in AWS boot code calls
memcpy (3) on linker defined memory regions, in a similar manner to Fig. 1. It defines
a region to hold the stage 2 binary and passes the address and size of the region as
the addresses of the symbols stage2_start and stage2_size.

.stage2 (NOLOAD) : {
stage2_start = .;
= . + STAGE2_SIZE;
stage2_end = .;
} > RAM2

stage2_size = SIZEOF(.stage2);

The code declares the symbols as externally defined, and uses a pair of macros to
convert the addresses of the symbols to an address and a constant before use.

extern char stage2_start[];
extern char stage2_sizel[];

#define STAGE2_ADDRESS ((uint8_t*) (&stage2_start))

#define STAGE2_SIZE

((unsigned) (&stage2_size)))

18 Byron Cook et al.

CBMC’s new approach to handling linker scripts modifies the CBMC intermediate
representation of this code as described in the previous paragraphs.

Scope and Limitations Our linker script parser, distributed with the CBMC source
code [13], recognizes a subset of the linker command language. This subset is
sufficient to enable CBMC to determine the memory safety of the AWS boot code
mentioned above. The full language contains many additional constructs that were
not used in the AWS linker script, but which would need to be considered by
static analyses for memory safety. One example is access control: linker scripts
can designate sections as being readable, writeable, or executable at runtime. It
is a segmentation violation to read from or write to sections that do not have
the correct permission; future work would allow static analysis tools to detect the
possibility of such accesses. Linkers also place sections according to the padding
constraints imposed by particular machine architectures and calling conventions,
and the linker language includes constructs for fine-tuning or overriding these
constraints. If the correctness of the code depends on data being padded according
to explicit linker directives, then analysis tools would need to understand these
directives to correctly decide memory safety.

Our work targets linkers that emit object files in the Executable and Linkable
Format (ELF), specified in [53]. ELF is used on modern BSD and Linux-based
operating systems; [42] is a reference work on linkers and loaders that also describes
the linkers for other object formats, like COFF and PE (used on Microsoft Windows)
and Mach-O (used on macOS).

The implementation of our linker script parser can take any linker script as
input; it is designed to ignore any linker script construct that it does not understand.
Thus, it currently extracts only the section and symbol layout information described
earlier in this section. It should be straightforward to extend the parser to parse
and emit information about additional linker language directives for programs
whose memory safety depends on the meaning of those directives.

Summary Current static analysis tools cannot decide the memory safety of programs
whose memory layout is described by a custom linker script. We extended CBMC
so that it reads the memory layout from the linker script and linked executable.
After doing so, CBMC adds the values of memory addresses and the extents of safe
memory regions to the program’s IR. This means that CBMC no longer falsely
reports that accesses to linker defined memory regions are unsafe, enabling us to
prove the memory safety of AWS boot code.

5.6 Running CBMC

Building the boot code and test harness for CBMC takes 8.2 seconds compared to
building the boot code with gcc in 2.2 seconds.

Running CBMC on the test harness above as a job under AWS Batch, it finished
successfully in 10:02 minutes. It ran on a 16-core server with 122 GiB of memory
running Ubuntu 14.04, and consumed one core at 100% using 5 GiB of memory.
The new encoding of arrays improved this time by 45 seconds.

The boot code consists of 783 lines of statically reachable code, meaning the
number of lines of code in the functions that are reachable from the test harness

Model Checking Boot Code from AWS Data Centers 19

in the function call graph. CBMC achieves complete code coverage, in the sense
that every line of code CBMC fails to exercise is dead code. An example of dead
code found in the boot code is the default case of a switch statement whose cases
enumerate all possible values of an expression.

The boot code consists of 98 loops that fall into two classes. First are for-loops
with constant-valued expressions for the upper and lower bounds. Second are loops
of the form while (num) {...; num--} and code inspection yields a bound on num.
Thus, it is possible to choose loop bounds that cause all loop-unwinding assertions
to hold, making CBMC'’s results sound for boot code.

6 Conclusion

This paper describes industrial experience with model checking production code.
We extended CBMC to address issues that arise in boot code, and we proved that
initial boot code running in data centers at Amazon Web Services is memory safe,
a significant application of model checking in the industry. Our most significant
extension to CBMC was parsing linker scripts to extract the memory layout
described there for use in model checking, making CBMC the first static analysis
tool to do so. With this and our other extensions to CBMC supporting devices
and byte-level access, CBMC can now be used in a continuous validation flow to
check for memory safety during code development. All of these extensions are in
the public domain and freely available for immediate use.

20 Byron Cook et al.
References
1. Abdulla, P.A., Bouajjani, A., Cederberg, J., Haziza, F., Rezine, A.: Monotonic abstraction

17.

18.

19.

20.

21.

for programs with dynamic memory heaps. In: Gupta, A., Malik, S. (eds.) Computer Aided
Verification. pp. 341-354. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

. AFL: American fuzzy lop, http://lcamtuf.coredump.cx/afl
. Albarghouthi, A., Li, Y., Gurfinkel, A., Chechik, M.: Ufo: A framework for abstraction- and

interpolation-based software verification. In: Madhusudan, P., Seshia, S.A. (eds.) Computer
Aided Verification. pp. 672-678. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

. Arbaugh, W.A., Farber, D.J., Smith, J.M.: A secure and reliable bootstrap architecture.

In: 1997 IEEE Symposium on Security and Privacy, May 4-7, 1997, Oakland, CA, USA.
pp. 65-71. IEEE Computer Society (1997), https://doi.org/10.1109/SECPRI.1997.601317

. Bazhaniuk, O., Loucaides, J., Rosenbaum, L., Tuttle, M.R., Zimmer, V.: Symbolic execution

for BIOS security. In: 9th USENIX Workshop on Offensive Technologies (WOOT 15).
USENIX Association, Washington, D.C. (2015)

. Bellard, F.: Qemu, a fast and portable dynamic translator. In: Proceedings of the Annual

Conference on USENIX Annual Technical Conference. pp. 41-41. ATEC ’05, USENIX
Association, Berkeley, CA, USA (2005)

. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W., Wies, T., Yang, H.:

Shape analysis for composite data structures. In: Damm, W., Hermanns, H. (eds.) Computer
Aided Verification. pp. 178-192. Springer Berlin Heidelberg, Berlin, Heidelberg (2007)

. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: Checking memory safety with Blast.

In: Cerioli, M. (ed.) Fundamental Approaches to Software Engineering. pp. 2-18. Springer
Berlin Heidelberg, Berlin, Heidelberg (2005)

. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software verification. In:

Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided Verification. pp. 184-190. Springer
Berlin Heidelberg, Berlin, Heidelberg (2011)

. Bovet, D.P.: Special sections in Linux binaries (2013), https://lwn.net/Articles/531148/
. Burton, R.A.: rBoot: An open source boot loader for the ESP8266 (2017), https://github.com/

raburton /rboot

. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation of

high-coverage tests for complex systems programs. In: Operating Systems Design and
Implementation (OSDI). pp. 209-224. USENIX Association (2008), http://www.usenix.org/
events/osdi08 /tech /full _papers/cadar /cadar.pdf

. C bounded model checker github repository, https://github.com /diffblue /cbmc
. Chamberlain, S.: Using 1d (1994), https://sourceware.org/binutils /docs-2.27 /Id/
. Chipounov, V., Kuznetsov, V., Candea, G.: The S2E platform: Design, implementation,

and applications. ACM Trans. Comput. Syst. 30(1), 2:1-2:49 (Feb 2012)

. Cho, C.Y., D’Silva, V., Song, D.: Blitz: Compositional bounded model checking for real-

world programs. In: 2013 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE). pp. 136-146 (Nov 2013)

Christ, J., Hoenicke, J.: Weakly equivalent arrays. In: Lutz, C., Ranise, S. (eds.) Frontiers
of Combining Systems - 10th International Symposium, FroCoS 2015, Wroclaw, Poland,
September 21-24, 2015. Proceedings. Lecture Notes in Computer Science, vol. 9322, pp.
119-134. Springer (2015), https://doi.org/10.1007/978-3-319-24246-0_8

Cimatti, A., Griggio, A.: Software model checking via IC3. In: Madhusudan, P., Seshia,
S.A. (eds.) Computer Aided Verification. pp. 277-293. Springer Berlin Heidelberg, Berlin,
Heidelberg (2012)

Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-based predicate ab-
straction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems. pp. 570-574. Springer Berlin Heidelberg, Berlin,
Heidelberg (2005)

Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In: Jensen, K.,
Podelski, A. (eds.) Tools and Algorithms for the Construction and Analysis of Systems, 10th
International Conference, TACAS 2004, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2004, Barcelona, Spain, March 29 - April 2,
2004, Proceedings. Lecture Notes in Computer Science, vol. 2988, pp. 168-176. Springer
(2004), https://doi.org/10.1007 /978-3-540-24730-2_15

Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T., Schulte,
W., Tobies, S.: VCC: A practical system for verifying concurrent C. In: Berghofer, S.,
Nipkow, T., Urban, C., Wenzel, M. (eds.) Theorem Proving in Higher Order Logics. pp.
23-42. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

Model Checking Boot Code from AWS Data Centers 21

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

40.

41.

42.
43.

44.
45.

Condit, J., Hackett, B., Lahiri, S.K., Qadeer, S.: Unifying type checking and property
checking for low-level code. In: Proceedings of the 36th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. pp. 302-314. POPL 09, ACM, New
York, NY, USA (2009)

Corin, R., Manzano, F.A.: Taint Analysis of Security Code in the KLEE Symbolic Execution
Engine, pp. 264-275. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

Synopsys static analysis (Coverity), http://coverity.com

Davidson, D., Moench, B., Ristenpart, T., Jha, S.: FIE on firmware: Finding vulnerabilities
in embedded systems using symbolic execution. In: Presented as part of the 22nd USENIX
Security Symposium (USENIX Security 13). pp. 463-478. USENIX, Washington, D.C.
(2013)

Dillig, T., Dillig, I., Chaudhuri, S.: Optimal guard synthesis for memory safety. In: Biere,
A., Bloem, R. (eds.) Computer Aided Verification. pp. 491-507. Springer International
Publishing (2014)

Dodge, C., Irvine, C., Nguyen, T.: A study of initialization in Linux and OpenBSD. SIGOPS
Oper. Syst. Rev. 39(2), 79-93 (Apr 2005), http://doi.acm.org/10.1145/1055218.1055226
Engblom, J.: Finding BIOS vulnerabilities with symbolic execution and vir-
tual platforms (Jun 2016), https://software.intel.com /en-us/blogs/2017 /06/06/
finding-bios-vulnerabilities-with-excite

Ferreira, J.F., Gherghina, C., He, G., Qin, S., Chin, W.N.: Automated verification of the
FreeRTOS scheduler in Hip/Sleek. International Journal on Software Tools for Technology
Transfer 16(4), 381-397 (Aug 2014)

Fortify = static code analyzer, https://software.microfocus.com /en-us/products/
static-code-analysis-sast /overview

Haran, A., Carter, M., Emmi, M., Lal, A., Qadeer, S., Rakamari¢, Z.: SMACK+Corral: A
modular verifier. In: Baier, C., Tinelli, C. (eds.) Tools and Algorithms for the Construction
and Analysis of Systems. pp. 451-454. Springer Berlin Heidelberg, Berlin, Heidelberg (2015)
Harrison, J.: HOL Light theorem prover, http://www.cl.cam.ac.uk/~jrh13/hol-light
ISO/IEC 9899:2011(E): Information technology — Programming languages — C. Stan-
dard, International Organization for Standardization, Geneva, CH (Dec 2011)

Ivancié¢, F., Yang, Z., Ganai, M.K., Gupta, A., Ashar, P.: Efficient SAT-based bounded
model checking for software verification. Theoretical Computer Science 404(3), 256-274
(Sep 2008)

Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe, D.,
Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.: seL.4: Formal
verification of an OS kernel. In: Proceedings of the ACM SIGOPS 22Nd Symposium on
Operating Systems Principles. pp. 207-220. SOSP ’09, ACM, New York, NY, USA (2009)
Klocwork static code analyzer, https://www.klocwork.com/

Kroening, D., Strichman, O.: Decision Procedures - An Algorithmic Point of View, Second
Edition. Texts in Theoretical Computer Science. An EATCS Series, Springer (2016),
https://doi.org/10.1007 /978-3-662-50497-0

Kuznetsov, V., Chipounov, V., Candea, G.: Testing closed-source binary device drivers
with DDT. In: Proceedings of the 2010 USENIX Conference on USENIX Annual Technical
Conference. pp. 12-12. USENIXATC’10, USENIX Association, Berkeley, CA, USA (2010)
Lal, A., Qadeer, S.: Powering the Static Driver Verifier using Corral. In: Proceedings of the
22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering.
pp. 202-212. FSE 2014, ACM, New York, NY, USA (2014)

Lal, A., Qadeer, S., Lahiri, S.K.: A solver for reachability modulo theories. In: Proceedings
of the 24th International Conference on Computer Aided Verification. pp. 427-443. CAV’12,
Springer-Verlag, Berlin, Heidelberg (2012)

Lev-Ami, T., Manevich, R., Sagiv, M.: TVLA: A system for generating abstract interpreters.
In: Jacquart, R. (ed.) Building the Information Society. pp. 367-375. Springer US, Boston,
MA (2004)

Levine, J.R.: Linkers and Loaders. Morgan Kaufmann (1999)

McMillan, K.L.: Lazy abstraction with interpolants. In: Proceedings of the 18th Interna-
tional Conference on Computer Aided Verification. pp. 123-136. CAV’06, Springer-Verlag,
Berlin, Heidelberg (2006)

Moser, J.R.: Optimizing linker load times (2006), https://lwn.net/Articles/192624/

Moser, J.R.: Prelink and address space randomization (2006), https://lwn.net/Articles/
190139/

22

Byron Cook et al.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.
57.

58.

59.

Parvez, R., Ward, P.A.S., Ganesh, V.: Combining static analysis and targeted symbolic
execution for scalable bug-finding in application binaries. In: Proceedings of the 26th
Annual International Conference on Computer Science and Software Engineering. pp.
116-127. CASCON 16, IBM Corp., Riverton, NJ, USA (2016)

Pitre, N.: Shrinking the kernel with link-time garbage collection (2017), https://lwn.net/
Articles/741494/

Pitre, N.: Shrinking the kernel with link-time optimization (2017), https://lwn.net/Articles/
744507/

Rakamari¢, Z., Emmi, M.: Smack: Decoupling source language details from verifier im-
plementations. In: Biere, A., Bloem, R. (eds.) Computer Aided Verification. pp. 106-113.
Springer International Publishing (2014)

Rakamarié¢, Z., Hu, A.J.: A scalable memory model for low-level code. In: Jones, N.D.,
Miiller-Olm, M. (eds.) Verification, Model Checking, and Abstract Interpretation. pp.
290-304. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

Redini, N., Machiry, A., Das, D., Fratantonio, Y., Bianchi, A., Gustafson, E., Shoshitaishvili,
Y., Kruegel, C., Vigna, G.: BootStomp: On the security of bootloaders in mobile devices. In:
Kirda, E., Ristenpart, T. (eds.) 26th USENIX Security Symposium, USENIX Security 2017,
Vancouver, BC, Canada, August 16-18, 2017. pp. 781-798. USENIX Association (2017),
https://www.usenix.org /conference /usenixsecurity17 /technical-sessions /presentation /redini
Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In: Proceedings
17th Annual IEEE Symposium on Logic in Computer Science. pp. 55-74 (2002)

Santa Cruz Operation (SCO): System V Application Binary Interface (1997), www.sco.com/
developers/devspecs/gabi4l.pdf

Sen, K.: Automated test generation using concolic testing. In: Proceedings of the 8th India
Software Engineering Conference. pp. 9-9. ISEC ’15, ACM, New York, NY, USA (2015)
Sinz, C., Falke, S., Merz, F.: A precise memory model for low-level bounded model checking.
In: 5th International Workshop on Systems Software Verification, SSV’10, Vancouver, BC,
Canada, October 6-7, 2010. USENIX Association (2010), https://www.usenix.org/conference/
ssv10/precise-memory-model-low-level-bounded-model-checking

Unified extensible firmware interface forum, http://www.uefi.org/

Wang, F., Shoshitaishvili, Y.: Angr — the next generation of binary analysis. In: 2017 IEEE
Cybersecurity Development (SecDev). pp. 8-9 (Sept 2017)

Wang, W., Barrett, C., Wies, T.: Cascade 2.0. In: McMillan, K.L., Rival, X. (eds.) Verifica-
tion, Model Checking, and Abstract Interpretation. pp. 142-160. Springer Berlin Heidelberg,
Berlin, Heidelberg (2014)

Zaddach, J., Bruno, L., Francillon, A., Balzarotti, D.: AVATAR: A framework to support
dynamic security analysis of embedded systems’ firmwares. In: 21st Network and Distributed
System Security Symposium (NDSS) (Feb 2014)

