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Abstract—In this paper, we present a new deep learning-based human activity recognition technique. First,
we track and extract human body from each frame of the video stream. Next, we abstract human silhouettes
and use them to create binary space-time maps (BSTMs) which summarize human activity within a defined
time interval. Finally, we use convolutional neural network (CNN) to extract features from BSTMs and clas-
sify the activities. To evaluate our approach, we carried out several tests using three public datasets:
Weizmann, Keck Gesture and KTH Database. Experimental results show that our technique outperforms
conventional state-of-the-art methods in term of recognition accuracy and provides comparable perfor-
mance against recent deep learning techniques. It’s simple to implement, requires less computing power, and

can be used for multi-subject activity recognition.
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1. INTRODUCTION

Nowadays, Human activity recognition is one of
the most important fields in computer vision research;
it has large applications in industrial and common life
routines; it is used in video surveillance, human-
machine interaction, monitoring systems, virtual real-
ity and many other applications.

The challenge in human activity recognition is to
efficiently recognize various actions in complex situa-
tions, to provide a high accuracy recognition rate, and
to simplify implementation in real time application
while using less computing power.

View-based human activity recognition techniques
use space-time information in the video stream to rec-
ognize human actions by extracting specific features.
Generally, it consists of two steps: (1) pre-processing
and features extraction during which the aim is to pre-
pare the data for the second step by applying different
operations like resizing, background subtraction,
extracting silhouettes or skeletons, applying trans-
forms such as DCT (Discrete Cosine Transform) or
FT (Fourier Transform), (2) features extraction step
consisting of features calculation from the pre-pro-
cessed data. Features extraction techniques can be
classified in three categories: Methods using global

features, Local features and Body modeling tech-
niques.

Many View-based human activity recognition
methods were proposed in the literature. Earlier works
developed several methods using global features [1]. In
[2] Blank et al. used silhouettes to create a space-time
volume from which space-time saliency, shape struc-
ture and orientation are extracted. In [3] Dollar et al.
proposed to extract the local region of interest from
space-temporal volume to create distinguishable fea-
tures used for recognition. In [4] Kumari and Mitra
proposed a transform-based technique by using dis-
crete Fourier transforms (DFTs) of small image blocks
as features. Furthermore, in [5] Tasweer et al. used
motion history image (HMI) to extract features by
using a blocked discrete cosine transform (DCT). In
[6] Hafiz et al. used Fourier transform domain of
frames to extract spectral features and principal com-
ponent analysis (PCA) to reduce the features dimen-
sion.

Local features are also widely used in human activ-
ity recognition, in [7] Lowe introduced the SIFT
descriptor (scale invariant feature transform) which
enable the extraction of a robust local features invari-
ant to image scaling, translation and rotation. In [8]
Dalal and al. proposed the oriented gradient descrip-
tors (HOG) for human activity recognition, by calcu-
lating the gradient orientation in portions of the image
as features for recognition. In [9] Lu and Little pro-
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Fig. 1. (Color online) Overview of the proposed technique in [22].

posed the PCA-HOG which is an improvement of the
HOG descriptor by using (principal component anal-
ysis) PCA in order to create local descriptors invariant
to illumination, pose and viewpoint. In [10, 11]. Matti
Pietikidinen et al. introduced Local Binary Patterns
(LBP) for texture classification, it consists of extract-
ing histograms of quantized local binary patterns in a
local region of the image. In [12] Lin et al. proposed a
nonparametric weighted feature extraction (NWFE)
approach by using PCA (principal component analy-
sis) and K-means clustering to build histogram vectors
from pose contour.

Body modeling human activity recognition tech-
niques are also widely used; here the human body is
modeled to be tracked and recognized. In [13] Naka-
zawa et al. represent and track the human body by
using an ellipse. In [14] Iwasawa et al. proposed to cre-
ate human skeleton models using sticks. In [15] Huo et
al. proposed to model the human head, shoulder and
upper-body for recognition, in [16] Sedai et al. used a
3D human body modeling of 10 body parts (torso,
head, arms, and legs...).

Recently deep learning can be considered a revolu-
tionary tool in computer vision research. The capabil-
ity of convolutional neural network to create distin-
guishable features directly from the input images using
multiple hidden layers makes the introduction of this
tool quite interesting in the domain of human activity
recognition. More recently, most of the applications of
deep learning in human activity recognition has been
relying on the use of wearable sensors [17—21]. How-
ever, research using view-based approaches remains
scarce.

In this paper, we present a new deep learning—
based human activity recognition technique. The
objective is to recognize human activities in a video
stream using extracted binary space-time maps
(BSTMs) as the input of the Convolutional neural net-
work (CNN). The main contributions of our paper are
summarized as follows:

* We propose a simple deep learning-based
method consisting of two steps: (1) binary space-time
maps (BSTMs) extraction from silhouettes of seg-
mented and centred human body, (2) features

extraction and action classification using convolu-
tional neural network (CNN).

* The proposed technique offers the capability to
recognize multiple actions in the same video frame
because the BSTMs are extracted only from the sil-
houettes of segmented human body.

» Experimental investigations using multiple
benchmark databases (Weizmann, Keck Gesture and
KTH databases) showing that our technique is effi-
cient and outperforms conventional human activity
recognition methods and gives comparable perfor-
mance against recent deep learning-based techniques.

This paper is organized as follow, in section two, we
present state-of-the-art of deep learning-based tech-
niques. Next, we give a brief introduction to CNN. We
present the proposed method in section four. Experi-
mental results will be given in the section that follows.
Finally, section six contains concluding remarks and
future perspectives.

2. DEEP LEARNING-BASED
TECHNIQUES — RELATED WORK

Deep learning capability to self-extract distin-
guishable features yields to open a new era in human
activity recognition field; in this section we review
recent approaches.

In [22] Tushar D. et al. proposed a deep learning-
based technique using binary motion image (BMI),
the authors used Gaussian Mixture Models (GMM)
to subtract binary backgrounds used to create BMIs
(Fig. 1), and three (3) CNN layers to extract features
and classify activities. BMIs are extracted from the
frames, which make the use of this approach impossi-
ble for multi-human recognition.

Moez B. et al. proposed in [23], a two-steps neural
recognition method (Fig. 2) using an extension of
convolutional neural network to 3D to learn spatial-
temporal features. The authors proposed to extract the
features using 10 layers of CNN (input layer, two com-
binations of convolution/rectification/sub-sampling
layers, a third convolution layer and two neuron lay-
ers). For the recognition step, they proposed to use a
recurrent neural network classifier (Long Short-Term
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Fig. 3. (Color online) Proposed method in [25].

Memory (LSTM) classifier) by taking advantage of the
temporal evolution of the features.

In [24] Pichao Wang et al. used a weighted hierar-
chical depth motion map (WHDMM) and three
channel deep CNN for human activity recognition.
Here, the authors proposed to feed three separate
ConvNets using WHDMMs constructed by the pro-
jection the 3D points of depth images to three orthog-
onal planes, the final classification decision is
obtained by the fusion of the three ConvNets.

In [25] Zuxuan W. et al. constructed a hybrid
method for video classification by extracting two types
of features from spatial frames (raw frames) and short-
term stacked motion optical flows using convolutional
neural network (Fig. 3). These features are used to
feed two separate LSTM networks for fusion and clas-
sification.

The authors in [26] proposed a human activity rec-
ognition approach using depth images, from which
they proposed to extract three derived images (Fig. 4):
Average depth image (ADI), Motion history image
(MHI) and depth difference image and used a deep
belief network (DBN) using a Restricted Boltzmann
Machine (RBM).

Andrej K. et al. in [27], proposed a multi-resolu-
tion convolutional neural network approach (Fig. 5),
here the authors used two ConvNet channels, the first
channel is fed by a context stream representing a low-
resolution image; the second one is fed by a fovea
stream representing a high resolution centred image.
The two channels converge towards two fully con-
nected layers.

In [28] Simonyan et al. presented a two-stream
architecture for video classification (Fig. 6), the
authors proposed to use a spatial stream ConvNet
using raw video frames to carry information about the
objects and the general spatial information in the
scenes, and a Temporal stream ConvNet using optical
flow from multiple input video frames. Classification
is done using two fusion methods: the average of the
two stream scores or by using a multiclass SVM on
Softmax scores.

In this paper, we present a simple and efficient
human activity recognition technique using deep-
learning. Our work is inspired by papers [22, 29] where
authors proposed to use Motion Energy Images
(MEI) and Motion History images (MHI) for human
activity recognition, however, unlike the aforemen-
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Fig. 4. (Color online) An overview of the proposed
approach from [26].

tioned works, our technique operates only on the seg-
mented human body which make it suitable for multi-
human activity recognition. In the next section, we
will give a brief introduction to CNN.

3. CONVOLUTIONAL NEURAL
NETWORK (CNN)

CNN were proposed for the first time by Lecun Y.
and Bengio Y. in [30]. It has the capability to extract
feature maps directly from the input images and clas-
sify theme into many categories by using successive

NN

I Oveg Stream

combinations of convolution/sub-sampling hidden
layers and being invariant for shift and distortions.

For a better understanding of the convolutional
neural network architecture, we take the example of
convolutional neural network presented in [30] for
handwriting recognition (Fig. 7).

The convolutional neural network is composed of
multiple hidden layers, those layers are a successive
combination of convolution and sub-sampling opera-
tions. Each convolution layer is composed of multiple
feature maps, and each convolution/sub-sampling
combination has the same number of feature maps

[26].

The first layer of the CNN is the input layer; it has
the same dimension as the input images, the first hid-
den layer is obtained by the convolution of the input
layer by the kernel [22], the second hidden layer is
obtained by performing a 2 by 2 averaging and subsa-
mpling. The next hidden layers are found in the same
way by using a successive alternation of convolutions
and sub-sampling, each unit of a layer is fully con-
nected to the units of the previous layer. The number
of feature maps increases and the resolution decreases
at each convolution/sub-sampling combination [30].
The last layer is the classification layer. It contains the
last feature map and its dimension is the number of
classes to recognize.

4. PROPOSED TECHNIQUE: BSTM DEEP
LEARNING RECOGNITION

The proposed technique consists of two steps
divided into five processes: Human detection and
tracking, human pose extraction, silhouettes
extraction, binary space-time map (BSTM) calcula-
tion and deep-learning recognition (Fig. 8).

Fig. 5. (Color online) Multiresolution CNN in [27].
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The first step in the proposed scheme is human
detection and tracking, for that we implemented a
simple background extraction algorithm to detect and
track the human body using the variations of intensity
of the foreground images. Then for each frame,
human body is segmented, and silhouettes extracted
using Otsu’s image segmentation algorithm [31] by
thresholding the images using an optimum threshold
(thr) that minimize the weighted within-class variance
[31].

The results of Otsu’s segmentation algorithm are
binary images:

If we denote g(x, y) is the threshold version of the
original grey scale image f(x,y) using the threshold
Thr then [31]:

(1

oy [L T ST
gy = 0 otherwise

Binary space-time maps (BSTM) are like Motion
Energy Images (MEI), it is a binary template created



Table 1. BSTM extraction algorithm

Input: Subject silhouettes g(x, y)

Output: Binary space-time map A(x, y)

PROCESS:

Fori=1:T

h(x,y) = )" abs(g,.1(x, y) = gn(x, )
End
Ifh(x,y) #0
h(x,y) =1
Else
h(x,y)=0
End

End

from centred and segmented human silhouettes of
each frame by using our proposed algorithm shown in
table 1 below:

Let denote:

g(x, y): the extracted silhouettes,
h(x,y): Binary space-time map,
T': The number of frames.

The extracted BSTMs contain the space-time
information of the human action in a lap of time; the
quality of the BSTMs depends on the quality of
extracted silhouettes and on the number of frames
used. Our investigations show that generally if the
quality of the used silhouettes is acceptable, sixteen

Fig. 9. Samples of binary space-time maps (BSTM) using
Keck Gesture dataset.

Frames are sufficient to create distinguishable
BSTMs. An example of extracted BSTMs using Keck
Gesture Dataset is shown below (Fig. 9).

Unlike the techniques proposed in [22, 23], our
proposed Method offers the ability to track and recog-
nize multiple subjects in the same frame because we
calculate the BSTMs only from the extracted human
body not from the entire frames.

And because the constructed BSTMs are simple
images that contain the binary space-time information
of the human body in a lap of the time, our technique
is simpler, faster and does not require many computing
powers.

The next stage in our proposed deep learning-
based method is features extraction and classification.
Here we used the capability of deep learning (CNN in
our case) to automatically extract and classify the
input data.

We trained the convolutional neural network using
our proposed binary space-time maps (BSTMs)
extracted from the video frames.

The architecture of the proposed seven layers CNN
is as follow:

» The input layer: has the same dimension as the
input BSTMs, an example of extracted BSTM is
shown in (Fig. 9).

» Convolutional layer: the objective of the convo-
lutional layer is feature extraction in sub regions that
depend on the filter size. Activations of the convolu-
tional layer shows the area in the convolutional layer
that activate on the input BSTM image (Fig. 10).

Fig. 10. Example of activation of convolutional neural net-
work to the running activity.
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Fig. 11. Samples of extracted (fully connected layer) features using CNN (Weizmann database): (Left) extracted BSTMS, (right)

features from CNN (last fully connected layer).

Fig. 12. (Color online) Sample from Weizmann dataset: (left) Wave2, (Middle) extracted BSTM, (right) activations of the first

convolutional layer.

In this paper, we propose to use one convolutional
layer for all datasets, table 2 shows the size of the filters
used for each database.

Rectified linear unit layer (ReLLU): this layer per-
forms a threshold operation and set to zero any input
less than zeros.

* Maxpool layer: it is used to reduce the number of
parameters fed to feed to the next layer by performing
a sub-sampling operation.

» Fully connected layer: it contains the extracted
features learned by the earlier layers, Fig. 11 shows the
BSTMs and the extracted features in the fully con-
nected layer from Weizmann database.

» Softmax layer: this is a vector calculated using
the Softmax activation function, which is the general-
ization of the sigmoid function.

» Classification layer: this is the classification
layer, it returns the final class of the constructed
BSTM using the results of the Softmax layer.

5. EXPERIMENTAL RESULTS

To evaluate and validate the performance and effi-
ciency of the proposed method, we carried out several
tests using three benchmark datasets: Weizmann data-
base [32], Keck Gesture Dataset [33] and KTH dataset

[34]. We carried out several tests using different sets of
learning and testing.

To enable comparison against state-of-the-art
methods we used two standard evaluation criteria: rec-
ognition rate and one-versus-rest ROC curve.

The recognition rate used is defined by:

Recognition rate

_ Number of good classified actions 2)
Total Number of actions '

Table 2. Convolutional layer filter’s size used for each data-

base
Database Convplut}on.a ! Number of Stride
layer filter’s size filters
Weizmann [10 x 10] 16 1
Keck Gesture [5 % 5] 10 1
Dataset
KTH [3 x 3] 10 1
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Fig. 13. Training accuracy rate against the current iteration
using Weizmann database.

5. 1. Weizmann Database

Weizmann database [32] consists of 10 activities
(Bend, Jack, Jump, Pjump, Run, Side, Skip, Walk,
Wavel and Wave2) performed by nine persons i.e. 90
actions, using a simple background and a fixed cam-
era. Figure 12 shows an example of an action (wave2)
from Weizmann database, extracted BSTMs and the
activations of convolutional layer of the CNN. To
allow a direct comparison to recent works, we trained
our ConvNet using videos from eight actors and tested
on the remaining one.

Table 3. Human activity recognition rates obtained in liter-
ature and in our approach using Weizmann database

Method Accuracy

Boiman and Irani 2006 [35] 97.5% (9 actions)

Scovanner et al. 2007 [36] 82.6% (10 actions)
Wang and Suter 2007 [37] 97.8% (10 actions)
Kellokumpu et al 2008 [38] 97.8% (10 actions)
Kellokumpu et al. 2009 [39] 98.7% (9 actions)
Hafiz Imtiaz et al. 2015 [6] 100% (10 actions)
Tasweer et al. 2015 [5] 92.25% (10 actions)
Aziz et al. 2016 [40] 99.03% (10 actions)
Tushar et al. 2015 [22] 100% (5 actions)
Our approach 100% (10 actions)

Our approach 100% (9 actions)

Confusion matrix
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Fig. 14. (Color online) Confusion matrix using Weizmann
database.

Comparative study using Weizmann dataset
(Table 3) shows that our proposed method outper-
forms conventional state-of-the-art methods and
deep-learning based methods. (in [22] the authors
used only 5 activities) and achieved rapidly the highest
training accuracy rate (Fig. 13) even when using 10
activities (Fig. 14).

ROC curve in (Fig. 15), shows the efficiency of our
classifier and the effectiveness of the proposed
BSTMs.

5.2. Keck Gesture Dataset

We carried out several tests using Keck Gesture
Dataset [33]. The test consists of 14 activities (Turn
left, turn right, Att-left, Att-right, Att-both, Stop left,
Stop right, Stop both, Flap, Start, come near, Close
Dis, speed up, go back) performed by three individu-
als, i.e. 42 video sequences. Figure 16 shows samples
of frames from Keck Gesture Dataset, their extracted
BSTMs and the activations of convolutional layer of
the ConvNet. In the experimental setup, we used the
actions performed by two individuals for training, and
we tested using the third one.

The experimental results of the proposed method
(Table 4) against state-of-the-art in [33] shows that
the outcome of our proposed method provides a per-
fect recognition rate when using Keck Gesture data-
base, and that it outperforms the original approach.

Figure 17 illustrates the training accuracy when
using Keck Gesture database. Thus, our proposed
CNN architecture achieves 100% training accuracy
significantly fast. The efficiency of our classifier is
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Fig. 15. (Color online) ROC curve using Weizmann database.

Fig. 16. (Color online) Sample from Keck Gesture dataset: (left) Wave2, (middle) extracted BSTM, (right) activations of the first

convolutional layer.

illustrated in the confusion matrix (Fig. 18) and ROC
curve (Fig. 19).

5.3. KTH Dataset
To validate and confirm the efficiency of our pro-

posed method, we carried out several investigations

Table 4. Human activity recognition rates obtained in liter-
ature and in our approach using Keck Gesture database

Method Accuracy

Zhuolin Jiang et al. 2012 [33] 97.5% (9 actions)

Our approach 100% (9 actions)

using KTH dataset [34]. This is the most used data-
base in the human activity recognition domain con-
sisting of six human actions (walking, jogging, run-
ning, boxing, hand waving and hand clapping) per-
formed by 25 subjects in four different scenarios.

The videos in the database include variations in
scale, illumination, duration, changes in clothing and
changes in viewpoint. The frames are 160 X 120 pixels
with a temporal resolution of 25 f/s. Our evaluation
protocol consists of using the actions from five sub-
jects for testing, and the remaining subjects for train-
ing. Figure 20 shows a sample from KTH dataset,
extracted silhouettes and the activations of the convo-
lutional layer of the CNN.

A comparative study against state-of-the-art meth-
ods (Table 5) shows that our technique outclasses con-
ventional methods when using KTH dataset and gives
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using Keck Gesture database.

comparable performance against recent deep-learning
method.

These results are encouraging because, unlike
state-of-the-art methods, our proposed deep-learning
architecture is simple. We used only one stream with
one convolutional layer, which makes the training
process relatively fast (Fig. 21).

Our experimental results show that the quality of
the extracted silhouettes has an impact on the global

Table 5. Human activity recognition rates obtained in liter-
ature and in our approach using KTH database

Method Accuracy
Wong and Cipolla. 2007 [41] 86.62%
Niebles et al. 2007 [42] 83.33%
Laptev et al. 2008 [43] 92.10%
Schuldt et al. 2004 [44] 71.70%
Dollar et al. 2005 [3] 81.20%
Bo Chen et al. 2010 [45] 91.13%
Vivek et al. 2015 [46] 93.96%
Lin Sun et al. 2014 [47] 93.10%
Moez B et al. 2015 [23] 94.39%
Baccouche M et al. 2010 [48] 89.40%
Our approach 92.50%

Confusion matrix
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Fig. 18. (Color online) Confusion matrix using Keck Ges-
ture database.

performance of the proposed method, and we believe
that efficiency of the proposed method can increase by
using more efficient silhouette extraction algorithmes.

Confusion matrix in Fig. 22 and ROC curve in
Fig. 23 Show that our proposed method gives a 100%
accuracy rate for actions: boxing, hand waving and
hand clapping, and 95% for walking activity. Most of
the classification errors are related to running and jog-
ging activities, this is because of high similarity
between the two actions.

6. CONCLUSIONS

In this paper, we presented a simple human activity
recognition technique using deep CNN, our method
uses human body extracted silhouettes to calculate
binary space-time maps (BSTMs) which contain the
space-time information of the video stream in a
defined time-interval, and CNN to extract features
and classification.

Experimental results show that our technique is
efficient and produces a perfect recognition rate for
both Weizmann and Keck Gesture Dataset. Thus, it
outperforms conventional methods when using KTH
dataset and provides comparable performance against
recent deep—learning methods.

Unlike other viewpoint-based methods, our pro-
posed approach offers the possibility to track and rec-
ognize multiple subjects in the same frame because we
calculate BSTMs only from the extracted human
body, not from the entire frames. The proposed
method is simple, efficient, fast to implement and
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Fig. 19. (Color online) ROC curve using Keck Gesture database.

Fig. 20. Sample from KTH dataset: (left) Wave2, (middle) extracted BSTM, (right) activations of the first convolutional layer.
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requires less computing time, which makes it suitable
for real—time applications.

In future works, we plan to extend our method for

multiple viewpoints human activity recognition.
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