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ABSTRACT 

Microbial water quality datasets are essential in irrigated agricultural practices to detect 

and inform measures to prevent the contamination of produce. Escherichia coli concentrations 

are commonly used to evaluate microbial water quality. Remote sensing imagery has been 

successfully used to retrieve several water quality parameters that can be determinants of E. coli 

habitats in waterbodies. In this study, a pilot study was conducted to test the possibility of using 

imagery from a small unmanned aerial vehicle (sUAV or drone) to improve the estimation of 

microbial water quality in small irrigation ponds. In situ measurements of pH, turbidity, specific 

conductance, and concentrations of dissolved oxygen, chlorophyll-a, phycocyanin, and 

fluorescent dissolved organic matter were taken at depths of 0–15 cm in 23 locations across a 

pond in Central Maryland, USA. The pond surface was concurrently imaged using a drone with 

three modified GoPro cameras, and a multispectral MicaSense RedEdge camera with five 

spectral bands. The GoPro imagery was decomposed into red, blue, and green components. 

Mean digital numbers for 1-m radius areas in the images were combined with the water quality 

data to provide input for a regression tree-based analysis. The accuracy of the regression-tree 

data description with “only imagery” inputs was the same or better than that of trees constructed 

with “only water-quality parameters” as inputs. From multiple cross-validation runs with “only 

imagery” inputs for the regression trees, the average (± SD) determination coefficient and root-

mean-squared error of the decimal logarithm of E. coli concentrations were 0.793 ± 0.035 and 

0.131 ± 0.011, respectively. The results of this study demonstrate the opportunities for using 

sUAV imagery for obtaining a more accurate delineation of the spatial variation of E. coli 

concentrations in irrigation ponds. 

Keywords: UAV; water quality; E. coli; irrigation pond; pond habitats; remote sensing 
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1. Introduction 

Microbial water quality is a common focus of monitoring because of the multiple 

waterborne illnesses affecting human and animal life. Pathogenic Escherichia coli-related cases 

in the USA cost more than $270 million in 2013 alone in terms of productivity losses and 

medical costs (Economic Research Service ERS-USDA, 2014). Much larger annual loss 

estimates have been produced for other pathogens (Pachepsky et al., 2011; Scharff, 2010) 

including $3.6 billion for salmonellosis and $39 billion for all foodborne microbial illnesses in 

the USA. In response to these risks, research interest in microbial water quality is steadily 

growing (Alegbeleye et al., 2018; Hellberg and Chu, 2016; Jongman and Korsten, 2018; Olaimat 

and Holley, 2012; Pachepsky et al., 2018; Rochelle-Newall et al., 2015). Monitoring the 

microbial quality of irrigation water is an essential step to further improve food safety by 

informing the application of strategies for minimizing produce contamination (Pachepsky et al., 

2011). 

E. coli, a common inhabitant of the intestinal tract of warm-blooded animals, is the most 

commonly used indicator of microbial water quality. Elevated E. coli concentrations in water 

indicate the possible presence of enteric pathogens (Environmental Protection Agency (EPA), 

2012). Most regulations throughout the world consider E.coli as a useful indicator from which to 

infer the microbial quality of freshwater irrespective of its use, e.g., recreation or irrigation, or its 

source, e.g., natural or treated waste-water (Boletin Oficial del Legislación Consolidada, 2007; 

European Parliament, 2006; Kay et al., 2004; USA Congress, 2011; World Health Organization 

(WHO), 2006).  

E. coli growth and death rates are typically determined by site-specific environmental 

conditions and how the microorganism adapts to these conditions via its gene expression patterns 
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(Van Elsas et al., 2011). The environmental controls affecting E. coli survival are numerous. 

Carbon substrate is a key factor in aquatic environments and the lack, with its absence reducing 

the likelihood of survival and/or promoting dormancy of the bacteria (Franz et al., 2005; 

Semenov et al., 2008). Other factors such as temperature (both fluctuations and high 

temperatures have a negative impact on E. coli survival), pH (low pH impacts survival 

negatively and triggers acid-resistance mechanisms in E.coli), the status and population structure 

of planktonic algae (which may affect E. coli survival both positively and negatively), the 

biodiversity in the aquatic environment (with high biodiversity hindering colonization by E. 

coli), and the presence of periphyton and algae mats (which harbor bacterial populations) have 

been reported to have a strong influence on the fate of E. coli in open environments (Ansa et al., 

2012; Byappanahalli et al., 2009; Carr et al., 2005; Choi et al., 2000; Semenov et al., 2007).  

High spatial variability can lead to substantial uncertainty in E. coli concentration estimates 

in water bodies. For example, Quilliam et al. (2011) reported that different population levels 

were estimated based on E. coli concentrations obtained from two opposite banks of the same 

river. Pachepsky et al. (2018) detected a stable spatial pattern of E. coli concentrations over time 

in two artificial ponds, with lower concentrations occurring in the pond interiors. Microbial 

monitoring of surface water sources must, therefore, account for the spatial variability in 

microbial concentrations; however, study of the spatial variation of microbial concentrations 

remains a resource-intensive challenge. 

The use of remote sensing (RS) imagery from satellites, airplanes, and small unmanned 

aerial vehicles (sUAVs) offers opportunities to bypass—or at least reduce—the time and budget 

constraints associated with water quality monitoring performed using grab sampling. In the last 

few years, RS imagery has been applied in both coastal (Constantin et al., 2017) and inland 
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environments (Giardino et al., 2014) to infer water quality parameters including turbidity (Duan 

et al., 2019; Isidro et al., 2018), chlorophyll-a (Wang et al., 2018), and algal population attributes 

(Boddula et al., 2017). A recent review on using sUAVs for algal bloom research (Kislik et al., 

2019) demonstrates the variety of approaches that can be adopted with respect to data processing 

and accounting for weather conditions, and the range of camera and sensor types available.  

It has not yet been possible to detect indicator or pathogenic bacteria in water bodies using 

sUAV imagery. However, given that it is now possible to use RS products to retrieve water 

quality parameters that may directly or indirectly characterize and control E. coli habitats, it 

seems plausible that the spatial distribution of E. coli can be inferred by (a) estimating water 

quality habitat parameters from the sUAV imagery and (b) using empirically established 

relationships between these water quality habitat parameters and E. coli concentrations. 

Information from different wavelength ranges of sUAV imagery may also provide an integrative 

characterization of E. coli habitats in addition to providing spatial information on the distribution 

of E. coli without the requirement of in situ water quality measurements.  

The objective of this work was to evaluate the usability of imagery obtained using a sUAV 

for improving the estimation of the microbial water quality of small ponds both with and without 

additional information on the water quality parameters affecting the suitability of aquatic habitats 

for E. coli.  

 

2. Material and methods 

2.1 Study site and water quality parameters 

The study embankment pond was located on a private farm and, at the time of study, had 

an area of approximately 3780 m
2
. Water is the pond is used exclusively for the irrigation of the 
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surrounding farmland (Fig. 1) during the summer. The average depth of the pond was 2.7 m. 

Runoff from the surrounding farmland can enter the pond, and while chemical fertilizers are used 

on the land, animal manures are not applied. The farm operator decides the irrigation regime, and 

potential sources of E. coli in the pond include wildlife, a creek feeding into the pond, transfers 

from another nearby pond, and occasional bathers.  

Twenty-three sampling locations were established across the surface of the pond in an 

approximate regular pattern. Twelve of the sampling points were located near to the shore and 

the other 11 were located in the pond interior (Fig. 1). Water samples were collected at a depth of 

0–15 cm over a two-hour period on July 18 and August 1, 2017. Samples from the interior points 

were obtained using a kayak and the nearshore sampling was done with a 500-mL plastic dipper 

with a 1.5-m long handle. The water samples were placed on ice shortly after collection and 

transported to the laboratory before being processed for E. coli enumeration within two hours of 

collection. Measurements of environmental covariates were taken in situ and in conjunction with 

water samples using a handheld YSI Exo-2Sonde (YSI Inc, Yellow Springs, OH) and included 

temperature (°C), dissolved oxygen (DO, mg L
-1

), pH, specific conductance (SPC, μS cm
-1

), 

fluorescent dissolved organic matter (fDOM, in relative fluorescence units, RFU), cyanobacteria 

phycocyanin (BGAPC, RFU), in situ chlorophyll-a content (CHLAF, RFU), and turbidity 

(TURB, Nephelometric Turbidity Units, NTU). Precipitation and solar radiation data were 

obtained from a local weather station located less than 3 km from the pond. 

Samples collected in the field were immediately placed in an insulated and ice-chilled 

container. E.coli concentrations were determined in the laboratory within 24 h of collection in 

accordance with EPA standard methods (2002) using membrane thermotolerant E. coli (mTEC) 

agar (Difco, Sparks, MD). In vitro determination of chlorophyll-a (CHLAS) according to EPA 
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standard methods (Arar and Collins, 1997) was also performed. Statistical analyses were 

performed using the R package for statistical computing (R Core Team, 2014) using decimal 

logarithms of E. coli concentrations in CFU (100 ml)
-1

 (LGCFU). 

2.2 Imagery acquisition and processing 

The imagery was obtained with a RedEdge-M (MicaSense, Seattle, WA) camera and 

GoPro cameras (GoPro, San Mateo, CA) mounted on a 3DRSolo® (3DR, Berkeley, CA) drone. 

The RedEdge-M camera collects reflectance information in the five following narrow 

wavelength bands (Fig. S1): blue (MS1, centered at 475 nm with a 20 nm bandwidth), green 

(MS2, centered at 560 nm with a 20 nm bandwidth), red (MS3, centered at 668 nm with a 10 nm 

bandwidth), red edge (MS4, centered at 717 nm with a 10 nm bandwidth), and near-infrared 

(MS5, centered at 840 nm with a 40 nm bandwidth). This camera provided five images for each 

sampling location. Additionally, the drone was flown with three GoPro cameras (Stuntcams Inc., 

Ada, MI) with lenses modified to reduce distortion and provide a wavelength range wider than 

the visible spectrum. The first GoPro camera captured the entire range (ER) of wavelengths that 

included the visible and infrared (IR) range of the spectrum. The second and the third GoPro 

cameras had filters that provided the visible (VI) only and the IR only ranges of the spectrum, 

respectively. All flights were done in immediate succession. The spectral analysis for the GoPro 

lens and filter can be seen in Fig. S2. The images obtained by each of the GoPro cameras were 

demosaiced (Kimmel, (1999) into red (ER1, ER2, and ER3), green (IR1, IR2, IR3), and blue 

(VI1, VI2, and VI3) components, respectively. This splitting created nine layers from the GoPro 

imagery data (i.e., RGB for the three cameras) for each sampling day. 

The UAV flight altitude was 400 feet (130 m) on both dates. The sky was clear, and solar 

radiation was very similar on both sampling days (Fig. S2). The solar zenith angle varied 
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between 20° and 30° between imaging times. The images were aligned using co-registration to 

an image of the pond obtained from the United States Geological Survey (USGS) base map 

using the georeferencing tool in ArcMap 10.5.  

 To obtain spatial and temporal information from the imagery corresponding to the water 

quality samples, GPS coordinates acquired during water sampling were imported into ArcMap. 

A circular 1-m diameter buffer was created around each water sampling location. The nearshore 

sampling locations might have changed between the sampling days due to fluctuations in the 

pond depth, changes in vegetation surrounding the pond, and manual image aligning. To account 

for this, 1-m buffers were created, which were incrementally moved normal to the shoreline 

towards the interior until they were placed completely inside the water surface area as shown in 

the image. A Python code was used to facilitate this incremental buffer relocation. After the 

locations of all buffers (interior and nearshore) were defined, the “clip” tool was used to extract 

the buffered portions from each of the 28 images and the “summary statistics” tool was used to 

find the mean digital number (MDN) values in each case. DN distributions inside the clipped 

areas were normal (p < 0.05) after the removal of several outliers, which altered the MDNs by 

less than 1%. The MDNs of the buffer areas were then used in the analysis along with the water 

quality data for the same locations.  

2.3 Regression trees 

Regression trees were used to relate the logarithms of E. coli concentrations to the MDNs 

from all 28 images and the water quality parameters. Regression trees are a machine-learning 

technique that is particularly useful for establishing the relative importance of a large number of 

potential predictors and obtaining a transparent predictive or explanatory model (Sorrell et al., 

2013). The application of regression trees in environmental sciences is common and has been 
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employed in several water quality studies (e. g., Jones et al., 2013; Park et al., 2015). In this 

study, the regression tree technique was applied to assess the suitability of the imagery data for 

complementing or replacing the water quality data when interring microbial concentrations. 

 The regression tree algorithm split the data into two groups, then split each of these groups 

into two subgroups, and then each of these subgroups into two further subgroups, etc. Each split 

was performed to create the most dissimilar subgroups (with respect to the dependent variable) 

by maximizing the between-subgroup sum-of-squares as determined using analysis of variance 

(Therneau and Atkinson, 2018). Splitting was done by sorting the dataset by each of the 

predictor variables and selecting the value of each predictor variable that provided the two most 

homogeneous and most dissimilar subgroups. The final split was performed based on a 

comparison of between-subgroup sum-of-squares for all of the predictors and by selecting the 

predictor and predictor value that provided the largest between-subgroup sum-of-squares. The 

splitting process was finished when the subgroups became too small, or when the splitting was 

no longer effective at creating dissimilar subgroups. This sequential splitting process yields a 

tree-like structure, where each split creates two branches. Groups that cannot be further split are 

often called “leaves”. The average of the dependent variable values across all the datasets in a 

leaf serves as the predicted value for all of the included datasets. The largest increases in the 

between-subgroup sum-of-squares occur in the early stages of the splitting process, and splitting 

predictors during these stages are considered to be the most influential. The minimum number of 

datasets required to perform a split is a control parameter of the algorithm. The optimal 

minimum number of datasets per branch was set to four, which was determined based on Park et 

al. (2015). 
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The output from the regression tree analysis included (a) the root-mean-squared error of 

the regression, (b) the regression determination coefficient R
2
, and (c) the names of the variables 

that provided the first split and the two subsequent splits. Uncertainty in these outputs was 

evaluated using the jackknife resampling technique (Kroll et al., 2015). This involved the 

following steps: (1) data subsamples were created by systematically leaving out a number (k) of 

observations from the original dataset; (2) a regression tree was created using each subsample 

and the output was recorded; and (3) a histogram for the output values obtained from all of the 

subsamples was plotted. By applying the jackknife resampling, the risk of obtaining conclusions 

that are correct based on a single dataset but which might not represent the general pattern across 

all datasets can be assessed. Here, the entire database included 46 datasets (i.e., 23 sampling 

locations on two different dates), and each subsample was obtained by removing three 

observations. The total number of subsamples was 15,180, to which the regression tree technique 

was applied. After each application, the output variables (i.e., the root-mean-squared error 

RMSE, R
2
, and names of the variables) were recorded. Univariate statistical tests were then 

applied to identify statistically significant differences in the mean and variance values of RMSE 

and R
2
. 

2.4 Data input sets 

Each sampling location on each sampling day was characterized by the logarithm of the E. 

coli concentration as the dependent variable and 22 potential predictors including DO, pH, SPC, 

TURB, fDOM, CHLAF, CHLAS, BGAPC, and 14 image MDNs. The following five input sets 

were considered: (1) input set 1 included the physicochemical variables DO, SPC, pH, and 

turbidity; (2) input set 2 consisted of the MDNs for all 14 images, i.e., ER1, ER2, ER3, IR1, IR2, 

IR3, VI1, VI2, VI3, MS1, MS2, MS3, MS4, and MS5; (3) input set 3 included all the MDNs and 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

11 
 

physicochemical variables, i.e., combined input sets 1 and 2; (4) input set 4 included both the 

physicochemical and biological water quality parameters, consisting of DO, SPC, pH, turbidity, 

fDOM, BGAPC, CHLAF, and CHLAS; (5) input set 5 combined input set 4 and the imagery 

parameters from input set 2.  

 

3. Results 

3.1. Data overview 

Data summaries are presented in the Supplementary Materials. The average water 

temperature during the observation period on day 1 and 2 was 29.1 ºC and 25.4 ºC, respectively. 

Summary statistics for water quality parameters on each day are presented in Table S1. All of the 

water quality parameter distributions were non-normal. The water quality parameters that 

showed the most distinct differences between the two sampling days were fDOM and SPC; the 

pond water sampled on the 1
st
 August had relatively low electrolyte concentrations and relatively 

high concentrations of fDOM on the 18
th

 July. Overall, the imagery and water quality parameters 

showed more variability on the first sampling date. 

Descriptive statistics for water quality parameters and mean digital numbers pooled 

between sampling days are shown in Table S2. The variability of DO, SPC, and pH was low 

(coefficient of variation (CV) < 10%). In comparison, the variability of the other water quality 

parameters, such as total chlorophyll-a content and turbidity, was much higher (CV ~ 38%). The 

highest variability was found for the phycocyanin, chlorophyll-a, and fluorescent dissolved 

organic matter concentrations (CV ranged between 73% and 152%). The logarithm of E. coli 

concentrations had the CV of 17%, and the CV for the MDNs ranged between 10% and 30%, 

with the exception of the RedEdge-M measurements, which had a CV of 46%.  
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Pearson correlation coefficients for the two-day dataset are shown in Table 1. For the 

purposes of comparison, correlations with |r| > 0.8, 0.7 <|r| < 0.8, and 0.6 <|r| < 0.7 are 

considered as very strong, strong, and moderate, respectively. There were no strong correlations 

between the water quality parameters and the mean digital numbers obtained from the imagery 

with the exception of ER2 MDN, which correlated strongly with both SPC and fDOM. Very 

strong correlations were found between turbidity, phycocyanin concentrations, and in situ 

chlorophyll-a measurements. Strong and very strong correlations were found between GoPro 

MDNs across the entire spectrum and for the infrared range of wavelengths. RedEdge-M 2 and 3 

(blue and red) correlated strongly, RedEdge 5 (infrared) strongly correlated with several other 

MDNs. No strong correlations were found between the logarithms of E. coli concentrations and 

any of the measured parameters. Additional moderate correlations were found that indicated 

relationships of potential interest, particularly the correlation between the logarithm of E. coli 

concentration and fDOM. A moderate negative correlation was also found between fDOM and 

the three GoPro MDNs (ER3, IR1, and VI3).  

The regression trees for the logarithms of E. coli concentrations are shown in Fig. 2. Five 

sets of input variables were employed as described in Section 2. The most influential variable in 

input set 1 was SPC whereas DO and pH were of secondary importance. Values of DO provided 

the data split at higher SPC values, while lower DO concentrations corresponded to the smallest 

logarithm values of E. coli concentrations. pH was more important when SPC was low, where 

lower pH defined the data subgroup with the largest logarithm E. coli concentrations. 

The MDNs of the green component of the image across the entire range (ER2) and the 

green component of the image from the infrared wavelength range (IR2) were the most 

influential variables in input sets 2 and 3 (Fig. 2). The green component ER2 across the entire 
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range was far more influential. Large ER2 values corresponded to lower E. coli concentrations. 

The lowest E. coli concentrations (mean logarithm = 1.26) occurred where ER2 was large and 

the green component of the infrared image was small. The lowest ER2 values corresponded with 

the highest logarithm concentrations (mean logarithm = 1.92). Combining input sets 1 and 2 into 

input set 3 resulted in the same regression tree as using input set 2 alone.  

Including biological variables in input set 4 resulted in fDOM becoming the most 

influential variable. Smaller concentrations of E. coli were found where the fDOM was large 

(>2.92). Where fDOM concentrations were lower, and low pH locations had the highest 

concentrations of E. coli (mean logarithm = 1.87). Using input set 5 did not change the 

regression tree obtained without the imagery data. 

3.2 Regression tree performance metrics 

Each of the five input variable sets was used in the resampling procedure to evaluate the 

uncertainty in the regression trees and the selection of the influential variables. For each of the 

input sets, 7% of the samples were removed and the regression trees were built for the remaining 

93% of the data. The total number of evaluated regression trees was 15,180. Histograms of the 

determination coefficients and the root-mean-square errors are shown in Fig. 3. The average (± 

standard deviation, SD) determination coefficients were 0.624 ± 0.055, 0.787 ± 0.032, 0.793 ± 

0.035, 0.768 ± 0.057, and 0.803 ± 0.046, and the average (± SD) values of the RMSE of the 

logarithm of E. coli concentrations were 0.177 ± 0.014, 0.133 ± 0.009, 0.131 ± 0.011, 0.138 ± 

0.018, and 0.128±0.017 for input sets 1 to 5, respectively. Performance was substantially 

improved after either the imagery data or biological water quality parameters were added to the 

physicochemical parameters.  
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The imagery (input set 2) broadly gave the same level of accuracy as the combination of 

biological and physicochemical parameters (input 4). Combining the imagery data with the 

biological and physicochemical parameters (input set 5) did not improve the accuracy of the 

trees; however, some of the most accurate predictions (R
2
 > 0.9) were from this set, although 

these were lower in frequency. Imagery-based performance metrics were much less variable than 

metrics based on the water quality parameters.  

3.3. Most influential input variables 

Figure 4 shows the frequencies of the measured water quality parameters and MDNs that 

were the most influential in all of the datasets. The most influential variables were those that 

formed the first split and the second most important were those forming the second split, etc. 

For input set 1 (physicochemical variables only, Fig. 4a) the most influential variables were 

specific conductance (93% of cases) and pH (7% of cases). The second split was formed by pH, 

followed by turbidity, and DO. For input 2 (imagery only, Fig. 4b), the most influential variable 

was the MDN of the green component from the entire range (ER2) GoPro images. The second 

split was most commonly based on the MDN of the green component of the infrared range 

(IR2) GoPro images. The most influential variables for the trees for input set 3 were similar to 

those of input set 2 but specific conductance was the most influential and the MDNs of the red 

component from the visible range (VI1) GoPro images defined the second split (Fig. 4c). 

We also tested the hypothesis that the number of samples removed during resampling 

would affect the relative influence of the different variables and the accuracy of the analysis. 

For this, resampling was repeated with one or two datasets removed. The results showed that 

the ranking of variables by their influence was almost the same as shown in Fig. 4 (data not 

shown). 
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4. Discussion 

There were some notable differences between environmental factors affecting E. coli 

survival in the pond water between the two sampling days. There was only a very small 

difference in total radiation between the two sampling days (Fig. S3), although this may not 

reflect any difference in UV irradiation and transmittance fluxes. There was a difference in 

temperature of approximately 4 °C between the sampling days. E. coli survival has been 

correlated with temperature in previous studies (e.g., Blaustein et al., 2013), with the measured 4 

°C difference in temperature potentially changing the inactivation rate by less than 15–30%.  

Correlations in the dataset (Table 1) were used to test hypotheses about the suitability of 

the pong habitats for E. coli. Very strong negative correlations between specific conductance and 

fDOM can be partially explained by the substantial differences in values measured on the two 

sampling days. This was likely due to the differences in precipitation on the days preceding the 

sampling days. There were no precipitation days in the week preceding the 18
th

 of July whereas 

there was a significant rainfall event on the 28
th

 and 29
th

 of July, when 100 mm of rainfall fell 

within 24 h. This likely caused the dilution seen in the SPC values and the increase in fDOM as a 

function by increased runoff. However, the observed correlation could also be partially attributed 

to the action of photolysis on DOM (Bertilsson and Travnik, 2000), which can create ionic 

products that affect specific conductance. Very strong correlations between turbidity, 

phycocyanin, and chlorophyll-a point to the important role of cyanobacteria in the planktonic 

algae community in the study pond. Cyanobacteria are commonly present in freshwater ponds 

and lakes (Oliver and Ganf, 2002).  
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The moderate positive correlation between the logarithms of E. coli concentrations and 

fDOM may reflect the important influence of fDOM on E. coli survival (Gruber, 2007). This 

may occur via a shielding effect of DOM for E. coli, and by DOM providing nutrients to E. coli 

via DOM photolysis. After photolysis has occurred, the natural mixing of pond water columns 

may help E. coli repair DNA damage caused by short exposure to UVB (Huot et al, 2000). 

Absorption by DOM and water accounted for 37–77% of UVR attenuation measured in the 

Laurentian Great Lakes, where scattering and absorption by particles accounted for up to 41% 

and 52% of attenuation at longer UVR wavelengths, respectively (Smith et al., 2004). It is also 

possible that the E. coli concentrations and fDOM correlated because they derive from the same source 

and have similar decay and die-off kinetics, respectively. This may be of interest to explore in future 

research. 

There are two distinct features of regression tree-based analysis of water quality data. First, 

regression trees demonstrate the existence of data subsets with different influential predictors. 

For input set 1, two data subsets with the lowest E. coli concentrations were found where SPC 

was high (Fig. 2). Clear water with low DO had the lowest E. coli concentrations. Elevated DO 

is commonly thought to lead to the E. coli inactivation (Ansa et al., 2011). However, an increase 

in DO in locations where DO and fDOM were generally low, may signify an increase in the 

photosynthetic activity of algae and a potential increase in the supply of nutrients and shading of 

E. coli. For input set 1, pH was the second most influential variable in the regression tree 

analysis (Fig. 2). Although pH did not correlate with E. coli concentrations across the entire 

dataset (Table 1), it discriminated between two distinctly different levels of E. coli in datasets 

with high fDOM. It has been found that E. coli becomes deactivated by exogenous mechanisms, 

while endogenous mechanisms have a more muted effect under moderate pH conditions (Davies-
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Colley et al., 1999; Liu et al., 2016). This might explain the influence of pH that can be seen in 

Fig. 2. 

The second important feature of regression tree analysis is the need to anticipate and deal 

with multicollinearity, i.e., the correlation between inputs. The strong correlation between SPC 

and fDOM led to SPC becoming a surrogate for fDOM. The influential role of SPC in the 

higher-level splits (Fig. 2a and 2b) is hard to interpret until it is realized that SPC provides a 

representation of fDOM.  

Variability in the accuracy of the regression trees obtained from the resampling indicates 

that both accuracy metrics were very sensitive to the removal of just 5% of the data. A possible 

reason for this is that the regression tree algorithm focused not on the accuracy but on creating 

groups of data that are most dissimilar. It may also be the case that the accuracy may have been 

affected by the presence of outliers in the data; using Tukey tests, we found that approximately 

9% of the data for all water quality variables could be considered outliers (data not shown). 

However, these data may simply reflect the patchiness that is commonly observed in ponds and 

reservoirs, and removing outliers is not necessarily justified. Figure 4 indicates that the 

individual trees shown in Fig. 2 do not represent the overall influence of the different variables. 

Thus, the resampling results provide a much more complete picture. These results also imply that 

if the trees are to be used as prediction tools, tree ensembles should be used, such as the random 

forest methodology (Belgiu and Drăguţ, 2016). 

Chlorophyll-a was the second most influential variable (Fig. 4d). The influence of the total 

planktonic biomass on E. coli survival can be either negative or positive (Ansa et al., 2011). An 

increase in total planktonic biomass can increase DO and pH and, thus, enhance die-off. Lysis of 
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algal cells, however, may enhance coliform survival because algal degradation may provide a 

source of carbon and energy (Sampson et al., 2006). 

The imagery data reflect features of the E. coli aquatic habitat and allow suitable 

locations for survival to be identified. The survival of various microorganisms can vary even 

with similar water quality conditions, meaning that results for E. coli estimation based on 

imagery data cannot be extended to other bacteria. However, it is possible that the imagery data 

can be used for other microorganisms to distinguish their local habitats in the same water body. 

To test this, future comparisons of the suitability of imagery data for several organisms would be 

a useful exercise. 

The MDNs for the RedEdge-M wavelength bands were rarely included in regression trees 

produced using the resampling (Fig. 4). The multispectral RedEdge-M data allowed for the 

computation of a large number of indices developed for land-based imagery applications, such as 

the Normalized Difference Vegetation Index (NDVI), Canopy Chlorophyll Content Index 

(CCCI), Chlorophyll Index Green (CIG) and Chlorophyll Index Red Edge (CIRDG), 

Chlorophyll Vegetation Index (CVI), NIR/Green Green Difference Vegetation Index (GDVI), 

Green-Blue NDVI (GBNDVI), and Green-Red NDVI (GRNDVI). We used the imagery input 

data with and without indices in input sets 2, 3, and 5. The commonly used indices computed 

from these bands provided second splits in the trees created by the resampling in a very small 

number of cases (data not shown). It is plausible that the multispectral indices used to analyze 

the radiance of terrestrial data sources are not effective for the analysis of freshwater data since 

water is a strong adsorbent in the spectral range in which vegetation is highly reflective. It is also 

possible that the structure of the indices can be preserved, but other wavelength bands need to be 

used. 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

19 
 

The results of this work have implications for microbial water quality monitoring in ponds. 

For example, if the rankings of variables according to their influence on the two sampling days 

hold, ER2 values could be used to delineate zones with different concentrations of E. coli. This 

could inform the sampling of ponds to obtain a more accurate representation of the spatial 

distribution of E. coli. 

 

5. Conclusion 

This study has shown that sUAV imagery provided the same or a better level of accuracy 

in estimates of E. coli concentrations across the study pond compared to in situ measurements of 

physicochemical and biological water quality parameters. This demonstrates the opportunity for 

using sUAV-based imagery to inform microbial water quality monitoring focusing on the spatial 

and temporal variability of E. coli concentrations in irrigation ponds. Our results suggest that 

including sUAV imagery as part of the environmental microbial food safety toolbox has 

significant potential that deserves to be explored further. 
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Table S1. Descriptive statistics of water quality parameters and mean digital numbers for each 

observation day. 

Table S2. Descriptive statistics of water quality parameters and mean digital numbers pooled for 

both observation days. 
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Table 1. Correlations between water quality parameters and mean digital numbers obtained from the 

imagery analysis. 
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Figure 1. Locations of the sampling points at the studied pond. 

Figure 3. Histograms of (a) the coefficient of determination (R
2
) and (b) root-mean-squared error (RMSE) 

of regression trees obtained by the removal of all possible dataset triplets from a total of 46 available 

datasets.  

Figure 4. Relative influence of measured water quality parameters and mean digital numbers estimated 

from regression trees obtained by the removal of all possible dataset triplets from a total of 46 available 

datasets: (a) physicochemical parameters (input set 1); (b) imagery data only (input set 2); (c) 

physicochemical parameters and imagery data (input set 3); (d) physicochemical and biological 

parameters (input set 4); and (e) physicochemical and biological parameters combined with imagery data 

(input set 5). The legend applies to panels (a) to (e). 

Figure S1. Five bands of the RedEdge-M camera imagery. 

Figure S2. Transmittance of GoPro lens filters. 

Figure S3. Total solar radiation on the observation days. 

  

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

30 
 

Table 1.  Correlations between water quality parameters and mean digital numbers from imagery 
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Graphical abstract 

 

 

 

Highlights 

 Remote monitoring of microbial water quality in irrigation ponds is challenging. 

 UAV-derived imagery was used characterize habitat parameters for E. coli. 

 Regression trees were constructed using the remote imagery and field-based data. 

 An average determination coefficient of 0.793 ± 0.035 was obtained. 

 This work demonstrates the potential of UAV-based monitoring of ponds. 
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