
Monatshefte für Mathematik (2020) 192:93–110
https://doi.org/10.1007/s00605-020-01380-0

Inflation word entropy for semi-compatible random
substitutions

Philipp Gohlke1

Received: 31 January 2019 / Accepted: 29 January 2020 / Published online: 7 February 2020
© The Author(s) 2020

Abstract
We introduce the concept of inflation word entropy for random substitutions with a
constant and primitive substitution matrix. Previous calculations of the topological
entropy of such systems implicitly used this concept and established equality of topo-
logical entropy and inflation word entropy, relying on ad hoc methods. We present a
unified scheme, proving that inflation word entropy and topological entropy in fact
coincide. The topological entropy is approximated by a converging series of upper
and lower bounds which, in many cases, lead to an analytic expression.

Keywords Random substitutions · Topological entropy · Periodic points

Mathematics Subject Classification 37B10 · 37B40 · 52C23

1 Introduction

Random substitution systems provide a model for structures that exhibit both long-
range correlations and a positive topological entropy. This combination of aperiodic
order and high complexity produces new features like a generic occurrence of both
pure point and absolutely continuous components in the diffraction image [5,9,16].
Since the early exposition of random substitutions as branching processes in [20],
they have served as models both in physics [8] and mathematical biology [12,13].
A systematic study of some of their properties was undertaken in [24]. The non-
trivial topological entropy is a property that distinguishes random substitutions from
usual (deterministic) substitutions which are known to have a complexity function that
increases at most linearly in the primitive case [3]. It has been the subject of recent
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work to quantify the topological entropy for some specific (families of) examples
of random substitutions [5,8,9,17,18]. In all of these references, the first step was to
quantify the growth of the number of possible inflation words, built from an initial
letter under iterated actions of the random substitution. The concept of inflation word
entropy, introduced in this paper, accounts for this procedure. We show that for a large
class of random substitutions, that we will call semi-compatible, the inflation word
entropy reproduces the value of the topological entropy. Also, we present a way to
calculate the inflation word entropy efficiently, yielding a closed form expression in
many cases. This result reproduces all of the known values of topological entropy
mentioned above, providing much simpler proofs in some of the cases. It also allows
us to work out the corresponding value for many new examples. Finally, we show that
the topological entropy can be obtained from periodic words (if they exist).
The paper is structured as follows. In Sect. 2 we introduce primitive semi-compatible
random substitutions and define the inflation word entropy for those systems. After
some preliminary properties, we prove our main result in Sect. 3, giving a scheme
to calculate the topological entropy at the same time. Section 4 is devoted to the
discussion of examples and gives a number of criteria that allow us to simplify further
the calculation of the topological entropy. We make a connection to periodic words in
Sect. 5.

2 Setup and notation

We fix a finite alphabetA = {a1, . . . , an} of cardinality n and takeA+ to be the set of
finite words inA. The set of bi-infinite words in the alphabetA is given byAZ. Further,
we denote by F(A+) the set of finite (non-empty) subsets ofA+. For A, B ∈ F(A+)

we define a concatenation of sets as AB := {uv | u ∈ A, v ∈ B}, where uv denotes
the standard concatenation of words. The cardinality of a set A ∈ F(A+) is denoted
by #A. A subword of a word u = u1 · · · um is any word of the form u[k,�] := uk · · · u�,
with 1 � k � � � m. For every u, v ∈ A+, we write v � u if v is a subword of u.
Further, we let |u| denote the (symbolic) length of the word u and |u|v the number of
occurences of v in u as a subword. If any of these values is the same for all words u
in a set A ∈ F(A+), we define |A|v := |u|v and |A|(�) := |u|, for arbitrary u ∈ A.
The subscript (�) serves as a reminder that the latter should not be mistaken for the
cardinality of the set A. The Abelianisation of a word u ∈ A+ is an n-component
vector �(u), with �(u)i = |u|ai , for all 1 � i � n. As before, we can extend � to
sets of words that share a common Abelianisation.

A random substitution generalizes the notion of a substitution on the alphabet
A by allowing that a letter a ∈ A is mapped to different words with predetermined
probabilities— compare [20] for an early definition that emphasizes the interpretation
as a branching process and [24] for a version that is notationally closer to standard
substitutions. For the present, purely combinatorial purpose, we avoid specifying the
probabilities. In this form it appears in [10].
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Inflation word entropy for semi-compatible random… 95

Definition 1 A random substitution on the alphabet A is a map ϑ : A → F(A+). It
is extended to A+ via concatenation of sets

ϑ : A+ � u = u1 · · · um �→ ϑ(u1) · · · ϑ(um)

and to F(A+) via taking unions

ϑ : F(A+) � A �→
⋃

u∈A

ϑ(u),

where the union is not necessarily disjoint. A random substitution ϑ is called semi-
compatible if for all a ∈ A we have that u, v ∈ ϑ(a) implies �(u) = �(v).

Remark 2 Although in line with the more recent literature on this topic, using the
term random substitution is to some extent arbitrary. The same concept has appeared
under the name 0L-system in [22] in the context of formal language theory and was
coined multivalued substitution in [6]. See [9] for a discussion of how this concept is
related to the notion of (genuinely probabilistic) random substitutions as defined in
[11,15,24]. The term semi-compatible was introduced in [9] to denote a weakening of
the concept of a compatible random substitution, for which it is additionally assumed
that all deterministic marginalisations of the random substitutions produce the same
shift-space, compare [5,15]. Again there is no consistency in the literature, as the term
compatible was modified to mean what we call semi-compatible in [23].

Note that for a semi-compatible random substitution, both |ϑm(v)|a and |ϑm(v)|(�)
are well-defined for all a ∈ A, v ∈ A+ and all powers m ∈ N of the substitution. A
word v ∈ ϑm(a), for some a ∈ A, is called a (level-m) inflation word (starting from
a).

Example 3 The random Fibonacci substitution on A = {a, b} is defined via ϑ : a �→
{ab, ba} and b �→ {a}. Here, ϑ is semi-compatible because ϑ(b) is a singleton-set and
all words in ϑ(a) have the same number of letters a and b appearing; more precisely,
�(ab) = �(ba) = (1, 1)ᵀ.

The substitution matrix and language are standard concepts in the context of substi-
tutions. For a generalization to random substitutions see [24]. We recall the definitions
for the sake of being self-contained.

Definition 4 Let ϑ be a semi-compatible random substitution on A = {a1, . . . , an}.
The associated substitution matrix M is defined via Mi j = |ϑ(a j )|ai for all 1 �
i, j � n. We call ϑ primitive if M is a primitive matrix. In this case, we denote by λ

the Perron–Frobenius (PF) eigenvalue of M and write R and L for the right and left
PF eigenvector, respectively. The normalisation is chosen as ‖R‖1 = 1 = LᵀR.

Definition 5 The language of a primitive random substitution ϑ is given by all words
that appear as a subword of some inflation word. More precisely,

L = {v ∈ A+ | v � u ∈ ϑm(a), for some a ∈ A,m ∈ N, u ∈ A+}.
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96 P. Gohlke

Words in L are called legal. The set of legal words of a given length � ∈ N, is denoted
by L� = {v ∈ L | |v| = �}.

To a given language L, there is an associated shift-dynamical system (X, σ ). Here,

X = {x ∈ AZ | x[k,�] ∈ L, for all k � � ∈ Z}

is closed, and thus compact, as a subset of AZ (endowed with the product topology)
and σ : x �→ σ(x), with σ(x)i = xi+1 denotes the left shift on X. The corresponding
topological entropy (compare [2]) can be expressed in terms of the language as

s = lim
�→∞

1

�
log(#L�),

where the limit exists due to subadditivity of the sequence (log(#L�))�∈N by an appli-
cation of Fekete’s Lemma [7]. For the rest of the paper, we will only consider primitive
semi-compatible random substitutions. More specifically, we fix the following over-
arching notation.

Assumption 6 ϑ is a primitive semi-compatible random substitution on the alphabet
A = {a1, . . . , an}.

For notational convenience, let us define �m = (�m,1, . . . , �m,n)
ᵀ and qm =

(qm,1, . . . , qm,n)
ᵀ, where

�m,i = |ϑm(ai )|(�) and qm,i = log(#ϑm(ai )),

for all 1 � i � n and m ∈ N.

Definition 7 The upper and lower inflation word entropy of type i for 1 � i � n are
given by

s Ii = lim inf
m→∞

qm,i

�m,i
= lim inf

m→∞
1

|ϑm(ai )|(�)
log(#ϑm(ai )),

s Ii = lim sup
m→∞

qm,i

�m,i
= lim sup

m→∞
1

|ϑm(ai )|(�)
log(#ϑm(ai )).

One of the main results of this paper will be that the limits in the above expressions
exist and that they are independent of i . This will justify us speaking of the inflation
word entropy s I . Since ϑm(ai ) ⊂ L�m,i , it is immediate from the definition that the
inflation word entropy is a lower bound for the topological entropy s.

The following fact determines the length of arbitrarily large inflation words by
linear algebra. It follows immediately from the definition of the substitution matrix
M ; compare [3, Ch. 4] and [21, Ch. 5.3].

Fact 8 For every m ∈ N, we have that �
ᵀ
m = 1ᵀMm, where 1 = (1, . . . , 1) denotes

the n-dimensional vector with identical entries 1. In particular, �ᵀ
m = �

ᵀ
m−1M.
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Inflation word entropy for semi-compatible random… 97

There are two special cases for the inflation word structure of ϑ that deserve to be
named since they mark the boundary cases in the calculations to come.

Definition 9 The random substitution ϑ is said to satisfy the identical set condition if

u, v ∈ ϑ(ai ) 
⇒ ϑm(u) = ϑm(v),

for all 1 � i � n and m ∈ N. It is said to satisfy the disjoint set condition if

u, v ∈ ϑ(ai ), u �= v 
⇒ ϑm(u) ∩ ϑm(v) = ∅,

for all 1 � i � n and m ∈ N.

Lemma 10 For every m ∈ N, we have

qᵀ
mM � qᵀ

m+1 � qᵀ
mM + qᵀ

1 ,

where the inequalities are to be understood element-wise. The lower bound is an
equality for all m ∈ N if and only if the identical set condition holds and the upper
bound is an equality for all m ∈ N if and only if the disjoint set condition holds.

Proof Let m ∈ N and 1 � i � n. Then,

ϑm+1(ai ) = ϑm(ϑ(ai )) =
⋃

u∈ϑ(ai )

ϑm(u). (1)

For the moment, fix an arbitrary u ∈ ϑ(ai ) and suppose |u| = r . Then, by definition,
ϑm(u) = ϑm(u1) · · · ϑm(ur ) and since all the words in ϑm(uk), for a fixed 1 � k � r ,
have the same length, we find

#ϑm(u) =
r∏

k=1

#ϑm(uk) =
n∏

j=1

(#ϑm(a j ))
|u|a j .

Due to the semi-compatibility condition, |u|a j
= |ϑ(ai )|a j

= Mji , for all 1 � j � n.
Thus,

#ϑm(u) =
n∏

j=1

(#ϑm(a j ))
Mji .

Note that this is independent of the choice of u ∈ ϑ(ai ). Taking cardinalities in (1)
therefore yields

n∏

j=1

(#ϑm(a j ))
Mji � #ϑm+1(ai ) � (#ϑ(ai ))

n∏

j=1

(#ϑm(a j ))
Mji ,
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98 P. Gohlke

where the lower bound is an equality if and only if all the sets in the union in (1)
coincide and the upper bound is an equality if and only if the union is disjoint. Taking
the logarithm gives the desired relation. ��

Remark 11 More generally, we can show that for 1 � k � m,

qᵀ
k M

m−k � qᵀ
m � qᵀ

k M
m−k + qᵀ

m−k .

This follows by splitting ϑm(ai ) = ϑk(ϑm−k(ai )) in place of (1) and then following
the same steps as in the proof above. It also leads to slightly different, although related,
conditions for the realization of the upper or lower bound. ��

3 Main results

Our strategy to prove that the inflation word entropy is well defined and coincides with
the topological entropy is to establish a sequence of lower and upper bounds for both
quantities which eventually narrow down the set of possible values to a single point.

The first step in this direction is the following result.

Proposition 12 The upper and lower inflation word entropy are bounded by

1

λ
qᵀ
1 R � s Ii � s Ii � 1

λ − 1
qᵀ
1 R, (2)

for all 1 � i � n. The lower bound is an equality if the identical set condition is
satisfied and the upper bound is an equality if the disjoint set condition is satisfied.
For the lower bound, we additionally have that

1

λr
qᵀ
r R � s Ii , (3)

for all r ∈ N, where the lower bound is a monotonically increasing function in r .

Proof This is basically a direct consequence of Lemma 10 by an iterative application.
More precisely, for m � 1, we find, focusing first on the lower bound,

qm+1,i �
(
qᵀ
r M

m+1−r
)

i

for every 1 � i � n and m ∈ N that is larger than a fixed r ∈ N. Dividing both sides
by �m+1,i and taking the lim inf yields

s Ii � lim inf
m→∞

1

λr

λm+1

�m+1,i

(
qᵀ
r
Mm+1−r

λm+1−r

)

i
= 1

λr
(Li )

−1qᵀ
r RLi = 1

λr
qᵀ
r R.
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Inflation word entropy for semi-compatible random… 99

The penultimate step follows from standard PF theory and the assumption that M is
primitive, implying

lim
m→∞

1

λm
Mm = RLᵀ

and

lim
m→∞

1

λm
�m,i = lim

m→∞
1

λm

(
1ᵀMm)

i = 1ᵀRLi = Li , (4)

wherewe have used Lemma 8 and the normalisation condition on the right eigenvector.
In order to show monotonicity, note that

1

λr+1 q
ᵀ
r+1R � 1

λr+1 q
ᵀ
r MR = 1

λr
qᵀ
r R,

where the inequality is due to Lemma 10. For the upper bound, we proceed similarly.
First,

qm+1,i �
(
qᵀ
1

m∑

k=0

Mk

)

i

,

such that

s Ii � lim sup
m→∞

1

λ

λm+1

�m+1,i

(
qᵀ
1

1

λm

m∑

k=0

Mk

)

i

= 1

λ

(
1 − 1

λ

)−1

qᵀ
1 R = 1

λ − 1
qᵀ
1 R.

Note that, in the second step, we have made use of PF theory once more to conclude
that

lim sup
m→∞

1

λm

m∑

k=0

Mk = lim sup
m→∞

m∑

j=0

1

λ j

Mm− j

λm− j
=

∞∑

j=0

1

λ j
RLᵀ =

(
1 − 1

λ

)−1

RLᵀ.

The claim on the sufficient condition for the realization of the lower or upper bound
is immediate from Lemma 10 and the above calculation. ��

As we remarked earlier, we clearly have s Ii � s. Our next step will be to bound
s by the same upper bound that was given in Proposition 12 using an independent
argument.

Proposition 13 The topological entropy associated with ϑ satisfies

s � 1

λ − 1
qᵀ
1 R.
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100 P. Gohlke

We proceed by a number of steps. First, we observe that semi-compatibility still
guarantees the existence of uniform letter frequencies. Conceptually, this will be at
the heart of the proof of Proposition 13.

Proposition 14 The language L, corresponding to ϑ , exhibits uniform existence of
letter frequencies in the following sense. For all ε > 0 there is a length � such that for
all u ∈ L with |u| � �, we have

∣∣∣∣
|u|ai
|u| − Ri

∣∣∣∣ < ε. (5)

Sketch of proof This is a well-known fact for primitive deterministic substitutions. The
reason that it still holds for primitive semi-compatible random substitutions is that this
is a property that basically relies on the Abelianisations of the inflation words only,
which are fixed by the substitution matrix M . More specifically, compare the proof
of [21, Thm. 5.6]. This carries over to our situation almost verbatim, if restricted to
letters instead of general subwords (note that the construction no longer carries over
for general subwords since this would involve induced substitutions which are no
longer semi-compatible in the random case). ��

With this tool at hand, we are in the position to show that for large enough words,
applying the substitution expands the words by a factor λ, up to a small deviation.

Lemma 15 Let IN = ϑ(L) ∩LN . For all ε > 0, there is an N0 ∈ N such that, for all
N � N0,

IN ⊂
�N/(λ−εnK )�⋃

m=�N/(λ+εnK )�
ϑ(Lm), (6)

where K = max1�i�n �1,i and n = #A, assuming ε is small enough that λ > εnK .

Proof Let ε > 0, choose � ∈ N such that (5) holds and let m � �. Then, for u ∈ Lm ,
we find that |u|ai ∈ ((Ri − ε)m, (Ri + ε)m) and thereby

|ϑ(u)|(�) =
n∑

i=1

|u|ai |ϑ(ai )|(�) < m
n∑

i=1

Ri�1,i + εm
n∑

i=1

�1,i

� m�
ᵀ
1 R + εmnK = m(λ + εnK ),

where in the last step we have made use of �
ᵀ
1 R = 1ᵀMR = λ. Analogously,

|ϑ(u)|(�) > m(λ − εnK ).

Now choose N � N0 = ��(λ + εnK )� and w ∈ IN with w ∈ ϑ(u) and |u| = m.
Then, by the bounds above

m(λ − εnK ) < |ϑ(u)|(�) = N < m(λ + εnK ),
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Inflation word entropy for semi-compatible random… 101

or, equivalently

N

λ + εnK
< m <

N

λ − εnK
,

which establishes the claim. ��

Corollary 16 In the situation of Lemma 15, let λ±
ε = λ ± εnK . Then, for N � N0,

#IN � N

(
1

λ−
ε

− 1

λ+
ε

) (
#L�N/λ−

ε �
) n∏

i=1

(#ϑ(ai ))
(Ri+ε)N/λ−

ε .

Proof Taking the cardinality of (6), we find

#IN �
�N/λ−

ε �∑

m=�N/λ+
ε �

#ϑ(Lm) �
�N/λ−

ε �∑

m=�N/λ+
ε �

∑

u∈Lm

#ϑ(u).

By the construction in the proof above, we have for u ∈ Lm , with N/λ+
ε � m �

N/λ−
ε ,

#ϑ(u) = #ϑ(u1) · · · #ϑ(um) =
n∏

i=1

(#ϑ(ai ))
|u|ai �

n∏

i=1

(#ϑ(ai ))
(Ri+ε)m ,

which is monotonically increasing in m. Since also #Lm is increasing in m, the claim
follows. ��

Finally, let us prove the upper bound for the topological entropy.

Proof of Proposition 13 Suppose v ∈ LN . Then, there exists a u ∈ L such that v � v′ ∈
ϑ(u) for some v′ ∈ L with N � |v′| � N + 2(K − 1), with K as in Lemma 15.
To account for the different possible positions of v within v′, let us define the sets
F L

p (N ) = {w[p,p+N−1] | w ∈ IL}, where we suppose that N � L and consider p
within the range 1 � p � L − N + 1. Obviously,

LN ⊂
N+2K⋃

L=N

L−N+1⋃

p=1

F L
p (N ).

123



102 P. Gohlke

From the definition, it is clear that #F L
p (N ) � #IL for any N , p and L in their

corresponding ranges. In particular, this bound is independent of p. Thereby,

#LN �
N+2K∑

L=N

(L − N + 1)(#IL)

� (2K + 1)2(N + 2K )

(
1

λ−
ε

− 1

λ+
ε

) (
#L�(N+2K )/λ−

ε �
)

n∏

i=1

(#ϑ(ai ))
(Ri+ε)(N+2K )/λ−

ε ,

where in the last stepwe havemade use ofCorollary 16, togetherwith themonotonicity
of the functions occurring therein. We note that the first three factors of the right hand
side in the last expression exhibit only linear growth in N and therefore vanish under
an application of 1

N log(·), in the limit of large N . Consequently,

s = lim
N→∞

1

N
log (#LN )

� lim
N→∞

1

N
log

(
#L�(N+2K )/λ−

ε �
) + N + 2K

Nλ−
ε

n∑

i=1

(Ri + ε) log(#ϑ(ai ))

= 1

λ−
ε

s + 1

λ−
ε

qᵀ
1 R + ε

λ−
ε

n∑

i=1

q1,i
ε→0−−−→ 1

λ
s + 1

λ
qᵀ
1 R.

This yields

s �
(
1 − 1

λ

)−1 1

λ
qᵀ
1 R = 1

λ − 1
qᵀ
1 R,

as desired. ��
We summarise our main findings in the following result.

Theorem 17 Suppose ϑ is a primitive semi-compatible random substitution on the
alphabet A = {a1, . . . , an} with entropy s and lower (upper) inflation word entropies
s Ii (s

I
i ). Then, for 1 � i � n and every m ∈ N, we have

1

λm
qᵀ
mR � s Ii � s Ii � s � 1

λm − 1
qᵀ
mR. (7)

In particular, the inflation word entropy

s I = lim
m→∞

1

�m,i
log(#ϑm(ai ))
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Inflation word entropy for semi-compatible random… 103

is well-defined, independent of i and equals the topological entropy s. Both can be
calculated as

s = s I = lim
m→∞

1

λm
qᵀ
mR = sup

m∈N
1

λm
qᵀ
mR. (8)

Proof The only statement in (7), which is not immediate from Propositions 12 and
13, is maybe the upper bound for s for arbitrary values of m ∈ N. However, this
follows readily from Proposition 13, applied to the substitution ϑm . To see this, note
that ϑm is itself clearly primitive semi-compatible and induces the same subshift as
ϑ and hence also gives the same entropy. Combine this with the observation that
qm,i (ϑ) = log(#ϑm(ai )) = q1,i (ϑm).
This establishes that s I is well-defined via

1 � s Ii
s Ii

� λm

λm − 1
m→∞−−−−→ 1.

The fact that s = s I and the formula for its calculation in (8) follow similarly. ��

4 Examples and applications

The procedures presented in the last section might raise the hope to find a closed form
expression for the entropy of any primitive semi-compatible random substitutions. In
general, the difficulty lies in quantifying the overlaps of sets of the form ϑm(u), u ∈
ϑ(ai ), in case they are non-trivial and thereby lie strictly in between the identical set
condition and the disjoint set condition. Usually, one works out inductive relations for
these intersections which are specific for the substitution at hand—compare [5,9,17–
19]. However, if one of the limiting cases holds, we do get a closed formula for the
topological entropy.

Corollary 18 The identical set condition implies

s = 1

λ
qᵀ
1 R,

while the disjoint set condition is sufficient for

s = 1

λ − 1
qᵀ
1 R.

Proof This is an immediate consequence of Proposition 12 and Theorem 17. ��
Clearly, a sufficient criterion for the identical set condition is that ϑ(a) = ϑ(b) for

all a, b ∈ A. One such substitution was considered in [24].
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104 P. Gohlke

Example 19 Let ϑ : a �→ {ab, ba}, b �→ {ab, ba} be a random substitution with
λ = 2 and R = (1/2, 1/2)ᵀ. It was shown in [24] that the subshift constructed from
this random substitution is in fact a sofic shift. Since ϑ(a) = ϑ(b), we find

s = 1

2
(log(2), log(2))R = 1

2
log(2)

for the topological entropy. ��
In the case of constant length random substitutions, there is an easy sufficient

criterion to ensure the disjoint set condition.

Corollary 20 In the situation above, assume in addition that ϑ is a constant-length
substitution. That is, there exists a length k ∈ N such that |ϑ(a)|(�) = k, for all a ∈ A.
If, in addition, ϑ satisfies the disjoint inflation set condition

ϑ(a) ∩ ϑ(b) = ∅, (9)

for all a, b ∈ A with a �= b, then the entropy is given by the upper bound

s = 1

λ − 1
qᵀ
1 R.

Proof It clearly suffices to show that the disjoint inflation set condition implies the
disjoint set condition in the constant-length setting.

Let a, b ∈ A, with a �= b. First, it follows by induction that ϑm(a) ∩ ϑm(b) = ∅

for all m ∈ N: Suppose it is true for all m up to m0 ∈ N. With the aim of establishing
a contradiction, suppose further that w ∈ ϑm0+1(a) ∩ ϑm0+1(b). Then, there is u ∈
ϑm0(a) and v ∈ ϑm0(b) such that w ∈ ϑ(u) ∩ ϑ(v). Since ϑm0(a) ∩ ϑm0(b) = ∅ by
the induction assumption, u �= v, so there exists a position j such that u j �= v j (recall
that |u| = |v| because ϑ is constant-length). Thus, w ∈ ϑ(u) ∩ ϑ(v) implies that

w[( j−1)k+1, jk] ∈ ϑ(u j ) ∩ ϑ(v j ) = ∅

by the constant-length condition, giving the desired contradiction.
Next, let 1 � i � n and u, v ∈ ϑ(ai ), with u �= v. Then, u j �= v j for some
1 � j � |u| = |v|. Suppose there is w ∈ ϑm(u) ∩ ϑm(v), for some m ∈ N. Since
each word in ϑm(a), a ∈ A has length km , this would imply

w[( j−1)km+1, jkm ] ∈ ϑm(u j ) ∩ ϑm(v j ) = ∅,

leading to a contradiction. Consequently ϑm(u) ∩ ϑm(v) = ∅. ��
Let us apply our results to a number of ‘test cases’ for which the topological entropy

has been calculated in previous work. In particular, we will look at random variants
of the well-known Fibonacci, Period Doubling and Thue–Morse substitutions.
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Example 21 (Random Period Doubling). ϑRPD : a �→ {ab, ba}, b �→ {aa}, with
data λ = 2, R = (2/3, 1/3)ᵀ and q1 = (log(2), 0)ᵀ. As this is a constant-length
substitution satisfying the disjoint inflation set condition, we can apply Corollary 20
and obtain

sRPD = 1

λ − 1
qᵀ
1 R = 2

3
log(2).

This coincides with the value computed in [5]. ��
Example 22 (Random Thue–Morse). ϑRT M : a �→ {ab, ba}, b �→ {ba}, with data
λ = 2, R = (1/2, 1/2)ᵀ, qᵀ

1 = (log(2), 0). This substitution is also constant-length,
but no longer satisfies the disjoint inflation set condition. Indeed,

0.1733 ≈ 1

4
log(2) = 1

λ
qᵀ
1 R < sRT M <

1

λ − 1
qᵀ
1 R = 1

2
log(2) ≈ 0.3466.

The numerical value of sRT M was computed in [9] to be

sRT M ≈ 0.253917.

We can, of course, improve our bounds by going to higher powers. For this, it is useful
to establish inductive relations between the sets of inflation words. Concretely, we
observe that ϑm(b) ⊂ ϑm(a) for all m ∈ N, which yields

#ϑm+1(a) = #
(
ϑm(a)ϑm(b) ∪ ϑm(b)ϑm(a)

) = 2(#ϑm(a))(#ϑm(b)) − (#ϑm(b))2,

making use of the fact that ϑm(a)ϑm(b) ∩ ϑm(b)ϑm(a) = ϑm(b)ϑm(b). Also,

#ϑm+1(b) = (#ϑm(b))(#ϑm(a)).

This gives a scheme to compute qm for arbitrarily large numbers m ∈ N at relatively
low computational cost (as compared to naively counting the cardinalities of inflation
word sets). For example, we obtain for m = 5,

0.25177 ≈ 1

64
log(9953280) = 1

λ5
qᵀ
5 R < sRT M <

1

λ5 − 1
qᵀ
5 R

= 1

62
log(9953280) ≈ 0.25989,

reproducing the first two valid digits. ��
Example 23 (Random Fibonacci). ϑRF : a �→ {ab, ba}, b �→ {a}, with data λ = τ

the golden ration, R = 1
1+τ

(τ, 1)ᵀ, qᵀ
1 = (log(2), 0). Note that, due to the small

inflation factor, the convergence rate of the lower and upper bounds to the real value
of the entropy, given by
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sRF =
∞∑

m=2

log(m)

τm+2 ≈ 0.444399, (10)

will be relatively poor. The exact value for the entropy was worked out in [8,15,19].
Concretely,

0.265 ≈ 1

τ 2
log(2) = 1

τ
qᵀ
1 R < sRF <

1

τ − 1
qᵀ
1 R = log(2) ≈ 0.693.

It was shown in [19, Prop. 6] that

#ϑm+1(b) = #ϑm(a) = (m + 1)
m+1∏

j=2

(m + 2 − j) f j−2 ,

where { f j } j∈N denotes the Fibonacci sequence. From this, it is a straightforward calcu-
lation to check that any of the formulas for computing s I that are given in Theorem 17
indeed reproduces the expression for sRF in (10). ��

With the example of the random Fibonacci substitution we have left the realm of
constant length substitutions. Although Corollary 20 is no longer applicable in this
situation, there are other sufficient criteria to ensure the disjoint set condition. In [23],
two properties ofϑ are introduced, called disjoint images and disjoint inflation images.
The disjoint inflation images property can be shown to be equivalent to the disjoint set
condition, whereas the disjoint images property is stronger in general. We can thereby
carry over a result that shows that failing the disjoint set condition requires certain
structural properties from a primitive semi-compatible random substitution.

Fact 24 Suppose ϑ does not satisfy the disjoint set condition. Then, the following two
properties hold.

(1) There are distinct a, b ∈ A and ua ∈ ϑ(a), ub ∈ ϑ(b) such that ua is a prefix of
ub.

(2) There are distinct a, b ∈ A and ua ∈ ϑ(a), ub ∈ ϑ(b) such that ua is a suffix of
ub.

The proof for the existence of a prefixwas spelt out in [23, Lem. 14]. The corresponding
result for the suffix follows exactly the same line of argument. Corollary 20 is obviously
a special case of this result for the constant-length setting.

Example 25 Many examples that we have considered so far are actually compatible,
compare Remark 2. We will now turn to an example that violates compatibility but
is still semi-compatible. This is a random variant of the square of the deterministic
Fibonacci substitution, the entropy of which was treated in [18]. It is determined by
ϑRF2 : a �→ {baa}, b �→ {ab, ba}, λ = τ 2, R = 1

1+τ
(τ, 1)ᵀ.

Since there is no level-1 inflation word that appears as the suffix of another, we can
apply Fact 24 to conclude that the disjoint set condition holds and thus,

s = 1

τ 2 − 1

1

τ + 1
log(2) = 1

τ 3
log(2),
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reproducing the result given in [18, Thm. 2]. Thisway,we can avoid anyof the technical
combinatorial estimates presented in [18] to work out the entropy. ��

Let us now turn to some examples that have not yet been covered by the literature
on entropy (to the best of the author’s knowledge).

Example 26 (Random paper folding). Let ϑRPF : a �→ {ab, ba}, b �→ {cb, bc}, c �→
{ad, da} and d �→ {cd, dc} be a random substitution with λ = 2 and Ri = 1/4 for all
1 � i � 4. Clearly, the disjoint set condition for constant-length substitutions applies
and we find s = log(2). ��
Example 27 [23, Ex. 19]. We consider the random substitution ϑ : a �→ {abbabba,

ababbba}, b �→ {a}, λ = 4, R = 1
2 (1, 1)

ᵀ. This example was shown to satisfy global
unique recognisability [23, Def. 18], a property that precludes the existence of periodic
points [23, Prop. 21]. Since it also implies the disjoint set condition [23, Prop. 23], we
can work out the topological entropy to be s = 1

6 log(2). ��
Remark 28 Let us comment on the scope of our result. An important motivation for
studying primitive substitutions is that they provide examples for mathematical ana-
logues of quasicrystals [3]. In this context, every letter ai ∈ A is usually replaced by a
tile of length Li which allows us to interpret the substitution as an inflation rule on the
tiles. Because semi-compatibility ensures that the left eigenvector is well-defined, a
similar identification works for primitive semi-compatible random substitutions, lead-
ing to the concept of a random inflation rule. The corresponding tiling space of infinite
tilings can be obtained from a suspension of (X, σ ), where the roof function reflects
the length of the individual tiles. Since the average tile length is 1, it follows from a
standard result by Abramov [1] that the topological entropy of the suspension flow
coincides with the topological entropy s of (X, σ ). Alternatively, given x ∈ X we can
identify each tile of the corresponding tiling with its left endpoint, giving rise to a
Delone point set, which is naturally equipped with a continuous group of translations
T = {Tt }t∈R. The spaces (Y, T ) of Delone sets, that are obtained from a primitive
semi-compatible random substitution have been the object of recent studies [5,9,15]
and were shown to yield interesting diffraction patterns that contain both Bragg peaks
as well as a continuous component, compare also [8]. Both the type of the diffraction
measure of a point set and the topological entropy of a system are usually interpreted as
indicators for (dis)order, so it is interesting to compare them—see also [4] for a connec-
tion between diffraction and entropy in a different setting. If (Y, T ) is equipped with
an appropriate topology, it is topologically conjugate to the corresponding suspension
flow. Therefore, in the case of a primitive semi-compatible random substitution, the
topological entropy of (Y, T ) is given by s and can be computed with our methods.

5 Topological entropy from periodic points

In this section, we will show that the topological entropy can be constructed from the
growth rate of periodic elements, provided there is at least one (and thus infinitely
many) periodic elements in the subshift X that is associated with our random substi-
tution.
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The class of general random substitutions is very large. It has been shown, for
example, that every (topologically transitive) shift of finite type (SFT) can be obtained
from an appropriate primitive random substitution [10]. For such an SFT (even for the
more general class of sofic shifts) it is well-known that the topological entropy can be
obtained from the growth rate of the number of periodic elements [14, Thm. 4.3.6].
This raises the question whether a similar statement holds for the topological entropy
of primitive semi-compatible random substitutions.

Definition 29 Given a language L, the set of periodic words of period q is given by

P(q) = {u ∈ L | |u| = q, with uN ∈ L, for all N ∈ N},

where uN = u · · · u denotes the concatenation of N copies of the word u. Note that
these sets might be empty.

Given a random substitution, the existence of periodic words in its language is a subtle
problem. An initial investigation was performed in [23], giving a number of criteria
to exclude the existence of periodic points and an algorithm that checks whether a
given word is periodic for a large family of semi-compatible random substitutions.
However, there remain many cases that are not decidable by any of those results. The
next proposition shows that if we assume the existence of periodic words, there are
sufficiently many to reproduce the full topological entropy. This is essentially due to
the fact that periodic words produce periodic words under the substitution procedure.

Proposition 30 The topological entropy of a primitive semi-compatible random sub-
stitution can be obtained from its sets of periodic words via

s = lim sup
q→∞

1

q
log(#P(q)),

provided that there exists at least one (and thus infinitely many) periodic words.

Proof Choose some q ∈ N and u ∈ P(q). Then, w ∈ P(|ϑm(u)|(�)) for all
w ∈ ϑm(u), by construction. That is, ϑm(u) ⊂ P(|ϑm(u)|(�)). Denote by �(u) the
Abelianisation of u. It is then a straightforward application of PF theory to conclude
that

lim
m→∞

|ϑm(u)|(�)
λm

= lim
m→∞

1

λm

n∑

i=1

|u|ai |ϑm(ai )|(�)

= lim
m→∞

1

λm
�ᵀ
m�(u) = 1ᵀRLᵀ�(u) = Lᵀ�(u).

Also, we find a lower bound for the cardinality of some sets of periodic words by

#P(|ϑm(u)|(�)
)

� #ϑm(u) =
n∏

i=1

(#ϑm(ai ))
�(u)i .
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Recalling that qm,i = log(#ϑm(ai )), we find

lim sup
m→∞

1

|ϑm(u)|(�)
log

(
#P(|ϑm(u)|(�)

))
� lim sup

m→∞
1

|ϑm(u)|(�)
qᵀ
m�(u)

� lim sup
m→∞

1

Lᵀ�(u)

1

λr
qᵀ
r
Mm−r

λm−r
�(u)

= 1

λr
qᵀ
r R

r→∞−−−→ s,

where we have made use of Lemma 10 in the last inequality and (8) for the last step.
This finishes the proof. ��
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