
Development and implementation of a smart
greenhouse

Donadio, Maximiliano C.1; Garcia-Martinez, Nicolas1; Vivas, Luis1; Britos, Paola V. 1

1 Universidad Nacional de Rio Negro – Sede Atlántica – Río Negro - Argentina
maxdonadio@hotmail.com; {ngarciam, lvivas, pbritos}@unrn.edu.ar

Abstract. A smart greenhouse was developed at Laboratorio de Informatica
Aplicada with the department of Agronomic Engineering at the University of
Rio Negro, it must provide real-time measurements of parameters such as
humidity, temperature and luminosity; it also must allow manual and automatic
control for actuators such as heaters, sprinklers and fans based on user input. In
order to fulfill the aforementioned requirements the following actions were
performed: (a) Design and implementation of a webpage to communicate with
and control the greenhouse and, (b) Development: at first a model using Object
Oriented Programming was implemented in an Arduino Mega board equipped
with an ethernet shield; posteriorly, given that Arduino could not fulfill the
necessary tasks, it was decided to develop a second prototype using a Raspberry
Pi 2 Model B+ board along with completely new software programmed in
Python 3.

Keywords: Python, Actuators, Sensors, Robotics, Greenhouse.

1. Introduction

The need for a smart greenhouse arose from the difficulties concerning research that
were presented by the department of Agronomical Engineering at the university,
monitoring a greenhouse in real time can be a difficult task which may complicate
research and crop production; which is the reason an effective and efficient tool was
required.

At Laboratorio de Informática Aplicada (LIA) a project to develop a smart
greenhouse was started, several requirements were established, among them are
temperature, humidity and luminosity control in real time, collecting and storing data
for later analysis; as well as activating or deactivating different actuators manually
and automatically, changes in actuators such as the aforementioned must be
documented as well to provide more information for future research, it is in this way
that the user could observe not only the greenhouse’s status at any moment in time but
also know which factors were present at said moment. [1] [2] [3].

In order to build the first functional prototype, it was decided to utilize an Arduino
MEGA board equipped with an ethernet shield, DHT22 sensor, LDR sensor modules
with GL55 photoresistors, two 5 relay modules, an electric heater, a water pump and
diverse electronic components to provide the greenhouse with energy. The software
was designed using Object Oriented Programming (POO), which results efficient to
perform the measurements and changes needed, as well as acting as an ethernet client

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-1072-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/288490984?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and server simultaneously in order to send and receive GET and POST requests to
communicate with a webpage from which the user can manually control the
greenhouse.

The present article is structured in the following way: Section 2 explains how the
software was developed, followed by verification and validation of said software in
Section 3, finally, Section 4 presents conclusions and future research.

2. Software development

Initially, the software was developed in an Arduino board using C as programming
language. However, due to the need of measuring temperature, humidity and
luminosity in real time and communicating with the webserver at the same time, it
was imperative to utilize parallelism which Arduino cannot support due to
architecture limitations. It was for this that for the second prototype, the board was
replaced by a Raspberry Pi 2 Model B+ using Python 3 as programming language
along with Raspbian as operative system since it is the manufacturer’s own OS and is
much more efficient in the interpretation and execution of the board’s ARM
processor. The sensor utilized in both prototypes were DHT22 for temperature and
humidity and LDR modules with GL55 photoresistors for luminosity, the actuators
did not change between the two prototypes. Details on the implementation of the
aforementioned can be found in the following sub-sections.

2.1 Modules

The software design contains 7 modules along with the main module, a bash script,
and a module called which was designed and implemented by the author
“APIWebServer”, details on their implementation and functionality are featured
below:

a) Actuador: Contains methods to activate, deactivate, check the actuator’s
parameters and status, just receives order and does not do anything else on
its own than initializing

b) Sensor: Checks and measures values for LDR y DHT22 sensors, as well as
confirming if the established limits have been breached, the user can modify
the sensor’s properties using the webpage. The measurements from the
DHT22 sensors are obtained using the module “MyPyDHT” [4], whereas
measurements for the LDR sensors are collected in an analog manner since
no working libraries to obtain digital measurements for LDR sensors were
found.

c) Estación: Defines methods to initialize all of the greenhouse’s data and
obtains data for all of the sensors, actuators and the greenhouse’s own data
from the webserver which then utilizes to initialize every sensor and
actuator. Methods to search for sensors and actuators using their respective
ID were implemented as well.

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-1073-

d) Control: The most important module in the greenhouse, contains an instance
of “WebController” which collects measurements periodically, as well as
receiving commands to send them to the server and update the parameters
for the actuators, sensors and for the greenhouse itself, it is also responsible
of receiving and interpreting the user’s commands. Contains a subclass
called “SchedPeriodico” which utilizes the “sched” module [5] in a recursive
manner so as to queue functions and procedures to be executed every certain
interval which at the time is set by the server. This allows automatic sensor
and actuator control, which can be close to real-time control since the
interval for measurement recollection can be smaller than 1 second.

e) WebServer: Implements the webserver for the greenhouse, it was made using
a framework called “Flask” [6]. This class handles all of the POST and GET
requests that the server sends. Code example can be found below:

1.self.app.add_url_rule ('/<path: path>','manejarReq’,
view_func=self.manejarReq, methods= ['POST', 'GET'])

The sentence indicated that the class will handle POST and GET requests via
a method called “manejarReq”. It will listen for requests in every path and
every request will be handled by sending a message with certain parameters
to an instance of “APIWebServer”.

f) WebController: This class is responsible for the communication between the
greenhouse and the webserver and acts as the web client for the greenhouse ,
it contains an instance of “Control”, as well as methods to obtain the
greenhouse’s self IP for which a bash script is utilized, the script is executed
using a python module called “subprocess” [7]. In order to perform all web-
related activities it utilizes http.client [8] and Requests [9].

g) ProcessController: Defines an object known as “processController” which
has only one method that utilizes a module known as “threading” [10], in
order to start 2 threads, one that is in charge of all activities regarding the
greenhouse’s measurement recollection, actuator control and web client, and
another one that allows the greenhouse to act as a webserver in of itself and
receives and executes all the commands the user sends from the webpage.
Most of the contents of this module can be seen below:

1. import threading
2.
3. def inicializarProcesos (self, estacion, servidor):
4. estacion.inicializar()
5. threadControl=threading.Thread(target=estacion.controlar)
6. threadServer=threading.Thread(target=servidor.runServer)
7. threadControl.start()
8. threadServer.start()

h) Bash script: Returns the IP for the greenhouse using 4 commands and pipes

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-1074-

1.#!/bin/bash
2.ifconfig eth0 | grep "inet " | cut -c 13-28 | tr -d ' n\n'

At the moment of writing this paper, it will only succeed in the task if the
greenhouse is connected to internet via Ethernet, for future research the
script will be improved in order to make it more versatile and integral.

i) APIWebServer: Contains an instance of Control and possesses only 1
method which is in charge of receiving and interpreting orders from the
webserver.

j) Main: The main module, declares one instance of WebController, Control,
APIWebServer, Estacion and WebServer, followed by the execution of the
only method in ProcessController to initiate functions.

2.2 Webserver and webpage

The webserver as well as the webpage are currently hosted at the University’s servers,
which counts with remote access. The webpage is made in HTML5 and PHP, which
allows it to send and receive requests of the types POST (Requests that send
information) and GET (Requests that solicitate information) both using JSON format.
Said page, has the following functions implemented:

Displaying sensor data, actuator status, pause the automatic control in the
greenhouse, as well as changing parameters in both actuators and sensors
and creating new ones as well.
Information Storage: Data collected by the sensors, as well as any changes in
actuators, are both saved in database for every greenhouse in a network. This
allows the administration of several greenhouses at once and documents
information for multiple greenhouses simultaneously, therefore being able to
function no matter the amount or scale of the greenhouses. The information
is displayed in the “Reportes” section, which shows a graph with a
progression of the temperature of the greenhouse along time, in the
“Mediciones” section, the raw data for every measurement can be seen in
any period of time. This is achieved by extracting and processing data from
the database at the time the user enters the webpage.

3. Verification and validation

Verification and validation for each of the features that the webpage currently has are
detailed below:

a) Addition of new sensors and actuators: In order to validate this feature, 3
sensors and 3 actuators were created in the webpage, it was consecutively
verified that by connecting the sensors and actuators to their respective pins,
activity remained normal with the newly added actuators and sensors. This test
validated emission, reception and storage of data as well as adding new

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-1075-

sensors, actuators, the only limitation being the number of pins available on
the board (Fig. 1 y 2).

Fig.1. Luminosity and temperature sensors

Fig. 2. Reaction to the request of sensor data

b) Ping from the webpage to the greenhouse in order to verify connection status
was successful (Fig. 3 y 4).

Fig. 3. The greenhouse’s reaction to the connection test

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-1076-

Fig. 4. Webpage receiving confirmation from the greenhouse, thus displaying a success
message.

c) Updating parameters for sensors and actuators: By modifying the parameters
in the previously added, the commands were executed and were successful,
only having to reconnect said components to their new respective pins to
remain normal activity. This did not affect performance in any way. (Fig. 5 y
6).

Fig. 5. Sensor update received by the greenhouse

Fig. 6. Success message from the webpage

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-1077-

d) Manual actuator control and automatic control stoppage: This was validated by
activating and deactivating each actuator 3 times which was successful.
Posteriorly, automatic control was paused which resulted in the greenhouse
only taking commands from the user while still performing the expected sensor
measurements, therefore being successful (Fig. 7, 8 y 9).

Fig. 7. Reaction to actuator activation and deactivation received

Fig. 8. Automatic function stoppage received

Fig. 9. Actuator control from the webpage

e) Automatic control in case of temperature/luminosity limit breaches: This test
was performed by covering the LDR sensors and exhaling near the DHT
sensors, as well as positioning a heat source near them. It was verified that in
cases were opposite limits were breached in a rapid and consecutive manner
(Less than 2 seconds in between) actuators will not cease function, however in
case the intervals are greater or equal to 2 seconds, it could be observed that
the corresponding actuators for each sensor were activated even in cases where
opposite limits were breached consecutively, in this last case doing so by
deactivating the currently functioning actuator and activating the correct
actuator.

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-1078-

Concerning performance, communication was considered acceptable based on the
expert’s opinion and response and reaction times were not greater than the intervals
defined in the greenhouse’s programming.

4. Conclusions and future research

In order to validate the results several hardware and software test were performed
over several prototypes. As a result, it was proven that the greenhouse will turn useful
for future research in the field of Agronomics.

It is believed that research in domotics in cooperation with agronomics could result in
better ways to administrate crops, optimize their growth and development and
improving the quality of future research in the field of botany as well. Smart
greenhouses such as the one detailed in this paper can be escalated and improved to
be later commercialized and possess an impact commercially as well as scientifically.

As future research, it is expected to utilize PID algorithms in order to optimize
actuator control for the greenhouse, as well as using MQTT for all real-time
communication-related activities. Furthermore, various types of sensors and actuators
will be added, such as current sensors, humidity sensors for ground usage, sprinklers
and several improvements in terms of hardware used for influencing the environment
inside the greenhouse. Concerning the webpage, Angular will be utilized as the main
framework due to the efficiency and wide variety of functions that it provides [11] as
well as a custom architecture designed around the established requirements(Fig. 10),
which will be adapted to any necessary changes.

Fig.10. Architecture for the newly designed webpage.

Posteriorly, Data Science algorithms and processes will be utilized [11] for smart data
analysis.

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-1079-

Bibliografía

[1] K. Meah, J. Forsyth y J. Moscola, «A Smart Sensor Network for an Automated Urban
Greenhouse,» 2019.

[2] R. B. Salikhov y A. A.Zainitdinova, «System of Monitoring and Remote Control of
Microclimate in Greenhouses,» 2019.

[3] A. Potapovs, A. Avotins, P. Apse-Apsitis, M. Gorobetz y P. Ceirs, «Continuous Crop
Weight Measurement Sensor Calibration Algorithm for Industrial Greenhouse,» 2019.

[4] S. Vettor, «freedom27/MyPyDHT/A Python 3 library for Raspberry Pi to interact with the
Humidity & Temperature sensors DHT11, DHT22 and AM2302,» Abril 2019. [En línea].
Available: https://github.com/freedom27/MyPyDHT.

[5] G. van Rossum, «The Python Standard Library,» 2019. [En línea]. Available:
https://docs.python.org/3/library/sched.html.

[6] A. Ronacher, «Flask-web development, one drop at a time,» 2019. [En línea]. Available:
http://flask.pocoo.org/.

[7] G. van Rossum, «The Python Standard Library,» 2019. [En línea]. Available:
https://docs.python.org/3/library/subprocess.html.

[8] G. van Rossum, «The Python Standard Library,» 2019. [En línea]. Available:
https://docs.python.org/3/library/http.client.html.

[9] K. Reitz, «Requests: HTTP for Humans,» 2019. [En línea]. Available: http://docs.python-
requests.org/en/master/.

[10] G. van Rossum, «The Python Standard Library,» 2019. [En línea]. Available:
https://docs.python.org/3/library/threading.html.

[11] P. Britos, Tesis Doctoral Procesos de Explotación Basados en Sistemas Inteligentes, La
Plata, Buenos Aires: UNLP, 2008.

[12] G. van Rossum, «Python 3.0,» 2019. [En línea]. Available:
https://www.python.org/download/releases/3.0/.

[13] E. Upton, «Raspberry Pi 2 Model B+,» 2019. [En línea]. Available:
https://www.raspberrypi.org/blog/price-cut-raspberry-pi-model-b-now-only-25/.

[14] M. Banzi, «Arduino,» 2019. [En línea]. Available: https://store.arduino.cc/usa/mega-2560-
r3.

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-1080-

