
A Simple Differential Evolution Algorithm to
Solve the Flexible Job Shop Scheduling Problem

Franco Morero, Carlos Bermudez, and Carolina Salto

Facultad de Ingenieŕıa, UNLPam
General Pico, La Pampa, Argentina, CONICET

Abstract. This paper addresses the Flexible Job Shop Scheduling Prob-
lem (FJSSP) where the objective is to minimize the makespan. We de-
velop a parallel hybrid Differential Evolution (DE) algorithm to tackle
this problem. A random key representation of the FJSSP is adopted,
which requires a very simple conversion mechanism to obtain a feasible
schedule. This allows the DE algorithm to work on the continuous domain
to explore the problem space of the discrete FJSSP. Moreover, a simple
local search algorithm is embedded in the DE framework to balance the
exploration and exploitation by enhancing the local searching ability. In
addition, parallelism of the DE operations is included to improve the
efficiency of whole algorithm. Experiments confirm the significant im-
provement achieved by integrating the propositions introduced in this
study. Additional, test results show that our algorithm is competitive
when compared with most existing approaches for the FJSSP.

Keywords: flexible job shop scheduling, differential evolution algorithm,
parallelism

1 Introduction
A realistic production environment, and with practical applicability, is the Flex-
ible Job Shop Scheduling Problem. Each job has to undergo multiple operations
on the various machines. The decision concerns how to sequence the operations
on the machines, so that the time needed to complete all the jobs (Cmax) is min-
imized. Moreover, an additional decision consists in to assign each operation to
the appropriate set of machines. These decisions suggest that the FJSSP is a com-
plex optimization problem (NP-hard problem [1]), consequently, the adoption of
metaheuristic [2, 3] has led to better results than classical dispatching or greedy
heuristic algorithms [4–6]. Since introduced in 1997 by Storn and Price [7], the
Differential Evolution (DE) metaheurisitc became very popular among computer
scientists and practitioners almost immediately after its original definition.

DE is a stochastic real-parameter global optimizer. It employs simple muta-
tion and crossover operators to generate new candidate solutions, and applies
one-to-one competition scheme to greedily determine whether the new candi-
date or its parent will survive in the next generation. Their successful is due
to its simplicity and ease implementation, and reliability and high performance.
DE algorithms have been applied to many combinatorial optimization problems

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-2-

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/288490856?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

([8–11], among many others), but as far as we are aware, there is few published
research work that describes the use of DE to deal with the FJSSP [12].

In this work, a simple DE to solve the FJSSP is design. As DE was originally
devised for solving continuous optimization problems, we adopt a real value rep-
resentation for the FJSSP to make the continuous DE applicable for solving the
discrete FJSSP, which implies that algorithm operations should not be modi-
fied or adapted to resolve the problem. Another important feature of DE is the
little number of parameters to be set, when compared to other evolutionary al-
gorithms. However, the success to find good solutions to a problem depends on
discovering the correct values of those parameters [13]. Therefore, we make an
analysis in this line to determine the adequate values for these parameters for
solving the instances of the FJSSP. Moreover, a simple local search procedure is
embedded to the DE to improve their exploration capacities by solving the prob-
lem. Finally, parallelism at algorithmic level [2] is incorporated to the design of
the DE, with the aim of improving the scalability and reducing the computation
time. The experimental methodology we have followed consists of computing the
Cmax values for the different DE proposed to solve the FJSSP and then com-
paring the obtained results by considering different quality indicators. We find
that our simple DE shows a promising behavior to solve the FJSSP.

The paper is organized as follows. In Section 2, we introduce the problem
formulation . In Section 3, we present the basic DE algorithm. In Section 4 we
explain the adaptations of the DE to solve the FJSSP. In the following section,
we introduce the experimental design and in Section 6, we evaluate the results.
Some final remarks and future research directions are given in Section 7.

2 The Flexible Job Shop Scheduling Problem
The FJSSP can be formally described as follows. A set J = {J1, J2, ..., Jn}
of independent jobs and a set U = {M1,M2, ...,Mm} of machines are given.
A job Ji is broken down by a sequence of Oi1, Oi2, ..., Oini

operations to be
performed one after the other according to the given sequence. Each operation
Oij can be executed on any among a subset Uij ⊆ U of compatible machines.
We have partial flexibility if there exists a proper subset Uij ⊂ U , for at least
one operation Oij , while we have Uij = U for each operation Oij in the case of
total flexibility. The processing time of each operation is machine-dependent. We
denote with dijk the processing time of operation Oij when executed on machine
Mk. Pre-emption is not allowed, i.e., each operation must be completed without
interruption once started. Furthermore, the machines cannot perform more than
one operation at a time. All jobs and machines are available at time 0.

The problem is to assign each operation to an appropriate machine (routing
problem), and to sequence the operations on the machines (sequencing problem)
in order to minimize the makespan (Cmax). This measure is the time needed to
complete all the jobs, which is defined as Cmax = maxi{Ci}, where Ci is the
completion time of job Ji. Table 1 shows an instance of the FJSSP with 3 jobs, 4
machines and 8 operations. The rows and columns correspond to machines and
operations, respectively, and the entries of the table are the processing times.

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-3-

Table 1. Instance Example for the FJSSP

J1 J2 J3

O11 O12 O13 O21 O22 O23 O31 O32

M1 - 4 9 2 4 9 8 3
M2 6 8 5 - 6 - 6 5
M3 5 5 - 1 8 2 - 8
M4 - 6 7 3 4 2 5 3

Algorithm 1 Differential Evolution Algorithm (DE)
Require: F,Cr,Np

Ensure: xbest

1: initialize(P 0,Np)
2: g ← 0
3: while not meet stop criterion do
4: for each vector xg

i from P g do

5: vg
i ← mutate(xg

i , P
g, F)

6: ug
i ← recombinate(xg

i , v
g
i , Cr)

7: xg
i ← select(xg

i , u
g
i)

8: add(P g+1, xg+1
i)

9: end for
10: g ← g + 1
11: end while
12: xbest ←best solution(P g)

3 Differential Evolution Algorithm: Background
The DE algorithm was proposed by Storn and Price [7] to solve optimization
problems with real-valued parameters. DE is a stochastic, population-based op-
timization method. Despite having a very simple algorithmic structure, DE has
demonstrated a high level of performance when solving a wide variety of very
complex problems [14]. The optimal or near-optimal solution is obtained by an
iterative process which is applied to a set of solutions (population) to achieve a
new one. At each step of the process, new solutions arise as a result of perturba-
tions to the current solutions, caused by mutation and recombination operators.

The algorithmic framework of DE is described in Algorithm 1. The first step
(Line 1) consists in the initialization of the population P 0 of NP target vectors
of D real values (xi = (xi,1, xi,2, ..., xi,D) ∈ R

D(1 ≤ i ≤ NP)). Each component
xi,j ∈ R(1 ≤ j ≤ D) represents a variable or a parameter of the optimization
problem. Usually, each xi,j is bounded to a value in the range [lij , lsj], where
lij , lsj ∈ R are the lower and upper bound, respectively. The NP target vectors
are initialized randomly by applying Equation 1:

xi,j = lij + U(0, 1)× (lsj − lij) (1)

where U(0, 1) is a random number with uniform distribution in the range [0, 1].
After the initialization step, an iterative process begins. The mutation op-

eration (Line 5 of Algorithm 1) obtains a donor vector vgi = (vi,1, vi,2, ..., vi,D)
for each target vector xg

i from the current population P g (0 ≤ g ≤ maxgen)
following Equation 2. To obtain vgi , a base vector xg

r0 and other two vectors
xg
r1 y xg

r2 are randomly selected from P g, with r0, r1 and r2 chosen from the
set {1, 2, ..., NP } and all of them are mutually exclusive. The F ∈ [0...1) factor,

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-4-

known as scale factor, controls the rate at which the population evolves, in or-
der to avoid their stagnation during the search process. The mutation operator
is important to the DE’s behaviour because it focuses the search on the most
promising areas of the solution space.

vgi = xg
r0 + F × (xg

r1 − xg
r2) (2)

The donor vector is modified by the recombination operator (Line 6), with the
aim of increasing the population diversity. This operator creates a trial vector
ug
i through mixing components of the donor vector vgi and the target vector xg

i .
The most frequently referred crossover operator is the binomial crossover, which
is shown in Equation 3:

ug
i,j =

�
vgi,j si rj < Cr ∨ j = jr
xg
i,j otherwise

(3)

where rj = U(0, 1) is a random value, jr is also a random value in the set {1, 2,
...,D}, and finally Cr is a parameter known as recombination probability, which
controls the fraction of parameter values that are copied from the donor.

The last step is the selection operation (Line 7). The trial vector ug
i competes

against the target vector xg
i regarding their objective values (obtained applying

the objective function to each vector). The best vector is selected to be part of
the population P g+1 of the next generation. Clearly, this competition creates a
new population with a performance equal or superior to the current one (Line
8). Consequently, DE is an elitist evolutionary algorithm.

The stopping criteria can be set to a preset maximum number of iterations
(maxgen) or some other problem-dependent criterion. Whichever the criteria to
be set, the choice has a direct influence on the best solution xbest obtained by
the algorithm (Line 12).

DE performance mainly depends on three parameters: scaling factor of the
difference vector (F), crossover control parameter (Cr) and population size
(NP). Some guidelines are available to choose the control parameters [14]. In
this work, NP and F are chosen based on previous knowledge and keep it con-
stant during all runs. On the other hand, a good value for Cr is 0.1 however, to
speed up convergence a greater value can be used.

4 Our proposal: Hybrid DE for the FJSSP

In this section, our proposal to solve the FJSSP is detailed. In order to apply the
DE algorithm, it is crucial to design a suitable encoding scheme that maps the
floating point vectors to the feasible solution for the FJSSP (see Section 4.1).
Moreover, our proposal is enhanced by a simple local search (Section 4.2). Fi-
nally, a parallel version of our proposal is introduced (Section 4.3).

4.1 Representation
In this work, the DE algorithm still manipulates real-valued vector in order to
maintain the simplicity and properties of the DE in their natural configura-
tion. Consequently, the schedule is generated following the random keys encod-
ing scheme [15]. This representation deals with real point vectors, where these

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-5-

Fig. 1. Example of the decoding process used by the DE to solve the FJSSP.

points are used as sort keys to decode the solution. For an n-job m-machine
scheduling problem, each vector’s position (a random key) consists of a floating
number in U(-1,1) which can be translated to an unique list of ordered opera-
tions, after a descending order of the random keys. These steps always obtain a
feasible schedule from a real-valued vector. The schedule is a permutation with
repetitions [16]. See Figure 1 for an example considering the instance shown in
Table 1. Given the vector xg

i=[0.6,-0.5,0.4,-0.3,-0.1,0.9,-0.7,0.2], it is converted
to a schedule [2, 1, 1, 3, 2, 2, 1, 3], which is a permutation of the set of operations
that represents a tentative ordering to schedule them, each one being represented
by its job number. This valid schedule corresponds to the operation sequence
O21, O11, O12, O31, O22, O23, O13, and O32.

In order to evaluate xg
i , the objective value is the makespan (Cmax). To

compute it, each operation Oij in xg
i is assigned to a feasible machine Mk in Uij

with the shortest completion time, and then the load of Mk must be updated.
The initial solution is generated by a random procedure (Equation 1), mainly
because high performing construction heuristics for the FJSSP are unknown.

4.2 DE and Local Search Method
DE is enhanced with a local search technique, yielding a hybrid DE (HDE)
for exploration and exploitation among the solutions to obtain a near optimal
solution. In this work, a simple interchange mechanism is implemented in which
two positions of the target vector are randomly selected and interchanged. If
there is an improvement in the objective function the swap is accepted, otherwise,
it is not considered. This local search procedure is applied to the target vectors
xi of the next population (just before Line 11 of Algorithm 1) but not to the trial
vector ui, which is beneficial to avoid both cycling search and getting trapped in
a local optimum. Moreover, the frequency of the local search is controlled by the
probability pLS . Another important characteristic of this local search procedure
is that it does not need a backward conversion because it is applied over the
real-valued vector.

4.3 DE and Parallelism

In terms of designing parallel metaheuristics, the DE can be paralleled in dif-
ferent ways [2]. In this work, the aim of the parallelization is not to change the
behaviour of the metaheuristic but to speed up the search. For that purposes,

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-6-

we focus on the parallelization of each iteration of the DE [17]. The popula-
tion of individuals is decomposed and handled in parallel, using the well-known
global parallelization model. A principal process performs the selection opera-
tions and the replacement, which are generally sequential. The rest processes
(workers) perform the mutation, recombination, and the evaluation of the solu-
tions in parallel. Consequently, this model maintains the sequence of the original
algorithm, and hence the behavior of the metaheuristic is not altered.

5 Experimental Design

In this section, we describe the experimental design used in this approach. We
have selected a wide range of FJSSP instances used in the literature taking into
account their complexity, which is given by the number of jobs and machines,
and the wide variation of flexibility in the number of available machines per
operation. In this sense, we considered the data set proposed by Brandimarte [18]
as a representative one, since the number of jobs ranges from 10 to 20, the number
of machines belongs to the set {4,15} and the number of operations for each job
ranges from 5 to 15, consequently the total number of operations ranges from
55 to 240. The flexibility varies between 1.43 and 4.10.

The parametric configuration considered for the DE’s experimentation is the
following. The population size, NP is set to 50. The F factor is equal to 0.9.
These values were adopted from previous works. Regarding Cr probability, three
different values were considered (0.1, 0.5, and 0.9). For the remaining parameter,
PLS , three values are also analysed (0.1, 0.5 and 0.7).

Because of the stochastic nature of the algorithms, we performed 30 inde-
pendent runs of each test to gather meaningful experimental data and apply
statistical confidence metrics to validate our conclusions. As the data do not
follow a normal distribution, we used the Kruskal-Wallis (KW) test to assess
whether or not there were meaningful differences between the compared algo-
rithms with a confidence level of 99%.

The experimentation is carried out on a cluster of 4 INTEL I7 3770K quad-
core processors, 8 GB RAM, and the Slackware Linux with 2.6.27 kernel version.
To implement the parallel version of DE, a portable programming interface for
shared memory parallel computers such us OpenMP [19] is used.

6 Experimental Results

The first analysis is focused on the effect of using different Cr values in the DE
performance, from low to high values (0.1, 0.5 and 0.9). Table 2 shows the best
Cmax values obtained for the DE algorithm using the different Cr values for
each instance (columns 3 to 5). Also, the mean Cmax values together with the
mean standard deviation (sd) are presented (columns 6 to 8). Column 2 displays
the best known Cmax value for each instance. Last column shows the results of
the KW test, where the symbol “+” indicates significant differences between the
algorithms (p-value is inferior to the significance levelα = 0.01).

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-7-

Table 2. Cmax values found by the DE algorithm with different Cr values.

Instance Opt.
Best Cmax Values Mean Cmax Values ± sd

KW
Cr=0.1 Cr=0.5 Cr=0.9 Cr=0.1 Cr=0.5 Cr=0.91

Mk01 40 40 40 40 40.00 ±0.00 40.00 ±0.00 40.73 ±0.78 -
Mk02 26 27 27 27 27.00 ±0.00 27.20 ±0.42 27.33 ±0.47 +
Mk03 204 204 204 204 204.00 ±0.00 204.00 ±0.00 204.00 ±0.00 -
Mk04 60 60 61 60 61.70 ±0.60 65.20 ±2.53 64.80 ±2.19 +
Mk05 172 174 177 173 175.87 ±0.73 181.10 ±1.79 174.03 ±1.82 +
Mk06 58 66 70 60 67.17 ±0.59 71.10 ±0.74 63.15 ±1.12 +
Mk07 139 144 149 140 144.07 ±0.25 150.10 ±0.99 142.18 ±1.30 +
Mk08 523 523 523 523 523.00 ±0.00 523.30 ±0.95 523.00 ±0.00 -
Mk09 307 321 338 307 325.13 ±1.48 343.00 ±2.40 310.05 ±2.48 +
Mk10 197 237 249 213 241.03 ±1.25 252.00 ±1.25 218.00 ±2.71 +

The DE algorithm with Cr=0.9 finds lowest Cmax values than the rest. More-
over, this configuration reaches the best known Cmax values in 5 of the 10 in-
stances. Now, analyzing what is happening with the mean Cmax values, the DE
using Cr=0.1 presents the lowest values for the four first instances (MK01-04).
Furthermore, sd values are equal to zero for these instances, indicating that the
algorithm is able to find the optimum value for all the runs. In the remaining
instances (MK05-10), the DE with Cr=0.9 presents the lowest Cmax values.
Finally, the DE using Cr=0.5 shows the worst performance. Given that the p-
values of KW test is lower than the level of significance considered, we can state
that there are significant differences among the DE with Cr values (except for
instances MK01, MK03, and MK08).

From previous analysis, we can conclude that for instances with relatively
few operations, the fraction of parameter values that are copied from the target
vector in the recombination operation should be small to allow the algorithm to
find the best solutions to the problem. On the other hand, when the complexity
of the instances grows up, it is necessary to increase the amount of disturbances
in the solutions, and in this way the algorithm could converge to near-optimal
solutions. Consequently, we will adopt two different values of Cr for the remain-
ing experimentation: Cr = 0.1 for MK01-04 instances and Cr = 0.9 for the
remaining ones.

Following analysis goes into detail of what happened with the introduction
of a local search procedure to the DE algorithm (HDE) to solve the FJSSP. For
that purpose, we considered three different pLS values: 0.1, 0.5 and 0.7 (low,
medium, and high probability values), i.e. we study how the frequency of the LS
application impacts on the DE performance.

Table 3 shows the best and mean Cmax values obtained for the HDE with
the different pLS values. The HDE algorithm applying the local search procedure
with high frequency (pLS=0.7) obtains low best Cmax values for the majority of
the FJSSP instances. Moreover, this algorithm exhibits the lowest mean Cmax

values for all instances. These indicate that the algorithm is able to find the
optimum or the near-optimum values in the majority of the runs. Moreover, the
KW test indicates that there are statistical significant differences among the
algorithms (p-values are lower than the level of significance). Comparing Cmax

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-8-

Table 3. Cmax values found by the HDE algorithm with different pLS values.

Inst Opt.
Best Cmax Mean Cmax values ± sd

KW
pLS=0.1 pLS=0.5 pLS=0.7 pLS=0.1 pLS=0.5 pLS=0.7

MK01 40 40 40 40 40.00 ±0.00 40.00 ±0.00 40.00 ±0.00 -
MK02 26 27 26 26 27.00 ±0.00 26.80 ±0.41 26.77 ±0.43 +
MK03 204 204 204 204 204.00 ±0.00 204.00 ±0.00 204.00 ±0.00 -
MK04 60 60 60 60 61.20 ±0.66 60.33 ±0.48 60.17 ±0.38 +
MK05 172 173 173 173 1.73 ±0.18 173.00 ±0.00 173.00 ±0.00 +
MK06 58 62 61 60 63.27 ±0.69 62.13 ±0.73 61.90 ±0.48 +
MK07 139 140 139 140 142.37 ±0.96 140.83 ±0.79 140.63 ±0.61 +
MK08 523 523 523 523 523.00 ±0.00 523.00 ±0.00 523.00 ±0.00 -
MK09 307 307 307 307 309.93 ±1.53 307.67 ±1.06 307.37 ±0.89 +
MK10 197 225 223 219 228.20 ±1.97 225.77 ±1.36 224.73 ±1.66 +

0.1 0.5 0.7

0
40

00
0

80
00

0

PBL values

E
va

lu
at

io
ns

Fig. 2. Total number of evalua-
tions for the HDE .

MK01 MK03 MK05 MK07 MK09

0
1

2
3

4
Instances

S
pe

ed
up

Fig. 3. Speedup per FJSSP in-
stances.

values from Table 2 and the ones from Table 3, we can observe that the HDE
algorithms obtain best

Figure 2 illustrates the distribution of the number of evaluations to find the
best Cmax values for the HDE algorithms with different PLS values. We observe
that the HDE algorithm with PLS=0.7 needs less number of evaluations than
the rest of the algorithms. If we also consider the Cmax values obtained by each
HDE, the one with PLS=0.7 is the best approach to solve this problem.

Following analysis is devoted to compare the HDE and its parallel version
as described in Section 4.3. The most important measure of a parallel algorithm
is the speedup. The speedup is defined as the ratio of the sequential execution
time (HDE execution time, in this case) to the parallel execution time. For this
analysis, we consider the weak speedup [20]. For that reason and following the
best practice by Luque and Alba [3], the stopping criterion is based on the quality
of the final solution achieved by the algorithms, which is set to the best known
Cmax for each FJSSP instance (see column Opt of Table 2). Consequently, the
speedup values is only reported for the instances for which the HDE algorithm
obtains the optimum value.

Figure 3 shows that the use of parallelization is worth while, which allow
us to speed up the execution time with respect to the sequential HDE near 3
times in average (the ideal speedup value is 4, the number of available cores per
machine).

Finally, to determine the goodness of the metaheuristics considered in this
work, we present a comparison of the results from the HDE with several compet-
itive algorithms present in the literature. This allows a comparative assessment

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-9-

Table 4. Comparison between HDE and population-based Metaheuristics from the
literature

MK01 MK02 MK03 MK04 MK05 MK06 MK07 MK08 MK09 MK10
HDE 40 26 204 60 173 60 140 523 307 219
hGA 40 26 204 62 172 65 140 523 310 214
BEDA 40 26 204 60 172 60 139 523 307 206
IACO 40 26 204 60 173 60 140 523 307 208
HDE 40 26 204 60 172 57 139 523 307 198

of the algorithms for the FJSSP. In this comparison different population-based
metaheuristics to solve the FJSSP are considered: i) a hybrid algorithm combin-
ing chaos particle swarm optimization with genetic algorithm (hGA) [4], ii) a
bi-population based estimation of distribution algorithm (BEDA) [5], iii) an ant
colony optimization (IACO) [6], and finally, iv) a hybrid differential evolution-
ary algorithm [12]. From the comparison, the Cmax values of HDE are similar
with the values of remaining algorithms, for the majority of the ten instances (a
comparative table is no included due to lack of space). This observation suggests
that the HDE developed in this work is a competitive algorithm to solve the
FJSSP. Comparisons regarding computational effort are hard to be carried out
because the majority of the works do not report number of evaluations. Conse-
quently, the relative efficiency of referred algorithms are difficult to contrast in
order to obtain meaningful comparisons.

7 Conclusions

In this article, we have presented a simple DE algorithm to solve the FJSSP.
In this study, the traditional real-parameter global optimizer is considered to
maintain the properties of the DE in their natural configuration. The DE is en-
hanced with a very simple local search procedure, obtaining a hybrid DE (HDE).
Moreover, each iteration of the DE is parallelised to speed up the computation.
The results indicate that the HDE with a high probability, at which the local
search procedure is applied, is able to find the best solutions for the FJSSP.
Moreover, when HDE is contrasted with algorithms in the literature, it also be-
comes a competitive approach. As a consequence, HDE gives good solutions to
this NP-hard problem in an efficient and competitive way.

As future research activities, we will plan to extend the study by includ-
ing another set of instances with high dimensionality. Furthermore, variants of
the FJSSP with more constraints will be evaluated considering the approaches
developed in this article.

Acknowledgements

This research is is supported by Universidad Nacional de La Pampa, and the
Incentive Program from MINCyT. The last author acknowledges CONICET.

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-10-

References

1. M. R. Garey, D. S. Johnson, and R. Sethi, “The complexity of flowshop and jobshop
scheduling,” Math. Oper. Res., vol. 1, no. 2, pp. 117–129, May 1976.

2. E.-G. Talbi, Metaheuristics: From Design to Implementation. Wiley, 2009.
3. G. Luque and E. Alba, Parallel Genetic Algorithms: Theory and Real World Ap-

plications. Springer Publishing Company, Incorporated, 2013.
4. J. Tang, G. Zhang, B. Lin, and B. Zhang, “A hybrid algorithm for flexible job-shop

scheduling problem,” Procedia Engineering, vol. 15, pp. 3678 – 3683, 2011.
5. L. Wang, S. Wang, Y. Xu, G. Zhou, and M. Liu, “A bi-population based estimation

of distribution algorithm for the flexible job-shop scheduling problem,” Computers
& Industrial Engineering, vol. 62, no. 4, pp. 917 – 926, 2012.

6. L. Wang, J. Cai, M. Li, and Z. Liu, “Flexible job shop scheduling problem using
an improved ant colony optimization,” Scientific Programming, pp. 1–11, 2017.

7. R. Storn and K. Price, “Differential evolution – a simple and efficient heuristic
for global optimization over continuous spaces,” Journal of Global Optimization,
vol. 11, no. 4, pp. 341–359, 1997.

8. B. Teoh, S. Ponnambalam, and G. Kanagaraj, “Differential evolution algorithm
with local search for capacitated vehicle routing problem,” Int. J. Bio-Inspired
Comput., vol. 7, no. 5, pp. 321–342, 2015.

9. R. Greco and I. Vanzi, “New few parameters differential evolution algorithm with
application to structural identification,” Journal of Traffic and Transportation En-
gineering (English Edition), vol. 6, no. 1, pp. 1 – 14, 2019.

10. P. Hull, M. Tinker, and G. Dozier, “Evolutionary optimization of a geometrically
refined truss,” Structural and Multidisciplinary Opt., vol. 31.

11. R. M. K. Rout, “Simultaneous selection of optimal parameters and tolerance of
manipulator using evolutionary optimization techniques,” Structural and Multidis-
ciplinary Optimization, vol. 40, no. 1-6, pp. 513–528, 2010.

12. Y. Yuan and H. Xu, “Flexible job shop scheduling using hybrid differential evolu-
tion algorithms,” Computers & Industrial Eng., vol. 65, no. 2, pp. 246–260, 2013.

13. T. Eltaeib, Tarik, and A. Mahmood, “Differential evolution: A survey and analy-
sis,” Applied Sciences, vol. 8, no. 10, 2018.

14. K. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution: A Practical
Approach to Global Optimization (Natural Computing Series). Berlin, Heidelberg:
Springer-Verlag, 2005.

15. J. C. Bean, “Genetic algorithms and random keys for sequencing and optimiza-
tion,” ORSA Journal on Computing, vol. 6, no. 2, pp. 154–160, 1994.

16. C. Bierwirth, “A generalized permutation approach to job shop scheduling with
genetic algorithms,” Operations-Research-Spektrum, vol. 17, pp. 87–92, 1995.

17. N. Nedjah, E. Alba, and L. de Macedo Mourelle, Parallel Evolutionary Computa-
tions. Springer-Verla, 2006.

18. P. Brandimarte, “Routing and scheduling in a flexible job shop by tabu search,”
Annals of Operations Research, vol. 41, pp. 157–183, 1993.

19. B. Chapman, G. Jost, and R. van der Pas, Using OpenMP: Portable Shared Memory
Parallel Programming. MIT Press, 2007.

20. E. Alba, Parallel Metaheuristics: A New Class of Algorithms. Wiley, 2005.

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-11-

